WO2015189452A1 - Energy storage method and system for storing energy - Google Patents

Energy storage method and system for storing energy Download PDF

Info

Publication number
WO2015189452A1
WO2015189452A1 PCT/ES2015/070454 ES2015070454W WO2015189452A1 WO 2015189452 A1 WO2015189452 A1 WO 2015189452A1 ES 2015070454 W ES2015070454 W ES 2015070454W WO 2015189452 A1 WO2015189452 A1 WO 2015189452A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
energy storage
steam
energy
sorbent
Prior art date
Application number
PCT/ES2015/070454
Other languages
Spanish (es)
French (fr)
Inventor
Antonio Lecuona Neumann
Pedro Acisclo RODRÍGUEZ AUMENTE
José Ignacio NOGUEIRA GORIBA
Mathieu Legrand
Rubén VENTAS GARZÓN
María del Carmen RODRÍGUEZ HIDALGO
Original Assignee
Universidad Carlos Iii De Madrid
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Carlos Iii De Madrid, Universidad Politécnica de Madrid filed Critical Universidad Carlos Iii De Madrid
Publication of WO2015189452A1 publication Critical patent/WO2015189452A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention pertains to the field of electrical energy storage systems intended, for example, to balance distribution networks, service isolated networks or soften the intermittent production of electricity generators based on renewable sources.
  • a first object of the present invention is a novel energy storage system based on the phenomenon of the sorption / desorption of a vapor in a sorbent.
  • a second object of the present invention is the energy storage process carried out by the previous system.
  • Electrochemical batteries are capable of storing electricity for a certain period of time in chemical form.
  • conventional electrochemical batteries have a number of drawbacks that prevent their widespread use for many applications, since they are expensive, have an excessively short duration, and present various operational problems when the size of the installation is large, among others.
  • the present invention solves the above problems, allowing to store electrical energy using low environmental impact materials, with a power density similar to those of current Lithium-ion batteries and allowing to use much larger sizes.
  • the invention can increase its storage capacity by taking advantage of residual, solar or geothermal heat.
  • An additional advantage is that its duration turns out to be much greater than electrochemical accumulators.
  • a first aspect of the invention is directed to a system for the storage of energy that essentially comprises the following elements: a) A first thermally insulated tank that houses a sorbent with physical and / or chemical affinity for a vapor, called sorbate for being the substance that is sipped by the sorbent.
  • the sorbent may be in a solid state, in which case the phenomenon of adsorption would occur, or in a liquid state, in which case the phenomenon of absorption would occur.
  • solid sorbents are zeolite, a silica gel or activated carbon.
  • liquid sorbents are water or a salt which, when dissolved in the substance constituting the vapor (sorbate) reaches the liquid state from a certain mass fraction of sorbate.
  • some examples are ammonia, water, hydrogen, ammonia, alcohol, acetone or a hydrocarbon.
  • a second thermally insulated tank that also houses a sorbent with affinity for said vapor. Normally, the sorbent of the second deposit is the same as that of the first deposit, although this does not necessarily have to be the case.
  • a compressor device connected between the first tank and the second tank to compress the steam by passing it from the first tank to the second tank in a phase of energy accumulation.
  • An expander device connected between the first tank and the second tank to expand the steam allowing its return from the second tank to the first tank in a phase of energy de-accumulation.
  • the compressor device drives the steam from the first tank to the second tank.
  • the steam sorbate
  • the steam (sorbate) is desorbed from the sorbent in the first tank, absorbing heat, and is sipped in the sorbent in the second tank with heat release. Because of this, there is a cooling in the first tank and a heating in the second tank that contribute to further increase the pressure difference that is created as a result of the action of the compressor device.
  • the compressor consumes work, which can come from an electrical supply by coupling it to an electric motor, or it can be a compressor device directly moved by electricity.
  • the energy is thus accumulated in the system for an indeterminate period of time that constitutes the so-called storage stage.
  • a decumulation stage is carried out where the expander allows the expansion of steam in its return from the second high pressure tank to the first low pressure tank, recovering a large part of the energy consumed by the compressor during the accumulation stage.
  • the work generated by the expander device at this stage of decumulation can be converted into electrical energy by coupling it to an electric generator, or it can be an expander device that integrates the work extracted from steam into electrical energy.
  • the compressor device and the expander device can be implemented as separate elements connected in parallel between the two tanks.
  • the expander device would be canceled during the accumulation stage, while during the decumulation stage it would be the compressor device that would cancel out.
  • the compressor device and the expander device consist of a single reversible device capable of acting alternatively as a compressor and also as an expander by means of a change.
  • the system of the present invention further comprises a means of heat exchange between the first tank and the second tank that can be activated and deactivated at will.
  • This heat exchange acts as a moderator that tends to reduce the pressure and temperature difference between the first tank and the second tank.
  • This heat exchange can also serve to avoid unwanted crystallization of the absorbent substance, if it is solid in its pure state, for example, a salt.
  • the heat exchange medium can be implemented in different ways.
  • the first tank and / or the second tank comprise a means for stirring steam.
  • the stirring of the steam in the first and / or the second tank can serve to respectively stimulate desorption / sorption in each of them, as well as to control the rate of heat transfer between the first tank and the second tank through the medium.
  • Heat exchange described above. Note that, if the sorbent is liquid, the steam agitation medium would not only circulate the steam but also the sorbent itself, encouraging the transfer of mass and heat. One possibility of causing this agitation may be the bubbling of steam into the liquid.
  • the system of the invention preferably comprises a means of providing heat to the second tank during the energy accumulation stage, during the static storage stage, or during the energy decumulation stage.
  • the contribution of heat helps to increase the pressure in the second tank, thus increasing the capacity for energy accumulation and even compensates for heat losses to the environment.
  • This heat can come from heat from some other process, from solar collectors or from geothermal sources, thus allowing the system of the invention to take advantage of surplus or unused energy in the form of residual heat.
  • Another preferred embodiment of the system of the invention intended to improve the efficiency of the invention comprises means for reducing, canceling or reversing the increase in steam temperature that occurs during compression. That is, the temperature increase during compression can be reduced to the point of achieving isothermal compression, or even until the temperature drops during compression. As a result, it is possible to reduce the work required for compression, thus obtaining an improvement in efficiency.
  • the active fluid for the absorption / desorption of the deposits will be only the steam itself, while if the sorbent is liquid, the fluid from the tanks may be the dissolution of the vapor itself in the liquid sorbent
  • a different liquid could also be used that is compatible and that is housed in one of the two tanks with that specific purpose In any case, this fluid absorbs at least a part of the increase in thermal energy as a result of compression, reducing compression work.
  • a second aspect of the present invention is directed to an energy storage process carried out by the system described.
  • This storage procedure basically comprises the following stages:
  • a stage of energy accumulation where a steam is compressed by passing it from a first thermally insulated tank that houses a sorbent with affinity for said steam to a second thermally insulated tank that houses a sorbent with affinity for steam.
  • the method further comprises exchanging heat between the first tank and the second tank in order to control its pressures and / or temperatures.
  • the method further comprises stirring the steam of the first tank and / or the second tank for the purpose, either of encouraging the sorption and / or desorption, or of controlling the heat transfer between the first tank and the Second deposit
  • the method further comprises providing heat to the second tank during the accumulation stage, during the static accumulation stage and / or during the de-accumulation stage to increase its energy storage capacity.
  • Another particular embodiment of the invention comprises the step of reducing, canceling or even reverse the increase in the temperature of the steam that occurs during compression to ensure that it is carried out with a smaller amount of work. As mentioned above, this can be done in several ways, such as directly cooling the steam before or during compression. Another option is to evacuate part of the heat generated during steam compression to the environment. A further option involves the aggregation of fluid from one of the two vapor deposits that is being compressed.
  • FIG. 1 shows a general scheme of the system of the present invention.
  • Figs. 2a and 2b respectively show a scheme of the accumulation stage and a scheme of the decumulation stage PREFERRED EMBODIMENT OF THE INVENTION
  • Fig. 1 shows a diagram of the energy storage system (1) formed by a first tank (2) and a second tank (3). Both tanks are thermally insulated with the outside and with each other and contain a sorbent or mixture of sorbents with physical, chemical affinity or combination of both, by a vapor.
  • a solid state sorbent has been represented, although as mentioned above in this document it would also be possible for the sorbent to be in a liquid state or to evolve from a solid state to a liquid upon sipping the sorbate.
  • the tanks (2, 3) also house a certain amount of said steam. Initially it can be considered that both tanks (2, 3) are in a state of equilibrium with a part of free steam and another part of steam absorbed by the sorbent.
  • the two tanks (2, 3) are connected through a reversible compressor / expander device (4, 5), installed so that the direction of compression is directed to the second tank (3) and the direction of expansion is directed to the first deposit (2).
  • a reversible compressor / expander device (4, 5) installed so that the direction of compression is directed to the second tank (3) and the direction of expansion is directed to the first deposit (2).
  • Fig. 1 also shows a means (6) for exchanging heat between the first tank (2) and the second tank (3), which can be activated or deactivated voluntarily.
  • this heat exchange means (6) in this figure a closed circuit filled with a heat transfer fluid whose exchange capacity can be accelerated by driving it with a pump has been represented.
  • the heat exchanged by this heat exchange means (6) has been represented as
  • a means (8) of heat input to the second tank (3) has also been represented, which has been represented as a circuit through which a heat transfer fluid whose temperature is higher than that of the second tank (3) passes.
  • This heat supply means (8) can be fed by a geothermal source, solar collectors or use heat from another process.
  • the heat contributed to the second tank (3) has been represented as Q 2 .
  • the operation of this system (1) has been schematically represented in Figs. 2a and 2b.
  • the accumulation stage shown in Fig. 2a comprises the operation of the reversible compressor / expander device (4, 5) in compression mode (4) to drive steam from the first tank (2) to the second tank.
  • the pressure and temperature in the first tank (2) decrease, while the pressure and temperature in the second tank (3) increase.
  • the concentration of sorbate in the first deposit (2) decreases and increases in the second deposit (3).
  • the heat transfer medium (6) can be activated if said increase, or the difference in pressure between both tanks (2, 3), is excessive, or if the concentration of sorbate in the solution is so low that may occur a crystallization of the sorbent or excessive viscosity of the solution. There would then be a heat exchange Q that would normally pass from the second tank (3), hotter, to the first tank (2), colder. Also optionally, the steam agitation means (7) of the first tank (2) and / or the second tank (3) can be operated. The circulation of steam in one or both tanks (2, 3) has the effect of both favoring the desorption / sorption process that is carried out inside it, and of favoring the heat exchange process in case it is being using the heat exchange medium (6).
  • the means (8) of heat input to the second tank (3) could be activated to maximize its energy storage capacity, providing a quantity of heat Q 2 to it .
  • the pressure and temperature in the second tank (3) would be much higher than in the first tank (2).
  • Both deposits (2, 3) would remain stationary in a stage called static state storage for as long as it was necessary to store the energy.
  • the stored energy could be increased by providing external heat to the second tank (3) by means of the device (8).
  • the compressor device (4) has consumed a job W
  • Fig. 2b schematically shows the decumulation stage.
  • the reversible compression / expansion device (4, 5) operates as an expander (5), allowing the return of steam that was confined in the second tank (3) at high pressure and temperature to the first tank ( 2) whose pressure and temperature at that time are much lower.
  • a W 2 job is produced, which can be recovered in the form of electrical energy if the expander (5) is connected to an electric generator (not shown).
  • the pressure drop that occurs during this stage in the second tank (3) can be recovered at least partially by adding external heat by means of the device (8). It is thus possible to store additional energy in thermal form that the system can convert into electricity through the expander.

Abstract

The invention describes an energy-storage system which is based on the phenomenon of sorption/desorption of a vapour in a sorbent, and includes: a) a first thermally insulated tank (2) which houses a sorbent having an affinity for a vapour; b) a second thermally insulated tank (3) which also houses a sorbent having an affinity for said vapour; c) a compressor device (4) connected between the first tank (2) and the second tank (3) in order to compress the vapour by making same pass from the first tank (2) to the second tank (3) in an energy-accumulation phase; and d) an expander device (5) connected between the first tank (2) and the second tank (3) in order to expand the vapour, enabling same to return from the second tank (3) to the first tank (2) in an energy-depletion phase.

Description

DESCRIPCIÓN  DESCRIPTION
Procedimiento y sistema de almacenamiento de energía OBJETO DE LA INVENCIÓN Procedure and energy storage system OBJECT OF THE INVENTION
La presente invención pertenece al campo de los sistemas almacenamiento de energía eléctrica destinados, por ejemplo, a equilibrar redes de distribución, dar servicio a redes aisladas o suavizar la producción intermitente de generadores de electricidad basados en fuentes renovables. The present invention pertains to the field of electrical energy storage systems intended, for example, to balance distribution networks, service isolated networks or soften the intermittent production of electricity generators based on renewable sources.
Un primer objeto de la presente invención es un novedoso sistema de almacenamiento de energía basado en el fenómeno de la sorción/desorción de un vapor en un sorbente. Un segundo objeto de la presente invención es el procedimiento de almacenamiento de energía que lleva a cabo el sistema anterior. A first object of the present invention is a novel energy storage system based on the phenomenon of the sorption / desorption of a vapor in a sorbent. A second object of the present invention is the energy storage process carried out by the previous system.
ANTECEDENTES DE LA INVENCIÓN Almacenar energía, y más concretamente energía eléctrica, es un objetivo prioritario en muchos planes de investigación y es objeto de intensa actividad. En el contexto de una red de distribución eléctrica, interesa almacenar electricidad cuando el precio de venta o las necesidades de consumo bajan, e interesa distribuir la energía almacenada en caso contrario. Esto es especialmente interesante en redes eléctricas con una alta penetración de fuentes de energía renovables que presentan una gran variabilidad, como es el caso del sistema eléctrico español. Por otro lado, el almacenamiento de energía eléctrica también es de gran interés en el caso de redes aisladas para poder cubrir la demanda cuando la fuente de energía ha cesado o es insuficiente frente a la demanda. Actualmente, la solución más frecuentemente utilizada para el almacenamiento de energía eléctrica en este ámbito son las baterías electroquímicas, llamadas también acumuladores. Las baterías electroquímicas son capaces de almacenar durante un determinado período de tiempo electricidad en forma química. Sin embargo, las baterías electroquímicas convencionales presentan una serie de inconvenientes que impiden su uso generalizado para muchas aplicaciones, ya que son costosas, tienen una duración excesivamente corta, y presentan diversos problemas operativos cuando el tamaño de la instalación es grande, entre otros. BACKGROUND OF THE INVENTION Storing energy, and more specifically electric energy, is a priority objective in many research plans and is subject to intense activity. In the context of an electricity distribution network, it is interesting to store electricity when the sale price or consumption needs fall, and it is interesting to distribute the energy stored otherwise. This is especially interesting in electrical networks with a high penetration of renewable energy sources that have great variability, as is the case of the Spanish electricity system. On the other hand, the storage of electrical energy is also of great interest in the case of isolated networks to be able to cover the demand when the energy source has ceased or is insufficient against the demand. Currently, the most frequently used solution for the storage of electrical energy in this area are electrochemical batteries, also called accumulators. Electrochemical batteries are capable of storing electricity for a certain period of time in chemical form. However, conventional electrochemical batteries have a number of drawbacks that prevent their widespread use for many applications, since they are expensive, have an excessively short duration, and present various operational problems when the size of the installation is large, among others.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención resuelve los problemas anteriores, permitiendo almacenar energía eléctrica usando materiales de bajo impacto ambiental, con una densidad de potencia similar a las de las baterías de Litio-ion actuales y permitiendo utilizar tamaños mucho mayores. Además, la invención puede aumentar su capacidad de almacenamiento aprovechando calor residual, solar o geotérmico. Una ventaja adicional es que su duración resulta ser mucho mayor que los acumuladores electroquímicos. DESCRIPTION OF THE INVENTION The present invention solves the above problems, allowing to store electrical energy using low environmental impact materials, with a power density similar to those of current Lithium-ion batteries and allowing to use much larger sizes. In addition, the invention can increase its storage capacity by taking advantage of residual, solar or geothermal heat. An additional advantage is that its duration turns out to be much greater than electrochemical accumulators.
Un primer aspecto de la invención está dirigido a un sistema para el almacenamiento de energía que fundamentalmente comprende los siguientes elementos: a) Un primer depósito aislado térmicamente que aloja un sorbente con afinidad física y/o química por un vapor, denominado sorbato por ser la sustancia que es sorbida por el sorbente. A first aspect of the invention is directed to a system for the storage of energy that essentially comprises the following elements: a) A first thermally insulated tank that houses a sorbent with physical and / or chemical affinity for a vapor, called sorbate for being the substance that is sipped by the sorbent.
El sorbente puede estar en estado sólido, en cuyo caso se produciría el fenómeno de la adsorción, o bien en estado líquido, en cuyo caso se produciría el fenómeno de la absorción. Ejemplos de sorbentes sólidos son la zeolita, un gel de sílice o carbón activado. Ejemplos de sorbentes líquidos son el agua o una sal que al ser disuelta en la sustancia que constituye el vapor (sorbato) alcanza el estado líquido a partir de una fracción másica de sorbato determinada. The sorbent may be in a solid state, in which case the phenomenon of adsorption would occur, or in a liquid state, in which case the phenomenon of absorption would occur. Examples of solid sorbents are zeolite, a silica gel or activated carbon. Examples of liquid sorbents are water or a salt which, when dissolved in the substance constituting the vapor (sorbate) reaches the liquid state from a certain mass fraction of sorbate.
En cuanto al vapor o sorbato, algunos ejemplos son amoníaco, agua, hidrógeno, amoníaco, alcohol, acetona o un hidrocarburo. As for steam or sorbate, some examples are ammonia, water, hydrogen, ammonia, alcohol, acetone or a hydrocarbon.
Por otro lado, con el objeto de simplificar la descripción en el presente documento se hablará siempre de manera general de sorción/desorción independientemente del estado físico del sorbente. b) Un segundo depósito aislado térmicamente que también aloja un sorbente con afinidad por dicho vapor. Normalmente, el sorbente del segundo depósito es el mismo que el del primer depósito, aunque ello no tiene que ser así necesariamente. c) Un dispositivo compresor conectado entre el primer depósito y el segundo depósito para comprimir el vapor haciéndolo pasar desde el primer depósito al segundo depósito en una fase de acumulación de energía. d) Un dispositivo expansor conectado entre el primer depósito y el segundo depósito para expandir el vapor permitiendo su retorno desde el segundo depósito al primer depósito en una fase de desacumulación de energía. On the other hand, in order to simplify the description in this document, there will always be general talk of sorption / desorption regardless of the physical state of the sorbent. b) A second thermally insulated tank that also houses a sorbent with affinity for said vapor. Normally, the sorbent of the second deposit is the same as that of the first deposit, although this does not necessarily have to be the case. c) A compressor device connected between the first tank and the second tank to compress the steam by passing it from the first tank to the second tank in a phase of energy accumulation. d) An expander device connected between the first tank and the second tank to expand the steam allowing its return from the second tank to the first tank in a phase of energy de-accumulation.
Durante la fase de acumulación de energía, el dispositivo compresor impulsa el vapor desde el primer depósito hacia el segundo depósito. Como consecuencia de esta transferencia de masa, se produce una disminución de la presión en el primer depósito y un aumento de la presión en el segundo depósito. En esta fase del proceso, el vapor (sorbato) es desorbido del sorbente en el primer depósito, absorbiendo calor, y es sorbido en el sorbente en el segundo depósito con liberación de calor. Debido a ello, se produce un enfriamiento en el primer depósito y un calentamiento en el segundo depósito que contribuyen a aumentar aún más la diferencia de presiones que se crea como consecuencia de la acción del dispositivo compresor. Como es evidente, durante esta fase de acumulación el compresor consume trabajo, el cual puede provenir de un suministro eléctrico mediante su acoplamiento a un motor eléctrico, o bien ser un dispositivo compresor directamente movido por la electricidad. During the energy accumulation phase, the compressor device drives the steam from the first tank to the second tank. As a consequence of this mass transfer, there is a decrease in pressure in the first tank and an increase in pressure in the second tank. In this phase of the process, the steam (sorbate) is desorbed from the sorbent in the first tank, absorbing heat, and is sipped in the sorbent in the second tank with heat release. Because of this, there is a cooling in the first tank and a heating in the second tank that contribute to further increase the pressure difference that is created as a result of the action of the compressor device. As is evident, during this accumulation phase the compressor consumes work, which can come from an electrical supply by coupling it to an electric motor, or it can be a compressor device directly moved by electricity.
La energía queda así acumulada en el sistema durante un intervalo de tiempo de duración indeterminada que constituye la denominada etapa de almacenamiento. Cuando la energía vuelva a necesitarse, se lleva a cabo una etapa de desacumulación donde el dispositivo expansor permite la expansión del vapor en su retorno desde el segundo depósito a alta presión hacia el primer depósito a baja presión, recuperándose una gran parte de la energía consumida por el compresor durante la etapa de acumulación. El trabajo generado por el dispositivo expansor en esta etapa de desacumulación puede convertirse en energía eléctrica mediante su acoplamiento a un generador eléctrico, o bien puede ser un dispositivo expansor que de forma integrada convierte el trabajo extraído del vapor en energía eléctrica. The energy is thus accumulated in the system for an indeterminate period of time that constitutes the so-called storage stage. When the energy is needed again, a decumulation stage is carried out where the expander allows the expansion of steam in its return from the second high pressure tank to the first low pressure tank, recovering a large part of the energy consumed by the compressor during the accumulation stage. The work generated by the expander device at this stage of decumulation can be converted into electrical energy by coupling it to an electric generator, or it can be an expander device that integrates the work extracted from steam into electrical energy.
Definiendo la eficiencia como la energía eléctrica recuperada dividida por la energía eléctrica invertida en el almacenamiento, las eficiencias actuales de los distintos métodos de almacenamiento de electricidad conocidos rondan el 80% para baterías (incluyendo el acondicionamiento eléctrico necesario y el ciclo completo), el 70% para el bombeo en centrales hidroeléctricas reversibles, y entre el 20% y el 50% para el hidrógeno como vector energético contando con su almacenamiento. El sistema propuesto es capaz de alcanzar eficiencias similares a los mejores, resultando por ello competitivo. Defining efficiency as the recovered electrical energy divided by the electrical energy invested in storage, the current efficiencies of the various known electricity storage methods are around 80% for batteries (including the necessary electrical conditioning and the complete cycle), 70 % for pumping in reversible hydroelectric plants, and between 20% and 50% for hydrogen as an energy vector with its storage. The proposed system is able to reach efficiencies similar to the best, resulting in competitive.
Por otro lado, al igual que ocurre con las baterías o acumuladores electroquímicos, el almacenamiento de energía en el sistema de la invención no es permanente. La transferencia de calor entre los depósitos y con el exterior va disminuyendo paulatinamente la energía almacenada, aunque nunca se llega a perder completamente debido a que en el segundo depósito hay vapor sorbido en mayor proporción que en el primer depósito, por lo que ejerce mayor presión. Para minimizar las pérdidas de energía, por tanto, será imprescindible dotar a ambos depósitos de un aislamiento térmico efectivo. On the other hand, as with electrochemical batteries or accumulators, energy storage in the system of the invention is not permanent. The heat transfer between the tanks and abroad is gradually decreasing the stored energy, although it is never completely lost due to the fact that in the second tank there is steam absorbed in greater proportion than in the first tank, so it exerts greater pressure . To minimize energy losses, therefore, it will be essential to provide both tanks with an effective thermal insulation.
En el sistema de la invención, el dispositivo compresor y el dispositivo expansor pueden implementarse como elementos separados conectados en paralelo entre los dos depósitos. En ese caso, el dispositivo expansor estaría anulado durante la etapa de acumulación, mientras que durante la etapa de desacumulación sería el dispositivo compresor el que se anularía. Otra opción alternativa es que el dispositivo compresor y el dispositivo expansor estén constituidos por un único dispositivo de tipo reversible capaz de actuar de manera alternativa como compresor y también como expansor mediante un cambio. In the system of the invention, the compressor device and the expander device can be implemented as separate elements connected in parallel between the two tanks. In that case, the expander device would be canceled during the accumulation stage, while during the decumulation stage it would be the compressor device that would cancel out. Another alternative option is that the compressor device and the expander device consist of a single reversible device capable of acting alternatively as a compressor and also as an expander by means of a change.
En ocasiones, la presión en el segundo depósito puede aumentar en exceso, la presión en el primer depósito puede descender en exceso, o incluso la diferencia de presiones entre el primer depósito y el segundo depósito puede ser excesiva. Para solucionarlo, de acuerdo con una realización preferida el sistema de la presente invención comprende además un medio de intercambio de calor entre el primer depósito y el segundo depósito que puede activarse y desactivarse a voluntad. Este intercambio de calor actúa como moderador que tiende a disminuir la diferencia de presiones y de temperaturas entre el primer depósito y el segundo depósito. Este intercambio de calor puede servir también para evitar la cristalización indeseada de la sustancia absorbente, caso de ser ésta sólida en estado puro, por ejemplo, una sal. En principio, el medio de intercambio de calor puede implementarse de diferentes modos. Por ejemplo, puede comprender un área de contacto térmico entre el primer depósito y el segundo depósito activable a voluntad del operador del sistema, o bien otra opción es utilizar un circuito cerrado relleno con un fluido caloportador y en contacto térmico con el primer depósito y con el segundo depósito, el cual puede ser activado de forma voluntaria. Este fluido caloportador puede ser el fluido de cualquiera de ambos depósitos. En otra realización preferida de la invención, el primer depósito y/o el segundo depósito comprenden un medio de agitación del vapor. La agitación del vapor en el primer y/o el segundo depósito puede servir para incentivar respectivamente la desorción/sorción en cada uno de ellos, así como para controlar el ritmo de transferencia de calor entre el primer depósito y el segundo depósito a través del medio de intercambio de calor descrito más arriba. Nótese que, si el sorbente es líquido, el medio de agitación del vapor no sólo haría circular el vapor sino también el propio sorbente, incentivando la transferencia de masa y de calor. Una posibilidad de provocar esta agitación puede ser el burbujeo de vapor dentro del líquido. Occasionally, the pressure in the second tank may increase excessively, the pressure in the first tank may drop excessively, or even the pressure difference between the first tank and the second tank may be excessive. To solve it, according to a preferred embodiment, the system of the present invention further comprises a means of heat exchange between the first tank and the second tank that can be activated and deactivated at will. This heat exchange acts as a moderator that tends to reduce the pressure and temperature difference between the first tank and the second tank. This heat exchange can also serve to avoid unwanted crystallization of the absorbent substance, if it is solid in its pure state, for example, a salt. In principle, the heat exchange medium can be implemented in different ways. For example, it may comprise a thermal contact area between the first tank and the second tank that can be activated at the will of the system operator, or another option is to use a closed circuit filled with a heat transfer fluid and in thermal contact with the first tank and with the second deposit, which can be activated voluntarily. This heat transfer fluid can be the fluid of either of both deposits. In another preferred embodiment of the invention, the first tank and / or the second tank comprise a means for stirring steam. The stirring of the steam in the first and / or the second tank can serve to respectively stimulate desorption / sorption in each of them, as well as to control the rate of heat transfer between the first tank and the second tank through the medium. Heat exchange described above. Note that, if the sorbent is liquid, the steam agitation medium would not only circulate the steam but also the sorbent itself, encouraging the transfer of mass and heat. One possibility of causing this agitation may be the bubbling of steam into the liquid.
Adicionalmente, el sistema de la invención preferentemente comprende un medio de aportación de calor al segundo depósito durante la etapa de acumulación de energía, durante la etapa de almacenamiento estático, o durante la etapa de desacumulación de energía. La aportación de calor contribuye a aumentar la presión en el segundo depósito, aumentando así la capacidad de acumulación de energía e incluso compensa las pérdidas de calor al ambiente. Este calor puede provenir de calor de algún otro proceso, de captadores solares o de fuentes geotérmicas, permitiendo así al sistema de la invención aprovechar energía sobrante o no utilizada en forma de calor residual. Otra realización preferida del sistema de la invención destinada a mejorar la eficiencia de la invención comprende un medio para reducir, anular o revertir el aumento de la temperatura del vapor que se produce durante la compresión. Es decir, puede reducirse el aumento de temperatura durante la compresión hasta el punto de conseguir una compresión isoterma, o incluso hasta lograr que la temperatura descienda durante la compresión. Como consecuencia, se consigue reducir el trabajo necesario para la compresión, obteniéndose por tanto una mejora de la eficiencia. Additionally, the system of the invention preferably comprises a means of providing heat to the second tank during the energy accumulation stage, during the static storage stage, or during the energy decumulation stage. The contribution of heat helps to increase the pressure in the second tank, thus increasing the capacity for energy accumulation and even compensates for heat losses to the environment. This heat can come from heat from some other process, from solar collectors or from geothermal sources, thus allowing the system of the invention to take advantage of surplus or unused energy in the form of residual heat. Another preferred embodiment of the system of the invention intended to improve the efficiency of the invention comprises means for reducing, canceling or reversing the increase in steam temperature that occurs during compression. That is, the temperature increase during compression can be reduced to the point of achieving isothermal compression, or even until the temperature drops during compression. As a result, it is possible to reduce the work required for compression, thus obtaining an improvement in efficiency.
Esto se puede hacer de diferentes formas. Por ejemplo, se puede conseguir directamente refrigerando el vapor, ya sea de manera continua o escalonada. Otra opción es evacuar al ambiente parte del calor generado durante la compresión del vapor. Una opción más implica la agregación de fluido de uno de los dos depósitos al vapor que se está comprimiendo, con el consiguiente efecto de reducción del trabajo de compresión. Nótese que, en caso de que el sorbente sea sólido, el fluido activo para la absorción/desorción de los depósitos será únicamente el propio vapor, mientras que si el sorbente es líquido el fluido de los depósitos podrá ser la propia disolución del vapor en el sorbente líquido. También podría utilizarse un líquido distinto que sea compatible y que esté alojado en uno de los dos depósitos con ese propósito específico. En cualquier caso, este fluido absorbe al menos una parte del aumento de energía térmica como consecuencia de la compresión, reduciendo el trabajo de compresión. This can be done in different ways. For example, it can be achieved directly by cooling the steam, either continuously or staggered. Another option is to evacuate part of the heat generated during steam compression to the environment. A further option involves the aggregation of fluid from one of the two steam tanks that is being compressed, with the consequent effect of reducing compression work. Note that, if the sorbent is solid, the active fluid for the absorption / desorption of the deposits will be only the steam itself, while if the sorbent is liquid, the fluid from the tanks may be the dissolution of the vapor itself in the liquid sorbent A different liquid could also be used that is compatible and that is housed in one of the two tanks with that specific purpose In any case, this fluid absorbs at least a part of the increase in thermal energy as a result of compression, reducing compression work.
Un segundo aspecto de la presente invención está dirigido a un procedimiento de almacenamiento de energía llevado a cabo por el sistema descrito. Este procedimiento de almacenamiento comprende fundamentalmente las siguientes etapas: A second aspect of the present invention is directed to an energy storage process carried out by the system described. This storage procedure basically comprises the following stages:
1) Una etapa de acumulación de energía, donde se comprime un vapor haciéndolo pasar desde un primer depósito aislado térmicamente que aloja un sorbente con afinidad por dicho vapor hacia un segundo depósito aislado térmicamente que aloja un sorbente con afinidad por el vapor. 1) A stage of energy accumulation, where a steam is compressed by passing it from a first thermally insulated tank that houses a sorbent with affinity for said steam to a second thermally insulated tank that houses a sorbent with affinity for steam.
2) Una etapa de almacenamiento estático en que el sistema conserva la energía acumulada. Durante esta etapa puede añadirse calor al segundo depósito con el objeto de compensar las pérdidas de calor e incluso de aumentar la energía almacenada. 2) A static storage stage in which the system conserves the accumulated energy. During this stage heat can be added to the second tank in order to compensate for heat losses and even increase the stored energy.
3) Una etapa de desacumulación de energía, donde se expande el vapor permitiendo su retorno desde el segundo depósito hacia el primer depósito. 3) An energy deacumulation stage, where the steam expands allowing its return from the second tank to the first tank.
En una realización preferida, el procedimiento además comprende intercambiar calor entre el primer depósito y el segundo depósito con el objeto de controlar sus presiones y/o temperaturas. In a preferred embodiment, the method further comprises exchanging heat between the first tank and the second tank in order to control its pressures and / or temperatures.
En otra realización preferida, el procedimiento además comprende agitar el vapor del primer depósito y/o del segundo depósito con el objeto, bien de incentivar la sorción y/o la desorción, o bien de controlar la transferencia de calor entre el primer depósito y el segundo depósito. In another preferred embodiment, the method further comprises stirring the steam of the first tank and / or the second tank for the purpose, either of encouraging the sorption and / or desorption, or of controlling the heat transfer between the first tank and the Second deposit
En otra realización preferida de la invención, el procedimiento comprende además aportar calor al segundo depósito durante la etapa de acumulación, durante la etapa de acumulación estática y/o durante la etapa de desacumulación para aumentar su capacidad de almacenamiento de energía. In another preferred embodiment of the invention, the method further comprises providing heat to the second tank during the accumulation stage, during the static accumulation stage and / or during the de-accumulation stage to increase its energy storage capacity.
Otra realización particular de la invención comprende el paso de reducir, anular o incluso revertir el aumento de la temperatura del vapor que se produce durante la compresión para conseguir que ésta se lleve a cabo con un menor aporte de trabajo. Como se ha mencionado anteriormente, ello se puede hacer de varias formas, como por ejemplo directamente refrigerando el vapor antes o durante la compresión. Otra opción es evacuar al ambiente parte del calor generado durante la compresión del vapor. Una opción más implica la agregación de fluido de uno de los dos depósitos al vapor que se está comprimiendo. Another particular embodiment of the invention comprises the step of reducing, canceling or even reverse the increase in the temperature of the steam that occurs during compression to ensure that it is carried out with a smaller amount of work. As mentioned above, this can be done in several ways, such as directly cooling the steam before or during compression. Another option is to evacuate part of the heat generated during steam compression to the environment. A further option involves the aggregation of fluid from one of the two vapor deposits that is being compressed.
BREVE DESCRIPCIÓN DE LAS FIGURAS La Fig. 1 muestra un esquema general del sistema de la presente invención. BRIEF DESCRIPTION OF THE FIGURES Fig. 1 shows a general scheme of the system of the present invention.
Las Figs. 2a y 2b muestran respectivamente un esquema de la etapa de acumulación y un esquema de la etapa de desacumulación REALIZACIÓN PREFERENTE DE LA INVENCIÓN Figs. 2a and 2b respectively show a scheme of the accumulation stage and a scheme of the decumulation stage PREFERRED EMBODIMENT OF THE INVENTION
Se describe a continuación un ejemplo particular de la presente invención haciendo referencia a las figuras adjuntas donde se aprecian las distintas partes que componen el sistema (1) y se representan de manera simplificada las etapas principales del procedimiento. A particular example of the present invention is described below with reference to the attached figures where the different parts that make up the system (1) are appreciated and the main steps of the process are simplified.
La Fig. 1 muestra un esquema del sistema (1) de almacenamiento de energía formado por un primer depósito (2) y un segundo depósito (3). Ambos depósitos están aislados térmicamente con el exterior y entre sí y conteniendo un sorbente o mezcla de sorbentes con afinidad física, química o combinación de ambas, por un vapor. En este ejemplo concreto, se ha representado un sorbente en estado sólido, aunque como se ha mencionado más arriba en este documento también sería posible que el sorbente estuviese en estado líquido o que evolucione de estado sólido a líquido al sorber el sorbato. Los depósitos (2, 3) también alojan una determinada cantidad de dicho vapor. Inicialmente puede considerarse que ambos depósitos (2, 3) se encuentran en un estado de equilibrio con una parte de vapor libre y otra parte de vapor sorbido por el sorbente. Fig. 1 shows a diagram of the energy storage system (1) formed by a first tank (2) and a second tank (3). Both tanks are thermally insulated with the outside and with each other and contain a sorbent or mixture of sorbents with physical, chemical affinity or combination of both, by a vapor. In this specific example, a solid state sorbent has been represented, although as mentioned above in this document it would also be possible for the sorbent to be in a liquid state or to evolve from a solid state to a liquid upon sipping the sorbate. The tanks (2, 3) also house a certain amount of said steam. Initially it can be considered that both tanks (2, 3) are in a state of equilibrium with a part of free steam and another part of steam absorbed by the sorbent.
Los dos depósitos (2, 3) están conectados a través de un dispositivo reversible compresor/expansor (4, 5), instalado de manera que el sentido de la compresión se dirige al segundo depósito (3) y el sentido de la expansión se dirige al primer depósito (2). Nótese que, como se ha descrito más arriba, sería posible también utilizar dos dispositivos separados e instalados en paralelo entre ambos depósitos (2, 3): un dispositivo compresor (4) para realizar la compresión y un dispositivo expansor (5) para realizar la expansión. The two tanks (2, 3) are connected through a reversible compressor / expander device (4, 5), installed so that the direction of compression is directed to the second tank (3) and the direction of expansion is directed to the first deposit (2). Note that, as described above, it would also be possible to use two devices separated and installed in parallel between both tanks (2, 3): a compressor device (4) for compression and an expander device (5) for expansion.
La Fig. 1 también muestra un medio (6) de intercambio de calor entre el primer depósito (2) y el segundo depósito (3), que se puede activar o desactivar voluntariamente. Aunque con anterioridad en este documento se han descrito diferentes posibilidades de implementación para este medio (6) de intercambio de calor, en esta figura se ha representado un circuito cerrado lleno con un fluido caloportador cuya capacidad de intercambio puede acelerarse impulsándolo con una bomba. El calor intercambiado por este medio (6) de intercambio de calor se ha representado como Fig. 1 also shows a means (6) for exchanging heat between the first tank (2) and the second tank (3), which can be activated or deactivated voluntarily. Although previously described in this document different implementation possibilities have been described for this heat exchange means (6), in this figure a closed circuit filled with a heat transfer fluid whose exchange capacity can be accelerated by driving it with a pump has been represented. The heat exchanged by this heat exchange means (6) has been represented as
Unos medios (7) de agitación de vapor en forma de palas agitadoras se han dispuesto en el interior de cada depósito (2, 3), aunque puede estar instalado en uno solo de ellos, para forzar la circulación del vapor y así favorecer tanto los fenómenos de sorción/desorción que se producen en su interior como el intercambio de calor que se lleva a cabo a través del medio (6) de intercambio de calor. Steam agitation means (7) in the form of stirring blades have been arranged inside each tank (2, 3), although it may be installed in only one of them, to force the circulation of steam and thus favor both Sorption / desorption phenomena that occur in its interior such as the heat exchange that is carried out through the heat exchange means (6).
También se ha representado un medio (8) de aportación de calor al segundo depósito (3), que se ha representado como un circuito por cuyo interior pasa un fluido caloportador cuya temperatura es mayor que la del segundo depósito (3). Este medio (8) de aportación de calor puede estar alimentado por una fuente geotérmica, unos captadores solares o emplear calor proveniente de otro proceso. El calor aportado al segundo depósito (3) se ha representado como Q2. El funcionamiento de este sistema (1) se ha representado de manera esquemática en las Figs. 2a y 2b. La etapa de acumulación representada en la Fig. 2a comprende el accionamiento del dispositivo reversible compresor/expansor (4, 5) en modo de compresión (4) para impulsar vapor desde el primer depósito (2) al segundo depósito. Como consecuencia, la presión y la temperatura en el primer depósito (2) disminuyen, mientras que la presión y la temperatura en el segundo depósito (3) aumentan. Simultáneamente la concentración de sorbato en el primer depósito (2) disminuye y aumenta en el segundo depósito (3). A means (8) of heat input to the second tank (3) has also been represented, which has been represented as a circuit through which a heat transfer fluid whose temperature is higher than that of the second tank (3) passes. This heat supply means (8) can be fed by a geothermal source, solar collectors or use heat from another process. The heat contributed to the second tank (3) has been represented as Q 2 . The operation of this system (1) has been schematically represented in Figs. 2a and 2b. The accumulation stage shown in Fig. 2a comprises the operation of the reversible compressor / expander device (4, 5) in compression mode (4) to drive steam from the first tank (2) to the second tank. As a consequence, the pressure and temperature in the first tank (2) decrease, while the pressure and temperature in the second tank (3) increase. Simultaneously the concentration of sorbate in the first deposit (2) decreases and increases in the second deposit (3).
Opcionalmente, se puede accionar el medio (6) de transferencia de calor en caso de que dicho aumento, o la diferencia de presiones entre ambos depósitos (2, 3), sea excesiva, o bien que la concentración de sorbato en la disolución sea tan baja que pueda producirse una cristalización del sorbente o una viscosidad excesiva de la disolución. Se produciría entonces un intercambio de calor Q que en condiciones normales pasaría del segundo depósito (3), más caliente, al primer depósito (2), más frío. También opcionalmente, se pueden accionar los medios (7) de agitación de vapor del primer depósito (2) y/o del segundo depósito (3). La circulación del vapor en uno o ambos depósitos (2, 3) tiene el efecto tanto de favorecer el proceso de desorción/sorción que se lleva a cabo en su interior, como de favorecer el proceso de intercambio de calor en caso de que se esté utilizando el medio (6) de intercambio de calor. Optionally, the heat transfer medium (6) can be activated if said increase, or the difference in pressure between both tanks (2, 3), is excessive, or if the concentration of sorbate in the solution is so low that may occur a crystallization of the sorbent or excessive viscosity of the solution. There would then be a heat exchange Q that would normally pass from the second tank (3), hotter, to the first tank (2), colder. Also optionally, the steam agitation means (7) of the first tank (2) and / or the second tank (3) can be operated. The circulation of steam in one or both tanks (2, 3) has the effect of both favoring the desorption / sorption process that is carried out inside it, and of favoring the heat exchange process in case it is being using the heat exchange medium (6).
En otra opción más, se podría accionar el medio (8) de aportación de calor al segundo depósito (3) para maximizar su capacidad de almacenamiento de energía, aportando al mismo una cantidad de calor Q2. En cualquier caso, en el estado final la presión y temperatura en el segundo depósito (3) serían mucho mayores que en el primer depósito (2). Ambos depósitos (2, 3) quedarían estacionarios en una etapa denominada de almacenamiento estático estado durante el tiempo que fuese necesario almacenar la energía. Opcionalmente, durante esta etapa se podría aumentar la energía almacenada aportando calor externo al segundo depósito (3) mediante el dispositivo (8). Durante la etapa de acumulación de energía, el dispositivo compresor (4) ha consumido un trabajo W In another option, the means (8) of heat input to the second tank (3) could be activated to maximize its energy storage capacity, providing a quantity of heat Q 2 to it . In any case, in the final state the pressure and temperature in the second tank (3) would be much higher than in the first tank (2). Both deposits (2, 3) would remain stationary in a stage called static state storage for as long as it was necessary to store the energy. Optionally, during this stage the stored energy could be increased by providing external heat to the second tank (3) by means of the device (8). During the energy accumulation stage, the compressor device (4) has consumed a job W
La Fig. 2b muestra esquemáticamente la etapa de desacumulación. En este caso, el dispositivo reversible de compresión/expansión (4, 5) funciona a modo de expansor (5), permitiendo el retorno del vapor que estaba confinado en el segundo depósito (3) a alta presión y temperatura hacia el primer depósito (2) cuya presión y temperatura en ese momento son mucho menores. En ese proceso de retorno, se produce un trabajo W2, que puede recuperarse en forma de energía eléctrica si se conecta el expansor (5) a un generador eléctrico (no mostrado). Además, puede recuperarse al menos parcialmente la caída de presión que se produce durante esta etapa en el segundo depósito (3) agregando calor externo mediante el dispositivo (8). Se consigue así almacenar energía adicional en forma térmica que el sistema puede convertir en electricidad por medio del expansor. Fig. 2b schematically shows the decumulation stage. In this case, the reversible compression / expansion device (4, 5) operates as an expander (5), allowing the return of steam that was confined in the second tank (3) at high pressure and temperature to the first tank ( 2) whose pressure and temperature at that time are much lower. In this return process, a W 2 job is produced, which can be recovered in the form of electrical energy if the expander (5) is connected to an electric generator (not shown). In addition, the pressure drop that occurs during this stage in the second tank (3) can be recovered at least partially by adding external heat by means of the device (8). It is thus possible to store additional energy in thermal form that the system can convert into electricity through the expander.

Claims

REIVINDICACIONES
1. Sistema (1) de almacenamiento de energía, caracterizado porque comprende: 1. Energy storage system (1), characterized in that it comprises:
- un primer depósito (2) aislado térmicamente que aloja un sorbente con afinidad por un vapor;  - a first thermally insulated tank (2) housing a sorbent with affinity for a vapor;
- un segundo depósito (3) aislado térmicamente que también aloja un sorbente con afinidad por dicho vapor;  - a second thermally insulated tank (3) that also houses a sorbent with affinity for said vapor;
- un dispositivo (4) compresor conectado entre el primer depósito (2) y el segundo depósito (3) para comprimir el vapor haciéndolo pasar del primer depósito (2) al segundo depósito (3) en una fase de acumulación de energía; y  - a compressor device (4) connected between the first tank (2) and the second tank (3) to compress the steam by passing it from the first tank (2) to the second tank (3) in a phase of energy accumulation; Y
- un dispositivo (5) expansor conectado entre el primer depósito (2) y el segundo depósito (3) para expandir el vapor permitiendo su retorno desde el segundo depósito (3) al primer depósito (2) en una fase de desacumulación de energía.  - an expander device (5) connected between the first tank (2) and the second tank (3) to expand the steam allowing its return from the second tank (3) to the first tank (2) in a phase of energy de-accumulation.
2. Sistema (1) de almacenamiento de energía de acuerdo con la reivindicación 1 , que además comprende un medio (6) de intercambio de calor entre el primer depósito (2) y el segundo depósito (3), que puede activarse y desactivarse a voluntad. 2. Energy storage system (1) according to claim 1, further comprising a means (6) for heat exchange between the first tank (2) and the second tank (3), which can be activated and deactivated at Will.
3. Sistema (1) de almacenamiento de energía de acuerdo con la reivindicación 2, donde el medio (6) de intercambio de calor comprende un circuito cerrado relleno con un fluido caloportador y en contacto térmico con el primer depósito (2) y con el segundo depósito (3). 3. Energy storage system (1) according to claim 2, wherein the heat exchange means (6) comprises a closed circuit filled with a heat transfer fluid and in thermal contact with the first tank (2) and with the second deposit (3).
4. Sistema (1) de almacenamiento de energía de acuerdo con la reivindicación 2, donde el medio (6) de intercambio de calor comprende un área de contacto térmico entre el primer depósito (2) y el segundo depósito (3). 4. Energy storage system (1) according to claim 2, wherein the heat exchange means (6) comprises a thermal contact area between the first tank (2) and the second tank (3).
5. Sistema (1) de almacenamiento de energía de acuerdo con cualquiera de las reivindicaciones anteriores, donde el primer depósito (2) y/o el segundo depósito (3) comprenden un medio (7) de agitación del vapor. 5. Energy storage system (1) according to any of the preceding claims, wherein the first tank (2) and / or the second tank (3) comprises a means (7) for steam agitation.
6. Sistema (1) de almacenamiento de energía de acuerdo con cualquiera de las reivindicaciones anteriores, donde el dispositivo (4) compresor y el dispositivo (5) expansor están constituidos por un único dispositivo de tipo reversible. 6. Energy storage system (1) according to any of the preceding claims, wherein the compressor device (4) and the expander device (5) are constituted by a single reversible type device.
7. Sistema (1) de almacenamiento de energía de acuerdo con cualquiera de las reivindicaciones anteriores, que además comprende un medio (8) de aportación de calor al segundo depósito (3) que se puede activar y desactivar a voluntad. 7. Energy storage system (1) according to any of the preceding claims, further comprising a means (8) of heat input to the second deposit (3) that can be activated and deactivated at will.
8. Sistema (1) de almacenamiento de energía de acuerdo con cualquiera de las reivindicaciones anteriores, que además comprende un medio para reducir, anular o revertir el aumento de la temperatura del vapor durante la compresión. 8. Energy storage system (1) according to any of the preceding claims, further comprising a means for reducing, canceling or reversing the increase in steam temperature during compression.
9. Sistema (1) de almacenamiento de energía de acuerdo con cualquiera de las reivindicaciones anteriores, donde el sorbente se elige entre agua, una sal, zeolita, gel de sílice y carbón activado, y el vapor se elige de entre amoníaco, agua, hidrógeno, alcohol, acetona y un hidrocarburo. 9. Energy storage system (1) according to any of the preceding claims, wherein the sorbent is chosen from water, a salt, zeolite, silica gel and activated carbon, and the vapor is chosen from ammonia, water, hydrogen, alcohol, acetone and a hydrocarbon.
10. Procedimiento de almacenamiento de energía llevado a cabo por el sistema (1) de cualquiera de las reivindicaciones anteriores, caracterizado porque comprende las siguientes etapas: 10. Energy storage method carried out by the system (1) of any of the preceding claims, characterized in that it comprises the following steps:
- una etapa de acumulación de energía, donde se comprime un vapor haciéndolo pasar desde un primer depósito (2) aislado térmicamente que aloja un sorbente con afinidad por dicho vapor hacia un segundo depósito (3) aislado térmicamente que aloja un sorbente con afinidad por el vapor.  - a stage of energy accumulation, where a steam is compressed by passing it from a first thermally insulated tank (2) that houses a sorbent with affinity for said steam to a second thermally insulated tank (3) that houses a sorbent with affinity for the steam.
- una etapa de almacenamiento estático de la energía acumulada; y  - a stage of static storage of the accumulated energy; Y
- una etapa de desacumulación de energía, donde se expande el vapor permitiendo su retorno desde el segundo depósito (3) hacia el primer depósito (2).  - an energy deacumulation stage, where the steam is expanded allowing its return from the second tank (3) to the first tank (2).
11. Procedimiento de almacenamiento de energía de acuerdo con la reivindicación 10, que además comprende intercambiar calor entre el primer depósito (2) y el segundo depósito (3) con el objeto de controlar sus presiones y/o temperaturas. 11. Energy storage method according to claim 10, further comprising exchanging heat between the first tank (2) and the second tank (3) in order to control their pressures and / or temperatures.
12. Procedimiento de almacenamiento de energía de acuerdo con cualquiera de las reivindicaciones 10-11 , que además comprende agitar el vapor del primer depósito (2) y/o del segundo depósito (3) con el objeto de incentivar la sorción y/o la desorción o de controlar la transferencia de calor entre el primer depósito (2) y el segundo (3) depósito. 12. Energy storage method according to any of claims 10-11, further comprising stirring the steam of the first tank (2) and / or the second tank (3) in order to encourage sorption and / or desorption or control of heat transfer between the first tank (2) and the second (3) tank.
13. Procedimiento de almacenamiento de energía de acuerdo con cualquiera de las reivindicaciones 10-12, que además comprende aportar calor al segundo depósito (3) durante la etapa de acumulación, durante la etapa de almacenamiento estático y/o durante la etapa de desacumulación para aumentar su capacidad de almacenamiento de energía. 13. Energy storage method according to any of claims 10-12, further comprising providing heat to the second tank (3) during the accumulation stage, during the static storage stage and / or during the de-accumulation stage for Increase your energy storage capacity.
14. Procedimiento de almacenamiento de energía de acuerdo con cualquiera de las reivindicaciones 10-13, que además comprende reducir, anular o revertir el aumento de temperatura del vapor que se produce durante la compresión. 14. Energy storage method according to any of claims 10-13, further comprising reducing, canceling or reversing the increase in steam temperature that occurs during compression.
15. Procedimiento de almacenamiento de energía de acuerdo con la reivindicación 14, que comprende refrigerar el vapor. 15. Energy storage method according to claim 14, which comprises cooling the steam.
16. Procedimiento de almacenamiento de energía de acuerdo con la reivindicación 14, que comprende evacuar calor al ambiente. 16. Energy storage method according to claim 14, which comprises evacuating heat to the environment.
17. Procedimiento de almacenamiento de energía de acuerdo con la reivindicación 14, que comprende agregar fluido de uno de los depósitos (2, 3) al vapor que se comprime. 17. Energy storage method according to claim 14, which comprises adding fluid from one of the tanks (2, 3) to the vapor that is compressed.
PCT/ES2015/070454 2014-06-13 2015-06-10 Energy storage method and system for storing energy WO2015189452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430907 2014-06-13
ES201430907A ES2554133B1 (en) 2014-06-13 2014-06-13 Procedure and energy storage system

Publications (1)

Publication Number Publication Date
WO2015189452A1 true WO2015189452A1 (en) 2015-12-17

Family

ID=54832604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070454 WO2015189452A1 (en) 2014-06-13 2015-06-10 Energy storage method and system for storing energy

Country Status (2)

Country Link
ES (1) ES2554133B1 (en)
WO (1) WO2015189452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108495979A (en) * 2016-01-04 2018-09-04 泰恩河畔纽卡斯尔大学 Energy storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135371A (en) * 1976-05-18 1979-01-23 Fritz Kesselring Storage element for a sorption heat storage system
US4206745A (en) * 1978-07-19 1980-06-10 Gilgen James K Solar operated chemical heat pump
US5237827A (en) * 1974-11-04 1993-08-24 Tchernev Dimiter I Apparatus for cyclic production of thermal energy by plural adsorption stations and methods
US5729988A (en) * 1974-11-04 1998-03-24 Tchernev; Dimiter I. Heat pump energized by low-grade heat source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237827A (en) * 1974-11-04 1993-08-24 Tchernev Dimiter I Apparatus for cyclic production of thermal energy by plural adsorption stations and methods
US5729988A (en) * 1974-11-04 1998-03-24 Tchernev; Dimiter I. Heat pump energized by low-grade heat source
US4135371A (en) * 1976-05-18 1979-01-23 Fritz Kesselring Storage element for a sorption heat storage system
US4206745A (en) * 1978-07-19 1980-06-10 Gilgen James K Solar operated chemical heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108495979A (en) * 2016-01-04 2018-09-04 泰恩河畔纽卡斯尔大学 Energy storage system

Also Published As

Publication number Publication date
ES2554133B1 (en) 2016-10-11
ES2554133A1 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
N’tsoukpoe et al. A review on long-term sorption solar energy storage
Leonzio Solar systems integrated with absorption heat pumps and thermal energy storages: state of art
Allouhi et al. Solar driven cooling systems: An updated review
Aydin et al. The latest advancements on thermochemical heat storage systems
Fernandes et al. Review and future trends of solar adsorption refrigeration systems
Hassan et al. A review on solar cold production through absorption technology
ES2395859T3 (en) Procedure and device for thermal regulation of a rechargeable electric energy storage battery.
Yeo et al. Development of adsorption air-conditioning technology using modified activated carbon–A review
US9885524B2 (en) Methods, systems, and devices for thermal enhancement
KR100689374B1 (en) A chemical heat pump
Zeng et al. Passive day and night heating for zero energy buildings with solar-based adsorption thermal battery
US8647416B2 (en) Superheated steam generator, electric power generating ship, and connection robot
CN102305494A (en) Absorption-type chemical energy storage device containing crystals
AU2010254067A1 (en) Adsorption-enhanced compressed air energy storage
CN202254475U (en) Absorption type chemical energy storage device including crystallization
Enibe Solar refrigeration for rural applications
Mehari et al. Thermodynamic evaluation of three-phase absorption thermal storage in humid air with energy storage density over 600 kWh/m3
WO2015189452A1 (en) Energy storage method and system for storing energy
KR101609239B1 (en) Device for Heating the Battery Pack Using Phase Change Material and Temperature Control Apparatus for the Battery Pack Comprising the Same
Milisic Modelling of energy storage using phase-change materials (PCM materials)
CN102874969A (en) Interactive absorption type solar energy and wind energy sea water desalting device
CN202865054U (en) Interactive absorption-type solar wind energy seawater desalination device
JP6571322B2 (en) Air-water thermal power generation system
CN103032093A (en) Chemical cooling method and device for refuge chamber and rescue capsule of mine
Robison Liquid sorbent solar air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806965

Country of ref document: EP

Kind code of ref document: A1