WO2015192161A1 - Pneumatic pump - Google Patents

Pneumatic pump Download PDF

Info

Publication number
WO2015192161A1
WO2015192161A1 PCT/AU2014/000632 AU2014000632W WO2015192161A1 WO 2015192161 A1 WO2015192161 A1 WO 2015192161A1 AU 2014000632 W AU2014000632 W AU 2014000632W WO 2015192161 A1 WO2015192161 A1 WO 2015192161A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pneumatic pump
pump according
inlet
swing
Prior art date
Application number
PCT/AU2014/000632
Other languages
French (fr)
Inventor
Mark Damien KROHN
Original Assignee
Bullseye Pumps Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2014902302A external-priority patent/AU2014902302A0/en
Application filed by Bullseye Pumps Pty Ltd filed Critical Bullseye Pumps Pty Ltd
Priority to US15/319,540 priority Critical patent/US10527064B2/en
Priority to CN201480081108.6A priority patent/CN106574639B/en
Priority to ES14895142T priority patent/ES2733291T3/en
Priority to EP14895142.9A priority patent/EP3155267B1/en
Priority to AU2014398171A priority patent/AU2014398171B2/en
Publication of WO2015192161A1 publication Critical patent/WO2015192161A1/en
Priority to AU2019202349A priority patent/AU2019202349A1/en
Priority to US16/375,021 priority patent/US20190226474A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/24Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/02Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped using both positively and negatively pressurised fluid medium, e.g. alternating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/20Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member
    • F16K1/2007Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member specially adapted operating means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/28Systems utilising a combination of gas pressure and suction

Definitions

  • This invention relates to a pneumatic pump.
  • This invention has particular application to a pneumatic pump for pumping flowable waste compositions, chip- entraining spent drilling muds and the like, and for illustrative purposes the invention will be described with reference to this application.
  • this invention may find use in other applications such as continuous- phase liquids, non-homogeneous particulate-solids-in-liquids compositions, and flowable particulate solids per se such as grain.
  • Pneumatic pumps may be used for pumping flowable compositions in hot or chemically and physically aggressive environments.
  • the compositions may be intractable to rotary, piston and diaphragm pumps, or may be environments where motive means such as IC or electric motors cannot be used.
  • the general configuration of such pumps comprises a pressure vessel cyclically transitioned between an intake cycle where compressed air is used to lower the internal pressure of the vessel by venturi effect to draw material in and a discharge cycle where the venturi is stalled or choked to pressurize the vessel and expel the material.
  • Control means may control timing of venturi cycle between vacuum and pressure phases, and control operation of any gate on the inlet and outlet.
  • Control means may respond to time or charge mass to optimize cycle volumes.
  • Conventional configurations of the pressure vessel usually include that the vessel is in the form of a solid of rotation to resist distortion under pressure, locates the material outlet at the lowest point to maximize gravity assistance, and spatially separates the inlet and the outlet.
  • the pressure vessel may comprise a vertical-axis vessel having a conical lower portion and a domed upper portion, wherein the inlet is toward the top of the vessel and the outlet is toward the bottom.
  • a horizontal-axis vessel may comprise a dome- ended cylinder with the inlet and outlet separated both horizontally and vertically.
  • the prior art apparatus works well for large scale apparatus, but does not appear to scale down well for portable apparatus.
  • the shape of conventional designs does not admit of a compact package.
  • the size of inlets and outlets (confined by the materials) cannot scale down as far as the size of the pressure vessel by proportions, resulting in volumetric inefficiency. .
  • This invention in one aspect resides broadly in a pneumatic pump including:
  • a pressure vessel supported by said frame and having a lower transfer port and an upper ventilation port;
  • a transfer assembly communicating with said transfer port and including an inlet for pumpable material, and a delivery outlet, one or both of said inlet and said outlet having a non-return valve;
  • a compressed air-operated venturi assembly having a suction side communicating with said ventilation port and an exhaust vent including closure means selectively operable to cycle said ventilation port between a suction phase and a pressurized phase;
  • control means being adapted to selectively operate said closure means.
  • the supporting frame may take the form of a portable or transportable frame of metal or the like.
  • the supporting frame may support all of the components of the apparatus as an assembly, whereby only fluid connections are required to put the assembly into service.
  • the supporting frame may include roll-over or other in- service protection, such as roll-over bars, cage components or the like.
  • the supporting frame may be provided with lifting points or adaptations for forklifting.
  • the supporting frame for smaller installations may comprise a tubular steel frame, preferably of all-welded construction.
  • the pressure vessel may be formed principally from any suitable material including but not limited to metal or reinforced polymer.
  • the pressure vessel may be of any conventional shape. However, it has been determined that for smaller devices a spherically-derived shape is preferred. Especially it has been empirically determined that the best compromise between useful volume, small overall size, and width to height ratio is provided by using a pressure vessel in the form of a disc, essentially a sphere flattened in the vertical plane to be taller and longer in the supporting frame than it is wide. Such a pressure vessel may have a narrow dimension selected to enhance access to relatively narrow industrial spaces.
  • the transfer port may penetrate the pressure vessel at any relatively lower position but is preferably at the lowest point.
  • the transfer port may penetrate the pressure vessel in any orientation.
  • a conical lower portion may advantageously include a transfer port oriented on the substantially vertical axis in the manner of a hopper chute.
  • the penetration of the transfer port may be either parallel to the disc axis (through the flattened side wall) or substantially perpendicular to the vertical plane containing disc axis (substantially tangential to the annular rim of the disc).
  • the transfer assembly may comprise a conduit extending from the transfer port.
  • the conduit may include a T-connection with side branch connection substantially adjacent the transfer port and an axial connection adjacent the side branch connection, or may in the alternative comprise a Y-connection.
  • the side branch may comprise the inlet and the axial branch may comprise the outlet for the minor efficiency benefit conferred by this arrangement.
  • the inlet and the outlet may be configured with quick-release coupling means such as cam-lock couplings.
  • One or both of the inlet and outlet are fitted with a non-return valve and the choice will be determined at least in part by the application.
  • the non-return valve may in each case be selected from passive and active valve means. Active valve means may include a knife gate valve operated under the control of the control means. However, it is preferred that the valve means be passive such as a swing valve.
  • the inlet will be connected to a material source delivered by a head of pressure.
  • the apparatus may be fitted with just an outlet non-return valve to resist aspiration of contents from a delivery line downstream of the outlet on the vacuum phase of the venturi.
  • the inlet may be fitted with a non-return valve to reduce the reflux of pressure vessel contents back up a supply conduit connected to the inlet during the pressure phase of the venturi. Efficiency may be optimized by fitting a nonreturn valve to both of the inlet and the outlet.
  • the preferred swing valve or valves may suffer from a statistical distribution of cycles where closure is incomplete. It has been determined that the passive operation of a swing valve may be enhanced by closure-assist means.
  • the swing valve may be positively assisted and maintained in a closed position by an actuator as described hereinafter.
  • the actuator may be controlled in concert with the closure means.
  • the compressed air-operated venturi assembly may comprise an elongate venturi body comprising a venturi orifice interposed between the suction side communicating with said ventilation port and the exhaust vent.
  • the orifice may cooperate with a constant-flow air jet supplied by an external compressed air source to induce depression in the suction side of the body upstream of the jet.
  • the open closure means may allow the venturi exhaust to vent through a diffuser and/or muffler to reduce high-dB air screech.
  • the closure means may take any form consistent with allowing substantially open flow of venturi exhaust during the suction phase, and allowing sufficient occlusion of venturi exhaust during the pressurized phase.
  • the closure means may be selected from butterfly valves, gate valves, iris valves, slide valves and ball valves.
  • the valve closure means may be selected to provide an opening cross section substantially the same as or bigger than the cross section of the venturi orifice.
  • the valve closure means may be selected to have low inertia and/or be balanced to enhance speed of action.
  • the closure means may be operated by any suitable actuator.
  • the obligatory presence of a source of compressed air and the lack of useful electrical power in some operating environments mandates that a pneumatic actuator be preferred.
  • the actuator may comprise a rotary actuator or a linear actuator.
  • the actuator may be a single-action actuator cycling against a return spring or may comprise a double-action actuator, depending on the operating parameters of the control means.
  • the control means may comprise a digital-electronic over electric or pneumatic control means, an analogue air over electric or pneumatic control means.
  • a simple air control over air deliver system may be used.
  • a combination of air solenoids and delay-dashpots may be used to provide for simple time-dependent cyclic control.
  • an air- analogue programmable logic controller may be used.
  • the energy of the venturi exhaust air may be utilized to optimize delivery line performance by being injected to the delivery line downstream of an outlet nonreturn valve.
  • the venturi exhaust air may be selectively passed through a two-way valve whereby one way vents to atmosphere and the alternative way vents into the material outlet downstream of a non-return valve.
  • the two way valve may for example comprise a ball-tee valve.
  • the two way valve may be manual, remote-controlled, or demand operated by condition-responsive means.
  • the body upstream of the jet and orifice may be a curved conduit connected to the ventilation port, whereby the venturi and exhaust axis may be directed in a straight line toward the material outlet despite lack of clear line of sight between the ventilation port and the material outlet.
  • a swing valve apparatus including:
  • valve body having a swing chamber interposed between an inlet and an outlet
  • annular valve seat located in said swing chamber about an opening into said inlet
  • valve gate pivotally mounted in said chamber and adapted to move between a closed position substantially occluding said opening and an open position whereby fluid may pass from said inlet to said outlet;
  • valve closer means operable to selective urge and maintain said valve gate in said closed position.
  • the valve body may be substantially convention for such swing valves and may be of bronze, stainless steel, reinforced polymer or other material.
  • the inlet and outlet may be integrally formed with connector means including but not limited to male or female threaded portions, quick release connectors such as cam-locks, bayonet connections or the like.
  • connector means including but not limited to male or female threaded portions, quick release connectors such as cam-locks, bayonet connections or the like.
  • a chamber extension or turret extending away from the flow axis and through which the valve gate may be pivotally installed the valve body.
  • the chamber extension is most often includes a bore that is substantially perpendicular to the flow path through the valve.
  • the valve gate may comprise a valve closure disc portion adapted to cooperate with the annular valve seat and a body portion pivoted to the walls of the chamber extension.
  • the body portion may include means to cooperate with valve closer means associated with the chamber extension.
  • the body portion may include a surface that a selectively operated closer means may cooperate with the effect closure and maintenance of the valve gate on the closed position.
  • a valve gate assembly may comprise a supporting body pivoted to the walls of the chamber extension and having a front surface that mounts a resilient valve closure disc with, for example, a bolt and spreader washer.
  • the front surface may lie in a plane that includes the pivotal axis of the valve gate.
  • the supporting body may have a back surface adapted to cooperate with the valve closer means.
  • the valve closer means may comprise a linear actuator that is adapted to utilize the transverse extension and is mounted to present a push rod adapted to pass closely adjacent the back or body portion surface.
  • the back or body portion surface may include a camming surface portion that the pushrod will first contact if the valve is not fully closed.
  • the swing valve is for use on the inlet side of a pump in accordance with the present invention and may include a valve closer assembly including a double acting pneumatic linear actuator mounted coaxially with and closing the top end of a swing valve chamber extension.
  • the actuator may include a push rod adapted to engage a body surface portion of a valve gate having a camming surface at the point of first contact of the push rod with the valve gate and closure maintenance portion engaged on substantially full closure.
  • Fig. 1 is a front view of pneumatic pump apparatus in accordance with the present invention
  • Fig. 2 is a sectional side view of the apparatus of Fig. 1 ;
  • Fig. 3 is a diagram of air, fluid and control flows of the apparatus of Fig. 1 ;
  • Fig. 4 is a detail sectional view of a swing valve suitable for use in the embodiment of Fig. 1 ;
  • Fig. 5 is a perspective view of the apparatus of Fig. 1 ; and Fig. 6 is a cover for the apparatus of Fig. 1 .
  • a pneumatic pump 10 comprising a supporting tubular steel frame 1 1 and a steel, disc-shaped pressure vessel 12 supported on the frame at anchor points 13.
  • the steel pressure vessel 12 includes a lower, tangential transfer port 14 and an upper, radial ventilation port 15.
  • a transfer assembly 16 communicates with the transfer port 14 and includes an inlet assembly 17 for pumpable material, and a delivery outlet assembly 20.
  • the inlet assembly 17 includes a positive-close non-return valve 21 , described in more detail hereinafter.
  • the ventilation port 15 mounts a compressed air-operated venturi assembly 22 having a suction side 23 communicating with the ventilation port 15 and an exhaust vent 24 including a closure assembly 25 selectively operable to cycle the ventilation port 15 between a suction phase and a pressurized phase.
  • the inlet assembly 17 and delivery outlet assembly 20 in this embodiment essentially comprise respective swing valve assemblies mounted on adjacent branches of a T-connector 26 connected to the transfer port 14. Each of the swing valve assemblies 17, 20 is provided with terminal camlock connectors 27.
  • the inlet swing valve assembly 17 includes a positive-close actuator 30, described in more detail hereinafter.
  • the venturi assembly 22 comprises an elongate venturi body 31 including a venturi orifice 32 interposed between the suction side 23 communicating with the ventilation port 15 and the exhaust vent 24.
  • the orifice 32 cooperates with a constant-flow air jet 33 supplied by an external compressed air source 34 to induce depression in the suction side 23 of the body 31 upstream of the jet 33.
  • the open closure assembly 25 allows the venturi exhaust to vent through a diffuser/ muffler 35 to reduce high-dB air screech.
  • the closure assembly 25 comprises a low-inertia ball valve, lubricationless ball valve 36 operated by a single action, spring return pneumatic actuator 37.
  • the air source 34 may be shut off by a stop cock 38, providing a master on-off switch for the apparatus.
  • the diffuser/ muffler 35 is mounted on a side branch of a manual two way T-valve 40, the straight-through path of the T-valve 40 being in fluid communication with a modified top cap 41 on the outlet swing valve assembly 20, thereby allowing venturi exhaust air to pass selectively into either the diffuser/muffler 35 or the delivery line 42 downstream of the outlet non-return valve.
  • the venturi body 31 upstream of the jet 33 and orifice 32 may be a curved conduit 43 connected to the ventilation port 15.
  • FIG. 3 is illustrates an embodiment of a control arrangement of the apparatus of Figs. 1 and 2 wherein the compressed air source 34 supplies (at supply pressure) both the venturi assembly 22 and a double switching (push-pull) primary air solenoid 44.
  • the air distributed by two outlets 45 of the solenoid 44 pass to respective ends of a double acting pneumatic dashpot 46 which acts as a timer element.
  • the piston 47 of the dashpot 46 mounts a double ended rod 50 which, at the respective ends of travel triggers a respective air switch 48 providing feedback control to the solenoid 44.
  • the venturi assembly 22 depresses the pressure vessel 12 when the closure assembly 25 is open, whereupon exhaust air may pass, depending on the setting of the manual T-valve 40 to the diffuser/muffler 35 or into the delivery line downstream of the swing non-return valve 20.
  • the timer element push-pulls the closure assembly 25 to timer-operate the cycling of the venturi assembly 22 between the suction and pressurization phases.
  • the slow-acting (dashpot), push-pull, positive-close actuator 30 positively closes the swing valve gate 17.
  • positive-close actuator 30 slightly delays opening of the swing valve gate 17, allowing vacuum accumulation in the pressure vessel 12.
  • the inlet assembly 17 includes a cast stainless steel valve body 51 having a swing chamber 52 interposed between an inlet end 53 and an outlet end 54.
  • An annular, integral valve seat 55 is formed in the swing chamber about an opening into the inlet end 53.
  • the inlet end 53 mounts a threaded collar 56 supporting a cam-lock male spigot 57.
  • the outlet end 54 mounts a threaded collar 58 supporting a threaded side branch of the T-connector 26.
  • a chamber extension 60 includes a bore 61 that is substantially perpendicular to the flow path through the valve.
  • a valve gate assembly comprises a stainless steel supporting body 62 pivoted at 63 to the walls of the chamber extension 60 and has a front surface 64 that mounts a resilient polyurethane valve closure disc 65 with a bolt 66 and spreader washer 67.
  • the front surface 64 lies in a plane that includes the pivotal axis of the valve gate.
  • the supporting body 62 has a back surface 70 adapted to cooperate with valve closer means 71 comprising a double acting, linear actuator dashpot actuator 30 screw-mounted to the chamber extension 60 to present a push rod 72 adapted to pass closely adjacent the back surface 70.
  • the back surface 70 includes a camming surface portion 73 that the pushrod 72 will first contact if the valve is not fully closed.
  • the apparatus may be housed in a removable housing 74 having an air supply cut-out 75, an inlet cut-out and an outlet cut-out (not shown).
  • the cover includes bolt holes 77 adapted to secure the cover 74 to the frame 1 1 at mount tags 80.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

There is provided a pneumatic pump (10) comprising a tubular steel frame (11) and a disc-shaped pressure vessel (12) including a lower, tangential transfer port (14) and an upper, radial ventilation port (15). A transfer assembly (16) on the port (14) includes an inlet assembly (17) having a positive-close non-return valve (21) and a delivery outlet assembly(20).A venturi assembly (22) applies suction to the ventilation port (15) and has an exhaust vent (24) including a closure assembly (25) selectively operable to cycle between a suction phase and a pressurized phase. A two way T-valve (40) selectively allows venturi exhaust air to pass selectively into either a diffuser/muffler (35) or a delivery line(42)downstream of an outlet non-return valve.

Description

PNEUMATIC PUMP
FIELD OF THE INVENTION
This invention relates to a pneumatic pump. This invention has particular application to a pneumatic pump for pumping flowable waste compositions, chip- entraining spent drilling muds and the like, and for illustrative purposes the invention will be described with reference to this application. However we envisage that this invention may find use in other applications such as continuous- phase liquids, non-homogeneous particulate-solids-in-liquids compositions, and flowable particulate solids per se such as grain.
BACKGROUND OF THE INVENTION
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that the referenced prior art forms part of the common general knowledge in Australia.
Pneumatic pumps may be used for pumping flowable compositions in hot or chemically and physically aggressive environments. The compositions may be intractable to rotary, piston and diaphragm pumps, or may be environments where motive means such as IC or electric motors cannot be used. The general configuration of such pumps comprises a pressure vessel cyclically transitioned between an intake cycle where compressed air is used to lower the internal pressure of the vessel by venturi effect to draw material in and a discharge cycle where the venturi is stalled or choked to pressurize the vessel and expel the material.
The straightforward general principle of operation must be optimized for the apparatus to be practical. Efficiency may demand that the delivery and/or inlet ports to the pressure vessel are controlled by gates. Control means may control timing of venturi cycle between vacuum and pressure phases, and control operation of any gate on the inlet and outlet. Control means may respond to time or charge mass to optimize cycle volumes. Conventional configurations of the pressure vessel usually include that the vessel is in the form of a solid of rotation to resist distortion under pressure, locates the material outlet at the lowest point to maximize gravity assistance, and spatially separates the inlet and the outlet. For example, the pressure vessel may comprise a vertical-axis vessel having a conical lower portion and a domed upper portion, wherein the inlet is toward the top of the vessel and the outlet is toward the bottom. In other embodiments a horizontal-axis vessel may comprise a dome- ended cylinder with the inlet and outlet separated both horizontally and vertically.
The prior art apparatus works well for large scale apparatus, but does not appear to scale down well for portable apparatus. In the first instance, the shape of conventional designs does not admit of a compact package. Secondly the size of inlets and outlets (confined by the materials) cannot scale down as far as the size of the pressure vessel by proportions, resulting in volumetric inefficiency. .
SUMMARY OF THE INVENTION
This invention in one aspect resides broadly in a pneumatic pump including:
a supporting frame;
a pressure vessel supported by said frame and having a lower transfer port and an upper ventilation port;
a transfer assembly communicating with said transfer port and including an inlet for pumpable material, and a delivery outlet, one or both of said inlet and said outlet having a non-return valve;
a compressed air-operated venturi assembly having a suction side communicating with said ventilation port and an exhaust vent including closure means selectively operable to cycle said ventilation port between a suction phase and a pressurized phase; and
control means being adapted to selectively operate said closure means.
The supporting frame may take the form of a portable or transportable frame of metal or the like. The supporting frame may support all of the components of the apparatus as an assembly, whereby only fluid connections are required to put the assembly into service. The supporting frame may include roll-over or other in- service protection, such as roll-over bars, cage components or the like. The supporting frame may be provided with lifting points or adaptations for forklifting. The supporting frame for smaller installations may comprise a tubular steel frame, preferably of all-welded construction.
The pressure vessel may be formed principally from any suitable material including but not limited to metal or reinforced polymer. The pressure vessel may be of any conventional shape. However, it has been determined that for smaller devices a spherically-derived shape is preferred. Especially it has been empirically determined that the best compromise between useful volume, small overall size, and width to height ratio is provided by using a pressure vessel in the form of a disc, essentially a sphere flattened in the vertical plane to be taller and longer in the supporting frame than it is wide. Such a pressure vessel may have a narrow dimension selected to enhance access to relatively narrow industrial spaces.
The transfer port may penetrate the pressure vessel at any relatively lower position but is preferably at the lowest point. The transfer port may penetrate the pressure vessel in any orientation. For example a conical lower portion may advantageously include a transfer port oriented on the substantially vertical axis in the manner of a hopper chute. In the case of the spherical or disc-like pressure vessel the penetration of the transfer port may be either parallel to the disc axis (through the flattened side wall) or substantially perpendicular to the vertical plane containing disc axis (substantially tangential to the annular rim of the disc).
The transfer assembly may comprise a conduit extending from the transfer port. The conduit may include a T-connection with side branch connection substantially adjacent the transfer port and an axial connection adjacent the side branch connection, or may in the alternative comprise a Y-connection. In the case of a T- connection the side branch may comprise the inlet and the axial branch may comprise the outlet for the minor efficiency benefit conferred by this arrangement. The inlet and the outlet may be configured with quick-release coupling means such as cam-lock couplings. One or both of the inlet and outlet are fitted with a non-return valve and the choice will be determined at least in part by the application. The non-return valve may in each case be selected from passive and active valve means. Active valve means may include a knife gate valve operated under the control of the control means. However, it is preferred that the valve means be passive such as a swing valve.
In some practical applications the inlet will be connected to a material source delivered by a head of pressure. In this instance the apparatus may be fitted with just an outlet non-return valve to resist aspiration of contents from a delivery line downstream of the outlet on the vacuum phase of the venturi. In other applications the inlet may be fitted with a non-return valve to reduce the reflux of pressure vessel contents back up a supply conduit connected to the inlet during the pressure phase of the venturi. Efficiency may be optimized by fitting a nonreturn valve to both of the inlet and the outlet.
In the application of pumping non-homogeneous materials, the preferred swing valve or valves may suffer from a statistical distribution of cycles where closure is incomplete. It has been determined that the passive operation of a swing valve may be enhanced by closure-assist means. For example, the swing valve may be positively assisted and maintained in a closed position by an actuator as described hereinafter. The actuator may be controlled in concert with the closure means.
The compressed air-operated venturi assembly may comprise an elongate venturi body comprising a venturi orifice interposed between the suction side communicating with said ventilation port and the exhaust vent. The orifice may cooperate with a constant-flow air jet supplied by an external compressed air source to induce depression in the suction side of the body upstream of the jet. During the suction phase the open closure means may allow the venturi exhaust to vent through a diffuser and/or muffler to reduce high-dB air screech.
The closure means may take any form consistent with allowing substantially open flow of venturi exhaust during the suction phase, and allowing sufficient occlusion of venturi exhaust during the pressurized phase. The closure means may be selected from butterfly valves, gate valves, iris valves, slide valves and ball valves. The valve closure means may be selected to provide an opening cross section substantially the same as or bigger than the cross section of the venturi orifice. The valve closure means may be selected to have low inertia and/or be balanced to enhance speed of action.
The closure means may be operated by any suitable actuator. The obligatory presence of a source of compressed air and the lack of useful electrical power in some operating environments mandates that a pneumatic actuator be preferred. The actuator may comprise a rotary actuator or a linear actuator. The actuator may be a single-action actuator cycling against a return spring or may comprise a double-action actuator, depending on the operating parameters of the control means.
The control means may comprise a digital-electronic over electric or pneumatic control means, an analogue air over electric or pneumatic control means. In order to provide for an air-only system, a simple air control over air deliver system may be used. For example, a combination of air solenoids and delay-dashpots may be used to provide for simple time-dependent cyclic control. Alternatively an air- analogue programmable logic controller may be used.
The energy of the venturi exhaust air may be utilized to optimize delivery line performance by being injected to the delivery line downstream of an outlet nonreturn valve. For example, the venturi exhaust air may be selectively passed through a two-way valve whereby one way vents to atmosphere and the alternative way vents into the material outlet downstream of a non-return valve. The two way valve may for example comprise a ball-tee valve. The two way valve may be manual, remote-controlled, or demand operated by condition-responsive means.
While the working venturi is generally straight, the body upstream of the jet and orifice may be a curved conduit connected to the ventilation port, whereby the venturi and exhaust axis may be directed in a straight line toward the material outlet despite lack of clear line of sight between the ventilation port and the material outlet.
As described above the inlet and/or outlet may be equipped with swing non-return valves that are closure assisted to alleviate tendency to fouling. In another aspect there is provided a swing valve apparatus including:
a valve body having a swing chamber interposed between an inlet and an outlet;
an annular valve seat located in said swing chamber about an opening into said inlet;
a valve gate pivotally mounted in said chamber and adapted to move between a closed position substantially occluding said opening and an open position whereby fluid may pass from said inlet to said outlet; and
valve closer means operable to selective urge and maintain said valve gate in said closed position.
The valve body may be substantially convention for such swing valves and may be of bronze, stainless steel, reinforced polymer or other material. The inlet and outlet may be integrally formed with connector means including but not limited to male or female threaded portions, quick release connectors such as cam-locks, bayonet connections or the like. In the way of such valve bodies there is generally provided a chamber extension or turret extending away from the flow axis and through which the valve gate may be pivotally installed the valve body. The chamber extension is most often includes a bore that is substantially perpendicular to the flow path through the valve.
The valve gate may comprise a valve closure disc portion adapted to cooperate with the annular valve seat and a body portion pivoted to the walls of the chamber extension. The body portion may include means to cooperate with valve closer means associated with the chamber extension. For example, the body portion may include a surface that a selectively operated closer means may cooperate with the effect closure and maintenance of the valve gate on the closed position. In the case of the pumps described above, a valve gate assembly may comprise a supporting body pivoted to the walls of the chamber extension and having a front surface that mounts a resilient valve closure disc with, for example, a bolt and spreader washer. The front surface may lie in a plane that includes the pivotal axis of the valve gate. The supporting body may have a back surface adapted to cooperate with the valve closer means.
The valve closer means may comprise a linear actuator that is adapted to utilize the transverse extension and is mounted to present a push rod adapted to pass closely adjacent the back or body portion surface. In order that there be provided an initial closing force the back or body portion surface may include a camming surface portion that the pushrod will first contact if the valve is not fully closed.
In one embodiment of the present invention the swing valve is for use on the inlet side of a pump in accordance with the present invention and may include a valve closer assembly including a double acting pneumatic linear actuator mounted coaxially with and closing the top end of a swing valve chamber extension. The actuator may include a push rod adapted to engage a body surface portion of a valve gate having a camming surface at the point of first contact of the push rod with the valve gate and closure maintenance portion engaged on substantially full closure.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be described with reference to the following non-limiting embodiment of the invention as illustrated in the drawings and wherein:
Fig. 1 is a front view of pneumatic pump apparatus in accordance with the present invention;
Fig. 2 is a sectional side view of the apparatus of Fig. 1 ;
Fig. 3 is a diagram of air, fluid and control flows of the apparatus of Fig. 1 ;
Fig. 4 is a detail sectional view of a swing valve suitable for use in the embodiment of Fig. 1 ;
Fig. 5 is a perspective view of the apparatus of Fig. 1 ; and Fig. 6 is a cover for the apparatus of Fig. 1 .
In the figures there is illustrated a pneumatic pump 10 comprising a supporting tubular steel frame 1 1 and a steel, disc-shaped pressure vessel 12 supported on the frame at anchor points 13. The steel pressure vessel 12 includes a lower, tangential transfer port 14 and an upper, radial ventilation port 15.
A transfer assembly 16 communicates with the transfer port 14 and includes an inlet assembly 17 for pumpable material, and a delivery outlet assembly 20. The inlet assembly 17 includes a positive-close non-return valve 21 , described in more detail hereinafter.
The ventilation port 15 mounts a compressed air-operated venturi assembly 22 having a suction side 23 communicating with the ventilation port 15 and an exhaust vent 24 including a closure assembly 25 selectively operable to cycle the ventilation port 15 between a suction phase and a pressurized phase.
The inlet assembly 17 and delivery outlet assembly 20 in this embodiment essentially comprise respective swing valve assemblies mounted on adjacent branches of a T-connector 26 connected to the transfer port 14. Each of the swing valve assemblies 17, 20 is provided with terminal camlock connectors 27. The inlet swing valve assembly 17 includes a positive-close actuator 30, described in more detail hereinafter.
The venturi assembly 22 comprises an elongate venturi body 31 including a venturi orifice 32 interposed between the suction side 23 communicating with the ventilation port 15 and the exhaust vent 24. The orifice 32 cooperates with a constant-flow air jet 33 supplied by an external compressed air source 34 to induce depression in the suction side 23 of the body 31 upstream of the jet 33. During the suction phase the open closure assembly 25 allows the venturi exhaust to vent through a diffuser/ muffler 35 to reduce high-dB air screech. The closure assembly 25 comprises a low-inertia ball valve, lubricationless ball valve 36 operated by a single action, spring return pneumatic actuator 37. The air source 34 may be shut off by a stop cock 38, providing a master on-off switch for the apparatus.
The diffuser/ muffler 35 is mounted on a side branch of a manual two way T-valve 40, the straight-through path of the T-valve 40 being in fluid communication with a modified top cap 41 on the outlet swing valve assembly 20, thereby allowing venturi exhaust air to pass selectively into either the diffuser/muffler 35 or the delivery line 42 downstream of the outlet non-return valve. In order to maintain a straight venturi exhaust flow path, the venturi body 31 upstream of the jet 33 and orifice 32 may be a curved conduit 43 connected to the ventilation port 15.
In Fig. 3 is illustrates an embodiment of a control arrangement of the apparatus of Figs. 1 and 2 wherein the compressed air source 34 supplies (at supply pressure) both the venturi assembly 22 and a double switching (push-pull) primary air solenoid 44. The air distributed by two outlets 45 of the solenoid 44 pass to respective ends of a double acting pneumatic dashpot 46 which acts as a timer element. The piston 47 of the dashpot 46 mounts a double ended rod 50 which, at the respective ends of travel triggers a respective air switch 48 providing feedback control to the solenoid 44.
The venturi assembly 22 depresses the pressure vessel 12 when the closure assembly 25 is open, whereupon exhaust air may pass, depending on the setting of the manual T-valve 40 to the diffuser/muffler 35 or into the delivery line downstream of the swing non-return valve 20.
The timer element push-pulls the closure assembly 25 to timer-operate the cycling of the venturi assembly 22 between the suction and pressurization phases. Simultaneously with the pressurisation phase commencing, the slow-acting (dashpot), push-pull, positive-close actuator 30 positively closes the swing valve gate 17. On transition to the suction phase, positive-close actuator 30 slightly delays opening of the swing valve gate 17, allowing vacuum accumulation in the pressure vessel 12.
As best illustrated in Fig. 4 the inlet assembly 17 includes a cast stainless steel valve body 51 having a swing chamber 52 interposed between an inlet end 53 and an outlet end 54. An annular, integral valve seat 55 is formed in the swing chamber about an opening into the inlet end 53. The inlet end 53 mounts a threaded collar 56 supporting a cam-lock male spigot 57. The outlet end 54 mounts a threaded collar 58 supporting a threaded side branch of the T-connector 26.
A chamber extension 60 includes a bore 61 that is substantially perpendicular to the flow path through the valve.
A valve gate assembly comprises a stainless steel supporting body 62 pivoted at 63 to the walls of the chamber extension 60 and has a front surface 64 that mounts a resilient polyurethane valve closure disc 65 with a bolt 66 and spreader washer 67. The front surface 64 lies in a plane that includes the pivotal axis of the valve gate. The supporting body 62 has a back surface 70 adapted to cooperate with valve closer means 71 comprising a double acting, linear actuator dashpot actuator 30 screw-mounted to the chamber extension 60 to present a push rod 72 adapted to pass closely adjacent the back surface 70. The back surface 70 includes a camming surface portion 73 that the pushrod 72 will first contact if the valve is not fully closed.
In use, the apparatus may be housed in a removable housing 74 having an air supply cut-out 75, an inlet cut-out and an outlet cut-out (not shown). The cover includes bolt holes 77 adapted to secure the cover 74 to the frame 1 1 at mount tags 80.
It will of course be realised that while the above has been given by way of illustrative example of this invention, all such and other modifications and variations thereto as would be apparent to persons skilled in the art are deemed to fall within the broad scope and ambit of this invention as is set forth in the claims appended hereto.

Claims

1 . A pneumatic pump including:
a supporting frame;
a pressure vessel supported by said frame and having a lower transfer port and an upper ventilation port;
a transfer assembly communicating with said transfer port and including an inlet for pumpable material, and a delivery outlet, one or both of said inlet and said outlet having a non-return valve;
a compressed air-operated venturi assembly having a suction side communicating with said ventilation port and an exhaust vent including closure means selectively operable to cycle said ventilation port between a suction phase and a pressurized phase; and
control means being adapted to selectively operate said closure means.
2. A pneumatic pump according to Claim 1 , wherein the supporting frame comprises a tubular steel frame.
3. A pneumatic pump according to Claim 1 , wherein the pressure vessel is of a spherically-derived shape.
4. A pneumatic pump according to Claim 3, wherein the spherically-derived shape is in the form of a disc flattened in the vertical plane to be taller and longer in the supporting frame than it is wide.
5. A pneumatic pump according to Claim 3 or Claim 4, wherein the penetration of the transfer port substantially tangential to the lowest point on the pressure vessel.
6. A pneumatic pump according to Claim 1 , wherein transfer assembly comprises a conduit extending from the transfer port and having a T-connection with side branch connection substantially adjacent the transfer port and an axial connection adjacent the side branch connection.
7. A pneumatic pump according to Claim 6, wherein the side branch comprises the inlet and the axial branch comprises the outlet.
8. A pneumatic pump according to Claim 1 , wherein at least the inlet valve is fitted with a non-return valve.
9. A pneumatic pump according to Claim 8, wherein non-return valve or valves each comprises a swing valve.
10. A pneumatic pump according to Claim 9, wherein a non-return valve is fitted to both of the inlet and the outlet.
1 1. A pneumatic pump according to Claim 9 or Claim 10, wherein at least the inlet swing valve is positively assisted and maintained in a closed position by an actuator.
12. A pneumatic pump according to Claim 1 1 , wherein the actuator is controlled in concert with the closure means.
13. A pneumatic pump according to Claim 1 , wherein the compressed air- operated venturi assembly comprises an elongate venturi body comprising a venturi orifice interposed between the suction side communicating with said ventilation port and the exhaust vent, the orifice cooperating with a constant-flow air jet supplied by an external compressed air source to induce depression in the suction side of the body upstream of the jet while the closure means is open.
14. A pneumatic pump according to Claim 1 , wherein, during the suction phase, the venturi exhausts through a diffuser and/or muffler.
15. A pneumatic pump according to Claim 1 , wherein the closure means is selected from low inertia and/or balanced valves.
16. A pneumatic pump according to Claim 15, wherein the closure means valve is operated by a pneumatic actuator.
17. A pneumatic pump according to Claim 1 , wherein the control means is selected from digital-electronic over electric or pneumatic control means and analogue air over electric or pneumatic control means.
18. A pneumatic pump according to Claim 17, wherein the control means is an air control over air deliver system.
19. A pneumatic pump according to Claim 18, wherein a combination of air solenoids and delay-dashpots are used to provide for time-dependent cyclic control.
20. A pneumatic pump according to Claim 18, wherein an air-analogue programmable logic controller is used.
21. A pneumatic pump according to Claim 1 , wherein venturi exhaust air is injected to the delivery outlet downstream of an outlet non-return valve.
22. Swing valve apparatus including:
a valve body having a swing chamber interposed between an inlet and an outlet and defining a flow axis therethrough;
an annular valve seat located in said swing chamber about an opening into said inlet;
a valve gate pivotally mounted in said chamber and adapted to move between a closed position substantially occluding said opening and an open position whereby fluid may pass from said inlet to said outlet; and
valve closer means operable to selective urge and maintain said valve gate in said closed position.
23. Swing valve apparatus according to Claim 22, wherein the valve body includes a chamber extension extending away from the flow axis and through which the valve gate may be pivotally installed the valve body.
24. Swing valve apparatus according to Claim 23, wherein the valve gate comprises a valve closure disc portion adapted to cooperate with the annular valve seat and a body portion pivoted to the walls of the chamber extension.
25. Swing valve apparatus according to Claim 24, wherein the body portion includes means to cooperate with the valve closer means.
26. Swing valve apparatus according to Claim 25, wherein the body portion includes a surface that a selectively operated closer means may cooperate with the effect closure and maintenance of the valve gate on the closed position.
27. Swing valve apparatus according to Claim 23, wherein the valve gate assembly comprises a supporting body pivoted to the walls of the chamber extension and having a front surface that mounts a resilient valve closure disc, the front surface lying in a plane that includes the pivotal axis of the valve gate, the supporting body may having a back surface adapted to cooperate with the valve closer means.
28. Swing valve apparatus according to Claim 26 or 27, wherein the valve closer means comprises a linear actuator mounted on the chamber extension and presenting a push rod adapted to pass closely adjacent the back or body portion surface.
29. Swing valve apparatus according to Claim 28, wherein the back or body portion surface includes a camming surface portion that the pushrod will first contact if the valve is not fully closed.
PCT/AU2014/000632 2014-04-16 2014-06-18 Pneumatic pump WO2015192161A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/319,540 US10527064B2 (en) 2014-06-16 2014-06-18 Pneumatic pump
CN201480081108.6A CN106574639B (en) 2014-06-16 2014-06-18 Air driven pump
ES14895142T ES2733291T3 (en) 2014-06-16 2014-06-18 Pneumatic pump
EP14895142.9A EP3155267B1 (en) 2014-06-16 2014-06-18 Pneumatic pump
AU2014398171A AU2014398171B2 (en) 2014-06-16 2014-06-18 Pneumatic pump
AU2019202349A AU2019202349A1 (en) 2014-06-16 2019-04-04 Pneumatic pump
US16/375,021 US20190226474A1 (en) 2014-04-16 2019-04-04 Pneumatic pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2014902302 2014-06-16
AU2014902302A AU2014902302A0 (en) 2014-06-16 Pneumatic pump

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/319,540 A-371-Of-International US10527064B2 (en) 2014-04-16 2014-06-18 Pneumatic pump
US16/375,021 Continuation-In-Part US20190226474A1 (en) 2014-04-16 2019-04-04 Pneumatic pump

Publications (1)

Publication Number Publication Date
WO2015192161A1 true WO2015192161A1 (en) 2015-12-23

Family

ID=54934558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2014/000632 WO2015192161A1 (en) 2014-04-16 2014-06-18 Pneumatic pump

Country Status (6)

Country Link
US (1) US10527064B2 (en)
EP (1) EP3155267B1 (en)
CN (1) CN106574639B (en)
AU (2) AU2014398171B2 (en)
ES (1) ES2733291T3 (en)
WO (1) WO2015192161A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020210306B2 (en) * 2020-07-31 2023-04-06 Solidsvac Pty Ltd Constant flow solids pump
US12098068B2 (en) 2021-07-08 2024-09-24 Industrial Vacuum Transfer Services Usa, Llc Systems, methods, and devices for industrial tower waste extraction
US12091264B2 (en) 2021-07-08 2024-09-17 Industrial Vacuum Transfer Services Usa, Llc Assemblies, apparatuses, systems, and methods for material extraction and conveyance
US12103791B2 (en) 2021-07-08 2024-10-01 Industrial Vacuum Transfer Services Usa, Llc Assemblies and methods for material extraction from retention collections

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052260A (en) * 1960-04-04 1962-09-04 Union Tank Car Co Check valve with pneumatic assisting means for positive closing
US3861830A (en) * 1973-09-17 1975-01-21 Ronald D Johnson Pressure differential pumping system for dry bulk products
US4637425A (en) * 1986-06-02 1987-01-20 Petersen Robert E Sewer check valve with cutting seat
US4770611A (en) * 1986-05-07 1988-09-13 The Young Industries, Inc. Product pump assembly
US5007803A (en) * 1989-09-28 1991-04-16 Global Pumps, Inc. Air operated vacuum pump
US6755207B1 (en) * 2001-03-29 2004-06-29 Raymond Lee Curtis Venturi based liquid transfer apparatus
WO2013080179A1 (en) * 2011-12-02 2013-06-06 Tyco Valves And Controls Italia S.R.L. Quick maintenance undersea check valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2141427A (en) * 1937-08-03 1938-12-27 Raymond W Bryant Compressed air operated pump
US7241080B2 (en) * 2004-03-22 2007-07-10 Durr Industries, Inc. Pump for transferring particulate material
US7584782B1 (en) * 2006-08-28 2009-09-08 Hamilton Sundstrand Corporation Valve defining modulated and unmodulated flow paths
MX2010001068A (en) * 2007-08-08 2010-03-15 Halliburton Energy Serv Inc Pump apparatus.
CN102777676A (en) * 2011-05-09 2012-11-14 正丰阀门集团有限公司 Signal gate valve
US20150107680A1 (en) * 2013-10-23 2015-04-23 Walter R. Chapman, Jr. Modulating check valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052260A (en) * 1960-04-04 1962-09-04 Union Tank Car Co Check valve with pneumatic assisting means for positive closing
US3861830A (en) * 1973-09-17 1975-01-21 Ronald D Johnson Pressure differential pumping system for dry bulk products
US4770611A (en) * 1986-05-07 1988-09-13 The Young Industries, Inc. Product pump assembly
US4637425A (en) * 1986-06-02 1987-01-20 Petersen Robert E Sewer check valve with cutting seat
US5007803A (en) * 1989-09-28 1991-04-16 Global Pumps, Inc. Air operated vacuum pump
US6755207B1 (en) * 2001-03-29 2004-06-29 Raymond Lee Curtis Venturi based liquid transfer apparatus
WO2013080179A1 (en) * 2011-12-02 2013-06-06 Tyco Valves And Controls Italia S.R.L. Quick maintenance undersea check valve

Also Published As

Publication number Publication date
US10527064B2 (en) 2020-01-07
EP3155267A4 (en) 2018-03-14
EP3155267B1 (en) 2019-05-01
ES2733291T3 (en) 2019-11-28
AU2014398171B2 (en) 2019-05-30
AU2014398171A1 (en) 2017-02-02
AU2019202349A1 (en) 2019-05-02
CN106574639A (en) 2017-04-19
US20170321725A1 (en) 2017-11-09
EP3155267A1 (en) 2017-04-19
CN106574639B (en) 2019-02-26

Similar Documents

Publication Publication Date Title
US20190226474A1 (en) Pneumatic pump
US10527064B2 (en) Pneumatic pump
KR101279989B1 (en) Pump apparatus
EP2313660B1 (en) Pneumatic evacuation pump
JP2018517476A5 (en)
GB2434180A (en) Pump apparatus
WO2005089162A2 (en) Flow control valve
US20230340966A1 (en) Constant flow solids pump
US6733253B2 (en) Hydraulic air compressor having an automatic water valve regulation mechanism
CN203285775U (en) Valve terminal of which air inlet has independent shut-off function
KR101159817B1 (en) The power sprayer
CN201141353Y (en) Non-obstruction membrane pump
CN105378284B (en) Vavuum pump and the method for running vavuum pump
EP1112449A1 (en) Double-acting pump
CN101629566A (en) Combination pressure switch
CN103195970B (en) Automatically-controlled valve air reservoir
RU2434164C1 (en) Pump unit
JP2010024902A (en) Liquid pressure feeder
US197117A (en) Improvement in faucets
US732241A (en) Device for pumping air and water.
WO2008095242A1 (en) A shuttle valve assembly
CN204610212U (en) A kind of valve control Pneumatic diaphragm slurry pump
CN104863831A (en) Valve-control pneumatic diaphragm-type slurry pump
FI92799C (en) Cleaning device for a vacuum cleaner filter
CN115989065A (en) Dry pipe accelerator system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895142

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15319540

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014895142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895142

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014398171

Country of ref document: AU

Date of ref document: 20140618

Kind code of ref document: A