WO2015195809A1 - Molecular sieve catalyst compositions, catalyst composites, systems, and methods - Google Patents

Molecular sieve catalyst compositions, catalyst composites, systems, and methods Download PDF

Info

Publication number
WO2015195809A1
WO2015195809A1 PCT/US2015/036243 US2015036243W WO2015195809A1 WO 2015195809 A1 WO2015195809 A1 WO 2015195809A1 US 2015036243 W US2015036243 W US 2015036243W WO 2015195809 A1 WO2015195809 A1 WO 2015195809A1
Authority
WO
WIPO (PCT)
Prior art keywords
scr catalyst
molecular sieve
catalyst material
range
cha
Prior art date
Application number
PCT/US2015/036243
Other languages
French (fr)
Inventor
Natalia Trukhan
Ulrich Mueller
Michael Breen
Barbara Slawski
Qi Fu
Jaya L. MOHANAN
Martin W. KRAUS
Ahmad Moini
Xiaofan Yang
John K. Hochmuth
Original Assignee
Basf Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/687,097 external-priority patent/US9889437B2/en
Priority to EP15809019.1A priority Critical patent/EP3157672A4/en
Priority to CN201580044158.1A priority patent/CN106660022B/en
Priority to CA2952435A priority patent/CA2952435C/en
Priority to BR112016029719A priority patent/BR112016029719A8/en
Priority to JP2016573744A priority patent/JP6615795B2/en
Application filed by Basf Corporation filed Critical Basf Corporation
Priority to MX2016016922A priority patent/MX2016016922A/en
Priority to RU2017101430A priority patent/RU2704820C2/en
Priority to KR1020177001105A priority patent/KR102424620B1/en
Priority claimed from US14/741,754 external-priority patent/US9764313B2/en
Publication of WO2015195809A1 publication Critical patent/WO2015195809A1/en
Priority to ZA2017/00236A priority patent/ZA201700236B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • B01J35/19
    • B01J35/30
    • B01J35/40
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates generally to the field of selective catalytic reduction materials, selective catalytic reduction composites, and to methods of selectively reducing nitrogen oxides. More particularly, embodiments of the invention relate to a SCR catalyst material comprising a spherical particle including an agglomeration of crystals of a molecular sieve.
  • NO x nitrogen oxides
  • exhaust gases such as from internal combustion engines (e.g., automobiles and trucks), from combustion installations (e.g., power stations heated by natural gas, oil, or coal), and from nitric acid production plants.
  • Various methods have been used in the treatment of NOx-containing gas mixtures.
  • One type of treatment involves catalytic reduction of nitrogen oxides.
  • a selective reduction process wherein ammonia or ammonia precursor is used as a reducing agent.
  • a high degree of removal with nitrogen oxide can be obtained with a small amount of reducing agent.
  • the selective reduction process is referred to as a SCR process (Selective Catalytic Reduction).
  • SCR process uses catalytic reduction of nitrogen oxides with ammonia in the presence of atmospheric oxygen with the formation predominantly of nitrogen and steam:
  • Catalysts employed in the SCR process ideally should be able to retain good catalytic activity over the wide range of temperature conditions of use, for example, 200 °C to 600 °C or higher, under hydrothermal conditions.
  • Hydrothermal conditions are often encountered in practice, such as during the regeneration of a soot filter, a component of the exhaust gas treatment system used for the removal of particles.
  • Molecular sieves such as zeolites have been used in the selective catalytic reduction (SCR) of nitrogen oxides with a reductant such as ammonia, urea, or a hydrocarbon in the presence of oxygen.
  • SCR selective catalytic reduction
  • Zeolites are crystalline materials having rather uniform pore sizes which, depending upon the type of zeolite and the type and amount of cations included in the zeolite lattice, range from about 3 to 10 Angstroms in diameter.
  • Zeolites having 8 -ring pore openings and double-six ring secondary building units, particularly those having cage-like structures, have recently found interest in use as SCR catalysts.
  • zeolite having these properties is chabazite (CHA), which is a small pore zeolite with 8 member-ring pore openings (-3.8 Angstroms) accessible through its 3 -dimensional porosity.
  • CHA chabazite
  • a cage like structure results from the connection of double six-ring building units by 4 rings.
  • Metal-promoted zeolite catalysts including, among others, iron-promoted and copper-promoted zeolite catalysts, for the selective catalytic reduction of nitrogen oxides with ammonia are known.
  • Iron-promoted zeolite beta has been an effective commercial catalyst for the selective reduction of nitrogen oxides with ammonia.
  • hydrothermal conditions for example exhibited during the regeneration of a soot filter with temperatures locally exceeding 700 °C, the activity of many metal-promoted zeolites begins to decline. This decline is often attributed to dealumination of the zeolite and the consequent loss of metal-containing active centers within the zeolite.
  • Metal-promoted, particularly copper promoted aluminosilicate zeolites having the CHA structure type have recently solicited a high degree of interest as catalysts for the SCR of oxides of nitrogen in lean burning engines using nitrogenous reductants. This is because of the wide temperature window coupled with the excellent hydrothermal durability of these materials, as described in United States Patent Number 7,601,662.
  • a first aspect of the invention is directed to a selective catalytic reduction (SCR) material.
  • a selective catalytic reduction material comprises a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns.
  • the SCR catalyst material of the first embodiment is modified, wherein the molecular sieve comprises a d6r unit.
  • the SCR catalyst material of the first and second embodiments is modified, wherein the molecular sieve has a structure type selected from the group consisting of AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
  • the molecular sieve has a structure type selected from the group consisting of AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
  • the SCR catalyst material of the first through third embodiments is modified, wherein the molecular sieve has a structure type selected from AEI, AFT, AFX, CHA, EAB, ERI, KFI, LEV, SAS, SAT, and SAV.
  • the SCR catalyst material of the first through fourth embodiments is modified, wherein the molecular sieve has a structure type selected from AEI, CHA, and AFX.
  • the SCR catalyst material of the first through sixth embodiments is modified, wherein the molecular sieve having the CHA structure type is selected from an aluminosilicate zeolite, a borosilicate, a gallosilicate, a SAPO, an A1PO, a MeAPSO, and a MeAPO.
  • the SCR catalyst material of the first through seventh embodiments is modified, wherein the molecular sieve having the CHA structure type is selected from the group consisting of SSZ-13, SSZ-62, natural chabazite, zeolite K-G, Linde D, Linde R, LZ-218, LZ-235, LZ-236, ZK-14, SAPO-34, SAPO-44, SAPO-47, and ZYT-6.
  • the molecular sieve having the CHA structure type is selected from the group consisting of SSZ-13, SSZ-62, natural chabazite, zeolite K-G, Linde D, Linde R, LZ-218, LZ-235, LZ-236, ZK-14, SAPO-34, SAPO-44, SAPO-47, and ZYT-6.
  • the SCR catalyst material of the first through eighth embodiments is modified, wherein the molecular sieve is selected from SSZ-13 and SSZ-62.
  • the SCR catalyst material of the first through ninth embodiments is modified, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
  • the SCR catalyst material of the first through tenth embodiments is modified, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, and combinations thereof.
  • the SCR catalyst material of the first through eleventh embodiments is modified, wherein the SCR catalyst material is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200 °C and 600 °C.
  • the SCR catalyst material of the sixth embodiment is modified, wherein the molecular sieve having the CHA structure type has a silica to alumina ratio in the range of 10 to 100.
  • the SCR catalyst material of the tenth and eleventh embodiments is modified, wherein the metal is present in an amount in the range of about 0.1 to about 10 wt. % on an oxide basis.
  • the SCR catalyst material of the first through fourteenth embodiments is modified, wherein the spherical particle has a median particle size in the range of about 1.2 to about 3.5 microns.
  • the SCR catalyst material of the first through fifteenth embodiments is modified, wherein the crystals have a crystal size in the range of about 1 to about 250 nm.
  • the SCR catalyst material of the first through sixteenth embodiments is modified, wherein the crystals have a crystal size in the range of about 100 to about 250 nm.
  • the SCR catalyst material of the first through seventeenth embodiments is modified, wherein the SCR catalyst material is in the form of a washcoat.
  • the SCR catalyst material of the eighteenth embodiment is modified, wherein the washcoat is a layer deposited on a substrate.
  • the SCR catalyst material of nineteenth embodiment is modified, wherein the substrate comprises a filter.
  • the SCR catalyst material of the twentieth embodiment is modified, wherein the filter is a wall flow filter.
  • the SCR catalyst material of the twentieth embodiment is modified, wherein the filter is a flow through filter.
  • the SCR catalyst material of the first through twenty-second embodiments is modified, wherein at least 80% of the spherical particles have a median particle size in the range of 0.5 to 2.5 microns.
  • the SCR catalyst material of the first through twenty-third embodiments is modified, wherein the molecular sieve comprises a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal.
  • the SCR catalyst material of the twenty-fourth embodiment is modified, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
  • the SCR catalyst material of the twenty-twenty fourth and twenty-fifth embodiments is modified, wherein the tetravelent metal comprises a tetravalent transition metal.
  • the SCR catalyst material of the twenty-fourth through twenty-sixth embodiments is modified, wherein the tetravalent transition metal is selected from the group consisting of Ti, Zr, Hf, Ge, and combinations thereof.
  • the SCR catalyst material of the twenty-fourth through twenty-seventh embodiments is modified, wherein the tetravalent transition metal comprises Ti.
  • a second aspect of the invention is directed to a method for selectively reducing nitrogen oxide (NO x ).
  • the method for selectively reducing nitrogen oxide (NO x ) comprises contacting an exhaust gas stream containing NO x with a SCR catalyst material comprising a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns.
  • the method for selectively reducing nitrogen oxide (NO x ) comprises contacting an exhaust gas stream containing NO x with the SCR catalyst material of the first through twenty-eighth embodiments.
  • a third aspect of the invention is direct to a system for treating exhaust gas from a lean burn engine containing NO x .
  • the system for treating exhaust gas from a lean burn engine containing NO x comprises the SCR catalyst material of the first through twenty-eighth embodiments and at least one other exhaust gas treatment component.
  • a thirty-first embodiment pertains to SCR catalyst comprising a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal and the catalyst is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
  • the SCR catalyst of the thirty-first embodiment is modified, wherein the tetravalent metal comprises a tetravalent transition metal.
  • the SCR catalyst of the thirty-first and thirty-second embodiments is modified, wherein the tetravalent transition metal is selected from the group consisting of Ti, Zr, Hf, Ge, and combinations thereof.
  • the SCR catalyst of the thirty-first through thirty- third embodiments is modified, wherein the tetravalent transition metal comprises Ti.
  • the SCR catalyst of the thirty-first through thirty- fourth embodiments is modified, wherein the silica to alumina ratio is in the range of 1 to 300.
  • the SCR catalyst of the thirty-first through thirty-fifth embodiments is modified, wherein the silica to alumina ratio is in the range of 1 to 50.
  • the SCR catalyst of the thirty-first through thirty- sixth embodiments is modified, wherein the tetravalent metal to alumina ratio is in the range of 0.0001 to 1000.
  • the SCR catalyst of the thirty-first through thirty- seventh embodiments is modified, wherein the tetravalent metal to alumina ratio is in the range of 0.01 to 10.
  • the SCR catalyst of the thirty-first through thirty- eighth embodiments is modified, wherein the tetravalent metal to alumina ratio is in the range of 0.01 to 2.
  • the SCR catalyst of the thirty- first through thirty-ninth embodiments is modified, wherein the silica to tetravalent metal ratio is in the range of 1 to 100.
  • the SCR catalyst of the thirty-first through a fourtieth embodiment is modified, wherein the silica to tetravalent metal ratio is in the range of 5 to 20.
  • the SCR catalyst of the thirty-first through forty-first embodiments if modified, wherein the zeolitic framework material comprises ring sizes no larger than 12.
  • the SCR catalyst of the thirty-first through forty- second embodiments is modified, wherein the zeolitic framework material comprises a d6r unit.
  • the SCR catalyst of the thirty-first through forty-third embodiments is modified, wherein the zeolitic framework material is selected from AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
  • the zeolitic framework material is selected from AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
  • the SCR catalyst of the thirty-first through forty-fourth embodiments is modified, wherein the zeolitic framework material is selected from AEI, CHA, AFX, ERI, KFI, LEV, and combinations thereof.
  • the SCR catalyst of the thirty-first through forty-fifth embodiments is modified, wherein the zeolitic framework material is selected from AEI, CHA, and AFX.
  • the SCR catalyst of the thirty-first through forty- sixth embodiments is modified, wherein the zeolitic framework material is CHA.
  • the SCR catalyst of the thirty-first through forty- seventh embodiments is modified, wherein the catalyst is promoted with Cu, Fe, and combinations thereof.
  • the SCR catalyst of the thirty-first through forty- eighth embodiments is modified, wherein the catalyst is effective to promote the formation of NO + .
  • the SCR catalyst of the thirty-first through forty-ninth embodiments is modified with the proviso that the zeolitic framework excludes phosphorous atoms.
  • Embodiments of an additional aspect of the invention are directed to a method for selectively reducing nitrogen oxides (NO x ).
  • the method for selectively reducing nitrogen oxides (NO x ) comprises contacting an exhaust gas stream containing NO x with a catalyst of the thirty- first through fiftieth embodiments.
  • Embodiments of a further aspect of the invention are directed to an exhaust gas treatment system.
  • an exhaust gas treatment system comprises an exhaust gas stream containing ammonia and a catalyst in accordance with the thirty-first through fiftieth embodiments.
  • a fifty-third embodiment is provided directed to use of the catalyst of any of the first through fiftieth embodiments as a catalyst for the selective catalytic reduction of NO x in the presence of ammonia.
  • a fifty-fourth embodiment pertains to SCR catalyst composite comprising a SCR catalyst material that promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H 2 0 selectively over a temperature range of 150 °C to 600 °C; and an ammonia storage material comprising a transition metal having an oxidation state of IV, the SCR catalyst material effective to store ammonia at 400° C and above with a minimum NH3 storage of 0.1 g/L at 400 °C.
  • the SCR catalyst composite of the fifty-fourth embodiment is modified, wherein the transition metal is selected from the group consisting of Ti, Ce, Zr, Hf, Ge, and combinations thereof.
  • the SCR catalyst composite the fifty-fourth and fifty- fifth embodiments is modified, wherein the SCR catalyst material is isomorphously substituted with the ammonia storage material.
  • the SCR catalyst composite of the fifty-fourth and fifty-fifth embodiments is modified, wherein the ammonia storage material is dispersed in the SCR catalyst material.
  • the SCR catalyst composite of the fifty-fourth and fifty-fifth embodiments is modified, wherein the ammonia storage material is dispersed as a layer on the SCR catalyst material.
  • the SCR catalyst composite of the fifty-fourth and fifty-fifth embodiments is modified, wherein the ammonia storage material and the SCR catalyst material are arranged in a zoned configuration.
  • the SCR catalyst composite of the fifty-ninth embodiment is modified, wherein the ammonia storage material is upstream of the SCR catalyst material.
  • the SCR catalyst composite of the fifty-fourth and fifty-fifth embodiments is modified, wherein the SCR catalyst material is ion-exchanged with the ammonia storage material.
  • the SCR catalyst composite of the fifty- fourth through sixty-first embodiments is modified, wherein the SCR catalyst material is disposed on a filter.
  • the SCR catalyst composite of the sixty-second embodiment is modified, wherein the filter is a wall flow filter.
  • the SCR catalyst composite of the sixty-second embodiment is modified, wherein the filter is a flow through filter.
  • the SCR catalyst composite of the fifty-fourth through sixty-fourth embodiments is modified, wherein the SCR catalyst material comprises one or more of a molecular sieve, a mixed oxide, and an activated refractory metal oxide support.
  • the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the mixed oxide is selected from Fe/titania, Fe/alumina, Mg/titania, Mg/alumina, Mn/alumina, Mn/titania, Cu/titania, Ce/Zr, Ti/Zr, vanadia/titania, and mixtures thereof.
  • the SCR catalyst composite of the sixty-fifth and sixty-sixth embodiments is modified, wherein the mixed oxide comprises vanadia/titania and is stabilized with tungsten.
  • the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the molecular sieve has a framework of silicon, phosphorus and aluminum atoms.
  • the SCR catalyst composite of the sixty-eighth embodiment is modified, wherein the silica to alumina ratio is in the range of 1 to 300.
  • the SCR catalyst composite of the sixty-eighth and sixty-ninth embodiments is modified, wherein the silica to alumina ratio is in the range of 1 to 50.
  • the SCR catalyst composite of sixty-eighth through seventieth embodiments is modified, wherein the ratio of alumina to the tetravalent metal is in the range of 1 : 10 to 10: 1.
  • the SCR catalyst composite of the sixty-eigth through seventy-first embodiments is modified, wherein a fraction of the silicon ions are isomorphously substituted with the metal of the ammonia storage material.
  • the SCR catalyst composite of the sixty- fifth embodiment is modified, wherein the molecular sieve comprises ring sizes no larger than 12.
  • the SCR catalyst composite of the sixty-fifth through seventy-third embodiments is modified, wherein the molecular sieve has a structure type selected from the group consisting of MFI, BEA, AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
  • the molecular sieve has a structure type selected from the group consisting of MFI, BEA, AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and
  • the SCR catalyst composite of the seventy-second embodiment is modified, wherein the molecular sieve has a structure type selected from the group consisting of MFI, BEA, CHA, AEI, AFX, ERI, KFI, LEV, and combinations thereof.
  • the SCR catalyst composite of the seventy-third embodiment is modified, wherein the molecular sieve has a structure type selected from the group consisting of AEI, CHA, AFX, and combinations thereof.
  • the SCR catalyst composite of the fifty-fourth through seventy-fourth embodiments is modified, wherein the SCR catalyst material is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
  • the SCR catalyst composite of the fifty-fourth through seventy-fourth embodiments is modified, wherein the SCR catalyst material is promoted with Cu, Fe, and combinations thereof.
  • the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the molecular sieve comprises SSZ-13, SSZ-39, or SAPO- 34.
  • the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the activated refractory metal oxide support is selected from alumina, ceria, zirconia, silica, titania, silica-alumina, zirconia-alumina, titania-alumina, lanthana-alumina, lanthana-zirconia-alumina, baria-alumina, baria-lanthana-alumina, baria- lanthana-neodymia-alumina, alumina-chomia, alumina-ceria, zirconia-silica, titania-silica, or zirconia-titania, and combinations thereof.
  • the activated refractory metal oxide support is selected from alumina, ceria, zirconia, silica, titania, silica-alumina, zirconia-alumina, titania-alumina, lanthana-alumina, lanthana-zirconia-alumina,
  • the SCR catalyst composite of the seventy-eighth embodiment is modified, wherein the activated refractory metal oxide support is exchanged with a metal selected from the group consisting of Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
  • the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the transition metal comprises Ti.
  • the SCR catalyst composite of the eightieth embodiment is modified, wherein the ratio of alumina to titanium is in the range of 1 : 10 to 10: 1.
  • a further aspect of the present invention is directed to a method.
  • a method for simultaneously selectively reducing nitrogen oxide (NO x ) and storing ammonia comprises contacting an exhaust gas stream containing NO x with the SCR catalyst composite of the fifty-fourth through eighty-first embodiments.
  • the method of the eighty-second embodiment is modified, wherein the oxygen content of the exhaust gas stream is from 1 to 30% and the water content of the exhaust gas stream is from 1 to 20%.
  • a SCR catalyst composite comprises a SCR catalyst material that effectively promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H 2 0 selectively over a temperature range of 200 °C to 600 °C, wherein the SCR catalyst material comprises SSZ-13; and an ammonia storage material comprising Ti, the ammonia storage material effective to store ammonia at 400° C and above.
  • FIG. 1 is a schematic of a cross-section of a SCR catalyst material according to one or more embodiments
  • FIG. 2 shows a partial cross-sectional view of an SCR catalyst composite according to one or more embodiments
  • FIG. 3 shows a partial cross-sectional view of an SCR catalyst composite according to one or more embodiments
  • FIG. 4A shows a perspective view of a wall flow filter substrate
  • FIG. 4B shows a cutaway view of a section of a wall flow filter substrate
  • FIG. 5 is a SEM image showing crystal morphology of a catalyst material according to the Examples.
  • FIG. 6 is a SEM image showing crystal morphology of a catalyst material according to the Comparative Example
  • FIG. 7 is a bar graph comparing NO x conversion for catalysts according to the Examples.
  • FIG. 8 is a bar graph comparing N 2 0 make for catalysts according to the Examples.
  • FIG. 9 is a graph comparing NO x conversion for catalysts according to the Examples.
  • FIG. 10 is a graph comparing N2O make for catalysts according to the Examples.
  • FIG. 11 is a bar graph comparing NO x conversion at 20 ppm NH3 slip for catalysts according to the Examples;
  • FIG. 12 is an ATR analysis for catalysts according to the Examples.
  • FIG. 13 is a FTIR analysis for catalysts according to the Examples.
  • FIG. 14 is a FTIR analysis for catalysts according to the Examples.
  • FIG. 15 is a scanning electron microscope image of material according to the Examples.
  • FIG. 16 compares NO x conversion for catalysts according to the Examples
  • FIG. 17 compares NO x conversion for catalysts according to the Examples;
  • FIGS. 18A and 18B are scanning electron microscope images of material of materials according to the Examples;
  • FIG. 19 is a washcoat porosity measurement for catalysts according to the Examples.
  • FIG. 20 compares NH 3 absorption for catalysts according to the Examples
  • FIG. 21 compares NH 3 absorption for catalysts according to the Examples.
  • FIG. 22 compares NH 3 absorption for catalysts according to the Examples
  • FIG. 23 compares NH 3 absorption for catalysts according to the Examples.
  • FIG. 24 compares NH 3 absorption for catalysts according to the Examples.
  • SCR selective catalytic reduction
  • NO x reduction technologies for light and heavy-duty vehicles.
  • Selective catalytic reduction (SCR) of NO x using urea is an effective and dominant emission control technology for NO x control.
  • an SCR catalyst that has improved performance compared to the current Cu-SSZ-13 based benchmark technology is necessary.
  • an SCR catalyst material having improved NOx conversion efficiency and lower N 2 0 make relative to the current Cu-SSZ-13 based benchmark technologies.
  • the SCR catalyst material effectively promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H 2 0 selectively over a temperature range of 200 to 600 °C.
  • Embodiments of the invention are directed to a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. It was surprisingly found that spherical particles having an agglomeration of crystals of a molecular sieve are particularly suitable in exhaust gas purification catalyst components, in particular as SCR catalyst materials.
  • catalyst or “catalyst composition” or “catalyst material” refers to a material that promotes a reaction.
  • a catalytic article or “catalyst composite” refers to an element that is used to promote a desired reaction.
  • a catalytic article or catalyst composite may comprise a washcoat containing a catalytic species, e.g. a catalyst composition, on a substrate.
  • SCR selective catalytic reduction
  • FTIR Fourier transform infrared spectroscopy, which is a technique used to obtain an infrared spectrum of absorption, emission, photoconductivity or Raman scattering of a solid, liquid, or gas.
  • ATR refers to attenuated total reflectance, which is a sampling technique used in conjunction with infrared spectroscopy, particularly FTIR, which enables samples to be examined directly in the solid or liquid state without further preparation.
  • a selective catalytic reduction catalyst material comprises a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns.
  • molecular sieve refers to framework materials such as zeolites and other framework materials (e.g. isomorphously substituted materials), which may in particulate form in combination with one or more promoter metals be used as catalysts.
  • Molecular sieves are materials based on an extensive three-dimensional network of oxygen ions containing generally tetrahedral type sites and having a substantially uniform pore distribution, with the average pore size being no larger than 20 A. The pore sizes are defined by the ring size.
  • zeolite refers to a specific example of a molecular sieve, including silicon and aluminum atoms.
  • the molecular sieves by their structure type, it is intended to include the structure type and any and all isotypic framework materials such as SAPO, ALPO and MeAPO materials having the same structure type as the zeolite materials.
  • aluminosilicate zeolite structure type limits the material to molecular sieves that do not include phosphorus or other metals substituted in the framework.
  • aluminosilicate zeolite excludes aluminophosphate materials such as SAPO, ALPO, and MeAPO materials, and the broader term "zeolite” is intended to include aluminosilicates and aluminophosphates.
  • Zeolites are crystalline materials having rather uniform pore sizes which, depending upon the type of zeolite and the type and amount of cations included in the zeolite lattice, range from about 3 to 10 Angstroms in diameter. Zeolites generally comprise silica to alumina (SAR) molar ratios of 2 or greater.
  • aluminophosphates refers to another specific example of a molecular sieve, including aluminum and phosphate atoms. Aluminophosphates are crystalline materials having rather uniform pore sizes.
  • molecular sieves e.g. zeolite
  • zeolite are defined as aluminosilicates with open 3 -dimensional framework structures composed of corner-sharing T0 4 tetrahedra, where T is Al or Si, or optionally P.
  • Cations that balance the charge of the anionic framework are loosely associated with the framework oxygens, and the remaining pore volume is filled with water molecules.
  • the non-framework cations are generally exchangeable, and the water molecules removable.
  • the molecular sieve can be isomorphously substituted.
  • zeolitic framework and “zeolitic framework material” refer to a specific example of a molecular sieve, further including silicon and aluminum atoms.
  • the molecular sieve comprises a zeolitic framework material of silicon (Si) and aluminum (Al) ions, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal.
  • the framework does not include phosphorous (P) atoms.
  • isomorphously substituted and “isomorphous substitution” refer to the substitution of one element for another in a mineral without a significant change in the crystal structure. Elements that can substitute for each other generally have similar ionic radii and valence state. In one or more embodiments, a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal. In other words, a fraction of the silicon atoms in the zeolitic framework material are being replaced with a tetravalent metal. Such isomorophous substitution does not significantly alter the crystal structure of the zeolitic framework material.
  • tetravalent metal refers to a metal having a state with four electrons available for covalent chemical bonding in its valence (outermost electron shell). Tetravalent metals include germanium (Ge) and those transition metals located in Group 4 of the periodic table, titanium (Ti), zirconium (Zr), and hafnium (Hf). In one or more embodiments, the tetravalent metal is selected from Ti, Zr, Hf, Ge, and combinations thereof. In specific embodiments, the tetravalent metal comprises Ti.
  • a fraction of the silicon atoms are isomorphously substituted with a transition metal having an oxidation state of IV.
  • a transition metal having an oxidation state of IV can either be in oxide form, or intrinsically embedded in the SCR catalyst material.
  • transition metal having an oxidation state of IV refers to a metal having a state with four electrons available for covalent chemical bonding in its valence (outermost electron shell).
  • Transition metals having an oxidation state of IV include germanium (Ge), cerium (Ce), and those transition metals located in Group 4 of the periodic table, titanium (Ti), zirconium (Zr), and hafnium (Hf).
  • the transition metal having an oxidation state of IV is selected from Ti, Ce, Zr, Hf, Ge, and combinations thereof.
  • the transition metal having an oxidation state of IV comprises Ti.
  • the zeolitic framework material comprises MO4/S1O4/AIO4 tetrahedra (where M is a tetravalent metal) and is linked by common oxygen atoms to form a three-dimensional network.
  • the isomorphously substituted tetravalent metals are embedded into the zeolitic framework material as a tetrahedral atom (M0 4 ).
  • the isomorphously substituted tetrahedron units together with the silicon and aluminum tetrahedron units then form the framework of the zeolitic material.
  • the tetravalent metal comprises titanium
  • the zeolitic framework material includes Ti04/Si04/A104 tetrahedra.
  • the catalyst comprises a zeolitic framework of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with titanium.
  • the isomorphously substituted zeolitic framework material of one or more embodiments is differentiated mainly according to the geometry of the voids which are formed by the rigid network of the M04/(Si04)/A104 tetrahedra (where M is a tetravalent metal).
  • the molecular sieve comprises S1O4/AIO4 tetrahedra and is linked by common oxygen atoms to form a three-dimensional network.
  • the molecular sieve comprises S1O4/AIO4/PO4 tetrahedra.
  • the molecular sieve of one or more embodiments is differentiated mainly according to the geometry of the voids which are formed by the rigid network of the (Si04)/A10 4 , or S1O4/AIO4/PO4, tetrahedra.
  • the entrances to the voids are formed from 6, 8, 10, or 12 ring atoms with respect to the atoms which form the entrance opening.
  • the molecular sieve comprises ring sizes of no larger than 12, including 6, 8, 10, and 12.
  • the molecular sieve can be based on the framework topology by which the structures are identified.
  • any structure type of zeolite can be used, such as structure types of ABW, ACO, AEI, AEL, AEN, AET, AFG, AFI, AFN, AFO, AFR, AFS, AFT, AFX, AFY, AHT, ANA, APC, APD, AST, ASV, ATN, ATO, ATS, ATT, ATV, AWO, AWW, BCT, BEA, BEC, BIK, BOG, BPH, BRE, CAN, CAS, SCO, CFI, SGF, CGS, CHA, CHI, CLO, CON, CZP, DAC, DDR, DFO, DFT, DOH, DON, EAB, EDI, EMT, EON, EPI, ERI, ESV, ETR, EUO, FAU, FER, FRA, GIS
  • the molecular sieve comprises an 8-ring small pore aluminosilicate zeolite.
  • small pore refers to pore openings which are smaller than about 5 Angstroms, for example on the order of ⁇ 3.8 Angstroms.
  • the phrase "8-ring" zeolites refers to zeolites having 8-ring pore openings and double-six ring secondary building units and having a cage like structure resulting from the connection of double six -ring building units by 4 rings.
  • Zeolites are comprised of secondary building units (SBU) and composite building units (CBU), and appear in many different framework structures. Secondary building units contain up to 16 tetrahedral atoms and are non-chiral.
  • Composite building units are not required to be achiral, and cannot necessarily be used to build the entire framework.
  • a group of zeolites have a single 4-ring (s4r) composite building unit in their framework structure.
  • the "4" denotes the positions of tetrahedral silicon and aluminum atoms, and the oxygen atoms are located in between tetrahedral atoms.
  • Other composite building units include, for example, a single 6-ring (s6r) unit, a double 4-ring (d4r) unit, and a double 6-ring (d6r) unit.
  • the d4r unit is created by joining two s4r units.
  • the d6r unit is created by joining two s6r units.
  • Zeolitic structure types that have a d6r secondary building unit include AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, and WEN.
  • the molecular sieve comprises a d6r unit. Without intending to be bound by theory, in one or more embodiments, it is thought that the d6r unit promotes the formation of NO + .
  • the molecular sieve has a structure type selected from AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
  • the molecular sieve has a structure type selected from the group consisting of CHA, AEI, AFX, ERI, KFI, LEV, and combinations thereof. In still further specific embodiments, the molecular sieve has a structure type selected from CHA, AEI, and AFX. In one or more very specific embodiments, the molecular sieve has the CHA structure type.
  • Zeolitic chabazite includes a naturally occurring tectosilicate mineral of a zeolite group with approximate formula: (Ca,Na2,K2,Mg)A Si40i2*6H20 (e.g., hydrated calcium aluminum silicate).
  • Three synthetic forms of zeolitic chabazite are described in "Zeolite Molecular Sieves," by D. W. Breck, published in 1973 by John Wiley & Sons, which is hereby incorporated by reference.
  • the three synthetic forms reported by Breck are Zeolite K-G, described in J. Chem. Soc, p. 2822 (1956), Barrer et al; Zeolite D, described in British Patent No.
  • the molecular sieve can include all aluminosilicate, borosilicate, gallosilicate, MeAPSO, and MeAPO compositions. These include, but are not limited to SSZ-13, SSZ-62, natural chabazite, zeolite K-G, Linde D, Linde R, LZ-218, LZ-235. LZ-236, ZK-14, SAPO-34, SAPO-44, SAPO-47, ZYT-6, CuSAPO-34, CuSAPO-44, and CuSAPO-47.
  • the ratio of silica to alumina of an aluminosilicate molecular sieve can vary over a wide range.
  • the molecular sieve component has a silica to alumina molar ratio (SAR) in the range of 2 to 300, including 5 to 250; 5 to 200; 5 to 100; and 5 to 50.
  • the molecular sieve has a silica to alumina molar ratio (SAR) in the range of 10 to 200, 10 to 100, 10 to 75, 10 to 60, and 10 to 50; 15 to 100, 15 to 75, 15 to 60, and 15 to 50; 20 to 100, 20 to 75, 20 to 60, and 20 to 50.
  • the molecular sieve having any of the immediately preceding SAR ranges the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.0 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the molecular sieve is isomorphously substituted with a tetravalent metal and has a silica to alumina molar ratio (SAR) in the range of 2 to 300, including 5 to 250; 5 to 200; 5 to 100; and 5 to 50.
  • SAR silica to alumina molar ratio
  • the first and second molecular sieve independently, have a silica to alumina molar ratio (SAR) in the range of 10 to 200, 10 to 100, 10 to 75, 10 to 60, and 10 to 50; 15 to 100, 15 to 75, 15 to 60, and 15 to 50; 20 to 100, 20 to 75, 20 to 60, and 20 to 50.
  • SAR silica to alumina molar ratio
  • the ratio of tetravalent metal to alumina can vary over a very wide range. It is noted that this ratio is an atomic ratio, not a molar ratio.
  • the tetravalent metal to alumina ratio is in the range of 0.0001 to 10000, including 0.0001 to 10000, 0.001 to 1000, and 0.01 to 10.
  • the tetravalent metal to alumina ratio is in the range of 0.01 to 10, including 0.01 to 10, 0.01 : to 5, 0.01 to 2, and 0.01 to 1.
  • the tetravalent metal to alumina ratio is in the range of 0.01 to 2.
  • the tetravalent metal comprises titanium
  • the titania to alumina ratio is in the range of 0.0001 to 10000, including 0.0001 to 10000, 0.001 to 1000, and 0.01 to 10.
  • the titania to alumina ratio is in the range of 0.01 to 10, including 0.01 to 10, 0.01 : to 5, 0.01 to 2, and 0.01 to 1.
  • the titania to alumina ratio is in the range of 0.01 to 2.
  • the ratio of silica to tetravalent metal can vary over a wide range. It is noted that this ratio is an atomic ratio, not a molar ratio. In one or more embodiments, the silica to tetravalent metal ratio is in the range of 1 to 100, including 1 to 50, 1 to 30, 1 to 25, 1 to 20, 5 to 20, and 10 to 20. In specific embodiments, the silica to tetravalent metal ratio is about 15. In one or more embodiments, the tetravalent metal comprises titanium, and the silica to titania ratio is in the range of 1 to 100, including 1 to 50, 1 to 30, 1 to 25, 1 to 20, 5 to 20, and 10 to 20. In specific embodiments, the silica to titania ratio is about 15.
  • the molecular sieve of one or more embodiments may be subsequently ion- exchanged with one or more promoter metals such as iron, copper, cobalt, nickel, cerium or platinum group metals.
  • promoter metals such as iron, copper, cobalt, nickel, cerium or platinum group metals.
  • Synthesis of zeolites and related micro- and mesoporous materials varies according to the structure type of the zeolitic material, but typically involves the combination of several components (e.g. silica, alumina, phosphorous, alkali, organic template etc.) to form a synthesis gel, which is then hydrothermally crystallized to form a final product.
  • the structure directing agent can be in the form of an organic, i.e.
  • the tetrahedral units organize around the SDA to form the desired framework, and the SDA is often embedded within the pore structure of the zeolite crystals.
  • the crystallization of the molecular sieve can be obtained by means of the addition of structure- directing agents/templates, crystal nuclei or elements. In some instances, the crystallization can be performed at temperatures of less than 100 °C.
  • promoted refers to a component that is intentionally added to the molecular sieve, as opposed to impurities inherent in the molecular sieve.
  • a promoter is intentionally added to enhance activity of a catalyst compared to a catalyst that does not have promoter intentionally added.
  • a suitable metal is exchanged into the molecular sieve.
  • the molecular sieve is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof. In specific embodiments, the molecular sieve is promoted with Cu, Fe, and combinations thereof.
  • the promoter metal content of the molecular sieve, calculated as the oxide is, in one or more embodiments, at least about 0.1 wt.%, reported on a volatile-free basis.
  • the promoter metal comprises Cu, and the Cu content, calculated as CuO is in the range of up to about 10 wt.%, including 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, and 0.1 wt.%, in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the Cu content, calculated as CuO is in the range of about 2 to about 5 wt.%.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis.
  • the molecular sieve having this specific combination of SAR and Cu content has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
  • the tetravalent metal when the molecular sieve is isomorphously substituted with a tetravalent metal, the tetravalent metal is embedded into the zeolitic framework as a tetrahedral atom, allowing for close coupling to the active promoter metal center both structurally and electronically.
  • the promoter metal can be ion exchanged into the isomorphously substituted molecular sieve.
  • copper is ion exchanged into the isomorphously substituted molecular sieve.
  • the metal can be exchanged after the preparation or manufacture of the isomorphously substituted molecular sieve.
  • the catalyst material comprises a spherical particle including an agglomeration of crystals of a molecular sieve.
  • agglomerate or “agglomeration” refer to a cluster or collection of primary particles, i.e. crystals of molecular sieve.
  • the spherical particle has a median particle size in the range of about 0.5 to about 5 microns, including 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4, 4.24, 4.5, 4.75, and 5 microns.
  • the particle size of the spherical particle can be measured by a microscope, and more particularly a scanning electron microscope (SEM).
  • the spherical particle has a median particle size in the range of about 1.0 to about 5 microns, including a range of about 1.2 to about 3.5 microns.
  • the term "median particle size" refers to the median cross-sectional diameter of the spherical particles. In one or more embodiments, at least 80% of the spherical particles have a median particle size in the range of 0.5 to 2.5 microns.
  • the individual crystals of molecular sieve have a crystal size in the range of about 1 to about 250 nm, including 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, and 250 nm.
  • the crystal size of the individual crystals of molecular sieve can be measured by a microscope, and more particularly a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm, or about 100 to about 200 nm.
  • the individual crystals of molecular sieve may be cubic, spherical, platelet, needle-like, isometric, octahedral, tetragonal, hexagonal, orthorhombic, trigonal, and the like, or any combination thereof.
  • the catalyst material has a monodispersed snowball structure.
  • a monodispersed snowball refers to an arrangement or collection of a number of individual molecular sieve crystals into a substantially spherical mass.
  • the term "monodispersed” means that the individual molecular sieve crystals are uniform and approximately the same size, having a crystal size in the range of about 1 to about 250 nanometers.
  • the monodispersed snowball is similar to individual snow particles forming a snowball.
  • the catalyst material has a spherical snowball structure, wherein at least 80% of the spherical particle has a median particle size in the range of 0.5 to 2.5 microns.
  • the individual crystals of molecular sieve form a microagglomerate, which then forms a macro agglomerated snowball structure.
  • the microagglomerates have a size in the range of less than 1.0 micron, including less than 0.9, less than 0.8, less than 0.7, less than 0.6, less than 0.5, less than 0.4, less than 0.3, less than 0.2, and less than 0.1 micron
  • the macroagglomerate spherical snowball has a particle size in the range of about 0.5 to about 5 microns, including about 1.2 to about 3.5 microns.
  • the size of the microagglomerates can be measured by a microscope, and more particularly a scanning electron microscope (SEM).
  • the molecular sieve comprises an isomorphously substituted zeolitic framework material wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal.
  • the isomorphously substituted zeolite framework material may be provided as a washcoat.
  • the isomorphously substituted zeolitic framework material provides a washcoat that is generally very porous.
  • the particle size of the isomorphously substituted zeolitic framework material is generally in the range of 1 to 2 ⁇ . Additionally, without intending to be bound by theory, it is thought that the presence of the tetravalent metal, specifically titanium, controls the zeolitic crystal such that a mono-dispersed snowball structure results.
  • the molecular sieve includes an agglomeration of crystals of a molecular sieve that is isomorphously substituted with a tetravelent metal.
  • the particles of the molecular sieve comprising an isomorphously substituted zeolitic framework material are significantly larger than molecular sieves having the CHA structure prepared according to conventional methods known in the art.
  • Such conventionally prepared molecular sieves are known to have a particle size less than about 0.5 ⁇ .
  • the monodispersed snowball structure of one or more embodiments may be more readily understood by the schematic in FIG. 1.
  • the catalyst material comprises a spherical particle 10 including an agglomeration of molecular sieve crystals 20.
  • the spherical particle 10 has a particle size, S p , of about 0.5 to about 5 microns, including about 1.2 to about 3.5 microns.
  • the individual crystals 20 of a molecular sieve have a crystal size S c in the range of about 1 to about 250 nanometers, including about 100 to 250 nm, or 100 to 200 nm.
  • the individual crystals 20 of molecular sieve form a micro agglomerate 30, which then forms the macroagglomerated snowball structure 10.
  • the microagglomerate 30 has a size Sm in the range of less than 1.0 micron and greater than 0 microns.
  • the spherical particles of the crystals of molecular sieve are significantly different in structure than molecular sieves having the CHA structure which do not have an agglomerated snowball structure.
  • the catalyst material according to embodiments of the invention may be provided in the form of a powder or a sprayed material from separation techniques including decantation, filtration, centrifugation, or spraying.
  • the powder or sprayed material can be shaped without any other compounds, e.g. by suitable compacting, to obtain moldings of a desired geometry, e.g. tablets, cylinders, spheres, or the like.
  • the powder or sprayed material is admixed with or coated by suitable modifiers well known in the art.
  • suitable modifiers such as silica, alumina, zeolites or refractory binders (for example a zirconium precursor) may be used.
  • the powder or the sprayed material optionally after admixing or coating by suitable modifiers, may be formed into a slurry, for example with water, which is deposited upon a suitable refractory carrier, for example, a flow through honeycomb substrate carrier or a wall flow honeycomb substrate carrier.
  • the catalyst material according to embodiments of the invention may also be provided in the form of extrudates, pellets, tablets, or particles of any other suitable shape, for use as a packed bed of particulate catalyst, or as shaped pieces such as plates, saddles, tubes, or the like.
  • SCR selective catalytic reduction
  • ammonia is an effective and dominant emission control technology for NO x control.
  • an SCR catalyst composite having enhanced ammonia storage capacity at temperatures of 400 °C and above, and the capability to promote ammonia storage over water. While the catalyst material of one or more embodiments can be used in any lean burn engine, including diesel engines, lean burn gasoline direct injection engines, and compressed natural gas engines, in specific embodiments, the catalyst materials are to be used in lean burn gasoline direct injection (GDI) engines.
  • GDI lean burn gasoline direct injection
  • Embodiments of the invention are directed to a catalyst composite comprising a SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV.
  • the SCR catalyst composite is effective to store ammonia at 400 °C and above with a minimum NH 3 storage of 0.1 g/L at 400 °C.
  • the SCR catalyst material promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H 2 0 selectively over a temperature range of 150 °C to 600 °C
  • the ammonia storage material is effective to store ammonia at 400° C and above with a minimum NH 3 storage of 0.1 g/L at 400 °C. It was surprisingly found that the catalyst composites are particularly suitable in exhaust gas purification catalyst components, in particular as SCR catalysts.
  • a SCR catalyst composite comprises a SCR catalyst material and an ammonia storage material.
  • the SCR catalyst material comprises one or more of a molecular sieve, a mixed oxide, and an activated refractory metal oxide support.
  • the SCR catalyst material comprises a molecular sieve.
  • the ammonia storage material comprises transition metal having an oxidation state of IV. Without intending to be bound by theory, it is thought that the presence of an element with a formal oxidation state of IV helps to increase ammonia storage at high temperature.
  • the transition metal having an oxidation state of IV can either be in oxide form, or intrinsically embedded in the SCR catalyst material.
  • transition metal having an oxidation state of IV refers to a metal having a state with four electrons available for covalent chemical bonding in its valence (outermost electron shell). Transition metals having an oxidation state of IV include germanium (Ge), cerium (Ce), and those transition metals located in Group 4 of the periodic table, titanium (Ti), zirconium (Zr), and hafnium (Hf).
  • the transition metal having an oxidation state of IV is selected from Ti, Ce, Zr, Hf, Ge, and combinations thereof.
  • the transition metal having an oxidation state of IV comprises Ti.
  • One or more embodiments of the present invention are directed to an SCR catalyst composite comprising an SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV, wherein the SCR catalyst material and the ammonia storage material are in a layered arrangement or relationship.
  • the ammonia storage material can be in any flexible form, e.g. layered or uniformly mixed with the SCR catalyst material, and intrinsically implemented within the same SCR catalyst material.
  • the ammonia storage material is dispersed as a layer on top of the SCR catalyst material.
  • the SCR catalyst material is washcoated onto a substrate, and then the ammonia storage material is washcoated in a layer overlying the SCR catalyst material.
  • the SCR catalyst material and the ammonia storage material are arranged in a zoned configuration. In one or more embodiments, the SCR catalyst material and the ammonia storage material are arranged in a laterally zoned configuration, with the ammonia storage material upstream from the SCR catalyst material.
  • the term "laterally zoned" refers to the location of the SCR catalyst material and the ammonia storage material relative to one another. Lateral means side-by-side such that the SCR catalyst material and the ammonia storage material are located one beside the other with the ammonia storage material upstream of the SCR catalyst material.
  • the terms “upstream” and “downstream” refer to relative directions according to the flow of an engine exhaust gas stream from an engine towards a tailpipe, with the engine in an upstream location and the tailpipe and any pollution abatement articles such as filters and catalysts being downstream from the engine.
  • the laterally zoned ammonia storage material and SCR catalyst material can be arranged on the same or a common substrate or on different substrates separated from each other.
  • the SCR catalyst material is ion-exchanged with the ammonia storage material.
  • the transition metal having an oxidation state of IV when in a layered or zoned arrangement, can be present in an oxide form, can be ion- exchanged, or can be isomorphously substituted at a zeolitic framework position.
  • the transition metal having an oxidation state of IV comprises titanium.
  • the ammonia storage material comprising a transition metal having an oxidation state of IV is dispersed over a support material.
  • the SCR catalyst composite 200 is shown in a laterally zoned arrangement where the ammonia storage material 210 is located upstream of the SCR catalyst material 220 on a common substrate 230.
  • the substrate 230 has an inlet end 240 and an outlet end 250 defining an axial length L.
  • the substrate 230 generally comprises a plurality of channels 260 of a honeycomb substrate, of which only one channel is shown in cross-section for clarity.
  • the ammonia storage material 210 extends from the inlet end 240 of the substrate 230 through less than the entire axial length L of the substrate 230.
  • the length of the ammonia storage material 210 is denoted as first zone 210a in FIG. 2.
  • the ammonia storage material 210 comprises a transition metal having an oxidation state of IV.
  • the SCR catalyst material 220 extends from the outlet end 250 of the substrate 230 through less than the entire axial length L of the substrate 230.
  • the length of the SCR catalyst material 220 is denoted as the second zone 220a in FIG. 2.
  • the SCR catalyst material 220 promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H 2 0 selectively over a temperature range of 150 °C to 600 °C, and the ammonia storage material 210 is effective to store ammonia at 400° C and above with a minimum NH 3 storage of 0.00001 g/L.
  • first zone 210a and the second zone 220a can be varied.
  • first zone 210a and second zone 220a can be equal in length.
  • first zone can be 20%, 25%, 35% or 40%, 60%, 65%), 75%) or 80%> of the length L of the substrate, with the second zone respectively covering the remainder of the length L of the substrate.
  • FIG. 3 another embodiment of a laterally zoned SCR catalyst composite 110 is shown.
  • the SCR catalyst composite 110 shown is a laterally zoned arrangement where the ammonia storage material 118 is located upstream of the SCR catalyst material 120 on separate substrates 112 and 113.
  • the ammonia storage material 118 is disposed on a substrate 112, and the SCR catalyst material is disposed on a separate substrate 113.
  • the substrates 112 and 113 can be comprised of the same material or a different material.
  • the substrate 112 has an inlet end 122a and an outlet end 124a defining an axial length LI .
  • the substrate 113 has an inlet end 122b and an outlet end 124b defining an axial length L2.
  • the substrates 112 and 113 generally comprise a plurality of channels 114 of a honeycomb substrate, of which only one channel is shown in cross-section for clarity.
  • the ammonia storage material 118 extends from the inlet end 122a of the substrate 112 through the entire axial length LI of the substrate 112 to the outlet end 124a.
  • the length of the ammonia storage material 118 is denoted as first zone 118a in FIG. 3.
  • the ammonia storage material 118 comprises a transition metal having an oxidation state of IV.
  • the SCR catalyst material 120 extends from the outlet end 124b of the substrate 113 through the entire axial length L2 of the substrate 113 to the inlet end 122b.
  • the SCR catalyst material 120 defines a second zone 120a.
  • the length of the SCR catalyst material is denoted as the second zone 20b in FIG. 3.
  • the SCR catalyst material 120 promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H 2 0 selectively over a temperature range of 150 °C to 600 °C, and the ammonia storage material 118 is effective to store ammonia at 400° C and above with a minimum NH 3 storage of 0.00001 g/L.
  • the length of the zones 118a and 120a can be varied as described with respect to FIG. 2.
  • the SCR catalyst composite comprising the ammonia storage material and the SCR catalyst material, is coated on a flow through or wall-flow filter.
  • FIGS. 4A and 4B illustrate a wall flow filter substrate 35 which has a plurality of passages 52. The passages are tubularly enclosed by the internal walls 53 of the filter substrate. The substrate has an inlet end 54 and an outlet end 56. Alternate passages are plugged at the inlet end with inlet plugs 58, and at the outlet end with outlet plugs 60 to form opposing checkerboard patterns at the inlet 54 and outlet 56.
  • a gas stream 62 enters through the unplugged channel inlet 64, is stopped by outlet plug 60 and diffuses through channel walls 53 (which are porous) to the outlet side 66. The gas cannot pass back to the inlet side of walls because of inlet plugs 58.
  • wall flow filter substrates are composed of ceramic- like materials such as cordierite, a-alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica-magnesia or zirconium silicate, or of porous, refractory metal.
  • wall flow substrates are formed of ceramic fiber composite materials.
  • wall flow substrates are formed from cordierite and silicon carbide. Such materials are able to withstand the environment, particularly high temperatures, encountered in treating the exhaust streams.
  • wall flow substrates include thin porous walled honeycombs monoliths through which the fluid stream passes without causing too great an increase in back pressure or pressure across the article. Normally, the presence of a clean wall flow article will create a back pressure of 1 inch water column to 10 psig.
  • Ceramic wall flow substrates used in the system are formed of a material having a porosity of at least 50% (e.g., from 50 to 75%) having a mean pore size of at least 5 microns (e.g., from 5 to 30 microns). In one or more embodiments, the substrates have a porosity of at least 55% and have a mean pore size of at least 10 microns.
  • Typical wall flow filters in commercial use are formed with lower wall porosities, e.g., from about 35% to 50%, than the wall flow filters utilized in the invention.
  • the pore size distribution of commercial wall flow filters is typically very broad with a mean pore size smaller than 17 microns.
  • the porous wall flow filter used in one or more embodiments is catalyzed in that the wall of said element has thereon or contained therein one or more SCR catalytic materials.
  • Catalytic materials may be present on the inlet side of the element wall alone, the outlet side alone, both the inlet and outlet sides, or the wall itself may consist all, or in part, of the catalytic material.
  • This invention includes the use of one or more layers of catalytic materials and combinations of one or more layers of catalytic materials on the inlet and/or outlet walls of the element.
  • the substrates are immersed vertically in a portion of the catalyst slurry such that the top of the substrate is located just above the surface of the slurry. In this manner slurry contacts the inlet face of each honeycomb wall, but is prevented from contacting the outlet face of each wall.
  • the sample is left in the slurry for about 30 seconds.
  • the substrate is removed from the slurry, and excess slurry is removed from the wall flow substrate first by allowing it to drain from the channels, then by blowing with compressed air (against the direction of slurry penetration ), and then by pulling a vacuum from the direction of slurry penetration.
  • the catalyst slurry permeates the walls of the substrate, yet the pores are not occluded to the extent that undue back pressure will build up in the finished substrate.
  • permeate when used to describe the dispersion of the catalyst slurry on the substrate, means that the catalyst composition is dispersed throughout the wall of the substrate.
  • the coated substrates are dried typically at about 100 °C and calcined at a higher temperature (e.g., 300 to 450 °C). After calcining, the catalyst loading can be determined through calculation of the coated and uncoated weights of the substrate. As will be apparent to those of skill in the art, the catalyst loading can be modified by altering the solids content of the coating slurry. Alternatively, repeated immersions of the substrate in the coating slurry can be conducted, followed by removal of the excess slurry as described above.
  • the ammonia storage material of the SCR catalyst composite is dispersed within the SCR catalyst material.
  • the SCR catalyst material comprises a molecular sieve having a framework of silicon (Si) and aluminum (Al) ions, and, optionally phosphorus (P) ions, wherein a fraction of the silicon atoms are isomorphously substituted with the ammonia storage material which comprises a transition metal having an oxidation state of IV.
  • an ammonia oxidation (AMOx) catalyst may be provided downstream of the SCR catalyst composite to remove any slipped ammonia from the exhaust gas treatment system.
  • the AMOx catalyst may comprise a platinum group metal such as platinum, palladium, rhodium, or combinations thereof.
  • AMOx and/or SCR catalyst material(s) can be coated on the flow through or wall- flow filter. If a wall flow substrate is utilized, the resulting system will be able to remove particulate matter along with gaseous pollutants.
  • the wall-flow filter substrate can be made from materials commonly known in the art, such as cordierite, aluminum titanate or silicon carbide. It will be understood that the loading of the catalytic composition on a wall flow substrate will depend on substrate properties such as porosity and wall thickness, and typically will be lower than loading on a flow through substrate.
  • a fraction of the silicon atoms are isomorphously substituted with a transition metal having an oxidation state of IV.
  • a fraction of the silicon atoms in the zeolitic framework material are being replaced with a transition metal having an oxidation state of IV.
  • Such isomorophous substitution does not significantly alter the crystal structure of the zeolitic framework material.
  • Lewis acidity which is capable of performing high temperature NH 3 storage and which is capable of differentiating NH 3 and H 2 0 for storage. It is thought that because NH 3 , by nature, is nucleophilic (or, more generally, basic), Lewis acidity can provide an additional route for NH 3 storage. Accordingly, transition metals with different oxidation states can provide tunable strength of Lewis acidity. In general, the higher the oxidation state of the transition metal, the stronger Lewis acidity is expected. Thus, it is believed that a transition metal having an oxidation state of IV will produce catalyst materials where NH 3 can be stored at higher temperatures.
  • the SCR catalyst material comprises a molecular sieve which comprises S1O4/AIO4 tetrahedra.
  • the SCR catalyst material is isomorphously substituted with the ammonia storage material.
  • the SCR catalyst material comprises MO4/S1O4/AIO4 tetrahedra (where M is a transition metal having an oxidation state of IV) and is linked by common oxygen atoms to form a three-dimensional network.
  • M is a transition metal having an oxidation state of IV
  • M0 4 tetrahedral atom
  • the isomorphously substituted tetrahedron units together with the silicon and aluminum tetrahedron units then form the framework of the molecular sieve.
  • the transition metal having an oxidation state of IV comprises titanium
  • the SCR catalyst material then includes TiCVSiCVAlC ⁇ tetrahedra.
  • the SCR catalyst material comprises a molecular sieve which comprises S1O4/AIO4/PO4 tetrahedra.
  • the SCR catalyst material is isomorphously substituted with the ammonia storage material.
  • the SCR catalyst material comprises MO4/S1O4/AIO4/PO4 tetrahedra (where M is a transition metal having an oxidation state of IV) and is linked by common oxygen atoms to form a three- dimensional network.
  • the isomorphously substituted transition metal having an oxidation state of rV is embedded into the molecular sieve as a tetrahedral atom (MO4).
  • the isomorphously substituted tetrahedron units together with the silicon, aluminum, and phosphorus tetrahedron units then form the framework of the molecular sieve.
  • the transition metal having an oxidation state of IV comprises titanium
  • the SCR catalyst material then includes TiCVSiCVAlCVPC tetrahedra.
  • the isomorphously substituted molecular sieve of one or more embodiments is differentiated mainly according to the geometry of the voids which are formed by the rigid network of the M04/(Si04)/A104 tetrahedra (where M is a transition metal having an oxidation state of IV).
  • the molecular sieve of the SCR catalyst material has a structure-type selected from any of those previously discussed.
  • the molecular sieve has a structure type selected from MFI, BEA, AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
  • the molecular material has a structure type selected from the group consisting of MFI, BEA, CHA, AEI, AFX, ERI, KFI, LEV, and combinations thereof.
  • the molecular sieve has a structure type selected from CHA, AEI, and AFX.
  • the molecular sieve comprises SSZ-13, SSZ-39, or SAPO-34.
  • the molecular sieve is an aluminosilicate zeolite type and has the AEI structure type, for example, SSZ-39.
  • the molecular sieves by their structure type, it is intended to include the structure type and any and all isotypic framework materials such as SAPO, A1PO and MeAPO materials having the same structure type.
  • the ratio of silica to alumina of a molecular sieve can vary over a wide range.
  • the molecular sieve has a silica to alumina molar ratio (SAR) in the range of 2 to 300, including 5 to 250; 5 to 200; 5 to 100; and 5 to 50.
  • the molecular sieve has a silica to alumina molar ratio (SAR) in the range of 10 to 200, 10 to 100, 10 to 75, 10 to 60, and 10 to 50; 15 to 100, 15 to 75, 15 to 60, and 15 to 50; 20 to 100, 20 to 75, 20 to 60, and 20 to 50.
  • the ratio of transition metal having an oxidation state of IV to alumina can vary over a very wide range.
  • the transition metal having an oxidation state of IV to alumina ratio is in the range of 0.001 to 10000, including 0.001 : 10000, 0.001 to 1000, 0.01 to 10.
  • the transition metal having an oxidation state of IV to alumina ratio is in the range of 0.01 to 10, including 0.01 to 10, 0.01 : to 5, 0.01 to 2, and 0.01 to 1.
  • the transition metal having an oxidation state of IV to alumina ratio is in the range of 0.01 to 2.
  • the transition metal having an oxidation state of IV comprises titanium, and the titania to alumina ratio is in the range of 0.001 to 10000, including 0.001 : 10000, 0.001 to 1000, 0.01 to 10.
  • the titania to alumina ratio is in the range of 0.01 to 10, including 0.01 to 10, 0.01 : to 5, 0.01 to 2, and 0.01 to 1.
  • the titania to alumina ratio is in the range of 0.01 to 2. In very specific embodiments, the titania to alumina ratio is about 1.
  • the ratio of silica to transition metal having an oxidation state of IV can vary over a wide range. It is noted that this ratio is an atomic ratio, not a molar ratio. In one or more embodiments, the silica to transition metal having an oxidation state of IV ratio is in the range of 1 to 100, including 1 to 50, 1 to 30, 1 to 25, 1 to 20, 5 to 20, and 10 to 20. In specific embodiments, the silica to transition metal having an oxidation state of IV ratio is about 15. In one or more embodiments, the transition metal having an oxidation state of IV comprises titanium, and the silica to titania ratio is in the range of 1 to 100, including 1 to 50, 1 to 30, 1 to 25, 1 to 20, 5 to 20, and 10 to 20.
  • the silica to titania ratio is about 15. [00219]
  • a suitable metal is exchanged into the SCR catalyst material.
  • the SCR catalyst material is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
  • the SCR catalyst material is promoted with Cu, Fe, and combinations thereof.
  • the promoter metal content of the SCR catalyst material, calculated as the oxide, is, in one or more embodiments, at least about 0.1 wt%, reported on a volatile-free basis.
  • the promoter metal comprises Cu, and the Cu content, calculated as CuO is in the range of up to about 10 wt%, including 9, 8, 7, 6, 5, 4, 3, 2,and 1 wt %, in each case based on the total weight of the calcined SCR catalyst material reported on a volatile free basis.
  • the Cu content, calculated as CuO is in the range of about 2 to about 5 wt%.
  • the transition metal having an oxidation state of IV is embedded into the molecular sieve framework as a tetrahedral atom, allowing for close coupling to the active promoter metal center both structurally and electronically.
  • the promoter metal can be ion exchanged into the SCR catalyst material.
  • copper is ion exchanged into the SCR catalyst material. The metal can be exchanged after the preparation or manufacture of the SCR catalyst material.
  • the SCR catalyst material comprises a mixed oxide.
  • the term "mixed oxide” refers to an oxide that contains cations of more than one chemical element or cations of a single element in several states of oxidation.
  • the mixed oxide is selected from Fe/titania (e.g. FeTi0 3 ), Fe/alumina (e.g. FeAl 2 0 3 ), Mg/titania (e.g. MgTi0 3 ), Mg/alumina (e.g. MgAl 2 0 3 ), Mn/alumina, Mn/titania (e.g. MnO x /Ti0 2 ) (e.g.
  • the mixed oxide comprises vanadia/titania.
  • the vanadia/titania oxide can be activated or stabilized with tungsten (e.g. WO3) to provide V2O5/T1O2/ WO3.
  • the SCR catalyst material comprises titania on to which vanadia has been dispersed.
  • the vanadia can be dispersed at concentrations ranging from 1 to 10 wt%, including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10wt%.
  • the vanadia is activated or stabilized by tungsten (W0 3 ).
  • the tungsten can be dispersed at concentrations ranging from 0.5 to 10 wt%, including 1, 2, 3, 3. 4, 5, 6, 7, 8, 9, and 10 wt%. All percentages are on an oxide basis.
  • the SCR catalyst material comprises a refractory metal oxide support material.
  • refractory metal oxide support and “support” refer to the underlying high surface area material upon which additional chemical compounds or elements are carried.
  • the support particles have pores larger than 20 A and a wide pore distribution.
  • metal oxide supports exclude molecular sieves, specifically, zeolites.
  • high surface area refractory metal oxide supports can be utilized, e.g., alumina support materials, also referred to as "gamma alumina” or “activated alumina,” which typically exhibit a BET surface area in excess of 60 square meters per gram (“m 2 /g"), often up to about 200 m 2 /g or higher.
  • alumina support materials also referred to as "gamma alumina” or “activated alumina”
  • activated alumina typically exhibit a BET surface area in excess of 60 square meters per gram (“m 2 /g"), often up to about 200 m 2 /g or higher.
  • Such activated alumina is usually a mixture of the gamma and delta phases of alumina, but may also contain substantial amounts of eta, kappa and theta alumina phases.
  • Refractory metal oxides other than activated alumina can be used as a support for at least some of the catalytic components in a given catalyst.
  • BET surface area has its usual meaning of referring to the Brunauer, Emmett, Teller method for determining surface area by N 2 adsorption. Pore diameter and pore volume can also be determined using BET-type N 2 adsorption or desorption experiments.
  • One or more embodiments of the present invention include a high surface area refractory metal oxide support comprising an activated compound selected from the group consisting of alumina, ceria, zirconia, silica, titania, silica-alumina, zirconia-alumina, titania- alumina, lanthana-alumina, lanthana-zirconia-alumina, baria-alumina, baria-lanthana-alumina, baria-lanthana-neodymia-alumina, alumina-chromia, alumina-ceria, zirconia-silica, titania- silica, or zirconia-titania, and combinations thereof.
  • the activated refractory metal oxide support is exchanged with a metal selected from the group consisting of Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
  • the selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve exhibits an aged NOx conversion at 200 °C of at least 50% measured at a gas hourly space velocity of 80000 h "1 .
  • the catalyst exhibits an aged NO x conversion at 450 °C of at least 70% measured at a gas hourly space velocity of 80000 h "1 .
  • the aged NO x conversion at 200 °C is at least 55% and at 450 °C at least 75%, even more specifically the aged NOx conversion at 200 °C is at least 60%> and at 450 °C at least 80%>, measured at a gas hourly volume-based space velocity of 80000 h "1 under steady state conditions at maximum NH3-slip conditions in a gas mixture of 500 ppm NO, 500 ppm N3 ⁇ 4, 10%> 0 2 , 5%> H 2 0, balance N 2 .
  • the cores were hydrothermally aged in a tube furnace in a gas flow containing 10% H 2 0, 10% 0 2 , balance N 2 at a space velocity of 4,000 h 1 for 5h at 750 °C.
  • the catalyst material is effective to lower N2O make.
  • the molecular sieve comprises an isomorphously substituted zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal
  • the material is effective to promote the formation of NO + .
  • the d6r unit of the zeolitic framework material is an important factor in facilitating NO + formation due to the fact that the d6r unit promotes short-range promoter metal (e.g. Cu) migration/hopping between the two six-member ring mirror planes to generate suitable vacant positions for NO + , which requires a stabilizing coordination environment also provided by the d6r unit.
  • short-range promoter metal e.g. Cu
  • the SCR catalyst composite comprises a SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV
  • the SCR catalyst material promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H2O selectively over a temperature range of 150 °C to 600°C
  • the ammonia storage material is effective to store ammonia at temperatures of about 400 °C and above with a minimum ammonia storage of 0.00001 g/L.
  • the oxygen content of the exhaust gas stream is from 0 to 30% and the water content is from 1 to 20%.
  • the SCR catalyst composite according to one or more embodiments adsorbs NH 3 even in the presence of H 2 0.
  • the SCR catalyst composites of one or more embodiments show more pronounced high temperature ammonia storage capacity than reference SCR catalyst materials and catalyst composites.
  • the catalyst materials can be applied to a substrate as a washcoat.
  • substrate refers to the monolithic material onto which the catalyst is placed, typically in the form of a washcoat.
  • a washcoat is formed by preparing a slurry containing a specified solids content (e.g., 30-90%) by weight) of catalyst in a liquid vehicle, which is then coated onto a substrate and dried to provide a washcoat layer.
  • washcoat has its usual meaning in the art of a thin, adherent coating of a catalytic or other material applied to a substrate material, such as a honeycomb-type carrier member, which is sufficiently porous to permit the passage of the gas stream being treated.
  • the substrate is a ceramic or metal having a honeycomb structure.
  • Any suitable substrate may be employed, such as a monolithic substrate of the type having fine, parallel gas flow passages extending there through from an inlet or an outlet face of the substrate such that passages are open to fluid flow there through.
  • the passages which are essentially straight paths from their fluid inlet to their fluid outlet, are defined by walls on which the catalytic material is coated as a washcoat so that the gases flowing through the passages contact the catalytic material.
  • the flow passages of the monolithic substrate are thin-walled channels, which can be of any suitable cross-sectional shape and size such as trapezoidal, rectangular, square, sinusoidal, hexagonal, oval, circular, etc.
  • Such structures may contain from about 60 to about 900 or more gas inlet openings (i.e. cells) per square inch of cross section.
  • the ceramic substrate may be made of any suitable refractory material, e.g. cordierite, cordierite-a-alumina, silicon nitride, zircon mullite, spodumene, alumina-silica- magnesia, zircon silicate, sillimanite, a magnesium silicate, zircon, petalite, a-alumina, an aluminosilicate and the like.
  • suitable refractory material e.g. cordierite, cordierite-a-alumina, silicon nitride, zircon mullite, spodumene, alumina-silica- magnesia, zircon silicate, sillimanite, a magnesium silicate, zircon, petalite, a-alumina, an aluminosilicate and the like.
  • the substrates useful for the catalyst of embodiments of the present invention may also be metallic in nature and be composed of one or more metals or metal alloys.
  • the metallic substrates may be employed in various shapes such as pellets, corrugated sheet or monolithic form.
  • Specific examples of metallic substrates include the heat-resistant, base- metal alloys, especially those in which iron is a substantial or major component.
  • Such alloys may contain one or more of nickel, chromium, and aluminum, and the total of these metals may advantageously comprise at least about 15 wt. % of the alloy, for instance, about 10 to 25 wt. % chromium, about 1 to 8 wt. % of aluminum, and about 0 to 20 wt. % of nickel.
  • a molecular sieve having the CHA structure may be prepared according to various techniques known in the art, for example United States Patent Nos. 4,544,538 (Zones) and 6,709,644 (Zones), which are herein incorporated by reference in their entireties.
  • the obtained alkali metal zeolite is NH 4 -exchanged to form NH 4 - Chabazite.
  • the NH 4 - ion exchange can be carried out according to various techniques known in the art, for example Bleken, F.; Bjorgen, M.; Palumbo, L.; Bordiga, S.; Svelle, S.; Gebrud, K.-P.; and Olsbye, U. Topics in Catalysis 52, (2009), 218-228.
  • a molecular sieve having a snowball-type morphology water can be prepared from adamantyltrimethylammonium hydroxide (ADAOH), aqueous sodium hydroxide, aluminum isopropoxide powder, and colloidal silica.
  • ADAOH adamantyltrimethylammonium hydroxide
  • aqueous sodium hydroxide aluminum isopropoxide powder
  • colloidal silica colloidal silica
  • the catalyst material comprises a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal.
  • the sodium form of the isomorphously substituted zeolitic framework material can be prepared from a 0.03Al 2 O3:SiO2:0.07TiO 2 :0.06Na2O:0.08ATMAOH:2.33H2O gel composition through autoclave hydrothermal synthesis. The product is recovered by filtration, and the template is removed by calcination. The final crystalline material can be characterized by x-ray diffraction studies.
  • the H-form can be prepared by calcination of the ammonia form, which is obtained through double NH4NO3 exchanges with the sodium form.
  • the Ti level is unchanged/stable through the NH4NO3 exchange processes.
  • the copper promoted isomorphously substituted zeolitic framework can be prepared by ion exchange using the H-form and Cu(OAc)2 to achieve the desired amount of promoter metal.
  • the SCR catalyst composite comprises an SCR catalyst material having a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with the transition metal having an oxidation state of IV of the ammonia storage material.
  • the sodium form of the isomorphously substituted molecular sieve can be prepared from a 0.03Al 2 O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H 2 O gel composition through autoclave hydrothermal synthesis. The product is recovered by filtration, and the template is removed by calcination. The final crystalline material can be characterized by x-ray diffraction studies.
  • the H-form can be prepared by calcination of the ammonia form, which is obtained through double NH4NO3 exchanges with the sodium form. The Ti level is unchanged/stable through the NH4NO3 exchange processes.
  • the copper promoted isomorphously substituted molecular sieve can be prepared by ion exchange using the H-form and Cu(OAc) 2 to achieve the desired amount of promoter metal.
  • the zeolitic materials that are described above can be used as a molecular sieve, adsorbent, catalyst, catalyst support, or binder thereof. In one or more embodiments, the materials are used as a catalyst.
  • An additional aspect of the invention is directed to a method of catalyzing a chemical reaction wherein the spherical particle including an agglomeration of crystals of a molecular sieve according to embodiments of the invention is employed as catalytically active material.
  • Another aspect of the invention is directed to a method of catalyzing a chemical reaction wherein the zeolitic framework material that is isomorphously substituted with a tetravalent metal according to embodiments of the invention is employed as catalytically active material.
  • a further aspect of the invention is directed to a method of catalyzing a chemical reaction wherein the SCR catalyst composite that comprises an SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV according to embodiments of the invention is employed as catalytically active material.
  • said catalyst materials and catalyst composites may be employed as catalysts for the selective reduction (SCR) of nitrogen oxides (NO x ); for the oxidation of NH 3 , in particular for the oxidation of NH 3 slip in diesel systems; for applications in oxidation reactions, in specific embodiments an additional precious metal component (e.g. Pd, Pt) is added to the spherical particle including an agglomeration of crystals of a molecular sieve.
  • SCR selective reduction
  • NO x nitrogen oxides
  • Pd, Pt additional precious metal component
  • One or more embodiments provide a method of selectively reducing nitrogen oxides (NOx).
  • the method comprises contacting an exhaust gas stream containing NO x with the catalyst materials or the catalyst composites of one or more embodiments.
  • the selective reduction of nitrogen oxides wherein the selective catalytic reduction catalyst material comprises a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns, of embodiments of the invention is employed as catalytically active material is carried out in the presence of ammonia or urea.
  • urea is the reducing agent of choice for mobile SCR systems.
  • the SCR system is integrated in the exhaust gas treatment system of a vehicle and, also typically, contains the following main components: selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns according to embodiments of the invention; a urea storage tank; a urea pump; a urea dosing system; a urea injector/nozzle; and a respective control unit.
  • the SCR catalyst composite according to one or more embodiments is employed as an SCR catalyst in an exhaust gas treatment system for lean-burn gasoline direct injection engines.
  • the SCR catalyst composite according to one or more embodiments serves as a passive ammonia-SCR catalyst and is able to store ammonia effectively at temperatures of 400 °C and above.
  • gas stream broadly refers to any combination of flowing gas that may contain solid or liquid particulate matter.
  • gaseous stream or “exhaust gas stream” means a stream of gaseous constituents, such as the exhaust of a lean burn engine, which may contain entrained non-gaseous components such as liquid droplets, solid particulates, and the like.
  • the exhaust gas stream of a lean burn engine typically further comprises combustion products, products of incomplete combustion, oxides of nitrogen, combustible and/or carbonaceous particulate matter (soot), and un-reacted oxygen and nitrogen.
  • nitrogen oxides designates the oxides of nitrogen, especially dinitrogen oxide (N 2 0), nitrogen monoxide (NO), dinitrogen trioxide (N2O3), nitrogen dioxide (NO2), dinitrogen tetroxide (N2O4), dinitrogen pentoxide (N2O5), nitrogen peroxide (NO3).
  • a further aspect of the invention is directed to an exhaust gas treatment system.
  • the exhaust gas treatment system comprises an exhaust gas stream optionally containing a reductant like ammonia, urea, and/or hydrocarbon, and in specific embodiments, ammonia and/or urea, and a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns.
  • the catalyst material is effective for destroying at least a portion of the ammonia in the exhaust gas stream.
  • the SCR catalyst material can be disposed on a substrate, for example a soot filter.
  • the soot filter, catalyzed or non-catalyzed may be upstream or downstream of the SCR catalyst material.
  • the system can further comprise a diesel oxidation catalyst.
  • the diesel oxidation catalyst is located upstream of the SCR catalyst material.
  • the diesel oxidation catalyst and the catalyzed soot filter are upstream from the SCR catalyst material.
  • the exhaust is conveyed from the engine to a position downstream in the exhaust system, and in more specific embodiments, containing NO x , where a reductant is added and the exhaust stream with the added reductant is conveyed to the SCR catalyst material.
  • the soot filter comprises a wall-flow filter substrate, where the channels are alternately blocked, allowing a gaseous stream entering the channels from one direction (inlet direction), to flow through the channel walls and exit from the channels from the other direction (outlet direction).
  • An ammonia oxidation (AMOx) catalyst may be provided downstream of the SCR catalyst material or catalyst composite of one or more embodiments to remove any slipped ammonia from the system.
  • the AMOx catalyst may comprise a platinum group metal such as platinum, palladium, rhodium, or combinations thereof.
  • Such AMOx catalysts are useful in exhaust gas treatment systems including an SCR catalyst.
  • a gaseous stream containing oxygen, nitrogen oxides, and ammonia can be sequentially passed through first and second catalysts, the first catalyst favoring reduction of nitrogen oxides and the second catalyst favoring the oxidation or other decomposition of excess ammonia.
  • the first catalysts can be a SCR catalyst comprising a zeolite and the second catalyst can be an AMOx catalyst comprising a zeolite.
  • AMOx and/or SCR catalyst composition(s) can be coated on the flow through or wall-flow filter. If a wall flow substrate is utilized, the resulting system will be able to remove particulate matter along with gaseous pollutants.
  • the wall-flow filter substrate can be made from materials commonly known in the art, such as cordierite, aluminum titanate or silicon carbide. It will be understood that the loading of the catalytic composition on a wall flow substrate will depend on substrate properties such as porosity and wall thickness, and typically will be lower than loading on a flow through substrate.
  • a CuCHA powder catalyst was prepared by crystallization of chabazite using ADAOH (Trimethyl-l-adamantyl ammonium hydroxide) containing synthesis gel, separation of the chabazite product, drying and calcination to remove organic template (ADAOH).
  • ADAOH Trimethyl-l-adamantyl ammonium hydroxide
  • Water, ADAOH solution, and aqueous sodium hydroxide were added into the makedown tank and mixed for several minutes.
  • An aluminum source was then added in 3-5 minutes.
  • Colloidal silica was then added with stirring in 5 minutes. Mixing was continued for an additional 30 minutes, resulting in a viscous gel of uniform composition.
  • the gel was transferred to the autoclave.
  • the autoclave was heated to 170 °C, and crystallization was continued for 18 hours while maintaining agitation.
  • the reactor was cooled to ⁇ 50 °C and vented to atmospheric pressure prior to unloading. After hydrothermal crystallization, the resultant suspension had a pH of 11.5. The suspension was admixed with deionized water and was filtrated with a procelain suction filter. The wet product was then heated to a temperature of 120 °C in air for 4 hrs. The dried product was then further calcined in air at 600 °C for 5 hrs to remove the template and ensure a C content less than 0.1 wt.%. [00267] As can been observed in the SEM image of the crystal morphology in FIG. 5, the as-synthesized material (Comparative Example 1) does not have an agglomerated morphology, as identified by SEM analysis (secondary electron imaging) at a scale of 5000x.
  • the obtained CuCHA catalyst comprised CuO at a range of about 3 to 3.5% by weight, as determined by ICP analysis.
  • a CuCHA slurry was prepared to 40% target solids. The slurry was milled and a binder of zirconium acetate in dilute acetic acid (containing 30% Zr0 2 ) was added into the slurry with agitation.
  • the slurry was coated onto l"Dx3"L cellular ceramic cores, having a cell density of 400 cpsi (cells per square inch) and a wall thickness of 6.5 mil.
  • the coated cores were dried at 110 °C for 3 hours and calcined at about 400 °C for 1 hour.
  • the coating process was repeated once to obtain a target washcoat loading of in the range of 2-3 g/in 3 .
  • the as-synthesized snowball material (Example 2) has a characteristic secondary structure of spheres with a diameter size of 1-2 ⁇ , as identified by SEM analysis (secondary electron imaging) at a scale of 5000x.
  • the individual crystals of molecular sieve have a crystal size in the range of about 100 to 200 nm.
  • the obtained CuCHA catalysts comprised CuO at a range of about 1.5 to 4% by weight, as determined by ICP analysis.
  • a CuCHA slurry was prepared to 40% target solids. The slurry was milled and a binder of zirconium acetate in dilute acetic acid (containing 30% Zr0 2 ) was added into the slurry with agitation.
  • Example 3 slurries were then coated onto a substrate to a washcoat loading of 2.1 g/in 3 .
  • the washcoat was dried under air at 130 °C for 5 min.
  • the substrate was calcined at 450 °C for 1 hour.
  • Nitrogen oxides selective catalytic reduction (SCR) efficiency and selectivity of a fresh catalyst core was measured by adding a feed gas mixture of 500 ppm of NO, 500 ppm of NH 3 , 10%) 0 2 , 5%> H 2 0, balanced with N 2 to a steady state reactor containing a 1"D x 3"L catalyst core. The reaction was carried at a space velocity of 80,000 fir "1 across a 150 °C to 460 °C temperature range.
  • Figure 7 is a bar graph showing the NO x conversion (%) versus CuO loading (wt.%).
  • Figure 8 is a bar graph showing the N 2 0 make (ppm) versus CuO loading (wt.%>).
  • Nitrogen oxides selective catalytic reduction (SCR) efficiency and selectivity of a fresh catalyst core was measured by adding a feed gas mixture of 500 ppm of NO, 500 ppm of NH3, 10%) 0 2 , 5%) H 2 0, balanced with N 2 to a steady state reactor containing a 1"D x 3"L catalyst core. The reaction was carried at a space velocity of 80,000 fir "1 across a 150 °C to 460 °C temperature range.
  • Figure 9 is a graph showing the NO x conversion (%) versus temperature (°C) for the catalyst of Example 1 (comparative) versus the inventive catalyst of Example 3, having 3.2% CuO.
  • Figure 10 is a graph showing the N 2 0 make (ppm) versus temperature (°C) for the catalyst of Example 1 (comparative) versus the inventive catalyst of Example 3, having 3.2% CuO.
  • Figure 11 is a bar graph showings the NO x conversion (%>) at 20 ppm NH 3 slip for the catalyst of Example 1 (comparative) versus the inventive catalyst of Example 3, having 3.2% CuO.
  • the catalyst of Example 3 shows significantly higher NO x conversion (about 15% greater) at 20 ppm NH 3 slip, which is an indication of improved transient performance during engine testing conditions.
  • the snowball morphology results in a SCR catalyst material with improved NO x conversion efficiency and lower N 2 0 make versus a SCR catalyst material that does not have snowball morphology.
  • An isomorphously substituted zeolitic material (Na-[Ti]CHA) was prepared from an 0.03Al 2 O 3 :SiO 2 :0.07TiO 2 :0.06Na 2 O:0.08ATMAOH:2.33H 2 O gel composition through autoclave hydrothermal synthesis at 155 °C for 5 days. The product was recovered by filtration, and the template was removed by calcination at 600 °C for 5 hours. The final crystalline material had an x-ray powder diffraction pattern indicating > 90% CHA phase and a silica/alumina ratio (SAR) of 25 by XRF.
  • SAR silica/alumina ratio
  • An isomorphously substituted zeolitic material (H-[Ti]CHA) was prepared by 500 °C calcination (4 hrs.) of NH 4 -[Ti]CHA, which was obtained through double NH4NO3 (2.4 M) exchanges with the material of Example 7 (Na-[Ti]CHA). The Ti level is unchanged through the NH4NO3 exchange processes, 4.3%> vs. 4.5%>.
  • EXAMPLE 9 Comparative
  • the zeolitic material H-CHA was prepared according to the process of Example 7 (H-[Ti]CHA), but without Ti addition to the synthesis gel.
  • a copper promoted isomorphously substituted zeolitic material (Cu2.72-[Ti]CHA) was prepared by ion exchange at 50 °C (2 hrs.) using the material of Example 8 (H-[Ti]CHA) and Cu(OAc) 2 (0.06 M), showing a Cu content of 2.72% (ICP).
  • a copper promoted isomorphously substituted zeolitic material (Cu3.64-[Ti]CHA) was prepared by ion exchange at 50 °C (2 hrs.) using the material of Example 9 (H-[Ti]CHA) and Cu(OAc) 2 (0.125 M), showing a Cu content of 3.64% (ICP)
  • a standard copper promoted zeolitic material (Cu2.75-CHA) was prepared according to the process provided in U.S. 8404203B2, with comparable Cu content (2.75%) to Example 9. This material is provided as the reference for benchmarking.
  • a standard copper promoted zeolitic material (Cu3.84-CHA) was prepared according to the process provided in U.S. 8404203B2, with comparable Cu content (3.84%) to Example 10. This material is provided as the reference for aging benchmarking.
  • Ti-O-Si Ti involved framework stretches
  • Example 10 shows superior capability of generating more NO + compared to the unmodified Comparative Example 12 (Cu2.75-CHA) at an equilibrium state.
  • nucleophiles e.g., NH 3
  • the as-synthesized [TiJCHA (Example 8) has a characteristic secondary structure as spheres with a diameter size of 1 - 2 ⁇ , as identified by SEM analysis (secondary electron imaging) at a scale of 5000x.
  • Example 10 The material of Example 10 (Cu-[Ti]CHA) was washcoated on a flow-through ceramic substrate at a loading of 2.1 g/in 3 .
  • the typical SCR testing condition includes simulated diesel exhaust gas (500 ppm NO, 500 ppm NH 3 , 10% 0 2 , 5% H 2 0, and balance N 2 ) and temperature points from 200 °C to 600 °C. Conversion of NO and NH 3 at various temperatures are monitored by FTIR. An aging condition of 750 °C exposure to 10% H 2 0 for 5 hrs. is adopted if desired to evaluate long term hydrothermal durability.
  • the as-synthesized Cu- [TiJCHA produces a washcoat that is very porous (FIG. 18B) when compared to a standard copper promoted zeolitic material, Cu-CHA.
  • FIG. 19 The porosity and particle size of the materials is presented in FIG. 19. As illustrated in FIG. 19, shown by Hg intrusion measurement, the washcoat formed from Cu- [TiJCHA (Example 10) has a porosity distribution more towards larger pores compared to unmodified Cu-CHA (Example 12).
  • the as-synthesized Cu- [TiJCHA produces particle sizes that are significantly larger than the particle size of a standard copper promoted zeolitic material.
  • Catalyst Cu-[Ti]CHA has been washcoated on a flow-through ceramic substrate at a loading of 2.1 g/in 3 .
  • a typical SCR testing condition includes simulated diesel exhaust gas (500 ppm NO, 500 ppm NH 3 , 10%> O2, 5% H2O, and balance N 2 ) and temperature points from 200°C to 600°C. Conversion of NO and NH 3 at various temperatures are monitored by FTIR. An aging condition of 750°C exposure to 10% H 2 0 for 5 hrs. is adopted if desired to evaluate long term hydrothermal durability.
  • An isomorphously substituted zeolitic material (Na-[Ti]AEI) is prepared analogously to the material of Example 7. The product is recovered by filtration, and the template is removed by calcination at 600 °C for 5 hours.
  • An isomorphously substituted zeolitic material (H-[Ti]AEI) is prepared by 500 °C calcination (4 hrs.) of NH4-[Ti]AEI, which is obtained through double NH 4 N0 3 (2.4 M) exchanges with the material of Example 21 (Na-[Ti]AEI).
  • a copper promoted isomorphously substituted zeolitic material (Cu-[Ti]AEI) is prepared by ion exchange at 50 °C (2 hrs.) using the material of Example 22 (H-[Ti]AEI) and Cu(OAc) 2 (0.06 M).
  • An isomorphously substituted zeolitic material (Na-[Ti]AFX) is prepared analogously to the material of Example 7. The product is recovered by filtration, and the template is removed by calcination at 600 °C for 5 hours.
  • An isomorphously substituted zeolitic material (H-[Ti]AFX) is prepared by 500 °C calcination (4 hrs.) of NH 4 -[Ti]AFX, which is obtained through double NH 4 N0 3 (2.4 M) exchanges with the material of Example 24 (Na-[Ti]AFX).
  • H-[Ti]AFX is prepared by 500 °C calcination (4 hrs.) of NH 4 -[Ti]AFX, which is obtained through double NH 4 N0 3 (2.4 M) exchanges with the material of Example 24 (Na-[Ti]AFX).
  • a copper promoted isomorphously substituted zeolitic material (Cu-[Ti]AFX) is prepared by ion exchange at 50 °C (2 hrs.) using the material of Example 25 (H-[Ti]AFX) and Cu(OAc) 2 (0.06 M).
  • An isomorphously substituted zeolitic material (Na-[Ti]CHA) was prepared from an 0.03Al2O3:SiO 2 :0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H 2 O gel composition through autoclave hydrothermal synthesis at 155 °C for 5 days. The product was recovered by filtration, and the template was removed by calcination at 600 °C for 5 hours. The final crystalline material had an X-ray powder diffraction pattern indicating > 90% CHA phase and a SAR of 25 by XRF. Other SAR, e.g., 20, can also be obtained by proper adjustment of Si/Al ratio in the starting gel.
  • An isomorphously substituted zeolitic material (H-[Ti]CHA) was prepared by 500 °C calcination (4 hrs) of NH 4 -[Ti]CHA, which was obtained through double NH 4 N0 3 (2.4 M) exchanges with the material of Example 27 (Na-[Ti]CHA). The Ti level was unchanged through the NH4NO3 exchange processes, 4.3% vs. 4.5%.
  • the zeolitic material H-CHA was prepared according to the process of Example 28 and 29, but without Ti addition to the initial synthesis sol gel for zeolite hydrothermal crystallization.
  • a copper promoted isomorphously substituted zeolitic material (Cu-[Ti]CHA (SAR 20)) was prepared by ion exchange at 50 °C (2 hrs) using the material of Example 29 (H- [TfJCHA) and Cu(OAc)2. Variation of Cu concentration in the exchange process produced a series of copper zeolite, e.g., Cu2.46-[Ti]CHA (Example 31a), Cu3.03-[Ti]CHA (Example 31b), Cu3.64-[Ti]CHA (Example 31c), and Cu3.78-[Ti]CHA (Example 3 Id) (numbers after Cu denote Cu percentage).
  • a standard copper promoted zeolitic material (Cu2.75-CHA) was prepared according to the process provided in U.S. 8404203B2, and was provided as the reference for benchmarking.
  • EXAMPLE 33 - COMPARATIVE [00316] A Fe-CHA (Fe: 2.5%) was synthesized similarly as Cu-CHA but using Fe(N0 3 )3 in the solution exchange, and was selected as a comparative sample.
  • EXAMPLE 40 A commercially available non-zeolitic composite material with T1O2, A1 2 0 3 , and Si0 2 , consisting of Ti, Si, Al based oxides from a co-precipitation process, also demonstrated high temperature N3 ⁇ 4 storage feature. As illustrated in FIG. 24, although the storage capacity of the commercially available material compared to Cu-CHA (Example 32) was low, the desorption temperature was further increased.
  • An isomorphously substituted zeolitic material (Na-[Ti]AEI) is prepared analogously to the material of Example 27. The product is recovered by filtration, and the template is removed by calcination at 600 °C for 5 hours.
  • An isomorphously substituted zeolitic material (H-[Ti]AEI) is prepared by 500 °C calcination (4 hrs) of NH 4 -[Ti]AEI, which is obtained through double NH NO3 (2.4 M) exchanges with the material of Example 41 (Na-[Ti]AEI).
  • a copper promoted isomorphously substituted zeolitic material (Cu-[Ti]AEI) is prepared by ion exchange at 50 °C (2 hrs) using the material of Example 42 (H-[Ti]AEI) and Cu(OAc) 2 (0.06 M).
  • An isomorphously substituted zeolitic material (Na-[Ti]AFX) is prepared analogously to the material of Example 27. The product is recovered by filtration, and the template is removed by calcination at 600 °C for 5 hours.
  • An isomorphously substituted zeolitic material (H-[Ti]AFX) is prepared by 500 °C calcination (4 hrs) of NH 4 -[Ti]AFX, which is obtained through double NH NO3 (2.4 M) exchanges with the material of Example 44 (Na-[Ti]AFX).
  • a copper promoted isomorphously substituted zeolitic material (Cu-[Ti]AFX) is prepared by ion exchange at 50 °C (2 hrs) using the material of Example 45 (H-[Ti]AFX) and Cu(OAc) 2 (0.06 M).

Abstract

Described is a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. The catalyst is a crystalline material that is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200 °C and 600 °C. A method for selectively reducing nitrogen oxides and an exhaust gas treatment system are also described.

Description

MOLECULAR SIEVE CATALYST COMPOSITIONS, CATALYST COMPOSITES,
SYSTEMS, AND METHODS
TECHNICAL FIELD
[0001] The present invention relates generally to the field of selective catalytic reduction materials, selective catalytic reduction composites, and to methods of selectively reducing nitrogen oxides. More particularly, embodiments of the invention relate to a SCR catalyst material comprising a spherical particle including an agglomeration of crystals of a molecular sieve.
BACKGROUND
[0002] Over time, the harmful components of nitrogen oxides (NOx) have led to atmospheric pollution. NOx is contained in exhaust gases such as from internal combustion engines (e.g., automobiles and trucks), from combustion installations (e.g., power stations heated by natural gas, oil, or coal), and from nitric acid production plants.
[0003] Various methods have been used in the treatment of NOx-containing gas mixtures. One type of treatment involves catalytic reduction of nitrogen oxides. There are two processes: (1) a nonselective reduction process wherein carbon monoxide, hydrogen, or a lower hydrocarbon is used as a reducing agent, and (2) a selective reduction process wherein ammonia or ammonia precursor is used as a reducing agent. In the selective reduction process, a high degree of removal with nitrogen oxide can be obtained with a small amount of reducing agent.
[0004] The selective reduction process is referred to as a SCR process (Selective Catalytic Reduction). The SCR process uses catalytic reduction of nitrogen oxides with ammonia in the presence of atmospheric oxygen with the formation predominantly of nitrogen and steam:
4NO+4NH3+02→ 4N2+6H20 (standard SCR reaction)
2N02+4NH3→ 3N2+6H20 (slow SCR reaction)
NO+N02+NH3→ 2N2+3H20 (fast SCR reaction)
[0005] Catalysts employed in the SCR process ideally should be able to retain good catalytic activity over the wide range of temperature conditions of use, for example, 200 °C to 600 °C or higher, under hydrothermal conditions. Hydrothermal conditions are often encountered in practice, such as during the regeneration of a soot filter, a component of the exhaust gas treatment system used for the removal of particles.
[0006] Molecular sieves such as zeolites have been used in the selective catalytic reduction (SCR) of nitrogen oxides with a reductant such as ammonia, urea, or a hydrocarbon in the presence of oxygen. Zeolites are crystalline materials having rather uniform pore sizes which, depending upon the type of zeolite and the type and amount of cations included in the zeolite lattice, range from about 3 to 10 Angstroms in diameter. Zeolites having 8 -ring pore openings and double-six ring secondary building units, particularly those having cage-like structures, have recently found interest in use as SCR catalysts. A specific type of zeolite having these properties is chabazite (CHA), which is a small pore zeolite with 8 member-ring pore openings (-3.8 Angstroms) accessible through its 3 -dimensional porosity. A cage like structure results from the connection of double six-ring building units by 4 rings.
[0007] Metal-promoted zeolite catalysts including, among others, iron-promoted and copper-promoted zeolite catalysts, for the selective catalytic reduction of nitrogen oxides with ammonia are known. Iron-promoted zeolite beta has been an effective commercial catalyst for the selective reduction of nitrogen oxides with ammonia. Unfortunately, it has been found that under harsh hydrothermal conditions, for example exhibited during the regeneration of a soot filter with temperatures locally exceeding 700 °C, the activity of many metal-promoted zeolites begins to decline. This decline is often attributed to dealumination of the zeolite and the consequent loss of metal-containing active centers within the zeolite.
[0008] Metal-promoted, particularly copper promoted aluminosilicate zeolites having the CHA structure type have recently solicited a high degree of interest as catalysts for the SCR of oxides of nitrogen in lean burning engines using nitrogenous reductants. This is because of the wide temperature window coupled with the excellent hydrothermal durability of these materials, as described in United States Patent Number 7,601,662. Prior to the discovery of metal promoted zeolites described in United States Patent Number 7,601,662, while the literature had indicated that a large number of metal-promoted zeolites had been proposed in the patent and scientific literature for use as SCR catalysts, each of the proposed materials suffered from one or both of the following defects: (1) poor conversion of oxides of nitrogen at low temperatures, for example 350° C and lower; and (2) poor hydrothermal stability marked by a significant decline in catalytic activity in the conversion of oxides of nitrogen by SCR. Thus, the invention described in United State Patent Number 7,601,662 addressed a compelling, unsolved need to provide a material that would provide conversion of oxides of nitrogen at low temperatures and retention of SCR catalytic activity after hydrothermal aging at temperatures in excess of 650 °C.
[0009] Even though the current catalysts exhibit excellent properties, there is a continuing desire to reduce N20 make during the SCR reaction. Accordingly, an SCR catalyst is needed with improved NOx conversion efficiency and lower N2O make relative to the current technologies. SUMMARY
[0010] A first aspect of the invention is directed to a selective catalytic reduction (SCR) material. In a first embodiment, a selective catalytic reduction material comprises a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns.
[0011] In a second embodiment, the SCR catalyst material of the first embodiment is modified, wherein the molecular sieve comprises a d6r unit.
[0012] In a third embodiment, the SCR catalyst material of the first and second embodiments is modified, wherein the molecular sieve has a structure type selected from the group consisting of AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
[0013] In a fourth embodiment, the SCR catalyst material of the first through third embodiments is modified, wherein the molecular sieve has a structure type selected from AEI, AFT, AFX, CHA, EAB, ERI, KFI, LEV, SAS, SAT, and SAV.
[0014] In a fifth embodiment, the SCR catalyst material of the first through fourth embodiments is modified, wherein the molecular sieve has a structure type selected from AEI, CHA, and AFX.
[0015] In a sixth embodiment, the SCR catalyst material of the first through fifth embodiments, wherein the molecular sieve has the CHA structure type.
[0016] In a seventh embodiment, the SCR catalyst material of the first through sixth embodiments is modified, wherein the molecular sieve having the CHA structure type is selected from an aluminosilicate zeolite, a borosilicate, a gallosilicate, a SAPO, an A1PO, a MeAPSO, and a MeAPO.
[0017] In an eighth embodiment, the SCR catalyst material of the first through seventh embodiments is modified, wherein the molecular sieve having the CHA structure type is selected from the group consisting of SSZ-13, SSZ-62, natural chabazite, zeolite K-G, Linde D, Linde R, LZ-218, LZ-235, LZ-236, ZK-14, SAPO-34, SAPO-44, SAPO-47, and ZYT-6.
[0018] In a ninth embodiment, the SCR catalyst material of the first through eighth embodiments is modified, wherein the molecular sieve is selected from SSZ-13 and SSZ-62.
[0019] In a tenth embodiment, the SCR catalyst material of the first through ninth embodiments is modified, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
[0020] In an eleventh embodiment, the SCR catalyst material of the first through tenth embodiments is modified, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, and combinations thereof.
[0021] In a twelfth embodiment, the SCR catalyst material of the first through eleventh embodiments is modified, wherein the SCR catalyst material is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200 °C and 600 °C.
[0022] In a thirteenth embodiment, the SCR catalyst material of the sixth embodiment is modified, wherein the molecular sieve having the CHA structure type has a silica to alumina ratio in the range of 10 to 100.
[0023] In a fourteenth embodiment, the SCR catalyst material of the tenth and eleventh embodiments is modified, wherein the metal is present in an amount in the range of about 0.1 to about 10 wt. % on an oxide basis.
[0024] In a fifteenth embodiment, the SCR catalyst material of the first through fourteenth embodiments is modified, wherein the spherical particle has a median particle size in the range of about 1.2 to about 3.5 microns.
[0025] In a sixteenth embodiment, the SCR catalyst material of the first through fifteenth embodiments is modified, wherein the crystals have a crystal size in the range of about 1 to about 250 nm. [0026] In a seventeenth embodiment, the SCR catalyst material of the first through sixteenth embodiments is modified, wherein the crystals have a crystal size in the range of about 100 to about 250 nm.
[0027] In an eighteenth embodiment, the SCR catalyst material of the first through seventeenth embodiments is modified, wherein the SCR catalyst material is in the form of a washcoat.
[0028] In a nineteenth embodiment, the SCR catalyst material of the eighteenth embodiment is modified, wherein the washcoat is a layer deposited on a substrate.
[0029] In a twentieth embodiment, the SCR catalyst material of nineteenth embodiment is modified, wherein the substrate comprises a filter.
[0030] In a twenty-first embodiment, the SCR catalyst material of the twentieth embodiment is modified, wherein the filter is a wall flow filter.
[0031] In a twenty-second embodiment, the SCR catalyst material of the twentieth embodiment is modified, wherein the filter is a flow through filter.
[0032] In a twenty-third embodiment, the SCR catalyst material of the first through twenty-second embodiments is modified, wherein at least 80% of the spherical particles have a median particle size in the range of 0.5 to 2.5 microns.
[0033] In a twenty-fourth embodiment, the SCR catalyst material of the first through twenty-third embodiments is modified, wherein the molecular sieve comprises a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal.
[0034] In a twenty-fifth embodiment, the SCR catalyst material of the twenty-fourth embodiment is modified, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
[0035] In a twenty-sixth embodiment, the SCR catalyst material of the twenty-twenty fourth and twenty-fifth embodiments is modified, wherein the tetravelent metal comprises a tetravalent transition metal.
[0036] In a twenty-seventh embodiment, the SCR catalyst material of the twenty-fourth through twenty-sixth embodiments is modified, wherein the tetravalent transition metal is selected from the group consisting of Ti, Zr, Hf, Ge, and combinations thereof. [0037] In a twenty-eighth embodiment, the SCR catalyst material of the twenty-fourth through twenty-seventh embodiments is modified, wherein the tetravalent transition metal comprises Ti.
[0038] A second aspect of the invention is directed to a method for selectively reducing nitrogen oxide (NOx). In a twenty-ninth embodiment, the method for selectively reducing nitrogen oxide (NOx) comprises contacting an exhaust gas stream containing NOx with a SCR catalyst material comprising a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns. In other embodiments, the method for selectively reducing nitrogen oxide (NOx) comprises contacting an exhaust gas stream containing NOx with the SCR catalyst material of the first through twenty-eighth embodiments.
[0039] A third aspect of the invention is direct to a system for treating exhaust gas from a lean burn engine containing NOx. In a thirtieth embodiment, the system for treating exhaust gas from a lean burn engine containing NOx comprises the SCR catalyst material of the first through twenty-eighth embodiments and at least one other exhaust gas treatment component.
[0040] A thirty-first embodiment pertains to SCR catalyst comprising a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal and the catalyst is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
[0041] In a thirty-second embodiment, the SCR catalyst of the thirty-first embodiment is modified, wherein the tetravalent metal comprises a tetravalent transition metal.
[0042] In a thirty-third embodiment, the SCR catalyst of the thirty-first and thirty-second embodiments is modified, wherein the tetravalent transition metal is selected from the group consisting of Ti, Zr, Hf, Ge, and combinations thereof.
[0043] In a thirty-fourth embodiment, the SCR catalyst of the thirty-first through thirty- third embodiments is modified, wherein the tetravalent transition metal comprises Ti.
[0044] In a thirty-fifth embodiment, the SCR catalyst of the thirty-first through thirty- fourth embodiments is modified, wherein the silica to alumina ratio is in the range of 1 to 300.
[0045] In a thirty-sixth embodiment, the SCR catalyst of the thirty-first through thirty-fifth embodiments is modified, wherein the silica to alumina ratio is in the range of 1 to 50. [0046] In a thirty-seventh embodiment, the SCR catalyst of the thirty-first through thirty- sixth embodiments is modified, wherein the tetravalent metal to alumina ratio is in the range of 0.0001 to 1000.
[0047] In a thirty-eighth embodiment, the SCR catalyst of the thirty-first through thirty- seventh embodiments is modified, wherein the tetravalent metal to alumina ratio is in the range of 0.01 to 10.
[0048] In a thirty-ninth embodiment, the SCR catalyst of the thirty-first through thirty- eighth embodiments is modified, wherein the tetravalent metal to alumina ratio is in the range of 0.01 to 2.
[0049] In a fourtieth embodiment, the SCR catalyst of the thirty- first through thirty-ninth embodiments is modified, wherein the silica to tetravalent metal ratio is in the range of 1 to 100.
[0050] In a forty-first embodiment, the SCR catalyst of the thirty-first through a fourtieth embodiment is modified, wherein the silica to tetravalent metal ratio is in the range of 5 to 20.
[0051] In a forty-second embodiment, the SCR catalyst of the thirty-first through forty-first embodiments if modified, wherein the zeolitic framework material comprises ring sizes no larger than 12.
[0052] In a forty-third embodiment, the SCR catalyst of the thirty-first through forty- second embodiments is modified, wherein the zeolitic framework material comprises a d6r unit.
[0053] In a forty-fourth embodiment, the SCR catalyst of the thirty-first through forty-third embodiments is modified, wherein the zeolitic framework material is selected from AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
[0054] In a forty-fifth embodiment, the SCR catalyst of the thirty-first through forty-fourth embodiments is modified, wherein the zeolitic framework material is selected from AEI, CHA, AFX, ERI, KFI, LEV, and combinations thereof.
[0055] In a forty-sixth embodiment, the SCR catalyst of the thirty-first through forty-fifth embodiments is modified, wherein the zeolitic framework material is selected from AEI, CHA, and AFX.
[0056] In a forty-seventh embodiment, the SCR catalyst of the thirty-first through forty- sixth embodiments is modified, wherein the zeolitic framework material is CHA. [0057] In a forty-eighth embodiment, the SCR catalyst of the thirty-first through forty- seventh embodiments is modified, wherein the catalyst is promoted with Cu, Fe, and combinations thereof.
[0058] In a forty-ninth embodiment, the SCR catalyst of the thirty-first through forty- eighth embodiments is modified, wherein the catalyst is effective to promote the formation of NO+.
[0059] In a fiftieth embodiment, the SCR catalyst of the thirty-first through forty-ninth embodiments is modified with the proviso that the zeolitic framework excludes phosphorous atoms.
[0060] Embodiments of an additional aspect of the invention are directed to a method for selectively reducing nitrogen oxides (NOx). In a fifty-first embodiment, the method for selectively reducing nitrogen oxides (NOx) comprises contacting an exhaust gas stream containing NOx with a catalyst of the thirty- first through fiftieth embodiments.
[0061] Embodiments of a further aspect of the invention are directed to an exhaust gas treatment system. In a fifty-second embodiment, an exhaust gas treatment system comprises an exhaust gas stream containing ammonia and a catalyst in accordance with the thirty-first through fiftieth embodiments.
[0062] In another aspect, a fifty-third embodiment is provided directed to use of the catalyst of any of the first through fiftieth embodiments as a catalyst for the selective catalytic reduction of NOx in the presence of ammonia.
[0063] A fifty-fourth embodiment pertains to SCR catalyst composite comprising a SCR catalyst material that promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H20 selectively over a temperature range of 150 °C to 600 °C; and an ammonia storage material comprising a transition metal having an oxidation state of IV, the SCR catalyst material effective to store ammonia at 400° C and above with a minimum NH3 storage of 0.1 g/L at 400 °C.
[0064] In a fifty-fifth embodiment, the SCR catalyst composite of the fifty-fourth embodiment is modified, wherein the transition metal is selected from the group consisting of Ti, Ce, Zr, Hf, Ge, and combinations thereof.
[0065] In a fifty-sixth embodiment, the SCR catalyst composite the fifty-fourth and fifty- fifth embodiments is modified, wherein the SCR catalyst material is isomorphously substituted with the ammonia storage material. [0066] In a fifty-seventh embodiment, the SCR catalyst composite of the fifty-fourth and fifty-fifth embodiments is modified, wherein the ammonia storage material is dispersed in the SCR catalyst material.
[0067] In a fifty-eighth embodiment, the SCR catalyst composite of the fifty-fourth and fifty-fifth embodiments is modified, wherein the ammonia storage material is dispersed as a layer on the SCR catalyst material.
[0068] In a fifty-ninth embodiment, the SCR catalyst composite of the fifty-fourth and fifty-fifth embodiments is modified, wherein the ammonia storage material and the SCR catalyst material are arranged in a zoned configuration.
[0069] In a sixtieth embodiment, the SCR catalyst composite of the fifty-ninth embodiment is modified, wherein the ammonia storage material is upstream of the SCR catalyst material.
[0070] In a sixty-first embodiment, the SCR catalyst composite of the fifty-fourth and fifty-fifth embodiments is modified, wherein the SCR catalyst material is ion-exchanged with the ammonia storage material.
[0071] In a sixty-second embodiment, the SCR catalyst composite of the fifty- fourth through sixty-first embodiments is modified, wherein the SCR catalyst material is disposed on a filter.
[0072] In a sixty-third embodiment, the SCR catalyst composite of the sixty-second embodiment is modified, wherein the filter is a wall flow filter.
[0073] In a sixty-fourth embodiment, the SCR catalyst composite of the sixty-second embodiment is modified, wherein the filter is a flow through filter.
[0074] In a sixty-fifth embodiment, the SCR catalyst composite of the fifty-fourth through sixty-fourth embodiments is modified, wherein the SCR catalyst material comprises one or more of a molecular sieve, a mixed oxide, and an activated refractory metal oxide support.
[0075] In a sixty-sixth embodiment, the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the mixed oxide is selected from Fe/titania, Fe/alumina, Mg/titania, Mg/alumina, Mn/alumina, Mn/titania, Cu/titania, Ce/Zr, Ti/Zr, vanadia/titania, and mixtures thereof.
[0076] In a sixty-seventh embodiment, the SCR catalyst composite of the sixty-fifth and sixty-sixth embodiments is modified, wherein the mixed oxide comprises vanadia/titania and is stabilized with tungsten. [0077] In a sixty-eighth embodiment, the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the molecular sieve has a framework of silicon, phosphorus and aluminum atoms.
[0078] In a sixty-ninth embodiment, the SCR catalyst composite of the sixty-eighth embodiment is modified, wherein the silica to alumina ratio is in the range of 1 to 300.
[0079] In a seventieth embodiment, the SCR catalyst composite of the sixty-eighth and sixty-ninth embodiments is modified, wherein the silica to alumina ratio is in the range of 1 to 50.
[0080] In a seventy-first embodiment, the SCR catalyst composite of sixty-eighth through seventieth embodiments is modified, wherein the ratio of alumina to the tetravalent metal is in the range of 1 : 10 to 10: 1.
[0081] In a seventy-second embodiment, the SCR catalyst composite of the sixty-eigth through seventy-first embodiments is modified, wherein a fraction of the silicon ions are isomorphously substituted with the metal of the ammonia storage material.
[0082] In a seventy-third embodiment, the SCR catalyst composite of the sixty- fifth embodiment is modified, wherein the molecular sieve comprises ring sizes no larger than 12.
[0083] In a seventy-second embodiment, the SCR catalyst composite of the sixty-fifth through seventy-third embodiments is modified, wherein the molecular sieve has a structure type selected from the group consisting of MFI, BEA, AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
[0084] In a seventy-third embodiment, the SCR catalyst composite of the seventy-second embodiment is modified, wherein the molecular sieve has a structure type selected from the group consisting of MFI, BEA, CHA, AEI, AFX, ERI, KFI, LEV, and combinations thereof.
[0085] In a seventy-fourth embodiment, the SCR catalyst composite of the seventy-third embodiment is modified, wherein the molecular sieve has a structure type selected from the group consisting of AEI, CHA, AFX, and combinations thereof.
[0086] In a seventy-fifth embodiment, the SCR catalyst composite of the fifty-fourth through seventy-fourth embodiments is modified, wherein the SCR catalyst material is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof. [0087] In a seventy-sixth embodiment, the SCR catalyst composite of the fifty-fourth through seventy-fourth embodiments is modified, wherein the SCR catalyst material is promoted with Cu, Fe, and combinations thereof.
[0088] In a seventy-seventh embodiment, the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the molecular sieve comprises SSZ-13, SSZ-39, or SAPO- 34.
[0089] In a seventy-eighth embodiment, the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the activated refractory metal oxide support is selected from alumina, ceria, zirconia, silica, titania, silica-alumina, zirconia-alumina, titania-alumina, lanthana-alumina, lanthana-zirconia-alumina, baria-alumina, baria-lanthana-alumina, baria- lanthana-neodymia-alumina, alumina-chomia, alumina-ceria, zirconia-silica, titania-silica, or zirconia-titania, and combinations thereof.
[0090] In a seventy-ninth embodiment, the SCR catalyst composite of the seventy-eighth embodiment is modified, wherein the activated refractory metal oxide support is exchanged with a metal selected from the group consisting of Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
[0091] In an eightieth embodiment, the SCR catalyst composite of the sixty-fifth embodiment is modified, wherein the transition metal comprises Ti.
[0092] In an eighty-first embodiment, the SCR catalyst composite of the eightieth embodiment is modified, wherein the ratio of alumina to titanium is in the range of 1 : 10 to 10: 1.
[0093] A further aspect of the present invention is directed to a method. In an eighty- second embodiment, a method for simultaneously selectively reducing nitrogen oxide (NOx) and storing ammonia comprises contacting an exhaust gas stream containing NOx with the SCR catalyst composite of the fifty-fourth through eighty-first embodiments.
[0094] In an eighty-third embodiment, the method of the eighty-second embodiment is modified, wherein the oxygen content of the exhaust gas stream is from 1 to 30% and the water content of the exhaust gas stream is from 1 to 20%.
[0095] An additional aspect of the present invention is directed to a SCR catalyst composite. In an eighty-fourth embodiment, a SCR catalyst composite comprises a SCR catalyst material that effectively promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H20 selectively over a temperature range of 200 °C to 600 °C, wherein the SCR catalyst material comprises SSZ-13; and an ammonia storage material comprising Ti, the ammonia storage material effective to store ammonia at 400° C and above.
BRIEF DESCRIPTION OF DRAWING
[0096] FIG. 1 is a schematic of a cross-section of a SCR catalyst material according to one or more embodiments;
[0097] FIG. 2 shows a partial cross-sectional view of an SCR catalyst composite according to one or more embodiments;
[0098] FIG. 3 shows a partial cross-sectional view of an SCR catalyst composite according to one or more embodiments;
[0099] FIG. 4A shows a perspective view of a wall flow filter substrate;
[00100] FIG. 4B shows a cutaway view of a section of a wall flow filter substrate;
[00101] FIG. 5 is a SEM image showing crystal morphology of a catalyst material according to the Examples;
[00102] FIG. 6 is a SEM image showing crystal morphology of a catalyst material according to the Comparative Example;
[00103] FIG. 7 is a bar graph comparing NOx conversion for catalysts according to the Examples;
[00104] FIG. 8 is a bar graph comparing N20 make for catalysts according to the Examples;
[00105] FIG. 9 is a graph comparing NOx conversion for catalysts according to the Examples;
[00106] FIG. 10 is a graph comparing N2O make for catalysts according to the Examples;
[00107] FIG. 11 is a bar graph comparing NOx conversion at 20 ppm NH3 slip for catalysts according to the Examples;
[00108] FIG. 12 is an ATR analysis for catalysts according to the Examples;
[00109] FIG. 13 is a FTIR analysis for catalysts according to the Examples;
[00110] FIG. 14 is a FTIR analysis for catalysts according to the Examples;
[00111] FIG. 15 is a scanning electron microscope image of material according to the Examples;
[00112] FIG. 16 compares NOx conversion for catalysts according to the Examples;
[00113] FIG. 17 compares NOx conversion for catalysts according to the Examples; [00114] FIGS. 18A and 18B are scanning electron microscope images of material of materials according to the Examples;
[00115] FIG. 19 is a washcoat porosity measurement for catalysts according to the Examples;
[00116] FIG. 20 compares NH3 absorption for catalysts according to the Examples;
[00117] FIG. 21 compares NH3 absorption for catalysts according to the Examples;
[00118] FIG. 22 compares NH3 absorption for catalysts according to the Examples;
[00119] FIG. 23 compares NH3 absorption for catalysts according to the Examples; and
[00120] FIG. 24 compares NH3 absorption for catalysts according to the Examples.
DETAILED DESCRIPTION
[00121] Before describing several exemplary embodiments of the invention, it is to be understood that the invention is not limited to the details of construction or process steps set forth in the following description. The invention is capable of other embodiments and of being practiced or being carried out in various ways.
[00122] Governmental regulations mandate the use of NOx reduction technologies for light and heavy-duty vehicles. Selective catalytic reduction (SCR) of NOx using urea is an effective and dominant emission control technology for NOx control. To meet governmental regulations, an SCR catalyst that has improved performance compared to the current Cu-SSZ-13 based benchmark technology is necessary. Provided is an SCR catalyst material having improved NOx conversion efficiency and lower N20 make relative to the current Cu-SSZ-13 based benchmark technologies. The SCR catalyst material effectively promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H20 selectively over a temperature range of 200 to 600 °C.
[00123] Embodiments of the invention are directed to a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. It was surprisingly found that spherical particles having an agglomeration of crystals of a molecular sieve are particularly suitable in exhaust gas purification catalyst components, in particular as SCR catalyst materials.
[00124] With respect to the terms used in this disclosure, the following definitions are provided. [00125] As used herein, the term "catalyst" or "catalyst composition" or "catalyst material" refers to a material that promotes a reaction.
[00126] As used herein, the term "catalytic article" or "catalyst composite" refers to an element that is used to promote a desired reaction. For example, a catalytic article or catalyst composite may comprise a washcoat containing a catalytic species, e.g. a catalyst composition, on a substrate.
[00127] As used herein, the term "selective catalytic reduction" (SCR) refers to the catalytic process of reducing oxides of nitrogen to dinitrogen (N2) using a nitrogenous reductant.
[00128] As used herein, the term "FTIR" refers to Fourier transform infrared spectroscopy, which is a technique used to obtain an infrared spectrum of absorption, emission, photoconductivity or Raman scattering of a solid, liquid, or gas.
[00129] As used herein, the term "ATR" refers to attenuated total reflectance, which is a sampling technique used in conjunction with infrared spectroscopy, particularly FTIR, which enables samples to be examined directly in the solid or liquid state without further preparation.
[00130] According to one or more embodiments, a selective catalytic reduction catalyst material comprises a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns.
[00131] As used herein, the phrase "molecular sieve" refers to framework materials such as zeolites and other framework materials (e.g. isomorphously substituted materials), which may in particulate form in combination with one or more promoter metals be used as catalysts. Molecular sieves are materials based on an extensive three-dimensional network of oxygen ions containing generally tetrahedral type sites and having a substantially uniform pore distribution, with the average pore size being no larger than 20 A. The pore sizes are defined by the ring size. As used herein, the term "zeolite" refers to a specific example of a molecular sieve, including silicon and aluminum atoms. According to one or more embodiments, it will be appreciated that by defining the molecular sieves by their structure type, it is intended to include the structure type and any and all isotypic framework materials such as SAPO, ALPO and MeAPO materials having the same structure type as the zeolite materials.
[00132] In more specific embodiments, reference to an aluminosilicate zeolite structure type limits the material to molecular sieves that do not include phosphorus or other metals substituted in the framework. However, to be clear, as used herein, "aluminosilicate zeolite" excludes aluminophosphate materials such as SAPO, ALPO, and MeAPO materials, and the broader term "zeolite" is intended to include aluminosilicates and aluminophosphates. Zeolites are crystalline materials having rather uniform pore sizes which, depending upon the type of zeolite and the type and amount of cations included in the zeolite lattice, range from about 3 to 10 Angstroms in diameter. Zeolites generally comprise silica to alumina (SAR) molar ratios of 2 or greater.
[00133] The term "aluminophosphates" refers to another specific example of a molecular sieve, including aluminum and phosphate atoms. Aluminophosphates are crystalline materials having rather uniform pore sizes.
[00134] Generally, molecular sieves, e.g. zeolite, are defined as aluminosilicates with open 3 -dimensional framework structures composed of corner-sharing T04 tetrahedra, where T is Al or Si, or optionally P. Cations that balance the charge of the anionic framework are loosely associated with the framework oxygens, and the remaining pore volume is filled with water molecules. The non-framework cations are generally exchangeable, and the water molecules removable.
[00135] In an exemplary embodiment, the molecular sieve can be isomorphously substituted. As used herein, the terms "zeolitic framework" and "zeolitic framework material" refer to a specific example of a molecular sieve, further including silicon and aluminum atoms. According to embodiments of the invention, the molecular sieve comprises a zeolitic framework material of silicon (Si) and aluminum (Al) ions, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal. In specific embodiments, the framework does not include phosphorous (P) atoms.
[00136] As used herein, the terms "isomorphously substituted" and "isomorphous substitution" refer to the substitution of one element for another in a mineral without a significant change in the crystal structure. Elements that can substitute for each other generally have similar ionic radii and valence state. In one or more embodiments, a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal. In other words, a fraction of the silicon atoms in the zeolitic framework material are being replaced with a tetravalent metal. Such isomorophous substitution does not significantly alter the crystal structure of the zeolitic framework material.
[00137] As used herein, the term "tetravalent metal" refers to a metal having a state with four electrons available for covalent chemical bonding in its valence (outermost electron shell). Tetravalent metals include germanium (Ge) and those transition metals located in Group 4 of the periodic table, titanium (Ti), zirconium (Zr), and hafnium (Hf). In one or more embodiments, the tetravalent metal is selected from Ti, Zr, Hf, Ge, and combinations thereof. In specific embodiments, the tetravalent metal comprises Ti.
[00138] In other embodiments, a fraction of the silicon atoms are isomorphously substituted with a transition metal having an oxidation state of IV. Without intending to be bound by theory, it is thought that the presence of an element with a formal oxidation state of IV helps to increase ammonia storage at high temperature. In one or more embodiments, the transition metal having an oxidation state of IV can either be in oxide form, or intrinsically embedded in the SCR catalyst material. As used herein, the term "transition metal having an oxidation state of IV" refers to a metal having a state with four electrons available for covalent chemical bonding in its valence (outermost electron shell). Transition metals having an oxidation state of IV include germanium (Ge), cerium (Ce), and those transition metals located in Group 4 of the periodic table, titanium (Ti), zirconium (Zr), and hafnium (Hf). In one or more embodiments, the transition metal having an oxidation state of IV is selected from Ti, Ce, Zr, Hf, Ge, and combinations thereof. In specific embodiments, the transition metal having an oxidation state of IV comprises Ti.
[00139] In one or more embodiments, the zeolitic framework material comprises MO4/S1O4/AIO4 tetrahedra (where M is a tetravalent metal) and is linked by common oxygen atoms to form a three-dimensional network. The isomorphously substituted tetravalent metals are embedded into the zeolitic framework material as a tetrahedral atom (M04). The isomorphously substituted tetrahedron units together with the silicon and aluminum tetrahedron units then form the framework of the zeolitic material. In specific embodiments, the tetravalent metal comprises titanium, and the zeolitic framework material includes Ti04/Si04/A104 tetrahedra. Thus, in one or more embodiments, the catalyst comprises a zeolitic framework of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with titanium.
[00140] The isomorphously substituted zeolitic framework material of one or more embodiments is differentiated mainly according to the geometry of the voids which are formed by the rigid network of the M04/(Si04)/A104 tetrahedra (where M is a tetravalent metal).
[00141] In one or more embodiments, the molecular sieve comprises S1O4/AIO4 tetrahedra and is linked by common oxygen atoms to form a three-dimensional network. In other embodiments, the molecular sieve comprises S1O4/AIO4/PO4 tetrahedra. The molecular sieve of one or more embodiments is differentiated mainly according to the geometry of the voids which are formed by the rigid network of the (Si04)/A104, or S1O4/AIO4/PO4, tetrahedra. The entrances to the voids are formed from 6, 8, 10, or 12 ring atoms with respect to the atoms which form the entrance opening. In one or more embodiments, the molecular sieve comprises ring sizes of no larger than 12, including 6, 8, 10, and 12.
[00142] According to one or more embodiments, the molecular sieve can be based on the framework topology by which the structures are identified. Typically, any structure type of zeolite can be used, such as structure types of ABW, ACO, AEI, AEL, AEN, AET, AFG, AFI, AFN, AFO, AFR, AFS, AFT, AFX, AFY, AHT, ANA, APC, APD, AST, ASV, ATN, ATO, ATS, ATT, ATV, AWO, AWW, BCT, BEA, BEC, BIK, BOG, BPH, BRE, CAN, CAS, SCO, CFI, SGF, CGS, CHA, CHI, CLO, CON, CZP, DAC, DDR, DFO, DFT, DOH, DON, EAB, EDI, EMT, EON, EPI, ERI, ESV, ETR, EUO, FAU, FER, FRA, GIS, GIU, GME, GON, GOO, HEU, IFR, IHW, ISV, ITE, ITH, ITW, IWR, IWW, JBW, KFI, LAU, LEV, LIO, LIT, LOS, LOV, LTA, LTL, LTN, MAR, MAZ, MEI, MEL, MEP, MER, MFI, MFS, MON, MOR, MOZ, MSO, MTF, MTN, MTT, MTW, MWW, NAB, NAT, NES, NON, NPO, NSI, OBW, OFF, OSI, OSO, OWE, PAR, PAU, PHI, PON, RHO, RON, RRO, RSN, RTE, RTH, RUT, RWR, RWY, SAO, SAS, SAT, SAV, SBE, SBS, SBT, SFE, SFF, SFG, SFH, SFN, SFO, SGT, SOD, SOS, SSY, STF, STI, STT, TER, THO, TON, TSC, UEI, UFI, UOZ, USI, UTL, VET, VFI, VNI, VSV, WIE, WEN, YUG, ZON, or combinations thereof.
[00143] In one or more embodiments, the molecular sieve comprises an 8-ring small pore aluminosilicate zeolite. As used herein, "small pore" refers to pore openings which are smaller than about 5 Angstroms, for example on the order of ~3.8 Angstroms. The phrase "8-ring" zeolites refers to zeolites having 8-ring pore openings and double-six ring secondary building units and having a cage like structure resulting from the connection of double six -ring building units by 4 rings. Zeolites are comprised of secondary building units (SBU) and composite building units (CBU), and appear in many different framework structures. Secondary building units contain up to 16 tetrahedral atoms and are non-chiral. Composite building units are not required to be achiral, and cannot necessarily be used to build the entire framework. For example, a group of zeolites have a single 4-ring (s4r) composite building unit in their framework structure. In the 4-ring, the "4" denotes the positions of tetrahedral silicon and aluminum atoms, and the oxygen atoms are located in between tetrahedral atoms. Other composite building units include, for example, a single 6-ring (s6r) unit, a double 4-ring (d4r) unit, and a double 6-ring (d6r) unit. The d4r unit is created by joining two s4r units. The d6r unit is created by joining two s6r units. In a d6r unit, there are twelve tetrahedral atoms. Zeolitic structure types that have a d6r secondary building unit include AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, and WEN.
[00144] In one or more embodiments, the molecular sieve comprises a d6r unit. Without intending to be bound by theory, in one or more embodiments, it is thought that the d6r unit promotes the formation of NO+. Thus, in one or more embodiments, the molecular sieve has a structure type selected from AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof. In other specific embodiments, the molecular sieve has a structure type selected from the group consisting of CHA, AEI, AFX, ERI, KFI, LEV, and combinations thereof. In still further specific embodiments, the molecular sieve has a structure type selected from CHA, AEI, and AFX. In one or more very specific embodiments, the molecular sieve has the CHA structure type.
[00145] Zeolitic chabazite includes a naturally occurring tectosilicate mineral of a zeolite group with approximate formula: (Ca,Na2,K2,Mg)A Si40i2*6H20 (e.g., hydrated calcium aluminum silicate). Three synthetic forms of zeolitic chabazite are described in "Zeolite Molecular Sieves," by D. W. Breck, published in 1973 by John Wiley & Sons, which is hereby incorporated by reference. The three synthetic forms reported by Breck are Zeolite K-G, described in J. Chem. Soc, p. 2822 (1956), Barrer et al; Zeolite D, described in British Patent No. 868,846 (1961); and Zeolite R, described in U.S. Patent No. 3,030,181, which are hereby incorporated by reference. Synthesis of another synthetic form of zeolitic chabazite, SSZ-13, is described in U.S. Pat. No. 4,544,538, which is hereby incorporated by reference. Synthesis of a synthetic form of a molecular sieve having the chabazite crystal structure, silicoaluminophosphate 34 (SAPO-34), is described in U.S. Patent 4,440,871 and No. 7,264,789, which are hereby incorporated by reference. A method of making yet another synthetic molecular sieve having chabazite structure, SAPO-44, is described in U.S. Patent No. 6,162,415, which is hereby incorporated by reference.
[00146] In one or more embodiments, the molecular sieve can include all aluminosilicate, borosilicate, gallosilicate, MeAPSO, and MeAPO compositions. These include, but are not limited to SSZ-13, SSZ-62, natural chabazite, zeolite K-G, Linde D, Linde R, LZ-218, LZ-235. LZ-236, ZK-14, SAPO-34, SAPO-44, SAPO-47, ZYT-6, CuSAPO-34, CuSAPO-44, and CuSAPO-47.
[00147] The ratio of silica to alumina of an aluminosilicate molecular sieve can vary over a wide range. In one or more embodiments, the molecular sieve component has a silica to alumina molar ratio (SAR) in the range of 2 to 300, including 5 to 250; 5 to 200; 5 to 100; and 5 to 50. In one or more specific embodiments, the molecular sieve has a silica to alumina molar ratio (SAR) in the range of 10 to 200, 10 to 100, 10 to 75, 10 to 60, and 10 to 50; 15 to 100, 15 to 75, 15 to 60, and 15 to 50; 20 to 100, 20 to 75, 20 to 60, and 20 to 50. In more specific embodiments, the molecular sieve having any of the immediately preceding SAR ranges, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.0 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00148] Isomorphous substitution of silicon with a tetravalent metal will affect the silica/alumina ratio of the zeolitic framework material. In one or more embodiments, the molecular sieve is isomorphously substituted with a tetravalent metal and has a silica to alumina molar ratio (SAR) in the range of 2 to 300, including 5 to 250; 5 to 200; 5 to 100; and 5 to 50. In one or more specific embodiments, the first and second molecular sieve, independently, have a silica to alumina molar ratio (SAR) in the range of 10 to 200, 10 to 100, 10 to 75, 10 to 60, and 10 to 50; 15 to 100, 15 to 75, 15 to 60, and 15 to 50; 20 to 100, 20 to 75, 20 to 60, and 20 to 50.
[00149] In embodiments where the molecular sieve is isomorphously substituted with a tetravalent metal, the ratio of tetravalent metal to alumina can vary over a very wide range. It is noted that this ratio is an atomic ratio, not a molar ratio. In one or more embodiments, the tetravalent metal to alumina ratio is in the range of 0.0001 to 10000, including 0.0001 to 10000, 0.001 to 1000, and 0.01 to 10. In other embodiments, the tetravalent metal to alumina ratio is in the range of 0.01 to 10, including 0.01 to 10, 0.01 : to 5, 0.01 to 2, and 0.01 to 1. In specific embodiments, the tetravalent metal to alumina ratio is in the range of 0.01 to 2.
[00150] In specific embodiments where the molecular sieve is isomorphously substituted with a tetravalent metal, the tetravalent metal comprises titanium, and the titania to alumina ratio is in the range of 0.0001 to 10000, including 0.0001 to 10000, 0.001 to 1000, and 0.01 to 10. In other embodiments, the titania to alumina ratio is in the range of 0.01 to 10, including 0.01 to 10, 0.01 : to 5, 0.01 to 2, and 0.01 to 1. In specific embodiments, the titania to alumina ratio is in the range of 0.01 to 2.
[00151] The ratio of silica to tetravalent metal can vary over a wide range. It is noted that this ratio is an atomic ratio, not a molar ratio. In one or more embodiments, the silica to tetravalent metal ratio is in the range of 1 to 100, including 1 to 50, 1 to 30, 1 to 25, 1 to 20, 5 to 20, and 10 to 20. In specific embodiments, the silica to tetravalent metal ratio is about 15. In one or more embodiments, the tetravalent metal comprises titanium, and the silica to titania ratio is in the range of 1 to 100, including 1 to 50, 1 to 30, 1 to 25, 1 to 20, 5 to 20, and 10 to 20. In specific embodiments, the silica to titania ratio is about 15.
Promoter Metals:
[00152] The molecular sieve of one or more embodiments may be subsequently ion- exchanged with one or more promoter metals such as iron, copper, cobalt, nickel, cerium or platinum group metals. Synthesis of zeolites and related micro- and mesoporous materials varies according to the structure type of the zeolitic material, but typically involves the combination of several components (e.g. silica, alumina, phosphorous, alkali, organic template etc.) to form a synthesis gel, which is then hydrothermally crystallized to form a final product. The structure directing agent can be in the form of an organic, i.e. tetraethylammonium hydroxide (TEAOH), or inorganic cation, i.e. Na+ or K+. During crystallization, the tetrahedral units organize around the SDA to form the desired framework, and the SDA is often embedded within the pore structure of the zeolite crystals. In one or more embodiments, the crystallization of the molecular sieve can be obtained by means of the addition of structure- directing agents/templates, crystal nuclei or elements. In some instances, the crystallization can be performed at temperatures of less than 100 °C.
[00153] As used herein, "promoted" refers to a component that is intentionally added to the molecular sieve, as opposed to impurities inherent in the molecular sieve. Thus, a promoter is intentionally added to enhance activity of a catalyst compared to a catalyst that does not have promoter intentionally added. In order to promote the SCR of oxides of nitrogen, in one or more embodiments, a suitable metal is exchanged into the molecular sieve. According to one or more embodiments, the molecular sieve is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof. In specific embodiments, the molecular sieve is promoted with Cu, Fe, and combinations thereof.
[00154] The promoter metal content of the molecular sieve, calculated as the oxide, is, in one or more embodiments, at least about 0.1 wt.%, reported on a volatile-free basis. In specific embodiments, the promoter metal comprises Cu, and the Cu content, calculated as CuO is in the range of up to about 10 wt.%, including 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, and 0.1 wt.%, in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In specific embodiments, the Cu content, calculated as CuO, is in the range of about 2 to about 5 wt.%. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00155] For specific molecular sieves having an SAR of 2 to 300, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00156] For specific molecular sieves having an SAR of 5 to 250, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00157] For specific molecular sieves having an SAR of 5 to 200, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00158] For specific molecular sieves having an SAR of 5 to 100, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00159] For specific molecular sieves having an SAR of 5 to 50, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00160] For specific molecular sieves having an SAR of 10 to 250, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00161] For specific molecular sieves having an SAR of 10 to 200, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00162] For specific molecular sieves having an SAR of 10 to 100, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00163] For specific molecular sieves having an SAR of 10 to 75, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00164] For specific molecular sieves having an SAR of 10 to 60, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00165] For specific molecular sieves having an SAR of 10 to 50, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00166] For specific molecular sieves having an SAR of 15 to 100, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00167] For specific molecular sieves having an SAR of 15 to 75, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00168] For specific molecular sieves having an SAR of 15 to 60, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00169] For specific molecular sieves having an SAR of 15 to 50, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00170] For specific molecular sieves having an SAR of 20 to 100, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00171] For specific molecular sieves having an SAR of 20 to 75, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00172] For specific molecular sieves having an SAR of 20 to 60, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00173] For specific molecular sieves having an SAR of 20 to 50, the Cu content may be in the range of 0.1-10 wt.%, or 0.5 to 8 wt.%, or 0.8 to 6 wt.%, or 1 to 4 wt.%, or even 2-3 wt.% in each case based on the total weight of the calcined molecular sieve reported on a volatile free oxide basis. In more specific embodiments, the molecular sieve having this specific combination of SAR and Cu content, the spherical particle of the molecular sieve has a median particle size in the range of about 0.5 to about 5 microns, and more specifically, about 1.2 to about 3.5 microns, and the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm.
[00174] Without intending to be bound by theory, it is thought that when the molecular sieve is isomorphously substituted with a tetravalent metal, the tetravalent metal is embedded into the zeolitic framework as a tetrahedral atom, allowing for close coupling to the active promoter metal center both structurally and electronically. In one or more embodiments, the promoter metal can be ion exchanged into the isomorphously substituted molecular sieve. In specific embodiments, copper is ion exchanged into the isomorphously substituted molecular sieve. The metal can be exchanged after the preparation or manufacture of the isomorphously substituted molecular sieve. Porosity And Particle Shape And Size:
[00175] In one or more embodiments, the catalyst material comprises a spherical particle including an agglomeration of crystals of a molecular sieve. As used herein, the terms "agglomerate" or "agglomeration" refer to a cluster or collection of primary particles, i.e. crystals of molecular sieve.
[00176] In one or more embodiments, the spherical particle has a median particle size in the range of about 0.5 to about 5 microns, including 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4, 4.24, 4.5, 4.75, and 5 microns. The particle size of the spherical particle can be measured by a microscope, and more particularly a scanning electron microscope (SEM). In one or more specific embodiments, the spherical particle has a median particle size in the range of about 1.0 to about 5 microns, including a range of about 1.2 to about 3.5 microns. As used herein, the term "median particle size" refers to the median cross-sectional diameter of the spherical particles. In one or more embodiments, at least 80% of the spherical particles have a median particle size in the range of 0.5 to 2.5 microns.
[00177] In one or more embodiments, the individual crystals of molecular sieve have a crystal size in the range of about 1 to about 250 nm, including 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, and 250 nm. The crystal size of the individual crystals of molecular sieve can be measured by a microscope, and more particularly a scanning electron microscope (SEM). In specific embodiments, the individual crystals of a molecular sieve have a crystal size in the range of about 100 to about 250 nm, or about 100 to about 200 nm. Generally, there are no specific restrictions as far as the shape of the individual crystals of molecular sieve is concerned. In one or more embodiments, the individual crystals of molecular sieve, without limitation, may be cubic, spherical, platelet, needle-like, isometric, octahedral, tetragonal, hexagonal, orthorhombic, trigonal, and the like, or any combination thereof.
[00178] Without intending to be bound by theory, in one or more embodiments, it is thought that the catalyst material has a monodispersed snowball structure. As used herein, a monodispersed snowball refers to an arrangement or collection of a number of individual molecular sieve crystals into a substantially spherical mass. As used herein, the term "monodispersed" means that the individual molecular sieve crystals are uniform and approximately the same size, having a crystal size in the range of about 1 to about 250 nanometers. The monodispersed snowball is similar to individual snow particles forming a snowball. In other embodiments, the catalyst material has a spherical snowball structure, wherein at least 80% of the spherical particle has a median particle size in the range of 0.5 to 2.5 microns.
[00179] In one or more embodiments, the individual crystals of molecular sieve form a microagglomerate, which then forms a macro agglomerated snowball structure. In one or more embodiments, the microagglomerates have a size in the range of less than 1.0 micron, including less than 0.9, less than 0.8, less than 0.7, less than 0.6, less than 0.5, less than 0.4, less than 0.3, less than 0.2, and less than 0.1 micron, and the macroagglomerate spherical snowball has a particle size in the range of about 0.5 to about 5 microns, including about 1.2 to about 3.5 microns. The size of the microagglomerates can be measured by a microscope, and more particularly a scanning electron microscope (SEM).
[00180] In one or more embodiments, the molecular sieve comprises an isomorphously substituted zeolitic framework material wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal. The isomorphously substituted zeolite framework material according to embodiments of the invention may be provided as a washcoat. The isomorphously substituted zeolitic framework material provides a washcoat that is generally very porous. The particle size of the isomorphously substituted zeolitic framework material is generally in the range of 1 to 2 μιη. Additionally, without intending to be bound by theory, it is thought that the presence of the tetravalent metal, specifically titanium, controls the zeolitic crystal such that a mono-dispersed snowball structure results. In other words, the molecular sieve includes an agglomeration of crystals of a molecular sieve that is isomorphously substituted with a tetravelent metal. As is apparent to one of ordinary skill in the art, the particles of the molecular sieve comprising an isomorphously substituted zeolitic framework material are significantly larger than molecular sieves having the CHA structure prepared according to conventional methods known in the art. Such conventionally prepared molecular sieves are known to have a particle size less than about 0.5 μιη.
[00181] The monodispersed snowball structure of one or more embodiments may be more readily understood by the schematic in FIG. 1. Referring to FIG. 1, an exemplary embodiment of a catalyst material is shown. The catalyst material comprises a spherical particle 10 including an agglomeration of molecular sieve crystals 20. The spherical particle 10 has a particle size, Sp, of about 0.5 to about 5 microns, including about 1.2 to about 3.5 microns. The individual crystals 20 of a molecular sieve have a crystal size Sc in the range of about 1 to about 250 nanometers, including about 100 to 250 nm, or 100 to 200 nm. In one or more embodiments, the individual crystals 20 of molecular sieve form a micro agglomerate 30, which then forms the macroagglomerated snowball structure 10. The microagglomerate 30 has a size Sm in the range of less than 1.0 micron and greater than 0 microns.
[00182] As is apparent to one of ordinary skill in the art, the spherical particles of the crystals of molecular sieve are significantly different in structure than molecular sieves having the CHA structure which do not have an agglomerated snowball structure.
[00183] The catalyst material according to embodiments of the invention may be provided in the form of a powder or a sprayed material from separation techniques including decantation, filtration, centrifugation, or spraying.
[00184] In general, the powder or sprayed material can be shaped without any other compounds, e.g. by suitable compacting, to obtain moldings of a desired geometry, e.g. tablets, cylinders, spheres, or the like.
[00185] By way of example, the powder or sprayed material is admixed with or coated by suitable modifiers well known in the art. By way of example, modifiers such as silica, alumina, zeolites or refractory binders (for example a zirconium precursor) may be used. The powder or the sprayed material, optionally after admixing or coating by suitable modifiers, may be formed into a slurry, for example with water, which is deposited upon a suitable refractory carrier, for example, a flow through honeycomb substrate carrier or a wall flow honeycomb substrate carrier.
[00186] The catalyst material according to embodiments of the invention may also be provided in the form of extrudates, pellets, tablets, or particles of any other suitable shape, for use as a packed bed of particulate catalyst, or as shaped pieces such as plates, saddles, tubes, or the like.
SCR Catalyst Composite:
[00187] Governmental regulations mandate the use of NOx reduction technologies for light and heavy-duty vehicles. Selective catalytic reduction (SCR) of NOx using ammonia is an effective and dominant emission control technology for NOx control. In an exemplary embodiment, provided is an SCR catalyst composite having enhanced ammonia storage capacity at temperatures of 400 °C and above, and the capability to promote ammonia storage over water. While the catalyst material of one or more embodiments can be used in any lean burn engine, including diesel engines, lean burn gasoline direct injection engines, and compressed natural gas engines, in specific embodiments, the catalyst materials are to be used in lean burn gasoline direct injection (GDI) engines.
[00188] Embodiments of the invention are directed to a catalyst composite comprising a SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV. The SCR catalyst composite is effective to store ammonia at 400 °C and above with a minimum NH3 storage of 0.1 g/L at 400 °C. In one or more embodiments, the SCR catalyst material promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H20 selectively over a temperature range of 150 °C to 600 °C, and the ammonia storage material is effective to store ammonia at 400° C and above with a minimum NH3 storage of 0.1 g/L at 400 °C. It was surprisingly found that the catalyst composites are particularly suitable in exhaust gas purification catalyst components, in particular as SCR catalysts.
[00189] According to one or more embodiments, a SCR catalyst composite comprises a SCR catalyst material and an ammonia storage material. In one or more embodiments, the SCR catalyst material comprises one or more of a molecular sieve, a mixed oxide, and an activated refractory metal oxide support. [00190] In one or more embodiments, the SCR catalyst material comprises a molecular sieve. According to one or more embodiments, the ammonia storage material comprises transition metal having an oxidation state of IV. Without intending to be bound by theory, it is thought that the presence of an element with a formal oxidation state of IV helps to increase ammonia storage at high temperature. In one or more embodiments, the transition metal having an oxidation state of IV can either be in oxide form, or intrinsically embedded in the SCR catalyst material. As used herein, the term "transition metal having an oxidation state of IV" refers to a metal having a state with four electrons available for covalent chemical bonding in its valence (outermost electron shell). Transition metals having an oxidation state of IV include germanium (Ge), cerium (Ce), and those transition metals located in Group 4 of the periodic table, titanium (Ti), zirconium (Zr), and hafnium (Hf). In one or more embodiments, the transition metal having an oxidation state of IV is selected from Ti, Ce, Zr, Hf, Ge, and combinations thereof. In specific embodiments, the transition metal having an oxidation state of IV comprises Ti.
[00191] One or more embodiments of the present invention are directed to an SCR catalyst composite comprising an SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV, wherein the SCR catalyst material and the ammonia storage material are in a layered arrangement or relationship. In one or more embodiments, the ammonia storage material can be in any flexible form, e.g. layered or uniformly mixed with the SCR catalyst material, and intrinsically implemented within the same SCR catalyst material. According to one or more embodiments, the ammonia storage material is dispersed as a layer on top of the SCR catalyst material. According to one or more embodiments, the SCR catalyst material is washcoated onto a substrate, and then the ammonia storage material is washcoated in a layer overlying the SCR catalyst material.
[00192] In other embodiments, the SCR catalyst material and the ammonia storage material are arranged in a zoned configuration. In one or more embodiments, the SCR catalyst material and the ammonia storage material are arranged in a laterally zoned configuration, with the ammonia storage material upstream from the SCR catalyst material. As used herein, the term "laterally zoned" refers to the location of the SCR catalyst material and the ammonia storage material relative to one another. Lateral means side-by-side such that the SCR catalyst material and the ammonia storage material are located one beside the other with the ammonia storage material upstream of the SCR catalyst material. As used herein, the terms "upstream" and "downstream" refer to relative directions according to the flow of an engine exhaust gas stream from an engine towards a tailpipe, with the engine in an upstream location and the tailpipe and any pollution abatement articles such as filters and catalysts being downstream from the engine. According to one or more embodiments, the laterally zoned ammonia storage material and SCR catalyst material can be arranged on the same or a common substrate or on different substrates separated from each other.
[00193] In still further embodiments, the SCR catalyst material is ion-exchanged with the ammonia storage material.
[00194] In one or more embodiments, when in a layered or zoned arrangement, the transition metal having an oxidation state of IV can be present in an oxide form, can be ion- exchanged, or can be isomorphously substituted at a zeolitic framework position. For example, in specific embodiments, the transition metal having an oxidation state of IV comprises titanium. In such embodiments where the transition metal having an oxidation state of IV is present in the oxide form, the ammonia storage material comprising a transition metal having an oxidation state of IV is dispersed over a support material.
[00195] Referring to FIG. 2, an exemplary embodiment of a laterally zoned system is shown. The SCR catalyst composite 200 is shown in a laterally zoned arrangement where the ammonia storage material 210 is located upstream of the SCR catalyst material 220 on a common substrate 230. The substrate 230 has an inlet end 240 and an outlet end 250 defining an axial length L. In one or more embodiments, the substrate 230 generally comprises a plurality of channels 260 of a honeycomb substrate, of which only one channel is shown in cross-section for clarity. The ammonia storage material 210 extends from the inlet end 240 of the substrate 230 through less than the entire axial length L of the substrate 230. The length of the ammonia storage material 210 is denoted as first zone 210a in FIG. 2. The ammonia storage material 210 comprises a transition metal having an oxidation state of IV. The SCR catalyst material 220 extends from the outlet end 250 of the substrate 230 through less than the entire axial length L of the substrate 230. The length of the SCR catalyst material 220 is denoted as the second zone 220a in FIG. 2. The SCR catalyst material 220 promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H20 selectively over a temperature range of 150 °C to 600 °C, and the ammonia storage material 210 is effective to store ammonia at 400° C and above with a minimum NH3 storage of 0.00001 g/L. [00196] It will be appreciated that the length of the first zone 210a and the second zone 220a can be varied. In one or more embodiments, the first zone 210a and second zone 220a can be equal in length. In other embodiments, the first zone can be 20%, 25%, 35% or 40%, 60%, 65%), 75%) or 80%> of the length L of the substrate, with the second zone respectively covering the remainder of the length L of the substrate.
[00197] Referring to FIG. 3, another embodiment of a laterally zoned SCR catalyst composite 110 is shown. The SCR catalyst composite 110 shown is a laterally zoned arrangement where the ammonia storage material 118 is located upstream of the SCR catalyst material 120 on separate substrates 112 and 113. The ammonia storage material 118 is disposed on a substrate 112, and the SCR catalyst material is disposed on a separate substrate 113. The substrates 112 and 113 can be comprised of the same material or a different material. The substrate 112 has an inlet end 122a and an outlet end 124a defining an axial length LI . The substrate 113 has an inlet end 122b and an outlet end 124b defining an axial length L2. In one or more embodiments, the substrates 112 and 113 generally comprise a plurality of channels 114 of a honeycomb substrate, of which only one channel is shown in cross-section for clarity. The ammonia storage material 118 extends from the inlet end 122a of the substrate 112 through the entire axial length LI of the substrate 112 to the outlet end 124a. The length of the ammonia storage material 118 is denoted as first zone 118a in FIG. 3. The ammonia storage material 118 comprises a transition metal having an oxidation state of IV. The SCR catalyst material 120 extends from the outlet end 124b of the substrate 113 through the entire axial length L2 of the substrate 113 to the inlet end 122b. The SCR catalyst material 120 defines a second zone 120a. The length of the SCR catalyst material is denoted as the second zone 20b in FIG. 3. The SCR catalyst material 120 promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H20 selectively over a temperature range of 150 °C to 600 °C, and the ammonia storage material 118 is effective to store ammonia at 400° C and above with a minimum NH3 storage of 0.00001 g/L. The length of the zones 118a and 120a can be varied as described with respect to FIG. 2.
[00198] In one or more embodiments, the SCR catalyst composite, comprising the ammonia storage material and the SCR catalyst material, is coated on a flow through or wall-flow filter. FIGS. 4A and 4B illustrate a wall flow filter substrate 35 which has a plurality of passages 52. The passages are tubularly enclosed by the internal walls 53 of the filter substrate. The substrate has an inlet end 54 and an outlet end 56. Alternate passages are plugged at the inlet end with inlet plugs 58, and at the outlet end with outlet plugs 60 to form opposing checkerboard patterns at the inlet 54 and outlet 56. A gas stream 62 enters through the unplugged channel inlet 64, is stopped by outlet plug 60 and diffuses through channel walls 53 (which are porous) to the outlet side 66. The gas cannot pass back to the inlet side of walls because of inlet plugs 58.
[00199] In one or more embodiments, wall flow filter substrates are composed of ceramic- like materials such as cordierite, a-alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica-magnesia or zirconium silicate, or of porous, refractory metal. In other embodiments, wall flow substrates are formed of ceramic fiber composite materials. In specific embodiments, wall flow substrates are formed from cordierite and silicon carbide. Such materials are able to withstand the environment, particularly high temperatures, encountered in treating the exhaust streams.
[00200] In one or more embodiments, wall flow substrates include thin porous walled honeycombs monoliths through which the fluid stream passes without causing too great an increase in back pressure or pressure across the article. Normally, the presence of a clean wall flow article will create a back pressure of 1 inch water column to 10 psig. Ceramic wall flow substrates used in the system are formed of a material having a porosity of at least 50% (e.g., from 50 to 75%) having a mean pore size of at least 5 microns (e.g., from 5 to 30 microns). In one or more embodiments, the substrates have a porosity of at least 55% and have a mean pore size of at least 10 microns. When substrates with these porosities and these mean pore sizes are coated with the techniques described below, adequate levels of catalyst compositions can be loaded onto the substrates to achieve excellent NOx conversion efficiency. These substrates are still able to retain adequate exhaust flow characteristics, i.e., acceptable back pressures, despite the SCR catalyst loading. United States Patent No. 4,329,162 is herein incorporated by reference with respect to the disclosure of suitable wall flow substrates.
[00201] Typical wall flow filters in commercial use are formed with lower wall porosities, e.g., from about 35% to 50%, than the wall flow filters utilized in the invention. In general, the pore size distribution of commercial wall flow filters is typically very broad with a mean pore size smaller than 17 microns.
[00202] The porous wall flow filter used in one or more embodiments is catalyzed in that the wall of said element has thereon or contained therein one or more SCR catalytic materials. Catalytic materials may be present on the inlet side of the element wall alone, the outlet side alone, both the inlet and outlet sides, or the wall itself may consist all, or in part, of the catalytic material. This invention includes the use of one or more layers of catalytic materials and combinations of one or more layers of catalytic materials on the inlet and/or outlet walls of the element.
[00203] To coat the wall flow substrates with the SCR catalyst composite of one or more embodiments, the substrates are immersed vertically in a portion of the catalyst slurry such that the top of the substrate is located just above the surface of the slurry. In this manner slurry contacts the inlet face of each honeycomb wall, but is prevented from contacting the outlet face of each wall. The sample is left in the slurry for about 30 seconds. The substrate is removed from the slurry, and excess slurry is removed from the wall flow substrate first by allowing it to drain from the channels, then by blowing with compressed air (against the direction of slurry penetration ), and then by pulling a vacuum from the direction of slurry penetration. By using this technique, the catalyst slurry permeates the walls of the substrate, yet the pores are not occluded to the extent that undue back pressure will build up in the finished substrate. As used herein, the term "permeate" when used to describe the dispersion of the catalyst slurry on the substrate, means that the catalyst composition is dispersed throughout the wall of the substrate.
[00204] The coated substrates are dried typically at about 100 °C and calcined at a higher temperature (e.g., 300 to 450 °C). After calcining, the catalyst loading can be determined through calculation of the coated and uncoated weights of the substrate. As will be apparent to those of skill in the art, the catalyst loading can be modified by altering the solids content of the coating slurry. Alternatively, repeated immersions of the substrate in the coating slurry can be conducted, followed by removal of the excess slurry as described above.
[00205] According to one or more embodiments, the ammonia storage material of the SCR catalyst composite is dispersed within the SCR catalyst material. Thus, according to embodiments of the invention, the SCR catalyst material comprises a molecular sieve having a framework of silicon (Si) and aluminum (Al) ions, and, optionally phosphorus (P) ions, wherein a fraction of the silicon atoms are isomorphously substituted with the ammonia storage material which comprises a transition metal having an oxidation state of IV.
[00206] In one or more embodiments, an ammonia oxidation (AMOx) catalyst may be provided downstream of the SCR catalyst composite to remove any slipped ammonia from the exhaust gas treatment system. In specific embodiments, the AMOx catalyst may comprise a platinum group metal such as platinum, palladium, rhodium, or combinations thereof. [00207] AMOx and/or SCR catalyst material(s) can be coated on the flow through or wall- flow filter. If a wall flow substrate is utilized, the resulting system will be able to remove particulate matter along with gaseous pollutants. The wall-flow filter substrate can be made from materials commonly known in the art, such as cordierite, aluminum titanate or silicon carbide. It will be understood that the loading of the catalytic composition on a wall flow substrate will depend on substrate properties such as porosity and wall thickness, and typically will be lower than loading on a flow through substrate.
[00208] In one or more embodiments, a fraction of the silicon atoms are isomorphously substituted with a transition metal having an oxidation state of IV. In other words, a fraction of the silicon atoms in the zeolitic framework material are being replaced with a transition metal having an oxidation state of IV. Such isomorophous substitution does not significantly alter the crystal structure of the zeolitic framework material.
[00209] Typically, NH3 storage over zeolite SCR catalysts needs to be suppressed in order to gain faster NOx conversion response for the highly dynamic engine operations. Without intending to be bound by theory, it is thought that with the SCR catalysts of the prior art, it is impossible to achieve the required high temperature NH3 storage by relying on the weak NH3 physisorption in the porosity of zeolites, or the Bronsted acidity of unused exchange sites due to the presence of relatively high amounts of competing water vapor.
[00210] Therefore, it is necessary to implement a secondary functional site, i.e., utilization of Lewis acidity, which is capable of performing high temperature NH3 storage and which is capable of differentiating NH3 and H20 for storage. It is thought that because NH3, by nature, is nucleophilic (or, more generally, basic), Lewis acidity can provide an additional route for NH3 storage. Accordingly, transition metals with different oxidation states can provide tunable strength of Lewis acidity. In general, the higher the oxidation state of the transition metal, the stronger Lewis acidity is expected. Thus, it is believed that a transition metal having an oxidation state of IV will produce catalyst materials where NH3 can be stored at higher temperatures.
[00211] In one or more embodiments, the SCR catalyst material comprises a molecular sieve which comprises S1O4/AIO4 tetrahedra. In one or more embodiments, the SCR catalyst material is isomorphously substituted with the ammonia storage material. In such embodiments, the SCR catalyst material comprises MO4/S1O4/AIO4 tetrahedra (where M is a transition metal having an oxidation state of IV) and is linked by common oxygen atoms to form a three-dimensional network. The isomorphously substituted transition metal having an oxidation state of IV is embedded into the molecular sieve as a tetrahedral atom (M04). The isomorphously substituted tetrahedron units together with the silicon and aluminum tetrahedron units then form the framework of the molecular sieve. In specific embodiments, the transition metal having an oxidation state of IV comprises titanium, and the SCR catalyst material then includes TiCVSiCVAlC^ tetrahedra.
[00212] In other embodiments, the SCR catalyst material comprises a molecular sieve which comprises S1O4/AIO4/PO4 tetrahedra. In one or more embodiments, the SCR catalyst material is isomorphously substituted with the ammonia storage material. In such embodiments, the SCR catalyst material comprises MO4/S1O4/AIO4/PO4 tetrahedra (where M is a transition metal having an oxidation state of IV) and is linked by common oxygen atoms to form a three- dimensional network. The isomorphously substituted transition metal having an oxidation state of rV is embedded into the molecular sieve as a tetrahedral atom (MO4). The isomorphously substituted tetrahedron units together with the silicon, aluminum, and phosphorus tetrahedron units then form the framework of the molecular sieve. In specific embodiments, the transition metal having an oxidation state of IV comprises titanium, and the SCR catalyst material then includes TiCVSiCVAlCVPC tetrahedra.
[00213] The isomorphously substituted molecular sieve of one or more embodiments is differentiated mainly according to the geometry of the voids which are formed by the rigid network of the M04/(Si04)/A104 tetrahedra (where M is a transition metal having an oxidation state of IV).
[00214] In one or more embodiments, the molecular sieve of the SCR catalyst material has a structure-type selected from any of those previously discussed. In one or more specific embodiments, the molecular sieve has a structure type selected from MFI, BEA, AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof. In other specific embodiments, the molecular material has a structure type selected from the group consisting of MFI, BEA, CHA, AEI, AFX, ERI, KFI, LEV, and combinations thereof. In very specific embodiments, the molecular sieve has a structure type selected from CHA, AEI, and AFX. In very specific embodiments, the molecular sieve comprises SSZ-13, SSZ-39, or SAPO-34. In another very specific embodiment, the molecular sieve is an aluminosilicate zeolite type and has the AEI structure type, for example, SSZ-39. According to one or more embodiments, it will be appreciated that by defining the molecular sieves by their structure type, it is intended to include the structure type and any and all isotypic framework materials such as SAPO, A1PO and MeAPO materials having the same structure type.
[00215] The ratio of silica to alumina of a molecular sieve can vary over a wide range. In one or more embodiments, the molecular sieve has a silica to alumina molar ratio (SAR) in the range of 2 to 300, including 5 to 250; 5 to 200; 5 to 100; and 5 to 50. In one or more specific embodiments, the molecular sieve has a silica to alumina molar ratio (SAR) in the range of 10 to 200, 10 to 100, 10 to 75, 10 to 60, and 10 to 50; 15 to 100, 15 to 75, 15 to 60, and 15 to 50; 20 to 100, 20 to 75, 20 to 60, and 20 to 50.
[00216] The ratio of transition metal having an oxidation state of IV to alumina can vary over a very wide range. In one or more embodiments, the transition metal having an oxidation state of IV to alumina ratio is in the range of 0.001 to 10000, including 0.001 : 10000, 0.001 to 1000, 0.01 to 10. In other embodiments, the transition metal having an oxidation state of IV to alumina ratio is in the range of 0.01 to 10, including 0.01 to 10, 0.01 : to 5, 0.01 to 2, and 0.01 to 1. In specific embodiments, the transition metal having an oxidation state of IV to alumina ratio is in the range of 0.01 to 2.
[00217] In specific embodiments, the transition metal having an oxidation state of IV comprises titanium, and the titania to alumina ratio is in the range of 0.001 to 10000, including 0.001 : 10000, 0.001 to 1000, 0.01 to 10. In other embodiments, the titania to alumina ratio is in the range of 0.01 to 10, including 0.01 to 10, 0.01 : to 5, 0.01 to 2, and 0.01 to 1. In specific embodiments, the titania to alumina ratio is in the range of 0.01 to 2. In very specific embodiments, the titania to alumina ratio is about 1.
[00218] The ratio of silica to transition metal having an oxidation state of IV can vary over a wide range. It is noted that this ratio is an atomic ratio, not a molar ratio. In one or more embodiments, the silica to transition metal having an oxidation state of IV ratio is in the range of 1 to 100, including 1 to 50, 1 to 30, 1 to 25, 1 to 20, 5 to 20, and 10 to 20. In specific embodiments, the silica to transition metal having an oxidation state of IV ratio is about 15. In one or more embodiments, the transition metal having an oxidation state of IV comprises titanium, and the silica to titania ratio is in the range of 1 to 100, including 1 to 50, 1 to 30, 1 to 25, 1 to 20, 5 to 20, and 10 to 20. In specific embodiments, the silica to titania ratio is about 15. [00219] In order to promote the SCR of oxides of nitrogen, in one or more embodiments, a suitable metal is exchanged into the SCR catalyst material. According to one or more embodiments, the SCR catalyst material is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof. In specific embodiments, the SCR catalyst material is promoted with Cu, Fe, and combinations thereof.
[00220] The promoter metal content of the SCR catalyst material, calculated as the oxide, is, in one or more embodiments, at least about 0.1 wt%, reported on a volatile-free basis. In specific embodiments, the promoter metal comprises Cu, and the Cu content, calculated as CuO is in the range of up to about 10 wt%, including 9, 8, 7, 6, 5, 4, 3, 2,and 1 wt %, in each case based on the total weight of the calcined SCR catalyst material reported on a volatile free basis. In specific embodiments, the Cu content, calculated as CuO, is in the range of about 2 to about 5 wt%.
[00221] Without intending to be bound by theory, it is thought that when the SCR catalyst material is isomorphously substituted with the ammonia storage material comprising a transition metal having an oxidation state of IV, the transition metal having an oxidation state of IV is embedded into the molecular sieve framework as a tetrahedral atom, allowing for close coupling to the active promoter metal center both structurally and electronically. In one or more embodiments, the promoter metal can be ion exchanged into the SCR catalyst material. In specific embodiments, copper is ion exchanged into the SCR catalyst material. The metal can be exchanged after the preparation or manufacture of the SCR catalyst material.
[00222] According to one or more embodiments, the SCR catalyst material comprises a mixed oxide. As used herein, the term "mixed oxide" refers to an oxide that contains cations of more than one chemical element or cations of a single element in several states of oxidation. In one or more embodiments, the mixed oxide is selected from Fe/titania (e.g. FeTi03), Fe/alumina (e.g. FeAl203), Mg/titania (e.g. MgTi03), Mg/alumina (e.g. MgAl203), Mn/alumina, Mn/titania (e.g. MnOx/Ti02) (e.g. MnOx/Al20 ), Cu/titania (e.g. CuTi0 ), Ce/Zr (e.g. CeZr02), Ti/Zr (e.g. TiZr02), vanadia/titania (e.g. V2O5/T1O2), and mixtures thereof. In specific embodiments, the mixed oxide comprises vanadia/titania. The vanadia/titania oxide can be activated or stabilized with tungsten (e.g. WO3) to provide V2O5/T1O2/ WO3. In one or more embodiments, the SCR catalyst material comprises titania on to which vanadia has been dispersed. The vanadia can be dispersed at concentrations ranging from 1 to 10 wt%, including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10wt%. In specific embodiments the vanadia is activated or stabilized by tungsten (W03). The tungsten can be dispersed at concentrations ranging from 0.5 to 10 wt%, including 1, 2, 3, 3. 4, 5, 6, 7, 8, 9, and 10 wt%. All percentages are on an oxide basis.
[00223] According to one or more embodiments, the SCR catalyst material comprises a refractory metal oxide support material. As used herein, the terms "refractory metal oxide support" and "support" refer to the underlying high surface area material upon which additional chemical compounds or elements are carried. The support particles have pores larger than 20 A and a wide pore distribution. As defined herein, such metal oxide supports exclude molecular sieves, specifically, zeolites. In particular embodiments, high surface area refractory metal oxide supports can be utilized, e.g., alumina support materials, also referred to as "gamma alumina" or "activated alumina," which typically exhibit a BET surface area in excess of 60 square meters per gram ("m2/g"), often up to about 200 m2/g or higher. Such activated alumina is usually a mixture of the gamma and delta phases of alumina, but may also contain substantial amounts of eta, kappa and theta alumina phases. Refractory metal oxides other than activated alumina can be used as a support for at least some of the catalytic components in a given catalyst. For example, bulk ceria, zirconia, alpha alumina and other materials are known for such use. Although many of these materials suffer from the disadvantage of having a considerably lower BEI surface area than activated alumina, that disadvantage tends to be offset by a greater durability or performance enhancement of the resulting catalyst. "BET surface area" has its usual meaning of referring to the Brunauer, Emmett, Teller method for determining surface area by N2 adsorption. Pore diameter and pore volume can also be determined using BET-type N2 adsorption or desorption experiments.
[00224] One or more embodiments of the present invention include a high surface area refractory metal oxide support comprising an activated compound selected from the group consisting of alumina, ceria, zirconia, silica, titania, silica-alumina, zirconia-alumina, titania- alumina, lanthana-alumina, lanthana-zirconia-alumina, baria-alumina, baria-lanthana-alumina, baria-lanthana-neodymia-alumina, alumina-chromia, alumina-ceria, zirconia-silica, titania- silica, or zirconia-titania, and combinations thereof. In one or more embodiments, the activated refractory metal oxide support is exchanged with a metal selected from the group consisting of Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
SCR Activity: [00225] In one or more embodiments, the selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve exhibits an aged NOx conversion at 200 °C of at least 50% measured at a gas hourly space velocity of 80000 h"1. In specific embodiments the catalyst exhibits an aged NOx conversion at 450 °C of at least 70% measured at a gas hourly space velocity of 80000 h"1. More specifically the aged NOx conversion at 200 °C is at least 55% and at 450 °C at least 75%, even more specifically the aged NOx conversion at 200 °C is at least 60%> and at 450 °C at least 80%>, measured at a gas hourly volume-based space velocity of 80000 h"1 under steady state conditions at maximum NH3-slip conditions in a gas mixture of 500 ppm NO, 500 ppm N¾, 10%> 02, 5%> H20, balance N2. The cores were hydrothermally aged in a tube furnace in a gas flow containing 10% H20, 10% 02, balance N2 at a space velocity of 4,000 h 1 for 5h at 750 °C.
[00226] The SCR activity measurement has been demonstrated in the literature, see, for example PCT Application Publication No. WO 2008/106519.
[00227] Furthermore, according to one or more embodiments, the catalyst material is effective to lower N2O make.
Formation of NO+ and Ammonia Storage:
[00228] Additionally, according to one or more embodiments, particularly when the molecular sieve comprises an isomorphously substituted zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal, the material is effective to promote the formation of NO+. Without intending to be bound by theory, it is thought that the d6r unit of the zeolitic framework material is an important factor in facilitating NO+ formation due to the fact that the d6r unit promotes short-range promoter metal (e.g. Cu) migration/hopping between the two six-member ring mirror planes to generate suitable vacant positions for NO+, which requires a stabilizing coordination environment also provided by the d6r unit.
[00229] Furthermore, according to one or more embodiments, particularly when the SCR catalyst composite comprises a SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV, the SCR catalyst material promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H2O selectively over a temperature range of 150 °C to 600°C, and the ammonia storage material is effective to store ammonia at temperatures of about 400 °C and above with a minimum ammonia storage of 0.00001 g/L. In one or more embodiments, the oxygen content of the exhaust gas stream is from 0 to 30% and the water content is from 1 to 20%. The SCR catalyst composite according to one or more embodiments adsorbs NH3 even in the presence of H20. The SCR catalyst composites of one or more embodiments show more pronounced high temperature ammonia storage capacity than reference SCR catalyst materials and catalyst composites.
[00230] Water, also carrying electron lone pairs as a nucleophile, is the biggest competitor towards ammonia storage with Bronsted acid sites. In order to be efficiently utilized by the NOx generated in the lean cycle of lean GDI engines, it is important to increase the chemically adsorbed NH3 amount, rather than the physically adsorbed NH3 amount. Without intending to be bound by theory, it is thought that the Lewis acidity of a transition metal having an oxidation state of IV increases the capability of the SCR catalyst composite to chemically adsorb ammonia. Thus, the SCR catalyst composites according to one or more embodiments have improved ammonia storage capability at temperatures of about 400 °C and above. The Substrate:
[00231] In one or more embodiments, the catalyst materials can be applied to a substrate as a washcoat. As used herein, the term "substrate" refers to the monolithic material onto which the catalyst is placed, typically in the form of a washcoat. A washcoat is formed by preparing a slurry containing a specified solids content (e.g., 30-90%) by weight) of catalyst in a liquid vehicle, which is then coated onto a substrate and dried to provide a washcoat layer.
[00232] As used herein, the term "washcoat" has its usual meaning in the art of a thin, adherent coating of a catalytic or other material applied to a substrate material, such as a honeycomb-type carrier member, which is sufficiently porous to permit the passage of the gas stream being treated.
[00233] In one or more embodiments, the substrate is a ceramic or metal having a honeycomb structure. Any suitable substrate may be employed, such as a monolithic substrate of the type having fine, parallel gas flow passages extending there through from an inlet or an outlet face of the substrate such that passages are open to fluid flow there through. The passages, which are essentially straight paths from their fluid inlet to their fluid outlet, are defined by walls on which the catalytic material is coated as a washcoat so that the gases flowing through the passages contact the catalytic material. The flow passages of the monolithic substrate are thin-walled channels, which can be of any suitable cross-sectional shape and size such as trapezoidal, rectangular, square, sinusoidal, hexagonal, oval, circular, etc. Such structures may contain from about 60 to about 900 or more gas inlet openings (i.e. cells) per square inch of cross section.
[00234] The ceramic substrate may be made of any suitable refractory material, e.g. cordierite, cordierite-a-alumina, silicon nitride, zircon mullite, spodumene, alumina-silica- magnesia, zircon silicate, sillimanite, a magnesium silicate, zircon, petalite, a-alumina, an aluminosilicate and the like.
[00235] The substrates useful for the catalyst of embodiments of the present invention may also be metallic in nature and be composed of one or more metals or metal alloys. The metallic substrates may be employed in various shapes such as pellets, corrugated sheet or monolithic form. Specific examples of metallic substrates include the heat-resistant, base- metal alloys, especially those in which iron is a substantial or major component. Such alloys may contain one or more of nickel, chromium, and aluminum, and the total of these metals may advantageously comprise at least about 15 wt. % of the alloy, for instance, about 10 to 25 wt. % chromium, about 1 to 8 wt. % of aluminum, and about 0 to 20 wt. % of nickel.
Preparation of Catalyst and Catalyst Materials:
Synthesis of Conventional CHA-type Molecular Sieves
[00236] A molecular sieve having the CHA structure may be prepared according to various techniques known in the art, for example United States Patent Nos. 4,544,538 (Zones) and 6,709,644 (Zones), which are herein incorporated by reference in their entireties.
Optionally NH4-exchange to form NH4-Chabazite:
[00237] Optionally, the obtained alkali metal zeolite is NH4-exchanged to form NH4- Chabazite. The NH4- ion exchange can be carried out according to various techniques known in the art, for example Bleken, F.; Bjorgen, M.; Palumbo, L.; Bordiga, S.; Svelle, S.; Lillerud, K.-P.; and Olsbye, U. Topics in Catalysis 52, (2009), 218-228.
Synthesis of Snowball Molecular Sieves
[00238] A molecular sieve having a snowball-type morphology water can be prepared from adamantyltrimethylammonium hydroxide (ADAOH), aqueous sodium hydroxide, aluminum isopropoxide powder, and colloidal silica.
Synthesis of Isomorphously Substituted Zeolitic Framework Materials [00239] According to one or more embodiments, methods for the synthesis of selective catalytic reduction catalyst materials comprising an isomorphously substituted zeolitic framework material are provided. Particularly, the catalyst material comprises a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal.
[00240] Generally, the sodium form of the isomorphously substituted zeolitic framework material can be prepared from a 0.03Al2O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H2O gel composition through autoclave hydrothermal synthesis. The product is recovered by filtration, and the template is removed by calcination. The final crystalline material can be characterized by x-ray diffraction studies.
[00241] The H-form can be prepared by calcination of the ammonia form, which is obtained through double NH4NO3 exchanges with the sodium form. The Ti level is unchanged/stable through the NH4NO3 exchange processes.
[00242] The copper promoted isomorphously substituted zeolitic framework can be prepared by ion exchange using the H-form and Cu(OAc)2 to achieve the desired amount of promoter metal.
Synthesis of Isomorphously Substituted Molecular Sieves
[00243] According to one or more embodiments, methods for the synthesis of SCR catalyst composites comprising an SCR catalyst material comprising a molecular sieve isomorphously substituted with an ammonia storage material comprising a transition metal having an oxidation state of IV are provided. Particularly, the SCR catalyst composite comprises an SCR catalyst material having a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with the transition metal having an oxidation state of IV of the ammonia storage material.
[00244] Generally, the sodium form of the isomorphously substituted molecular sieve can be prepared from a 0.03Al2O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H2O gel composition through autoclave hydrothermal synthesis. The product is recovered by filtration, and the template is removed by calcination. The final crystalline material can be characterized by x-ray diffraction studies.
[00245] The H-form can be prepared by calcination of the ammonia form, which is obtained through double NH4NO3 exchanges with the sodium form. The Ti level is unchanged/stable through the NH4NO3 exchange processes. [00246] The copper promoted isomorphously substituted molecular sieve can be prepared by ion exchange using the H-form and Cu(OAc)2 to achieve the desired amount of promoter metal. Method of Reducing NOx and Exhaust Gas Treatment System:
[00247] In general, the zeolitic materials that are described above can be used as a molecular sieve, adsorbent, catalyst, catalyst support, or binder thereof. In one or more embodiments, the materials are used as a catalyst.
[00248] An additional aspect of the invention is directed to a method of catalyzing a chemical reaction wherein the spherical particle including an agglomeration of crystals of a molecular sieve according to embodiments of the invention is employed as catalytically active material.
[00249] Another aspect of the invention is directed to a method of catalyzing a chemical reaction wherein the zeolitic framework material that is isomorphously substituted with a tetravalent metal according to embodiments of the invention is employed as catalytically active material.
[00250] A further aspect of the invention is directed to a method of catalyzing a chemical reaction wherein the SCR catalyst composite that comprises an SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV according to embodiments of the invention is employed as catalytically active material.
[00251] Among others, said catalyst materials and catalyst composites may be employed as catalysts for the selective reduction (SCR) of nitrogen oxides (NOx); for the oxidation of NH3, in particular for the oxidation of NH3 slip in diesel systems; for applications in oxidation reactions, in specific embodiments an additional precious metal component (e.g. Pd, Pt) is added to the spherical particle including an agglomeration of crystals of a molecular sieve.
[00252] One or more embodiments provide a method of selectively reducing nitrogen oxides (NOx). In one or more embodiments, the method comprises contacting an exhaust gas stream containing NOx with the catalyst materials or the catalyst composites of one or more embodiments. In particular, the selective reduction of nitrogen oxides wherein the selective catalytic reduction catalyst material comprises a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns, of embodiments of the invention is employed as catalytically active material is carried out in the presence of ammonia or urea. [00253] While ammonia is the reducing agent of choice for stationary power plants, urea is the reducing agent of choice for mobile SCR systems. Typically, the SCR system is integrated in the exhaust gas treatment system of a vehicle and, also typically, contains the following main components: selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns according to embodiments of the invention; a urea storage tank; a urea pump; a urea dosing system; a urea injector/nozzle; and a respective control unit.
[00254] In other embodiments, the SCR catalyst composite according to one or more embodiments is employed as an SCR catalyst in an exhaust gas treatment system for lean-burn gasoline direct injection engines. In such cases, the SCR catalyst composite according to one or more embodiments serves as a passive ammonia-SCR catalyst and is able to store ammonia effectively at temperatures of 400 °C and above.
[00255] As used herein, the term "stream" broadly refers to any combination of flowing gas that may contain solid or liquid particulate matter. The term "gaseous stream" or "exhaust gas stream" means a stream of gaseous constituents, such as the exhaust of a lean burn engine, which may contain entrained non-gaseous components such as liquid droplets, solid particulates, and the like. The exhaust gas stream of a lean burn engine typically further comprises combustion products, products of incomplete combustion, oxides of nitrogen, combustible and/or carbonaceous particulate matter (soot), and un-reacted oxygen and nitrogen.
[00256] The term nitrogen oxides, NOx, as used in the context of embodiments of the invention designates the oxides of nitrogen, especially dinitrogen oxide (N20), nitrogen monoxide (NO), dinitrogen trioxide (N2O3), nitrogen dioxide (NO2), dinitrogen tetroxide (N2O4), dinitrogen pentoxide (N2O5), nitrogen peroxide (NO3).
[00257] A further aspect of the invention is directed to an exhaust gas treatment system. In one or more embodiments, the exhaust gas treatment system comprises an exhaust gas stream optionally containing a reductant like ammonia, urea, and/or hydrocarbon, and in specific embodiments, ammonia and/or urea, and a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in the range of about 0.5 to about 5 microns. The catalyst material is effective for destroying at least a portion of the ammonia in the exhaust gas stream.
[00258] In one or more embodiments, the SCR catalyst material can be disposed on a substrate, for example a soot filter. The soot filter, catalyzed or non-catalyzed, may be upstream or downstream of the SCR catalyst material. In one or more embodiments, the system can further comprise a diesel oxidation catalyst. In specific embodiments, the diesel oxidation catalyst is located upstream of the SCR catalyst material. In other specific embodiments, the diesel oxidation catalyst and the catalyzed soot filter are upstream from the SCR catalyst material.
[00259] In specific embodiments, the exhaust is conveyed from the engine to a position downstream in the exhaust system, and in more specific embodiments, containing NOx, where a reductant is added and the exhaust stream with the added reductant is conveyed to the SCR catalyst material.
[00260] For example, a catalyzed soot filter, a diesel oxidation catalyst, and a reductant are described in WO 2008/106519, which is herein incorporated by reference. In specific embodiments, the soot filter comprises a wall-flow filter substrate, where the channels are alternately blocked, allowing a gaseous stream entering the channels from one direction (inlet direction), to flow through the channel walls and exit from the channels from the other direction (outlet direction).
[00261] An ammonia oxidation (AMOx) catalyst may be provided downstream of the SCR catalyst material or catalyst composite of one or more embodiments to remove any slipped ammonia from the system. In specific embodiments, the AMOx catalyst may comprise a platinum group metal such as platinum, palladium, rhodium, or combinations thereof.
[00262] Such AMOx catalysts are useful in exhaust gas treatment systems including an SCR catalyst. As discussed in commonly assigned United States Patent No. 5,516,497, the entire content of which is incorporated herein by reference, a gaseous stream containing oxygen, nitrogen oxides, and ammonia can be sequentially passed through first and second catalysts, the first catalyst favoring reduction of nitrogen oxides and the second catalyst favoring the oxidation or other decomposition of excess ammonia. As described in United States Patent No. 5,516,497, the first catalysts can be a SCR catalyst comprising a zeolite and the second catalyst can be an AMOx catalyst comprising a zeolite. [00263] AMOx and/or SCR catalyst composition(s) can be coated on the flow through or wall-flow filter. If a wall flow substrate is utilized, the resulting system will be able to remove particulate matter along with gaseous pollutants. The wall-flow filter substrate can be made from materials commonly known in the art, such as cordierite, aluminum titanate or silicon carbide. It will be understood that the loading of the catalytic composition on a wall flow substrate will depend on substrate properties such as porosity and wall thickness, and typically will be lower than loading on a flow through substrate.
[00264] The invention is now described with reference to the following examples. Before describing several exemplary embodiments of the invention, it is to be understood that the invention is not limited to the details of construction or process steps set forth in the following description. The invention is capable of other embodiments and of being practiced or being carried out in various ways.
EXAMPLES
[00265] COMPARATIVE EXAMPLE 1 - Preparation Of Catalyst Compositions And Articles
[00266] A CuCHA powder catalyst was prepared by crystallization of chabazite using ADAOH (Trimethyl-l-adamantyl ammonium hydroxide) containing synthesis gel, separation of the chabazite product, drying and calcination to remove organic template (ADAOH). Water, ADAOH solution, and aqueous sodium hydroxide were added into the makedown tank and mixed for several minutes. An aluminum source was then added in 3-5 minutes. Colloidal silica was then added with stirring in 5 minutes. Mixing was continued for an additional 30 minutes, resulting in a viscous gel of uniform composition. The gel was transferred to the autoclave. The autoclave was heated to 170 °C, and crystallization was continued for 18 hours while maintaining agitation. The reactor was cooled to <50 °C and vented to atmospheric pressure prior to unloading. After hydrothermal crystallization, the resultant suspension had a pH of 11.5. The suspension was admixed with deionized water and was filtrated with a procelain suction filter. The wet product was then heated to a temperature of 120 °C in air for 4 hrs. The dried product was then further calcined in air at 600 °C for 5 hrs to remove the template and ensure a C content less than 0.1 wt.%. [00267] As can been observed in the SEM image of the crystal morphology in FIG. 5, the as-synthesized material (Comparative Example 1) does not have an agglomerated morphology, as identified by SEM analysis (secondary electron imaging) at a scale of 5000x.
[00268] The calcined product was then ready to be ion-exchanged with Cu to obtain the metal-containing catalyst.
[00269] An ion-exchange reaction between the Na-form CHA and the copper ions was carried out by agitating the slurry at about 60° C for about 1 hour. The resulting mixture was then filtered to provide a filter cake, and the filter cake was washed with deionized water in three portions until the filtrate was clear and colorless, and the washed sample was dried.
[00270] The obtained CuCHA catalyst comprised CuO at a range of about 3 to 3.5% by weight, as determined by ICP analysis. A CuCHA slurry was prepared to 40% target solids. The slurry was milled and a binder of zirconium acetate in dilute acetic acid (containing 30% Zr02) was added into the slurry with agitation.
[00271] The slurry was coated onto l"Dx3"L cellular ceramic cores, having a cell density of 400 cpsi (cells per square inch) and a wall thickness of 6.5 mil. The coated cores were dried at 110 °C for 3 hours and calcined at about 400 °C for 1 hour. The coating process was repeated once to obtain a target washcoat loading of in the range of 2-3 g/in3.
EXAMPLE 2
[00272] The same raw materials as Comparative Example 1 were used to prepare the inventive agglomerated (snowball) CHA material, except additional water was added. The gel make down procedure was also the same as Comparative Example 1. The autoclave was heated to 160 °C, and crystallization was continued for 30 hours while maintaining agitation. The reactor was cooled to <50 °C and vented to atmospheric pressure prior to unloading. After hydrothermal crystallization, the resultant suspension had a pH of 12.0. The suspension was admixed with deionized water and was filtrated with a procelain suction filter. The wet product was then heated to a temperature of 120 °C in air for 4 hrs. The dried product was then further calcined in air at 600 °C for 5 hrs to remove the template and ensure a C content less than 0.1 wt.%.
[00273] As can been observed in the SEM image of the crystal morphology in FIG. 6, the as-synthesized snowball material (Example 2) has a characteristic secondary structure of spheres with a diameter size of 1-2 μιη, as identified by SEM analysis (secondary electron imaging) at a scale of 5000x. The individual crystals of molecular sieve have a crystal size in the range of about 100 to 200 nm.
EXAMPLE 3 - Cu Promotion
[00274] An ion-exchange reaction between the Na-form CHA of Example 2 and copper ions was carried out by agitating the slurry at about 60 °C for about 1 hour. The resulting mixture was then filtered to provide a filter cake, and the filter cake was washed with deionized water in three portions until the filtrate was clear and colorless, and the washed sample was dried.
[00275] The obtained CuCHA catalysts comprised CuO at a range of about 1.5 to 4% by weight, as determined by ICP analysis. A CuCHA slurry was prepared to 40% target solids. The slurry was milled and a binder of zirconium acetate in dilute acetic acid (containing 30% Zr02) was added into the slurry with agitation.
EXAMPLE 4 - Preparation Of Washcoats
[00276] The Example 3 slurries were then coated onto a substrate to a washcoat loading of 2.1 g/in3. The washcoat was dried under air at 130 °C for 5 min. After the final coating, the substrate was calcined at 450 °C for 1 hour.
EXAMPLE 5 - CuO Loading Study
[00277] Nitrogen oxides selective catalytic reduction (SCR) efficiency and selectivity of a fresh catalyst core was measured by adding a feed gas mixture of 500 ppm of NO, 500 ppm of NH3, 10%) 02, 5%> H20, balanced with N2 to a steady state reactor containing a 1"D x 3"L catalyst core. The reaction was carried at a space velocity of 80,000 fir"1 across a 150 °C to 460 °C temperature range.
[00278] The samples were hydrothermally aged in the presence of 10%> H20 at 750 °C for 5 hours, followed by measurement of the nitrogen oxides SCR efficiency and selectivity by the same process as outlined above for the SCR evaluation on a fresh catalyst core.
[00279] Figure 7 is a bar graph showing the NOx conversion (%) versus CuO loading (wt.%).
[00280] Figure 8 is a bar graph showing the N20 make (ppm) versus CuO loading (wt.%>). EXAMPLE 6 - NOx Conversion
[00281] Nitrogen oxides selective catalytic reduction (SCR) efficiency and selectivity of a fresh catalyst core was measured by adding a feed gas mixture of 500 ppm of NO, 500 ppm of NH3, 10%) 02, 5%) H20, balanced with N2 to a steady state reactor containing a 1"D x 3"L catalyst core. The reaction was carried at a space velocity of 80,000 fir"1 across a 150 °C to 460 °C temperature range.
[00282] The samples were hydrothermally aged in the presence of 10% H20 at 750 °C for 5 hours, followed by measurement of the nitrogen oxides SCR efficiency and selectivity by the same process as outlined above for the SCR evaluation on a fresh catalyst core.
[00283] Figure 9 is a graph showing the NOx conversion (%) versus temperature (°C) for the catalyst of Example 1 (comparative) versus the inventive catalyst of Example 3, having 3.2% CuO.
[00284] Figure 10 is a graph showing the N20 make (ppm) versus temperature (°C) for the catalyst of Example 1 (comparative) versus the inventive catalyst of Example 3, having 3.2% CuO.
[00285] Figure 11 is a bar graph showings the NOx conversion (%>) at 20 ppm NH3 slip for the catalyst of Example 1 (comparative) versus the inventive catalyst of Example 3, having 3.2% CuO. The catalyst of Example 3 shows significantly higher NOx conversion (about 15% greater) at 20 ppm NH3 slip, which is an indication of improved transient performance during engine testing conditions.
[00286] As illustrated in Figures 9-11, the snowball morphology results in a SCR catalyst material with improved NOx conversion efficiency and lower N20 make versus a SCR catalyst material that does not have snowball morphology.
Isomorphously Substituted Molecular Sieves
EXAMPLE 7
[00287] An isomorphously substituted zeolitic material (Na-[Ti]CHA) was prepared from an 0.03Al2O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H2O gel composition through autoclave hydrothermal synthesis at 155 °C for 5 days. The product was recovered by filtration, and the template was removed by calcination at 600 °C for 5 hours. The final crystalline material had an x-ray powder diffraction pattern indicating > 90% CHA phase and a silica/alumina ratio (SAR) of 25 by XRF.
EXAMPLE 8
[00288] An isomorphously substituted zeolitic material (H-[Ti]CHA) was prepared by 500 °C calcination (4 hrs.) of NH4-[Ti]CHA, which was obtained through double NH4NO3 (2.4 M) exchanges with the material of Example 7 (Na-[Ti]CHA). The Ti level is unchanged through the NH4NO3 exchange processes, 4.3%> vs. 4.5%>. EXAMPLE 9 - Comparative
[00289] The zeolitic material H-CHA was prepared according to the process of Example 7 (H-[Ti]CHA), but without Ti addition to the synthesis gel.
EXAMPLE 10
[00290] A copper promoted isomorphously substituted zeolitic material (Cu2.72-[Ti]CHA) was prepared by ion exchange at 50 °C (2 hrs.) using the material of Example 8 (H-[Ti]CHA) and Cu(OAc)2 (0.06 M), showing a Cu content of 2.72% (ICP).
EXAMPLE 11
[00291] A copper promoted isomorphously substituted zeolitic material (Cu3.64-[Ti]CHA) was prepared by ion exchange at 50 °C (2 hrs.) using the material of Example 9 (H-[Ti]CHA) and Cu(OAc)2 (0.125 M), showing a Cu content of 3.64% (ICP)
EXAMPLE 12 - Comparative
[00292] A standard copper promoted zeolitic material (Cu2.75-CHA) was prepared according to the process provided in U.S. 8404203B2, with comparable Cu content (2.75%) to Example 9. This material is provided as the reference for benchmarking.
EXAMPLE 13 - Comparative
[00293] A standard copper promoted zeolitic material (Cu3.84-CHA) was prepared according to the process provided in U.S. 8404203B2, with comparable Cu content (3.84%) to Example 10. This material is provided as the reference for aging benchmarking.
EXAMPLE 14
[00294] The incorporation of Ti at the tetrahedral position is evidenced by fingerprints of Ti involved framework stretches (Ti-O-Si) at 940 - 980 cm"1, as illustrated in FIG. 12.
EXAMPLE 15
[00295] In addition to the fingerprint vibrations from Ti involved framework stretches, the enhanced acidity of framework due to the high valence framework Ti(IV) is also evidenced from the increased intensity of NO+, whose formation requires strong Lewis acidity, as illustrated in FIG. 13.
EXAMPLE 16
[00296] After Cu was exchanged to acid sites of the isomorphously substituted zeolitic material [Ti]CHA providing the compounds of Examples 10 and 11, the formation of NO+ is not affected. As illustrated in FIG. 14, the material of Example 10 (Cu2.72-[Ti]CHA) shows superior capability of generating more NO+ compared to the unmodified Comparative Example 12 (Cu2.75-CHA) at an equilibrium state. Given the nature of high reactivity of NO+ towards nucleophiles, e.g., NH3, it is established that the observed significant reactivity boost at low temperatures (e.g., 200°C) from Example 10 (Cu-[Ti]CHA) is due to the improved generation and retention of NO+ over the catalyst.
EXAMPLE 17
[00297] As can been observed in the SEM image in FIG. 15, the as-synthesized [TiJCHA (Example 8) has a characteristic secondary structure as spheres with a diameter size of 1 - 2 μιη, as identified by SEM analysis (secondary electron imaging) at a scale of 5000x.
EXAMPLE 18
[00298] The material of Example 10 (Cu-[Ti]CHA) was washcoated on a flow-through ceramic substrate at a loading of 2.1 g/in3. The typical SCR testing condition includes simulated diesel exhaust gas (500 ppm NO, 500 ppm NH3, 10% 02, 5% H20, and balance N2) and temperature points from 200 °C to 600 °C. Conversion of NO and NH3 at various temperatures are monitored by FTIR. An aging condition of 750 °C exposure to 10% H20 for 5 hrs. is adopted if desired to evaluate long term hydrothermal durability.
[00299] As illustrated in the SEM images in FIGS. 18A and 18B, the as-synthesized Cu- [TiJCHA produces a washcoat that is very porous (FIG. 18B) when compared to a standard copper promoted zeolitic material, Cu-CHA.
EXAMPLE 19
[00300] The porosity and particle size of the materials is presented in FIG. 19. As illustrated in FIG. 19, shown by Hg intrusion measurement, the washcoat formed from Cu- [TiJCHA (Example 10) has a porosity distribution more towards larger pores compared to unmodified Cu-CHA (Example 12).
[00301] In addition to the increased porosity of the washcoat, the as-synthesized Cu- [TiJCHA produces particle sizes that are significantly larger than the particle size of a standard copper promoted zeolitic material.
EXAMPLE 20
[00302] Catalyst Cu-[Ti]CHA has been washcoated on a flow-through ceramic substrate at a loading of 2.1 g/in3. A typical SCR testing condition includes simulated diesel exhaust gas (500 ppm NO, 500 ppm NH3, 10%> O2, 5% H2O, and balance N2) and temperature points from 200°C to 600°C. Conversion of NO and NH3 at various temperatures are monitored by FTIR. An aging condition of 750°C exposure to 10% H20 for 5 hrs. is adopted if desired to evaluate long term hydrothermal durability.
[00303] As illustrated in FIG. 16, with the assistance of framework Ti (Example 10), the SCR performance at 200 °C is significantly improved compared to the analogous sample without Ti (Example 6) at comparable Cu%, and no sacrifice of the high temperature (600 °C) NOx conversion efficiency is observed.
EXAMPLE 21
[00304] As illustrated in FIG. 17, high Cu content (e.g., Cu% > 2.5% @ SAR = 30), after high temperature hydrothermal aging, results in the formation of CuO, which actively consumes NH3 leading to a decreased SCR performance at the high temperature end. The presence of framework Ti (Example 11) helps to alleviate the NH3 consumption at the high temperature region with high Cu loaded sample.
EXAMPLE 22
[00305] An isomorphously substituted zeolitic material (Na-[Ti]AEI) is prepared analogously to the material of Example 7. The product is recovered by filtration, and the template is removed by calcination at 600 °C for 5 hours.
EXAMPLE 23
[00306] An isomorphously substituted zeolitic material (H-[Ti]AEI) is prepared by 500 °C calcination (4 hrs.) of NH4-[Ti]AEI, which is obtained through double NH4N03 (2.4 M) exchanges with the material of Example 21 (Na-[Ti]AEI).
EXAMPLE 24
[00307] A copper promoted isomorphously substituted zeolitic material (Cu-[Ti]AEI) is prepared by ion exchange at 50 °C (2 hrs.) using the material of Example 22 (H-[Ti]AEI) and Cu(OAc)2 (0.06 M).
EXAMPLE 25
[00308] An isomorphously substituted zeolitic material (Na-[Ti]AFX) is prepared analogously to the material of Example 7. The product is recovered by filtration, and the template is removed by calcination at 600 °C for 5 hours.
EXAMPLE 26
[00309] An isomorphously substituted zeolitic material (H-[Ti]AFX) is prepared by 500 °C calcination (4 hrs.) of NH4-[Ti]AFX, which is obtained through double NH4N03 (2.4 M) exchanges with the material of Example 24 (Na-[Ti]AFX). EXAMPLE 27
[00310] A copper promoted isomorphously substituted zeolitic material (Cu-[Ti]AFX) is prepared by ion exchange at 50 °C (2 hrs.) using the material of Example 25 (H-[Ti]AFX) and Cu(OAc)2 (0.06 M).
EXAMPLE 28
[00311] An isomorphously substituted zeolitic material (Na-[Ti]CHA) was prepared from an 0.03Al2O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H2O gel composition through autoclave hydrothermal synthesis at 155 °C for 5 days. The product was recovered by filtration, and the template was removed by calcination at 600 °C for 5 hours. The final crystalline material had an X-ray powder diffraction pattern indicating > 90% CHA phase and a SAR of 25 by XRF. Other SAR, e.g., 20, can also be obtained by proper adjustment of Si/Al ratio in the starting gel.
EXAMPLE 29
[00312] An isomorphously substituted zeolitic material (H-[Ti]CHA) was prepared by 500 °C calcination (4 hrs) of NH4-[Ti]CHA, which was obtained through double NH4N03 (2.4 M) exchanges with the material of Example 27 (Na-[Ti]CHA). The Ti level was unchanged through the NH4NO3 exchange processes, 4.3% vs. 4.5%.
EXAMPLE 30
[00313] The zeolitic material H-CHA was prepared according to the process of Example 28 and 29, but without Ti addition to the initial synthesis sol gel for zeolite hydrothermal crystallization.
EXAMPLE 31
[00314] A copper promoted isomorphously substituted zeolitic material (Cu-[Ti]CHA (SAR 20)) was prepared by ion exchange at 50 °C (2 hrs) using the material of Example 29 (H- [TfJCHA) and Cu(OAc)2. Variation of Cu concentration in the exchange process produced a series of copper zeolite, e.g., Cu2.46-[Ti]CHA (Example 31a), Cu3.03-[Ti]CHA (Example 31b), Cu3.64-[Ti]CHA (Example 31c), and Cu3.78-[Ti]CHA (Example 3 Id) (numbers after Cu denote Cu percentage).
EXAMPLE 32
[00315] A standard copper promoted zeolitic material (Cu2.75-CHA) was prepared according to the process provided in U.S. 8404203B2, and was provided as the reference for benchmarking. EXAMPLE 33 - COMPARATIVE [00316] A Fe-CHA (Fe: 2.5%) was synthesized similarly as Cu-CHA but using Fe(N03)3 in the solution exchange, and was selected as a comparative sample.
EXAMPLE 34 - Comparative
[00317] A commercially available Fe-Beta from BASF was selected as a comparative sample. EXAMPLE 35 - Comparative
[00318] A commercially available Fe-MFI (SCP-306) from Sud-Chemie was selected as a comparative sample.
EXAMPLE 36
[00319] As illustrated in FIG. 20, in the presence of framework Ti, not only was the adsorbed NH3 increased from 15.2 to 19.1 cm3/g at the high temperature zone, but also the desorption temperature was increased slightly by 10 °C (e.g., 470 °C to 480 °C), indicating a stronger Lewis acid site other than acidic proton functioning as the NH3 storage component. (Example 29 v. Example 30).
EXAMPLE 37
[00320] As illustrated in FIG. 21, after Cu exchange, an increase of Cu percentage only boosted the NH3 storage in the mid-temperature zone, e.g., 250°C - 400°C. The integrated values for the highest desorption peak were 12.8, 23.8, 28.8, and 23.8 cm3/g for Cu-CHA (Example 32), Cu2.46-[Ti]CHA (Example 31a), Cu3.03-[Ti]CHA (Example 31), Cu3.64- [TiJCHA (Example 31c), respectively. The Ti containing Cu-[Ti]CHA samples consistently showed doubled capacity of NH3 retention above 400°C. (Example 32 v. Example 31)
EXAMPLE 38
[00321] As illustrated in FIG. 22, the presence of other lower valence transition metals, e.g., Fe(III), however, did not have the effective promotion for NH3 storage above 400 °C. The high temperature (> 400 °C) storage capacity for Fe-MFI, Fe-CHA, Fe-Beta were 13.6, 12.8, 7.9 cm3/g, respectively, which were at a similar level as the unmodified Cu-CHA.
EXAMPLE 39
[00322] Both Cu-CHA (Example 32) and Cu3.64-[Ti]CHA (Example 31c) were coated on honeycomb with equal washcoat loading, and measured at temperatures (200°C, 300°C, 400°C, 450°C, and 500°C) for NH3 storage in the presence of 5% H20. As illustrated in FIG. 23, being assisted by framework Ti, more chemisorbed NH3 were found consistently on Cu- [TfJCHA than those on unmodified Cu-CHA up to 400°C.
EXAMPLE 40 [00323] A commercially available non-zeolitic composite material with T1O2, A1203, and Si02, consisting of Ti, Si, Al based oxides from a co-precipitation process, also demonstrated high temperature N¾ storage feature. As illustrated in FIG. 24, although the storage capacity of the commercially available material compared to Cu-CHA (Example 32) was low, the desorption temperature was further increased.
EXAMPLE 41
[00324] An isomorphously substituted zeolitic material (Na-[Ti]AEI) is prepared analogously to the material of Example 27. The product is recovered by filtration, and the template is removed by calcination at 600 °C for 5 hours.
EXAMPLE 42
[00325] An isomorphously substituted zeolitic material (H-[Ti]AEI) is prepared by 500 °C calcination (4 hrs) of NH4-[Ti]AEI, which is obtained through double NH NO3 (2.4 M) exchanges with the material of Example 41 (Na-[Ti]AEI).
EXAMPLE 43
[00326] A copper promoted isomorphously substituted zeolitic material (Cu-[Ti]AEI) is prepared by ion exchange at 50 °C (2 hrs) using the material of Example 42 (H-[Ti]AEI) and Cu(OAc)2 (0.06 M).
EXAMPLE 44
[00327] An isomorphously substituted zeolitic material (Na-[Ti]AFX) is prepared analogously to the material of Example 27. The product is recovered by filtration, and the template is removed by calcination at 600 °C for 5 hours.
EXAMPLE 45
[00328] An isomorphously substituted zeolitic material (H-[Ti]AFX) is prepared by 500 °C calcination (4 hrs) of NH4-[Ti]AFX, which is obtained through double NH NO3 (2.4 M) exchanges with the material of Example 44 (Na-[Ti]AFX).
EXAMPLE 46
[00329] A copper promoted isomorphously substituted zeolitic material (Cu-[Ti]AFX) is prepared by ion exchange at 50 °C (2 hrs) using the material of Example 45 (H-[Ti]AFX) and Cu(OAc)2 (0.06 M).
[00330] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the materials and methods discussed herein (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the materials and methods and does not pose a limitation on the scope unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosed materials and methods.
[00331] Reference throughout this specification to "one embodiment," "certain embodiments," "one or more embodiments" or "an embodiment" means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrases such as "in one or more embodiments," "in certain embodiments," "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.
[00332] Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made to the method and apparatus of the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention include modifications and variations that are within the scope of the appended claims and their equivalents.

Claims

What is claimed is:
1. A selective catalytic reduction (SCR) material comprising a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in a range of about 0.5 to about 5 microns.
2. The SCR catalyst material of claim 1, wherein the molecular sieve comprises a d6r unit.
The SCR catalyst material of claim 2, wherein the molecular sieve has a structure type selected from the group consisting of AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
The SCR catalyst material of claim 3, wherein the molecular sieve has a structure type selected from AEI, AFT, AFX, CHA, EAB, ERI, KFI, LEV, SAS, SAT, and SAV.
The SCR catalyst material of claim 4, wherein the molecular sieve has a structure type selected from AEI, CHA, and AFX.
The SCR catalyst material of claim 5, wherein the molecular sieve has the CHA structure type.
7. The SCR catalyst material of claim 6, wherein the molecular sieve having the CHA structure type is selected from an aluminosilicate zeolite, a borosilicate, a gallosilicate, a SAPO, an A1PO, a MeAPSO, and a MeAPO.
8. The SCR catalyst material of claim 6, wherein the molecular sieve having the CHA structure type is selected from the group consisting of SSZ-13, SSZ-62, natural chabazite, zeolite K-G, Linde D, Linde R, LZ-218, LZ-235, LZ-236, ZK-14, SAPO-34, SAPO-44, SAPO-47, and ZYT-6.
9. The SCR catalyst material of claim 8, wherein the molecular sieve is selected from SSZ-13 and SSZ-62.
10. The SCR catalyst material of claim 1, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
11. The SCR catalyst material of claim 10, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, and combinations thereof.
12. The SCR catalyst material of claim 1, wherein the SCR catalyst material is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200 °C and 600 °C.
13. The SCR catalyst material of claim 6, wherein the molecular sieve having the CHA structure type has a silica to alumina ratio in the range of 10 to 100.
14. The SCR catalyst material of claim 10, wherein the metal is present in an amount in a range of about 0.1 to about 10 wt.% on an oxide basis.
15. The SCR catalyst material of claim 1, wherein the spherical particle has a median particle size in the range of about 1.2 to about 3.5 microns.
16. The SCR catalyst material of claim 1, wherein the crystals have a crystal size in the range of about 1 to about 250 nm.
17. The SCR catalyst material of claim 16, wherein the crystals have a crystal size in the range of about 100 to about 250 nm.
18. The SCR catalyst material of claim 1, wherein the SCR catalyst material is in the form of a washcoat.
19. The SCR catalyst material of claim 18, wherein the washcoat is a layer deposited on a substrate.
20. The SCR catalyst material of claim 19, wherein the substrate comprises a filter.
21. The SCR catalyst material of claim 20, wherein the filter is a wall flow filter.
22. The SCR catalyst material of claim 20, wherein the filter is a flow through filter.
23. The SCR catalyst material of claim 1, wherein at least 80% of the spherical particles have a median particle size in the range of 0.5 to 2.5 micron.
24. The SCR catalyst material of claim 1, wherein the molecular sieve comprises a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal.
25. The SCR catalyst material of claim 24, wherein the molecular sieve is promoted with a metal selected from Cu, Fe, Co, Ni, La, Ce, Mn, V, Ag, and combinations thereof.
26. The SCR catalyst material of claim 24, wherein the tetravalent metal comprises a tetravalent transition metal.
27. The SCR catalyst material of claim 26, wherein the tetravalent transition metal is selected from the group consisting of Ti, Zr, Hf, Ge, and combinations thereof.
28. The SCR catalyst material of claim 26, wherein the tetravalent transition metal comprises Ti.
29. A method for selectively reducing nitrogen oxide (NOx), the method comprising contacting an exhaust gas stream containing NOx with a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve, wherein the spherical particle has a median particle size in a range of about 0.5 to about 5 microns.
30. A system for treating exhaust gas from a lean burn engine containing NOx, the system comprising the SCR catalyst material of claim 1 and at least one other exhaust gas treatment component.
PCT/US2015/036243 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods WO2015195809A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020177001105A KR102424620B1 (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods
CN201580044158.1A CN106660022B (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods
CA2952435A CA2952435C (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods
BR112016029719A BR112016029719A8 (en) 2014-06-18 2015-06-17 selective catalytic reduction material (scr), method for selectively reducing nitrogen oxide (nox) and system for treating exhaust gases
JP2016573744A JP6615795B2 (en) 2014-06-18 2015-06-17 Molecular sieve catalyst composition, catalyst composite, system, and method
EP15809019.1A EP3157672A4 (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods
MX2016016922A MX2016016922A (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods.
RU2017101430A RU2704820C2 (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalytic composites, systems and methods
ZA2017/00236A ZA201700236B (en) 2014-06-18 2017-01-11 Molecular sieve catalyst compositions, catalytic composites, systems, and methods

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201462013847P 2014-06-18 2014-06-18
US62/013,847 2014-06-18
US201462081243P 2014-11-18 2014-11-18
US62/081,243 2014-11-18
US14/687,097 2015-04-15
US14/687,097 US9889437B2 (en) 2015-04-15 2015-04-15 Isomorphously substituted catalyst
US14/741,754 US9764313B2 (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods
US14/741,754 2015-06-17

Publications (1)

Publication Number Publication Date
WO2015195809A1 true WO2015195809A1 (en) 2015-12-23

Family

ID=54936076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/036243 WO2015195809A1 (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods

Country Status (8)

Country Link
JP (3) JP6615795B2 (en)
KR (1) KR102424620B1 (en)
BR (1) BR112016029719A8 (en)
CA (1) CA2952435C (en)
MX (1) MX2016016922A (en)
RU (2) RU2754003C1 (en)
WO (1) WO2015195809A1 (en)
ZA (1) ZA201700236B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076358A (en) * 2016-06-12 2016-11-09 南京工业大学 A kind of cement industry low temperature SCR denitration catalyst and preparation method thereof
CN107790130A (en) * 2017-11-13 2018-03-13 重庆理工大学 One kind is used for SCR degraded NO catalyst
EP3363540A1 (en) 2017-02-17 2018-08-22 Umicore Ag & Co. Kg Copper containing moz zeolite for selective nox reduction catalysis
KR20190020322A (en) * 2016-06-13 2019-02-28 바스프 코포레이션 Catalyst complexes and their use in selective catalytic reduction of NOx
CN110681412A (en) * 2019-07-17 2020-01-14 凯龙蓝烽新材料科技有限公司 High-temperature-resistant high-activity Cu-based SCR catalyst and preparation method thereof
WO2019213563A3 (en) * 2018-05-04 2020-02-20 Corning Incorporated Outlet-coated ceramic honeycomb bodies and methods of manufacturing same
RU2730479C1 (en) * 2017-02-27 2020-08-24 Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез Molecular sieves of cu-sapo, method of synthesis thereof and catalytic use thereof
US11298656B2 (en) 2016-06-08 2022-04-12 Basf Corporation Copper-promoted GMElinite and use thereof in the selective catalytic reduction of NOX
CN114423712A (en) * 2019-09-25 2022-04-29 巴斯夫公司 Cu-CHASCR catalyst with specific lattice strain and domain size characteristics
CN116062764A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Y-Y composite molecular sieve with core-shell structure, and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016016922A (en) * 2014-06-18 2017-09-07 Basf Corp Molecular sieve catalyst compositions, catalyst composites, systems, and methods.
WO2019221266A1 (en) * 2018-05-17 2019-11-21 東京濾器株式会社 Discharge gas purification catalyst
CN112118907B (en) * 2018-05-17 2023-05-12 东京滤器株式会社 Exhaust gas purifying catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601662B2 (en) * 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US20120244066A1 (en) * 2009-11-24 2012-09-27 Basf Se Process For The Preparation Of Zeolites Having CHA Structure
US20120258032A1 (en) * 2011-11-02 2012-10-11 Johnson Matthey Public Limited Company Catalyzed filter for treating exhaust gas
US20130336863A1 (en) * 2011-03-03 2013-12-19 Umicore Ag & Co. Kg Scr catalytic converter having improved hydrocarbon resistance
WO2014062949A1 (en) * 2012-10-19 2014-04-24 Basf Corporation 8-ring small pore molecular sieve as high temperature scr catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221469A (en) * 1995-03-17 1999-08-17 Osaka Gas Co Ltd Catalyst for reducing nitrogen oxide and reduction of nitrogen oxide in exhaust gas
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
MY146586A (en) * 2007-03-26 2012-08-30 Pq Corp Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
CN103771440B (en) * 2008-05-21 2015-12-30 巴斯夫欧洲公司 Direct synthesis has the method containing Cu zeolite of CHA structure
WO2012131917A1 (en) * 2011-03-29 2012-10-04 イビデン株式会社 Honeycomb structure and method for producing honeycomb structure
US9174849B2 (en) * 2011-08-25 2015-11-03 Basf Corporation Molecular sieve precursors and synthesis of molecular sieves
MX2016016922A (en) * 2014-06-18 2017-09-07 Basf Corp Molecular sieve catalyst compositions, catalyst composites, systems, and methods.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601662B2 (en) * 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US20120244066A1 (en) * 2009-11-24 2012-09-27 Basf Se Process For The Preparation Of Zeolites Having CHA Structure
US20130336863A1 (en) * 2011-03-03 2013-12-19 Umicore Ag & Co. Kg Scr catalytic converter having improved hydrocarbon resistance
US20120258032A1 (en) * 2011-11-02 2012-10-11 Johnson Matthey Public Limited Company Catalyzed filter for treating exhaust gas
WO2014062949A1 (en) * 2012-10-19 2014-04-24 Basf Corporation 8-ring small pore molecular sieve as high temperature scr catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FICKEL, DUSTIN W. ET AL.: "Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 114, 28 December 2009 (2009-12-28), pages 1633 - 1640, XP002670366 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298656B2 (en) 2016-06-08 2022-04-12 Basf Corporation Copper-promoted GMElinite and use thereof in the selective catalytic reduction of NOX
CN106076358A (en) * 2016-06-12 2016-11-09 南京工业大学 A kind of cement industry low temperature SCR denitration catalyst and preparation method thereof
JP2019525827A (en) * 2016-06-13 2019-09-12 ビーエーエスエフ コーポレーション Catalyst complex and its use in selective catalytic reduction of NOX
KR102381849B1 (en) * 2016-06-13 2022-04-05 바스프 코포레이션 Catalyst complexes and their use in the selective catalytic reduction of NOx
KR20190020322A (en) * 2016-06-13 2019-02-28 바스프 코포레이션 Catalyst complexes and their use in selective catalytic reduction of NOx
WO2018149749A1 (en) 2017-02-17 2018-08-23 Umicore Ag & Co. Kg Copper containing moz zeolite for selective nox reduction catalysis
EP3363540B1 (en) * 2017-02-17 2019-07-24 Umicore Ag & Co. Kg Copper containing moz zeolite for selective nox reduction catalysis
EP3363540A1 (en) 2017-02-17 2018-08-22 Umicore Ag & Co. Kg Copper containing moz zeolite for selective nox reduction catalysis
RU2730479C1 (en) * 2017-02-27 2020-08-24 Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез Molecular sieves of cu-sapo, method of synthesis thereof and catalytic use thereof
CN107790130A (en) * 2017-11-13 2018-03-13 重庆理工大学 One kind is used for SCR degraded NO catalyst
WO2019213563A3 (en) * 2018-05-04 2020-02-20 Corning Incorporated Outlet-coated ceramic honeycomb bodies and methods of manufacturing same
US11746061B2 (en) 2018-05-04 2023-09-05 Corning Incorporated Outlet-coated ceramic honeycomb bodies and methods of manufacturing same
CN110681412A (en) * 2019-07-17 2020-01-14 凯龙蓝烽新材料科技有限公司 High-temperature-resistant high-activity Cu-based SCR catalyst and preparation method thereof
CN114423712A (en) * 2019-09-25 2022-04-29 巴斯夫公司 Cu-CHASCR catalyst with specific lattice strain and domain size characteristics
CN116062764A (en) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 Y-Y composite molecular sieve with core-shell structure, and preparation method and application thereof

Also Published As

Publication number Publication date
CA2952435A1 (en) 2015-12-23
JP2020044533A (en) 2020-03-26
BR112016029719A8 (en) 2020-10-20
BR112016029719A2 (en) 2017-08-22
KR20170023073A (en) 2017-03-02
JP7130814B2 (en) 2022-09-05
RU2017101430A3 (en) 2018-10-16
MX2016016922A (en) 2017-09-07
KR102424620B1 (en) 2022-07-25
JP6615795B2 (en) 2019-12-04
RU2754003C1 (en) 2021-08-25
RU2017101430A (en) 2018-07-19
ZA201700236B (en) 2020-05-27
CA2952435C (en) 2023-10-03
RU2704820C2 (en) 2019-10-31
JP2017519627A (en) 2017-07-20
JP2021130113A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US10786808B2 (en) Molecular sieve catalyst compositions, catalyst composites, systems, and methods
US10850265B2 (en) Molecular sieve catalyst compositions, catalytic composites, systems, and methods
CA2952437C (en) Molecular sieve catalyst compositions, catalytic composites, systems, and methods
JP7130814B2 (en) Molecular Sieve Catalyst Compositions, Catalyst Composites, Systems, and Methods
US10792648B2 (en) Mixed metal large crystal molecular sieve catalyst compositions, catalytic articles, systems and methods
US20190134617A1 (en) Ion-exchanged molecular sieve catalysts exhibiting reduced n2o emissions
US9889437B2 (en) Isomorphously substituted catalyst
KR20230143096A (en) Zeolite structures synthesized using a mixture of organic structure directing agents.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2952435

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016573744

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/016922

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016029719

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177001105

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015809019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015809019

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017101430

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016029719

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161216