WO2015194068A1 - Vapor phase growth apparatus and film-forming method - Google Patents

Vapor phase growth apparatus and film-forming method Download PDF

Info

Publication number
WO2015194068A1
WO2015194068A1 PCT/JP2014/082936 JP2014082936W WO2015194068A1 WO 2015194068 A1 WO2015194068 A1 WO 2015194068A1 JP 2014082936 W JP2014082936 W JP 2014082936W WO 2015194068 A1 WO2015194068 A1 WO 2015194068A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exhaust
substrate
supply
supply port
Prior art date
Application number
PCT/JP2014/082936
Other languages
French (fr)
Japanese (ja)
Inventor
正志 水田
哲也 松原
Original Assignee
古河機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河機械金属株式会社 filed Critical 古河機械金属株式会社
Publication of WO2015194068A1 publication Critical patent/WO2015194068A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a vapor phase growth apparatus and a film forming method.
  • Light emitting elements such as light emitting diode elements and semiconductor laser elements are manufactured as follows, for example. Sapphire, SiC, GaN, AlN or the like is used as a substrate, and a semiconductor layer is stacked thereon using a metal organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal organic chemical vapor deposition
  • the semiconductor layer for example, an underlayer such as an undoped GaN layer, an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer are grown.
  • the film formation rate in the MOCVD method is generally 1 ⁇ m / h to 3 ⁇ m / h, and the film formation rate is slow, so it takes a very long time to form a thick underlayer.
  • HVPE hydride vapor phase epitaxy
  • Patent Document 1 and Patent Document 2 disclose an apparatus capable of continuously performing film formation by the HVPE method and film formation by the MOCVD method in one film formation chamber. Is disclosed.
  • the present invention provides a vapor phase growth apparatus and a film forming method capable of forming a group III-V compound semiconductor film in which in-plane film thickness non-uniformity and batch-to-batch variation are reduced.
  • a first supply unit that introduces a first source gas containing a halogen element and a group III element into the film formation chamber, and a second source gas that reacts with the first source gas to form a film on the substrate;
  • a second supply unit for introducing a third source gas containing an organic metal into the film formation chamber and a fourth source gas that reacts with the third source gas to form a film on the substrate;
  • Transport means for transporting the substrate in the film forming chamber;
  • a first exhaust means for exhausting and evacuating the gas in the film forming chamber;
  • the first supply unit includes: A first supply port for supplying the first source gas toward the substrate; A second supply port for supplying the second source gas toward the substrate; Without mixing the first source gas and the second source gas with each other, each led to the first supply port and the second supply port,
  • the second supply unit includes: A third supply port for supplying the
  • the transfer means includes a first arrangement in which the substrate arranged on the susceptor is opposed to the first supply port and the second supply port, and a first arrangement in which the substrate is opposed to the third supply port and the fourth supply port. 2 between the first and second supply ports, the second supply port, the third supply port, and the fourth supply port.
  • the second exhaust means is provided with a vapor phase growth apparatus that exhausts a staying gas generated on the rotating shaft of the transport means and in the vicinity of the upper surface of the susceptor.
  • a first source gas containing a halogen element and a III element, and a second source gas for reacting with the first source gas to form a film on the substrate are simultaneously supplied into the film formation chamber;
  • a third source gas containing an organic metal and a fourth source gas for reacting with the third source gas to form a film on the substrate are simultaneously supplied into the film formation chamber,
  • the substrate disposed on the susceptor is transported in the film forming chamber by a transport unit including a susceptor that rotates around a rotation axis.
  • a vapor phase growth apparatus and a film forming method capable of forming a group III-V compound semiconductor film in which in-plane film thickness non-uniformity and variation between batches are reduced.
  • FIG. 4 is a diagram showing a film thickness distribution of a GaN film according to Example 1.
  • 6 is a diagram showing a film thickness distribution of a GaN film according to Example 2.
  • FIG. It is a figure which shows the film thickness distribution of the GaN film
  • the storage unit 91, the appropriate exhaust flow rate calculation unit 92, the exhaust flow rate control unit 93, and the pressure control unit 95 indicate functional unit blocks instead of hardware units.
  • the storage unit 91, the appropriate exhaust flow rate calculation unit 92, the exhaust flow rate control unit 93, and the pressure control unit 95 are an arbitrary computer CPU, memory, a program that realizes the components shown in FIG. It is realized by an arbitrary combination of hardware and software, mainly a storage medium such as a hard disk to be stored and a network connection interface. There are various modifications of the implementation method and apparatus.
  • FIG. 1 is a diagram showing a structure of a vapor phase growth apparatus 1 according to the first embodiment.
  • FIG. 2 is a diagram showing an arrangement relationship of main parts in the vapor phase growth apparatus 1.
  • the first supply unit 2, the second supply unit 3, the film formation chamber 4, and the second exhaust unit 7 as viewed from the direction in plan view of the substrate S attached to the vapor phase growth apparatus 1.
  • the arrangement relationship is shown.
  • FIG. 1 is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 3 is a diagram showing the structure of the first supply unit 2 of the vapor phase growth apparatus 1 according to this embodiment.
  • the structure of the 1st supply part 2 is simplified and drawn.
  • the vapor phase growth apparatus 1 includes a film forming chamber 4, a first supply unit 2, a second supply unit 3, a transfer unit 5, and a first exhaust unit 6. At least one substrate S is disposed inside the film forming chamber 4, and a III-V group compound semiconductor film is formed on the substrate S.
  • the first supply unit 2 introduces a first source gas containing a halogen element and a group III element into the film forming chamber 4 and a second source gas that reacts with the first source gas to form a film on the substrate S.
  • the second supply unit 3 introduces into the film forming chamber 4 a third source gas containing an organic metal and a fourth source gas that forms a film on the substrate S by reacting with the third source gas.
  • the transport unit 5 transports the substrate S in the film forming chamber 4.
  • the first exhaust means 6 exhausts the gas in the film forming chamber 4 and evacuates it.
  • the first supply unit 2 includes a first supply port 214 that supplies the first source gas toward the substrate S, and a second supply port 215 that supplies the second source gas toward the substrate S.
  • the first supply unit 2 guides the first source gas and the second source gas to the first supply port 214 and the second supply port 215, respectively, without mixing each other.
  • the second supply unit 3 includes a third supply port 311 that supplies the third source gas toward the substrate S, and a fourth supply port 312 that supplies the fourth source gas toward the substrate S.
  • the transport means 5 includes a susceptor 51 that rotates around the rotation axis L.
  • the first supply port 214, the second supply port 215, the third supply port 311, and the fourth supply port 312 are provided near the upper surface of the susceptor 51 and face the upper surface of the susceptor 51.
  • the transport means 5 includes a first arrangement in which the substrate S arranged on the susceptor 51 is opposed to the first supply port 214 and the second supply port 215, and a third arrangement in which the substrate S is opposed to the third supply port 311 and the fourth supply port 312.
  • the vapor phase growth apparatus 1 further includes a second exhaust unit 7 that exhausts the inside of the film forming chamber 4 independently of the first exhaust unit 6.
  • the second exhaust unit 7 exhausts the staying gas generated on the rotation axis L of the transport unit 5 and in the vicinity of the upper surface of the susceptor 51. This will be described in detail below.
  • An opening provided in the film forming chamber 4 or on the inner wall of the film forming chamber 4 and supplying gas into the film forming chamber 4 is referred to as a “supply port”, and is formed in the film forming chamber 4 or the inner wall of the film forming chamber 4.
  • An opening that is provided and exhausts gas from the film forming chamber 4 is called an “exhaust port” to be distinguished.
  • the film forming chamber 4 is composed of a chamber made of stainless steel, for example.
  • a substrate S is disposed in the film forming chamber 4, and a III-V group compound semiconductor film is formed on the substrate S.
  • substrate S any of a sapphire substrate, a SiC substrate, a ZnO substrate, and a silicon substrate can be used.
  • a template substrate can also be used.
  • the size of the substrate S is not particularly limited, but is 2 to 6 inches, for example.
  • the group III element in the group III-V compound semiconductor film is at least one of Ga, Al, In, and B, for example.
  • the V element in the III-V compound semiconductor film is, for example, one or more of N, As, and P.
  • the group III-V compound semiconductor is, for example, any one of GaN, AlN, InN, BN, GaAlN, InGaN, GaBN, AlBN, InBN, GaNAs, InNAs, AlNAs, BNAs, and mixed crystals thereof.
  • nitrogen is a group V element
  • Ga is a group III element
  • a GaN film is formed.
  • it is not limited to this example.
  • the vapor phase growth apparatus 1 performs hydride vapor phase epitaxy (HydrideapVapor Phase Epitaxy: HVPE) and metal organic vapor phase epitaxy (Metal Organic Chemical VaporMODeposition: MOCVD) in one film formation chamber 4. It is a device that can implement both. After the film is formed on the substrate S by one growth method, the film can be continuously formed by the other growth method without removing the substrate S from the film formation chamber 4. For this reason, a semiconductor device or the like can be manufactured with high manufacturing efficiency without requiring cooling or transporting time. In addition, after the film formation by one growth method and before the film formation by the other growth method, the surface of the substrate S is not contaminated, and a semiconductor device having excellent crystal quality is obtained. Can be manufactured.
  • HVPE HydrideapVapor Phase Epitaxy
  • MOCVD Metal Organic Chemical VaporMODeposition
  • the first supply unit 2 is a gas supply unit for performing hydride vapor phase growth (hereinafter referred to as “HVPE”) in the film forming chamber 4.
  • FIG. 3 is a cross-sectional view showing the structure of the first supply unit 2.
  • the first supply unit 2 includes a first supply pipe 21, a heating means 27 provided outside the first supply pipe 21, and a heat shield means 22 provided outside the heating means 27.
  • the first supply unit 2 is a part for supplying the first source gas and the second source gas toward the substrate S.
  • the first source gas is a gas containing a halogen element and a group III element, for example, GaCl gas.
  • the first source gas is preferably a halogenated gas of a group III element.
  • the second source gas is a reactive gas containing a group V element, for example, ammonia gas.
  • a group V element for example, ammonia gas.
  • the first source gas and the second source gas are simultaneously supplied into the film formation chamber 4 to form a III-V group compound semiconductor film on the substrate S.
  • the first source gas and the second source gas can be supplied together with the carrier gas.
  • the first supply pipe 21 includes three pipes, that is, an outer pipe 211, a first inner pipe 212, and a second inner pipe 213, and is configured as a triple pipe structure.
  • the first inner tube 212 has a smaller inner diameter than the outer tube 211 and is inserted into the outer tube 211.
  • the second inner tube 213 has a smaller inner diameter than the first inner tube 212 and is inserted into the first inner tube 212.
  • the first supply pipe 21 is connected to the first supply port 214, the second supply port 215, and the non-reactive gas supply port 216 at its end.
  • a non-reactive gas that does not react with either the first source gas or the second source gas is supplied into the film forming chamber 4 from the non-reactive gas supply port 216.
  • the non-reactive gas is, for example, hydrogen gas.
  • the second source gas passes through the space inside the outer tube 211 and outside the first inner tube 212 and is supplied into the film forming chamber 4 from the second supply port 215.
  • the non-reactive gas passes through the space inside the first inner pipe 212 and outside the second inner pipe 213, and is supplied into the film forming chamber 4 from the non-reactive gas supply port 216.
  • the first source gas is generated inside the second inner pipe 213 and supplied into the film forming chamber 4 from the first supply port 214.
  • a non-reactive gas supply port 216 is provided between the first supply port 214 and the second supply port 215, and a non-reactive gas is supplied. Since these supply ports are located immediately above the substrate S transported by the susceptor 51, the first source gas and the second source gas are supplied onto the substrate S without being mixed. As described above, the vapor phase growth apparatus 1 according to the present embodiment is configured such that the first source gas and the second source gas are mixed for the first time in the vicinity of the substrate S, so that the reaction occurs in the supply pipe. Thus, no film is deposited and a good film can be formed on the substrate S.
  • a raw material source for generating a first raw material gas for example, a raw material container (source boat) 24 containing a raw material 20 containing a group III element is arranged inside the second inner pipe 213.
  • the raw material 20 is, for example, Ga.
  • a pipe 25 and a pipe 26 are connected to the raw material container 24, and a gas for generating the first raw material gas is supplied into the raw material container 24 through the pipe 25.
  • the gas for generating the first source gas is a gas containing a halogen element, for example, HCl gas.
  • a gas for generating the first source gas supplied into the source container 24 reacts with the source 20 to generate a first source gas.
  • GaCl is generated as the first source gas.
  • the generated first source gas is discharged from the pipe 26 and supplied into the film forming chamber 4 from the first supply port 214.
  • a heat shielding means 22 is provided around (outer circumference) the heating means 27.
  • the heat shield means 22 according to the present embodiment includes a metal member 223 provided so as to surround the first supply pipe 21, particularly the heating means 27, and a cooling means 224 disposed around the metal member 223. It is comprised including.
  • the metal member 223 has a triple tube structure, for example.
  • a pipe constituting the cooling means 224 is disposed around the metal member 223.
  • the cooling fluid passes through the inside of the pipe, and the heat generated by the heating means 27 is transmitted to the outside of the first supply unit 2. prevent.
  • the internal structure of the metal member 223 and the cooling means 224 is omitted.
  • the fluid is for example water.
  • the influence of the heat is generated on the components outside the first supply unit 2 in the vapor phase growth apparatus 1. Therefore, stable film formation on the substrate S can be performed, and the degree of freedom in designing the vapor phase growth apparatus 1 is increased.
  • the first source gas may be introduced through the inside of the outer pipe 211 and the outside of the first inner pipe 212, and the second source gas may be introduced through the inside of the second inner pipe 213.
  • the raw material container 24, the pipe 25, and the pipe 26 are arranged in a space inside the outer pipe 211 and outside the first inner pipe 212.
  • the second supply unit 3 is a gas supply unit for performing metal organic chemical vapor deposition (hereinafter referred to as “MOCVD”) in the film forming chamber 4.
  • the second supply unit 3 includes a second supply pipe 31, a shower head 32, a pipe 33, and a pipe 34.
  • the second supply unit 3 is a part for supplying the third source gas and the fourth source gas toward the substrate S.
  • the third source gas is a gas containing an organic metal, for example, trimethylgallium gas.
  • the third source gas is preferably an organometallic gas containing a group III element.
  • the fourth source gas is a reactive gas containing a group V element, such as ammonia gas.
  • a pipe 34 and a pipe 33 are connected to the second supply pipe 31.
  • a shower head 32 is provided at the end of the second supply pipe 31.
  • the second supply pipe 31 has a double structure, and is configured such that the gas introduced from the pipe 34 and the gas introduced from the pipe 33 are guided to the hole of the shower head 32 without being mixed with each other.
  • the third source gas passes through a predetermined space in the pipe 34 and the second supply pipe 31 and is supplied into the film forming chamber 4 from a third supply port 311 provided in the shower head 32.
  • the fourth source gas passes through a space in the pipe 33 and the second supply pipe 31 that is different from the space through which the third source gas passes, and enters the film formation chamber 4 from the fourth supply port 312 provided in the shower head 32. Supplied.
  • the shower head 32 has a plurality of holes that are the third supply ports 311 and a plurality of holes that are the fourth supply ports 312. That is, the third source gas and the fourth source gas are supplied into the film forming chamber 4 through different holes of the shower head 32. These supply ports are located immediately above the substrate S transported by the susceptor 51.
  • the vapor phase growth apparatus 1 according to the present embodiment is configured such that the third source gas and the fourth source gas are mixed for the first time in the vicinity of the substrate S, and thus a reaction occurs in the supply pipe. Thus, good film formation on the substrate S can be performed.
  • the 2nd supply part 3 which concerns on this embodiment is not provided with the mechanism which heats the raw material gas in a supply pipe
  • a non-reactive gas such as hydrogen gas is supplied from the third supply port 311 and the fourth supply port 312 during film formation by HVPE. Further, during film formation by MOCVD, a non-reactive gas such as hydrogen gas is supplied from the first supply port 214 and the second supply port 215. This is to prevent the raw material gas from flowing into the supply port.
  • the susceptor 51 has a disk shape, the rotation axis L passes through the center of the susceptor 51 and is perpendicular to the upper surface of the susceptor 51, and the exhaust port of the first exhaust means 6 is on the susceptor 51. It is provided along the outer edge of the susceptor 51 when the substrate S is viewed in a plan view. This will be described in detail below.
  • the transport unit 5 includes a susceptor 51 that holds the substrate S and a driving unit 52 that rotationally drives the susceptor 51.
  • the susceptor 51 has a disk shape, and has a recess (not shown) for holding the substrate S on one surface (hereinafter referred to as “upper surface”, which is the upper side in FIG. 1).
  • a rotational axis L for rotational driving of the susceptor 51 is orthogonal to the upper surface of the susceptor 51.
  • the driving means 52 is connected to the surface opposite to the upper surface of the susceptor 51 (hereinafter referred to as “lower surface”).
  • the transport means 5 is configured such that when the substrate S is held in the recess of the susceptor 51, the main surface on which the substrate S is to be formed faces the first supply unit 2 and the second supply unit 3.
  • the transport unit 5 is configured such that the main surface of the substrate S and the supply direction of the source gas from the first supply unit 2 and the second supply unit 3 are orthogonal to each other.
  • source gas refers to one or more of the first source gas, the second source gas, the third source gas, and the fourth gas.
  • a heating means 53 (for example, a heater) is disposed on the lower surface side of the susceptor 51.
  • the heating means 53 heats the substrate S from the lower surface side during film formation.
  • the susceptor 51 according to the present embodiment is provided with a plurality of recesses for holding the substrate S, and the plurality of substrates S are held.
  • the rotation axis L passes through the center of the disk of the susceptor 51, and the plurality of substrates S are arranged on the same circle with the rotation axis L as the center.
  • the driving means 52 includes a shaft portion 521 that supports the susceptor 51 from the lower surface side, and a motor 522 connected to the shaft portion 521. As the motor 522 operates, the shaft portion 521 rotates about the rotation axis L.
  • FIG. 4 is a diagram showing the positional relationship among the susceptor 51, the substrate S, the first supply unit 2, the second supply unit 3, the rotating shaft L, and the second exhaust means 7.
  • this figure has shown the arrangement
  • the first supply unit 2 and the second supply unit 3 are positioned on the circumference drawn by the substrate S by rotationally driving the susceptor 51. That is, the first supply port 214, the second supply port 215, the third supply port 311, and the fourth supply port 312 are positioned on the circumference drawn by the substrate S by rotationally driving the susceptor 51.
  • the susceptor 51 rotates by the driving means 52.
  • the substrate S held by the susceptor 51 moves on one circumference around the rotation axis L and revolves around the rotation axis L.
  • the substrate S repeats the arrangement of “first arrangement”, “second arrangement”, and “third arrangement” in order.
  • the first supply port 214 and the second supply port 215 and the substrate S are opposed to each other, and the substrate S is positioned in the film formation region immediately below the first supply port 214 and the second supply port 215. It is arrangement to do.
  • the second arrangement is an arrangement in which the third supply port 311 and the fourth supply port 312 are opposed to the substrate S, and the substrate S is located in the film formation region immediately below the third supply port 311 and the fourth supply port 312. is there.
  • the third arrangement is an arrangement in which the substrate S is not positioned in the first arrangement or the second arrangement. Note that the third arrangement is not limited to once while the substrate S goes around the circumference. In particular, since the third arrangement can be taken between the first arrangement and the second arrangement, for example, the substrate S repeatedly moves the first arrangement, the third arrangement, the second arrangement, and the third arrangement in this order.
  • Film formation is performed while moving the substrate S as described above, and a time for supplying the source gas to the substrate S, that is, a time for taking the first arrangement or the second arrangement, and a time for not supplying it, that is, a time for taking the third arrangement are provided.
  • a time for migrating the substrate after the reactive species reaches the substrate there is a time for migrating the substrate after the reactive species reaches the substrate.
  • a stable film quality with excellent crystal quality can be obtained.
  • the distance between the substrate S of the first arrangement and the first supply port 214 and the second supply port 215 is sufficiently short, and the first source gas and the second source gas are mixed in the vicinity of the substrate S for the first time. Has been. Further, the distance between the substrate S in the second arrangement and the third supply port 311 and the fourth supply port 312 is sufficiently close, and the second source gas and the third source gas are mixed for the first time in the vicinity of the substrate S. Has been.
  • a region on the susceptor 51 that faces the first supply port 214 and the second supply port 215 and a region that faces the third supply port 311 and the fourth supply port 312 are a single substrate S in plan view. The size of the plurality of substrates S does not fit.
  • the susceptor 51 is rotated during film formation, whereby the film can be efficiently formed on the substrate S.
  • the temperature in the vicinity of the first supply port 214 and the second supply port 215 or in the vicinity of the third supply port 311 and the fourth supply port 312 is lower than the temperature around the substrate S. From this, a gas flow that rises toward these supply ports may occur. When such a gas flow is strong, the flow of the gas supplied from each supply port to the substrate S is hindered.
  • the susceptor 51 and applying a centrifugal force to the gas on the susceptor 51 during film formation the flow of gas rising from the substrate S toward the supply port can be weakened. Thereby, a film can be efficiently formed on the substrate S.
  • the appropriate rotational speed of the susceptor 51 may differ between HVPE and MOCVD, but is preferably 1 rpm or more. Further, although the appropriate rotation speed of the susceptor 51 may be different between HVPE and MOCVD, the rotation speed is increased from the substrate S toward the supply port side of the first supply pipe 21 because the rotation mechanism can be simply constructed. From the viewpoint of appropriately suppressing the flow of gas, for example, it is preferably 2000 rpm or less, and more preferably 100 rpm or less. By using such a rotational speed, the centrifugal force is not sufficiently generated, the gas distribution on the substrate S is uneven, and the thickness of the film formed in the plane of the substrate S is not uniform. Can be prevented. In addition, since the rotation is not too fast, the source gas can sufficiently stay on the substrate S, and the film can be formed at a sufficient speed.
  • the flow of the raw material gas generated when the susceptor 51 is rotationally driven will be further described.
  • a case where film formation by MOCVD is performed will be described.
  • the susceptor 51 is rotationally driven.
  • a gas flow in a direction from the rotation axis L toward the outer periphery of the susceptor 51 occurs in the film forming chamber 4, particularly in the upper part of the susceptor 51 and around the substrate S.
  • the gas here includes the third source gas, the fourth source gas, and other gases in the film forming chamber 4.
  • the staying gas may include a third source gas, a fourth source gas, a non-reactive gas, a carrier gas, and the like.
  • the staying gas may include a first source gas, a second source gas, a non-reactive gas, a carrier gas, and the like.
  • the rotation axis L and the substrate S are sufficiently close. Therefore, the effect of the staying gas reaches the substrate S.
  • the second exhaust unit 7 is provided to exhaust the staying gas, so that the film can be uniformly formed on the substrate S.
  • a second exhaust means 7 and a first exhaust means 6 for exhausting the gas in the film formation chamber 4 are connected to the film formation chamber 4.
  • the exhaust port of the second exhaust unit 7 is located at the upper part of the rotation center of the susceptor 51, and the exhaust port of the first exhaust unit 6 is located at the outer periphery of the susceptor 51.
  • the tip of the exhaust pipe of the second exhaust means 7 extends in parallel with the rotation axis L.
  • the exhaust pipe of the second exhaust means 7 extends on the rotation axis L in the film forming chamber 4.
  • the distal end portion of the second exhaust means 7 extends in the vertical direction in parallel with the first supply pipe 21 and the second supply pipe 31. Since the exhaust port of the second exhaust means 7 is located in the upper part of the rotation center of the susceptor 51, that is, in the region where the gas stays, the second exhaust means 7 exhausts the staying gas generated when the susceptor 51 rotates. be able to.
  • the second exhaust means 7 exhausts the staying gas in the vicinity of the upper surface of the susceptor 51 on the rotating shaft L.
  • the staying gas around the rotating shaft L and above the susceptor 51 may be exhausted.
  • the concentration of the source gas on the substrate S is made uniform by exhausting the staying gas by the second exhaust means 7, and a film is formed with a uniform thickness in the surface.
  • the doping concentration of the film becomes uniform in the plane.
  • the exhaust of the stagnant gas reduces the non-uniformity such that the concentration of the source gas on the substrate S increases toward the rotation axis L, or the source gas is on the surface of the substrate S.
  • the non-uniformity of the flow velocity flowing through the substrate is reduced in-plane, and the non-uniformity of the time during which Group III atoms and Group V atoms contained in the source gas stay on the surface of the substrate S is reduced. It is presumed that it is acting on.
  • the exhaust pipe of the second exhaust unit 7 extends from below the susceptor 51, You may comprise so that 51 may be penetrated and the residence gas of an upper surface side may be exhausted.
  • the exhaust port of the first exhaust means 6 is provided on the bottom surface of the film forming chamber 4 on the lower surface side of the outer peripheral portion of the susceptor 51.
  • the gas that has flowed to the outer peripheral side of the susceptor 51 is mainly exhausted out of the film forming chamber 4 by the first exhaust means 6.
  • the second exhaust means 7 can be configured to exhaust at an exhaust flow rate corresponding to the amount of staying gas generated.
  • the first exhaust unit 6 can exhaust the interior of the film forming chamber 4 to a predetermined pressure independently of the second exhaust unit 7.
  • FIG. 5 is a view showing the structure of the exhaust pipe of the second exhaust means 72 according to this modification.
  • This figure is a cross-sectional view of the distal end portion of the exhaust pipe of the second exhaust means 72 as seen from the direction orthogonal to the rotation axis L.
  • emitted from the film-forming chamber 4 flows is shown by the arrow.
  • the exhaust pipe of the second exhaust means 72 according to this modification is the same as the second exhaust means 7 except that at least a part thereof has a double pipe structure. A vacuum is formed between the outer tube 712 and the inner tube 711 of the double structure, and the staying gas is exhausted through the inside of the inner tube 711.
  • the stagnant gas exhausted during film formation becomes a high temperature of about 1000 ° C., for example.
  • the exhaust pipe becomes high temperature, and thus heat resistance is required for the structure around the exhaust pipe.
  • the pipe has a double pipe structure, and the vacuum part functions as a heat insulating material, so that there is no influence on the structure part around the exhaust pipe.
  • the high-temperature staying gas taken in from the exhaust port 713 of the second exhaust means 72 passes through the inner pipe 711 and is exhausted.
  • the outer tube 712 is closed near the exhaust port 713, and the space inside the outer tube 712 and outside the inner tube 711 is in a vacuum.
  • This vacuum portion has a heat insulating effect, and the heat of the staying gas flowing in the inner tube 711 can be prevented from being transmitted to the outside of the outer tube 712. For this reason, the structure around the exhaust pipe of the second exhaust means 72 is not greatly affected by heat, and heat resistance is not required. Therefore, stable film formation can be performed, and the design freedom of the vapor phase growth apparatus 1 can be increased.
  • FIG. 6 is a view showing the structure of the vapor phase growth apparatus 11 according to this modification.
  • FIG. 7 is a diagram showing an arrangement relationship of main parts in the vapor phase growth apparatus 11.
  • the first supply unit 2, the second supply unit 3, the film formation chamber 4, and the second exhaust unit 73 are viewed from the direction in which the substrate S attached to the vapor phase growth apparatus 11 is viewed in plan.
  • the arrangement relationship is shown.
  • 6 is a cross-sectional view taken along the line BB ′ of FIG.
  • the vapor phase growth apparatus 11 is the same as the vapor phase growth apparatus 1 except that a second exhaust means 73 having an L-shaped exhaust pipe is provided instead of the second exhaust means 7. .
  • the exhaust port of the second exhaust means 73 is provided at the tip of an L-shaped exhaust pipe.
  • the exhaust pipe of the second exhaust means 73 is inserted from the side surface of the film forming chamber 4, and the upper surface side of the susceptor 51 extends to the center in parallel with the upper surface of the susceptor 51. is doing.
  • the exhaust pipe of the second exhaust means 73 is bent in an L shape so that only its tip extends to the rotation axis L, and the exhaust port faces the susceptor 51 side.
  • the exhaust pipe is disposed between the side surface of the film forming chamber 4 and the center of the susceptor 51 so as not to interfere spatially with the first supply unit 2 and the second supply unit 3.
  • the exhaust pipe is arranged between the side surface of the film forming chamber 4 and the center of the susceptor 51 so as not to affect the supply of the source gas.
  • the exhaust port of the second exhaust means 73 is located in the upper part of the rotation center of the susceptor 51, that is, in the region where the gas stays, and the second exhaust means 73 is used when the susceptor 51 rotates.
  • the resulting stagnant gas can be exhausted.
  • tip part of the 2nd exhaustion means 73 does not necessarily need to be bent at right angle, and may be bent at another angle. Even in this case, it is preferable that the exhaust port of the second exhaust means 73 is disposed on the rotation axis L and in the vicinity of the upper surface of the susceptor 51.
  • FIG. 8 is a diagram for explaining the control of the second exhaust unit 7
  • FIG. 9 is a diagram for explaining the control of the first exhaust unit 6.
  • the vapor phase growth apparatus 1 further includes a storage unit 91, an appropriate exhaust flow rate calculation unit 92, an exhaust flow rate control unit 93, and a pressure control unit 95.
  • the storage unit 91 holds appropriate exhaust reference information in advance.
  • the appropriate exhaust reference information refers to the supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, and the gas supplied from the third supply port 311. This is information indicating the relationship among the supply flow rate, the supply flow rate of the gas supplied from the fourth supply port 312, the rotational speed of the susceptor 51, and the appropriate exhaust flow rate of the staying gas by the second exhaust means 7.
  • the supply flow rate of the gas supplied from the second supply port 215, the supply flow rate of the gas supplied from the third supply port 311, the supply flow rate of the gas supplied from the fourth supply port 312, and the rotational speed of the susceptor 51 Based on the above, an appropriate exhaust flow rate by the second exhaust means 7 is calculated.
  • the exhaust flow rate control unit 93 controls the second exhaust unit 7 so as to exhaust at an appropriate exhaust flow rate by the second exhaust unit 7 calculated by the appropriate exhaust flow rate calculation unit 92.
  • the pressure control unit 95 controls the first exhaust unit 6 so that the inside of the film forming chamber 4 has a predetermined pressure. This will be described in detail below.
  • the vapor phase growth apparatus 1 includes a rotational speed detection unit 901, a first flow rate detection unit 902, a second flow rate detection unit 903, a third flow rate detection unit 904, a fourth flow rate detection unit 905, and a pressure detection unit.
  • 907 and a pressure input unit 94 are further provided.
  • the second exhaust means 7 and the first exhaust means 6 have an exhaust pump (not shown). Both exhaust pumps may be independent, or one exhaust pump may be shared.
  • the rotational speed detection unit 901 is attached to the driving unit 52 and detects the rotational speed of the substrate S, that is, the rotational speed of the susceptor 51. For example, a tachometer.
  • the first flow rate detector 902 detects the flow rate of the gas supplied from the first supply port 214.
  • the second flow rate detector 903 detects the flow rate of the gas supplied from the second supply port 215.
  • the third flow rate detector 904 detects the flow rate of the gas supplied from the third supply port 311.
  • the fourth flow rate detection unit 905 detects the flow rate of the gas supplied from the fourth supply port 312.
  • Each flow rate detection unit is a flow meter provided in the piping of the first supply unit 2 or the second supply unit 3 so as to detect the flow rate of gas supplied from each supply port, for example.
  • the gas supplied from the first supply port 214 can be either the first source gas or the non-reactive gas.
  • the gas supplied from the second supply port 215 can be either the second source gas or the non-reactive gas.
  • the gas supplied from the third supply port 311 can be either the third source gas or the non-reactive gas.
  • the gas supplied from the fourth supply port 312 can be either the fourth source gas or the non-reactive gas.
  • the first source gas is supplied from the first supply port 214
  • the second source gas is supplied from the second supply port 215, the third supply port 311 and the fourth supply port 312.
  • the non-reactive gas is supplied from and the flow rate thereof is detected.
  • the pressure detector 907 measures the pressure in the film forming chamber 4. For example, a vacuum gauge attached to the film forming chamber 4.
  • the user of the vapor phase growth apparatus 1 inputs information indicating a predetermined value to be maintained as the pressure of the film forming chamber 4 to the pressure control unit 95 via the pressure input unit 94.
  • the storage unit 91 holds appropriate exhaust reference information in advance.
  • the appropriate exhaust gas reference flow information can be used to derive the appropriate exhaust gas flow rate of the stagnant gas.
  • the appropriate exhaust reference information refers to the supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, and the gas supplied from the third supply port 311.
  • the appropriate exhaust reference information can be obtained based on fluid calculation, fluid simulation, or preliminary experiment.
  • the appropriate exhaust flow rate of the staying gas can be determined so that, for example, the amount of staying gas generated is discharged equally.
  • the appropriate exhaust flow rate of the staying gas can be an appropriate value based on a prior experiment, or can be a value obtained by weighting a theoretically obtained value according to conditions.
  • information indicating the rotation speed of the susceptor 51 is input from the rotation speed detection unit 901 to the appropriate exhaust flow rate calculation unit 92 and from the first supply port 214.
  • Information indicating the supply flow rate of the supplied gas is input from the first flow rate detection unit 902 to the appropriate exhaust flow rate calculation unit 92, and information indicating the supply flow rate of the gas supplied from the second supply port 215 is the second flow rate.
  • Information indicating the supply flow rate of the gas supplied from the detection unit 903 to the appropriate exhaust flow rate calculation unit 92 and supplied from the third supply port 311 is input from the third flow rate detection unit 904 to the proper exhaust flow rate calculation unit 92, and Information indicating the supply flow rate of the gas supplied from the 4 supply ports 312 is input from the fourth flow rate detection unit 905 to the appropriate exhaust flow rate calculation unit 92.
  • the appropriate exhaust flow rate calculation unit 92 reads appropriate exhaust reference information from the storage unit 91. Then, the appropriate exhaust flow rate calculation unit 92 obtains information indicating the rotation speed of the susceptor 51, information indicating the supply flow rate of the gas supplied from the first supply port 214, and supply flow rate of the gas supplied from the second supply port 215.
  • the exhaust flow rate controller 93 controls the exhaust flow rate of the second exhaust unit 7 so that the second exhaust unit 7 exhausts the gas in the film forming chamber 4 at the input appropriate exhaust flow rate.
  • the appropriate exhaust flow rate calculation unit 92 may be configured to calculate an appropriate exhaust flow rate by the second exhaust means 7 by further taking into account the supply flow rate of the gas supplied from the non-reactive gas supply port 216.
  • the storage unit 91 supplies the supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, and the gas supplied from the third supply port 311.
  • Information indicating the relationship with the appropriate exhaust flow rate of gas is stored in advance as appropriate exhaust reference information.
  • FIG. 10 is a figure which shows the modification of a structure of the control system of the 2nd exhaust means 7 which concerns on this embodiment.
  • the vapor phase growth apparatus 1 may further include a film formation information input unit 96.
  • a user of the vapor phase growth apparatus 1 inputs film formation information indicating film formation conditions to the appropriate exhaust flow rate calculation unit 92 via the film formation information input unit 96.
  • the film formation information includes, for example, information on a film formation method indicating which film formation method is used, HVPE or MOCVD, and indicates which III-V compound semiconductor material film is to be formed. Information and other information relating to film formation.
  • the film formation information may be one of these or a combination of a plurality of information.
  • the storage unit 91 holds in advance appropriate exhaust reference information for each film formation condition indicated by the film formation information, and the appropriate exhaust flow rate calculation unit 92 is based on the film formation information input from the film formation information input unit 96. Then, the appropriate exhaust reference information corresponding to the film forming conditions is read from the storage unit 91, and the appropriate exhaust flow rate by the second exhaust means 7 is calculated in the same manner as described above.
  • the first evacuation unit 6 evacuates the film formation chamber 4 to a predetermined pressure independently of the second evacuation unit 7.
  • the amount of gas to be exhausted by the first exhaust means 6 depends on the exhaust flow rate by the second exhaust means 7 in addition to each gas supplied to the film forming chamber 4.
  • target pressure information indicating the pressure in the film forming chamber 4 to be maintained is input from the pressure input unit 94 to the pressure control unit 95.
  • detected pressure information indicating the pressure in the film formation chamber 4 detected by the pressure detection unit 907 is input to the pressure control unit 95.
  • the pressure control unit 95 controls the first exhaust unit 6 based on the input target pressure information and the detected pressure information.
  • the exhaust flow rate of the first exhaust means 6 is increased, and the pressure value related to the detected pressure information is the pressure related to the target pressure information. If it is lower than the value, the exhaust flow rate of the first exhaust means 6 is reduced.
  • the vapor phase growth apparatus 1 has the two independent exhaust units, the second exhaust unit 7 and the first exhaust unit 6, so that the generated staying gas is appropriately exhausted.
  • the film forming chamber 4 can be maintained at a desired pressure. Therefore, the film can be formed with high stability and a uniform film thickness.
  • the film-forming method which concerns on this embodiment is demonstrated.
  • film formation is performed using the vapor phase growth apparatus 1.
  • at least one substrate S is disposed in the film forming chamber 4, the inside of the film forming chamber 4 is evacuated and vacuumed by the first exhaust means 6, and the HVPE step ( A hydride vapor phase growth step) and an MOCVD step (metal organic vapor phase growth step).
  • the HVPE process the first source gas and the second source gas are supplied into the film forming chamber 4 to form a film on at least one substrate S in the film forming chamber 4.
  • the third source gas and the fourth source gas are supplied into the film forming chamber 4 to form a film on at least one substrate S in the film forming chamber 4.
  • the substrate S disposed on the susceptor 51 is transported in the film forming chamber 4 by the transport means 5 including the susceptor 51 rotating around the rotation axis L.
  • the second exhaust means 7 independent of the first exhaust means 6 exhausts the staying gas generated on the rotation axis L of the transport means 5 and in the vicinity of the upper surface of the susceptor 51.
  • film formation method In the film formation method according to the present embodiment, a case will be described in which film formation is first performed by HVPE (HVPE process), and then film formation is performed by MOCVD (MOCVD process).
  • HVPE process HVPE process
  • MOCVD process MOCVD process
  • the present invention is not limited to this, and film formation by MOCVD may be performed after film formation by MOCVD first.
  • a plurality of substrates S are installed on the susceptor 51.
  • the substrate S is heated from the lower surface side by the heating means 53, the same gas as the second source gas (for example, ammonia gas) is supplied into the film forming chamber 4, and the second source gas atmosphere is formed in the film forming chamber 4.
  • the temperature of the substrate S is preferably 1000 ° C. or higher, for example, and more preferably 1040 ° C. or higher.
  • the inside of the film forming chamber 4 may be a gas atmosphere containing a group V (for example, a nitrogen gas atmosphere). These gases may be supplied from any supply port.
  • heating is performed until the temperature of the raw material 20 in the raw material container 24 reaches a predetermined temperature, for example, 850 ° C.
  • a gas for generating the carrier gas and the first raw material gas is supplied into the raw material container 24 through the pipe 25, and the gas for generating the first raw material gas and the raw material 20 in the raw material container 24 are reacted.
  • the first source gas is generated.
  • the carrier gas is hydrogen gas
  • the gas for generating the first source gas is HCl gas
  • the source 20 is Ga
  • the first source gas is GaCl gas.
  • the generated first source gas is discharged from the source container 24 through the pipe 26, passes through the inside of the second inner pipe 213, and is supplied into the film forming chamber 4 from the first supply port 214.
  • the second source gas is supplied from the second supply port 215 into the film forming chamber 4 through the inside of the outer tube 211 and the outside of the first inner tube 212.
  • the non-reactive gas is supplied from the non-reactive gas supply port 216 into the film forming chamber 4 through the inside of the first inner tube 212 and the outside of the second inner tube 213, and near the supply port of the first supply tube 21. The contact between the first source gas and the second source gas is suppressed.
  • a non-reactive gas for example, hydrogen gas
  • a non-reactive gas for example, hydrogen gas
  • the susceptor 51 in the film formation chamber 4 is rotationally driven by the driving means 52. Therefore, each substrate S on the susceptor 51 revolves around the rotation axis L of the susceptor 51, and the supply port of the first supply pipe 21, that is, the first supply port 214, the second supply port 215, and the non-reactive gas supply port.
  • the first arrangement facing 216 and the other arrangements are alternately repeated. Then, the plurality of substrates S on the susceptor 51 sequentially take the first arrangement.
  • the rotational speed of the susceptor 51 in the HVPE process is preferably 1 rpm or more. Further, the rotational speed of the susceptor 51 in the HVPE process is preferably 2000 rpm or less, and more preferably 100 rpm or less. This is because the flow of gas that rises from the substrate S toward the supply port side of the first supply pipe 21 is appropriately suppressed.
  • the first source gas supplied from the first supply port 214 and the second source gas supplied from the second supply port 215 are supplied onto the substrate S in the first arrangement and reacted to react with the substrate S.
  • a film is formed on the main surface.
  • the region immediately below the supply port of the first supply pipe 21 is a film formation region where film formation proceeds mainly, and the other regions (second arrangement and third arrangement) are non-film formation regions. Become.
  • the film growth mainly proceeds on the substrate having the first arrangement, and basically the film formation does not advance on the second arrangement and the third arrangement.
  • the growth of the film on the substrate S does not always occur only while the substrate S is in the first arrangement.
  • the first raw material gas and the second raw material gas supplied to the substrate S in the first arrangement pass after the substrate S passes just below the supply port of the first supply pipe 21 (that is, in the second arrangement or the third arrangement).
  • the reaction process may proceed on the main surface of the substrate S even during the placement.
  • the first source gas and the second source gas remaining in the film formation chamber 4 reach the main surface of the substrate S, and the film growth proceeds. There is.
  • the staying gas generated along with the rotation of the susceptor 51 is exhausted by the second exhaust means 7 during the film formation.
  • the second exhaust means 7 is controlled by the exhaust flow rate control unit 93 to discharge gas at an appropriate flow rate.
  • the first exhaust means 6 exhausts the inside of the film forming chamber 4 to a predetermined pressure.
  • the first exhaust means 6 is controlled by the pressure controller 95 as described above.
  • the pressure in the film forming chamber 4 is set to 660 hPa, for example.
  • the supply of the first source gas and the second source gas from the first supply pipe 21 is stopped, and the first supply pipe by the heating unit 27 is stopped. 21 stops heating.
  • the MOCVD process is performed. At this time, the MOCVD process can be started without waiting for the first supply pipe 21 of the first supply unit 2 to be cooled.
  • the heating conditions of the heating means 53 are switched as necessary so that the substrate S has a predetermined temperature in the MOCVD process.
  • the same gas as the fourth source gas (for example, ammonia gas) is supplied, and the film forming chamber 4 is set as the fourth source gas atmosphere.
  • the inside of the film forming chamber 4 may be a gas atmosphere containing a group V (for example, a nitrogen gas atmosphere). These gases may be supplied from any supply port.
  • the third source gas and the fourth source gas are supplied into the film formation chamber 4 through the shower head 32 of the second supply unit 3 and film formation is performed.
  • the third source gas is, for example, trimethyl gallium gas.
  • a non-reactive gas for example, hydrogen gas
  • a non-reactive gas for example, hydrogen gas
  • the susceptor 51 in the film formation chamber 4 is rotationally driven by the driving means 52. Accordingly, each substrate S on the susceptor 51 revolves around the rotation axis L of the susceptor 51 and has a second arrangement facing the supply ports of the second supply unit 3, that is, the third supply port 311 and the fourth supply port 312. The other arrangements (the first arrangement and the third arrangement) are alternately repeated. And the some board
  • Rotational speed of the susceptor 51 in the MOCVD process is preferably 1 rpm or more. Further, the rotation speed of the susceptor 51 in the MOCVD process is preferably 2000 rpm or less, and more preferably 100 rpm or less. This is to appropriately suppress the flow of gas that rises from the substrate S toward the supply port side of the second supply pipe 31.
  • the third source gas supplied from the third supply port 311 and the fourth source gas supplied from the fourth supply port 312 are supplied onto the substrate S in the second arrangement and reacted to react with the substrate S.
  • a film is formed on the main surface.
  • the area immediately below the supply port of the second supply pipe 31 (second arrangement) is a film formation area where film formation proceeds mainly, and the other areas (first arrangement and third arrangement) are non-film formation areas. Become.
  • the growth of the film mainly proceeds on the substrate having the second arrangement, and basically the film formation does not proceed on the substrates having the first arrangement and the third arrangement.
  • the growth of the film on the substrate S does not always occur only while the substrate S is in the second arrangement.
  • the third source gas and the fourth source gas supplied to the substrate S in the second arrangement are passed after the substrate S passes directly under the supply port of the second supply pipe 31 (that is, the first arrangement or the third arrangement).
  • the reaction process may proceed on the main surface of the substrate S even during the placement.
  • the third source gas and the fourth source gas remaining in the film forming chamber 4 reach the main surface of the substrate S, and the film growth proceeds. There is.
  • the staying gas generated along with the rotation of the susceptor 51 is exhausted by the second exhaust means 7 during the film formation.
  • the second exhaust means 7 is controlled by the exhaust flow rate control unit 93 to discharge gas at an appropriate flow rate.
  • the first exhaust means 6 exhausts the inside of the film forming chamber 4 to a predetermined pressure.
  • the first exhaust means 6 is controlled by the pressure controller 95 as described above.
  • the pressure in the film forming chamber 4 is set to 660 hPa, for example.
  • a semiconductor device such as a semiconductor light emitting element such as a laser or a light emitting diode can be manufactured.
  • the vapor phase growth apparatus 1 of the present embodiment exhausts the staying gas generated in the vicinity of the rotation axis L at the upper part of the susceptor by the second exhaust means 7, thereby reducing the thickness of the film formed on the surface of the substrate S. Uniformity can be reduced, and as a result, in-plane variation in in-plane film thickness non-uniformity can be reduced.
  • the first supply pipe 21 of the first supply unit 2 and the second supply pipe 31 of the second supply unit 3 are connected in the same film formation chamber 4.
  • gas is supplied from each of the first supply unit 2 and the second supply unit 3. Therefore, for example, after the gas supply from the second supply unit 3 is stopped, the gas is supplied from the first supply unit 2 to form a film on the substrate S, and then the gas from the first supply unit 2 is supplied.
  • the supply of gas from the second supply unit 3 can be started and film formation can be performed on the substrate S without stopping the supply and waiting for the cooling of the first supply unit 2.
  • a cooling time of 2 to 3 hours is required to move the substrate S to the other chamber after film formation in one chamber.
  • the vapor phase growth apparatus 1 according to the present embodiment does not require such a cooling time, and can form a film efficiently.
  • the gas supply port to the film formation chamber 4 of the first supply pipe 21 and the gas to the film formation chamber 4 of the second supply pipe 31 are viewed from the top view of the upper surface of the susceptor 51. Is provided on the circumference drawn by the substrate S by rotationally driving the susceptor 51. Therefore, a film can be formed on the substrate S by the gas from the supply port of the first supply pipe 21 or the supply port of the second supply pipe 31 only by rotationally driving the susceptor 51.
  • a state where the substrate S is in a position facing the supply port from which the source gas is discharged and a state where the substrate S is not in this position are alternately displayed.
  • FIG. it is possible to alternately perform the process of supplying the source gas to the surface of the substrate S and the process of not supplying the source gas.
  • the diffusion of atoms as the raw material of the film on the substrate S can be promoted, and a III-V group compound semiconductor with high crystallinity can be obtained.
  • the susceptor 51 holding a plurality of substrates S is rotated, and each substrate S is sequentially deposited to face the source gas supply port. That is, the distance and the positional relationship between the supply port and the substrate S are the same for all the substrates S. Thereby, the film quality and film thickness of the formed film do not differ for each substrate S.
  • the first source gas when the gas is supplied from the first supply unit 2, the first source gas is supplied from the second inner pipe 213, and the first source gas is supplied through the inner side of the outer pipe 211 and the outer side of the first inner pipe 212.
  • Two source gases are supplied, and a non-reactive gas is supplied through the inside of the first inner pipe 212 and the outside of the second inner pipe 213.
  • contact between the first source gas and the second source gas in the vicinity of the supply port of the first supply pipe 21 is suppressed. Since the first source gas and the second source gas are mixed and reacted for the first time in the vicinity of the substrate S, a film can be efficiently formed on the substrate S.
  • the heating means 27 for heating the inside of the first supply pipe 21 is arranged around the first supply pipe 21, and the heat from the heating means 27 is cut off around the heating means 27.
  • a heat shield 22 is arranged. By doing in this way, the influence of the heat to structure parts other than the 2nd supply part 3 and the 2nd supply part 3 can be suppressed. Furthermore, since the heat shield means 22 includes the cooling means 224, heat can be more reliably cut off.
  • the number of substrates S that can be formed by HVPE is the same as the number of substrates S that can be formed by MOCVD. Therefore, for example, since all the substrates S formed in the HVPE process can be processed in the MOCVD process, the manufacturing efficiency is good. Furthermore, since the film formation process can be continuously performed by HVPE and MOCVD without removing the substrate S from the film formation chamber 4, for example, after the HVPE process, the film formation process is started by MOCVD. It can be suppressed that S is contaminated or crystallinity is deteriorated by evaporation of surface atoms.
  • the present invention is not limited to this.
  • an Al source may be disposed in the second inner tube 213 of the first supply unit 2 in addition to the Ga source.
  • the second supply unit 3 may supply trimethylaluminum in addition to trimethylgallium as the third source gas.
  • the vapor phase growth apparatus 1 stores various information related to conditions suitable for the HVPE process and the MOCVD process in the storage unit, and the film is automatically formed when the user inputs a signal requesting the start of each process. May be configured.
  • the vapor phase growth apparatus 1 can be configured as described in Japanese Patent Application Laid-Open No. 2013-222284 and film formation can be performed.
  • the exhaust flow rate control unit 93 controls the exhaust flow rate of the second exhaust unit 7 based on the proper exhaust flow rate by the second exhaust unit 7 input from the appropriate exhaust flow rate calculation unit 92.
  • the exhaust flow rate control unit 93 may be configured to control the second exhaust unit 7 based on information input by the user instead of the appropriate exhaust flow rate input from the appropriate exhaust flow rate calculation unit 92.
  • the information input by the user is, for example, information indicating the flow rate to be exhausted by the second exhaust means 7 that is arbitrarily set, or information indicating the value that the pressure inside the pipe provided in the second exhaust means 7 should take. sell.
  • the vapor phase growth apparatus 1 includes one first supply pipe 21 and one second supply pipe 31, but includes a plurality of first supply pipes 21 and a plurality of second supply pipes 31. May be.
  • the present invention is not limited to this.
  • linear driving or the like is also possible.
  • the region where the gas can be accumulated differs depending on the arrangement of the gas supply port, the exhaust port, the configuration of the transfer means, etc. in the film forming chamber 4, and the position where the exhaust port of the second exhaust means 7 is to be arranged is also different.
  • the region where the gas can be accumulated can be known using, for example, a fluid simulation.
  • the second exhaust means 7 may be provided so as to exhaust the staying gas generated in the vicinity of the substrate S.
  • the exhaust port of the first exhaust unit 6 is provided on the bottom surface of the film forming chamber 4 on the lower surface side of the outer peripheral portion of the susceptor 51 .
  • the present invention is not limited to this. It may be provided so as not to affect the exhaust of the staying gas by the second exhaust means 7 and the supply of the raw material gas to the substrate S.
  • the staying gas is exhausted by the second exhaust means 7 in the HVPE process or the MOCVD process. Do not mean. Under the condition that a uniform film can be formed without exhausting the staying gas, the film can be formed by appropriately evacuating the second exhaust means 7.
  • the vapor phase growth apparatus 1 according to the second embodiment has the same configuration as the vapor phase growth apparatus 1 according to the first embodiment except that a fifth supply pipe 722 is further provided.
  • the fifth supply pipe 722 supplies an auxiliary gas containing a group V element to the non-film-deposited substrate S. This will be described in detail below.
  • FIG. 11 is a view showing the structure of the exhaust pipe 721 and the fifth supply pipe 722 of the second exhaust means 74 according to the present embodiment.
  • This drawing is a cross-sectional view of the exhaust pipe 721 and the tip of the fifth supply pipe 722 as seen from the direction orthogonal to the rotation axis L. Further, in this drawing, the flow direction of the staying gas discharged from the film formation chamber 4 and the auxiliary gas supplied to the film formation chamber 4 is indicated by arrows.
  • the fifth supply pipe 722 and the exhaust pipe 721 of the second exhaust means 74 form a double pipe structure.
  • FIG. 12 shows the first supply unit 2, the second supply unit 3, the susceptor 51, the exhaust pipe 721 of the second exhaust means 74, the fifth supply pipe 722, the supply port 724, the rotating shaft L, and the substrate according to the present embodiment. It is a figure which shows the positional relationship of S. This figure shows a positional relationship when the susceptor 51 is viewed from the top surface in a plan view. The direction in which the auxiliary gas is supplied from the supply port 724 is indicated by an arrow. The parts with different heights and the parts that are actually hidden are shown by solid lines.
  • a fifth supply pipe 722 is connected to the film forming chamber 4 of the vapor phase growth apparatus 1 according to the present embodiment.
  • the tip of the fifth supply pipe 722 is inserted into the film forming chamber 4.
  • the fifth supply pipe 722 supplies an auxiliary gas containing a group V element to the substrate S not facing the supply port to which the source gas is supplied during film formation.
  • the auxiliary gas only needs to contain a group V element contained in the second source gas and the fourth source gas, and examples thereof include any one or more of ammonia gas, nitrogen gas, and hydrazine gas. . Of these, ammonia gas is preferred from the viewpoint of good decomposability.
  • a gas containing the same group V element as the group V element contained in the source gas supplied during the film formation is supplied from the fifth supply pipe 722 into the film formation chamber 4. That is, the gas contains the same group V element as the group V element contained in the second source gas in the HVPE process and in the fourth source gas in the MOCVD process.
  • the exhaust pipe 721 is inserted into the fifth supply pipe 722 to form a double pipe structure in which the exhaust pipe 721 is an inner pipe and the fifth supply pipe 722 is an outer pipe.
  • the fifth supply pipe 722 and the exhaust pipe 721 have at least tip portions extending in parallel with the rotation axis L.
  • the fifth supply pipe 722 and the exhaust pipe 721 extend on the rotation axis L.
  • an exhaust port 723 is provided at the tip of the exhaust pipe 721.
  • the exhaust port 723 faces the upper surface of the susceptor 51 and is located above the center of rotation of the susceptor 51.
  • the staying gas generated by the rotation of the susceptor 51 passes through the exhaust pipe 721 through the exhaust port 723 and is exhausted outside the film forming chamber 4.
  • a supply port 724 is provided near the tip of the fifth supply pipe 722.
  • An end surface in the extending direction of the fifth supply pipe 722 is closed in the film forming chamber 4, and a plurality of supply ports 724 are provided on the side surface near the tip of the fifth supply pipe 722 so as to be spaced apart in the circumferential direction. ing.
  • the auxiliary gas passes through the inside of the fifth supply pipe 722 and the outside of the exhaust pipe 721, and is supplied into the film forming chamber 4 from the plurality of supply ports 724.
  • the auxiliary gas that has passed through the fifth supply pipe 722 is released in a direction parallel to the upper surface of the susceptor 51. Further, the auxiliary gas is supplied radially as shown in FIG.
  • the auxiliary gas is supplied toward the top of the plurality of substrates S. Note that the distance between the supply port 724 and the susceptor 51 is longer than the distance between the exhaust port 723 and the susceptor 51.
  • the auxiliary gas is supplied only to the plurality of substrates S that are not opposed to the supply port of the first supply pipe 21 and the supply port of the second supply pipe 31, that is, in the third arrangement.
  • a straight line connecting the center of the supply port of the first supply pipe 21 and the center of the fifth supply pipe 722, and the center of the second supply pipe 31 and the center of the fifth supply pipe 722 are arranged.
  • the supply port 724 is not formed on the connecting straight line.
  • the auxiliary gas may be supplied to the surface of the substrate S to which no source gas is supplied.
  • the auxiliary gas is supplied toward the plurality of substrates S having the second arrangement and the third arrangement in the HVPE process, and toward the plurality of substrates S having the first arrangement and the third arrangement in the MOCVD process.
  • It may be configured to be switchable.
  • the example in which the plurality of supply ports 724 are provided on the side surface in the vicinity of the tip of the fifth supply pipe 722 so as to be spaced apart in the circumferential direction has been described, but the supply port 724 and the susceptor 51
  • the distances may all be the same or different. However, from the viewpoint of keeping the gas concentration on the surface of the substrate S as constant as possible regardless of the arrangement, the distance is preferably the same for all the supply ports 724.
  • the flow rate for supplying the auxiliary gas will be described.
  • the group III atom concentration and the group V atom concentration on the surface of the substrate S are high. Become.
  • the substrate S revolves around the rotation axis L, the substrate S is temporarily located in another region that is not the film formation region, and the group III atom concentration on the surface of the substrate S becomes approximately zero. .
  • an auxiliary gas containing a group V element is supplied from the fifth supply pipe 722.
  • the supply flow rate of auxiliary gas from the fifth supply pipe 722 (V group atom supply amount per unit time) is the supply flow rate of the second source gas from the second supply port 215 (V group atom supply amount per unit time). Less than.
  • the supply flow rate of the auxiliary gas from the fifth supply pipe 722 is 1/100 to 1/2 the supply flow rate of the second source gas from the second supply port 215.
  • the group V atom concentration on the surface of the substrate S located in another region that is not the film formation region is located in the film formation region.
  • the HVPE process has been described as an example, but the same applies to the MOCVD process.
  • the optimal auxiliary gas supply flow rate may differ between the HVPE process and the MOCVD process.
  • the appropriate exhaust flow rate calculation unit 92 of the vapor phase growth apparatus 1 may be configured to calculate the appropriate exhaust flow rate by the second exhaust unit 74 by further taking into account the supply flow rate of the auxiliary gas. good.
  • the storage unit 91 supplies the supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, and the gas supplied from the third supply port 311.
  • the indicated information is held in advance as appropriate exhaust reference information.
  • the vapor phase growth apparatus 1 includes a fifth supply pipe 722 that supplies a gas containing a group V element to the substrate S located in another region that is not a film formation region.
  • a constant pressure can be applied to the group V atoms on the surface of the substrate S in a state where the source gas is not supplied.
  • the group V atoms can be prevented from leaving from the surface of S.
  • the supply flow rate of the auxiliary gas from the fifth supply pipe 722 is set to the driving gas supply unit, that is, the second source gas or the fourth source gas supplied from the first supply unit 2 or the second supply unit 3.
  • the fifth supply pipe 722 is provided separately from the first supply pipe 21 and the second supply pipe 31 and is an independent pipe different from these supply pipes.
  • the amount of auxiliary gas supplied can be controlled independently.
  • the pressure on the surface of the substrate S can be set to a desired pressure, and the optimum pressure is applied to the group V atoms on the surface of the substrate S while promoting the diffusion of the group III atoms on the surface of the substrate S on the surface of the substrate S. Can be granted. Therefore, a group III-V compound semiconductor film with good crystal quality can be formed.
  • the auxiliary gas is supplied from the fifth supply pipe 722 toward the upper portion of the substrate S in the region other than the growth region.
  • the group V atom concentration on the surface of a certain substrate S can be kept relatively constant.
  • the fifth supply pipe 722 is configured to supply gas toward an area excluding the film formation area directly below the first supply pipe 21 and the second supply pipe 31.
  • a supply port 724 is formed at the distal end portion of the fifth supply pipe 722. This supply port 724 is viewed in a plan view from the direction of the rotation axis, that is, viewed from a direction in which the susceptor 51 is viewed in a plan view. And not formed on the straight line connecting the center of the first supply pipe 21 and the center of the fifth supply pipe 722 and on the straight line connecting the center of the second supply pipe 31 and the center of the fifth supply pipe 722. .
  • the fifth supply pipe 722 having such a structure, the flow of the raw material gas supplied from the supply port of the first supply pipe 21 and the flow of the raw material gas supplied from the supply port of the second supply pipe 31 Is prevented from being disturbed by the gas supplied from the fifth supply pipe 722.
  • the value of the V / III ratio (the group V atom concentration with respect to the group III atom concentration) in the gas supplied from the first supply tube 21 or the second supply tube 31 varies depending on the gas supplied from the fifth supply tube 722. Can also be prevented.
  • one fifth supply pipe 722 is disposed inside the circumference drawn by the substrate S, and gas is discharged radially from the fifth supply pipe 722. This eliminates the need to provide a large number of supply pipes. Furthermore, in this embodiment, since the tip of the fifth supply pipe 722 is located on the rotation axis L, the substrate S is located at any position on the circumference drawn by the substrate S revolving around the rotation axis L. Even in some cases, the distance between the fifth supply pipe 722 and the substrate S is constant. An auxiliary gas containing a group V element is supplied from the fifth supply pipe 722 toward the upper portion of the substrate S. However, the concentration of the auxiliary gas on the revolving substrate S can be kept relatively constant.
  • the exhaust pipe 721 and the fifth supply pipe 722 of the second exhaust means 74 are arranged on the rotation axis L in a double pipe structure, It is possible to achieve both the exhaust of the accumulated gas and the supply of the auxiliary gas at the upper part of the rotation center of the susceptor 51.
  • the exhaust port 723 of the second exhaust unit 74 is provided to face the surface of the susceptor 51, and the supply port 724 of the fifth supply pipe 722 emits auxiliary gas in a direction orthogonal to the side surface of the exhaust pipe 721. For this reason, the flow of the staying gas discharged and the supplied auxiliary gas are not hindered from each other. Therefore, a film with good crystal quality can be formed with a uniform film thickness in the in-plane direction.
  • the exhaust pipe 721 and the fifth supply pipe 722 of the second exhaust means 74 have a double pipe structure, a heat shielding effect is obtained. That is, since the auxiliary gas flows through the outer peripheral portion of the exhaust pipe 721, it is possible to suppress the heat of the high-temperature staying gas passing through the exhaust pipe 721 from being transmitted to the structure portion outside the fifth supply pipe 722. . For this reason, the structure around the fifth supply pipe 722 is not greatly affected by heat, and heat resistance is not required. Therefore, the degree of freedom in design can be increased. In addition, stable film formation can be achieved.
  • the 5th supply pipe 722 and the exhaust pipe 721 of the 2nd exhaust means 74 comprised a double pipe structure
  • the fifth supply pipe 722 and the exhaust pipe 721 may be provided as a single pipe, or may be provided at different locations.
  • the fifth supply pipe 722 may be provided so as to supply the auxiliary gas to the substrate S not in the growth region, and the exhaust pipe 721 may be provided so as to exhaust the staying gas.
  • each fifth supply pipe 722 is positioned on the circumference drawn by the revolving substrate S, and can be configured to face the substrate S in the third arrangement. Thereby, a gas containing a group V element may be supplied onto the substrate S.
  • Example 1 Using a vapor phase growth apparatus as described in the second embodiment, a gallium nitride (GaN) film was formed on a sapphire substrate by MOCVD. A sapphire substrate was placed on the susceptor, and the chamber (film formation chamber 4) was evacuated to a vacuum. During the film formation, the rotational speed of the susceptor was driven at 30 rpm. In addition, ammonia (NH 3 ) gas is supplied at 2 L / min from the periphery of the double pipe (the supply port 724 of the fifth supply pipe 722) disposed at the upper center of the susceptor during film formation. Exhaust was performed from the center pipe (exhaust pipe 721 of the second exhaust means 74).
  • NH 3 ammonia
  • the central tube was connected to an exhaust pump via a needle valve.
  • a source gas first, trimethylgallium gas is supplied from the third supply port 311 at a flow rate of 4.8 cc / min, and ammonia gas is supplied from the fourth supply port 312 at a flow rate of 8 L / min. The film was formed for 5 minutes.
  • the flow rate of trimethylgallium gas supplied from the third supply port 311 is switched to 10 cc / min
  • the flow rate of ammonia gas supplied from the fourth supply port 312 is switched to 12 L / min
  • the substrate temperature is 1000 ° C. for 15 minutes.
  • film formation was performed.
  • the exhaust flow rate from the central tube was controlled based on the pressure so as to be 600 hPa immediately before the needle valve. Further, the chamber was evacuated by the evacuation means (first evacuation means 6) so that the pressure in the chamber was 666 hPa.
  • FIG. 13 is a diagram showing the film thickness distribution of the GaN film according to this example.
  • the film thickness distribution was measured with an optical non-contact film thickness measuring device.
  • This figure also shows the measurement results of three substrates (depicted by different markers in the figure) on which film formation has been performed at once.
  • the horizontal axis indicates the distance from the center of the susceptor (rotation axis L), and the vertical axis indicates the film thickness of the formed GaN film. From this figure, it can be seen that the film was formed with a uniform film thickness.
  • the in-plane film thickness non-uniformity was suppressed from batch to batch. And the improvement in yield was confirmed.
  • Example 2 Using a vapor phase growth apparatus as described in the second embodiment, a gallium nitride (GaN) film was formed on a GaN template by HVPE.
  • the GaN template was placed on the susceptor, and the chamber (film formation chamber 4) was evacuated to a vacuum. During the film formation, the rotational speed of the susceptor was driven at 5 rpm.
  • ammonia (NH 3 ) gas was supplied at a rate of 0.5 L / min from the periphery of the double pipe (the supply port 724 of the fifth supply pipe 722) disposed at the upper center of the susceptor during film formation.
  • the exhaust flow rate from the central pipe (exhaust pipe 721 of the second exhaust means 74) of the same double pipe was controlled based on the pressure so as to be 600 hPa immediately before the needle valve. Further, the chamber was evacuated by the evacuation means (first evacuation means 6) so that the pressure in the chamber was 666 hPa.
  • As source gases GaCl gas is supplied from the first supply port 214 at a flow rate of 300 cc / min, ammonia gas is supplied from the second supply port 215 at a flow rate of 6 L / min, and the substrate temperature is 1000 ° C. for 5 minutes. Film formation was performed.
  • FIG. 14 is a diagram showing the film thickness distribution of the GaN film according to this example.
  • the horizontal axis indicates the distance from the center of the susceptor (rotation axis L), and the vertical axis indicates the film thickness of the formed GaN film. From this figure, it can be seen that in HVPE, the film was formed with a uniform film thickness without exhausting from the central tube.
  • the film formation by HVPE even when the exhaust from the central tube is not performed, the film formation with a uniform film thickness may be possible.
  • the raw material gas flow rate was increased and the film growth rate was increased, there was a high tendency for non-uniform film thickness distribution without exhaust from the central tube.
  • a film having a uniform film thickness could be stably formed.
  • the in-plane film thickness non-uniformity varies from batch to batch. Was suppressed. And the improvement in yield was confirmed.
  • a gallium nitride (GaN) film was formed on a sapphire substrate by MOCVD.
  • a sapphire substrate was placed on the susceptor, and the chamber (film formation chamber 4) was evacuated to a vacuum.
  • the rotational speed of the susceptor was driven at 5 rpm.
  • ammonia gas was supplied at a rate of 2 L / min from around the double pipe (the supply port 724 of the fifth supply pipe 722) disposed at the upper center of the susceptor during film formation.
  • no exhaust was performed from the central pipe (exhaust pipe 721 of the second exhaust means 74) of the same double pipe.
  • trimethylgallium gas is supplied from the third supply port 311 at a flow rate of 4.8 cc / min, and ammonia gas is supplied from the fourth supply port 312 at a flow rate of 8 L / min.
  • the film was formed for 5 minutes.
  • the flow rate of trimethylgallium gas supplied from the third supply port 311 is switched to 10 cc / min, the flow rate of ammonia gas supplied from the fourth supply port 312 is switched to 12 L / min, and the substrate temperature is 1000 ° C. for 15 minutes.
  • film formation was performed.
  • the first exhaust means 6 was controlled so that the pressure in the chamber was 660 hPa.
  • FIG. 15 is a view showing the film thickness distribution of the GaN film according to this comparative example.
  • the horizontal axis indicates the distance from the center of the susceptor (rotation axis L), and the vertical axis indicates the film thickness of the formed GaN film.
  • This figure also shows the measurement results of three substrates (depicted by different markers in the figure) on which film formation has been performed at once. From this figure, it can be seen that the film thickness of the GaN film formed on the substrate is non-uniform and is thicker as it is closer to the center of the susceptor (rotation axis L).
  • the in-plane film thickness non-uniformity was large between batches.

Abstract

A vapor phase growth apparatus (1) is provided with a film-forming chamber (4), a first supply unit (2), a second supply unit (3), a transfer means (5), and a first gas release means (6). At least one substrate (S) is disposed in the film-forming chamber (4), and a III-V compound semiconductor film is formed on the substrate (S). The transfer means (5) is provided with a susceptor (51) that rotates about a rotation axis (L). Furthermore, the vapor phase growth apparatus (1) is provided with a second gas release means (7) that releases, independently from the first gas release means (6), gas from the film-forming chamber (4). The second gas release means (7) releases a remaining gas which is generated on the rotation axis (L) of the transfer means (5), said remaining gas being close to an upper surface of the susceptor (51).

Description

気相成長装置および成膜方法Vapor phase growth apparatus and film forming method
 本発明は気相成長装置および成膜方法に関する。 The present invention relates to a vapor phase growth apparatus and a film forming method.
 発光ダイオード素子や半導体レーザ素子等の発光素子は、たとえば、以下のようにして製造されている。基板としてサファイアやSiC、GaN、AlN等を用い、その上に有機金属気相化学反応法(MOCVD法)を用いて半導体層を積層する。半導体層としては、たとえば、アンドープGaN層等の下地層、n型半導体層、発光層およびp型半導体層を成長させる。 Light emitting elements such as light emitting diode elements and semiconductor laser elements are manufactured as follows, for example. Sapphire, SiC, GaN, AlN or the like is used as a substrate, and a semiconductor layer is stacked thereon using a metal organic chemical vapor deposition (MOCVD) method. As the semiconductor layer, for example, an underlayer such as an undoped GaN layer, an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer are grown.
 近年、格子不整合から生じる結晶成長時の欠陥を低減させ、更にサファイア基板等の基板を除去するために、アンドープGaN層等の下地層の厚みを、たとえば、30μm~50μmと厚くすることが求められている。しかし、MOCVD法における成膜速度は、一般に1μm/h~3μm/hであり、成膜速度が遅いため、厚みの厚い下地層を形成しようとすると、非常に時間がかかる。 In recent years, in order to reduce defects during crystal growth caused by lattice mismatch and further remove a substrate such as a sapphire substrate, it is required to increase the thickness of an underlayer such as an undoped GaN layer to, for example, 30 μm to 50 μm. It has been. However, the film formation rate in the MOCVD method is generally 1 μm / h to 3 μm / h, and the film formation rate is slow, so it takes a very long time to form a thick underlayer.
 そこで、成長速度が速いハイドライド気相成長法(HVPE法)により、厚みの厚い下地層を形成し、その後、MOCVD法により上層の半導体層を形成する方法が考えられる。HVPE法における成膜速度は、一般に100μm/h~300μm/h程度であり、HVPE法を使用することで、素子の製造にかかる時間が格段に短くなると考えられる。 Therefore, a method of forming a thick underlayer by hydride vapor phase epitaxy (HVPE) having a high growth rate and then forming an upper semiconductor layer by MOCVD is conceivable. The film formation rate in the HVPE method is generally about 100 μm / h to 300 μm / h, and it is considered that the time required for manufacturing the device is remarkably shortened by using the HVPE method.
 このような要求に対応するための成膜装置として、たとえば特許文献1および特許文献2には、ひとつの成膜室内でHVPE法による成膜と、MOCVD法による成膜とを連続して行える装置が開示されている。 As a film forming apparatus for meeting such a demand, for example, Patent Document 1 and Patent Document 2 disclose an apparatus capable of continuously performing film formation by the HVPE method and film formation by the MOCVD method in one film formation chamber. Is disclosed.
特開2011-114196号公報JP 2011-114196 A 特開2013-222884号公報JP 2013-222848 A
 しかし、特許文献1および特許文献2に記載の技術では、作製した素子や積層基板の製造歩留まりが良くないことがあった。そこで、本発明者が鋭意検討したところ、バッチ間で平均膜厚にばらつきが生じていることを新たに見出した。そしてさらに検討を進めたところ、各基板において、面内での膜厚が不均一になることがあり、その不均一の度合いがバッチ間や成膜条件ごとにばらついているという知見を新たに得た。 However, with the techniques described in Patent Document 1 and Patent Document 2, the production yield of the fabricated elements and laminated substrates may not be good. Then, when this inventor earnestly examined, it discovered newly that dispersion | variation has arisen in the average film thickness between batches. As a result of further investigations, the in-plane film thickness may be non-uniform for each substrate, and new knowledge has been obtained that the degree of non-uniformity varies between batches and film formation conditions. It was.
 本発明は、面内膜厚の不均一性の、バッチ間ばらつきを低減したIII-V族化合物半導体膜の成膜が可能な気相成長装置および成膜方法を提供するものである。 The present invention provides a vapor phase growth apparatus and a film forming method capable of forming a group III-V compound semiconductor film in which in-plane film thickness non-uniformity and batch-to-batch variation are reduced.
 このような成膜を行うための方法として、基板の主面に垂直で、基板の中心を通る直線を軸として、成膜中に基板を回転(自転)させる方法があったが、十分ではなかった。たとえば、このような方法では、回転の円周方向には膜厚が均一化されるが、半径方向の不均一性を解消することはできず、面内膜厚の不均一性が成膜条件に依存していた。 As a method for forming such a film, there has been a method of rotating (spinning) the substrate during film formation around a straight line that is perpendicular to the main surface of the substrate and passes through the center of the substrate, but it is not sufficient. It was. For example, in this method, the film thickness is made uniform in the circumferential direction of rotation, but the non-uniformity in the radial direction cannot be eliminated, and the in-plane film thickness non-uniformity is a film forming condition. Depended on.
 本発明によれば、
 内部に少なくとも1枚の基板が配置され、前記基板上にIII-V族化合物半導体膜を形成する成膜室と、
 前記成膜室内に、ハロゲン元素およびIII族元素を含む第1原料ガス、および前記第1原料ガスと反応して前記基板上に膜を形成する第2原料ガスを導入する第1供給部と、
 前記成膜室内に、有機金属を含む第3原料ガス、および前記第3原料ガスと反応して前記基板上に膜を形成する第4原料ガスを導入する第2供給部と、
 前記成膜室内で前記基板を搬送する搬送手段と、
 前記成膜室内のガスを排気して真空化する第1排気手段とを備え、
 前記第1供給部は、
  前記第1原料ガスを前記基板に向けて供給する第1供給口と、
  前記第2原料ガスを前記基板に向けて供給する第2供給口とを備え、
  前記第1原料ガスおよび前記第2原料ガスを互いに混合させずに、前記第1供給口および前記第2供給口にそれぞれ導き、
 前記第2供給部は、
  前記第3原料ガスを前記基板に向けて供給する第3供給口と、
  前記第4原料ガスを前記基板に向けて供給する第4供給口とを備え、
  前記第3原料ガスおよび前記第4原料ガスを互いに混合させずに、前記第3供給口および前記第4供給口にそれぞれ導き、
 前記搬送手段は、回転軸周りに回転するサセプタを備え、
 前記第1供給口、前記第2供給口、前記第3供給口および前記第4供給口は、前記サセプタの上面近傍に設けられ、当該上面に対向しており、
 前記搬送手段は、前記サセプタ上に配置された前記基板を、前記第1供給口および前記第2供給口に対向させる第1配置と、前記第3供給口および前記第4供給口に対向させる第2配置と、前記第1供給口、前記第2供給口、前記第3供給口、および前記第4供給口のいずれにも対向させない第3配置との間で搬送し、
 前記第1排気手段とは独立して前記成膜室内を排気する第2排気手段をさらに備え、
 前記第2排気手段は、前記搬送手段の前記回転軸上、かつ、前記サセプタの上面近傍に生じる滞留ガスを排気する気相成長装置
が提供される。
According to the present invention,
A deposition chamber in which at least one substrate is disposed, and a group III-V compound semiconductor film is formed on the substrate;
A first supply unit that introduces a first source gas containing a halogen element and a group III element into the film formation chamber, and a second source gas that reacts with the first source gas to form a film on the substrate;
A second supply unit for introducing a third source gas containing an organic metal into the film formation chamber and a fourth source gas that reacts with the third source gas to form a film on the substrate;
Transport means for transporting the substrate in the film forming chamber;
A first exhaust means for exhausting and evacuating the gas in the film forming chamber;
The first supply unit includes:
A first supply port for supplying the first source gas toward the substrate;
A second supply port for supplying the second source gas toward the substrate;
Without mixing the first source gas and the second source gas with each other, each led to the first supply port and the second supply port,
The second supply unit includes:
A third supply port for supplying the third source gas toward the substrate;
A fourth supply port for supplying the fourth source gas toward the substrate;
Without mixing the third source gas and the fourth source gas with each other, led to the third supply port and the fourth supply port,
The transport means includes a susceptor that rotates around a rotation axis;
The first supply port, the second supply port, the third supply port, and the fourth supply port are provided near the upper surface of the susceptor, and are opposed to the upper surface.
The transfer means includes a first arrangement in which the substrate arranged on the susceptor is opposed to the first supply port and the second supply port, and a first arrangement in which the substrate is opposed to the third supply port and the fourth supply port. 2 between the first and second supply ports, the second supply port, the third supply port, and the fourth supply port.
A second exhaust means for exhausting the film formation chamber independently of the first exhaust means;
The second exhaust means is provided with a vapor phase growth apparatus that exhausts a staying gas generated on the rotating shaft of the transport means and in the vicinity of the upper surface of the susceptor.
 本発明によれば、
 成膜室内に少なくとも1枚の基板を配置し、前記成膜室内を第1排気手段により排気して真空化する工程と、
 ハロゲン元素およびIII元素を含む第1原料ガス、および前記第1原料ガスと反応して前記基板上に膜を形成するための第2原料ガスを同時に前記成膜室内に供給し、前記成膜室内の少なくとも1枚の前記基板上に膜を形成するハイドライド気相成長工程と、
 有機金属を含む第3原料ガス、および前記第3原料ガスと反応して前記基板上に膜を成膜するための第4原料ガスを同時に前記成膜室内に供給し、前記成膜室内の少なくとも1枚の前記基板上に膜を形成する有機金属気相成長工程とを含み、
 前記ハイドライド気相成長工程、および前記有機金属気相成長工程では、
  回転軸周りに回転するサセプタを備える搬送手段によって、前記サセプタ上に配置した前記基板を前記成膜室内で搬送し、
  前記第1排気手段とは独立した第2排気手段で、前記搬送手段の前記回転軸上、かつ、前記サセプタの上面近傍に生じる滞留ガスを排気するIII-V族化合物半導体膜の成膜方法
が提供される。
According to the present invention,
Disposing at least one substrate in the film formation chamber, evacuating the film formation chamber by a first exhaust means, and evacuating;
A first source gas containing a halogen element and a III element, and a second source gas for reacting with the first source gas to form a film on the substrate are simultaneously supplied into the film formation chamber; A hydride vapor phase growth step of forming a film on at least one of the substrates;
A third source gas containing an organic metal and a fourth source gas for reacting with the third source gas to form a film on the substrate are simultaneously supplied into the film formation chamber, A metal organic chemical vapor deposition step of forming a film on one of the substrates,
In the hydride vapor phase growth step and the organometallic vapor phase growth step,
The substrate disposed on the susceptor is transported in the film forming chamber by a transport unit including a susceptor that rotates around a rotation axis.
A method of forming a group III-V compound semiconductor film, which is a second exhaust unit independent of the first exhaust unit, and exhausts stagnant gas generated on the rotating shaft of the transport unit and in the vicinity of the upper surface of the susceptor. Provided.
 本発明によれば、面内膜厚の不均一性の、バッチ間ばらつきを低減したIII-V族化合物半導体膜の成膜が可能な気相成長装置および成膜方法を提供することができる。 According to the present invention, it is possible to provide a vapor phase growth apparatus and a film forming method capable of forming a group III-V compound semiconductor film in which in-plane film thickness non-uniformity and variation between batches are reduced.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る気相成長装置の構造を示す図である。It is a figure which shows the structure of the vapor phase growth apparatus which concerns on 1st Embodiment. 第1の実施形態に係る気相成長装置における主要部の配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the principal part in the vapor phase growth apparatus which concerns on 1st Embodiment. 第1の実施形態に係る気相成長装置の第1供給部の構造を示す図である。It is a figure which shows the structure of the 1st supply part of the vapor phase growth apparatus which concerns on 1st Embodiment. サセプタ、基板、第1供給部、第2供給部、回転軸、および第2排気手段の位置関係を示す図である。It is a figure which shows the positional relationship of a susceptor, a board | substrate, a 1st supply part, a 2nd supply part, a rotating shaft, and a 2nd exhaust means. 第1の実施形態に係る第2排気手段の排気管の構造の変形例を示す図である。It is a figure which shows the modification of the structure of the exhaust pipe of the 2nd exhaust means which concerns on 1st Embodiment. 第1の実施形態に係る気相成長装置の構造の変形例を示す図である。It is a figure which shows the modification of the structure of the vapor phase growth apparatus which concerns on 1st Embodiment. 第1の実施形態に係る気相成長装置の変形例における主要部の配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the principal part in the modification of the vapor phase growth apparatus which concerns on 1st Embodiment. 第2排気手段の制御について説明するための図である。It is a figure for demonstrating control of a 2nd exhaust means. 第1排気手段の制御について説明するための図である。It is a figure for demonstrating control of a 1st exhaust means. 第2排気手段の制御の変形例を示す図である。It is a figure which shows the modification of control of a 2nd exhaust means. 第2の実施形態に係る第2排気手段の排気管および第5供給管の構造を示す図である。It is a figure which shows the structure of the exhaust pipe and 5th supply pipe | tube of the 2nd exhaust means which concern on 2nd Embodiment. 第2の実施形態に係る第1供給部、第2供給部、サセプタ、第2排気手段の排気管、第5供給管、第5供給管の供給口、基板およびの回転軸の位置関係を示す図である。The positional relationship of the rotating shaft of the 1st supply part which concerns on 2nd Embodiment, a 2nd supply part, a susceptor, the exhaust pipe of a 2nd exhaust means, a 5th supply pipe, the supply port of a 5th supply pipe, a board | substrate is shown. FIG. 実施例1に係るGaN膜の膜厚分布を示す図である。FIG. 4 is a diagram showing a film thickness distribution of a GaN film according to Example 1. 実施例2に係るGaN膜の膜厚分布を示す図である。6 is a diagram showing a film thickness distribution of a GaN film according to Example 2. FIG. 比較例に係るGaN膜の膜厚分布を示す図である。It is a figure which shows the film thickness distribution of the GaN film | membrane which concerns on a comparative example.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 なお、以下に示す説明において、記憶部91、適正排気流量算出部92、排気流量制御部93、および圧力制御部95は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。記憶部91、適正排気流量算出部92、排気流量制御部93、および圧力制御部95は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。 In the following description, the storage unit 91, the appropriate exhaust flow rate calculation unit 92, the exhaust flow rate control unit 93, and the pressure control unit 95 indicate functional unit blocks instead of hardware units. The storage unit 91, the appropriate exhaust flow rate calculation unit 92, the exhaust flow rate control unit 93, and the pressure control unit 95 are an arbitrary computer CPU, memory, a program that realizes the components shown in FIG. It is realized by an arbitrary combination of hardware and software, mainly a storage medium such as a hard disk to be stored and a network connection interface. There are various modifications of the implementation method and apparatus.
(第1の実施形態)
 図1は、第1の実施形態に係る気相成長装置1の構造を示す図である。そして図2は、気相成長装置1における主要部の配置関係を示す図である。ここで本図では、気相成長装置1に取り付けられた基板Sを平面視する方向から見た、第1供給部2、第2供給部3、成膜室4、および第2排気手段7の配置関係を示す。図1は図2のA-A'における断面図である。また、図3は、本実施形態に係る気相成長装置1の第1供給部2の構造を示す図である。図1では第1供給部2の構造を簡略化して描いている。
(First embodiment)
FIG. 1 is a diagram showing a structure of a vapor phase growth apparatus 1 according to the first embodiment. FIG. 2 is a diagram showing an arrangement relationship of main parts in the vapor phase growth apparatus 1. Here, in this figure, the first supply unit 2, the second supply unit 3, the film formation chamber 4, and the second exhaust unit 7 as viewed from the direction in plan view of the substrate S attached to the vapor phase growth apparatus 1. The arrangement relationship is shown. FIG. 1 is a cross-sectional view taken along the line AA ′ of FIG. FIG. 3 is a diagram showing the structure of the first supply unit 2 of the vapor phase growth apparatus 1 according to this embodiment. In FIG. 1, the structure of the 1st supply part 2 is simplified and drawn.
 本実施形態によれば、気相成長装置1は、成膜室4、第1供給部2、第2供給部3、搬送手段5、および第1排気手段6を備える。成膜室4の内部には少なくとも1枚の基板Sが配置され、基板S上にIII-V族化合物半導体膜を形成する。第1供給部2は、成膜室4内に、ハロゲン元素およびIII族元素を含む第1原料ガス、および第1原料ガスと反応して基板S上に膜を形成する第2原料ガスを導入する。第2供給部3は、成膜室4内に、有機金属を含む第3原料ガス、および第3原料ガスと反応して基板S上に膜を形成する第4原料ガスを導入する。搬送手段5は、成膜室4内で基板Sを搬送する。第1排気手段6は、成膜室4内のガスを排気して真空化する。第1供給部2は、第1原料ガスを基板Sに向けて供給する第1供給口214と、第2原料ガスを基板Sに向けて供給する第2供給口215とを備える。そして第1供給部2は、第1原料ガスおよび第2原料ガスを互いに混合させずに、第1供給口214および第2供給口215にそれぞれ導く。第2供給部3は、第3原料ガスを基板Sに向けて供給する第3供給口311と、第4原料ガスを基板Sに向けて供給する第4供給口312とを備える。そして第2供給部3は、第3原料ガスおよび第4原料ガスを互いに混合させずに、第3供給口311および第4供給口312にそれぞれ導く。搬送手段5は、回転軸L周りに回転するサセプタ51を備える。第1供給口214、第2供給口215、第3供給口311および第4供給口312は、サセプタ51の上面近傍に設けられ、サセプタ51の上面に対向している。搬送手段5は、サセプタ51上に配置された基板Sを、第1供給口214および第2供給口215に対向させる第1配置と、第3供給口311および第4供給口312に対向させる第2配置と、第1供給口214、第2供給口215、第3供給口311、および第4供給口312のいずれにも対向させない第3配置との間で搬送する。そして気相成長装置1は、第1排気手段6とは独立して成膜室4内を排気する第2排気手段7をさらに備える。第2排気手段7は、搬送手段5の回転軸L上、かつ、サセプタ51の上面近傍に生じる滞留ガスを排気する。以下で詳細に説明する。 According to the present embodiment, the vapor phase growth apparatus 1 includes a film forming chamber 4, a first supply unit 2, a second supply unit 3, a transfer unit 5, and a first exhaust unit 6. At least one substrate S is disposed inside the film forming chamber 4, and a III-V group compound semiconductor film is formed on the substrate S. The first supply unit 2 introduces a first source gas containing a halogen element and a group III element into the film forming chamber 4 and a second source gas that reacts with the first source gas to form a film on the substrate S. To do. The second supply unit 3 introduces into the film forming chamber 4 a third source gas containing an organic metal and a fourth source gas that forms a film on the substrate S by reacting with the third source gas. The transport unit 5 transports the substrate S in the film forming chamber 4. The first exhaust means 6 exhausts the gas in the film forming chamber 4 and evacuates it. The first supply unit 2 includes a first supply port 214 that supplies the first source gas toward the substrate S, and a second supply port 215 that supplies the second source gas toward the substrate S. The first supply unit 2 guides the first source gas and the second source gas to the first supply port 214 and the second supply port 215, respectively, without mixing each other. The second supply unit 3 includes a third supply port 311 that supplies the third source gas toward the substrate S, and a fourth supply port 312 that supplies the fourth source gas toward the substrate S. Then, the second supply unit 3 guides the third source gas and the fourth source gas to the third supply port 311 and the fourth supply port 312 without mixing each other. The transport means 5 includes a susceptor 51 that rotates around the rotation axis L. The first supply port 214, the second supply port 215, the third supply port 311, and the fourth supply port 312 are provided near the upper surface of the susceptor 51 and face the upper surface of the susceptor 51. The transport means 5 includes a first arrangement in which the substrate S arranged on the susceptor 51 is opposed to the first supply port 214 and the second supply port 215, and a third arrangement in which the substrate S is opposed to the third supply port 311 and the fourth supply port 312. 2 and the third arrangement that does not oppose any of the first supply port 214, the second supply port 215, the third supply port 311, and the fourth supply port 312. The vapor phase growth apparatus 1 further includes a second exhaust unit 7 that exhausts the inside of the film forming chamber 4 independently of the first exhaust unit 6. The second exhaust unit 7 exhausts the staying gas generated on the rotation axis L of the transport unit 5 and in the vicinity of the upper surface of the susceptor 51. This will be described in detail below.
 なお、成膜室4内もしくは成膜室4の内壁に設けられ、成膜室4内にガスを供給する開口を「供給口」と呼び、成膜室4内もしくは成膜室4の内壁に設けられ、成膜室4内からガスを排気する開口を「排気口」と呼んで区別する。 An opening provided in the film forming chamber 4 or on the inner wall of the film forming chamber 4 and supplying gas into the film forming chamber 4 is referred to as a “supply port”, and is formed in the film forming chamber 4 or the inner wall of the film forming chamber 4. An opening that is provided and exhausts gas from the film forming chamber 4 is called an “exhaust port” to be distinguished.
 成膜室4は、たとえば、ステンレス等のチャンバーで構成されている。この成膜室4内に基板Sが配置され、基板S上にIII-V族化合物半導体の膜が形成される。基板Sとしては特に限定されないが、たとえば、サファイア基板、SiC基板、ZnO基板、シリコン基板のいずれかを使用できる。また、テンプレート基板を用いることもできる。基板Sのサイズは、特に限定されないが、たとえば2~6インチである。III-V族化合物半導体膜におけるIII族元素はたとえばGa、Al、In、Bのうちのいずれか1種以上である。III-V族化合物半導体膜におけるV元素はたとえばN,As、Pのうちのいずれか1種以上である。III-V族化合物半導体は、たとえばGaN、AlN、InN、BN、GaAlN、InGaN、GaBN、AlBN、InBN、GaNAs、InNAs、AlNAs、BNAsのいずれか、およびこれらの混晶である。なお、以下の実施形態では、窒素をV族元素とし、GaをIII族元素とし、GaN膜を形成する例について説明する。ただし、この例に限定されるものではない。 The film forming chamber 4 is composed of a chamber made of stainless steel, for example. A substrate S is disposed in the film forming chamber 4, and a III-V group compound semiconductor film is formed on the substrate S. Although it does not specifically limit as the board | substrate S, For example, any of a sapphire substrate, a SiC substrate, a ZnO substrate, and a silicon substrate can be used. A template substrate can also be used. The size of the substrate S is not particularly limited, but is 2 to 6 inches, for example. The group III element in the group III-V compound semiconductor film is at least one of Ga, Al, In, and B, for example. The V element in the III-V compound semiconductor film is, for example, one or more of N, As, and P. The group III-V compound semiconductor is, for example, any one of GaN, AlN, InN, BN, GaAlN, InGaN, GaBN, AlBN, InBN, GaNAs, InNAs, AlNAs, BNAs, and mixed crystals thereof. In the following embodiment, an example will be described in which nitrogen is a group V element, Ga is a group III element, and a GaN film is formed. However, it is not limited to this example.
 本実施形態に係る気相成長装置1は、ひとつの成膜室4内で、ハイドライド気相成長(Hydride Vapor Phase Epitaxy:HVPE)と、有機金属気相成長(Metal Organic Chemical Vapor Deposition:MOCVD)の両方を実施することができる装置である。基板S上に一方の成長方法で成膜を行った後、基板Sを成膜室4から取り出すことなく連続して他方の成長方法での成膜ができる。そのため、冷却や搬送の時間が不要で、製造効率よく半導体装置などを製造することができる。また、一方の成長方法での成膜を行った後、他方の成長方法での成膜を行うまでの間に基板S表面に汚染などが生じることが無く、結晶品質に優れた半導体装置などを製造することができる。 The vapor phase growth apparatus 1 according to the present embodiment performs hydride vapor phase epitaxy (HydrideapVapor Phase Epitaxy: HVPE) and metal organic vapor phase epitaxy (Metal Organic Chemical VaporMODeposition: MOCVD) in one film formation chamber 4. It is a device that can implement both. After the film is formed on the substrate S by one growth method, the film can be continuously formed by the other growth method without removing the substrate S from the film formation chamber 4. For this reason, a semiconductor device or the like can be manufactured with high manufacturing efficiency without requiring cooling or transporting time. In addition, after the film formation by one growth method and before the film formation by the other growth method, the surface of the substrate S is not contaminated, and a semiconductor device having excellent crystal quality is obtained. Can be manufactured.
 第1供給部2は、成膜室4内でハイドライド気相成長(以後、「HVPE」と呼ぶ)を実施するためのガス供給部である。図3は第1供給部2の構造を示す断面図である。第1供給部2は、第1供給管21と、この第1供給管21の外側に設けられた加熱手段27と、加熱手段27の外側に設けられた遮熱手段22とを備える。第1供給部2は、第1原料ガスおよび第2原料ガスを基板Sに向けて供給するための部分である。ここで、第1原料ガスはハロゲン元素とIII族元素とを含有するガスであり、たとえばGaClガスである。第1原料ガスは、III族元素のハロゲン化ガスであることが好ましい。第2原料ガスはV族元素を含有する反応性ガスであり、たとえばアンモニアガスである。HVPEによる成膜を行う際、第1原料ガスと第2原料ガスとが同時に成膜室4内に供給され、基板S上にIII-V族化合物半導体膜が形成される。なお、第1原料ガスおよび第2原料ガスはそれぞれ、キャリアガスとあわせて供給されうる。 The first supply unit 2 is a gas supply unit for performing hydride vapor phase growth (hereinafter referred to as “HVPE”) in the film forming chamber 4. FIG. 3 is a cross-sectional view showing the structure of the first supply unit 2. The first supply unit 2 includes a first supply pipe 21, a heating means 27 provided outside the first supply pipe 21, and a heat shield means 22 provided outside the heating means 27. The first supply unit 2 is a part for supplying the first source gas and the second source gas toward the substrate S. Here, the first source gas is a gas containing a halogen element and a group III element, for example, GaCl gas. The first source gas is preferably a halogenated gas of a group III element. The second source gas is a reactive gas containing a group V element, for example, ammonia gas. When film formation by HVPE is performed, the first source gas and the second source gas are simultaneously supplied into the film formation chamber 4 to form a III-V group compound semiconductor film on the substrate S. The first source gas and the second source gas can be supplied together with the carrier gas.
 第1供給管21は、3本の管、すなわち外管211、第1内管212、および第2内管213を含み、三重管構造として構成されている。第1内管212は、外管211よりも内径が小さく、外管211内に挿入されている。第2内管213は、第1内管212よりも内径が小さく、第1内管212内に挿入されている。 The first supply pipe 21 includes three pipes, that is, an outer pipe 211, a first inner pipe 212, and a second inner pipe 213, and is configured as a triple pipe structure. The first inner tube 212 has a smaller inner diameter than the outer tube 211 and is inserted into the outer tube 211. The second inner tube 213 has a smaller inner diameter than the first inner tube 212 and is inserted into the first inner tube 212.
 第1供給管21は、その端部で第1供給口214、第2供給口215および非反応ガス供給口216に接続されている。ここで、非反応ガス供給口216からは、第1原料ガスとも第2原料ガスとも反応しない、非反応ガスが成膜室4内に供給される。非反応ガスはたとえば水素ガスである。第2原料ガスは、外管211の内側かつ第1内管212の外側の空間を通り、第2供給口215から成膜室4内に供給される。非反応ガスは第1内管212の内側かつ第2内管213の外側の空間を通り、非反応ガス供給口216から成膜室4内に供給される。そして、第1原料ガスは第2内管213の内側で生成され、第1供給口214から成膜室4内に供給される。 The first supply pipe 21 is connected to the first supply port 214, the second supply port 215, and the non-reactive gas supply port 216 at its end. Here, a non-reactive gas that does not react with either the first source gas or the second source gas is supplied into the film forming chamber 4 from the non-reactive gas supply port 216. The non-reactive gas is, for example, hydrogen gas. The second source gas passes through the space inside the outer tube 211 and outside the first inner tube 212 and is supplied into the film forming chamber 4 from the second supply port 215. The non-reactive gas passes through the space inside the first inner pipe 212 and outside the second inner pipe 213, and is supplied into the film forming chamber 4 from the non-reactive gas supply port 216. The first source gas is generated inside the second inner pipe 213 and supplied into the film forming chamber 4 from the first supply port 214.
 本実施形態に係る第1供給部2では、第1供給口214と第2供給口215の間に非反応ガス供給口216が設けられており、非反応ガスが供給されている。そして、これらの供給口は、サセプタ51で搬送される基板Sのすぐ上に位置するため、第1原料ガスと第2原料ガスとが混ざり合うことなく基板S上へ供給される。このように、本実施形態に係る気相成長装置1は、第1原料ガスと、第2原料ガスとが、基板Sの近傍で初めて混合されるよう構成されているため、供給管内で反応が生じて膜が析出するようなことがなく、基板S上への良好な膜形成ができる。 In the first supply unit 2 according to this embodiment, a non-reactive gas supply port 216 is provided between the first supply port 214 and the second supply port 215, and a non-reactive gas is supplied. Since these supply ports are located immediately above the substrate S transported by the susceptor 51, the first source gas and the second source gas are supplied onto the substrate S without being mixed. As described above, the vapor phase growth apparatus 1 according to the present embodiment is configured such that the first source gas and the second source gas are mixed for the first time in the vicinity of the substrate S, so that the reaction occurs in the supply pipe. Thus, no film is deposited and a good film can be formed on the substrate S.
 ここで、第1原料ガスを生成するための構成について説明する。第2内管213の内側には第1原料ガスを生成するための原料ソース、たとえば、III族元素を含む原料20を収容した原料容器(ソースボート)24が配置されている。ここで、原料20はたとえばGaである。原料容器24には、配管25および配管26が接続されており、第1原料ガスを生成するためのガスが配管25により原料容器24内に供給される。ここで、第1原料ガスを生成するためのガスはハロゲン元素を含むガスであり、たとえばHClガスである。原料容器24内に供給された第1原料ガスを生成するためのガスが原料20と反応して第1原料ガスが生成される。原料20がGaであり、第1原料ガスを生成するためのガスがHClである場合、第1原料ガスとしてGaClが生成される。生成された第1原料ガスは配管26から排出され、第1供給口214から成膜室4内へ供給される。 Here, a configuration for generating the first source gas will be described. Inside the second inner pipe 213, a raw material source for generating a first raw material gas, for example, a raw material container (source boat) 24 containing a raw material 20 containing a group III element is arranged. Here, the raw material 20 is, for example, Ga. A pipe 25 and a pipe 26 are connected to the raw material container 24, and a gas for generating the first raw material gas is supplied into the raw material container 24 through the pipe 25. Here, the gas for generating the first source gas is a gas containing a halogen element, for example, HCl gas. A gas for generating the first source gas supplied into the source container 24 reacts with the source 20 to generate a first source gas. When the source material 20 is Ga and the gas for generating the first source gas is HCl, GaCl is generated as the first source gas. The generated first source gas is discharged from the pipe 26 and supplied into the film forming chamber 4 from the first supply port 214.
 第1供給管21の周囲、特に原料容器24の周囲となる部分には、第1供給管21の内部を加熱するための加熱手段27、たとえばヒータが設けられている。この加熱手段27で第1供給管21の内部を加熱することで、第1原料ガスが効率良く生成される。 A heating means 27 for heating the inside of the first supply pipe 21, for example, a heater, is provided around the first supply pipe 21, particularly around the raw material container 24. By heating the inside of the first supply pipe 21 with the heating means 27, the first source gas is efficiently generated.
 さらに、加熱手段27の周囲(外周)には、遮熱手段22が設けられている。本実施形態に係る遮熱手段22は、第1供給管21の周囲、特に加熱手段27の周囲を囲むように設けられた金属部材223と、この金属部材223の周囲に配置された冷却手段224とを含んで構成される。金属部材223はたとえば3重管構造を有する。そして金属部材223の周囲には冷却手段224を構成する管が配置され、この管の内部を冷却用の流体が通り、加熱手段27で発生した熱が第1供給部2の外部に伝わるのを防ぐ。なお、図3では金属部材223および冷却手段224の内部構造は省略して描いている。流体はたとえば水である。このように、加熱手段27で発生した熱が第1供給部2の外部に伝わるのを防ぐことにより、気相成長装置1における第1供給部2の外部の構成部位に熱の影響が生じることがなく、基板Sへの安定した成膜ができると共に、気相成長装置1の設計自由度が上がる。 Furthermore, a heat shielding means 22 is provided around (outer circumference) the heating means 27. The heat shield means 22 according to the present embodiment includes a metal member 223 provided so as to surround the first supply pipe 21, particularly the heating means 27, and a cooling means 224 disposed around the metal member 223. It is comprised including. The metal member 223 has a triple tube structure, for example. A pipe constituting the cooling means 224 is disposed around the metal member 223. The cooling fluid passes through the inside of the pipe, and the heat generated by the heating means 27 is transmitted to the outside of the first supply unit 2. prevent. In FIG. 3, the internal structure of the metal member 223 and the cooling means 224 is omitted. The fluid is for example water. As described above, by preventing the heat generated by the heating means 27 from being transmitted to the outside of the first supply unit 2, the influence of the heat is generated on the components outside the first supply unit 2 in the vapor phase growth apparatus 1. Therefore, stable film formation on the substrate S can be performed, and the degree of freedom in designing the vapor phase growth apparatus 1 is increased.
 なお、第1原料ガスを外管211の内側かつ第1内管212の外側を通して導入し、第2原料ガスを第2内管213の内側を通して導入する構成としても良い。その場合、原料容器24、配管25、配管26は外管211の内側かつ第1内管212の外側の空間に配置する。 The first source gas may be introduced through the inside of the outer pipe 211 and the outside of the first inner pipe 212, and the second source gas may be introduced through the inside of the second inner pipe 213. In that case, the raw material container 24, the pipe 25, and the pipe 26 are arranged in a space inside the outer pipe 211 and outside the first inner pipe 212.
 次に図1に戻り、第2供給部3の構造を詳細に説明する。第2供給部3は、成膜室4内で有機金属気相成長(以後、「MOCVD」と呼ぶ)を実施するためのガス供給部である。第2供給部3は、第2供給管31、シャワーヘッド32、配管33、および配管34を備える。第2供給部3は、第3原料ガスおよび第4原料ガスを基板Sに向けて供給するための部分である。ここで、第3原料ガスは有機金属を含むガスであり、たとえばトリメチルガリウムガスである。第3原料ガスは、III族元素を含む有機金属ガスであることが好ましい。第4原料ガスはV族元素を含有する反応性ガスであり、たとえばアンモニアガスである。MOCVDによる成膜を行う際、第3原料ガスと第4原料ガスとが同時に成膜室4内に供給され、基板S上にIII-V族化合物半導体膜が形成される。なお、第3原料ガスおよび第4原料ガスはそれぞれ、キャリアガスとあわせて供給されうる。 Next, returning to FIG. 1, the structure of the second supply unit 3 will be described in detail. The second supply unit 3 is a gas supply unit for performing metal organic chemical vapor deposition (hereinafter referred to as “MOCVD”) in the film forming chamber 4. The second supply unit 3 includes a second supply pipe 31, a shower head 32, a pipe 33, and a pipe 34. The second supply unit 3 is a part for supplying the third source gas and the fourth source gas toward the substrate S. Here, the third source gas is a gas containing an organic metal, for example, trimethylgallium gas. The third source gas is preferably an organometallic gas containing a group III element. The fourth source gas is a reactive gas containing a group V element, such as ammonia gas. When film formation by MOCVD is performed, the third source gas and the fourth source gas are simultaneously supplied into the film formation chamber 4 to form a III-V group compound semiconductor film on the substrate S. The third source gas and the fourth source gas can be supplied together with the carrier gas.
 第2供給管31には配管34と配管33とが接続されている。第2供給管31の端部にはシャワーヘッド32が設けられている。第2供給管31は二重構造となっており、配管34から導入されたガスと配管33から導入されたガスが互いに混ざり合うことなく、シャワーヘッド32の孔まで導かれるよう構成されている。 A pipe 34 and a pipe 33 are connected to the second supply pipe 31. A shower head 32 is provided at the end of the second supply pipe 31. The second supply pipe 31 has a double structure, and is configured such that the gas introduced from the pipe 34 and the gas introduced from the pipe 33 are guided to the hole of the shower head 32 without being mixed with each other.
 第3原料ガスは配管34および第2供給管31内の所定の空間を通り、シャワーヘッド32に設けられた第3供給口311から成膜室4内に供給される。第4原料ガスは、配管33及び第2供給管31内の、第3原料ガスが通る空間とは異なる空間を通り、シャワーヘッド32に設けられた第4供給口312から成膜室4内に供給される。 The third source gas passes through a predetermined space in the pipe 34 and the second supply pipe 31 and is supplied into the film forming chamber 4 from a third supply port 311 provided in the shower head 32. The fourth source gas passes through a space in the pipe 33 and the second supply pipe 31 that is different from the space through which the third source gas passes, and enters the film formation chamber 4 from the fourth supply port 312 provided in the shower head 32. Supplied.
 ここで、シャワーヘッド32は、第3供給口311である複数の孔および第4供給口312である複数の孔を有する。すなわち、第3原料ガスと第4原料ガスとは、シャワーヘッド32の異なる孔を介して成膜室4内に供給される。そして、これらの供給口は、サセプタ51で搬送される基板Sのすぐ上に位置する。このように、本実施形態に係る気相成長装置1は、第3原料ガスと第4原料ガスとが、基板Sの近傍で初めて混合されるよう構成されているため、供給管内で反応が生じるようなことがなく、基板S上への良好な成膜ができる。 Here, the shower head 32 has a plurality of holes that are the third supply ports 311 and a plurality of holes that are the fourth supply ports 312. That is, the third source gas and the fourth source gas are supplied into the film forming chamber 4 through different holes of the shower head 32. These supply ports are located immediately above the substrate S transported by the susceptor 51. As described above, the vapor phase growth apparatus 1 according to the present embodiment is configured such that the third source gas and the fourth source gas are mixed for the first time in the vicinity of the substrate S, and thus a reaction occurs in the supply pipe. Thus, good film formation on the substrate S can be performed.
 なお、本実施形態に係る第2供給部3は、第1供給部2とは異なり、供給管内の原料ガスを加熱する機構を備えていない。 In addition, unlike the 1st supply part 2, the 2nd supply part 3 which concerns on this embodiment is not provided with the mechanism which heats the raw material gas in a supply pipe | tube.
 なお、本実施形態に係る気相成長装置1では、HVPEによる成膜を行う間、第3供給口311および第4供給口312からは水素ガスなどの非反応ガスが供給される。また、MOCVDによる成膜を行う間、第1供給口214および第2供給口215からは水素ガスなどの非反応ガスが供給される。供給口への原料ガスの流入を防止するためである。 In the vapor phase growth apparatus 1 according to this embodiment, a non-reactive gas such as hydrogen gas is supplied from the third supply port 311 and the fourth supply port 312 during film formation by HVPE. Further, during film formation by MOCVD, a non-reactive gas such as hydrogen gas is supplied from the first supply port 214 and the second supply port 215. This is to prevent the raw material gas from flowing into the supply port.
 次に、本実施形態に係る搬送手段5について説明する。 Next, the conveying means 5 according to this embodiment will be described.
 本実施形態に係るサセプタ51は円盤形状をしており、回転軸Lは、サセプタ51の中心を通り、サセプタ51の上面に垂直であり、第1排気手段6の排気口は、サセプタ51上の基板Sを平面視する方向から見て、サセプタ51の外縁に沿って設けられている。以下で詳細に説明する。 The susceptor 51 according to the present embodiment has a disk shape, the rotation axis L passes through the center of the susceptor 51 and is perpendicular to the upper surface of the susceptor 51, and the exhaust port of the first exhaust means 6 is on the susceptor 51. It is provided along the outer edge of the susceptor 51 when the substrate S is viewed in a plan view. This will be described in detail below.
 搬送手段5は基板Sを保持するサセプタ51と、サセプタ51を回転駆動する駆動手段52とを備える。サセプタ51は円盤状をしており、一方の面(以後、「上面」と呼ぶ。図1における上側である。)に基板Sを保持するための凹部を有している(図示せず)。サセプタ51の回転駆動の回転軸Lは、サセプタ51の上面と直交する。駆動手段52は、サセプタ51の上面と反対側の面(以後、「下面」と呼ぶ)側に接続されている。搬送手段5は、基板Sがサセプタ51の凹部に保持されるとき、基板Sの成膜しようとする主面が第1供給部2および第2供給部3の側に向くよう構成されている。言い換えると、搬送手段5は、基板Sの主面と第1供給部2および第2供給部3からの原料ガスの供給方向とが直交するように構成されている。以後、「原料ガス」とは、第1原料ガス、第2原料ガス、第3原料ガス、および第4ガスのうちの1つ以上を示す。 The transport unit 5 includes a susceptor 51 that holds the substrate S and a driving unit 52 that rotationally drives the susceptor 51. The susceptor 51 has a disk shape, and has a recess (not shown) for holding the substrate S on one surface (hereinafter referred to as “upper surface”, which is the upper side in FIG. 1). A rotational axis L for rotational driving of the susceptor 51 is orthogonal to the upper surface of the susceptor 51. The driving means 52 is connected to the surface opposite to the upper surface of the susceptor 51 (hereinafter referred to as “lower surface”). The transport means 5 is configured such that when the substrate S is held in the recess of the susceptor 51, the main surface on which the substrate S is to be formed faces the first supply unit 2 and the second supply unit 3. In other words, the transport unit 5 is configured such that the main surface of the substrate S and the supply direction of the source gas from the first supply unit 2 and the second supply unit 3 are orthogonal to each other. Hereinafter, “source gas” refers to one or more of the first source gas, the second source gas, the third source gas, and the fourth gas.
 サセプタ51の下面側には、加熱手段53(たとえばヒータ)が配置されている。この加熱手段53は、成膜時に基板Sを下面側から加熱する。 A heating means 53 (for example, a heater) is disposed on the lower surface side of the susceptor 51. The heating means 53 heats the substrate S from the lower surface side during film formation.
 なお、本実施形態に係るサセプタ51には、基板Sを保持するための凹部が複数設けられており、複数の基板Sが保持される。たとえば、回転軸Lはサセプタ51の円盤の中心を通り、これら複数の基板Sは、回転軸Lを中心とした同一円上に配置される。 Note that the susceptor 51 according to the present embodiment is provided with a plurality of recesses for holding the substrate S, and the plurality of substrates S are held. For example, the rotation axis L passes through the center of the disk of the susceptor 51, and the plurality of substrates S are arranged on the same circle with the rotation axis L as the center.
 駆動手段52は、サセプタ51を下面側から支持する軸部521と、この軸部521に接続されたモータ522とを備える。モータ522が動作することで、軸部521が回転軸Lを軸として回転する。 The driving means 52 includes a shaft portion 521 that supports the susceptor 51 from the lower surface side, and a motor 522 connected to the shaft portion 521. As the motor 522 operates, the shaft portion 521 rotates about the rotation axis L.
 図4は、サセプタ51、基板S、第1供給部2、第2供給部3、回転軸L、および第2排気手段7の位置関係を示す図である。ここで本図は、サセプタ51に保持された基板Sを、成膜しようとする主面側から平面視する方向から見た配置関係を示している。すなわち、第1供給部2および第2供給部3の側からサセプタ51を見た図である。高さの異なる部分や、実際には隠れる部分も全て実線で示している。第1供給部2および第2供給部3は、サセプタ51を回転駆動することで基板Sが描く円周上に位置している。すなわち、第1供給口214、第2供給口215、第3供給口311、および第4供給口312は、サセプタ51を回転駆動することで基板Sが描く円周上に位置している。 FIG. 4 is a diagram showing the positional relationship among the susceptor 51, the substrate S, the first supply unit 2, the second supply unit 3, the rotating shaft L, and the second exhaust means 7. Here, this figure has shown the arrangement | positioning relationship seen from the direction which planarly views the board | substrate S hold | maintained at the susceptor 51 from the main surface side which is going to form into a film. That is, it is the figure which looked at the susceptor 51 from the 1st supply part 2 and the 2nd supply part 3 side. The parts with different heights and the parts that are actually hidden are shown by solid lines. The first supply unit 2 and the second supply unit 3 are positioned on the circumference drawn by the substrate S by rotationally driving the susceptor 51. That is, the first supply port 214, the second supply port 215, the third supply port 311, and the fourth supply port 312 are positioned on the circumference drawn by the substrate S by rotationally driving the susceptor 51.
 ここで、駆動手段52によりサセプタ51は自転する。そのことにより、サセプタ51に保持された基板Sは、回転軸Lを中心としたひとつの円周上を移動し、回転軸Lを軸として公転することとなる。基板Sの公転により、基板Sは「第1配置」「第2配置」「第3配置」の配置を順に、繰り返しとることとなる。ここで、第1配置とは、第1供給口214および第2供給口215と基板Sとが対向し、基板Sが第1供給口214および第2供給口215直下の成膜領域内に位置する配置である。第2配置とは、第3供給口311および第4供給口312と基板Sとが対向し、基板Sが第3供給口311および第4供給口312直下の成膜領域内に位置する配置である。第3配置とは、基板Sが、第1配置にも第2配置にも位置しない配置である。なお、基板Sが円周上を一周する間に、第3配置をとるのは一度に限らない。特に、第3配置は第1配置と第2配置との間にもとりうるため、たとえば基板Sは第1配置、第3配置、第2配置、第3配置をこの順に繰り返し移動することとなる。 Here, the susceptor 51 rotates by the driving means 52. As a result, the substrate S held by the susceptor 51 moves on one circumference around the rotation axis L and revolves around the rotation axis L. By the revolution of the substrate S, the substrate S repeats the arrangement of “first arrangement”, “second arrangement”, and “third arrangement” in order. Here, in the first arrangement, the first supply port 214 and the second supply port 215 and the substrate S are opposed to each other, and the substrate S is positioned in the film formation region immediately below the first supply port 214 and the second supply port 215. It is arrangement to do. The second arrangement is an arrangement in which the third supply port 311 and the fourth supply port 312 are opposed to the substrate S, and the substrate S is located in the film formation region immediately below the third supply port 311 and the fourth supply port 312. is there. The third arrangement is an arrangement in which the substrate S is not positioned in the first arrangement or the second arrangement. Note that the third arrangement is not limited to once while the substrate S goes around the circumference. In particular, since the third arrangement can be taken between the first arrangement and the second arrangement, for example, the substrate S repeatedly moves the first arrangement, the third arrangement, the second arrangement, and the third arrangement in this order.
 このように基板Sを移動させながら成膜を行い、基板Sに原料ガスが供給される時間すなわち第1配置または第2配置をとる時間と、供給されない時間すなわち第3配置をとる時間とを設けることにより、反応種が基板上に到達した後に基板上をマイグレートする時間が存在する。このことで、結晶品質に優れ、安定した膜質が得られる。 Film formation is performed while moving the substrate S as described above, and a time for supplying the source gas to the substrate S, that is, a time for taking the first arrangement or the second arrangement, and a time for not supplying it, that is, a time for taking the third arrangement are provided. Thus, there is a time for migrating the substrate after the reactive species reaches the substrate. As a result, a stable film quality with excellent crystal quality can be obtained.
 なお、第1配置の基板Sと第1供給口214および第2供給口215との距離は十分に近く、第1原料ガスと第2原料ガスが、基板Sの近傍で初めて混合されるよう構成されている。また、第2配置の基板Sと第3供給口311および第4供給口312との距離は十分に近く、第2原料ガスと第3原料ガスが、基板Sの近傍で初めて混合されるよう構成されている。 In addition, the distance between the substrate S of the first arrangement and the first supply port 214 and the second supply port 215 is sufficiently short, and the first source gas and the second source gas are mixed in the vicinity of the substrate S for the first time. Has been. Further, the distance between the substrate S in the second arrangement and the third supply port 311 and the fourth supply port 312 is sufficiently close, and the second source gas and the third source gas are mixed for the first time in the vicinity of the substrate S. Has been.
 また、サセプタ51上の、第1供給口214および第2供給口215と対向する領域や、第3供給口311および第4供給口312と対向する領域は、平面視において、1枚の基板Sが収まるような大きさであり、複数の基板Sは収まらない大きさである。 In addition, a region on the susceptor 51 that faces the first supply port 214 and the second supply port 215 and a region that faces the third supply port 311 and the fourth supply port 312 are a single substrate S in plan view. The size of the plurality of substrates S does not fit.
 本実施形態に係る気相成長装置1では、成膜中にサセプタ51を回転させることにより、基板S上に効率良く成膜することができる。以下に理由を説明する。成膜中には、基板S周辺の温度よりも、第1供給口214および第2供給口215付近、もしくは第3供給口311および第4供給口312付近の温度の方が低く、基板S側からこれらの供給口側に向かって上昇するようなガスの流れが生じることがある。このようなガスの流れが強い場合、各供給口から基板Sへ供給されるガスの流れを妨げることとなる。ここで、成膜中に、サセプタ51を回転させて、サセプタ51上のガスに遠心力を与えることで、基板Sから供給口側に向かって上昇するようなガスの流れを弱めることができる。これにより、基板Sに効率良く成膜することができる。 In the vapor phase growth apparatus 1 according to this embodiment, the susceptor 51 is rotated during film formation, whereby the film can be efficiently formed on the substrate S. The reason will be described below. During film formation, the temperature in the vicinity of the first supply port 214 and the second supply port 215 or in the vicinity of the third supply port 311 and the fourth supply port 312 is lower than the temperature around the substrate S. From this, a gas flow that rises toward these supply ports may occur. When such a gas flow is strong, the flow of the gas supplied from each supply port to the substrate S is hindered. Here, by rotating the susceptor 51 and applying a centrifugal force to the gas on the susceptor 51 during film formation, the flow of gas rising from the substrate S toward the supply port can be weakened. Thereby, a film can be efficiently formed on the substrate S.
 適切なサセプタ51の回転速さは、HVPEとMOCVDとで異なりうるが、1rpm以上であることが好ましい。また、適切なサセプタ51の回転速さは、HVPEとMOCVDとで異なりうるが、回転機構を簡素に構築できる点から、また基板Sから第1供給管21の供給口側に向かって上昇するようなガスの流れを適切に抑制する観点から、たとえば2000rpm以下であることが好ましく、100rpm以下であることがより好ましい。このような回転速さにすることにより、遠心力が十分に生じず、基板S上のガス分布にムラができ、ひいては基板Sの面内において形成される膜の厚さが不均一となるのを防ぐことができる。また、回転が速すぎないことにより、原料ガスが基板S上に十分にとどまらせ、膜が十分な速さで形成させることができる。 The appropriate rotational speed of the susceptor 51 may differ between HVPE and MOCVD, but is preferably 1 rpm or more. Further, although the appropriate rotation speed of the susceptor 51 may be different between HVPE and MOCVD, the rotation speed is increased from the substrate S toward the supply port side of the first supply pipe 21 because the rotation mechanism can be simply constructed. From the viewpoint of appropriately suppressing the flow of gas, for example, it is preferably 2000 rpm or less, and more preferably 100 rpm or less. By using such a rotational speed, the centrifugal force is not sufficiently generated, the gas distribution on the substrate S is uneven, and the thickness of the film formed in the plane of the substrate S is not uniform. Can be prevented. In addition, since the rotation is not too fast, the source gas can sufficiently stay on the substrate S, and the film can be formed at a sufficient speed.
 ここで、サセプタ51が回転駆動されることによって生じる原料ガスの流れについてさらに説明する。例として、MOCVDによる成膜を行う際について説明する。第3原料ガスおよび第4原料ガスが、成膜室4に供給され、基板Sへの成膜がされている間、サセプタ51が回転駆動される。この回転駆動により、成膜室4内の、特にサセプタ51の上部や基板Sの周囲では、回転軸Lからサセプタ51の外周へ向かうような方向へのガスの流れが生じる。ここでいうガスには、第3原料ガス、第4原料ガスおよび成膜室4内にあるその他の気体が含まれる。回転により、サセプタ51上部のガスは回転軸Lから離れる方向への遠心力を受け、サセプタ51の外周の方へ向かう。ここで、この遠心力が、回転軸Lから離れるほど強く、回転軸Lの近辺では弱いと解されることなどから、本発明者は、回転軸Lの近辺においてある程度のガスが停滞し、ガスだまりができる場合があることを新たに見出した。このように、特定の領域で停滞したガスを滞留ガスと呼ぶこととする。滞留ガスには、第3原料ガス、第4原料ガス、および非反応ガス、キャリアガスなどが含まれうる。なお、ここではMOCVDによる成膜を行う際について説明したが、HVPEによる成膜を行う際にも同様のガスの流れがあり、ある程度の滞留ガスが生じる場合があることを見出した。この場合、滞留ガスには、第1原料ガス、第2原料ガス、および非反応ガス、キャリアガスなどが含まれうる。 Here, the flow of the raw material gas generated when the susceptor 51 is rotationally driven will be further described. As an example, a case where film formation by MOCVD is performed will be described. While the third source gas and the fourth source gas are supplied to the film formation chamber 4 and the film is formed on the substrate S, the susceptor 51 is rotationally driven. By this rotational drive, a gas flow in a direction from the rotation axis L toward the outer periphery of the susceptor 51 occurs in the film forming chamber 4, particularly in the upper part of the susceptor 51 and around the substrate S. The gas here includes the third source gas, the fourth source gas, and other gases in the film forming chamber 4. Due to the rotation, the gas above the susceptor 51 receives a centrifugal force in a direction away from the rotation axis L and moves toward the outer periphery of the susceptor 51. Here, since this centrifugal force is understood to be stronger as it moves away from the rotation axis L and weaker in the vicinity of the rotation axis L, etc., the inventor of the present invention stagnates a certain amount of gas in the vicinity of the rotation axis L. Newly found that there is a possibility of hangups. In this way, the gas stagnating in a specific region is called a staying gas. The staying gas may include a third source gas, a fourth source gas, a non-reactive gas, a carrier gas, and the like. In addition, although the case where the film formation by MOCVD was demonstrated here, when the film formation by HVPE was performed, the same gas flow was found, and it discovered that a certain amount of residence gas might arise. In this case, the staying gas may include a first source gas, a second source gas, a non-reactive gas, a carrier gas, and the like.
 本実施形態に係る気相成長装置1では、回転軸Lと基板Sとが十分に近い。そのため、滞留ガスの影響が基板S上にまで至る。後に説明するように、本実施形態に係る気相成長装置1では、この滞留ガスを排気するよう第2排気手段7が設けられていることにより、基板S上に均一に成膜ができる。 In the vapor phase growth apparatus 1 according to this embodiment, the rotation axis L and the substrate S are sufficiently close. Therefore, the effect of the staying gas reaches the substrate S. As will be described later, in the vapor phase growth apparatus 1 according to the present embodiment, the second exhaust unit 7 is provided to exhaust the staying gas, so that the film can be uniformly formed on the substrate S.
 次に、本実施形態に係る気相成長装置1の、成膜室4からの排気について説明する。成膜室4には成膜室4内のガスを排気するための第2排気手段7および第1排気手段6が接続されている。第2排気手段7の排気口はサセプタ51の回転中心の上部に位置し、第1排気手段6の排気口はサセプタ51の外周部に位置している。 Next, the exhaust from the film forming chamber 4 of the vapor phase growth apparatus 1 according to the present embodiment will be described. A second exhaust means 7 and a first exhaust means 6 for exhausting the gas in the film formation chamber 4 are connected to the film formation chamber 4. The exhaust port of the second exhaust unit 7 is located at the upper part of the rotation center of the susceptor 51, and the exhaust port of the first exhaust unit 6 is located at the outer periphery of the susceptor 51.
 第2排気手段7の排気管は、その先端部が回転軸Lと平行に延在している。本実施形態では、第2排気手段7の排気管は成膜室4内において回転軸L上で延在している。また、第2排気手段7の先端部は、第1供給管21および第2供給管31と平行に、上下方向に延在している。第2排気手段7の排気口が、サセプタ51の回転中心の上部、つまりガスが滞留する領域に位置することにより、第2排気手段7は、サセプタ51の回転の際に生じる滞留ガスを排気することができる。第2排気手段7は、回転軸L上で、サセプタ51の上面近傍の滞留ガスを排気するが、加えて、回転軸Lの周囲や、サセプタ51の上方の滞留ガスを排気してもよい。本実施形態に係る気相成長装置1では、第2排気手段7により滞留ガスを排気することで、基板S上の原料ガスの濃度が均一となり、面内に均一な厚さで膜が形成される。また、たとえばドーピングガスをさらに供給して成膜を行う場合には、膜のドーピング濃度が面内で均一となる。 The tip of the exhaust pipe of the second exhaust means 7 extends in parallel with the rotation axis L. In the present embodiment, the exhaust pipe of the second exhaust means 7 extends on the rotation axis L in the film forming chamber 4. Further, the distal end portion of the second exhaust means 7 extends in the vertical direction in parallel with the first supply pipe 21 and the second supply pipe 31. Since the exhaust port of the second exhaust means 7 is located in the upper part of the rotation center of the susceptor 51, that is, in the region where the gas stays, the second exhaust means 7 exhausts the staying gas generated when the susceptor 51 rotates. be able to. The second exhaust means 7 exhausts the staying gas in the vicinity of the upper surface of the susceptor 51 on the rotating shaft L. In addition, the staying gas around the rotating shaft L and above the susceptor 51 may be exhausted. In the vapor phase growth apparatus 1 according to the present embodiment, the concentration of the source gas on the substrate S is made uniform by exhausting the staying gas by the second exhaust means 7, and a film is formed with a uniform thickness in the surface. The For example, when film formation is performed by further supplying a doping gas, the doping concentration of the film becomes uniform in the plane.
 理由は定かではないが、滞留ガスの排気によって、回転軸Lに向かって基板S上の原料ガスの濃度が高くなるような不均一性が低減されることや、原料ガスが基板Sの表面上を流れる流速の不均一性が面内で低減されることや、原料ガスに含まれるIII族原子やV族原子が基板S表面に留まる時間の不均一性が低減されることなどが、複合的に作用していると推察される。 Although the reason is not clear, the exhaust of the stagnant gas reduces the non-uniformity such that the concentration of the source gas on the substrate S increases toward the rotation axis L, or the source gas is on the surface of the substrate S. The non-uniformity of the flow velocity flowing through the substrate is reduced in-plane, and the non-uniformity of the time during which Group III atoms and Group V atoms contained in the source gas stay on the surface of the substrate S is reduced. It is presumed that it is acting on.
 なお、気相成長装置1がサセプタ51の下面側の中心に駆動手段52が位置しないような搬送手段5を備える場合、第2排気手段7の排気管をサセプタ51の下から延在させ、サセプタ51を貫通させて上面側の滞留ガスを排気する様に構成しても良い。 In the case where the vapor phase growth apparatus 1 includes the transport unit 5 in which the driving unit 52 is not positioned at the center of the lower surface side of the susceptor 51, the exhaust pipe of the second exhaust unit 7 extends from below the susceptor 51, You may comprise so that 51 may be penetrated and the residence gas of an upper surface side may be exhausted.
 第1排気手段6の排気口は、サセプタ51の外周部の下面側で、成膜室4の底面に設けられている。サセプタ51の外周側に流されたガスは主に第1排気手段6により成膜室4外に排気される。 The exhaust port of the first exhaust means 6 is provided on the bottom surface of the film forming chamber 4 on the lower surface side of the outer peripheral portion of the susceptor 51. The gas that has flowed to the outer peripheral side of the susceptor 51 is mainly exhausted out of the film forming chamber 4 by the first exhaust means 6.
 ここで、第2排気手段7は、生じる滞留ガスの量に応じた排気流量で排気するように構成することができる。また、第1排気手段6は、第2排気手段7とは独立して、成膜室4内を所定の圧力とするよう排気することができる。 Here, the second exhaust means 7 can be configured to exhaust at an exhaust flow rate corresponding to the amount of staying gas generated. In addition, the first exhaust unit 6 can exhaust the interior of the film forming chamber 4 to a predetermined pressure independently of the second exhaust unit 7.
 ここで、第2排気手段7の構造の変形例について説明する。具体的には排気管の構造についてである。
 図5は、本変形例に係る第2排気手段72の排気管の構造を示す図である。本図は、第2排気手段72の排気管の先端部を回転軸Lに直交する方向から見た断面図である。また、本図では、成膜室4から排出される滞留ガスの流れる方向を矢印で示している。
 本変形例に係る第2排気手段72の排気管は少なくとも一部に二重管構造を有する点を除いて第2排気手段7と同様である。当該二重構造の外管712と内管711の間は真空であり、滞留ガスは内管711の内側を通って排気される。
Here, a modified example of the structure of the second exhaust means 7 will be described. Specifically, the structure of the exhaust pipe.
FIG. 5 is a view showing the structure of the exhaust pipe of the second exhaust means 72 according to this modification. This figure is a cross-sectional view of the distal end portion of the exhaust pipe of the second exhaust means 72 as seen from the direction orthogonal to the rotation axis L. Moreover, in this figure, the direction in which the staying gas discharged | emitted from the film-forming chamber 4 flows is shown by the arrow.
The exhaust pipe of the second exhaust means 72 according to this modification is the same as the second exhaust means 7 except that at least a part thereof has a double pipe structure. A vacuum is formed between the outer tube 712 and the inner tube 711 of the double structure, and the staying gas is exhausted through the inside of the inner tube 711.
 成膜時に排気する滞留ガスは、たとえば1000℃ほどの高温になる。そのような滞留ガスを排気する場合、排気管は高温となるため、排気管の周囲の構造部には耐熱性が求められる。ここで、本変形例に係る第2排気手段72では、配管が二重管構造を有し、真空部が断熱材として機能することから、排気管の周囲の構造部への影響がない。くわしくは、図5のように、第2排気手段72の排気口713から取り込まれた高温の滞留ガスが内管711内を通り、排気される。外管712は排気口713付近で閉じた構造となっており、外管712の内側かつ内管711の外側の空間は、真空となっている。この真空部分が断熱効果を有し、内管711内を流れる滞留ガスの熱が、外管712の外部に伝わるのを抑制することができる。このため、第2排気手段72の排気管の周囲の構造部には熱による大きな影響は生じず、耐熱性が求められない。よって、安定な成膜が行えるとともに、気相成長装置1の設計自由度を高めることができる。 The stagnant gas exhausted during film formation becomes a high temperature of about 1000 ° C., for example. When such a staying gas is exhausted, the exhaust pipe becomes high temperature, and thus heat resistance is required for the structure around the exhaust pipe. Here, in the second exhaust means 72 according to this modification, the pipe has a double pipe structure, and the vacuum part functions as a heat insulating material, so that there is no influence on the structure part around the exhaust pipe. Specifically, as shown in FIG. 5, the high-temperature staying gas taken in from the exhaust port 713 of the second exhaust means 72 passes through the inner pipe 711 and is exhausted. The outer tube 712 is closed near the exhaust port 713, and the space inside the outer tube 712 and outside the inner tube 711 is in a vacuum. This vacuum portion has a heat insulating effect, and the heat of the staying gas flowing in the inner tube 711 can be prevented from being transmitted to the outside of the outer tube 712. For this reason, the structure around the exhaust pipe of the second exhaust means 72 is not greatly affected by heat, and heat resistance is not required. Therefore, stable film formation can be performed, and the design freedom of the vapor phase growth apparatus 1 can be increased.
 以下に、本実施形態の別の変形例について説明する。
図6は、本変形例に係る気相成長装置11の構造を示す図である。そして図7は、気相成長装置11における主要部の配置関係を示す図である。ここで図7では、気相成長装置11に取り付けられた基板Sを平面視する方向から見た、第1供給部2、第2供給部3、成膜室4、および第2排気手段73の配置関係を示す。図6は図7のB-B'における断面図である。
Hereinafter, another modification of the present embodiment will be described.
FIG. 6 is a view showing the structure of the vapor phase growth apparatus 11 according to this modification. FIG. 7 is a diagram showing an arrangement relationship of main parts in the vapor phase growth apparatus 11. Here, in FIG. 7, the first supply unit 2, the second supply unit 3, the film formation chamber 4, and the second exhaust unit 73 are viewed from the direction in which the substrate S attached to the vapor phase growth apparatus 11 is viewed in plan. The arrangement relationship is shown. 6 is a cross-sectional view taken along the line BB ′ of FIG.
 本変形例に係る気相成長装置11は、第2排気手段7の代わりに、L字型の排気管を備える第2排気手段73を備える点を除いて、気相成長装置1と同様である。第2排気手段73の排気口は、L字型の排気管の先端に設けられている。 The vapor phase growth apparatus 11 according to this modification is the same as the vapor phase growth apparatus 1 except that a second exhaust means 73 having an L-shaped exhaust pipe is provided instead of the second exhaust means 7. . The exhaust port of the second exhaust means 73 is provided at the tip of an L-shaped exhaust pipe.
 本変形例では図6および図7のように、第2排気手段73の排気管が成膜室4の側面から挿入され、サセプタ51の上面側を、サセプタ51の上面と平行に中心まで延在している。第2排気手段73の排気管はその先端部のみが回転軸Lに延在するようにL字型に折曲しており、排気口がサセプタ51側を向いている。このとき、排気管は、成膜室4の側面と、サセプタ51の中心との間で、第1供給部2や第2供給部3と空間的に干渉しないよう配置されている。また、排気管は、成膜室4の側面と、サセプタ51の中心との間で、原料ガスの供給に影響を与えないよう配置されている。 In this modification, as shown in FIGS. 6 and 7, the exhaust pipe of the second exhaust means 73 is inserted from the side surface of the film forming chamber 4, and the upper surface side of the susceptor 51 extends to the center in parallel with the upper surface of the susceptor 51. is doing. The exhaust pipe of the second exhaust means 73 is bent in an L shape so that only its tip extends to the rotation axis L, and the exhaust port faces the susceptor 51 side. At this time, the exhaust pipe is disposed between the side surface of the film forming chamber 4 and the center of the susceptor 51 so as not to interfere spatially with the first supply unit 2 and the second supply unit 3. Further, the exhaust pipe is arranged between the side surface of the film forming chamber 4 and the center of the susceptor 51 so as not to affect the supply of the source gas.
 本変形例においても、第2排気手段73の排気口が、サセプタ51の回転中心の上部、つまりガスが滞留する領域に位置しており、第2排気手段73は、サセプタ51の回転の際に生じる滞留ガスを排気することができる。なお、第2排気手段73の先端部はかならずしも直角に折曲している必要は無く、他の角度で折れ曲がっていても良い。その場合も第2排気手段73の排気口は回転軸L上で、サセプタ51の上面近傍に配されることが好ましい。 Also in this modified example, the exhaust port of the second exhaust means 73 is located in the upper part of the rotation center of the susceptor 51, that is, in the region where the gas stays, and the second exhaust means 73 is used when the susceptor 51 rotates. The resulting stagnant gas can be exhausted. In addition, the front-end | tip part of the 2nd exhaustion means 73 does not necessarily need to be bent at right angle, and may be bent at another angle. Even in this case, it is preferable that the exhaust port of the second exhaust means 73 is disposed on the rotation axis L and in the vicinity of the upper surface of the susceptor 51.
 次に、本実施形態に係る気相成長装置1の、第2排気手段7および第1排気手段6の制御について説明する。
 図8は、第2排気手段7の制御について説明するための図であり、図9は、第1排気手段6の制御について説明するための図である。
Next, control of the second exhaust unit 7 and the first exhaust unit 6 of the vapor phase growth apparatus 1 according to the present embodiment will be described.
FIG. 8 is a diagram for explaining the control of the second exhaust unit 7, and FIG. 9 is a diagram for explaining the control of the first exhaust unit 6.
 本実施形態に係る気相成長装置1は、記憶部91、適正排気流量算出部92、排気流量制御部93、および圧力制御部95をさらに備える。記憶部91は、適正排気参照情報をあらかじめ保持している。ここで適正排気参照情報とは、第1供給口214から供給されるガスの供給流量と、第2供給口215から供給されるガスの供給流量と、第3供給口311から供給されるガスの供給流量と、第4供給口312から供給されるガスの供給流量と、サセプタ51の回転速さと、第2排気手段7による滞留ガスの適正排気流量との関係を示す情報である。適正排気流量算出部92は、記憶部91から読み出した適正排気参照情報と、前記基板上に膜を形成する際にそれぞれ測定される、第1供給口214から供給されるガスの供給流量と、第2供給口215から供給されるガスの供給流量と、第3供給口311から供給されるガスの供給流量と、第4供給口312から供給されるガスの供給流量と、サセプタ51の回転速さとに基づいて、第2排気手段7による適正な排気流量を算出する。排気流量制御部93は、適正排気流量算出部92で算出された、第2排気手段7による適正な排気流量で排気するよう、第2排気手段7を制御する。圧力制御部95は、成膜室4内を所定の圧力とするよう、第1排気手段6を制御する。以下で詳細に説明する。 The vapor phase growth apparatus 1 according to the present embodiment further includes a storage unit 91, an appropriate exhaust flow rate calculation unit 92, an exhaust flow rate control unit 93, and a pressure control unit 95. The storage unit 91 holds appropriate exhaust reference information in advance. Here, the appropriate exhaust reference information refers to the supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, and the gas supplied from the third supply port 311. This is information indicating the relationship among the supply flow rate, the supply flow rate of the gas supplied from the fourth supply port 312, the rotational speed of the susceptor 51, and the appropriate exhaust flow rate of the staying gas by the second exhaust means 7. The appropriate exhaust flow rate calculation unit 92, the appropriate exhaust reference information read from the storage unit 91, the supply flow rate of the gas supplied from the first supply port 214, respectively measured when forming a film on the substrate, The supply flow rate of the gas supplied from the second supply port 215, the supply flow rate of the gas supplied from the third supply port 311, the supply flow rate of the gas supplied from the fourth supply port 312, and the rotational speed of the susceptor 51 Based on the above, an appropriate exhaust flow rate by the second exhaust means 7 is calculated. The exhaust flow rate control unit 93 controls the second exhaust unit 7 so as to exhaust at an appropriate exhaust flow rate by the second exhaust unit 7 calculated by the appropriate exhaust flow rate calculation unit 92. The pressure control unit 95 controls the first exhaust unit 6 so that the inside of the film forming chamber 4 has a predetermined pressure. This will be described in detail below.
 本実施形態に係る気相成長装置1は、回転速さ検出部901、第1流量検出部902、第2流量検出部903、第3流量検出部904、第4流量検出部905、圧力検出部907、圧力入力部94をさらに備える。第2排気手段7および第1排気手段6は排気ポンプを有する(図示せず)。両者の排気ポンプは独立していても良いし、ひとつの排気ポンプを共用しても良い。回転速さ検出部901は、駆動手段52に取り付けられ、基板Sの回転速さ、すなわち、サセプタ51の回転速さを検出する。たとえばタコメータである。 The vapor phase growth apparatus 1 according to the present embodiment includes a rotational speed detection unit 901, a first flow rate detection unit 902, a second flow rate detection unit 903, a third flow rate detection unit 904, a fourth flow rate detection unit 905, and a pressure detection unit. 907 and a pressure input unit 94 are further provided. The second exhaust means 7 and the first exhaust means 6 have an exhaust pump (not shown). Both exhaust pumps may be independent, or one exhaust pump may be shared. The rotational speed detection unit 901 is attached to the driving unit 52 and detects the rotational speed of the substrate S, that is, the rotational speed of the susceptor 51. For example, a tachometer.
 第1流量検出部902は第1供給口214から供給されるガスの流量を検出する。第2流量検出部903は第2供給口215から供給されるガスの流量を検出する。第3流量検出部904は第3供給口311から供給されるガスの流量を検出する。第4流量検出部905は第4供給口312から供給されるガスの流量を検出する。各流量検出部は、たとえば各供給口から供給されるガスの流量を検出するように第1供給部2または第2供給部3の配管に設けられるフローメータである。本実施形態において、第1供給口214から供給されるガスとは、第1原料ガスおよび非反応ガスのいずれかでありうる。第2供給口215から供給されるガスとは、第2原料ガスおよび非反応ガスのいずれかでありうる。第3供給口311から供給されるガスとは、第3原料ガスおよび非反応ガスのいずれかでありうる。第4供給口312から供給されるガスとは、第4原料ガスおよび非反応ガスのいずれかでありうる。具体的には、HVPEによる成膜を行う際には、第1供給口214から第1原料ガスが、第2供給口215から第2原料ガスが、第3供給口311および第4供給口312から非反応ガスが供給され、それらの流量が検出される。そして、MOCVDによる成膜を行う際には、第1供給口214および第2供給口215から非反応ガスが、第3供給口311から第3原料ガスが、第4供給口312から第4原料ガスが供給され、それらの流量が検出される。なお、原料ガスがそれぞれキャリアガスと合わせて供給される場合、検出される各流量は、キャリアガスも合わせた流量である。 The first flow rate detector 902 detects the flow rate of the gas supplied from the first supply port 214. The second flow rate detector 903 detects the flow rate of the gas supplied from the second supply port 215. The third flow rate detector 904 detects the flow rate of the gas supplied from the third supply port 311. The fourth flow rate detection unit 905 detects the flow rate of the gas supplied from the fourth supply port 312. Each flow rate detection unit is a flow meter provided in the piping of the first supply unit 2 or the second supply unit 3 so as to detect the flow rate of gas supplied from each supply port, for example. In the present embodiment, the gas supplied from the first supply port 214 can be either the first source gas or the non-reactive gas. The gas supplied from the second supply port 215 can be either the second source gas or the non-reactive gas. The gas supplied from the third supply port 311 can be either the third source gas or the non-reactive gas. The gas supplied from the fourth supply port 312 can be either the fourth source gas or the non-reactive gas. Specifically, when film formation is performed by HVPE, the first source gas is supplied from the first supply port 214, the second source gas is supplied from the second supply port 215, the third supply port 311 and the fourth supply port 312. The non-reactive gas is supplied from and the flow rate thereof is detected. When film formation is performed by MOCVD, the non-reactive gas from the first supply port 214 and the second supply port 215, the third source gas from the third supply port 311, and the fourth source material from the fourth supply port 312. Gases are supplied and their flow rates are detected. When the source gas is supplied together with the carrier gas, each detected flow rate is a combined flow rate of the carrier gas.
 圧力検出部907は、成膜室4内の圧力を測定する。たとえば成膜室4に取り付けられた真空ゲージである。気相成長装置1の使用者は、圧力入力部94を介して圧力制御部95に、成膜室4の圧力として維持すべき所定の値を示す情報を入力する。 The pressure detector 907 measures the pressure in the film forming chamber 4. For example, a vacuum gauge attached to the film forming chamber 4. The user of the vapor phase growth apparatus 1 inputs information indicating a predetermined value to be maintained as the pressure of the film forming chamber 4 to the pressure control unit 95 via the pressure input unit 94.
 まず、図8を用いて第2排気手段7の制御について説明する。記憶部91は、適正排気参照情報をあらかじめ保持している。第1供給口214から供給されるガスの供給流量と、第2供給口215から供給されるガスの供給流量と、第3供給口311から供給されるガスの供給流量と、第4供給口312から供給されるガスの供給流量と、基板Sの回転速さとが分かれば、適正排気参照情報を利用して第2排気手段7による滞留ガスの適正排気流量を導き出すことができる。ここで適正排気参照情報とは、第1供給口214から供給されるガスの供給流量と、第2供給口215から供給されるガスの供給流量と、第3供給口311から供給されるガスの供給流量と、第4供給口312から供給されるガスの供給流量と、基板Sの回転速さと、第2排気手段7による滞留ガスの適正排気流量との関係を示す情報であり、たとえば数式、係数、テーブルなどである。適正排気参照情報は、流体計算や、流体シミュレーション、もしくは事前実験に基づいて得ることができる。滞留ガスの適正排気流量は、たとえば滞留ガスが生じる量を等しく排出するように定めることができる。もしくは、滞留ガスの適正排気流量は、事前実験に基づいた適正値としたり、理論的に求められた値に条件に応じて重み付けをした値としたりできる。 First, the control of the second exhaust means 7 will be described with reference to FIG. The storage unit 91 holds appropriate exhaust reference information in advance. The supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, the supply flow rate of the gas supplied from the third supply port 311, and the fourth supply port 312. If the supply flow rate of the gas supplied from 1 and the rotation speed of the substrate S are known, the appropriate exhaust gas reference flow information can be used to derive the appropriate exhaust gas flow rate of the stagnant gas. Here, the appropriate exhaust reference information refers to the supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, and the gas supplied from the third supply port 311. This is information indicating the relationship between the supply flow rate, the supply flow rate of the gas supplied from the fourth supply port 312, the rotational speed of the substrate S, and the appropriate exhaust flow rate of the stagnant gas by the second exhaust means 7. Coefficients, tables, etc. The appropriate exhaust reference information can be obtained based on fluid calculation, fluid simulation, or preliminary experiment. The appropriate exhaust flow rate of the staying gas can be determined so that, for example, the amount of staying gas generated is discharged equally. Alternatively, the appropriate exhaust flow rate of the staying gas can be an appropriate value based on a prior experiment, or can be a value obtained by weighting a theoretically obtained value according to conditions.
 本実施形態に係る気相成長装置1では、成膜中に、サセプタ51の回転数を示す情報が、回転速さ検出部901から適正排気流量算出部92に入力され、第1供給口214から供給されるガスの供給流量を示す情報が、第1流量検出部902から適正排気流量算出部92に入力され、第2供給口215から供給されるガスの供給流量を示す情報が、第2流量検出部903から適正排気流量算出部92に入力され、第3供給口311から供給されるガスの供給流量を示す情報が、第3流量検出部904から適正排気流量算出部92に入力され、第4供給口312から供給されるガスの供給流量を示す情報が、第4流量検出部905から適正排気流量算出部92に入力される。また、適正排気流量算出部92は、記憶部91から、適正排気参照情報を読み出す。そして、適正排気流量算出部92は、サセプタ51の回転数を示す情報、第1供給口214から供給されるガスの供給流量を示す情報、第2供給口215から供給されるガスの供給流量を示す情報、第3供給口311から供給されるガスの供給流量を示す情報、第4供給口312から供給されるガスの供給流量を示す情報、および適正排気参照情報に基づいて、第2排気手段7による適正な排気流量を算出する。適正排気流量算出部92で算出された適正な排気流量は、排気流量制御部93に入力される。排気流量制御部93は、入力された適正な排気流量で第2排気手段7が成膜室4内のガスを排気するよう、第2排気手段7の排気流量を制御する。 In the vapor phase growth apparatus 1 according to the present embodiment, during film formation, information indicating the rotation speed of the susceptor 51 is input from the rotation speed detection unit 901 to the appropriate exhaust flow rate calculation unit 92 and from the first supply port 214. Information indicating the supply flow rate of the supplied gas is input from the first flow rate detection unit 902 to the appropriate exhaust flow rate calculation unit 92, and information indicating the supply flow rate of the gas supplied from the second supply port 215 is the second flow rate. Information indicating the supply flow rate of the gas supplied from the detection unit 903 to the appropriate exhaust flow rate calculation unit 92 and supplied from the third supply port 311 is input from the third flow rate detection unit 904 to the proper exhaust flow rate calculation unit 92, and Information indicating the supply flow rate of the gas supplied from the 4 supply ports 312 is input from the fourth flow rate detection unit 905 to the appropriate exhaust flow rate calculation unit 92. In addition, the appropriate exhaust flow rate calculation unit 92 reads appropriate exhaust reference information from the storage unit 91. Then, the appropriate exhaust flow rate calculation unit 92 obtains information indicating the rotation speed of the susceptor 51, information indicating the supply flow rate of the gas supplied from the first supply port 214, and supply flow rate of the gas supplied from the second supply port 215. On the basis of the information indicating, the information indicating the supply flow rate of the gas supplied from the third supply port 311, the information indicating the supply flow rate of the gas supplied from the fourth supply port 312, and the appropriate exhaust reference information 7 to calculate an appropriate exhaust flow rate. The appropriate exhaust flow rate calculated by the appropriate exhaust flow rate calculation unit 92 is input to the exhaust flow rate control unit 93. The exhaust flow rate controller 93 controls the exhaust flow rate of the second exhaust unit 7 so that the second exhaust unit 7 exhausts the gas in the film forming chamber 4 at the input appropriate exhaust flow rate.
 なお、適正排気流量算出部92では、非反応ガス供給口216から供給されるガスの供給流量をさらに加味して第2排気手段7による適正な排気流量を算出するように構成しても良い。その際には、記憶部91は、第1供給口214から供給されるガスの供給流量と、第2供給口215から供給されるガスの供給流量と、第3供給口311から供給されるガスの供給流量と、第4供給口312から供給されるガスの供給流量と、非反応ガス供給口216から供給されるガスの供給流量と、基板Sの回転速さと、第2排気手段7による滞留ガスの適正排気流量との関係を示す情報を適正排気参照情報としてあらかじめ保持する。 The appropriate exhaust flow rate calculation unit 92 may be configured to calculate an appropriate exhaust flow rate by the second exhaust means 7 by further taking into account the supply flow rate of the gas supplied from the non-reactive gas supply port 216. At that time, the storage unit 91 supplies the supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, and the gas supplied from the third supply port 311. , The supply flow rate of the gas supplied from the fourth supply port 312, the supply flow rate of the gas supplied from the non-reactive gas supply port 216, the rotational speed of the substrate S, and the retention by the second exhaust means 7. Information indicating the relationship with the appropriate exhaust flow rate of gas is stored in advance as appropriate exhaust reference information.
 なお、図10は本実施形態に係る第2排気手段7の制御系統の構成の変形例を示す図である。本図のように気相成長装置1は成膜情報入力部96をさらに備えても良い。気相成長装置1の使用者は、成膜条件を示す成膜情報を、成膜情報入力部96を介して適正排気流量算出部92に入力する。成膜情報は、たとえばHVPEとMOCVDとの、どちらの成膜法を用いて成膜を行うかを示す成膜法に関する情報、いずれのIII-V族化合物半導体材料の膜を形成するかを示す情報、その他の成膜に関する情報である。成膜情報はこれらのうちの1つであっても良いし、複数の情報の組み合わせであっても良い。 In addition, FIG. 10 is a figure which shows the modification of a structure of the control system of the 2nd exhaust means 7 which concerns on this embodiment. As shown in the figure, the vapor phase growth apparatus 1 may further include a film formation information input unit 96. A user of the vapor phase growth apparatus 1 inputs film formation information indicating film formation conditions to the appropriate exhaust flow rate calculation unit 92 via the film formation information input unit 96. The film formation information includes, for example, information on a film formation method indicating which film formation method is used, HVPE or MOCVD, and indicates which III-V compound semiconductor material film is to be formed. Information and other information relating to film formation. The film formation information may be one of these or a combination of a plurality of information.
 記憶部91は、成膜情報の示す成膜条件ごとに、適正排気参照情報をあらかじめ保持しており、適正排気流量算出部92は、成膜情報入力部96から入力された成膜情報に基づいて、記憶部91から成膜条件に対応する適正排気参照情報を読み出し、上述した方法と同様に、第2排気手段7による適正な排気流量を算出する。 The storage unit 91 holds in advance appropriate exhaust reference information for each film formation condition indicated by the film formation information, and the appropriate exhaust flow rate calculation unit 92 is based on the film formation information input from the film formation information input unit 96. Then, the appropriate exhaust reference information corresponding to the film forming conditions is read from the storage unit 91, and the appropriate exhaust flow rate by the second exhaust means 7 is calculated in the same manner as described above.
 次に、本実施形態に係る第1排気手段6の制御について、図9を用いて説明する。第1排気手段6は、第2排気手段7とは独立して、成膜室4内を所定の圧力とするよう排気する。第1排気手段6の排気すべきガスの量は、成膜室4に供給される各ガスのほか、第2排気手段7による排気流量にも依存する。まず、圧力入力部94から圧力制御部95に、維持すべき成膜室4内の圧力を示す目標圧力情報が入力される。そして、成膜中には、圧力検出部907で検出された、成膜室4内の圧力を示す検出圧力情報が圧力制御部95に入力される。圧力制御部95は、入力された目標圧力情報と、検出圧力情報とに基づいて、第1排気手段6を制御する。具体的には、検出圧力情報に係る圧力値が目標圧力情報に係る圧力値よりも高い場合、第1排気手段6の排気流量を増やし、検出圧力情報に係る圧力値が目標圧力情報に係る圧力値よりも低い場合、第1排気手段6の排気流量を減らす。 Next, control of the first exhaust means 6 according to the present embodiment will be described with reference to FIG. The first evacuation unit 6 evacuates the film formation chamber 4 to a predetermined pressure independently of the second evacuation unit 7. The amount of gas to be exhausted by the first exhaust means 6 depends on the exhaust flow rate by the second exhaust means 7 in addition to each gas supplied to the film forming chamber 4. First, target pressure information indicating the pressure in the film forming chamber 4 to be maintained is input from the pressure input unit 94 to the pressure control unit 95. During film formation, detected pressure information indicating the pressure in the film formation chamber 4 detected by the pressure detection unit 907 is input to the pressure control unit 95. The pressure control unit 95 controls the first exhaust unit 6 based on the input target pressure information and the detected pressure information. Specifically, when the pressure value related to the detected pressure information is higher than the pressure value related to the target pressure information, the exhaust flow rate of the first exhaust means 6 is increased, and the pressure value related to the detected pressure information is the pressure related to the target pressure information. If it is lower than the value, the exhaust flow rate of the first exhaust means 6 is reduced.
 このように、本実施形態に係る気相成長装置1は、第2排気手段7と第1排気手段6の、独立した2つの排気手段を有することにより、生じた滞留ガスを適切に排気するとともに、成膜室4内を所望の圧力に維持できる。よって、安定性が高く、均一な膜厚での成膜ができる。 As described above, the vapor phase growth apparatus 1 according to the present embodiment has the two independent exhaust units, the second exhaust unit 7 and the first exhaust unit 6, so that the generated staying gas is appropriately exhausted. The film forming chamber 4 can be maintained at a desired pressure. Therefore, the film can be formed with high stability and a uniform film thickness.
 以下に、本実施形態に係る成膜方法について説明する。本実施形態に係る成膜方法では、気相成長装置1を使用して成膜を行う。
 本実施形態に係る成膜方法は、成膜室4内に少なくとも1枚の基板Sを配置し、成膜室4内を第1排気手段6により排気して真空化する工程と、HVPE工程(ハイドライド気相成長工程)と、MOCVD工程(有機金属気相成長工程)とを含む。HVPE工程では、第1原料ガスおよび第2原料ガスを成膜室4内に供給し、成膜室4内の少なくとも1枚の基板S上に膜を形成する。そして、MOCVD工程では、第3原料ガスおよび第4原料ガスを成膜室4内に供給し、成膜室4内の少なくとも1枚の基板S上に膜を形成する。ここで、HVPE工程およびMOCVD工程では、回転軸L周りに回転するサセプタ51を備える搬送手段5によって、サセプタ51上に配置した基板Sを成膜室4内で搬送する。また、第1排気手段6とは独立した第2排気手段7で、搬送手段5の回転軸L上、かつ、サセプタ51の上面近傍に生じる滞留ガスを排気する。
Below, the film-forming method which concerns on this embodiment is demonstrated. In the film forming method according to the present embodiment, film formation is performed using the vapor phase growth apparatus 1.
In the film forming method according to the present embodiment, at least one substrate S is disposed in the film forming chamber 4, the inside of the film forming chamber 4 is evacuated and vacuumed by the first exhaust means 6, and the HVPE step ( A hydride vapor phase growth step) and an MOCVD step (metal organic vapor phase growth step). In the HVPE process, the first source gas and the second source gas are supplied into the film forming chamber 4 to form a film on at least one substrate S in the film forming chamber 4. In the MOCVD process, the third source gas and the fourth source gas are supplied into the film forming chamber 4 to form a film on at least one substrate S in the film forming chamber 4. Here, in the HVPE process and the MOCVD process, the substrate S disposed on the susceptor 51 is transported in the film forming chamber 4 by the transport means 5 including the susceptor 51 rotating around the rotation axis L. In addition, the second exhaust means 7 independent of the first exhaust means 6 exhausts the staying gas generated on the rotation axis L of the transport means 5 and in the vicinity of the upper surface of the susceptor 51.
 本実施形態に係る成膜方法では、初めにHVPEによる成膜を行い(HVPE工程)、次にMOCVDによる成膜を行う(MOCVD工程)場合について説明する。ただし、これに限定されるものではなく、先にMOCVDによる成膜を行った後、HVPEによる成膜を行っても良い。 In the film formation method according to the present embodiment, a case will be described in which film formation is first performed by HVPE (HVPE process), and then film formation is performed by MOCVD (MOCVD process). However, the present invention is not limited to this, and film formation by MOCVD may be performed after film formation by MOCVD first.
 まず、複数の基板Sをサセプタ51上に設置する。次に、加熱手段53により基板Sを下面側から加熱するとともに、成膜室4内に第2原料ガスと同じガス(たとえばアンモニアガス)を供給し、成膜室4内を第2原料ガス雰囲気とする。基板Sの温度は、たとえば1000℃以上とすることが好ましく、1040℃以上とすることがより好ましい。なお、成膜室4内は、V族を含むガス雰囲気(たとえば窒素ガス雰囲気)であってもよい。これらのガスはいずれの供給口から供給しても良い。 First, a plurality of substrates S are installed on the susceptor 51. Next, the substrate S is heated from the lower surface side by the heating means 53, the same gas as the second source gas (for example, ammonia gas) is supplied into the film forming chamber 4, and the second source gas atmosphere is formed in the film forming chamber 4. And The temperature of the substrate S is preferably 1000 ° C. or higher, for example, and more preferably 1040 ° C. or higher. Note that the inside of the film forming chamber 4 may be a gas atmosphere containing a group V (for example, a nitrogen gas atmosphere). These gases may be supplied from any supply port.
 また、原料容器24内の原料20の温度が所定の温度、たとえば850℃となるまで加熱する。その後、配管25により、キャリアガスおよび第1原料ガスを生成するためのガスを原料容器24内に供給し、第1原料ガスを生成するためのガスと原料容器24内の原料20とを反応させ、第1原料ガスを生成する。ここでたとえば、キャリアガスは水素ガスであり、第1原料ガスを生成するためのガスはHClガスであり、原料20はGaであり、第1原料ガスはGaClガスである。生成された第1原料ガスは、配管26を介して原料容器24から排出され、第2内管213の内側を通り、第1供給口214から成膜室4内に供給される。 Also, heating is performed until the temperature of the raw material 20 in the raw material container 24 reaches a predetermined temperature, for example, 850 ° C. Thereafter, a gas for generating the carrier gas and the first raw material gas is supplied into the raw material container 24 through the pipe 25, and the gas for generating the first raw material gas and the raw material 20 in the raw material container 24 are reacted. The first source gas is generated. Here, for example, the carrier gas is hydrogen gas, the gas for generating the first source gas is HCl gas, the source 20 is Ga, and the first source gas is GaCl gas. The generated first source gas is discharged from the source container 24 through the pipe 26, passes through the inside of the second inner pipe 213, and is supplied into the film forming chamber 4 from the first supply port 214.
 また、外管211の内側かつ第1内管212の外側を通して、第2原料ガスを第2供給口215から成膜室4内に供給する。このとき、第1内管212の内側かつ第2内管213の外側を通して、非反応ガスを非反応ガス供給口216から成膜室4内に供給し、第1供給管21の供給口付近での第1原料ガスと第2原料ガスとの接触を抑制する。 Also, the second source gas is supplied from the second supply port 215 into the film forming chamber 4 through the inside of the outer tube 211 and the outside of the first inner tube 212. At this time, the non-reactive gas is supplied from the non-reactive gas supply port 216 into the film forming chamber 4 through the inside of the first inner tube 212 and the outside of the second inner tube 213, and near the supply port of the first supply tube 21. The contact between the first source gas and the second source gas is suppressed.
 本実施形態に係るHVPE工程では、第2供給管31の供給口、すなわち第3供給口311および第4供給口312からは、非反応ガス(たとえば水素ガス)を成膜室4に供給する。 In the HVPE process according to the present embodiment, a non-reactive gas (for example, hydrogen gas) is supplied to the film forming chamber 4 from the supply port of the second supply pipe 31, that is, from the third supply port 311 and the fourth supply port 312.
 ここで、HVPEによる成膜中、成膜室4内のサセプタ51を駆動手段52により回転駆動する。よって、サセプタ51上の各基板Sはサセプタ51の回転軸Lを中心として公転し、第1供給管21の供給口すなわち、第1供給口214、第2供給口215、および非反応ガス供給口216に対向する第1配置と、それ以外の配置(第2配置および第3配置)とを交互に繰り返してとることとなる。そして、サセプタ51上の複数の基板Sは、順次、第1配置をとることとなる。 Here, during film formation by HVPE, the susceptor 51 in the film formation chamber 4 is rotationally driven by the driving means 52. Therefore, each substrate S on the susceptor 51 revolves around the rotation axis L of the susceptor 51, and the supply port of the first supply pipe 21, that is, the first supply port 214, the second supply port 215, and the non-reactive gas supply port. The first arrangement facing 216 and the other arrangements (second arrangement and third arrangement) are alternately repeated. Then, the plurality of substrates S on the susceptor 51 sequentially take the first arrangement.
 HVPE工程でのサセプタ51の回転速さは、1rpm以上であることが好ましい。また、HVPE工程でのサセプタ51の回転速さは、2000rpm以下であることが好ましく、100rpm以下であることがより好ましい。基板Sから第1供給管21の供給口側に向かって上昇するようなガスの流れを適切に抑制するためである。 The rotational speed of the susceptor 51 in the HVPE process is preferably 1 rpm or more. Further, the rotational speed of the susceptor 51 in the HVPE process is preferably 2000 rpm or less, and more preferably 100 rpm or less. This is because the flow of gas that rises from the substrate S toward the supply port side of the first supply pipe 21 is appropriately suppressed.
 第1供給口214から供給された第1原料ガスと、第2供給口215から供給された第2原料ガスとは、第1配置をとった基板S上に供給され、反応して、基板Sの主面上に膜が形成される。基板Sがサセプタ51の回転によって繰り返し第1配置をとることで、基板S上の膜が成長して膜厚が大きくなっていく。HVPE工程において、第1供給管21の供給口の直下(第1配置)が、主に成膜の進む成膜領域となり、その他の領域(第2配置および第3配置)が非成膜領域となる。HVPE工程では、第1配置をとる基板上で主に膜の成長が進み、基本的には第2配置および第3配置の基板上では成膜が進まない。ただし、基板S上の膜の成長は、その基板Sが第1配置をとっている間にのみ生じるとは限らない。たとえば、第1配置の基板Sに供給された第1原料ガスと第2原料ガスとは、その基板Sが第1供給管21の供給口の直下を通り過ぎた後(すなわち第2配置または第3配置をとる間)にも基板Sの主面上で反応過程を進行させることがある。また、基板Sが第1配置をとっていない間にも、成膜室4内に残存する第1原料ガスや第2原料ガスが基板Sの主面上に到達し、膜の成長が進むことがある。 The first source gas supplied from the first supply port 214 and the second source gas supplied from the second supply port 215 are supplied onto the substrate S in the first arrangement and reacted to react with the substrate S. A film is formed on the main surface. As the substrate S repeatedly takes the first arrangement by the rotation of the susceptor 51, the film on the substrate S grows and the film thickness increases. In the HVPE step, the region immediately below the supply port of the first supply pipe 21 (first arrangement) is a film formation region where film formation proceeds mainly, and the other regions (second arrangement and third arrangement) are non-film formation regions. Become. In the HVPE process, the film growth mainly proceeds on the substrate having the first arrangement, and basically the film formation does not advance on the second arrangement and the third arrangement. However, the growth of the film on the substrate S does not always occur only while the substrate S is in the first arrangement. For example, the first raw material gas and the second raw material gas supplied to the substrate S in the first arrangement pass after the substrate S passes just below the supply port of the first supply pipe 21 (that is, in the second arrangement or the third arrangement). The reaction process may proceed on the main surface of the substrate S even during the placement. Further, even when the substrate S is not in the first arrangement, the first source gas and the second source gas remaining in the film formation chamber 4 reach the main surface of the substrate S, and the film growth proceeds. There is.
 本実施形態に係る成膜方法では、成膜中、サセプタ51の回転に伴って生じる滞留ガスを第2排気手段7により排気する。ここで、第2排気手段7は上述したとおり排気流量制御部93により、適切な流量でガスを排出するように制御される。第2排気手段7により、基板S近傍の滞留ガスを排気することで、面内に均一な厚さで膜を形成することができる。 In the film forming method according to the present embodiment, the staying gas generated along with the rotation of the susceptor 51 is exhausted by the second exhaust means 7 during the film formation. Here, as described above, the second exhaust means 7 is controlled by the exhaust flow rate control unit 93 to discharge gas at an appropriate flow rate. By exhausting the staying gas in the vicinity of the substrate S by the second exhaust means 7, it is possible to form a film with a uniform thickness in the surface.
 一方、第1排気手段6は、成膜室4内を所定の圧力とするよう排気する。第1排気手段6は上述したとおり、圧力制御部95により制御される。本実施形態では、成膜室4内の圧力をたとえば660hPaとする。第2排気手段7とは独立して制御される第1排気手段6を設けることで、成膜室4内を所望の圧力に維持することができ、安定して膜品質の良い成膜を行うことができる。 On the other hand, the first exhaust means 6 exhausts the inside of the film forming chamber 4 to a predetermined pressure. The first exhaust means 6 is controlled by the pressure controller 95 as described above. In the present embodiment, the pressure in the film forming chamber 4 is set to 660 hPa, for example. By providing the first exhaust means 6 that is controlled independently of the second exhaust means 7, the inside of the film forming chamber 4 can be maintained at a desired pressure, and film formation with high film quality is stably performed. be able to.
 以上のようにして、HVPEによる所望の厚さの成膜が完了した後、第1供給管21からの第1原料ガスおよび第2原料ガスの供給を停止し、加熱手段27による第1供給管21の加熱を停止する。 As described above, after the film formation with a desired thickness by HVPE is completed, the supply of the first source gas and the second source gas from the first supply pipe 21 is stopped, and the first supply pipe by the heating unit 27 is stopped. 21 stops heating.
 次に、MOCVD工程を行う。このとき、第1供給部2の第1供給管21などが冷却されるのを待つことなくMOCVD工程に移ることができる。 Next, the MOCVD process is performed. At this time, the MOCVD process can be started without waiting for the first supply pipe 21 of the first supply unit 2 to be cooled.
 まず、必要に応じて加熱手段53の加熱条件を切り替え、基板SがMOCVD工程の所定の温度となるようにする。 First, the heating conditions of the heating means 53 are switched as necessary so that the substrate S has a predetermined temperature in the MOCVD process.
 第4原料ガスと同じガス(たとえばアンモニアガス)を供給し、成膜室4内を第4原料ガス雰囲気とする。なお、成膜室4内は、V族を含むガス雰囲気(たとえば窒素ガス雰囲気)であってもよい。これらのガスはいずれの供給口から供給しても良い。つづいて、成膜室4内に第2供給部3のシャワーヘッド32を介して第3原料ガスおよび第4原料ガスを成膜室4内に供給し、成膜を行う。第3原料ガスはたとえばトリメチルガリウムガスである。 The same gas as the fourth source gas (for example, ammonia gas) is supplied, and the film forming chamber 4 is set as the fourth source gas atmosphere. Note that the inside of the film forming chamber 4 may be a gas atmosphere containing a group V (for example, a nitrogen gas atmosphere). These gases may be supplied from any supply port. Subsequently, the third source gas and the fourth source gas are supplied into the film formation chamber 4 through the shower head 32 of the second supply unit 3 and film formation is performed. The third source gas is, for example, trimethyl gallium gas.
 本実施形態に係るMOCVD工程では、第1供給管21の供給口、すなわち第1供給口214および第2供給口215からは、非反応ガス(たとえば水素ガス)を成膜室4内に供給する。 In the MOCVD process according to this embodiment, a non-reactive gas (for example, hydrogen gas) is supplied into the film forming chamber 4 from the supply port of the first supply pipe 21, that is, the first supply port 214 and the second supply port 215. .
 ここで、MOCVDによる成膜中、成膜室4内のサセプタ51を駆動手段52により回転駆動する。よって、サセプタ51上の各基板Sはサセプタ51の回転軸Lを中心として公転し、第2供給部3の供給口すなわち、第3供給口311および第4供給口312に対向する第2配置と、それ以外の配置(第1配置および第3配置)とを交互に繰り返してとることとなる。そして、サセプタ51上の複数の基板Sは、順次、第2配置をとることとなる。 Here, during film formation by MOCVD, the susceptor 51 in the film formation chamber 4 is rotationally driven by the driving means 52. Accordingly, each substrate S on the susceptor 51 revolves around the rotation axis L of the susceptor 51 and has a second arrangement facing the supply ports of the second supply unit 3, that is, the third supply port 311 and the fourth supply port 312. The other arrangements (the first arrangement and the third arrangement) are alternately repeated. And the some board | substrate S on the susceptor 51 will take 2nd arrangement | sequence sequentially.
 MOCVD工程でのサセプタ51の回転速さは、1rpm以上であることが好ましい。また、MOCVD工程でのサセプタ51の回転速さは、2000rpm以下であることが好ましく、100rpm以下であることがより好ましい。基板Sから第2供給管31の供給口側に向かって上昇するようなガスの流れを適切に抑制するためである。 Rotational speed of the susceptor 51 in the MOCVD process is preferably 1 rpm or more. Further, the rotation speed of the susceptor 51 in the MOCVD process is preferably 2000 rpm or less, and more preferably 100 rpm or less. This is to appropriately suppress the flow of gas that rises from the substrate S toward the supply port side of the second supply pipe 31.
 第3供給口311から供給された第3原料ガスと、第4供給口312から供給された第4原料ガスとは、第2配置をとった基板S上に供給され、反応して、基板Sの主面上に膜が形成される。基板Sがサセプタ51の回転によって繰り返し第2配置をとることで、基板S上の膜が成長して膜厚が大きくなっていく。MOCVD工程において、第2供給管31の供給口の直下(第2配置)が、主に成膜の進む成膜領域となり、その他の領域(第1配置および第3配置)が非成膜領域となる。MOCVD工程では、第2配置をとる基板上で主に膜の成長が進み、基本的には第1配置および第3配置の基板上では成膜が進まない。ただし、基板S上の膜の成長は、その基板Sが第2配置をとっている間にのみ生じるとは限らない。たとえば、第2配置の基板Sに供給された第3原料ガスと第4原料ガスとは、その基板Sが第2供給管31の供給口の直下を通り過ぎた後(すなわち第1配置または第3配置をとる間)にも基板Sの主面上で反応過程を進行させることがある。また、基板Sが第2配置をとっていない間にも、成膜室4内に残存する第3原料ガスや第4原料ガスが基板Sの主面上に到達し、膜の成長が進むことがある。 The third source gas supplied from the third supply port 311 and the fourth source gas supplied from the fourth supply port 312 are supplied onto the substrate S in the second arrangement and reacted to react with the substrate S. A film is formed on the main surface. When the substrate S repeatedly takes the second arrangement by the rotation of the susceptor 51, the film on the substrate S grows and the film thickness increases. In the MOCVD process, the area immediately below the supply port of the second supply pipe 31 (second arrangement) is a film formation area where film formation proceeds mainly, and the other areas (first arrangement and third arrangement) are non-film formation areas. Become. In the MOCVD process, the growth of the film mainly proceeds on the substrate having the second arrangement, and basically the film formation does not proceed on the substrates having the first arrangement and the third arrangement. However, the growth of the film on the substrate S does not always occur only while the substrate S is in the second arrangement. For example, the third source gas and the fourth source gas supplied to the substrate S in the second arrangement are passed after the substrate S passes directly under the supply port of the second supply pipe 31 (that is, the first arrangement or the third arrangement). The reaction process may proceed on the main surface of the substrate S even during the placement. Further, even when the substrate S is not in the second arrangement, the third source gas and the fourth source gas remaining in the film forming chamber 4 reach the main surface of the substrate S, and the film growth proceeds. There is.
 本実施形態に係る成膜方法では、成膜中、サセプタ51の回転に伴って生じる滞留ガスを第2排気手段7により排気する。ここで、第2排気手段7は上述したとおり排気流量制御部93により、適切な流量でガスを排出するように制御される。第2排気手段7により、基板S近傍の滞留ガスを排気することで、面内に均一な厚さで膜を形成することができる。 In the film forming method according to the present embodiment, the staying gas generated along with the rotation of the susceptor 51 is exhausted by the second exhaust means 7 during the film formation. Here, as described above, the second exhaust means 7 is controlled by the exhaust flow rate control unit 93 to discharge gas at an appropriate flow rate. By exhausting the staying gas in the vicinity of the substrate S by the second exhaust means 7, it is possible to form a film with a uniform thickness in the surface.
 一方、第1排気手段6は、成膜室4内を所定の圧力とするよう排気する。第1排気手段6は上述したとおり、圧力制御部95により制御される。本実施形態では、成膜室4内の圧力をたとえば660hPaとする。第2排気手段7とは独立して制御される第1排気手段6を設けることで、成膜室4内を所望の圧力に維持することができ、安定して膜品質の良い成膜を行うことができる。 On the other hand, the first exhaust means 6 exhausts the inside of the film forming chamber 4 to a predetermined pressure. The first exhaust means 6 is controlled by the pressure controller 95 as described above. In the present embodiment, the pressure in the film forming chamber 4 is set to 660 hPa, for example. By providing the first exhaust means 6 that is controlled independently of the second exhaust means 7, the inside of the film forming chamber 4 can be maintained at a desired pressure, and film formation with high film quality is stably performed. be able to.
 以上のようにして、MOCVDによる所望の厚さの成膜が完了した後、第2供給管31からの第3原料ガスおよび第4原料ガスの供給を停止する。 As described above, after film formation with a desired thickness by MOCVD is completed, the supply of the third source gas and the fourth source gas from the second supply pipe 31 is stopped.
 このように、基板S上に、たとえばレーザ、発光ダイオードなどの半導体発光素子などの半導体装置を作製することができる。 Thus, on the substrate S, a semiconductor device such as a semiconductor light emitting element such as a laser or a light emitting diode can be manufactured.
 次に、本実施形態の作用効果について説明する。
 本実施形態の気相成長装置1は、サセプタの上部で、回転軸L近傍に生じる滞留ガスを第2排気手段7によって排気することで、基板Sの面内に成膜される膜厚の不均一性を低減し、ひいては、面内膜厚の不均一性の、バッチ間ばらつきを低減することができる。
Next, the effect of this embodiment is demonstrated.
The vapor phase growth apparatus 1 of the present embodiment exhausts the staying gas generated in the vicinity of the rotation axis L at the upper part of the susceptor by the second exhaust means 7, thereby reducing the thickness of the film formed on the surface of the substrate S. Uniformity can be reduced, and as a result, in-plane variation in in-plane film thickness non-uniformity can be reduced.
 本実施形態の気相成長装置1は、同一の成膜室4内に、第1供給部2の第1供給管21と第2供給部3の第2供給管31とが接続されており、成膜室4内に、第1供給部2と第2供給部3のそれぞれからガスが供給される構成である。従って、たとえば、第2供給部3からのガスの供給を停止した状態で、第1供給部2からのガスの供給を行い基板S上に成膜した後、第1供給部2からのガスの供給を停止し、第1供給部2の冷却を待たずに、第2供給部3からのガスの供給を開始して、基板S上に成膜することができる。たとえば、HVPE用チャンバーとMOCVD用チャンバーを別々に有するような装置では、一方のチャンバーで成膜を行った後に、基板Sを他方のチャンバーに移動させるために2~3時間の冷却時間を要する。本実施形態に係る気相成長装置1ではこのような冷却時間が不要であり、効率良く成膜できる。 In the vapor phase growth apparatus 1 of the present embodiment, the first supply pipe 21 of the first supply unit 2 and the second supply pipe 31 of the second supply unit 3 are connected in the same film formation chamber 4. In the film forming chamber 4, gas is supplied from each of the first supply unit 2 and the second supply unit 3. Therefore, for example, after the gas supply from the second supply unit 3 is stopped, the gas is supplied from the first supply unit 2 to form a film on the substrate S, and then the gas from the first supply unit 2 is supplied. The supply of gas from the second supply unit 3 can be started and film formation can be performed on the substrate S without stopping the supply and waiting for the cooling of the first supply unit 2. For example, in an apparatus having a separate chamber for HVPE and a chamber for MOCVD, a cooling time of 2 to 3 hours is required to move the substrate S to the other chamber after film formation in one chamber. The vapor phase growth apparatus 1 according to the present embodiment does not require such a cooling time, and can form a film efficiently.
 また、本実施形態では、サセプタ51の上面を平面視する方向から見て、第1供給管21の成膜室4へのガスの供給口および第2供給管31の成膜室4へのガスの供給口は、サセプタ51を回転駆動することで基板Sが描く円周上に配置されている。従って、サセプタ51を回転駆動するだけで、第1供給管21の供給口、または第2供給管31の供給口からのガスにより基板S上に膜を形成することができる。 In the present embodiment, the gas supply port to the film formation chamber 4 of the first supply pipe 21 and the gas to the film formation chamber 4 of the second supply pipe 31 are viewed from the top view of the upper surface of the susceptor 51. Is provided on the circumference drawn by the substrate S by rotationally driving the susceptor 51. Therefore, a film can be formed on the substrate S by the gas from the supply port of the first supply pipe 21 or the supply port of the second supply pipe 31 only by rotationally driving the susceptor 51.
 また、本実施形態では、HVPEによる成膜中、およびMOCVDによる成膜中に、基板Sが原料ガスが排出される供給口と対向する位置にある状態と、当該位置にない状態とを交互にとるように、成膜室4内において搬送される。これにより、基板Sの表面に原料ガスを供給する工程と、原料ガスが供給されない工程とを交互に実施することが可能となる。原料が供給されない工程において、膜の原料となる原子の基板S上での拡散を促進することができ、結晶性の高いIII-V族化合物半導体を得ることができる。 Further, in the present embodiment, during the film formation by HVPE and during the film formation by MOCVD, a state where the substrate S is in a position facing the supply port from which the source gas is discharged and a state where the substrate S is not in this position are alternately displayed. As shown in FIG. Thereby, it is possible to alternately perform the process of supplying the source gas to the surface of the substrate S and the process of not supplying the source gas. In the step in which the raw material is not supplied, the diffusion of atoms as the raw material of the film on the substrate S can be promoted, and a III-V group compound semiconductor with high crystallinity can be obtained.
 また、本実施形態では、複数の基板Sを保持したサセプタ51を回転させ、各基板Sを順次、原料ガスの供給口に対向させながら成膜する。つまり、供給口と基板Sとの距離や位置関係が、全ての基板Sについて揃う。これにより、形成される膜の膜質や膜厚が、基板Sごとに異なってしまうことがない。 In the present embodiment, the susceptor 51 holding a plurality of substrates S is rotated, and each substrate S is sequentially deposited to face the source gas supply port. That is, the distance and the positional relationship between the supply port and the substrate S are the same for all the substrates S. Thereby, the film quality and film thickness of the formed film do not differ for each substrate S.
 また、本実施形態では、第1供給部2からガスの供給を行う際、第1原料ガスを第2内管213から供給するとともに、外管211の内側かつ第1内管212の外側を通して第2原料ガスを供給し、さらに、第1内管212の内側かつ第2内管213の外側を通して非反応ガスを供給している。これにより、第1供給管21の供給口付近での第1原料ガスと第2原料ガスとの接触が抑制される。第1原料ガスと第2原料ガスとは基板S近傍で初めて混合され、反応するので、基板S上に効率良く成膜できる。 In the present embodiment, when the gas is supplied from the first supply unit 2, the first source gas is supplied from the second inner pipe 213, and the first source gas is supplied through the inner side of the outer pipe 211 and the outer side of the first inner pipe 212. Two source gases are supplied, and a non-reactive gas is supplied through the inside of the first inner pipe 212 and the outside of the second inner pipe 213. As a result, contact between the first source gas and the second source gas in the vicinity of the supply port of the first supply pipe 21 is suppressed. Since the first source gas and the second source gas are mixed and reacted for the first time in the vicinity of the substrate S, a film can be efficiently formed on the substrate S.
 また、本実施形態では、第1供給管21の周囲には、第1供給管21内を加熱する加熱手段27が配置され、加熱手段27の周囲には、加熱手段27からの熱を遮断する遮熱手段22が配置されている。このようにすることで、第2供給部3以外の構造部や、第2供給部3への熱の影響を抑制することができる。さらに、遮熱手段22が冷却手段224を有することで、より確実に熱を遮断することができる。 In the present embodiment, the heating means 27 for heating the inside of the first supply pipe 21 is arranged around the first supply pipe 21, and the heat from the heating means 27 is cut off around the heating means 27. A heat shield 22 is arranged. By doing in this way, the influence of the heat to structure parts other than the 2nd supply part 3 and the 2nd supply part 3 can be suppressed. Furthermore, since the heat shield means 22 includes the cooling means 224, heat can be more reliably cut off.
 また、本実施形態では、HVPEで成膜処理できる基板Sの枚数と、MOCVDで成膜処理することができる基板Sの枚数とが同じである。従って、たとえば、HVPE工程で成膜した基板Sすべてを、MOCVD工程で成膜処理することができるので、製造効率がよい。さらに、基板Sを成膜室4から取り出すことなく、HVPEおよびMOCVDで連続的に成膜処理することができるので、たとえばHVPE工程の後、MOCVDで成膜処理を開始するまでの間に、基板Sが汚れてしまう或いは表面原子の蒸発によって結晶性が劣化すること等を抑制することができる。 In this embodiment, the number of substrates S that can be formed by HVPE is the same as the number of substrates S that can be formed by MOCVD. Therefore, for example, since all the substrates S formed in the HVPE process can be processed in the MOCVD process, the manufacturing efficiency is good. Furthermore, since the film formation process can be continuously performed by HVPE and MOCVD without removing the substrate S from the film formation chamber 4, for example, after the HVPE process, the film formation process is started by MOCVD. It can be suppressed that S is contaminated or crystallinity is deteriorated by evaporation of surface atoms.
 なお、本実施形態では、III-V族化合物半導体膜としてGaN膜を形成する例について説明したが、これに限定されるものではない。たとえば、別の例として、GaAlN膜を形成する場合には、第1供給部2の第2内管213の内部にGaソースに加えてAlソースを配置すればよい。また、第2供給部3では、第3原料ガスとしてトリメチルガリウムに加えて、トリメチルアルミニウムを供給すればよい。 In this embodiment, the example in which the GaN film is formed as the III-V compound semiconductor film has been described, but the present invention is not limited to this. For example, as another example, when forming a GaAlN film, an Al source may be disposed in the second inner tube 213 of the first supply unit 2 in addition to the Ga source. Further, the second supply unit 3 may supply trimethylaluminum in addition to trimethylgallium as the third source gas.
 なお、気相成長装置1はHVPE工程およびMOCVD工程に適した条件に関する各種の情報を記憶部に保持し、使用者が各工程の開始を要求する信号を入力することで自動的に成膜がされるよう構成されていても良い。たとえば、特開2013-222884号公報に記載のように気相成長装置1を構成し、成膜を行うことができる。 The vapor phase growth apparatus 1 stores various information related to conditions suitable for the HVPE process and the MOCVD process in the storage unit, and the film is automatically formed when the user inputs a signal requesting the start of each process. May be configured. For example, the vapor phase growth apparatus 1 can be configured as described in Japanese Patent Application Laid-Open No. 2013-222284 and film formation can be performed.
 なお、本実施形態では、排気流量制御部93が適正排気流量算出部92から入力される第2排気手段7による適正な排気流量に基づいて、第2排気手段7の排気流量を制御するよう、構成された例について説明したが、これに限定されない。たとえば、排気流量制御部93は、適正排気流量算出部92から入力される適正な排気流量の代わりに、使用者により入力される情報に基づいて第2排気手段7を制御するよう構成されてもよい。使用者により入力される情報はたとえば、任意に設定される第2排気手段7で排気すべき流量を示す情報、もしくは第2排気手段7が備える配管内部の圧力がとるべき値を示す情報でありうる。 In the present embodiment, the exhaust flow rate control unit 93 controls the exhaust flow rate of the second exhaust unit 7 based on the proper exhaust flow rate by the second exhaust unit 7 input from the appropriate exhaust flow rate calculation unit 92. Although the configured example has been described, the present invention is not limited to this. For example, the exhaust flow rate control unit 93 may be configured to control the second exhaust unit 7 based on information input by the user instead of the appropriate exhaust flow rate input from the appropriate exhaust flow rate calculation unit 92. Good. The information input by the user is, for example, information indicating the flow rate to be exhausted by the second exhaust means 7 that is arbitrarily set, or information indicating the value that the pressure inside the pipe provided in the second exhaust means 7 should take. sell.
 なお、本実施形態では、気相成長装置1は、ひとつの第1供給管21とひとつの第2供給管31を備えていたが、第一供給管21および第二供給管31をそれぞれ複数備えても良い。 In the present embodiment, the vapor phase growth apparatus 1 includes one first supply pipe 21 and one second supply pipe 31, but includes a plurality of first supply pipes 21 and a plurality of second supply pipes 31. May be.
 なお、本実施形態では、サセプタ51の回転により、成膜室4内で基板Sを搬送し、回転軸L近辺に滞留ガスが生じる例について説明したが、これに限定されない。基板Sの搬送には、直線駆動なども可能である。その場合、成膜室4内でのガスの供給口の配置、排気口の配置、搬送手段の構成などによりガスだまりができる領域が異なり、第2排気手段7の排気口を配置するべき位置も異なる。ガスだまりができる領域はたとえば流体シミュレーションなどを用いて知ることができる。第2排気手段7は基板Sの近傍に生じる滞留ガスを排気するように設ければよい。 In the present embodiment, the example in which the substrate S is transported in the film forming chamber 4 by the rotation of the susceptor 51 and the staying gas is generated in the vicinity of the rotation axis L is described, but the present invention is not limited to this. For transporting the substrate S, linear driving or the like is also possible. In this case, the region where the gas can be accumulated differs depending on the arrangement of the gas supply port, the exhaust port, the configuration of the transfer means, etc. in the film forming chamber 4, and the position where the exhaust port of the second exhaust means 7 is to be arranged is also different. Different. The region where the gas can be accumulated can be known using, for example, a fluid simulation. The second exhaust means 7 may be provided so as to exhaust the staying gas generated in the vicinity of the substrate S.
 なお、本実施形態では、第1排気手段6の排気口が、サセプタ51の外周部の下面側で、成膜室4の底面に設けられている例について説明したが、これに限定されない。第2排気手段7による滞留ガスの排気や、基板Sへの原料ガスの供給に影響を与えないように設けられれば良い。 In the present embodiment, an example in which the exhaust port of the first exhaust unit 6 is provided on the bottom surface of the film forming chamber 4 on the lower surface side of the outer peripheral portion of the susceptor 51 has been described. However, the present invention is not limited to this. It may be provided so as not to affect the exhaust of the staying gas by the second exhaust means 7 and the supply of the raw material gas to the substrate S.
 なお、本実施形態に係る気相成長装置1を用いた成膜方法では、第2排気手段7による滞留ガスの排気を、HVPE工程でもMOCVD工程でも行ったが、必ずしも常に行わなくてはならなるわけではない。滞留ガスの排気を行わずとも均一な成膜がされるような条件では、第2排気手段7による排気を適宜省略して成膜できる。 In the film forming method using the vapor phase growth apparatus 1 according to the present embodiment, the staying gas is exhausted by the second exhaust means 7 in the HVPE process or the MOCVD process. Do not mean. Under the condition that a uniform film can be formed without exhausting the staying gas, the film can be formed by appropriately evacuating the second exhaust means 7.
(第2の実施形態)
 第2の実施形態に係る気相成長装置1は、第5供給管722をさらに備える点を除いて、第1の実施形態に係る気相成長装置1と同様の構成である。第5供給管722は、非成膜配置の基板Sに対してV族元素を含む補助ガスを供給する。以下で詳細に説明する。
(Second Embodiment)
The vapor phase growth apparatus 1 according to the second embodiment has the same configuration as the vapor phase growth apparatus 1 according to the first embodiment except that a fifth supply pipe 722 is further provided. The fifth supply pipe 722 supplies an auxiliary gas containing a group V element to the non-film-deposited substrate S. This will be described in detail below.
 図11は、本実施形態に係る第2排気手段74の排気管721および第5供給管722の構造を示す図である。本図は、排気管721および第5供給管722の先端部を回転軸Lに直交する方向から見たひとつの断面図である。また、本図では、成膜室4から排出される滞留ガスと、成膜室4に供給される補助ガスの流れる方向を矢印で示している。第5供給管722と、第2排気手段74の排気管721とは、二重管構造を成している。 FIG. 11 is a view showing the structure of the exhaust pipe 721 and the fifth supply pipe 722 of the second exhaust means 74 according to the present embodiment. This drawing is a cross-sectional view of the exhaust pipe 721 and the tip of the fifth supply pipe 722 as seen from the direction orthogonal to the rotation axis L. Further, in this drawing, the flow direction of the staying gas discharged from the film formation chamber 4 and the auxiliary gas supplied to the film formation chamber 4 is indicated by arrows. The fifth supply pipe 722 and the exhaust pipe 721 of the second exhaust means 74 form a double pipe structure.
 図12は、本実施形態に係る第1供給部2、第2供給部3、サセプタ51、第2排気手段74の排気管721、第5供給管722、供給口724、回転軸L、および基板Sの位置関係を示す図である。本図は、サセプタ51を上面側から平面視する方向から見た位置関係を示している。また、補助ガスが供給口724から供給される方向を矢印で示している。高さの異なる部分や、実際には隠れる部分も全て実線で示している。 FIG. 12 shows the first supply unit 2, the second supply unit 3, the susceptor 51, the exhaust pipe 721 of the second exhaust means 74, the fifth supply pipe 722, the supply port 724, the rotating shaft L, and the substrate according to the present embodiment. It is a figure which shows the positional relationship of S. This figure shows a positional relationship when the susceptor 51 is viewed from the top surface in a plan view. The direction in which the auxiliary gas is supplied from the supply port 724 is indicated by an arrow. The parts with different heights and the parts that are actually hidden are shown by solid lines.
 本実施形態に係る気相成長装置1の成膜室4には、第5供給管722が接続されている。第5供給管722は、その先端部が成膜室4内に挿入されている。この第5供給管722は、成膜中、原料ガスが供給される供給口に対向していない基板Sに対して、V族元素を含む補助ガスを供給する。ここで、補助ガスは、第2原料ガスおよび第4原料ガスに含まれるV族元素を含んでいれば良く、たとえば、アンモニアガス、窒素ガス、ヒドラジンガスのいずれか1種以上のガスが挙げられる。なかでも、分解性が良好であるという観点から、アンモニアガスが好ましい。 A fifth supply pipe 722 is connected to the film forming chamber 4 of the vapor phase growth apparatus 1 according to the present embodiment. The tip of the fifth supply pipe 722 is inserted into the film forming chamber 4. The fifth supply pipe 722 supplies an auxiliary gas containing a group V element to the substrate S not facing the supply port to which the source gas is supplied during film formation. Here, the auxiliary gas only needs to contain a group V element contained in the second source gas and the fourth source gas, and examples thereof include any one or more of ammonia gas, nitrogen gas, and hydrazine gas. . Of these, ammonia gas is preferred from the viewpoint of good decomposability.
 なお、第2供給口215から供給される第2原料ガスに含まれるV族元素と、第4供給口312から供給される第4原料ガスとに含まれるV族元素とが異なる場合には、いずれかその成膜中に供給されている原料ガスに含まれるV族元素と同じV族元素を含むガスが、第5供給管722から成膜室4内に供給される。すなわち、HVPE工程では第2原料ガスに、MOCVD工程では第4原料ガスに含まれるV族元素と同じV族元素を含むガスである。 When the group V element contained in the second source gas supplied from the second supply port 215 and the group V element contained in the fourth source gas supplied from the fourth supply port 312 are different, A gas containing the same group V element as the group V element contained in the source gas supplied during the film formation is supplied from the fifth supply pipe 722 into the film formation chamber 4. That is, the gas contains the same group V element as the group V element contained in the second source gas in the HVPE process and in the fourth source gas in the MOCVD process.
 排気管721は第5供給管722の内部に挿入されており、排気管721を内管、第5供給管722を外管とする二重管構造を形成している。この第5供給管722および排気管721は、少なくともその先端部が回転軸Lと平行に延在している。本実施形態では、第5供給管722および排気管721は回転軸L上で延在している。 The exhaust pipe 721 is inserted into the fifth supply pipe 722 to form a double pipe structure in which the exhaust pipe 721 is an inner pipe and the fifth supply pipe 722 is an outer pipe. The fifth supply pipe 722 and the exhaust pipe 721 have at least tip portions extending in parallel with the rotation axis L. In the present embodiment, the fifth supply pipe 722 and the exhaust pipe 721 extend on the rotation axis L.
 図11に戻り、排気管721の先端には、排気口723が設けられている。この排気口723はサセプタ51の上面と対向しており、サセプタ51の回転中心の上部に位置している。そして、サセプタ51の回転により生じる滞留ガスは排気口723を介して排気管721の内側を通り、成膜室4外に排気される。 Returning to FIG. 11, an exhaust port 723 is provided at the tip of the exhaust pipe 721. The exhaust port 723 faces the upper surface of the susceptor 51 and is located above the center of rotation of the susceptor 51. The staying gas generated by the rotation of the susceptor 51 passes through the exhaust pipe 721 through the exhaust port 723 and is exhausted outside the film forming chamber 4.
 第5供給管722の先端付近には供給口724が設けられている。成膜室4内で第5供給管722の延在方向の端面は閉じられており、第5供給管722の先端付近の側面に、複数の供給口724が円周方向に離間して設けられている。そして、補助ガスは第5供給管722の内側かつ排気管721の外側を通り、複数の供給口724から成膜室4内に供給される。第5供給管722を通った補助ガスは、サセプタ51の上面に平行な方向に放出される。また、補助ガスは、サセプタ51の中心から外周に向かう方向に向けて、図12のように放射状に供給される。よって、補助ガスは複数の基板Sの上部に向けて供給される。なお、供給口724とサセプタ51との距離は、排気口723とサセプタ51との距離よりも長い。 A supply port 724 is provided near the tip of the fifth supply pipe 722. An end surface in the extending direction of the fifth supply pipe 722 is closed in the film forming chamber 4, and a plurality of supply ports 724 are provided on the side surface near the tip of the fifth supply pipe 722 so as to be spaced apart in the circumferential direction. ing. The auxiliary gas passes through the inside of the fifth supply pipe 722 and the outside of the exhaust pipe 721, and is supplied into the film forming chamber 4 from the plurality of supply ports 724. The auxiliary gas that has passed through the fifth supply pipe 722 is released in a direction parallel to the upper surface of the susceptor 51. Further, the auxiliary gas is supplied radially as shown in FIG. 12 from the center of the susceptor 51 toward the outer periphery. Therefore, the auxiliary gas is supplied toward the top of the plurality of substrates S. Note that the distance between the supply port 724 and the susceptor 51 is longer than the distance between the exhaust port 723 and the susceptor 51.
 ここで、補助ガスは、第1供給管21の供給口にも第2供給管31の供給口にも対向していない、すなわち第3配置をとる複数の基板Sのみに向けて供給される。具体的な構成としては、第1供給管21の供給口の中心と、第5供給管722の中心とを結ぶ直線上、および第2供給管31の中心と第5供給管722の中心とを結ぶ直線上には、供給口724が形成されていない。なお、原料ガスが供給されていない基板Sの表面に補助ガスが供給されてもよい。すなわち、HVPE工程においては第2配置および第3配置をとる複数の基板Sに向けて、MOCVD工程においては第1配置および第3配置をとる複数の基板Sに向けて補助ガスが供給されるよう、切り替え可能に構成されても良い。 Here, the auxiliary gas is supplied only to the plurality of substrates S that are not opposed to the supply port of the first supply pipe 21 and the supply port of the second supply pipe 31, that is, in the third arrangement. Specifically, a straight line connecting the center of the supply port of the first supply pipe 21 and the center of the fifth supply pipe 722, and the center of the second supply pipe 31 and the center of the fifth supply pipe 722 are arranged. The supply port 724 is not formed on the connecting straight line. The auxiliary gas may be supplied to the surface of the substrate S to which no source gas is supplied. That is, the auxiliary gas is supplied toward the plurality of substrates S having the second arrangement and the third arrangement in the HVPE process, and toward the plurality of substrates S having the first arrangement and the third arrangement in the MOCVD process. , It may be configured to be switchable.
 なお、本実施形態では、第5供給管722の先端付近の側面に、複数の供給口724が円周方向に離間して設けられている例について説明したが、供給口724とサセプタ51との距離は全て同じであっても良く、それぞれ異なっていても良い。ただし、基板Sの表面のガスの濃度を配置によらずできるだけ一定に保つ観点からは、当該距離は全ての供給口724について同じであることが好ましい。 In the present embodiment, the example in which the plurality of supply ports 724 are provided on the side surface in the vicinity of the tip of the fifth supply pipe 722 so as to be spaced apart in the circumferential direction has been described, but the supply port 724 and the susceptor 51 The distances may all be the same or different. However, from the viewpoint of keeping the gas concentration on the surface of the substrate S as constant as possible regardless of the arrangement, the distance is preferably the same for all the supply ports 724.
 次に、補助ガスを供給する流量について説明する。
 たとえばHVPE工程において、基板Sが第1供給管21の供給口の直下の成膜領域に位置する場合(第1配置)には、基板Sの表面のIII族原子濃度およびV族原子濃度は高くなる。一方で、基板Sが回転軸L周りを公転する間には、一時的に基板Sが成膜領域ではない他の領域に位置することとなり、基板S表面のIII族原子濃度はおよそゼロとなる。
Next, the flow rate for supplying the auxiliary gas will be described.
For example, in the HVPE process, when the substrate S is located in the film formation region immediately below the supply port of the first supply pipe 21 (first arrangement), the group III atom concentration and the group V atom concentration on the surface of the substrate S are high. Become. On the other hand, while the substrate S revolves around the rotation axis L, the substrate S is temporarily located in another region that is not the film formation region, and the group III atom concentration on the surface of the substrate S becomes approximately zero. .
 ここで、第5供給管722からはV族元素を含む補助ガスが供給される。第5供給管722からの補助ガスの供給流量(単位時間あたりのV族原子供給量)は、第2供給口215からの第2原料ガスの供給流量(単位時間あたりのV族原子供給量)よりも少ない。たとえば、第5供給管722からの補助ガスの供給流量は、第2供給口215からの第2原料ガスの供給流量の100分の1以上2分の1以下である。このように、第5供給管722からV族元素を含むガスが供給されるため、成膜領域ではない他の領域に位置する基板Sの表面のV族原子濃度は、成膜領域に位置する基板Sの表面のV族原子濃度よりも低くなるものの、ゼロとはならない。このため、基板S表面のV族原子に一定の圧力を付与することができ、基板Sの表面からV族原子が離脱してしまうことを防止できる。一方で、基板S表面のV族原子濃度が低くなることで、III族原子にかかる圧力が低くなり、III族原子が表面拡散し、成長面に形成されているキンクやステップに到達する。このようにして結晶が成長することで、下地層の結晶性を引き継いだ良好な結晶膜を得ることができる。 Here, an auxiliary gas containing a group V element is supplied from the fifth supply pipe 722. The supply flow rate of auxiliary gas from the fifth supply pipe 722 (V group atom supply amount per unit time) is the supply flow rate of the second source gas from the second supply port 215 (V group atom supply amount per unit time). Less than. For example, the supply flow rate of the auxiliary gas from the fifth supply pipe 722 is 1/100 to 1/2 the supply flow rate of the second source gas from the second supply port 215. As described above, since the gas containing the group V element is supplied from the fifth supply pipe 722, the group V atom concentration on the surface of the substrate S located in another region that is not the film formation region is located in the film formation region. Although it is lower than the group V atom concentration on the surface of the substrate S, it does not become zero. For this reason, it is possible to apply a certain pressure to the group V atoms on the surface of the substrate S, and to prevent the group V atoms from separating from the surface of the substrate S. On the other hand, when the group V atom concentration on the surface of the substrate S is lowered, the pressure applied to the group III atom is lowered, the group III atom is diffused on the surface, and reaches the kink or step formed on the growth surface. By growing crystals in this manner, a good crystal film that inherits the crystallinity of the underlayer can be obtained.
 ここでは例としてHVPE工程に関して説明したが、MOCVD工程においても同様である。なお、最適な補助ガスの供給流量は、HVPE工程とMOCVD工程とで異なりうる。 Here, the HVPE process has been described as an example, but the same applies to the MOCVD process. Note that the optimal auxiliary gas supply flow rate may differ between the HVPE process and the MOCVD process.
 なお、本実施形態に係る気相成長装置1の適正排気流量算出部92では、補助ガスの供給流量をさらに加味して第2排気手段74による適正な排気流量を算出するように構成しても良い。その際には、記憶部91は、第1供給口214から供給されるガスの供給流量と、第2供給口215から供給されるガスの供給流量と、第3供給口311から供給されるガスの供給流量と、第4供給口312から供給されるガスの供給流量と、補助ガスの供給流量と、基板Sの回転速さと、第2排気手段74による滞留ガスの適正排気流量との関係を示す情報を適正排気参照情報としてあらかじめ保持する。 Note that the appropriate exhaust flow rate calculation unit 92 of the vapor phase growth apparatus 1 according to the present embodiment may be configured to calculate the appropriate exhaust flow rate by the second exhaust unit 74 by further taking into account the supply flow rate of the auxiliary gas. good. At that time, the storage unit 91 supplies the supply flow rate of the gas supplied from the first supply port 214, the supply flow rate of the gas supplied from the second supply port 215, and the gas supplied from the third supply port 311. The relationship between the supply flow rate of the gas, the supply flow rate of the gas supplied from the fourth supply port 312, the supply flow rate of the auxiliary gas, the rotation speed of the substrate S, and the appropriate exhaust flow rate of the stagnant gas by the second exhaust means 74. The indicated information is held in advance as appropriate exhaust reference information.
 次に、本実施形態の作用および効果について説明する。本実施形態においては第1の実施形態と同様の作用および効果が得られる。加えて、以下の作用および効果が得られる。 Next, the operation and effect of this embodiment will be described. In this embodiment, the same operation and effect as in the first embodiment can be obtained. In addition, the following actions and effects can be obtained.
 本実施形態に係る気相成長装置1は、成膜領域ではない他の領域に位置する基板Sに対して、V族元素を含有するガスを供給する第5供給管722を備えている。この第5供給管722からV族元素を含有する補助ガスを供給することで、原料ガスが供給されていない状態において、基板S表面のV族原子に一定の圧力を付与することができ、基板Sの表面からV族原子が離脱してしまうことを防止できる。特に、第5供給管722からの補助ガスの供給流量を、駆動しているガス供給部、すなわち第1供給部2または第2供給部3から供給される第2原料ガスまたは第4原料ガスの供給流量よりも少なくすることで、III族原子の基板S表面での拡散を促進しつつ、基板S表面のV族原子に一定の圧力を付与することができ、V族原子が脱離してしまうことを防止できる。よって、結晶品質の良いIII-V族化合物半導体膜を形成することが出来る。 The vapor phase growth apparatus 1 according to this embodiment includes a fifth supply pipe 722 that supplies a gas containing a group V element to the substrate S located in another region that is not a film formation region. By supplying the auxiliary gas containing the group V element from the fifth supply pipe 722, a constant pressure can be applied to the group V atoms on the surface of the substrate S in a state where the source gas is not supplied. The group V atoms can be prevented from leaving from the surface of S. In particular, the supply flow rate of the auxiliary gas from the fifth supply pipe 722 is set to the driving gas supply unit, that is, the second source gas or the fourth source gas supplied from the first supply unit 2 or the second supply unit 3. By reducing the flow rate below the supply flow rate, a certain pressure can be applied to the group V atoms on the surface of the substrate S while promoting the diffusion of the group III atoms on the surface of the substrate S, and the group V atoms are desorbed. Can be prevented. Therefore, a group III-V compound semiconductor film with good crystal quality can be formed.
 また、本実施形態に係る第5供給管722は、第1供給管21および第2供給管31とは別に設けられ、これらの供給管とは異なる独立した管であるため、第1供給管21および第2供給管31からのガスの供給量とは別に、独立して補助ガスの供給量を制御できる。これにより、基板S表面における圧力を所望の圧力に設定することができ、基板S表面のIII族原子の基板S表面での拡散を促進しつつ、基板S表面のV族原子に最適な圧力を付与することができる。よって、結晶品質の良いIII-V族化合物半導体膜を形成することが出来る。 Further, the fifth supply pipe 722 according to the present embodiment is provided separately from the first supply pipe 21 and the second supply pipe 31 and is an independent pipe different from these supply pipes. In addition to the amount of gas supplied from the second supply pipe 31, the amount of auxiliary gas supplied can be controlled independently. Thereby, the pressure on the surface of the substrate S can be set to a desired pressure, and the optimum pressure is applied to the group V atoms on the surface of the substrate S while promoting the diffusion of the group III atoms on the surface of the substrate S on the surface of the substrate S. Can be granted. Therefore, a group III-V compound semiconductor film with good crystal quality can be formed.
 また、本実施形態に係る気相成長装置1では、第5供給管722から補助ガスを成長領域以外の領域にある基板S上部に向けて供給する構成であるため、成膜領域以外の領域にある基板S表面のV族原子濃度を比較的一定に保つことができる。 In the vapor phase growth apparatus 1 according to the present embodiment, the auxiliary gas is supplied from the fifth supply pipe 722 toward the upper portion of the substrate S in the region other than the growth region. The group V atom concentration on the surface of a certain substrate S can be kept relatively constant.
 また、本実施形態では、第5供給管722は、第1供給管21および第2供給管31の直下の成膜領域を除いた領域に向けて、ガスを供給するように構成されている。具体的には、第5供給管722の先端部には供給口724形成されているが、この供給口724は、回転軸方向からの平面視において、すなわちサセプタ51を平面視する方向から見て、第1供給管21の中心と第5供給管722の中心とを結ぶ直線上、および、第2供給管31の中心と第5供給管722の中心とを結ぶ直線上には形成されていない。このような構造の第5供給管722を使用することで、第1供給管21の供給口から供給される原料ガスの流れ、および第2供給管31の供給口から供給される原料ガスの流れが、第5供給管722から供給されるガスにより乱れてしまうことが防止される。また、第5供給管722から供給されるガスにより、第1供給管21あるいは第2供給管31から供給されるガスにおけるV/III比(III族原子濃度に対するV族原子濃度)の値が変動してしまうことも防止できる。 Further, in the present embodiment, the fifth supply pipe 722 is configured to supply gas toward an area excluding the film formation area directly below the first supply pipe 21 and the second supply pipe 31. Specifically, a supply port 724 is formed at the distal end portion of the fifth supply pipe 722. This supply port 724 is viewed in a plan view from the direction of the rotation axis, that is, viewed from a direction in which the susceptor 51 is viewed in a plan view. And not formed on the straight line connecting the center of the first supply pipe 21 and the center of the fifth supply pipe 722 and on the straight line connecting the center of the second supply pipe 31 and the center of the fifth supply pipe 722. . By using the fifth supply pipe 722 having such a structure, the flow of the raw material gas supplied from the supply port of the first supply pipe 21 and the flow of the raw material gas supplied from the supply port of the second supply pipe 31 Is prevented from being disturbed by the gas supplied from the fifth supply pipe 722. In addition, the value of the V / III ratio (the group V atom concentration with respect to the group III atom concentration) in the gas supplied from the first supply tube 21 or the second supply tube 31 varies depending on the gas supplied from the fifth supply tube 722. Can also be prevented.
 また、本実施形態では、ひとつの第5供給管722を基板Sが描く円周の内側に配置し、この第5供給管722から放射状にガスを放出している。これにより、供給管を多数設ける必要がなくなる。さらに、本実施形態では、第5供給管722の先端部は、回転軸L上に位置するため、回転軸Lを中心に公転する基板Sが描く円周上のどのような位置に基板Sがある場合でも、第5供給管722と基板Sとの距離は一定となる。第5供給管722から基板S上部に向けてV族元素を含む補助ガスが供給されるが、公転する基板S上の補助ガスの濃度を比較的一定に保つことができる。 Further, in the present embodiment, one fifth supply pipe 722 is disposed inside the circumference drawn by the substrate S, and gas is discharged radially from the fifth supply pipe 722. This eliminates the need to provide a large number of supply pipes. Furthermore, in this embodiment, since the tip of the fifth supply pipe 722 is located on the rotation axis L, the substrate S is located at any position on the circumference drawn by the substrate S revolving around the rotation axis L. Even in some cases, the distance between the fifth supply pipe 722 and the substrate S is constant. An auxiliary gas containing a group V element is supplied from the fifth supply pipe 722 toward the upper portion of the substrate S. However, the concentration of the auxiliary gas on the revolving substrate S can be kept relatively constant.
 また、本実施形態に係る気相成長装置1では、第2排気手段74の排気管721と第5供給管722とが二重管構造を成して回転軸L上に配置されているため、サセプタ51の回転中心の上部における滞留ガスの排気と補助ガスの供給を両立することができる。特に、第2排気手段74の排気口723はサセプタ51の面に対向して設けられており、第5供給管722の供給口724は排気管721の側面に直交する方向に補助ガスを放出するため、排出される滞留ガスと、供給される補助ガスとの流れが互いに妨げられない。よって、結晶品質の良い膜を、面内方向に均等な膜厚で形成することができる。 Further, in the vapor phase growth apparatus 1 according to this embodiment, the exhaust pipe 721 and the fifth supply pipe 722 of the second exhaust means 74 are arranged on the rotation axis L in a double pipe structure, It is possible to achieve both the exhaust of the accumulated gas and the supply of the auxiliary gas at the upper part of the rotation center of the susceptor 51. In particular, the exhaust port 723 of the second exhaust unit 74 is provided to face the surface of the susceptor 51, and the supply port 724 of the fifth supply pipe 722 emits auxiliary gas in a direction orthogonal to the side surface of the exhaust pipe 721. For this reason, the flow of the staying gas discharged and the supplied auxiliary gas are not hindered from each other. Therefore, a film with good crystal quality can be formed with a uniform film thickness in the in-plane direction.
 また、本実施形態に係る気相成長装置1では、第2排気手段74の排気管721と第5供給管722とが二重管構造を成しているため、遮熱効果が得られる。すなわち、排気管721の外周部を補助ガスが流れていることにより、排気管721内を通る高温の滞留ガスの熱が第5供給管722の外部の構造部に伝わるのを抑制することができる。このため、第5供給管722の周囲の構造部には熱による大きな影響が生じず、耐熱性が求められない。よって、設計自由度を高めることができる。また、安定した成膜ができる。 Further, in the vapor phase growth apparatus 1 according to the present embodiment, since the exhaust pipe 721 and the fifth supply pipe 722 of the second exhaust means 74 have a double pipe structure, a heat shielding effect is obtained. That is, since the auxiliary gas flows through the outer peripheral portion of the exhaust pipe 721, it is possible to suppress the heat of the high-temperature staying gas passing through the exhaust pipe 721 from being transmitted to the structure portion outside the fifth supply pipe 722. . For this reason, the structure around the fifth supply pipe 722 is not greatly affected by heat, and heat resistance is not required. Therefore, the degree of freedom in design can be increased. In addition, stable film formation can be achieved.
 なお、本実施形態では、第5供給管722と第2排気手段74の排気管721が二重管構造を成す場合について説明したが、これに限定されるものではない。第5供給管722と排気管721は単独の管として設けても良いし、さらにそれぞれ異なる場所に設けても良い。その場合、第5供給管722は成長領域にない基板Sに補助ガスを供給するように設け、排気管721は、滞留ガスを排気するように設ければよい。 In addition, although this embodiment demonstrated the case where the 5th supply pipe 722 and the exhaust pipe 721 of the 2nd exhaust means 74 comprised a double pipe structure, it is not limited to this. The fifth supply pipe 722 and the exhaust pipe 721 may be provided as a single pipe, or may be provided at different locations. In that case, the fifth supply pipe 722 may be provided so as to supply the auxiliary gas to the substrate S not in the growth region, and the exhaust pipe 721 may be provided so as to exhaust the staying gas.
 なお、本実施形態では、ひとつの第5供給管722から放射状にガスを供給する例について説明したが、これに限られるものではない。たとえば、複数の第5供給管722を設けてもよい。その場合、各第5供給管722は、公転する基板Sの描く円周上に位置しており、第3配置の基板Sと対向する構成とすることができる。これにより、基板S上にV族元素を含むガスを供給してもよい。 In this embodiment, an example in which gas is supplied radially from one fifth supply pipe 722 has been described, but the present invention is not limited to this. For example, a plurality of fifth supply pipes 722 may be provided. In this case, each fifth supply pipe 722 is positioned on the circumference drawn by the revolving substrate S, and can be configured to face the substrate S in the third arrangement. Thereby, a gas containing a group V element may be supplied onto the substrate S.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
(実施例1)
 第2の実施形態に記載したような気相成長装置を用いて、MOCVDによるサファイア基板上への窒化ガリウム(GaN)膜の形成を行った。サファイア基板をサセプタ上に配置し、チャンバー(成膜室4)内を真空にするよう排気した。成膜中にサセプタの回転駆動の回転速さを30rpmとした。また、成膜中にサセプタの中心の上部に配置した二重配管の周囲(第5供給管722の供給口724)からアンモニア(NH)ガスを2L/minで供給し、同じ二重配管の中心管(第2排気手段74の排気管721)から排気を行った。中心管は、ニードルバルブを介して排気ポンプへ接続した。原料ガスとして、まず、第3供給口311からトリメチルガリウムガスを4.8cc/minの流量で供給し、第4供給口312からアンモニアガスを8L/minの流量で供給して、基板温度500℃にて5分間、成膜を行った。次に第3供給口311から供給するトリメチルガリウムガスの流量を10cc/minに切り替え、第4供給口312から供給するアンモニアガスの流量を12L/minに切り替えて、基板温度1000℃にて15分間、成膜を行った。中心管からの排気流量は、ニードルバルブ直前で600hPaとなるよう圧力に基づいて制御した。また、チャンバー内の圧力が666hPaとなるよう排気手段(第1排気手段6)によってチャンバー内を排気した。
Example 1
Using a vapor phase growth apparatus as described in the second embodiment, a gallium nitride (GaN) film was formed on a sapphire substrate by MOCVD. A sapphire substrate was placed on the susceptor, and the chamber (film formation chamber 4) was evacuated to a vacuum. During the film formation, the rotational speed of the susceptor was driven at 30 rpm. In addition, ammonia (NH 3 ) gas is supplied at 2 L / min from the periphery of the double pipe (the supply port 724 of the fifth supply pipe 722) disposed at the upper center of the susceptor during film formation. Exhaust was performed from the center pipe (exhaust pipe 721 of the second exhaust means 74). The central tube was connected to an exhaust pump via a needle valve. As a source gas, first, trimethylgallium gas is supplied from the third supply port 311 at a flow rate of 4.8 cc / min, and ammonia gas is supplied from the fourth supply port 312 at a flow rate of 8 L / min. The film was formed for 5 minutes. Next, the flow rate of trimethylgallium gas supplied from the third supply port 311 is switched to 10 cc / min, the flow rate of ammonia gas supplied from the fourth supply port 312 is switched to 12 L / min, and the substrate temperature is 1000 ° C. for 15 minutes. Then, film formation was performed. The exhaust flow rate from the central tube was controlled based on the pressure so as to be 600 hPa immediately before the needle valve. Further, the chamber was evacuated by the evacuation means (first evacuation means 6) so that the pressure in the chamber was 666 hPa.
 図13は、本実施例に係るGaN膜の膜厚分布を示す図である。膜厚分布は光学式非接触膜厚測定装置により測定した。なお、本図は一度に成膜を行った3枚の基板(図中異なるマーカーで示す)による測定結果を合わせて示している。本図において、横軸はサセプタの中心(回転軸L)からの距離を示し、縦軸は形成したGaN膜の膜厚を示す。本図から、均一な膜厚で成膜されたことが分かる。また、繰り返し同じ成膜を行った場合や、異なる複数の条件で同様に成膜を行った場合でも、面内膜厚の不均一性の、バッチ間ばらつきが抑えられた。そして歩留まりの向上も確認できた。 FIG. 13 is a diagram showing the film thickness distribution of the GaN film according to this example. The film thickness distribution was measured with an optical non-contact film thickness measuring device. This figure also shows the measurement results of three substrates (depicted by different markers in the figure) on which film formation has been performed at once. In this figure, the horizontal axis indicates the distance from the center of the susceptor (rotation axis L), and the vertical axis indicates the film thickness of the formed GaN film. From this figure, it can be seen that the film was formed with a uniform film thickness. In addition, even when the same film formation was repeated, or when the same film formation was performed under a plurality of different conditions, the in-plane film thickness non-uniformity was suppressed from batch to batch. And the improvement in yield was confirmed.
(実施例2)
 第2の実施形態に記載したような気相成長装置を用いて、HVPEによるGaNテンプレート上への窒化ガリウム(GaN)膜の形成を行った。GaNテンプレートをサセプタ上に配置し、チャンバー(成膜室4)内を真空にするよう排気した。成膜中にサセプタの回転駆動の回転速さを5rpmとした。また、成膜中にサセプタの中心の上部に配置した二重配管の周囲(第5供給管722の供給口724)からアンモニア(NH)ガスを0.5L/minで供給した。ここで、同じ二重配管の中心管(第2排気手段74の排気管721)からの排気流量は、ニードルバルブ直前で600hPaとなるよう圧力に基づいて制御した。また、チャンバー内の圧力が666hPaとなるよう排気手段(第1排気手段6)によってチャンバー内を排気した。原料ガスとして、第1供給口214からGaClガスを300cc/minの流量で供給し、第2供給口215からアンモニアガスを6L/minの流量で供給して、基板温度1000℃にて5分間、成膜を行った。
(Example 2)
Using a vapor phase growth apparatus as described in the second embodiment, a gallium nitride (GaN) film was formed on a GaN template by HVPE. The GaN template was placed on the susceptor, and the chamber (film formation chamber 4) was evacuated to a vacuum. During the film formation, the rotational speed of the susceptor was driven at 5 rpm. In addition, ammonia (NH 3 ) gas was supplied at a rate of 0.5 L / min from the periphery of the double pipe (the supply port 724 of the fifth supply pipe 722) disposed at the upper center of the susceptor during film formation. Here, the exhaust flow rate from the central pipe (exhaust pipe 721 of the second exhaust means 74) of the same double pipe was controlled based on the pressure so as to be 600 hPa immediately before the needle valve. Further, the chamber was evacuated by the evacuation means (first evacuation means 6) so that the pressure in the chamber was 666 hPa. As source gases, GaCl gas is supplied from the first supply port 214 at a flow rate of 300 cc / min, ammonia gas is supplied from the second supply port 215 at a flow rate of 6 L / min, and the substrate temperature is 1000 ° C. for 5 minutes. Film formation was performed.
 図14は、本実施例に係るGaN膜の膜厚分布を示す図である。本図において、横軸はサセプタの中心(回転軸L)からの距離を示し、縦軸は形成したGaN膜の膜厚を示す。本図から、HVPEでは中心管からの排気を行わずに、均一な膜厚での成膜されたことが分かる。 FIG. 14 is a diagram showing the film thickness distribution of the GaN film according to this example. In this figure, the horizontal axis indicates the distance from the center of the susceptor (rotation axis L), and the vertical axis indicates the film thickness of the formed GaN film. From this figure, it can be seen that in HVPE, the film was formed with a uniform film thickness without exhausting from the central tube.
 なお、HVPEによる成膜では、中心管からの排気を行わない場合にも、均一な膜厚での成膜ができることがあった。一方で、特に、原料ガス流量を増やし、膜の成長速度を速めた場合には、中心管からの排気なしでは不均一な膜厚分布となる傾向が高かった。中心管からの排気を行うことで、原料ガス流量を増やした場合にも安定して均一な膜厚での成膜ができた。
 また、中心管からの排気を行うことで、繰り返し同じ成膜を行った場合や、異なる複数の条件で同様に成膜を行った場合でも、面内膜厚の不均一性の、バッチ間ばらつきが抑えられた。そして歩留まりの向上も確認できた。
In addition, in the film formation by HVPE, even when the exhaust from the central tube is not performed, the film formation with a uniform film thickness may be possible. On the other hand, in particular, when the raw material gas flow rate was increased and the film growth rate was increased, there was a high tendency for non-uniform film thickness distribution without exhaust from the central tube. By exhausting from the central tube, even when the raw material gas flow rate was increased, a film having a uniform film thickness could be stably formed.
In addition, even if the same film is formed repeatedly by exhausting from the central tube, or even if the film is formed in the same way under different conditions, the in-plane film thickness non-uniformity varies from batch to batch. Was suppressed. And the improvement in yield was confirmed.
(比較例)
 第2の実施形態に記載したような気相成長装置を用いて、MOCVDによるサファイア基板上への窒化ガリウム(GaN)膜の形成を行った。サファイア基板をサセプタ上に配置し、チャンバー(成膜室4)内を真空にするよう排気した。成膜中にサセプタの回転駆動の回転速さを5rpmとした。また、成膜中にサセプタの中心の上部に配置した二重配管の周囲(第5供給管722の供給口724)からアンモニアガスを2L/minで供給した。ここで、同じ二重配管の中心管(第2排気手段74の排気管721)から、排気は行わなかった。原料ガスとして、まず、第3供給口311からトリメチルガリウムガスを4.8cc/minの流量で供給し、第4供給口312からアンモニアガスを8L/minの流量で供給して、基板温度500℃にて5分間、成膜を行った。次に第3供給口311から供給するトリメチルガリウムガスの流量を10cc/minに切り替え、第4供給口312から供給するアンモニアガスの流量を12L/minに切り替えて、基板温度1000℃にて15分間、成膜を行った。第1排気手段6により、チャンバー内の圧力が660hPaとなるよう制御した。
(Comparative example)
Using a vapor phase growth apparatus as described in the second embodiment, a gallium nitride (GaN) film was formed on a sapphire substrate by MOCVD. A sapphire substrate was placed on the susceptor, and the chamber (film formation chamber 4) was evacuated to a vacuum. During the film formation, the rotational speed of the susceptor was driven at 5 rpm. In addition, ammonia gas was supplied at a rate of 2 L / min from around the double pipe (the supply port 724 of the fifth supply pipe 722) disposed at the upper center of the susceptor during film formation. Here, no exhaust was performed from the central pipe (exhaust pipe 721 of the second exhaust means 74) of the same double pipe. As a source gas, first, trimethylgallium gas is supplied from the third supply port 311 at a flow rate of 4.8 cc / min, and ammonia gas is supplied from the fourth supply port 312 at a flow rate of 8 L / min. The film was formed for 5 minutes. Next, the flow rate of trimethylgallium gas supplied from the third supply port 311 is switched to 10 cc / min, the flow rate of ammonia gas supplied from the fourth supply port 312 is switched to 12 L / min, and the substrate temperature is 1000 ° C. for 15 minutes. Then, film formation was performed. The first exhaust means 6 was controlled so that the pressure in the chamber was 660 hPa.
 図15は、本比較例に係るGaN膜の膜厚分布を示す図である。本図において、横軸はサセプタの中心(回転軸L)からの距離を示し、縦軸は形成したGaN膜の膜厚を示す。なお、本図は一度に成膜を行った3枚の基板(図中異なるマーカーで示す)による測定結果を合わせて示している。本図から、基板上に形成されたGaN膜の膜厚は不均一であり、サセプタの中心(回転軸L)に近いほど厚いことが分かる。また、繰り返し同じ成膜を行った場合や、異なる複数の条件で同様に成膜を行った場合、面内膜厚の不均一性の、バッチ間ばらつきが大きかった。 FIG. 15 is a view showing the film thickness distribution of the GaN film according to this comparative example. In this figure, the horizontal axis indicates the distance from the center of the susceptor (rotation axis L), and the vertical axis indicates the film thickness of the formed GaN film. This figure also shows the measurement results of three substrates (depicted by different markers in the figure) on which film formation has been performed at once. From this figure, it can be seen that the film thickness of the GaN film formed on the substrate is non-uniform and is thicker as it is closer to the center of the susceptor (rotation axis L). In addition, when the same film formation was repeated, or when the same film formation was performed under a plurality of different conditions, the in-plane film thickness non-uniformity was large between batches.
 この出願は、2014年6月17日に出願された日本出願特願2014-124042号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-122402 filed on June 17, 2014, the entire disclosure of which is incorporated herein.

Claims (8)

  1.  内部に少なくとも1枚の基板が配置され、前記基板上にIII-V族化合物半導体膜を形成する成膜室と、
     前記成膜室内に、ハロゲン元素およびIII族元素を含む第1原料ガス、および前記第1原料ガスと反応して前記基板上に膜を形成する第2原料ガスを導入する第1供給部と、
     前記成膜室内に、有機金属を含む第3原料ガス、および前記第3原料ガスと反応して前記基板上に膜を形成する第4原料ガスを導入する第2供給部と、
     前記成膜室内で前記基板を搬送する搬送手段と、
     前記成膜室内のガスを排気して真空化する第1排気手段とを備え、
     前記第1供給部は、
      前記第1原料ガスを前記基板に向けて供給する第1供給口と、
      前記第2原料ガスを前記基板に向けて供給する第2供給口とを備え、
      前記第1原料ガスおよび前記第2原料ガスを互いに混合させずに、前記第1供給口および前記第2供給口にそれぞれ導き、
     前記第2供給部は、
      前記第3原料ガスを前記基板に向けて供給する第3供給口と、
      前記第4原料ガスを前記基板に向けて供給する第4供給口とを備え、
      前記第3原料ガスおよび前記第4原料ガスを互いに混合させずに、前記第3供給口および前記第4供給口にそれぞれ導き、
     前記搬送手段は、回転軸周りに回転するサセプタを備え、
     前記第1供給口、前記第2供給口、前記第3供給口および前記第4供給口は、前記サセプタの上面近傍に設けられ、当該上面に対向しており、
     前記搬送手段は、前記サセプタ上に配置された前記基板を、前記第1供給口および前記第2供給口に対向させる第1配置と、前記第3供給口および前記第4供給口に対向させる第2配置と、前記第1供給口、前記第2供給口、前記第3供給口、および前記第4供給口のいずれにも対向させない第3配置との間で搬送し、
     前記第1排気手段とは独立して前記成膜室内を排気する第2排気手段をさらに備え、
     前記第2排気手段は、前記搬送手段の前記回転軸上、かつ、前記サセプタの上面近傍に生じる滞留ガスを排気する気相成長装置。
    A deposition chamber in which at least one substrate is disposed, and a group III-V compound semiconductor film is formed on the substrate;
    A first supply unit that introduces a first source gas containing a halogen element and a group III element into the film formation chamber, and a second source gas that reacts with the first source gas to form a film on the substrate;
    A second supply unit for introducing a third source gas containing an organic metal into the film formation chamber and a fourth source gas that reacts with the third source gas to form a film on the substrate;
    Transport means for transporting the substrate in the film forming chamber;
    A first exhaust means for exhausting and evacuating the gas in the film forming chamber;
    The first supply unit includes:
    A first supply port for supplying the first source gas toward the substrate;
    A second supply port for supplying the second source gas toward the substrate;
    Without mixing the first source gas and the second source gas with each other, each led to the first supply port and the second supply port,
    The second supply unit includes:
    A third supply port for supplying the third source gas toward the substrate;
    A fourth supply port for supplying the fourth source gas toward the substrate;
    Without mixing the third source gas and the fourth source gas with each other, led to the third supply port and the fourth supply port,
    The transport means includes a susceptor that rotates around a rotation axis;
    The first supply port, the second supply port, the third supply port, and the fourth supply port are provided near the upper surface of the susceptor, and are opposed to the upper surface.
    The transfer means includes a first arrangement in which the substrate arranged on the susceptor is opposed to the first supply port and the second supply port, and a first arrangement in which the substrate is opposed to the third supply port and the fourth supply port. 2 between the first and second supply ports, the second supply port, the third supply port, and the fourth supply port.
    A second exhaust means for exhausting the film formation chamber independently of the first exhaust means;
    The second exhaust unit is a vapor phase growth apparatus that exhausts a staying gas generated on the rotating shaft of the transport unit and in the vicinity of the upper surface of the susceptor.
  2.  請求項1に記載の気相成長装置において、
     前記サセプタは円盤形状をしており、
     前記回転軸は、前記サセプタの中心を通り、前記サセプタの上面に垂直であり、
     前記第1排気手段の排気口は、前記サセプタ上の前記基板を平面視する方向から見て、前記サセプタの外縁に沿って設けられている気相成長装置。
    The vapor phase growth apparatus according to claim 1,
    The susceptor has a disk shape,
    The rotation axis passes through the center of the susceptor and is perpendicular to the top surface of the susceptor;
    The exhaust port of the first exhaust means is a vapor phase growth apparatus provided along the outer edge of the susceptor when viewed from a plan view of the substrate on the susceptor.
  3.  請求項1または2に記載の気相成長装置において、
     前記第1供給口から供給されるガスの供給流量と、前記第2供給口から供給されるガスの供給流量と、前記第3供給口から供給されるガスの供給流量と、前記第4供給口から供給されるガスの供給流量と、前記サセプタの回転速さと、前記第2排気手段による前記滞留ガスの適正排気流量との関係を示す適正排気参照情報があらかじめ保持された記憶部と、
     前記第2排気手段による適正な排気流量を算出する適正排気流量算出部と、
     前記適正排気流量算出部で算出された、前記第2排気手段による適正な排気流量で排気するよう、前記第2排気手段を制御する排気流量制御部と、
     前記成膜室内を所定の圧力とするよう、前記第1排気手段を制御する圧力制御部とをさらに備え、
     前記適正排気流量算出部は、前記記憶部から読み出した前記適正排気参照情報と、前記基板上に膜を形成する際にそれぞれ測定される、前記第1供給口から供給されるガスの供給流量と、前記第2供給口から供給されるガスの供給流量と、前記第3供給口から供給されるガスの供給流量と、前記第4供給口から供給されるガスの供給流量と、前記回転速さとに基づいて、前記第2排気手段による適正な排気流量を算出する気相成長装置。
    The vapor phase growth apparatus according to claim 1 or 2,
    A supply flow rate of gas supplied from the first supply port, a supply flow rate of gas supplied from the second supply port, a supply flow rate of gas supplied from the third supply port, and the fourth supply port A storage unit in which appropriate exhaust reference information indicating a relationship between a supply flow rate of the gas supplied from, a rotation speed of the susceptor, and an appropriate exhaust flow rate of the staying gas by the second exhaust unit is held;
    An appropriate exhaust flow rate calculation unit for calculating an appropriate exhaust flow rate by the second exhaust means;
    An exhaust flow rate control unit that controls the second exhaust unit so as to exhaust at an appropriate exhaust flow rate calculated by the second exhaust unit calculated by the appropriate exhaust flow rate calculation unit;
    A pressure control unit for controlling the first exhaust means so that the film forming chamber has a predetermined pressure;
    The appropriate exhaust flow rate calculation unit includes the appropriate exhaust reference information read from the storage unit, and a supply flow rate of gas supplied from the first supply port, which is measured when a film is formed on the substrate. A supply flow rate of the gas supplied from the second supply port, a supply flow rate of the gas supplied from the third supply port, a supply flow rate of the gas supplied from the fourth supply port, and the rotational speed. Based on the above, a vapor phase growth apparatus for calculating an appropriate exhaust flow rate by the second exhaust means.
  4.  請求項1から3のいずれか一項に記載の気相成膜装置において、
     前記第3配置の前記基板に対して、V族元素を含む補助ガスを供給する第5供給管をさらに備える気相成長装置。
    The vapor phase film forming apparatus according to any one of claims 1 to 3,
    A vapor phase growth apparatus further comprising a fifth supply pipe for supplying an auxiliary gas containing a group V element to the substrate in the third arrangement.
  5.  請求項4に記載の気相成長装置において、
     前記第5供給管と、前記第2排気手段の排気管とが二重管構造を成している気相成長装置。
    The vapor phase growth apparatus according to claim 4.
    A vapor phase growth apparatus in which the fifth supply pipe and the exhaust pipe of the second exhaust means form a double pipe structure.
  6.  請求項1から4のいずれか一項に記載の気相成膜装置において、
     前記第2排気手段の排気管は少なくとも一部に二重管構造を有し、当該二重管構造の外管と内管の間は真空であり、前記滞留ガスは当該内管の内側を通って排気される気相成長装置。
    In the vapor phase film forming apparatus according to any one of claims 1 to 4,
    The exhaust pipe of the second exhaust means has a double pipe structure at least in part, a vacuum is formed between the outer pipe and the inner pipe of the double pipe structure, and the staying gas passes through the inside of the inner pipe. Vapor phase growth equipment exhausted.
  7.  請求項1から6のいずれか一項に記載の気相成長装置において、
     前記第2排気手段の排気管は、前記成膜室内において前記回転軸上で延在している気相成長装置。
    In the vapor phase growth apparatus according to any one of claims 1 to 6,
    The exhaust pipe of the second exhaust means is a vapor phase growth apparatus that extends on the rotating shaft in the film forming chamber.
  8.  成膜室内に少なくとも1枚の基板を配置し、前記成膜室内を第1排気手段により排気して真空化する工程と、
     ハロゲン元素およびIII元素を含む第1原料ガス、および前記第1原料ガスと反応して前記基板上に膜を形成するための第2原料ガスを同時に前記成膜室内に供給し、前記成膜室内の少なくとも1枚の前記基板上に膜を形成するハイドライド気相成長工程と、
     有機金属を含む第3原料ガス、および前記第3原料ガスと反応して前記基板上に膜を成膜するための第4原料ガスを同時に前記成膜室内に供給し、前記成膜室内の少なくとも1枚の前記基板上に膜を形成する有機金属気相成長工程とを含み、
     前記ハイドライド気相成長工程、および前記有機金属気相成長工程では、
      回転軸周りに回転するサセプタを備える搬送手段によって、前記サセプタ上に配置した前記基板を前記成膜室内で搬送し、
      前記第1排気手段とは独立した第2排気手段で、前記搬送手段の前記回転軸上、かつ、前記サセプタの上面近傍に生じる滞留ガスを排気するIII-V族化合物半導体膜の成膜方法。
    Disposing at least one substrate in the film formation chamber, evacuating the film formation chamber by a first exhaust means, and evacuating;
    A first source gas containing a halogen element and a III element, and a second source gas for reacting with the first source gas to form a film on the substrate are simultaneously supplied into the film formation chamber; A hydride vapor phase growth step of forming a film on at least one of the substrates;
    A third source gas containing an organic metal and a fourth source gas for reacting with the third source gas to form a film on the substrate are simultaneously supplied into the film formation chamber, A metal organic chemical vapor deposition step of forming a film on one of the substrates,
    In the hydride vapor phase growth step and the organometallic vapor phase growth step,
    The substrate disposed on the susceptor is transported in the film forming chamber by a transport unit including a susceptor that rotates around a rotation axis.
    A method of forming a group III-V compound semiconductor film, wherein a second exhaust unit independent of the first exhaust unit exhausts stagnant gas generated on the rotating shaft of the transport unit and in the vicinity of the upper surface of the susceptor.
PCT/JP2014/082936 2014-06-17 2014-12-12 Vapor phase growth apparatus and film-forming method WO2015194068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-124042 2014-06-17
JP2014124042A JP2017157577A (en) 2014-06-17 2014-06-17 Vapor growth device and deposition method

Publications (1)

Publication Number Publication Date
WO2015194068A1 true WO2015194068A1 (en) 2015-12-23

Family

ID=54935090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082936 WO2015194068A1 (en) 2014-06-17 2014-12-12 Vapor phase growth apparatus and film-forming method

Country Status (3)

Country Link
JP (1) JP2017157577A (en)
TW (1) TW201600624A (en)
WO (1) WO2015194068A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052308A (en) * 2017-09-01 2020-04-21 纽富来科技股份有限公司 Vapor phase growth apparatus and vapor phase growth method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6894482B2 (en) * 2019-09-12 2021-06-30 株式会社Kokusai Electric Substrate processing equipment, semiconductor device manufacturing methods, programs and recording media

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484717A (en) * 1987-09-28 1989-03-30 Furukawa Electric Co Ltd Semiconductor thin film vapor growth apparatus
JP2009149989A (en) * 2007-12-24 2009-07-09 Kc Tech Co Ltd Thin film vapor deposition system and thin film vapor deposition method
JP2010157736A (en) * 2008-12-29 2010-07-15 Kc Tech Co Ltd Atomic layer deposition apparatus
JP2013222884A (en) * 2012-04-18 2013-10-28 Furukawa Co Ltd Vapor growth device and film forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484717A (en) * 1987-09-28 1989-03-30 Furukawa Electric Co Ltd Semiconductor thin film vapor growth apparatus
JP2009149989A (en) * 2007-12-24 2009-07-09 Kc Tech Co Ltd Thin film vapor deposition system and thin film vapor deposition method
JP2010157736A (en) * 2008-12-29 2010-07-15 Kc Tech Co Ltd Atomic layer deposition apparatus
JP2013222884A (en) * 2012-04-18 2013-10-28 Furukawa Co Ltd Vapor growth device and film forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052308A (en) * 2017-09-01 2020-04-21 纽富来科技股份有限公司 Vapor phase growth apparatus and vapor phase growth method

Also Published As

Publication number Publication date
JP2017157577A (en) 2017-09-07
TW201600624A (en) 2016-01-01

Similar Documents

Publication Publication Date Title
US8591993B2 (en) Epitaxial wafer manufacturing apparatus and manufacturing method
CN103456593B (en) A kind of hydride vapor phase epitaxy apparatus and method improving multiple-piece epitaxial material thickness distributing homogeneity
US20160032488A1 (en) Vapor phase growth apparatus and vapor phase growth method
US20170283985A1 (en) Vapor phase growth apparatus and vapor phase growth method
JP2008066490A (en) Vapor phase growing device
US9273396B2 (en) Vapor deposition apparatus and method associated
US20170298512A1 (en) Shower head, vapor phase growth apparatus and vapor phase growth method
US20070023869A1 (en) Vapor phase deposition apparatus and vapor phase deposition method
JP2018037537A (en) Vapor growth device
WO2015194068A1 (en) Vapor phase growth apparatus and film-forming method
US20100307418A1 (en) Vapor phase epitaxy apparatus of group iii nitride semiconductor
JP2018082064A (en) Film forming apparatus
US11692266B2 (en) SiC chemical vapor deposition apparatus
JP6786307B2 (en) Vapor deposition method
JP5426337B2 (en) Vapor phase growth apparatus and film forming method
JP2017204564A (en) Deposition apparatus
JP2016096178A (en) Deposition method, semiconductor element manufacturing method and free-standing substrate manufacturing method
JP2008243948A (en) Manufacturing method of epitaxial substrate
JP2022147056A (en) Semiconductor deposition device and substrate holder used therefor
KR102492343B1 (en) Film formation device and film formation method
WO2020158657A1 (en) Film forming apparatus and film forming method
TWI745656B (en) Vapor growth method
JP2016096177A (en) Hydride vapor-phase growth apparatus and film deposition method
KR100988213B1 (en) Device for manufacturing GaN substrate
JP2011108870A (en) Method of manufacturing epitaxial substrate and epitaxial substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP