WO2015190350A1 - メカニカルシール - Google Patents

メカニカルシール Download PDF

Info

Publication number
WO2015190350A1
WO2015190350A1 PCT/JP2015/065886 JP2015065886W WO2015190350A1 WO 2015190350 A1 WO2015190350 A1 WO 2015190350A1 JP 2015065886 W JP2015065886 W JP 2015065886W WO 2015190350 A1 WO2015190350 A1 WO 2015190350A1
Authority
WO
WIPO (PCT)
Prior art keywords
bellows
retainer
mechanical seal
radial direction
ring
Prior art date
Application number
PCT/JP2015/065886
Other languages
English (en)
French (fr)
Inventor
井口 徹哉
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2016527753A priority Critical patent/JP6392868B2/ja
Priority to US15/316,894 priority patent/US9631727B1/en
Priority to EP15806195.2A priority patent/EP3156700B1/en
Publication of WO2015190350A1 publication Critical patent/WO2015190350A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3436Pressing means
    • F16J15/3448Pressing means the pressing force resulting from fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/3476Means for minimising vibrations of the slip-ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/36Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member connected by a diaphragm or bellow to the other member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/36Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member connected by a diaphragm or bellow to the other member
    • F16J15/363Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member connected by a diaphragm or bellow to the other member the diaphragm or bellow being made of metal
    • F16J15/366Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member connected by a diaphragm or bellow to the other member the diaphragm or bellow being made of metal and comprising vibration-damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/46Sealings with packing ring expanded or pressed into place by fluid pressure, e.g. inflatable packings

Definitions

  • the present invention relates to a mechanical seal.
  • the stationary mechanical seal is provided with a pressing mechanism that presses the stationary ring toward the rotating ring.
  • a pressing mechanism that presses the stationary ring toward the rotating ring.
  • an annular sealed space is formed by providing bellows on each of the radially outer side and the inner side, and the bellows is expanded and contracted by controlling the fluid pressure in the sealed space.
  • a technique is known (see Patent Document 1).
  • double bellows are provided on the outer side and the inner side in the radial direction. In this case, since the minimum inner diameter on the inner peripheral side of the outer bellows must be larger than the maximum outer diameter on the outer peripheral side of the inner bellows, the mechanical seal becomes larger in the radial direction.
  • An object of the present invention is to reduce the radial size of a mechanical seal including a pressing mechanism configured to expand and contract these bellows in response to fluid pressure in an annular sealed space formed by two bellows. It is to provide a mechanical seal that can be made possible.
  • the present invention employs the following means in order to solve the above problems.
  • the mechanical seal of the present invention is A rotating ring fixed to the rotation axis; A fixed ring that is fixed to a housing having a shaft hole through which the rotary shaft is inserted and that slides with respect to the rotary ring; A pressing mechanism for pressing the stationary ring toward the rotating ring; A mechanical seal comprising: The pressing mechanism is A first bellows provided outside in the radial direction; A second bellows provided inside in the radial direction; With An annular sealed space is formed by the first bellows and the second bellows, and the members provided on both ends of the first bellows and the second bellows, and the first bellows and the second bellows are formed according to the fluid pressure in the sealed space.
  • the first bellows and the second bellows are disposed at positions separated from each other in the central axis direction, and when viewed in the central axis direction, a part of the inner side in the radial direction of the first bellows and the diameter of the second bellows. It arrange
  • the “rotating ring fixed to the rotating shaft” includes a case where the rotating ring is fixed to the rotating shaft via a plurality of members.
  • the fixed ring that is fixed to the housing having the shaft hole through which the rotating shaft is inserted and that slides with respect to the rotating ring”
  • the fixed ring is connected to the housing via a plurality of members. The case where it is fixed is also included.
  • the minimum inner diameter on the inner peripheral side of the first bellows is smaller than the maximum outer diameter on the outer peripheral side of the second bellows. Accordingly, it is possible to reduce the size in the radial direction as compared with a mechanical seal provided with a pressing mechanism in which bellows are doubled on the outer side and the inner side in the radial direction.
  • a damping member for suppressing vibration of the pressing mechanism is provided inside the first bellows in the radial direction.
  • the damping member By providing the damping member in this way, the vibration of the pressing mechanism can be suppressed and the influence of disturbance can be made difficult. Moreover, since the damping member should just be provided in the dead space formed inside the radial direction of a 1st bellows, size reduction of radial direction is not prevented.
  • a first retainer and a second retainer for fixing the first bellows are provided on one end side and the other end side of the first bellows
  • a third retainer and a fourth retainer for fixing the second bellows are respectively provided at one end and the other end of the second bellows.
  • the third retainer is configured to extend to the inner side in the radial direction of the first bellows
  • a cylindrical member fixed to the fourth retainer is provided on the inner side in the radial direction of the third retainer
  • An annular gap may be provided between the third retainer and the cylindrical member, and the vibration damping member may be disposed in the annular gap.
  • the damping member may be a coil spring disposed so that a spring force is applied in a direction in which the first bellows and the second bellows are contracted.
  • control for expanding and contracting the first bellows and the second bellows can be performed by the cooperation of the fluid pressure in the sealed space and the coil spring.
  • the damping member is an elastic ring that is slidably in close contact with the inner peripheral surface of the third retainer and the outer peripheral surface of the cylindrical member.
  • the function of sealing the annular gap between the inner peripheral surface of the third retainer and the outer peripheral surface of the cylindrical member can be exhibited by the elastic ring.
  • the size in the radial direction can be reduced.
  • FIG. 1 is a schematic cross-sectional view of a mechanical seal according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a mechanical seal according to an embodiment of the present invention.
  • the mechanical seal 100 serves to seal an annular gap between the rotation shaft 200 and a shaft hole provided in the housing 300 (a shaft hole through which the rotation shaft 200 is inserted).
  • the mechanical seal 100 is fixed to the rotating shaft 200 via the sleeve 110, the rotating ring 120 fixed to the rotating shaft 200 via the sleeve 110, and the housing 300 via a plurality of members.
  • the fixed ring 130 is provided.
  • the annular protrusion 131 at the tip of the stationary ring 130 slides in a state of surface contact with the rotating ring 120, thereby exhibiting a sealing function by the mechanical seal 100.
  • the left side is the machine inside (A)
  • the right side is the machine outside (B)
  • the mechanical seal 100 allows the fluid to be sealed on the machine inside (A) to be outside the machine ( B) is prevented from leaking.
  • the mechanical seal 100 is provided with a pressing mechanism that presses the stationary ring 130 toward the rotating ring 120.
  • the pressing mechanism includes a first bellows 141 provided on the outer side in the radial direction and a second bellows 151 provided on the inner side in the radial direction.
  • a first retainer 142 is provided on one end side (machine inner side (A)) of the first bellows 141, and a second retainer 143 is provided on the other end side (machine outer side (B)) of the first bellows 141.
  • the first bellows 141 is fixed by the first retainer 142 and the second retainer 143. Further, the fixed ring 130 is fixed to the first retainer 142.
  • the second retainer 143 is fixed to the housing 300.
  • a third retainer 152 is provided on one end side (machine inner side (A)) of the second bellows 151, and a fourth retainer 153 is provided on the other end side (machine outer side (B)) of the second bellows 151.
  • the second bellows 151 is fixed by the third retainer 152 and the fourth retainer 153.
  • the third retainer 152 includes a cylindrical portion 152a and an annular protrusion 152b extending radially inward on the other end side of the cylindrical portion 152a.
  • the cylindrical portion 152 a of the third retainer 152 provided on one end side of the second bellows 151 is configured to extend to the inside in the radial direction of the first bellows 141.
  • One end side of the cylindrical portion 152 a is fixed to the inner peripheral surface of the first retainer 142.
  • the fourth retainer 153 is fixed to the housing 300.
  • the first bellows 141, the first retainer 142 and the second retainer 143 provided on both sides of the first bellows 141, the second bellows 151, and the third retainer 152 and the fourth retainer 153 provided on both sides of the first bellows 141 are annularly sealed.
  • a space S1 is formed.
  • the first bellows 141 and the second bellows 151 expand and contract in the direction of the central axis of the rotary shaft 200 in accordance with the fluid pressure of a fluid such as gas sent from the passage 310 provided in the housing 300 to the sealed space S1. It is configured.
  • the central axis direction of the rotating shaft 200 is hereinafter simply referred to as “central axis direction”.
  • the first bellows 141 and the second bellows 151 can be expanded and contracted by controlling the fluid pressure in the sealed space S1 by the pressing mechanism configured as described above. Further, since the function of the damper is exhibited by the sealed space S1, vibration of the pressing mechanism can be suppressed.
  • the stationary ring 130 is separated from the rotating ring 120 as shown in FIG. 1 in a state where no fluid is sent to the sealed space S1. Then, when the fluid is sent to the sealed space S1 and the fluid pressure in the sealed space S1 increases, the stationary ring 130 comes into close contact with the rotating ring 120 as shown in FIG.
  • a cylindrical member 160 fixed to the fourth retainer 153 is provided inside the third retainer 152 in the radial direction.
  • the cylindrical member 160 includes a cylindrical portion 161 and an annular protrusion 162 that extends radially outward on one end side of the cylindrical portion 161. Further, the other end portion of the cylindrical portion 161 is fixed to the fourth retainer 153.
  • the outer peripheral surface of the annular protrusion 162 provided on the cylindrical member 160 is configured to slidably contact the inner peripheral surface of the cylindrical portion 152a of the third retainer 152. Further, the inner peripheral surface of the annular protrusion 152 b in the third retainer 152 is configured to slidably contact the outer peripheral surface of the cylindrical portion 161 in the cylindrical member 160. With the configuration as described above, an annular gap S ⁇ b> 2 having a rectangular cross section is formed between the third retainer 152 and the cylindrical member 160.
  • the pressing mechanism mainly includes the first bellows 141, the first retainer 142, the second retainer 143, the second bellows 151, the third retainer 152, and the fourth retainer 153.
  • a coil spring 170 as a vibration damping member is provided in the annular gap S2.
  • the coil spring 170 is arranged so that one end side is in close contact with the annular protrusion 162 and the other end side is in close contact with the annular protrusion 152b so that a spring force is applied in a direction in which the first and second bellows 141 and 151 are contracted. Has been.
  • first bellows and second bellows The arrangement configuration of the first bellows 141 and the second bellows 151 will be described in more detail.
  • the first bellows 141 and the second bellows 151 are arranged at positions separated from each other in the central axis direction.
  • the inner part of the first bellows 141 in the radial direction and the outer part of the second bellows 151 in the radial direction overlap each other. That is, the minimum inner diameter on the inner peripheral side of the first bellows 141 is configured to be smaller than the maximum outer diameter on the outer peripheral side of the second bellows 151.
  • the minimum inner diameter on the inner peripheral side of the first bellows 141 is configured to be larger than the minimum inner diameter on the inner peripheral side of the second bellows 151.
  • the first bellows 141 and the second bellows 151 are disposed at positions separated from each other in the central axis direction and are viewed in the central axis direction.
  • the inner part of the first bellows 141 in the radial direction and the outer part of the second bellows 151 in the radial direction overlap each other. That is, the minimum inner diameter on the inner peripheral side of the first bellows 141 is smaller than the maximum outer diameter on the outer peripheral side of the second bellows 151. Accordingly, it is possible to reduce the size in the radial direction as compared with a mechanical seal provided with a pressing mechanism in which bellows are doubled on the outer side and the inner side in the radial direction.
  • a coil spring 170 as a damping member that suppresses vibration of the pressing mechanism is provided in the annular gap S2 provided inside the first bellows 141 in the radial direction. Yes. Thereby, the vibration of the pressing mechanism is further suppressed, and it can be made difficult to be affected by disturbance.
  • the minimum inner diameter on the inner peripheral side of the first bellows 141 is configured to be larger than the minimum inner diameter on the inner peripheral side of the second bellows 151.
  • the 1st bellows 141 and the 2nd bellows 151 are arrange
  • a coil spring 170 is employed as the damping member so that a spring force is applied in a direction in which the first bellows 141 and the second bellows 151 are contracted.
  • the control for expanding and contracting the first bellows 141 and the second bellows 151 can be performed by the cooperation of the fluid pressure in the sealed space S1 and the coil spring 170.
  • the stationary ring 130 can be more reliably separated from the rotating ring 120 by the coil spring 170.
  • the damping member is not a coil spring, but the inner peripheral surface of the third retainer 152 (cylindrical portion 152a) and the cylindrical member 160 (cylindrical portion 161). It is also possible to employ an elastic ring 171 that is slidably in close contact with the outer peripheral surface. When this configuration is adopted, the elastic ring 171 can exert a function of sealing an annular gap between the inner peripheral surface of the third retainer 152 and the outer peripheral surface of the cylindrical member 160.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Architecture (AREA)
  • Mechanical Sealing (AREA)

Abstract

 2つのベローズにより形成される環状の密閉空間内の流体圧力に応じて、これらのベローズが伸縮するように構成される押圧機構を備えるメカニカルシールにおいて、径方向の小型化を可能とするメカニカルシールを提供する。 第1ベローズ141及び第2ベローズ151と、これらの両端側にそれぞれ設けられる部材とによって環状の密閉空間S1が形成されており、密閉空間S1内の流体圧力に応じて、第1ベローズ141及び第2ベローズ151が回転軸200の中心軸線方向に伸縮するように構成されたメカニカルシール100において、第1ベローズ141と第2ベローズ151は、中心軸線方向に離れた位置に配置されると共に、中心軸線方向に見た場合に、第1ベローズ141の径方向の内側の一部と第2ベローズ151の径方向の外側の一部が重なるように配置されていることを特徴とする。

Description

メカニカルシール
 本発明は、メカニカルシールに関する。
 静止形メカニカルシールにおいては、固定環を回転環に向かって押圧する押圧機構が設けられている。この押圧機構として、径方向の外側と内側にそれぞれベローズが設けられることにより、環状の密閉空間が形成され、密閉空間内の流体圧力が制御されることでベローズが伸縮されるように構成された技術が知られている(特許文献1参照)。この従来例に係る押圧機構を備えるメカニカルシールにおいては、径方向の外側と内側にベローズが2重に設けられる。この場合、外側のベローズにおける内周側の最小内径を、内側のベローズにおける外周側の最大外径よりも大きくしなければならないため、メカニカルシールが径方向に大型化してしまう。
実開昭61-99764号公報
 本発明の目的は、2つのベローズにより形成される環状の密閉空間内の流体圧力に応じて、これらのベローズが伸縮するように構成される押圧機構を備えるメカニカルシールにおいて、径方向の小型化を可能とするメカニカルシールを提供することにある。
 本発明は、上記課題を解決するために以下の手段を採用した。
 すなわち、本発明のメカニカルシールは、
 回転軸に対して固定される回転環と、
 該回転軸が挿通される軸孔を有するハウジングに対して固定され、かつ前記回転環に対して摺動する固定環と、
 該固定環を前記回転環に向けて押圧する押圧機構と、
を備えるメカニカルシールであって、
 前記押圧機構は、
 径方向の外側に設けられる第1ベローズと、
 径方向の内側に設けられる第2ベローズと、
を備え、
 これら第1ベローズ及び第2ベローズと、第1ベローズと第2ベローズの両端側にそれぞれ設けられる部材とによって環状の密閉空間が形成されており、該密閉空間内の流体圧力に応じて、第1ベローズ及び第2ベローズが前記回転軸の中心軸線方向に伸縮するように構成されたメカニカルシールにおいて、
 第1ベローズと第2ベローズは、前記中心軸線方向に離れた位置に配置されると共に、前記中心軸線方向に見た場合に、第1ベローズの径方向の内側の一部と第2ベローズの径方向の外側の一部が重なるように配置されていることを特徴とする。
 なお、「回転軸に対して固定される回転環」については、回転環が複数の部材を介して回転軸に固定される場合も含まれる。また、「該回転軸が挿通される軸孔を有するハウジングに対して固定され、かつ前記回転環に対して摺動する固定環」についても、固定環がハウジングに対して複数の部材を介して固定される場合も含まれる。
 本発明によれば、第1ベローズにおける内周側の最小内径は、第2ベローズにおける外周側の最大外径よりも小さい。従って、径方向の外側と内側にベローズが2重に設けられる押圧機構を備えるメカニカルシールに比べて、径方向の小型化を図ることが可能となる。
 第1ベローズの径方向の内側に、前記押圧機構の振動を抑制する制振部材が設けられているとよい。
 このように制振部材を設けることで、押圧機構の振動が抑制され、外乱による影響を受け難くすることができる。また、制振部材は第1ベローズの径方向の内側にできるデッドスペースに設ければよいので、径方向の小型化を妨げることはない。
 第1ベローズの一端側と他端側には、それぞれ第1ベローズを固定する第1リテーナと第2リテーナが設けられており、
 第2ベローズの一端側と他端側には、それぞれ第2ベローズを固定する第3リテーナと第4リテーナが設けられており、
 第3リテーナは、第1ベローズの径方向の内側にまで伸びるように構成されており、かつ第3リテーナの径方向の内側には第4リテーナに固定された円筒状部材が設けられると共に、
 第3リテーナと前記円筒状部材との間に環状隙間が設けられ、該環状隙間内に前記制振部材が配置されているとよい。
 ここで、前記制振部材は、第1ベローズ及び第2ベローズを縮ませる方向にばね力が付与されるように配置されるコイルばねであるとよい。
 これにより、第1ベローズと第2ベローズを伸び縮みさせるための制御を、密閉空間内の流体圧力とコイルばねとの協働により行うことができる。
 前記制振部材は、第3リテーナの内周面と前記円筒状部材の外周面に対してそれぞれ摺動可能に密着する弾性体製リングであることも好適である。
 この場合、弾性体製リングによって、第3リテーナの内周面と円筒状部材の外周面との間の環状隙間を封止する機能を発揮させることができる。
 なお、上記各構成は、可能な限り組み合わせて採用し得る。
 以上説明したように、本発明によれば、2つのベローズにより形成される環状の密閉空間内の流体圧力に応じて、これらのベローズが伸縮するように構成される押圧機構を備えるメカニカルシールにおいて、径方向の小型化を図ることができる。
図1は本発明の実施例に係るメカニカルシールの模式的断面図である。 図2は本発明の実施例に係るメカニカルシールの模式的断面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (実施例)
 <メカニカルシール>
 図1及び図2を参照して、本発明の実施例に係るメカニカルシールの構成について説明する。本実施例に係るメカニカルシール100は、回転軸200とハウジング300に設けられている軸孔(回転軸200が挿通される軸孔)との間の環状隙間を密封する役割を担っている。そして、メカニカルシール100は、回転軸200に固定されるスリーブ110と、回転軸200に対してスリーブ110を介して固定される回転環120と、ハウジング300に対して複数の部材を介して固定される固定環130とを備えている。なお、回転軸200が回転している際に、固定環130の先端の環状突起131が回転環120に対して面接触した状態で摺動することにより、メカニカルシール100による密封機能が発揮される。また、本実施例においては、図1,2中、左側が機内側(A)、右側が機外側(B)であり、メカニカルシール100によって、機内側(A)の密封対象流体が機外側(B)に漏れることを防止している。
 そして、メカニカルシール100には、固定環130を回転環120に向けて押圧する押圧機構が設けられている。この押圧機構は、径方向の外側に設けられる第1ベローズ141と、径方向の内側に設けられる第2ベローズ151とを備えている。第1ベローズ141の一端側(機内側(A))には第1リテーナ142が設けられ、第1ベローズ141の他端側(機外側(B))には第2リテーナ143が設けられている。これらの第1リテーナ142と第2リテーナ143によって第1ベローズ141は固定されている。また、第1リテーナ142に固定環130が固定されている。第2リテーナ143はハウジング300に固定されている。
 第2ベローズ151の一端側(機内側(A))には第3リテーナ152が設けられ、第2ベローズ151の他端側(機外側(B))には第4リテーナ153が設けられている。これらの第3リテーナ152と第4リテーナ153によって第2ベローズ151は固定されている。また、第3リテーナ152は、円筒部152aと円筒部152aの他端側において径方向内側に向かって伸びる環状突起152bとを備えている。図示のように、第2ベローズ151の一端側に設けられた第3リテーナ152における円筒部152aは、第1ベローズ141の径方向の内側にまで伸びるように構成されている。そして、円筒部152aの一端側が第1リテーナ142の内周面に固定されている。また、第4リテーナ153はハウジング300に固定されている。
 そして、第1ベローズ141と、その両側に設けられる第1リテーナ142及び第2リテーナ143と、第2ベローズ151と、その両側に設けられる第3リテーナ152及び第4リテーナ153とにより、環状の密閉空間S1が形成される。ハウジング300に設けられた通路310から、この密閉空間S1に送られるガスなどの流体の流体圧力に応じて、第1ベローズ141及び第2ベローズ151が回転軸200の中心軸線方向に伸縮するように構成されている。なお、回転軸200の中心軸線方向については、以下、単に「中心軸線方向」と称する。このように構成された押圧機構により、密閉空間S1内の流体圧力を制御することで、第1ベローズ141及び第2ベローズ151を伸縮させることができる。また、密閉空間S1によって、ダンパの機能が発揮されるため、押圧機構の振動を抑制することもできる。
 ここで、本実施例においては、密閉空間S1に流体が送られていない状態においては、図1に示すように、固定環130は回転環120から離れている。そして、密閉空間S1に流体が送られて、密閉空間S1内の流体圧力が高くなると、図2に示すように、固定環130は回転環120に密着した状態となる。
 また、第3リテーナ152の径方向の内側には第4リテーナ153に固定された円筒状部材160が設けられている。この円筒状部材160は、円筒部161と、円筒部161の一端側において径方向外側に向かって伸びる環状突起162とを備えている。また、円筒部161の他端部が第4リテーナ153に固定されている。
 そして、この円筒状部材160に設けられた環状突起162の外周面が、第3リテーナ152における円筒部152aの内周面に対して摺動自在に接触するように構成されている。また、第3リテーナ152における環状突起152bの内周面が、円筒状部材160における円筒部161の外周面に対して摺動自在に接触するように構成されている。以上のような構成により、第3リテーナ152と円筒状部材160との間には、断面が矩形の環状隙間S2が形成される。また、第1ベローズ141と第2ベローズ151が伸縮する際には、環状突起162の外周面と円筒部152aの内周面との間、及び環状突起152bの内周面と円筒部161の外周面との間がそれぞれ摺動するように、第3リテーナ152は往復移動する。このように、押圧機構は、円筒状部材160によって、径方向に対して安定的に位置決めがなされる。なお、押圧機構は、上記の通り、主として、第1ベローズ141,第1リテーナ142,第2リテーナ143,第2ベローズ151,第3リテーナ152及び第4リテーナ153により構成される。
 また、上記の環状隙間S2には、制振部材としてのコイルばね170が設けられている。このコイルばね170は、一端側が環状突起162に密着し、他端側が環状突起152bに密着することで、第1ベローズ141及び第2ベローズ151を縮ませる方向にばね力が付与されるように配置されている。
 <第1ベローズ及び第2ベローズの配置構成>
 第1ベローズ141及び第2ベローズ151の配置構成について、より詳細に説明する。第1ベローズ141と第2ベローズ151は、中心軸線方向に離れた位置に配置されている。そして、中心軸線方向に見た場合に、第1ベローズ141の径方向の内側の一部と第2ベローズ151の径方向の外側の一部が重なるように配置されている。つまり、第1ベローズ141における内周側の最小内径は、第2ベローズ151における外周側の最大外径よりも小さく構成されている。なお、第1ベローズ141における内周側の最小内径が、第2ベローズ151における内周側の最小内径よりも大きく構成されていることは言うまでもない。
 <本実施例に係るメカニカルシールの優れた点>
 以上のように構成される本実施例に係るメカニカルシール100によれば、第1ベローズ141と第2ベローズ151は、中心軸線方向に離れた位置に配置されると共に、中心軸線方向に見た場合に、第1ベローズ141の径方向の内側の一部と第2ベローズ151の径方向の外側の一部が重なるように配置されている。つまり、第1ベローズ141における内周側の最小内径は、第2ベローズ151における外周側の最大外径よりも小さい。従って、径方向の外側と内側にベローズが2重に設けられる押圧機構を備えるメカニカルシールに比べて、径方向の小型化を図ることが可能となる。
 また、本実施例に係るメカニカルシール100においては、第1ベローズ141の径方向の内側に設けられた環状隙間S2に、押圧機構の振動を抑制する制振部材としてのコイルばね170が設けられている。これにより、押圧機構の振動がより一層抑制され、外乱による影響を受け難くすることができる。
 ここで、上記の通り、第1ベローズ141における内周側の最小内径は、第2ベローズ151における内周側の最小内径よりも大きく構成されている。また、第1ベローズ141と第2ベローズ151は、中心軸線方向に離れた位置に配置されている。これらのことから、第1ベローズ141の径方向の内側にはデッドスペースが形成される。上記の環状隙間S2は、このデッドスペースに設けられることになる。従って、制振部材であるコイルばね170を設けても、径方向の小型化を妨げることはない。
 また、本実施例においては、制振部材として、第1ベローズ141及び第2ベローズ151を縮ませる方向にばね力が付与されるように配置されるコイルばね170を採用している。これにより、第1ベローズ141と第2ベローズ151を伸び縮みさせるための制御を、密閉空間S1内の流体圧力とコイルばね170との協働により行うことができる。特に、密閉空間S1内の流体圧力を低下させた際に、コイルばね170によって、固定環130を回転環120からより確実に離すことができる。
 なお、図1中の丸で囲んだ部分に示すように、制振部材として、コイルばねではなく、第3リテーナ152(円筒部152a)の内周面と円筒状部材160(円筒部161)の外周面に対してそれぞれ摺動可能に密着する弾性体製リング171を採用することもできる。この構成を採用した場合には、弾性体製リング171によって、第3リテーナ152の内周面と円筒状部材160の外周面との間の環状隙間を封止する機能を発揮させることができる。
 100 メカニカルシール
 110 スリーブ
 120 回転環
 130 固定環
 131 環状突起
 141 第1ベローズ
 142 第1リテーナ
 143 第2リテーナ
 151 第2ベローズ
 152 第3リテーナ
 152a 円筒部
 152b 環状突起
 153 第4リテーナ
 160 円筒状部材
 161 円筒部
 162 環状突起
 170 コイルばね
 171 弾性体製リング
 200 回転軸
 300 ハウジング
 310 通路
 S1 密閉空間
 S2 環状隙間

Claims (5)

  1.  回転軸に対して固定される回転環と、
     該回転軸が挿通される軸孔を有するハウジングに対して固定され、かつ前記回転環に対して摺動する固定環と、
     該固定環を前記回転環に向けて押圧する押圧機構と、
    を備えるメカニカルシールであって、
     前記押圧機構は、
     径方向の外側に設けられる第1ベローズと、
     径方向の内側に設けられる第2ベローズと、
    を備え、
     これら第1ベローズ及び第2ベローズと、第1ベローズと第2ベローズの両端側にそれぞれ設けられる部材とによって環状の密閉空間が形成されており、該密閉空間内の流体圧力に応じて、第1ベローズ及び第2ベローズが前記回転軸の中心軸線方向に伸縮するように構成されたメカニカルシールにおいて、
     第1ベローズと第2ベローズは、前記中心軸線方向に離れた位置に配置されると共に、前記中心軸線方向に見た場合に、第1ベローズの径方向の内側の一部と第2ベローズの径方向の外側の一部が重なるように配置されていることを特徴とするメカニカルシール。
  2.  第1ベローズの径方向の内側に、前記押圧機構の振動を抑制する制振部材が設けられていることを特徴とする請求項1に記載のメカニカルシール。
  3.  第1ベローズの一端側と他端側には、それぞれ第1ベローズを固定する第1リテーナと第2リテーナが設けられており、
     第2ベローズの一端側と他端側には、それぞれ第2ベローズを固定する第3リテーナと第4リテーナが設けられており、
     第3リテーナは、第1ベローズの径方向の内側にまで伸びるように構成されており、かつ第3リテーナの径方向の内側には第4リテーナに固定された円筒状部材が設けられると共に、
     第3リテーナと前記円筒状部材との間に環状隙間が設けられ、該環状隙間内に前記制振部材が配置されていることを特徴とする請求項2に記載のメカニカルシール。
  4.  前記制振部材は、第1ベローズ及び第2ベローズを縮ませる方向にばね力が付与されるように配置されるコイルばねであることを特徴とする請求項3に記載のメカニカルシール。
  5.  前記制振部材は、第3リテーナの内周面と前記円筒状部材の外周面に対してそれぞれ摺動可能に密着する弾性体製リングであることを特徴とする請求項3に記載のメカニカルシール。
PCT/JP2015/065886 2014-06-13 2015-06-02 メカニカルシール WO2015190350A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016527753A JP6392868B2 (ja) 2014-06-13 2015-06-02 メカニカルシール
US15/316,894 US9631727B1 (en) 2014-06-13 2015-06-02 Mechanical seal
EP15806195.2A EP3156700B1 (en) 2014-06-13 2015-06-02 Mechanical seal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-122166 2014-06-13
JP2014122166 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190350A1 true WO2015190350A1 (ja) 2015-12-17

Family

ID=54833446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065886 WO2015190350A1 (ja) 2014-06-13 2015-06-02 メカニカルシール

Country Status (4)

Country Link
US (1) US9631727B1 (ja)
EP (1) EP3156700B1 (ja)
JP (1) JP6392868B2 (ja)
WO (1) WO2015190350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113494610A (zh) * 2021-07-08 2021-10-12 西华大学 具有阻尼支撑的浮动环结构及机械密封装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732622B1 (en) * 2015-06-16 2017-08-15 Florida Turbine Technologies, Inc. Self-balancing air riding seal for a turbine
IT201800002027A1 (it) * 2018-01-26 2019-07-26 Turboden Spa Dispositivo di tenuta di fluido per macchine rotanti

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1237156A (fr) * 1959-05-26 1960-07-29 Hispano Suiza Sa Perfectionnements apportés aux compresseurs à rotor, notamment à ceux pour fluide nocif
JPS6199764U (ja) * 1984-12-06 1986-06-26

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9400054B2 (en) * 2013-05-27 2016-07-26 Eagle Industry Co., Ltd. Mechanical seal device
US9394799B1 (en) * 2014-07-09 2016-07-19 S & J Design Llc Air riding seal for a turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1237156A (fr) * 1959-05-26 1960-07-29 Hispano Suiza Sa Perfectionnements apportés aux compresseurs à rotor, notamment à ceux pour fluide nocif
JPS6199764U (ja) * 1984-12-06 1986-06-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113494610A (zh) * 2021-07-08 2021-10-12 西华大学 具有阻尼支撑的浮动环结构及机械密封装置
CN113494610B (zh) * 2021-07-08 2023-06-27 西华大学 具有阻尼支撑的浮动环结构及机械密封装置

Also Published As

Publication number Publication date
EP3156700A4 (en) 2018-02-14
JP6392868B2 (ja) 2018-09-19
US20170097095A1 (en) 2017-04-06
EP3156700A1 (en) 2017-04-19
EP3156700B1 (en) 2019-09-25
JPWO2015190350A1 (ja) 2017-04-20
US9631727B1 (en) 2017-04-25

Similar Documents

Publication Publication Date Title
JP2018096457A5 (ja)
WO2011099402A1 (ja) 流体圧シリンダ
JP6328658B2 (ja) メカニカルシール
JP6340233B2 (ja) シリンダ装置
JP6392868B2 (ja) メカニカルシール
JP6140276B2 (ja) ラジアル軸封止およびそれを備える組立体
WO2016199881A1 (ja) 密封装置
US10330170B2 (en) Shock absorber
WO2019059197A1 (ja) メカニカルシール
JP2016056893A (ja) ダンパ装置
JP5914682B2 (ja) 密封装置
JP2017116103A (ja) メンブレンベローズ
WO2018207746A1 (ja) メカニカルシール
EP3184865B1 (en) Sealing structure
WO2018056099A1 (ja) 緩衝器
JP6613110B2 (ja) 回転抵抗装置のケース構造
JP6560962B2 (ja) 回転抵抗装置
EP3418584A1 (en) Accumulator
JPWO2018207747A1 (ja) メカニカルシール
JP2012117562A (ja) シリンダ装置
JP6313593B2 (ja) クラッチシリンダ用シールリングおよび自動変速機用油圧クラッチ
JP6022385B2 (ja) メカニカルシール
JP7118782B2 (ja) 密封装置
JP3186473U (ja) 密封装置
JP2019196789A (ja) パッキン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527753

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15316894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015806195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015806195

Country of ref document: EP