WO2015187770A1 - Conformable, removable film-based article - Google Patents

Conformable, removable film-based article Download PDF

Info

Publication number
WO2015187770A1
WO2015187770A1 PCT/US2015/033887 US2015033887W WO2015187770A1 WO 2015187770 A1 WO2015187770 A1 WO 2015187770A1 US 2015033887 W US2015033887 W US 2015033887W WO 2015187770 A1 WO2015187770 A1 WO 2015187770A1
Authority
WO
WIPO (PCT)
Prior art keywords
conformable
film
based article
features
removable film
Prior art date
Application number
PCT/US2015/033887
Other languages
French (fr)
Inventor
John P. Baetzold
Robert R. Condon
Shawn C. DODDS
Thomas B. Galush
Thomas Herdtle
Mikhail L. Pekurovsky
John J. Stradinger
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to CN201580028130.9A priority Critical patent/CN106414050B/en
Priority to US15/313,561 priority patent/US20170198168A1/en
Priority to JP2016571150A priority patent/JP6685936B2/en
Priority to KR1020177000112A priority patent/KR20170016434A/en
Priority to EP15803638.4A priority patent/EP3152043A4/en
Publication of WO2015187770A1 publication Critical patent/WO2015187770A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/306Applications of adhesives in processes or use of adhesives in the form of films or foils for protecting painted surfaces, e.g. of cars
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2427/00Presence of halogenated polymer
    • C09J2427/006Presence of halogenated polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/003Presence of (meth)acrylic polymer in the primer coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/006Presence of (meth)acrylic polymer in the substrate

Definitions

  • Films are often bonded to substrates utilizing pressure-sensitive adhesives.
  • the films are generally bonded to a variety of different substrates including, for example, surfaces on motor vehicles. Removal of such films is traditionally accomplished by manually pulling on an edge of such film, which may cause the film to fracture.
  • the patterned protective coating in one embodiment comprises island-like features that may or may not be visible to an observer, in a density that effects surface protection. At the time of removal, these patterned films in some embodiments may be much less prone to breakage, thus facilitating ease of removability.
  • a conformable, removable film-based article comprising a conformable film having a first major surface and a second major surface; a pressure sensitive adhesive layer on the first major surface of the conformable film; and a discontinuous, patterned protective layer on at least a portion of the second major surface of the conformable film, wherein the patterned protective layer comprises a pattern that has an average areal coverage that is between 10% and 85% of the surface area of the portion of the conformable film.
  • the patterned protective layer comprises features, and wherein such features are applied via a multiple printing step process, such that a protective material, such as hard coat, is printed on the conformable film in the discontinuous pattern, then a further printing step disposes an additional discontinuous pattern atop the already printed pattern.
  • a protective material such as hard coat
  • Figure 1 is a drawing of a hard coated film.
  • Figure 2 is a side view drawing of a conformable film-based article.
  • Figure 3 is a drawing of a conformable, removable film-based article.
  • Figure 4 is a drawing of a conformable, removable film-based article.
  • Figure 5 a is a plan- view drawing showing features that comprise the patterned protective layers.
  • Figure 5b is a plan- view drawing showing features that comprise the patterned protective layers.
  • Figure 5 c is a plan- view drawing showing features that comprise the patterned protective layers.
  • Figure 6 is a flowchart showing steps associated with making a conformable, removable film-based article.
  • polymer will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend. In a blend of polymers, the term “polymer” will refer to the continuous phase polymer in the blend. Unless otherwise indicated, “optically transparent” refers to an article, film or adhesive composition that has a high light transmittance over at least a portion of the visible light spectrum (about 400 to about 700 nm).
  • Hardcoated film 1 includes a film layer 3, an adhesive layer 4, and a continuous, unpatterned hardcoat layer 2. Adhesive layer 4 bonds the hardcoated film 1 to an application surface 5.
  • Ease of removal may be desirable particularly in applications where removability is an expected part of the film product life cycle.
  • some vehicle wraps that is, films applied to the exterior of a vehicle as a decorative wrap are usually not considered permanent, and may be eventually removed.
  • Conventional hard coated films as seen in Figure 1, tend to break into relatively small pieces when an operator attempts to peel them off of a surface.
  • film constructions having certain protective coating patterns may provide some benefits of the protective coatings, but also allow for much easier removal.
  • films having such newly discovered protective coating patterns may be removed in a single piece, often without breaking, by an operator manually pulling the film away from the surface to which it is adhered.
  • the newly discovered film can be used, for example, in vehicle wraps as a protective overlaminate because it provides the proper finish while also offering protection and not substantially affecting application-related properties.
  • application-related properties include the ability to be heated and stretched (sometimes up to or even exceeding 50% of starting area) around various shapes on the vehicle.
  • Another application-related property is the ability for the film to be applied, removed, and then re- applied several times during application - usually in the presence of varying degrees of heat.
  • Another application-related property is the film's level of gloss - ideally the original level of film gloss is preserved through the application process.
  • Another application- related property is the film's ability to resist marring or streaking caused from an application tool deforming the edge of the film.
  • Figure 2 shows a side-view drawing of a conformable film-based article 10.
  • Conformable film layer 50 is shown sandwiched between an adhesive layer 60 and a discontinuous patterned protective layer 70.
  • Discontinuous patterned protective layer is an array of hardcoat features on a film.
  • the discontinuous patterned protective layer comprises areas of hardcoat on film adjacent to, or in some embodiments, separated by, regions with no or very little (in one embodiment less than 0.5 microns) of hardcoat.
  • Conformable film layer 50 which may be comprised of one or more layers of films of various constructions, includes two major surfaces 50A and 50B.
  • Major surface 50B interfaces with adhesive layer 60, whereas major surface 50A has upon it the discontinuous patterned protective layer.
  • Conformable film-based article 10 may be constructed and delivered on a release liner (not shown in Figure 2), which may include ridges that endow the adhesive layer 60 with a relief structure suitable for air and fluid egress upon installation. Generally, such a release liner is removed at the time of application, then adhesive layer 60 brought into contact with an application surface, such as an automobile surface or a wall, etc.
  • a release liner not shown in Figure 2
  • adhesive layer 60 brought into contact with an application surface, such as an automobile surface or a wall, etc.
  • Conformable film layer 50 may be of any suitable construction.
  • the conformable film utilized in the present inventive article is generally made of various plastic materials used conventionally by those skilled in the art. Suitable films include, for example, vinyl, polyvinyl chloride (PVC), plasticized polyvinyl chloride, polyurethane, polyethylene, polypropylene, fluororesin or the like. Other polymer blends are also potentially suitable, including for example thermoplastic polyurethane and a cellulose ester.
  • the cellulose ester is a cellulose acetate butyrate.
  • the cellulose ester is a cellulose acetate propionate.
  • the thickness film can vary widely according to a desired application, but is usually within a range from about 300 microns or less, and preferably about 25 microns to about 100 microns.
  • PVC films in particular, are conventionally used for a wide variety of applications, including graphic films. PVC has many properties that are advantageous for such applications, such as cost and durability. They are also easily printed using current printing technologies, e.g., piezo ink jet. PVC graphic films are usually conformable to the varying topographies present on the exterior of a substrate, for example a vehicle.
  • Another suitable film type includes polyolefin films, or thermoplastic polyurethane and cellulose ester films as described in US Patent Application Publication No. 2014/0141214 or the films described in US Patent Application No. 61/761004.
  • a specific example of a suitable conformable film layer is a plasticized polyvinyl chloride film, which has sufficient inelastic deformation after being stretched so that when stretched, the film does not recover to its original length.
  • the film has an inelastic deformation of at least 5% after being stretched once to 115% of their original length.
  • a typical formulation of the vinyl film includes polyvinyl chloride resin, light and/or heat stabilizer(s), plasticizer, and optionally, pigment.
  • the amount of plasticizer is generally less than about 40% by weight, and is preferably composed of polymeric non- migratable plasticizers which are compatible with the vinyl film and provide the necessary flexibility and durability.
  • a suitable plasticizer is a combination of polymeric polyester elastomer and an ethylene vinyl acetate copolymer (such as Elvaloy 742 made by DuPont Co.) soluble in aromatic solvents and present in amounts of about 26 parts and 10 parts, respectively, per 100 parts vinyl resin.
  • an ethylene vinyl acetate copolymer such as Elvaloy 742 made by DuPont Co.
  • conformable film layer 50 may include other layers.
  • such other layers may include various colors and patterns of other films, various over laminate films that may be clear or light transmissive, ink layers, etc.
  • These additional layers may be of the same or different chemistries and constructions.
  • the film layer is one that is soft and flexible so as to accommodate curves, depressions, or projections on a substrate surface so that the film may be stretched around curves or projections, or may be pressed down into depressions without breaking or delaminating the film. It is also desirable that the film does not delaminate or release from the substrate surface after application (known as popping-up).
  • Graphic films may also be imageable (i.e. able to receive printing and/or graphics) and exhibit good weathering for outdoor applications.
  • Adhesive layer 60 may be any suitable adhesive. Suitable adhesives can be selected from a variety of conventional adhesive formulations. Non-limiting examples of adhesives include pressure sensitive adhesives, heat activated adhesives, radiation curable adhesives, and the like. Examples of formulation types include solvent-based solutions, water-based, latex, microspheres, hot melt coatable, and suitable combinations thereof.
  • Adhesive layer 60 may comprise further layers, such as primer layers to enhance the bond between the adhesive layer and the film layer.
  • primer layers to enhance the bond between the adhesive layer and the film layer.
  • the type of primer will vary with the type of film and adhesive used and one skilled in the art can select an appropriate primer.
  • primers examples include chlorinated polyolefms, polyamides, and modified polymers disclosed in U.S. Pat. Nos. 5,677,376, 5,623,010 and those disclosed in WO 98/15601 and WO 99/03907, and other modified acrylic polymers.
  • primers are dispersed into an adequate solvent in very low concentrations, e.g., less that about 5% solids, and coated onto the film, and dried at room or elevated temperatures to form a very thin layer.
  • Typical solvents used may include water, heptane, toluene, acetone, ethyl acetate, isopropanol, and the like, used alone or as blends thereof.
  • Pressure sensitive adhesives suitable for bringing into contact with liner- type webs described herein typically have pressure-sensitive adhesive properties as described in The Handbook of Pressure Sensitive Adhesives, page 172, paragraph 1 (1989).
  • the pressure-sensitive adhesive could be a single pressure-sensitive adhesive or the pressure sensitive adhesive could be a mixture of several pressure-sensitive adhesives.
  • Classes of pressure sensitive adhesives useful in the present invention include, for example, rubber resin materials such as tackified natural rubbers or those based on synthetic rubbers, styrene block copolymers, polyvinyl ethers, acrylic resins such as poly(meth)acrylates (including both acrylates and methacrylates), polyurethanes, poly-a- olefins, silicone resins, and the like. Combinations of these adhesives can be used.
  • further useful adhesives include those that may be activated at elevated temperature for application at use temperature. These generally meet the Dahlquist criterion at use temperature.
  • the pressure sensitive adhesive may be inherently tacky. If desirable, tackifiers may be added to a pressure sensitive adhesive base material to form the pressure sensitive adhesive.
  • Useful tackifiers include, for example, rosin ester resins, aromatic hydrocarbon resins, aliphatic hydrocarbon resins, mixed aromatic/aliphatic hydrocarbon resins, and terpene resins.
  • Other materials can be added for special purposes, including, for example, oils, plasticizers, antioxidants, ultraviolet (“UV”) stabilizers, hydrogenated butyl rubber, pigments, fillers, curing agents, and crosslinkers.
  • Some examples of fillers or pigments include zinc oxide, titanium dioxide, silica, carbon black, metal powders and calcium carbonate.
  • Acrylic pressure-sensitive adhesives having a wide range of compositions are useful.
  • the components of the compositions are selected such that the compositions have a glass transition temperature of less than about -20 C.
  • the compositions typically comprise about 70 to 100 weight percent of alkyl ester components, for example, alkyl acrylate components having alkyl groups from 1 to 14 carbons, and about 30 to 10, or 2, or in some cases 0 weight percent of polar interacting components, for example,
  • the compositions may comprise about 70 to 98 weight percent of alkyl ester components and about 30 to 2 weight percent of polar interacting components, and most preferably about 85 to 98 weight percent alkyl ester components and about 15 to 2 weight percent of polar interacting components.
  • the alkyl ester components include, for example, isooctyl acrylate, 2-ethyl-hexyl acrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylbutyl acrylate, isobornylacrylate, and the like.
  • compositions may include other types of ester components such as, for example, vinyl acetate, methyl methacrylate, and the like.
  • the polar interacting components include, for example, acrylic acid, methacrylic acid, N-vinyl pyrrolidone, N-vinyl caprolactam, methacrylamide, acrylamide, N-alkyl acrylamides, 2-hydroxyethyl acrylate, and the like.
  • the compositions may include other components such as, for example, styrene macromer, and the like.
  • the acrylic pressure sensitive adhesives may be self-tacky or tackified.
  • Non-limiting examples of potentially useful tackifiers for acrylics are rosin esters such those available under the following trade names: FORALTM 85, available from Hercules, Inc.; aromatic resins such as PICCOTEXTM LC-55WK; aliphatic resins such as PICCOTACTM 95, available from Hercules, Inc.; terpene resins such as a-pinene and p- pinene, available as PICCOLYTETM A-l 15, ZONAREZTM B-100 from Arizona Chemical Co., and terpene- phenol resins such as SYLVARES TP 2019 from Arizona Chemical Co.
  • the performance (tack, peel adhesion, shear adhesion, adhesion to specific substrates) of pressure sensitive adhesives can be tailored to a given application by using crosslinking agents, plasticizers, or other modifiers.
  • the thickness of the adhesive layer 60 may be dependent upon several factors, including for example, the adhesive composition, the type of structures used to form the
  • Discontinuous patterned protective layer 70 is in one embodiment a discontinuous hard coat layer. By discontinuous, it is meant that the patterned protective layer 70 does not continuously extend across the full upper surface 50A of conformable film layer 50; rather there are at least some areas of upper surface 50A (such as area 72) that are not covered by the discontinuous patterned protective layer 70. In the embodiment shown in Figure 2, the discontinuous patterned protective layer 70 is shown as four discrete features 80.
  • discontinuous patterned protective layer 70 may comprise discrete features, also called islands, such as round shaped islands 80A (Figure 5A), square shaped islands 80B (Figure 5B), or random or polygon-shaped islands 80C (Figure 5C).
  • the edges of the features may be straight or rounded or wavy.
  • the features may be separated by a fixed pitch or pitches. Depending on implementation details, such a regular pitch may make the patterned protective layer visible to someone looking at the film. In some cases, seeing such a pattern may desirable. For example, a texture with visible features may be desirable for mimicking a reptile skin texture or an orange peel type texture.
  • features having a diameter of 100 microns for a rounded feature having a surface area of 7050 microns 2 or greater may be a suitable choice, up to 0.785 mm 2 are useful.
  • the hardcoat features also may be arranged in a pattern which is not noticeable to the eye, for example, random or pseudo-random pitch variations or feature size alterations.
  • the features are smaller than 100 microns in diameter for round features (area less than 7850 square microns for non-round), more preferably less than 80 microns in diameter (area less than 5024 square microns), even more preferably 60 microns in diameter for a round feature (area less than 2826 square microns) or less the features in some
  • features as used herein refers broadly to areas of the top surface 50A of conformable film layer 50 in which protective coating is present (e.g., features 80 as shown in the various embodiments of Figure 5).
  • the percentage area of features (A) to non- features (B), to facilitate effective removal can range from about 5% to nearly 100% area coverage.
  • the printed hardcoat features provide protection of the film from abrasion, chemical staining, and chemical attack, while providing the enhanced removability describe herein, and also may alter the film's appearance in some embodiments (i.e., may provide a matte- type finish to the film).
  • a useful discontinuous hardcoat film comprises a film which is printed with a first patterned hardcoat layer then overprinted with a second hardcoat layer.
  • the overprint in one embodiment would not need to be registered to the first print.
  • the feature size of the second print can be at the lower useful limit of printed hardcoat (60 microns in diameter for a round feature) up to 1 mm in diameter. Further layers of hardcoat can be overprinted as well.
  • a first printing step disposes the first set of hardcoat features
  • a second printing step disposes a second set of hardcoat features, with at least some of the second set of hardcoat features overlapping, or partially overlapping, the first set of hardcoat features. Where the second set of hardcoat features does not overlap the first set, it would interface directly with the underlying substrate's surface.
  • a conformable film-based product is the result of printing a first set hardcoat features upon a substrate, then overprinting a second set of hardcoat features, at least some of the second set of hardcoat features partially overlapping the first set, to achieve a total areal coverage of features upon the underlying substrate of between 10% and 75%, 85%, 95%, and even up to 100%.
  • the discontinuous, patterned protective layer 70 may be made from any suitably curable polymeric material.
  • An example of a suitable material is a multi-functional or cross- linkable monomer.
  • Illustrative cross-linkable monomers include multi-functional acrylates, urethanes, urethane acrylates, siloxanes, and epoxies.
  • cross-linkable monomers include mixtures of multifunctional acrylates, urethane acrylates, or epoxies.
  • the hardcoat layer includes a plurality of inorganic nanoparticles.
  • the inorganic nanoparticles can include, for example, silica, alumina, or Zirconia nanoparticles.
  • the nanoparticles have a mean diameter in a range from 1 to 200 microns, or 5 to 150 microns, or 5 to 125 microns.
  • the nanoparticles can be "surface modified" such that the nanoparticles provide a stable dispersion in which the nanoparticles do not agglomerate after standing for a period of time, such as 24 hours, under ambient conditions.
  • the thickness of the discontinuous, patterned protective layer 70 can be any useful thickness.
  • the features of the protective layer 70 have an average thickness of 1 to 25 microns. In another embodiment, the features have an average thickness of 1 to 15 microns. In another embodiment, the features have an average thickness of 1 to 10 microns.
  • Useful acrylates include, for example, poly(meth)acryl monomers such as, for example, (a) di(meth)acryl containing compounds such as 1,3-butylene glycol diacrylate, 1,4- butanediol diacrylate, 1 ,6-hexanediol diacrylate, 1 ,6-hexanediol monoacrylate
  • trimethylolpropane triacrylate pentaerythritol triacrylate, propoxylated triacrylates (e.g., propoxylated (3) glyceryl triacrylate, propoxylated (5.5) glyceryl triacrylate, propoxylated (3) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate), trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate; (c) higher functionality (meth)acryl containing compounds such as ditrimethylolpropane
  • oligomeric (meth)acryl compounds such as, for example, urethane acrylates, polyester acrylates, epoxy acrylates; polyacrylamide analogues of the foregoing such as, for example, ⁇ , ⁇ -dimethyl acrylamide; and combinations thereof.
  • Such compounds are widely available from vendors such as, for example, Sartomer Company, Exton, Pa.; UCB Chemicals Corporation, Smyrna, Ga.; and Aldrich Chemical Company, Milwaukee, Wis.
  • Additional useful (meth)acrylate materials include hydantoin moiety-containing poly(meth)acrylates, for example, as described in U.S. Pat. No. 4,262,072 (Wendling et al).
  • the patterned protective layer 70 includes a monomer having at least two or three (meth)acrylate functional groups.
  • Commercially available cross-linkable acrylate monomers include those available from Sartomer Company, Exton, Pa. such as trimethylolpropane triacrylate available under the trade designation "SR351", pentaerythritol triacrylate available under the trade designation "SR444", dipentaerythritol triacrylate available under the trade designation "SR399LV”, ethoxylated (3)
  • Useful urethane acrylate monomers include, for example, a hexafunctional urethane acrylate available under the tradename Ebecryl 8301 from Radcure UCB Chemicals, Smyrna, Ga., CN981 and CN981B88 available from Sartomer Company, Exton, Pa., and a difunctional urethane acrylate available under the tradename Ebecryl 8402 from Radcure UCB Chemicals, Smyrna, Ga.
  • the hardcoat layer resin includes both poly(meth)acrylate and polyurethane material, which can be termed a "urethane acrylate.”
  • the nanoparticles are inorganic nanoparticles such as, for example, silica, alumina, or zirconia. Nanoparticles can be present in an amount from 10 to 200 parts per 100 parts of hardcoat layer monomer.
  • Silicas for use in the materials of the invention are commercially available from Nalco Chemical Co. (Naperville, 111.) under the product designation NALCO COLLOIDAL SILICAS.
  • silicas include NALCO products 1040, 1042, 1050, 1060, 2327 and 2329.
  • Zirconia nanoparticles are commercially available from Nalco Chemical Co. (Naperville, 111.) under the product designation NALCO OOSS008.
  • Surface treating or surface modification of the nano-sized particles can provide a stable dispersion in the hardcoat layer resin.
  • the surface-treatment can stabilize the nanoparticles so that the particles will be well dispersed in the polymerizable resin and result in a substantially homogeneous composition.
  • the nanoparticles can be modified over at least a portion of its surface with a surface treatment agent so that the stabilized particle can copolymerize or react with the polymerizable hardcoat layer resin during curing.
  • the nanoparticles can be treated with a surface treatment agent.
  • a surface treatment agent has a first end that will attach to the particle surface (covalently, ionically or through strong physisorption) and a second end that imparts compatibility of the particle with the hardcoat layer resin and/or reacts with hardcoat layer resin during curing.
  • surface treatment agents include alcohols, amines, carboxylic acids, sulfonic acids, phospohonic acids, silanes and titanates.
  • the preferred type of treatment agent is determined, in part, by the chemical nature of the inorganic particle or metal oxide particle surface. Silanes are generally preferred for silica and zirconia (the term "zirconia" includes zirconia metal oxide.)
  • the surface modification can be done either subsequent to mixing with the monomers or after mixing.
  • silanes it is preferred to react silanes with the particle or nanoparticle surface before incorporation into the resin.
  • the required amount of surface modifier is dependent upon several factors such as particle size, particle type, modifier molecular wt, and modifier type. In general it is preferred that approximately a monolayer of modifier is attached to the surface of the particle. The attachment procedure or reaction conditions required also depend on the surface modifier used.
  • silanes it is preferred to surface treat at elevated temperatures under acidic or basic conditions for approximately 1-24 hours approximately. Surface treatment agents such as carboxylic acids do not require elevated temperatures or extended time. Surface modification of zirconia (ZrO.sub.2) with silanes can be accomplished under acidic conditions or basic conditions. In one embodiment, silanes are preferably heated under acid conditions for a suitable period of time.
  • the dispersion is combined with aqueous ammonia (or other base).
  • aqueous ammonia or other base. This method allows removal of the acid counter ion from the ZrO.sub.2 surface as well as reaction with the silane. Then the particles are precipitated from the dispersion and separated from the liquid phase.
  • the surface modified particles can be incorporated into the curable resin by various methods.
  • a solvent exchange procedure is utilized whereby the resin is added to the surface modified nanoparticles, followed by removal of the water and co- solvent (if used) via evaporation, thus leaving the particles dispersed in the polymerizable resin.
  • the evaporation step can be accomplished for example, via distillation, rotary evaporation or oven drying, as desired.
  • Representative embodiments of surface treatment agents suitable for inclusion in the hardcoat layer include compounds such as, for example, phenyltrimethoxysilane, phenyltriethoxysilane, 2-(3 ,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3 ,4- epoxycyclohexyl)ethyltrimethoxysilane, isooctyl trimethoxy-silane, N-(3- triethoxysilylpropyl) methoxyethoxyethoxyethyl carbamate (PEG3TES), Silquest A1230, N-(3 -triethoxysilylpropyl) methoxyethoxyethoxyethyl carbamate (PEG2TES), 3- (methacryloyloxy)propyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3- (methacryloyloxy)propyltriethoxy
  • vinylmethyldiethoxysilane vinyltriacetoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriphenoxysilane, vinyltri-t- butoxysilane, vinyltris-isobutoxysilane, vinyltriisopropenoxysilane, vinyltris(2- methoxyethoxy)silane, styrylethyltrimethoxysilane, mercaptopropyltrimethoxysilane, 3- glycidoxypropyltrimethoxysilane, acrylic acid, methacrylic acid, oleic acid, stearic acid, dodecanoic acid, 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEAA), beta- carboxyethylacrylate, 2-(2-methoxyethoxy)acetic acid, methoxyphenyl acetic acid, and mixtures thereof.
  • MEEAA 2-[2-(
  • a photoinitiator can be included in the hardcoat layer.
  • initiators include, organic peroxides, azo compounds, quinines, nitro compounds, acyl halides, hydrazones, mercapto compounds, pyrylium compounds, imidazoles, chlorotriazines, benzoin, benzoin alkyl ethers, di-ketones, phenones, and the like.
  • photoinitiators include, but not limited to, those available commercially from Ciba Geigy under the trade designations DARACUR 1173, DAROCUR 4265, IRGACURE 651, IRGACURE 184, IRGACURE 1800, IRGACURE 369, IRGACURE 1700, and IRGACURE 907,
  • Phenyl-[p-(2-hydroxytetradecyloxy)phenyl]iodonium hexafluoroantomonate is a photoinitiator commercially available from Gelest, Tullytown, Pa.
  • Phosphine oxide derivatives include LUCIRIN TPO, which is 2,4,6-trimethylbenzoy diphenyl phosphine oxide, available from BASF, Charlotte, N.C.
  • LUCIRIN TPO 2,4,6-trimethylbenzoy diphenyl phosphine oxide
  • a photoinitiator can be used at a concentration of about 0.1 to 10 weight percent or about 0.1 to 5 weight percent based on the organic portion of the formulation (phr.)
  • the patterned protective layer 70 described herein can be a hard coat layer cured in an inert atmosphere. It has been found that curing the patterned protective layer 120 in an inert atmosphere can assist in providing/maintaining the scratch and stain resistance properties of the patterned protective layer 70. In some embodiments, the patterned protective layer 70 is cured with a UV light source under a nitrogen blanket.
  • heat stabilizers are commercially available from Witco Corp., Greenwich, Conn, under the trade designation “Mark V 1923” and Ferro Corp., Polymer Additives Div., Walton Hills, Ohio under the trade designations "Synpron 1163", “Ferro 1237” and “Ferro 1720". Such heat stabilizers can be present in amounts ranging from 0.02 to 0.15 weight percent. UV light stabilizers can be present in amounts ranging from 0.1 to 5 weight percent.
  • Benzophenone type UV-absorbers are commercially available from BASF Corp., Parsippany, N.J. under the trade designation "Uvinol 400"; Cytec Industries, West Patterson, N.J. under the trade designation “Cyasorb UV1164" and Ciba Specialty Chemicals, Tarrytown, N.Y., under the trade designations "Tinuvin 900", “Tinuvin 123” and “Tinuvin 1130".
  • Free-radical scavengers can be present in an amount from 0.05 to 0.25 weight percent.
  • Nonlimiting examples of free-radical scavengers include hindered amine light stabilizer (HALS) compounds, hydroxylamines, sterically hindered phenols, and the like. HALS compounds are commercially available from Ciba Specialty Chemicals under the trade designation "Tinuvin 292" and Cytec Industries under the trade designation "Cyasorb UV3581"
  • the discontinuous, patterned protective layer can be applied to the top surface of the conformable film with commonly known methods such as screen, flexographic, ink jet, or gravure printing. Various coating techniques may also be used, as will be appreciated by one skilled in the art.
  • conformable removable film-based article 10 as described above, is shown again, except additionally including substrate 200, and wherein adhesive layer 60 interfaces the conformable film layer 50 to the top surface of substrate 200.
  • Substrate 200 may be any substrate suitable for having a graphic adhered to it.
  • a vehicle surface such as an automotive wrap, or a boat wrap, etc.
  • FIG 4 a further embodiment of conformable removable film-based article 10 is shown.
  • conformable removable film-based article 10 is optically transparent, and is configured as a protective overlaminate layer relative to a printed film layer.
  • Image layer 210 may be printed, e.g., by inkjet or otherwise, onto film layer 220 (which may be a multi-layer composite film).
  • An adhesive layer 230 then bonds the stack to substrate 200.
  • the discontinuous, patterned protective layer 70 still provides improved removability of the entire film stack from substrate 200.
  • FIG. 5 plan- view drawings are shown of the features that comprise the patterned protective layers in several embodiments.
  • the features may have a variety of shapes - round, square, random.
  • the features may also be opaque, transparent, translucent, or contain particles to provide added optical effects.
  • FIG. 6 a flowchart is shown representing the steps associated with making a conformable, removable film-based article as described above.
  • An adhesive layer is first applied to the first major surface of a conformable film having a first major surface and a second major surface (610). Typically, this would be in a roll-to-roll process, and the film would be coated.
  • a release liner may be placed on the exposed surface of the adhesive layer (620). At this point, the film, adhesive, and release liner stack may be rolled up and stored as needed.
  • the discontinuous patterned protective layer is applied to the second surface of the conformable film (630).
  • This protective layer may be, for example, ink-jet printed, or gravure, fiexographic, rotary screen, or similar as know in the art.
  • the film stack may be rolled up and stored.
  • an applicator personnel would remove the liner and bring the exposed adhesive layer in contact with an application substrate, such as a vehicle surface. This may involve repeatedly heating and stretching the film onto the vehicle's surface until it is acceptably positioned, usually with the use of squeegees or the like.
  • Hardcoat protective films were subjected to an oscillating sand test (ASTM F 735 using a rotary oscillatory shaker made by VWR) where the test conditions were 50 grams of sand, 400 rpm for 60 minutes. It is typically easy to detect scratching of the hardcoat by visually inspecting the samples after testing. In order to quantify the abrasion resistance, the percent of haze in the coated film can be measured and compared before and after testing. Haze was measured with a haze-gard plus manufactured by BYK Gardner, Columbia, MD.
  • ASTM D3330-04 (test method A) was used for the 180 degree peel extension to break testing.
  • Samples (C1-C2 and E1-E4) were laminated to Film Fl using a squeeze roll laminator. 2.5 cm by 20 cm strips were cut from these constructions. The strips were laminated to an aluminum substrate panel from the Q-Lab Corporation (AL-39). Samples were conditioned (72 degrees F and 50% RH) for 24 hours prior to testing. Samples were tested on Instron Model #5564 from the Instron Corporation, 100 Royall Street, Canton MA 02021-1089. Three samples were tested; the reported peel extension to break value is an average of the peel extension to break values from each of the three samples. Data was measured in inches.
  • the printed material is an acrylate formulation composed of 50 wt% AMI, 25 wt% AM2, and 25wt% AM3 with lwt% PI1. This acrylate formulation was thoroughly admixed until all components were in solution to form an essentially "solventless" liquid material.
  • flexographic printing plates were obtained of the type available from DuPont (Wilmington, DE) under the trade designation Cyrel DPR. All three plates were processed (by Southern Graphic Systems (SGS, Minneapolis, MN)) to comprise predetermined print pattern based on images supplied to Southern Graphic Systems. Pattern 1- Grid of square features 40 microns on edge with 50 micron gaps.
  • Pattern 3 - Random polygon features 430 microns on edge with 100 micron gaps.
  • Each printing plate comprised an overall size of approximately 30.5 x 30.5 cm. All three printing plates were manually wiped with isopropanol before printing.
  • a flexographic printing plate with a pattern as shown in Table 1 was mounted on a smooth roll of a flexographic printing apparatus using 1060 Cushion-Mount flexographic plate mounting tape available from 3M.
  • the acrylate formulation described above was introduced into the flexographic printing apparatus using conventional methods and equipment and was transferred onto the printing surfaces of the flexographic printing plate via the anilox rolls shown in Table 1.
  • the printable composition was then transferred from the anilox roll to a printable film F2 moving at a line speed of approximately 3 meters per minute.
  • the coated film then passed through a UV curing apparatus (available from XericWeb, Neenah, WI) that was in-line with the printing apparatus so that the liquid material was satisfactorily cured to form a solid film.
  • Example E4 was double printed. A first printing pass was made and cured and then a second printing was applied over the first and cured (see Table 1).
  • Control Example CI had no printing.
  • Control Example C2 was continuously coated with Acrylate Formulation using a #8 Mayer Rod. After coating the sample was cured in a LIGHTHAMMER 6 UV curing system with a D bulb (Heraeus Noblelight Fusion UV Inc., Gaitherburg, Maryland). Curing took place at 100% power and 25 ft/min (7.6 m/min).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)

Abstract

A conformable, removable film-based article having a patterned, discontinuous upper protective layer. The upper layer may be configured to facilitate enhanced removability of the film from a substrate, such as an automobile's exterior surface, to which it has been applied.

Description

CONFORMABLE, REMOVABLE FILM-BASED ARTICLE BACKGROUND
Films are often bonded to substrates utilizing pressure-sensitive adhesives. The films are generally bonded to a variety of different substrates including, for example, surfaces on motor vehicles. Removal of such films is traditionally accomplished by manually pulling on an edge of such film, which may cause the film to fracture.
SUMMARY
Films with a patterned protective coating that facilitates ease of removal while preserving protective and visual aspects of the protective coating. The patterned protective coating in one embodiment comprises island-like features that may or may not be visible to an observer, in a density that effects surface protection. At the time of removal, these patterned films in some embodiments may be much less prone to breakage, thus facilitating ease of removability.
In one embodiment, a conformable, removable film-based article is described, the article comprising a conformable film having a first major surface and a second major surface; a pressure sensitive adhesive layer on the first major surface of the conformable film; and a discontinuous, patterned protective layer on at least a portion of the second major surface of the conformable film, wherein the patterned protective layer comprises a pattern that has an average areal coverage that is between 10% and 85% of the surface area of the portion of the conformable film. In another embodiment, the patterned protective layer comprises features, and wherein such features are applied via a multiple printing step process, such that a protective material, such as hard coat, is printed on the conformable film in the discontinuous pattern, then a further printing step disposes an additional discontinuous pattern atop the already printed pattern.
This and other embodiments are described herein. BRIEF DESCRIPTION OF DRAWINGS
Figure 1 is a drawing of a hard coated film.
Figure 2 is a side view drawing of a conformable film-based article.
Figure 3 is a drawing of a conformable, removable film-based article.
Figure 4 is a drawing of a conformable, removable film-based article.
Figure 5 a is a plan- view drawing showing features that comprise the patterned protective layers.
Figure 5b is a plan- view drawing showing features that comprise the patterned protective layers.
Figure 5 c is a plan- view drawing showing features that comprise the patterned protective layers.
Figure 6 is a flowchart showing steps associated with making a conformable, removable film-based article. DETAILED DESCRIPTION
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
As used in this specification and the appended claims, the singular forms "a", "an", and "the" encompass embodiments having plural referents, unless the content clearly dictates otherwise. For example, reference to "a layer" encompasses embodiments having one, two or more layers. As used in this specification and the appended claims, the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.
The term "polymer" will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend. In a blend of polymers, the term "polymer" will refer to the continuous phase polymer in the blend. Unless otherwise indicated, "optically transparent" refers to an article, film or adhesive composition that has a high light transmittance over at least a portion of the visible light spectrum (about 400 to about 700 nm).
It is common for conformal film-based articles having a protective hardcoat layer to be difficult to remove from the surface to which the film-based article was applied. The conformal film with hardcoat fractures into relatively small sections upon an operator pulling the film upward (sometimes in the presence of heat). This tendency to break makes the hard coated film difficult to remove in large sections, which increases labor costs. In certain instances, the variability in stresses associated with such breakage could potentially contaminate or compromise an underlying finish, potentially leading to increased susceptibility to scratching. Such a hard coated film is shown in Figure 1. Hardcoated film 1 includes a film layer 3, an adhesive layer 4, and a continuous, unpatterned hardcoat layer 2. Adhesive layer 4 bonds the hardcoated film 1 to an application surface 5.
Ease of removal may be desirable particularly in applications where removability is an expected part of the film product life cycle. For example, some vehicle wraps, that is, films applied to the exterior of a vehicle as a decorative wrap are usually not considered permanent, and may be eventually removed. Conventional hard coated films, as seen in Figure 1, tend to break into relatively small pieces when an operator attempts to peel them off of a surface. It has been discovered that film constructions having certain protective coating patterns may provide some benefits of the protective coatings, but also allow for much easier removal. For example, in some embodiments, films having such newly discovered protective coating patterns may be removed in a single piece, often without breaking, by an operator manually pulling the film away from the surface to which it is adhered. Of course, the ultimate ease with which a particular film adhered to a surface may be removed from that surface is a function of many things: the kind of substrate upon which a film is adhered; the adhesive(s) used; and film involved, etc. But in general, patterning a protective layer on a film as is described further herein has been found to improve the removability of that film as compared with a continuously, uniformly coated hard coated film, by decreasing its tendency to break. Such newly discovered film constructions have a pattern of features, usually on the top surface of the film-based articles, which provides surface protection and gloss control, and without causing issues with removability of the construction. The newly discovered film can be used, for example, in vehicle wraps as a protective overlaminate because it provides the proper finish while also offering protection and not substantially affecting application-related properties. Such application-related properties include the ability to be heated and stretched (sometimes up to or even exceeding 50% of starting area) around various shapes on the vehicle. Another application-related property is the ability for the film to be applied, removed, and then re- applied several times during application - usually in the presence of varying degrees of heat. Another application-related property is the film's level of gloss - ideally the original level of film gloss is preserved through the application process. Another application- related property is the film's ability to resist marring or streaking caused from an application tool deforming the edge of the film.
Figure 2 shows a side-view drawing of a conformable film-based article 10. Conformable film layer 50 is shown sandwiched between an adhesive layer 60 and a discontinuous patterned protective layer 70. Discontinuous patterned protective layer is an array of hardcoat features on a film. The discontinuous patterned protective layer comprises areas of hardcoat on film adjacent to, or in some embodiments, separated by, regions with no or very little (in one embodiment less than 0.5 microns) of hardcoat. Conformable film layer 50, which may be comprised of one or more layers of films of various constructions, includes two major surfaces 50A and 50B. Major surface 50B interfaces with adhesive layer 60, whereas major surface 50A has upon it the discontinuous patterned protective layer. Conformable film-based article 10 may be constructed and delivered on a release liner (not shown in Figure 2), which may include ridges that endow the adhesive layer 60 with a relief structure suitable for air and fluid egress upon installation. Generally, such a release liner is removed at the time of application, then adhesive layer 60 brought into contact with an application surface, such as an automobile surface or a wall, etc.
Conformable film layer 50 may be of any suitable construction. The conformable film utilized in the present inventive article is generally made of various plastic materials used conventionally by those skilled in the art. Suitable films include, for example, vinyl, polyvinyl chloride (PVC), plasticized polyvinyl chloride, polyurethane, polyethylene, polypropylene, fluororesin or the like. Other polymer blends are also potentially suitable, including for example thermoplastic polyurethane and a cellulose ester. In some embodiments, the cellulose ester is a cellulose acetate butyrate. In some embodiments, the cellulose ester is a cellulose acetate propionate. The thickness film can vary widely according to a desired application, but is usually within a range from about 300 microns or less, and preferably about 25 microns to about 100 microns. PVC films, in particular, are conventionally used for a wide variety of applications, including graphic films. PVC has many properties that are advantageous for such applications, such as cost and durability. They are also easily printed using current printing technologies, e.g., piezo ink jet. PVC graphic films are usually conformable to the varying topographies present on the exterior of a substrate, for example a vehicle. Another suitable film type includes polyolefin films, or thermoplastic polyurethane and cellulose ester films as described in US Patent Application Publication No. 2014/0141214 or the films described in US Patent Application No. 61/761004.
A specific example of a suitable conformable film layer is a plasticized polyvinyl chloride film, which has sufficient inelastic deformation after being stretched so that when stretched, the film does not recover to its original length. Preferably, the film has an inelastic deformation of at least 5% after being stretched once to 115% of their original length. A typical formulation of the vinyl film includes polyvinyl chloride resin, light and/or heat stabilizer(s), plasticizer, and optionally, pigment. The amount of plasticizer is generally less than about 40% by weight, and is preferably composed of polymeric non- migratable plasticizers which are compatible with the vinyl film and provide the necessary flexibility and durability. A suitable plasticizer is a combination of polymeric polyester elastomer and an ethylene vinyl acetate copolymer (such as Elvaloy 742 made by DuPont Co.) soluble in aromatic solvents and present in amounts of about 26 parts and 10 parts, respectively, per 100 parts vinyl resin.
As mentioned, conformable film layer 50 may include other layers. For example, such other layers may include various colors and patterns of other films, various over laminate films that may be clear or light transmissive, ink layers, etc. These additional layers may be of the same or different chemistries and constructions.
By "conformable" it is meant that the film layer is one that is soft and flexible so as to accommodate curves, depressions, or projections on a substrate surface so that the film may be stretched around curves or projections, or may be pressed down into depressions without breaking or delaminating the film. It is also desirable that the film does not delaminate or release from the substrate surface after application (known as popping-up). Graphic films may also be imageable (i.e. able to receive printing and/or graphics) and exhibit good weathering for outdoor applications.
Adhesive layer 60 may be any suitable adhesive. Suitable adhesives can be selected from a variety of conventional adhesive formulations. Non-limiting examples of adhesives include pressure sensitive adhesives, heat activated adhesives, radiation curable adhesives, and the like. Examples of formulation types include solvent-based solutions, water-based, latex, microspheres, hot melt coatable, and suitable combinations thereof.
Adhesive layer 60 may comprise further layers, such as primer layers to enhance the bond between the adhesive layer and the film layer. The type of primer will vary with the type of film and adhesive used and one skilled in the art can select an appropriate primer.
Examples of suitable primers include chlorinated polyolefms, polyamides, and modified polymers disclosed in U.S. Pat. Nos. 5,677,376, 5,623,010 and those disclosed in WO 98/15601 and WO 99/03907, and other modified acrylic polymers. Typically, primers are dispersed into an adequate solvent in very low concentrations, e.g., less that about 5% solids, and coated onto the film, and dried at room or elevated temperatures to form a very thin layer. Typical solvents used may include water, heptane, toluene, acetone, ethyl acetate, isopropanol, and the like, used alone or as blends thereof.
Potentially useful pressure sensitive adhesives suitable for bringing into contact with liner- type webs described herein typically have pressure-sensitive adhesive properties as described in The Handbook of Pressure Sensitive Adhesives, page 172, paragraph 1 (1989). The pressure-sensitive adhesive could be a single pressure-sensitive adhesive or the pressure sensitive adhesive could be a mixture of several pressure-sensitive adhesives. Classes of pressure sensitive adhesives useful in the present invention include, for example, rubber resin materials such as tackified natural rubbers or those based on synthetic rubbers, styrene block copolymers, polyvinyl ethers, acrylic resins such as poly(meth)acrylates (including both acrylates and methacrylates), polyurethanes, poly-a- olefins, silicone resins, and the like. Combinations of these adhesives can be used.
Additionally, further useful adhesives include those that may be activated at elevated temperature for application at use temperature. These generally meet the Dahlquist criterion at use temperature.
The pressure sensitive adhesive may be inherently tacky. If desirable, tackifiers may be added to a pressure sensitive adhesive base material to form the pressure sensitive adhesive. Useful tackifiers include, for example, rosin ester resins, aromatic hydrocarbon resins, aliphatic hydrocarbon resins, mixed aromatic/aliphatic hydrocarbon resins, and terpene resins. Other materials can be added for special purposes, including, for example, oils, plasticizers, antioxidants, ultraviolet ("UV") stabilizers, hydrogenated butyl rubber, pigments, fillers, curing agents, and crosslinkers. Some examples of fillers or pigments include zinc oxide, titanium dioxide, silica, carbon black, metal powders and calcium carbonate.
Acrylic pressure-sensitive adhesives having a wide range of compositions are useful. Typically, the components of the compositions are selected such that the compositions have a glass transition temperature of less than about -20 C. The compositions typically comprise about 70 to 100 weight percent of alkyl ester components, for example, alkyl acrylate components having alkyl groups from 1 to 14 carbons, and about 30 to 10, or 2, or in some cases 0 weight percent of polar interacting components, for example,
ethylenically-unsaturated carboxylic acids or ethylenically unsaturated amides. In some embodiments, preferably the compositions may comprise about 70 to 98 weight percent of alkyl ester components and about 30 to 2 weight percent of polar interacting components, and most preferably about 85 to 98 weight percent alkyl ester components and about 15 to 2 weight percent of polar interacting components. The alkyl ester components include, for example, isooctyl acrylate, 2-ethyl-hexyl acrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylbutyl acrylate, isobornylacrylate, and the like. The compositions may include other types of ester components such as, for example, vinyl acetate, methyl methacrylate, and the like. The polar interacting components include, for example, acrylic acid, methacrylic acid, N-vinyl pyrrolidone, N-vinyl caprolactam, methacrylamide, acrylamide, N-alkyl acrylamides, 2-hydroxyethyl acrylate, and the like. The compositions may include other components such as, for example, styrene macromer, and the like.
The acrylic pressure sensitive adhesives may be self-tacky or tackified. Non-limiting examples of potentially useful tackifiers for acrylics are rosin esters such those available under the following trade names: FORALTM 85, available from Hercules, Inc.; aromatic resins such as PICCOTEXTM LC-55WK; aliphatic resins such as PICCOTACTM 95, available from Hercules, Inc.; terpene resins such as a-pinene and p- pinene, available as PICCOLYTETM A-l 15, ZONAREZTM B-100 from Arizona Chemical Co., and terpene- phenol resins such as SYLVARES TP 2019 from Arizona Chemical Co.
The performance (tack, peel adhesion, shear adhesion, adhesion to specific substrates) of pressure sensitive adhesives can be tailored to a given application by using crosslinking agents, plasticizers, or other modifiers. The thickness of the adhesive layer 60 may be dependent upon several factors, including for example, the adhesive composition, the type of structures used to form the
microstructured surface, the type of substrate, and the thickness of the confirmable film layer. Those skilled in the art are capable of adjusting the thickness to address specific application factors. In some embodiments, the thickness of the adhesive layer is within a range from about 10 to about 50 microns. Discontinuous patterned protective layer 70 is in one embodiment a discontinuous hard coat layer. By discontinuous, it is meant that the patterned protective layer 70 does not continuously extend across the full upper surface 50A of conformable film layer 50; rather there are at least some areas of upper surface 50A (such as area 72) that are not covered by the discontinuous patterned protective layer 70. In the embodiment shown in Figure 2, the discontinuous patterned protective layer 70 is shown as four discrete features 80. As is shown further in Figure 5, in various embodiments discontinuous patterned protective layer 70 may comprise discrete features, also called islands, such as round shaped islands 80A (Figure 5A), square shaped islands 80B (Figure 5B), or random or polygon-shaped islands 80C (Figure 5C). The edges of the features may be straight or rounded or wavy. The features may be separated by a fixed pitch or pitches. Depending on implementation details, such a regular pitch may make the patterned protective layer visible to someone looking at the film. In some cases, seeing such a pattern may desirable. For example, a texture with visible features may be desirable for mimicking a reptile skin texture or an orange peel type texture. When it is desirable to see the hardcoat features, it has been found that features having a diameter of 100 microns for a rounded feature having a surface area of 7050 microns2 or greater may be a suitable choice, up to 0.785 mm2 are useful.
The hardcoat features also may be arranged in a pattern which is not noticeable to the eye, for example, random or pseudo-random pitch variations or feature size alterations. When the features are smaller than 100 microns in diameter for round features (area less than 7850 square microns for non-round), more preferably less than 80 microns in diameter (area less than 5024 square microns), even more preferably 60 microns in diameter for a round feature (area less than 2826 square microns) or less the features in some
embodiments are unlikely to be seen. It is expected for other shapes that this trend will also hold. While the examples shown in Figure 5 show discrete islands of features, other
interconnected features are also possible, as where islands are connected to other islands via some pattern of protective coating. The term features as used herein refers broadly to areas of the top surface 50A of conformable film layer 50 in which protective coating is present (e.g., features 80 as shown in the various embodiments of Figure 5).
Letting the total surface area of the conformable film layer 50 be equal a total area of T, and a first area "A" to equal the total area of the features (e.g., features 80) within T, and a second area "B" to equal the total area of the upper surface 50A that is devoid of features associated with protective patterned layer 70 (e.g., areas 72), then T=A+B. In some embodiments, it has been found that the percentage area of features (A) to non- features (B), to facilitate effective removal, can range from about 5% to nearly 100% area coverage. More desirably, at least 10% of the surface, and less than 85% of the surface, and even more desirably between 15% and 75%, and even more desirably between 25% and 65% of the surface of the film may comprise the patterned layer 70. In such ranges, the printed hardcoat features provide protection of the film from abrasion, chemical staining, and chemical attack, while providing the enhanced removability describe herein, and also may alter the film's appearance in some embodiments (i.e., may provide a matte- type finish to the film). Protection against chemical attack may be an important feature in certain embodiments of car wrap films, since it is likely that these films will be exposed to a variety of chemicals including gasoline, car wash soaps, detergents and waxes, bug and tar removers, etc. Sizes of features that comprise the discontinuous protective pattern may be any suitable size. Another example of a useful discontinuous hardcoat film comprises a film which is printed with a first patterned hardcoat layer then overprinted with a second hardcoat layer. The overprint in one embodiment would not need to be registered to the first print. Further, the feature size of the second print can be at the lower useful limit of printed hardcoat (60 microns in diameter for a round feature) up to 1 mm in diameter. Further layers of hardcoat can be overprinted as well. This allows for much higher areal coverage of the film - from 60 to 95% or greater, in some embodiments, of the area while still maintaining the removability of the film. Such printing and overprinting may occur within in printing steps that are temporally distinguished from one another (though they may be part of the same web handling operation, for example, some printers have the ability to print multiple layers as part of one web handling operation). In other words, a first printing step disposes the first set of hardcoat features, then a second printing step disposes a second set of hardcoat features, with at least some of the second set of hardcoat features overlapping, or partially overlapping, the first set of hardcoat features. Where the second set of hardcoat features does not overlap the first set, it would interface directly with the underlying substrate's surface. If further printing steps (i.e., third, fourth, etc.) are used, such steps would result in further hardcoat features overlapping or partially overlapping underlying hardcoat features, as well as the underlying substrate, though with each successive overprinting of hardcoat features, the amount of overlapping of the underlying substrate is successively reduced. Embodiments having overprinted features may appear less regular in pattern, and greater variability in the feature islands, which may improve undesirable visual characteristics sometimes associated with a well structured array of features (e.g., moire). As mentioned, such overprinting allows for higher percentage areal coverage of hardcoat upon the underlying substrate, but enhanced removability characteristics are still preserved.
In the overprinted embodiment just described, a conformable film-based product is the result of printing a first set hardcoat features upon a substrate, then overprinting a second set of hardcoat features, at least some of the second set of hardcoat features partially overlapping the first set, to achieve a total areal coverage of features upon the underlying substrate of between 10% and 75%, 85%, 95%, and even up to 100%. The discontinuous, patterned protective layer 70 may be made from any suitably curable polymeric material. An example of a suitable material is a multi-functional or cross- linkable monomer. Illustrative cross-linkable monomers include multi-functional acrylates, urethanes, urethane acrylates, siloxanes, and epoxies. In some embodiments, cross-linkable monomers include mixtures of multifunctional acrylates, urethane acrylates, or epoxies. In some embodiments, the hardcoat layer includes a plurality of inorganic nanoparticles. The inorganic nanoparticles can include, for example, silica, alumina, or Zirconia nanoparticles. In some embodiments, the nanoparticles have a mean diameter in a range from 1 to 200 microns, or 5 to 150 microns, or 5 to 125 microns. In illustrative embodiments, the nanoparticles can be "surface modified" such that the nanoparticles provide a stable dispersion in which the nanoparticles do not agglomerate after standing for a period of time, such as 24 hours, under ambient conditions.
The thickness of the discontinuous, patterned protective layer 70 can be any useful thickness. In some embodiments, the features of the protective layer 70 have an average thickness of 1 to 25 microns. In another embodiment, the features have an average thickness of 1 to 15 microns. In another embodiment, the features have an average thickness of 1 to 10 microns.
Useful acrylates include, for example, poly(meth)acryl monomers such as, for example, (a) di(meth)acryl containing compounds such as 1,3-butylene glycol diacrylate, 1,4- butanediol diacrylate, 1 ,6-hexanediol diacrylate, 1 ,6-hexanediol monoacrylate
monomethacrylate, ethylene glycol diacrylate, alkoxylated aliphatic diacrylate, alkoxylated cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated neopentyl glycol diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, cyclohexanedimethanol diacrylate, diethylene glycol diacrylate, dipropylene glycol diacrylate, ethoxylated (10) bisphenol A diacrylate, ethoxylated (3) bisphenol A diacrylate, ethoxylated (30) bisphenol A diacrylate, ethoxylated (4) bisphenol A diacrylate, hydroxypivalaldehyde modified trimethylolpropane diacrylate, neopentyl glycol diacrylate, polyethylene glycol (200) diacrylate, polyethylene glycol (400) diacrylate, polyethylene glycol (600) diacrylate, propoxylated neopentyl glycol diacrylate, tetraethylene glycol diacrylate, tricyclodecanedimethanol diacrylate, triethylene glycol diacrylate, tripropylene glycol diacrylate; (b) tri(meth)acryl containing compounds such as glycerol triacrylate, trimethylolpropane triacrylate, ethoxylated triacrylates (e.g., ethoxylated (3) trimethylolpropane triacrylate, ethoxylated (6) trimethylolpropane triacrylate, ethoxylated (9) trimethylolpropane triacrylate, ethoxylated (20)
trimethylolpropane triacrylate), pentaerythritol triacrylate, propoxylated triacrylates (e.g., propoxylated (3) glyceryl triacrylate, propoxylated (5.5) glyceryl triacrylate, propoxylated (3) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate), trimethylolpropane triacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate; (c) higher functionality (meth)acryl containing compounds such as ditrimethylolpropane
tetraacrylate, dipentaerythritol pentaacrylate, ethoxylated (4) pentaerythritol tetraacrylate, pentaerythritol tetraacrylate, caprolactone modified dipentaerythritol hexaacrylate; (d) oligomeric (meth)acryl compounds such as, for example, urethane acrylates, polyester acrylates, epoxy acrylates; polyacrylamide analogues of the foregoing such as, for example, Ν,Ν-dimethyl acrylamide; and combinations thereof. Such compounds are widely available from vendors such as, for example, Sartomer Company, Exton, Pa.; UCB Chemicals Corporation, Smyrna, Ga.; and Aldrich Chemical Company, Milwaukee, Wis. Additional useful (meth)acrylate materials include hydantoin moiety-containing poly(meth)acrylates, for example, as described in U.S. Pat. No. 4,262,072 (Wendling et al).
In an illustrative embodiment, the patterned protective layer 70 includes a monomer having at least two or three (meth)acrylate functional groups. Commercially available cross-linkable acrylate monomers include those available from Sartomer Company, Exton, Pa. such as trimethylolpropane triacrylate available under the trade designation "SR351", pentaerythritol triacrylate available under the trade designation "SR444", dipentaerythritol triacrylate available under the trade designation "SR399LV", ethoxylated (3)
trimethylolpropane triacrylate available under the trade designation "SR454", ethoxylated (4) pentaerythritol triacrylate, available under the trade designation "SR494", tris(2- hydroxyethyl)isocyanurate triacrylate, available under the trade designation "SR368", and dipropylene glycol diacrylate, available under the trade designation "SR508". Useful urethane acrylate monomers include, for example, a hexafunctional urethane acrylate available under the tradename Ebecryl 8301 from Radcure UCB Chemicals, Smyrna, Ga., CN981 and CN981B88 available from Sartomer Company, Exton, Pa., and a difunctional urethane acrylate available under the tradename Ebecryl 8402 from Radcure UCB Chemicals, Smyrna, Ga. In some embodiments the hardcoat layer resin includes both poly(meth)acrylate and polyurethane material, which can be termed a "urethane acrylate."
In some embodiments, the nanoparticles are inorganic nanoparticles such as, for example, silica, alumina, or zirconia. Nanoparticles can be present in an amount from 10 to 200 parts per 100 parts of hardcoat layer monomer. Silicas for use in the materials of the invention are commercially available from Nalco Chemical Co. (Naperville, 111.) under the product designation NALCO COLLOIDAL SILICAS. For example, silicas include NALCO products 1040, 1042, 1050, 1060, 2327 and 2329. Zirconia nanoparticles are commercially available from Nalco Chemical Co. (Naperville, 111.) under the product designation NALCO OOSS008.
Surface treating or surface modification of the nano-sized particles can provide a stable dispersion in the hardcoat layer resin. The surface-treatment can stabilize the nanoparticles so that the particles will be well dispersed in the polymerizable resin and result in a substantially homogeneous composition. Furthermore, the nanoparticles can be modified over at least a portion of its surface with a surface treatment agent so that the stabilized particle can copolymerize or react with the polymerizable hardcoat layer resin during curing.
The nanoparticles can be treated with a surface treatment agent. In general a surface treatment agent has a first end that will attach to the particle surface (covalently, ionically or through strong physisorption) and a second end that imparts compatibility of the particle with the hardcoat layer resin and/or reacts with hardcoat layer resin during curing. Examples of surface treatment agents include alcohols, amines, carboxylic acids, sulfonic acids, phospohonic acids, silanes and titanates. The preferred type of treatment agent is determined, in part, by the chemical nature of the inorganic particle or metal oxide particle surface. Silanes are generally preferred for silica and zirconia (the term "zirconia" includes zirconia metal oxide.) The surface modification can be done either subsequent to mixing with the monomers or after mixing.
In some embodiment, it is preferred to react silanes with the particle or nanoparticle surface before incorporation into the resin. The required amount of surface modifier is dependent upon several factors such as particle size, particle type, modifier molecular wt, and modifier type. In general it is preferred that approximately a monolayer of modifier is attached to the surface of the particle. The attachment procedure or reaction conditions required also depend on the surface modifier used. For silanes it is preferred to surface treat at elevated temperatures under acidic or basic conditions for approximately 1-24 hours approximately. Surface treatment agents such as carboxylic acids do not require elevated temperatures or extended time. Surface modification of zirconia (ZrO.sub.2) with silanes can be accomplished under acidic conditions or basic conditions. In one embodiment, silanes are preferably heated under acid conditions for a suitable period of time. At which time the dispersion is combined with aqueous ammonia (or other base). This method allows removal of the acid counter ion from the ZrO.sub.2 surface as well as reaction with the silane. Then the particles are precipitated from the dispersion and separated from the liquid phase.
The surface modified particles can be incorporated into the curable resin by various methods. In one embodiment, a solvent exchange procedure is utilized whereby the resin is added to the surface modified nanoparticles, followed by removal of the water and co- solvent (if used) via evaporation, thus leaving the particles dispersed in the polymerizable resin. The evaporation step can be accomplished for example, via distillation, rotary evaporation or oven drying, as desired.
Representative embodiments of surface treatment agents suitable for inclusion in the hardcoat layer include compounds such as, for example, phenyltrimethoxysilane, phenyltriethoxysilane, 2-(3 ,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3 ,4- epoxycyclohexyl)ethyltrimethoxysilane, isooctyl trimethoxy-silane, N-(3- triethoxysilylpropyl) methoxyethoxyethoxyethyl carbamate (PEG3TES), Silquest A1230, N-(3 -triethoxysilylpropyl) methoxyethoxyethoxyethyl carbamate (PEG2TES), 3- (methacryloyloxy)propyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3- (methacryloyloxy)propyltriethoxysilane, 3 -(methacryloyloxy)
propylmethyldimethoxysilane, 3 -(acryloyloxypropyl)methyldimethoxysilane, 3 - (methacryloy loxy)propy ldimethy lethoxy silane , 3 -(methacryloyloxy)
propyldimethylethoxysilane, vinyldimethylethoxysilane, phenyltrimethoxysilane, n- octyltrimethoxysilane, dodecyltrimethoxysilane, octadecyltrimethoxysilane,
propy ltrimethoxy silane , hexy ltrimethoxy silane , viny lmethy ldiacetoxy silane ,
vinylmethyldiethoxysilane, vinyltriacetoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriphenoxysilane, vinyltri-t- butoxysilane, vinyltris-isobutoxysilane, vinyltriisopropenoxysilane, vinyltris(2- methoxyethoxy)silane, styrylethyltrimethoxysilane, mercaptopropyltrimethoxysilane, 3- glycidoxypropyltrimethoxysilane, acrylic acid, methacrylic acid, oleic acid, stearic acid, dodecanoic acid, 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEAA), beta- carboxyethylacrylate, 2-(2-methoxyethoxy)acetic acid, methoxyphenyl acetic acid, and mixtures thereof.
A photoinitiator can be included in the hardcoat layer. Examples of initiators include, organic peroxides, azo compounds, quinines, nitro compounds, acyl halides, hydrazones, mercapto compounds, pyrylium compounds, imidazoles, chlorotriazines, benzoin, benzoin alkyl ethers, di-ketones, phenones, and the like. Commercially available photoinitiators include, but not limited to, those available commercially from Ciba Geigy under the trade designations DARACUR 1173, DAROCUR 4265, IRGACURE 651, IRGACURE 184, IRGACURE 1800, IRGACURE 369, IRGACURE 1700, and IRGACURE 907,
IRGACURE 819 and from Aceto Corp., Lake Success N.Y., under the trade designations UVI-6976 and UVI-6992. Phenyl-[p-(2-hydroxytetradecyloxy)phenyl]iodonium hexafluoroantomonate is a photoinitiator commercially available from Gelest, Tullytown, Pa. Phosphine oxide derivatives include LUCIRIN TPO, which is 2,4,6-trimethylbenzoy diphenyl phosphine oxide, available from BASF, Charlotte, N.C. In addition, further useful photoinitiators are described in U.S. Pat. Nos. 4,250,311, 3,708,296, 4,069,055, 4,216,288, 5,084,586, 5,124,417, 5,554,664, and 5,672,637. A photoinitiator can be used at a concentration of about 0.1 to 10 weight percent or about 0.1 to 5 weight percent based on the organic portion of the formulation (phr.)
The patterned protective layer 70 described herein can be a hard coat layer cured in an inert atmosphere. It has been found that curing the patterned protective layer 120 in an inert atmosphere can assist in providing/maintaining the scratch and stain resistance properties of the patterned protective layer 70. In some embodiments, the patterned protective layer 70 is cured with a UV light source under a nitrogen blanket.
To enhance durability of the patterned protective layer, especially in outdoor environments exposed to sunlight, a variety of commercially available stabilizing chemicals can be added. These stabilizers can be grouped into the following categories: heat stabilizers, UV light stabilizers, and free-radical scavengers. Heat stabilizers are commercially available from Witco Corp., Greenwich, Conn, under the trade designation "Mark V 1923" and Ferro Corp., Polymer Additives Div., Walton Hills, Ohio under the trade designations "Synpron 1163", "Ferro 1237" and "Ferro 1720". Such heat stabilizers can be present in amounts ranging from 0.02 to 0.15 weight percent. UV light stabilizers can be present in amounts ranging from 0.1 to 5 weight percent. Benzophenone type UV-absorbers are commercially available from BASF Corp., Parsippany, N.J. under the trade designation "Uvinol 400"; Cytec Industries, West Patterson, N.J. under the trade designation "Cyasorb UV1164" and Ciba Specialty Chemicals, Tarrytown, N.Y., under the trade designations "Tinuvin 900", "Tinuvin 123" and "Tinuvin 1130". Free-radical scavengers can be present in an amount from 0.05 to 0.25 weight percent. Nonlimiting examples of free-radical scavengers include hindered amine light stabilizer (HALS) compounds, hydroxylamines, sterically hindered phenols, and the like. HALS compounds are commercially available from Ciba Specialty Chemicals under the trade designation "Tinuvin 292" and Cytec Industries under the trade designation "Cyasorb UV3581"
The discontinuous, patterned protective layer can be applied to the top surface of the conformable film with commonly known methods such as screen, flexographic, ink jet, or gravure printing. Various coating techniques may also be used, as will be appreciated by one skilled in the art.
Turning now to Figure 3, the conformable removable film-based article 10, as described above, is shown again, except additionally including substrate 200, and wherein adhesive layer 60 interfaces the conformable film layer 50 to the top surface of substrate 200. Substrate 200 may be any substrate suitable for having a graphic adhered to it. For example, a vehicle surface, such as an automotive wrap, or a boat wrap, etc. Turning now to Figure 4, a further embodiment of conformable removable film-based article 10 is shown. In figure 4, conformable removable film-based article 10 is optically transparent, and is configured as a protective overlaminate layer relative to a printed film layer. Image layer 210 may be printed, e.g., by inkjet or otherwise, onto film layer 220 (which may be a multi-layer composite film). An adhesive layer 230 then bonds the stack to substrate 200. In this configuration, the discontinuous, patterned protective layer 70 still provides improved removability of the entire film stack from substrate 200.
Turning now to Figure 5, plan- view drawings are shown of the features that comprise the patterned protective layers in several embodiments. The features may have a variety of shapes - round, square, random.
The features may also be opaque, transparent, translucent, or contain particles to provide added optical effects.
Turning now to Figure 6, a flowchart is shown representing the steps associated with making a conformable, removable film-based article as described above. An adhesive layer is first applied to the first major surface of a conformable film having a first major surface and a second major surface (610). Typically, this would be in a roll-to-roll process, and the film would be coated. Next, a release liner may be placed on the exposed surface of the adhesive layer (620). At this point, the film, adhesive, and release liner stack may be rolled up and stored as needed. Next, the discontinuous patterned protective layer is applied to the second surface of the conformable film (630). This protective layer may be, for example, ink-jet printed, or gravure, fiexographic, rotary screen, or similar as know in the art. Once the protective layer has cured, the film stack may be rolled up and stored. At the time of application, an applicator (person) would remove the liner and bring the exposed adhesive layer in contact with an application substrate, such as a vehicle surface. This may involve repeatedly heating and stretching the film onto the vehicle's surface until it is acceptably positioned, usually with the use of squeegees or the like.
EXAMPLES
Conformable, removable film based articles were prepared using direct contact
(fiexographic) printing methods. The resultant constructions provide conformable, removable film based articles which provide good removability as measured by peel extension to break testing while providing surface protection of the film via a hardcoat as shown in the following examples.
These examples are merely for illustrative purposes only and are not meant to be limiting on the scope of the appended claims. All parts, percentages, ratios, etc. in the examples and the rest of the specification are by weight, unless noted otherwise. Solvents and other reagents used were obtained from Sigma- Aldrich Chemical Company, St. Louis, Missouri unless otherwise noted. The following abbreviations are used herein: BCM = billion cubic microns; m/min = meters per minute; mm = millimeters; cm = centimeters; um = micrometers.
Materials:
Figure imgf000020_0001
TEST METHODS
Sand Abrasion Test
Hardcoat protective films were subjected to an oscillating sand test (ASTM F 735 using a rotary oscillatory shaker made by VWR) where the test conditions were 50 grams of sand, 400 rpm for 60 minutes. It is typically easy to detect scratching of the hardcoat by visually inspecting the samples after testing. In order to quantify the abrasion resistance, the percent of haze in the coated film can be measured and compared before and after testing. Haze was measured with a haze-gard plus manufactured by BYK Gardner, Columbia, MD.
180° Peel
ASTM D3330-04 (test method A) was used for the 180 degree peel extension to break testing. Samples (C1-C2 and E1-E4) were laminated to Film Fl using a squeeze roll laminator. 2.5 cm by 20 cm strips were cut from these constructions. The strips were laminated to an aluminum substrate panel from the Q-Lab Corporation (AL-39). Samples were conditioned (72 degrees F and 50% RH) for 24 hours prior to testing. Samples were tested on Instron Model #5564 from the Instron Corporation, 100 Royall Street, Canton MA 02021-1089. Three samples were tested; the reported peel extension to break value is an average of the peel extension to break values from each of the three samples. Data was measured in inches.
Printed Examples
Acrylate Formulation:
The printed material is an acrylate formulation composed of 50 wt% AMI, 25 wt% AM2, and 25wt% AM3 with lwt% PI1. This acrylate formulation was thoroughly admixed until all components were in solution to form an essentially "solventless" liquid material.
Printing Patterns:
Three flexographic printing plates were obtained of the type available from DuPont (Wilmington, DE) under the trade designation Cyrel DPR. All three plates were processed (by Southern Graphic Systems (SGS, Minneapolis, MN)) to comprise predetermined print pattern based on images supplied to Southern Graphic Systems. Pattern 1- Grid of square features 40 microns on edge with 50 micron gaps.
Pattern 2 - Grid of square features 400 microns on edge with 50 micron gaps.
Pattern 3 - Random polygon features 430 microns on edge with 100 micron gaps.
Each printing plate comprised an overall size of approximately 30.5 x 30.5 cm. All three printing plates were manually wiped with isopropanol before printing.
Example Preparation:
A flexographic printing plate with a pattern as shown in Table 1 was mounted on a smooth roll of a flexographic printing apparatus using 1060 Cushion-Mount flexographic plate mounting tape available from 3M. The acrylate formulation described above, was introduced into the flexographic printing apparatus using conventional methods and equipment and was transferred onto the printing surfaces of the flexographic printing plate via the anilox rolls shown in Table 1. The printable composition was then transferred from the anilox roll to a printable film F2 moving at a line speed of approximately 3 meters per minute. The coated film then passed through a UV curing apparatus (available from XericWeb, Neenah, WI) that was in-line with the printing apparatus so that the liquid material was satisfactorily cured to form a solid film. Note that Example E4 was double printed. A first printing pass was made and cured and then a second printing was applied over the first and cured (see Table 1).
Control Example CI had no printing. Control Example C2 was continuously coated with Acrylate Formulation using a #8 Mayer Rod. After coating the sample was cured in a LIGHTHAMMER 6 UV curing system with a D bulb (Heraeus Noblelight Fusion UV Inc., Gaitherburg, Maryland). Curing took place at 100% power and 25 ft/min (7.6 m/min).
Sand Abrasion and 180° Peel testing was performed for all the Examples using the Sand Abrasion and 180° Peel Methods above. The peel extension to break and % haze data are shown in Table 1 below. Table 1 Example Printing and Test Results
Figure imgf000023_0001
Anilox rolls available from Interflex, Spartanburg, SC. * Visually derived.

Claims

Claims:
1. A conformable, removable film-based article, comprising:
a conformable film having a first major surface and a second major surface;
a pressure sensitive adhesive layer on the first major surface of the conformable film; and
a discontinuous, patterned protective layer on at least a portion of the second major surface of the conformable film.
2. The conformable, removable film-based article of claim 1, wherein the patterned protective layer comprises a pattern that has an average areal coverage that is between 10% and 85% of the surface area of the portion of the conformable film.
3. The conformable, removable film-based article of claim 2, wherein the patterned protective layer is applied via a single printing.
4. The conformable, removable film-based article of claim 1, wherein the
discontinuous, patterned protective layer comprises a plurality of features.
5. The conformable, removable film-based article of claim 2, wherein the
discontinuous, patterned protective layer comprises a partially interconnected network of features.
6. The conformable, removable film-based article of claim 1, wherein the
discontinuous, patterned protective layer comprises hard coat features.
7. The conformable, removable film-based article of claim 2, wherein the
discontinuous, patterned protective layer comprises hard coat features.
8. The conformable, removable film-based article of claim 6, wherein the
discontinuous, patterned protective layer comprises overlapping features.
9. The conformable, removable film-based article of claim 8, wherein the features comprise islands.
10. The conformable, removable film-based article of claim 8, wherein the overlapping features are the result of overprinting features upon features.
11. The conformable, removable film-based article of claim 10, wherein the overlapping features cover up to 100% of the surface area of the portion of the second major surface of the conformable film.
12. The conformable, removable film-based article of claim 8, wherein at least some of the overlapping features comprise a first set of features on the portion of the second major surface of the conformable film, and a second set of features disposed overtop the first set of features, partially overlapping and disposed upon at least some of the first set of features, and partially overlapping and disposed upon portions of the second major surface of the conformable film.
13. The conformable, removable film-based article of claim 6, wherein the hard coat features comprise multiple layers of hard coat.
14. The conformable, removable film-based article of claim 6, wherein the hard coat features comprise a first set of hard coat features applied by a first printing process, and a second set of hard coat features that at least partially overlap at least some of the first set of hard coat features, and wherein the second set of hard coat features is applied by a second printing process, and wherein the first printing process and the second printing process are temporally distinct.
15. The conformable, removable film-based article of claim 14, wherein the first printing process and the second printing process are part of the same web handling operation.
16. The conformable, removable film-based article of claim 6, wherein hard coat features are applied by printing methods.
17. The conformable, removable film-based article of claim 7, wherein the hard coat features comprise cross-linked multifunctional acrylates.
18. The conformable, removable film-based article of claim 6, wherein the hard coat features are opaque.
19. The conformable, removable film-based article of claim 6, wherein the hard coat features are random or pseudo-random.
20. The conformable, removable film-based article of claim 6, wherein at least a portion of the feature is random or pseudo-random.
21. The conformable, removable film-based article of claim 6, wherein the hard coat features are optically transparent.
22. The conformable, removable film-based article of claim 6, wherein the hard coat features are reflective.
23. The conformable, removable film-based article of claim 1, wherein the discontinuous, patterned protective layer is on substantially the entire second major surface of the conformable film.
24. The conformable, removable film-based article of claim 1, wherein the film-based article may be removed from a substrate to which it is adhered without breaking.
25. The conformable, removable film-based article of claim 1, wherein at least 1.5 inches of the film may be removed from a substrate to which it is adhered using a 180 degree peel at least 1.5 inches without breaking.
26. The conformable, removable film-based article of claim 6, wherein the hard coat features comprise any feature selected from the following group of features: squares, circles, polygons.
27. The conformable, removable film-based article of claim 1, wherein the average areal coverage is between 25% and 65% of the surface are of the portion of the conformable film.
28. The conformable, removable film-based article of claim 6, wherein the average features size is 1 to 10 microns thick and the average width of one side of the features is at least lOum to less than 1 mm.
29. The conformable, removable film-based article of claim 1, wherein the article comprises a vehicle wrapping film.
30. The conformable, removable film-based article of claim 1, wherein the article comprises a wall wrapping film.
31. The conformable, removable film-based article of claim 1 , wherein the
conformable film comprises a PVC-based film.
32. The conformable, removable film-based article of claim 1, wherein the adhesive layer includes channels that facilitate air egress.
33. The conformable, removable film-based article of claim 1, wherein the film-based article is substantially optically transparent.
34. The conformable, removable film-based article of claim 33, further comprising: additional film-based layers, including at least one printed layer.
PCT/US2015/033887 2014-06-06 2015-06-03 Conformable, removable film-based article WO2015187770A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580028130.9A CN106414050B (en) 2014-06-06 2015-06-03 Conformable removable film-based articles
US15/313,561 US20170198168A1 (en) 2014-06-06 2015-06-03 Conformable, removable film-based article
JP2016571150A JP6685936B2 (en) 2014-06-06 2015-06-03 Articles based on shape-compatible peelable films
KR1020177000112A KR20170016434A (en) 2014-06-06 2015-06-03 Conformable, removable film-based article
EP15803638.4A EP3152043A4 (en) 2014-06-06 2015-06-03 Conformable, removable film-based article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462008598P 2014-06-06 2014-06-06
US62/008,598 2014-06-06

Publications (1)

Publication Number Publication Date
WO2015187770A1 true WO2015187770A1 (en) 2015-12-10

Family

ID=54767297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/033887 WO2015187770A1 (en) 2014-06-06 2015-06-03 Conformable, removable film-based article

Country Status (6)

Country Link
US (1) US20170198168A1 (en)
EP (1) EP3152043A4 (en)
JP (1) JP6685936B2 (en)
KR (1) KR20170016434A (en)
CN (1) CN106414050B (en)
WO (1) WO2015187770A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344188B2 (en) 2015-12-22 2019-07-09 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising an adhesive layer
EP3408202A4 (en) * 2016-01-29 2019-09-25 3M Innovative Properties Company Web-wound rolls with web edge treatment by printable adhesive compositions
US10619019B2 (en) 2014-12-08 2020-04-14 3M Innovative Properties Company Acrylic polyvinyl acetal films, composition, and heat bondable articles
US11034830B2 (en) 2015-12-22 2021-06-15 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising a second layer
US11167523B2 (en) 2015-12-22 2021-11-09 3M Innovative Properties Company Acrylic films comprising a structured layer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102496379B1 (en) 2017-11-21 2023-02-06 삼성전자주식회사 Ink composition for refletive sheet and display apparatus including the same and method of manufacturing display apparatus
JP7519301B2 (en) * 2018-02-06 2024-07-19 スリーエム イノベイティブ プロパティズ カンパニー Surface impression resistant film structure and method
US20210017426A1 (en) * 2018-04-04 2021-01-21 3M Innovative Properties Company Chaotic non-continuous structures useful for functional adhesive systems
US11180682B2 (en) * 2018-10-05 2021-11-23 Voxel Evolution, Llc Method and system to provide a repositionable translucent cast vinyl film with an air-egress adhesive layer
JP7513379B2 (en) 2019-07-24 2024-07-09 スリーエム イノベイティブ プロパティズ カンパニー Decorative film and its manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643676A (en) * 1994-05-30 1997-07-01 Hitachi Chemical Company, Ltd. Coating protective film
US5897930A (en) * 1996-12-31 1999-04-27 Minnesota Mining And Manufacturing Company Multiple embossed webs
US6267052B1 (en) * 1996-10-24 2001-07-31 Contra Vision Limited Printing with differential receptivity
US6506475B1 (en) * 2001-01-19 2003-01-14 Contra Vision Ltd. Partial printing of a substrate with edge sealed printed portions
US6660389B2 (en) * 2000-08-07 2003-12-09 3M Innovative Properties Company Information display protectors
US20070141328A1 (en) * 2003-10-28 2007-06-21 Kehju Kamiyama Decorative protective film
WO2011014734A1 (en) * 2009-07-31 2011-02-03 Hall, Mark Wall mounted multilayered film and method of use
US20110206766A1 (en) * 2008-04-03 2011-08-25 Boehringer Ingelheim International Gmbh Dpp-iv inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US8187407B2 (en) * 2009-07-20 2012-05-29 Garry Cyrilel Alfred Van Den Berge Wrapping an object with a film using a tape for cutting the film
US20120211342A1 (en) * 2011-02-17 2012-08-23 Ko-Ju Chen Method of fabricating a keypad structure having an engraved pattern, keypad structure, and keypad semi-structure
WO2012141723A2 (en) * 2011-04-15 2012-10-18 Avery Dennison Corporation Surface treated film and/or laminate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345680A (en) * 1991-05-24 1992-12-01 Sekisui Chem Co Ltd Stack of self-adhesive sheets
JP2000084477A (en) * 1998-09-18 2000-03-28 Toppan Printing Co Ltd Hard coat film or sheet
JP4423742B2 (en) * 2000-04-10 2010-03-03 凸版印刷株式会社 Decorative sheet with adhesive
JP4790258B2 (en) * 2004-12-01 2011-10-12 矢崎総業株式会社 Removal position display adhesive tape
WO2007048141A2 (en) * 2005-10-21 2007-04-26 Entrotech Composites, Llc Composite articles comprising protective sheets and related methods
JP2009234159A (en) * 2008-03-28 2009-10-15 Dainippon Printing Co Ltd Decorative film for molding
US8568849B2 (en) * 2009-05-20 2013-10-29 Ming Kun Shi Surface treated film and/or laminate
JP5506847B2 (en) * 2011-04-20 2014-05-28 三菱樹脂株式会社 Laminated polyester film
KR101672104B1 (en) * 2011-08-02 2016-11-03 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Graphic article
US9308773B2 (en) * 2011-08-02 2016-04-12 3M Innovative Properties Company Graphic article
EP3039093A1 (en) * 2013-08-30 2016-07-06 3M Innovative Properties Company Linerless sheeting article
JP2016093979A (en) * 2014-11-17 2016-05-26 日本合成化学工業株式会社 Surface protection film and manufacturing method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643676A (en) * 1994-05-30 1997-07-01 Hitachi Chemical Company, Ltd. Coating protective film
US6267052B1 (en) * 1996-10-24 2001-07-31 Contra Vision Limited Printing with differential receptivity
US5897930A (en) * 1996-12-31 1999-04-27 Minnesota Mining And Manufacturing Company Multiple embossed webs
US6660389B2 (en) * 2000-08-07 2003-12-09 3M Innovative Properties Company Information display protectors
US6506475B1 (en) * 2001-01-19 2003-01-14 Contra Vision Ltd. Partial printing of a substrate with edge sealed printed portions
US20070141328A1 (en) * 2003-10-28 2007-06-21 Kehju Kamiyama Decorative protective film
US20110206766A1 (en) * 2008-04-03 2011-08-25 Boehringer Ingelheim International Gmbh Dpp-iv inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US8187407B2 (en) * 2009-07-20 2012-05-29 Garry Cyrilel Alfred Van Den Berge Wrapping an object with a film using a tape for cutting the film
WO2011014734A1 (en) * 2009-07-31 2011-02-03 Hall, Mark Wall mounted multilayered film and method of use
US20120211342A1 (en) * 2011-02-17 2012-08-23 Ko-Ju Chen Method of fabricating a keypad structure having an engraved pattern, keypad structure, and keypad semi-structure
WO2012141723A2 (en) * 2011-04-15 2012-10-18 Avery Dennison Corporation Surface treated film and/or laminate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3152043A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619019B2 (en) 2014-12-08 2020-04-14 3M Innovative Properties Company Acrylic polyvinyl acetal films, composition, and heat bondable articles
US10344188B2 (en) 2015-12-22 2019-07-09 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising an adhesive layer
US11034830B2 (en) 2015-12-22 2021-06-15 3M Innovative Properties Company Acrylic polyvinyl acetal films comprising a second layer
US11167523B2 (en) 2015-12-22 2021-11-09 3M Innovative Properties Company Acrylic films comprising a structured layer
EP3408202A4 (en) * 2016-01-29 2019-09-25 3M Innovative Properties Company Web-wound rolls with web edge treatment by printable adhesive compositions

Also Published As

Publication number Publication date
CN106414050A (en) 2017-02-15
US20170198168A1 (en) 2017-07-13
JP6685936B2 (en) 2020-04-22
CN106414050B (en) 2019-12-13
EP3152043A4 (en) 2018-01-10
KR20170016434A (en) 2017-02-13
EP3152043A1 (en) 2017-04-12
JP2017524561A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US20170198168A1 (en) Conformable, removable film-based article
US20080003420A1 (en) Transfer hardcoat films for graphic substrates
US20130202835A1 (en) Hardcoat films for graphic substrates
KR102504518B1 (en) Paint film appliques with reduced defects, articles, and methods
KR101784126B1 (en) Graphic article
US11167523B2 (en) Acrylic films comprising a structured layer
US20090000727A1 (en) Hardcoat layers on release liners
KR101672104B1 (en) Graphic article
KR101784127B1 (en) Graphic article
KR20090091280A (en) Articles and methods for applying color on surfaces
KR20170129139A (en) Hard coat laminated film
KR20160073432A (en) Graphic article
US20160244641A1 (en) System and method for making a textured film
JP2005275387A (en) Re-sticking prevention label and its manufacturing method
AU2019305138B2 (en) High density post arrays
WO2017117093A1 (en) Processing tape for optical articles
JP5928086B2 (en) Manufacturing method of printing substrate
TW201920552A (en) Transparent adhesive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15313561

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015803638

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803638

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016571150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177000112

Country of ref document: KR

Kind code of ref document: A