WO2015184581A1 - 二维光栅偏振分束器及光相干接收机 - Google Patents

二维光栅偏振分束器及光相干接收机 Download PDF

Info

Publication number
WO2015184581A1
WO2015184581A1 PCT/CN2014/079066 CN2014079066W WO2015184581A1 WO 2015184581 A1 WO2015184581 A1 WO 2015184581A1 CN 2014079066 W CN2014079066 W CN 2014079066W WO 2015184581 A1 WO2015184581 A1 WO 2015184581A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dbr
beam splitter
mode
dimensional grating
Prior art date
Application number
PCT/CN2014/079066
Other languages
English (en)
French (fr)
Inventor
邓舒鹏
邹静慧
刘磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480079339.3A priority Critical patent/CN106415346B/zh
Priority to PCT/CN2014/079066 priority patent/WO2015184581A1/zh
Publication of WO2015184581A1 publication Critical patent/WO2015184581A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means

Definitions

  • the invention relates to the field of optical communication, in particular to a two-dimensional grating polarization beam splitter and Optical coherent receiver.
  • PBS Polarizing Beam Splitter
  • 2D Grating PBS 2-Dimension Grating Polarizing Beam Splitter, two-dimensional grating polarizing beam splitter
  • the traditional 2D Grating PBS structure is shown in Figure 1, including the beam splitter body and Four output ports, when the 2D Grating PBS is working, the light is perpendicular to the XY plane The direction of the surface is incident on the beam splitter body due to the structural symmetry of the 2D Grating PBS.
  • the coupled input light With a vertically coupled coupling, the coupled input light will be directed in four directions (labeled in the figure)
  • the X+, X-, Y+, and Y-directions are coupled to output the same power, that is, coupled input.
  • the light is output from four output ports.
  • Silicon-based integrated coherent receiver at 220nm SOI Medium usually only need two output ports (one port in the X direction and one Y direction) The port on the top), thus resulting in low coupling efficiency and high loss of 2D Grating PBS.
  • the prior art has improved the 2D Grating PBS structure:
  • the first scheme is shown in Figure 2.
  • the obliquely incident 2D Grating PBS structure is used to break the transmission.
  • the symmetry of the 2D Grating PBS structure allows most of the light to be coupled from both ports Output, which in turn increases the coupling ratio;
  • the second option is to use the linearity of the grating period Sexuality, using a linear ⁇ 2D Grating PBS structure to increase the coupling ratio;
  • the third option is As shown in Figure 3, using DBR (Distributed Bragg Reflection, distributed cloth) Rag mirror) 2D Grating PBS structure, effectively utilizing the high reflectivity of DBR Improve coupling efficiency.
  • DBR distributed Bragg Reflection, distributed cloth
  • the first scheme and the second scheme couple the input light still Will couple the output in four directions, and the coupling ratio is still small; in the third scheme The interference between the light reflected back by the DBR and the unreflected light is reduced, thereby reducing 2D Grating PBS bandwidth.
  • Embodiments of the present invention provide a two-dimensional grating polarization beam splitter and optical coherent reception Can improve 2D Grating without affecting 2D Grating PBS bandwidth Coupling rate of PBS.
  • an embodiment of the present invention provides a two-dimensional grating polarization beam splitter, including:
  • a two-dimensional grating polarizing beam splitter body for polarizing beam splitting into the two-dimensional grating
  • the light of the main body is divided into light of transverse electric field TE mode and light of transverse magnetic field TM mode;
  • a first distributed Bragg mirror DBR for reflecting light of the TE mode or the Light in TM mode
  • a second vertical DBR for reflecting the light of the TE mode and the light of the TM mode
  • the TE mode light passes through the first DBR or the second DBR a reflection from the first direction; the TM mode of light passes through the first DBR or The reflection of the second DBR is emitted from the second direction; the first direction and the second The direction is vertical.
  • the two-dimensional grating is biased
  • the vibration beam splitter body specifically includes a two-dimensional grating.
  • the two-dimensional grating polarizing beam splitter body along the TE mode of light and the The cross section of the plane in which the light of the TM mode is emitted is a square, and the two-dimensional grating polarization beam splitter The length and width of the body are equal.
  • the two-dimensional grating polarization beam splitter body is located between two first DBRs that are parallel to each other, and the distance between two first DBRs that are parallel to each other is greater than or equal to Times the length of the two-dimensional grating polarization beam splitter body;
  • the length of the first DBR is Times the length of the two-dimensional grating polarization beam splitter body
  • the length of the second DBR is greater than or equal to 2
  • the length of the two-dimensional grating polarization beam splitter body is doubled.
  • the angle between the first DBR and the first direction/the second direction is 43° Within the range of 47°;
  • the angle between the second DBR and the first direction/the second direction is 43° Within the range of 47°.
  • the angle between the first DBR and the first direction/the second direction is 45°;
  • the angle between the second DBR and the first direction/the second direction is 45°.
  • the two-dimensional grating polarization beam splitter body specifically for injecting into the two-dimensional grating
  • the light of the polarizing beam splitter body is divided into the above-described propagation in the second direction and the third direction Light in the TE mode, and the TM mode propagating along the first direction and the fourth direction Light of the formula; wherein the first direction and the fourth direction are opposite directions, the second The direction is opposite to the third direction.
  • the TE mode light is reflected by the first DBR or the second DBR, Shot from the first direction, specifically:
  • the TE mode light propagating along the second direction passes through the first DBR a reflection from the first direction;
  • the TE mode light propagating along the third direction passes through the second DBR a reflection from the first direction;
  • the TM mode light passes through the reflection of the first DBR or the second DBR, Shot from the second direction, specifically:
  • the TM mode light propagating along the first direction passes the first DBR a reflection from the second direction;
  • the TM mode light propagating along the fourth direction passes through the second DBR The reflection is emitted from the second direction.
  • an embodiment of the present invention provides an optical coherent receiver, including The two-dimensional grating polarization beam splitter of any of the features.
  • the two-dimensional grating polarization beam splitter comprises a two-dimensional grating polarization beam splitter body for Light entering the two-dimensional grating is divided into transverse electric field TE mode light and transverse magnetic field TM mode Light; two first parallel to each other disposed outside the body of the two-dimensional grating polarization beam splitter Distributed Bragg mirror DBR for reflecting light in TE mode or light in TM mode; And a portion perpendicular to the first DBR disposed outside the body of the two-dimensional grating polarizing beam splitter Two DBR for reflecting light in TE mode and light in TM mode; wherein, TE mode Light is reflected from the first direction by reflection of the first DBR or the second DBR; TM mode The light is reflected from the second direction by the reflection of the first DBR or the second DBR; the first direction It is perpendicular to the second direction.
  • the present invention will have two first DBRs and one second DBR combined with two-dimensional grating polarizing beam splitter body to form two-dimensional grating polarization beam splitting Dividing light incident into the two-dimensional grating into TE by a two-dimensional grating polarizing beam splitter body Mode light and TM mode light, TE mode light and TM mode light in four directions transmission.
  • the TE mode light and TM The mode light is emitted only from two directions, wherein the TE mode light is reflected once from the first The light emitted in one direction and the TM mode is emitted from the second direction by one reflection, the first direction It is perpendicular to the second direction. Therefore, based on the bandwidth of the 2D Grating PBS, Increase the coupling ratio of 2D Grating PBS.
  • FIG. 1 is a schematic structural view of a conventional 2D Grating PBS structure in the prior art
  • FIG. 2 is a schematic structural view of a prior art obliquely incident 2D Grating PBS structure
  • FIG. 3 is a structural diagram of a 2D Grating PBS structure with DBR in the prior art. intention
  • FIG. 4 is a schematic structural diagram of a two-dimensional grating polarization beam splitter according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a TE mode in a two-dimensional grating polarization beam splitter according to an embodiment of the present invention. Schematic diagram of the reflection path of light and TM mode light;
  • FIG. 6 is a first DBR of a two-dimensional grating polarization beam splitter according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a TE mode in a two-dimensional grating polarization beam splitter according to an embodiment of the present invention. Schematic diagram of the reflection path of the light and TM mode light;
  • FIG. 8 is a schematic diagram of a simulation result according to an embodiment of the present invention.
  • the first direction and the second direction described in the embodiments of the present invention are two perpendicular to each other Direction, the first direction and the fourth direction are opposite directions, and the second direction and the third direction are opposite anti.
  • the first direction may be the X+ direction and the second direction may be In the Y+ direction
  • the third direction may be the Y-direction
  • the fourth direction may be the X-direction
  • It may also be other directions that satisfy the above relationship (for example, the first direction is the X+ direction, the second direction)
  • the direction is the Y-direction
  • the third direction is the Y+ direction
  • the fourth direction is the X-direction.
  • This invention is that the first direction is the X+ direction, the second direction is the Y+ direction, and the third direction
  • the Y-direction and the fourth direction are the X-directions as an example to describe the specific embodiment of the present invention. Said.
  • An embodiment of the present invention provides a two-dimensional grating polarization beam splitter 1, as shown in FIG.
  • the two-dimensional grating polarization beam splitter 1 comprises:
  • the light of the beamer body is split into light in the transverse electric field TE mode and light in the transverse magnetic field TM mode.
  • Two parallel to each other disposed on both sides of the two-dimensional grating polarization beam splitter body 10 First distributed Bragg mirror DBR11 for reflecting the light of the TE mode or The light of the TM mode.
  • a second DBR 12 perpendicular to the DBR 11 for reflecting the light of the TE mode and the TM Pattern of light.
  • the TE mode light passes through the first DBR 11 or the second DBR
  • the reflection of 12 is emitted from the first direction (ie, X+ direction); the light of the TM mode passes
  • the reflection of the first DBR 11 or the second DBR 12 is emitted from the second direction (ie Y+ direction); the first direction is perpendicular to the second direction.
  • the light that is incident on the main body of the two-dimensional grating polarization beam splitter is divided into The TE mode of light (propagating in the Y+, Y-direction) and the TM mode of light (along X+, X-direction propagation).
  • the first DBR 11 is used for a reflection
  • the light of the TE mode or the light of the TM mode includes: the first part located at the upper left of FIG.
  • a DBR 11 is used to reflect the TE mode light propagating in the Y+ direction;
  • the first DBR 11 at the lower right is for reflecting the TM mode propagating in the X+ direction Light.
  • the embodiment of the present invention provides a The structure of the two-dimensional grating polarization beam splitter 1 allows for certain errors in actual production applications. difference.
  • the two-dimensional grating polarization beam splitter body specifically includes a two-dimensional grating.
  • the two-dimensional grating polarizing beam splitter body has light along the TE mode And a cross section of the plane emitted by the light of the TM mode is a square, and the two-dimensional grating is biased The length and width of the vibrator body 10 are equal.
  • the two-dimensional grating polarization beam splitter body is a two-dimensional grating, which can Enough to split the light incident on the body of the two-dimensional grating polarizing beam splitter into a transverse electric field TE mode Light and lateral magnetic field TM mode of light.
  • TE mode Light
  • TM mode lateral magnetic field
  • the two-dimensional grating polarizing beam splitter body along the TE mode of light and the TM The cross section of the plane from which the light is emitted is a square.
  • the preparation method of the two-dimensional grating polarizing beam splitter body is generally as follows: Uniformly distributed holes, ie two-dimensional gratings, are etched on a 220 nm SOI silicon substrate (Fig. 4 The evenly distributed circle is the etched hole). Among them, there is no strict need for the shape of the hole. It can be either a circular hole as shown in FIG. 4 or a hole of other shapes such as a square hole. The invention is not limited.
  • the function of the two-dimensional grating polarizing beam splitter body is to inject the two-dimensional grating polarization
  • the light of the beam body is divided into light of TE mode and light of TM mode.
  • two-dimensional grating The reflection path of the TE mode light and the TM mode light in the polarization beam splitter is as shown in FIG.
  • the two-dimensional grating polarizing beam splitter body then splits the light into TE mode light and TM mode Light, where TE mode light and TM mode light are orthogonal, TE mode light along Y+ The direction and the Y-direction propagate, and the TM mode light propagates along the X+ direction and the X-direction.
  • the first DBR and the second DBR has the following relationship:
  • the two-dimensional grating polarization beam splitter body 10 is located between two first DBRs 11 that are parallel to each other, and the distance between two first DBRs 11 that are parallel to each other is greater than or equal to The length of the two-dimensional grating polarizing beam splitter body 10 is doubled.
  • the length of the first DBR 11 is The length of the two-dimensional grating polarizing beam splitter body 10 is doubled.
  • the length of the second DBR 12 is greater than or equal to 2
  • the length of the two-dimensional grating polarizing beam splitter body 10 is doubled.
  • the embodiment of the present invention combines three DBRs with a two-dimensional grating polarization beam splitter body to form a two-dimensional grating polarization beam splitter. Therefore, the light of the TE mode and the light of the TM mode are respectively emitted from two directions by one reflection. Meanwhile, in order to reduce the interference between the lights, the two-dimensional grating polarization beam splitter provided by the embodiment of the present invention has strict requirements on the lengths of the first DBR 11 and the second DBR 12: two of the first DBRs 11 which are parallel to each other.
  • the distance between The length of the two-dimensional grating polarization beam splitter body 10; the length of the first DBR 11 is The length of the two-dimensional grating polarization beam splitter body 10; the length of the second DBR 12 is greater than or equal to 2
  • the length of the two-dimensional grating polarizing beam splitter body 10 is doubled.
  • the TE mode light propagates along the Y+ direction and the Y-direction.
  • the reflection of the first DBR 11 or the second DBR 12 is emitted from the X+ direction;
  • the TM mode Light propagates in the X+ direction and the X-direction, passing through the first DBR 11 or the The reflection of the two DBR12 is emitted from the Y+ direction.
  • the length of the first DBR 11 is too Long, as shown in FIG. 6, the light of the TE mode or the light of the TM mode passes through the first DBR. 11 or after the reflection of the second DBR 12, the light to be emitted is the first DBR 11 blocking, and then secondary reflection occurs.
  • One reflected light and two second reflected light Interference can occur, reducing the bandwidth of the 2D Grating PBS.
  • first DBR 11 is in the first direction/the second direction
  • the angle is in the range of 43° to 47°.
  • the angle between the second DBR 12 and the first direction/the second direction is 43° Up to 47°.
  • the first DBR 11 is sandwiched by the first direction/the second direction
  • the angle is 45°.
  • the angle between the second DBR 12 and the first direction/the second direction is 45°.
  • the first DBR 11 and the first direction/the An angle of the second direction is 45°; the second DBR 12 is opposite to the first direction/the first The angle between the two directions is 45°.
  • First DBR due to manufacturing process limitations in production applications And an angle between the second DBR 12 and the first direction/the second direction There can be a tolerance of 2°, therefore, the first DBR 11 and the first direction/the The angle of the second direction is in the range of 43° to 47°; the second DBR12 is The angle between the first direction/the second direction is in the range of 43° to 47°.
  • the two-dimensional grating polarization beam splitter body 10 is specifically used for injecting
  • the light of the two-dimensional grating is divided into the states that propagate along the second direction and the third direction Light in the TE mode, and the TM mode propagating along the first direction and the fourth direction Light of the formula; wherein the first direction and the fourth direction are opposite directions, the second The direction is opposite to the third direction.
  • the direction in which the third direction is the Y-direction and the fourth direction is the X-direction is explained as an example.
  • the two-dimensional grating polarization beam splitter body 10 is specifically used for light incident on the two-dimensional grating Dividing into the TE mode of light propagating along the Y-direction and the Y+ direction, and along X+ The TM mode of light propagating in the direction and X-direction.
  • the TE mode light passes through the first DBR 11 or the second
  • the reflection of the DBR12 is emitted from the first direction, and specifically includes:
  • the TE mode light propagating along the second direction passes through the first DBR
  • the reflection of 11 is emitted from the first direction.
  • the TE mode light propagating along the third direction passes through the second DBR
  • the reflection of 12 is emitted from the first direction.
  • the reflection path of the TE mode light in the two-dimensional grating polarization beam splitter is as shown in FIG. 7
  • the TE mode light propagating along the Y+ direction passes through the said a reflection of DBR11, emitted from the X+ direction; the TE mode propagating along the Y-direction
  • the light of the formula is reflected by the second DBR 12 and is emitted from the X+ direction.
  • the TM mode light passes through the first DBR 11 or the first
  • the reflection of the second DBR 12 is emitted from the second direction, and specifically includes:
  • the TM mode light propagating along the first direction passes the first DBR
  • the reflection of 11 is emitted from the second direction.
  • the TM mode light propagating along the fourth direction passes through the second DBR
  • the reflection of 12 is emitted from the second direction.
  • the reflection path of the TM mode light in the two-dimensional grating polarization beam splitter is as shown in the figure As shown in the solid line portion of 7, the TM mode light propagating along the X+ direction passes through the The reflection of the first DBR 11 is emitted from the Y+ direction; the TM propagating along the X-direction The light of the mode is reflected by the second DBR 12 and is emitted from the Y+ direction.
  • first DBR 11 and the second DBR mentioned in the embodiments of the present invention are added.
  • 12 is prepared based on 220nm SOI, and the preparation process can be etched and prepared.
  • the 2D Grating PBS process is compatible, the structure design is simple, and the manufacturing process is easy to implement. At the same time, improve 2D Grating PBS without affecting 2D Grating PBS bandwidth. Coupling rate.
  • the embodiment of the present invention exemplarily gives a simulation knot. As shown in Figure 8.
  • the simulation result 1 the simulation result shown by the solid line in Fig. 8 is the use of Fig. 2
  • the prior art shows the bandwidth from the oblique incidence 2D Grating PBS structure simulation - Loss diagram
  • Simulation result 2 The simulation result shown by the short dashed line in Fig. 8 is as shown in Fig. 3 Bandwidth derived from 2D Grating PBS architecture with DBR in the prior art - Loss diagram
  • Simulation result three The simulation result shown by the long dashed line in Fig. 8 is as shown in Fig. 4 The bandwidth-loss map obtained by the simulation of the two-dimensional grating polarization beam splitter provided by the present invention.
  • Simulation result 1 Combine the oblique incident 2D Grating PBS structure diagram shown in Figure 2, Breaking the symmetry of the traditional 2D Grating PBS structure, making most of the light from both ends Port coupled output, but the output of TE mode light and TM mode light will still be from four The directional coupling is emitted, and the light of the TE mode and the light of the TM mode are not orthogonal. As shown in Figure 8 As shown by the line, the bandwidth of the 2D Grating PBS is maintained at around 56nm, but the loss and simulation The result 2 is larger than the simulation result 3, which affects the coupling ratio of 2D Grating PBS.
  • Simulation result two combined with the 2D Grating PBS junction with DBR shown in Figure 3.
  • Composition because the DBR is set in the X-direction and the Y-direction, making the TE mode light and The TM mode light can only be coupled out from the X+ direction and the Y+ direction, but after DBR counter There is interference between the light that is shot back and the light that is not reflected.
  • the short dashed line in Figure 8. It is shown that, compared with the simulation result, although the loss reduction leads to an increase in coupling efficiency, 2D The bandwidth of Grating PBS can only be maintained at around 32nm.
  • Simulation result three combined with the two-dimensional grating polarization splitting provided by the invention shown in FIG.
  • the two-dimensional DBR is combined with the two-dimensional grating polarizing beam splitter body to form a two-dimensional a grating polarization beam splitter that is incident into the two-dimensional light by a two-dimensional grating polarization beam splitter body
  • the grating light is split into TE mode light and TM mode light, and then passes through two first DBR or
  • the reflection of the second DBR makes the TE mode light and the TM mode light only from two directions Ejected, wherein the TE mode light is emitted from the first direction after one reflection, TM mode The light is emitted from the second direction after one reflection.
  • the simulation result 3 is not only better than the simulation result and the simulation result.
  • the second loss is low, the coupling efficiency is high, and the bandwidth of the 2D Grating PBS can be maintained. Around 56nm.
  • the two-dimensional grating polarization beam splitter provided by the embodiment of the invention does not Only low loss, high coupling efficiency, and 2D Grating PBS with large bandwidth, can be completely Covers the conventional C-band (1530nm to 1565nm) of fiber-optic communication, with existing 2D Grating PBS structure is better.
  • the vibrating beam splitter includes a two-dimensional grating polarizing beam splitter body for directing light into the two-dimensional grating Divided into transverse electric field TE mode light and transverse magnetic field TM mode light; set in two-dimensional light Two first distributed Bragg reflections parallel to each other outside the body of the grating polarization beam splitter Mirror DBR for reflecting light in TE mode or light in TM mode; and in 2D a second DBR outside the body of the grating polarization beam splitter that is perpendicular to the first DBR for use in Shooting TE mode light and TM mode light; wherein TE mode light passes through the first DBR Or the reflection of the second DBR, which is emitted from the first direction; the light of the TM mode passes through the first DBR Or the reflection of the second DBR is emitted from the second direction; the first direction is perpendicular to the second
  • the present invention will have two first DBRs and one second DBR combined with two-dimensional grating polarizing beam splitter body to form two-dimensional grating polarization beam splitting Dividing light incident into the two-dimensional grating into TE by a two-dimensional grating polarizing beam splitter body Mode light and TM mode light, TE mode light and TM mode light in four directions transmission.
  • the TE mode light and TM The mode light is emitted only from two directions, wherein the TE mode light is reflected once from the first The light emitted in one direction and the TM mode is emitted from the second direction by one reflection, the first direction It is perpendicular to the second direction. Therefore, based on the bandwidth of the 2D Grating PBS, Increase the coupling ratio of 2D Grating PBS.
  • An embodiment of the present invention further provides an optical coherent receiver, including any of the foregoing
  • the two-dimensional grating polarization beam splitter is enlisted.
  • the two-dimensional grating polarization beam splitter provided by the embodiment of the present invention will have two A DBR and a second DBR are combined with a two-dimensional grating polarizing beam splitter body a two-dimensional grating polarization beam splitter, which is injected into the second through a two-dimensional grating polarization beam splitter body
  • Dimensional grating light is split into TE mode light and TM mode light, TE mode light and TM The mode light is transmitted in four directions.
  • the light of the TE mode and the light of the TM mode are emitted only from two directions, wherein the TE mode The light is emitted from the first direction after one reflection, and the light of the TM mode is reflected once from the first The second direction is emitted, and the first direction and the second direction are perpendicular. So can not affect 2D Based on Grating PBS bandwidth, increase the coupling ratio of 2D Grating PBS.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种二维光栅偏振分束器及光相干接收机,涉及光通讯领域,能够在不影响2D Grating PBS带宽的基础上,提高2D Grating PBS的耦合率。二维光栅偏振分束器(1)包括:二维光栅偏振分束器主体(10),用于将射入二维光栅偏振分束器主体(10)的光分成横向电场TE模式的光和横向磁场TM模式的光;设置于二维光栅偏振分束器主体(10)两侧的、相互平行的两个第一分布式布拉格反射镜DBR(11),用于反射TE模式的光或TM模式的光;设置于二维光栅偏振分束器主体(10)外侧的、与第一DBR(11)垂直的第二DBR(12),用于反射TE模式的光和TM模式的光;其中,TE模式的光经过第一DBR(11)或第二DBR(12)的反射,从第一方向射出;TM模式的光经过第一DBR(11)或第二DBR(12)的反射,从第二方向射出;第一方向与第二方向垂直。

Description

[根据细则37.2由ISA制定的发明名称] 二维光栅偏振分束器及光相干接收机 技术领域
本发明涉及光通讯领域,尤其涉及一种二维光栅偏振分束器及 光相干接收机。
背景技术
PBS(Polarizing Beam Splitter,偏振分束器)是一种可以将一 束光线分成两束或者多束的元件,通常由金属膜或者介质膜构成。 在基于220nm(纳米)SOI(Silicon-On-Insulator,绝缘衬底上的硅) 的硅基集成相干接收机设计中,2D Grating PBS(2-Dimension  Grating Polarizing Beam Splitter,二维光栅偏振分束器)不仅具有光 栅耦合的优点,而且可以完成偏振分束器的功能。因此,2D Grating  PBS被广泛应用于220nm SOI的硅基集成相干接收机设计。
传统的2D Grating PBS结构如图1所示,包括分束器主体以及 四个输出端口,当2D Grating PBS工作时,光线沿着垂直于XY平 面的方向射入分束器主体,由于2D Grating PBS的结构对称性,采 用垂直耦合的耦合方式,耦合输入的光会向四个方向(图中所标注 的X+、X-、Y+、Y-四个方向)耦合输出相同的功率,即耦合输入 的光从四个输出端口输出。而在220nm SOI的硅基集成相干接收机 中,通常只需要两个输出端口(一个X方向上的端口和一个Y方向 上的端口),因此导致2D Grating PBS的耦合效率低、损耗很大,进 而影响了220nm SOI的硅基集成相干接收机的性能。
针对上述问题,现有技术对2D Grating PBS结构进行了改进: 第一种方案如图2所示,采用斜入射2D Grating PBS结构,打破传 统的2D Grating PBS结构的对称性,使大部分的光从两个端口耦合 输出,进而提高耦合率;第二种方案是利用光栅周期的线性啁啾特 性,采用线性啁啾2D Grating PBS结构提高耦合率;第三种方案如 图3所示,采用带有DBR(Distributed Bragg Reflection,分布式布 拉格反射镜)的2D Grating PBS结构,利用DBR的高反射率有效地 提高耦合效率。然而,第一种方案和第二种方案耦合输入的光仍然 会向四个方向耦合输出,并且耦合率依然较小;第三种方案中经过 DBR反射回去的光与未经过反射的光之间会产生干涉,从而降低了 2D Grating PBS的带宽。
发明内容
本发明的实施例提供一种二维光栅偏振分束器及光相干接收 机,能够在不影响2D Grating PBS带宽的基础上,提高2D Grating  PBS的耦合率。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种二维光栅偏振分束器,包括:
二维光栅偏振分束器主体,用于将射入所述二维光栅偏振分束 器主体的光分成横向电场TE模式的光和横向磁场TM模式的光;
设置于所述二维光栅偏振分束器主体两侧的、相互平行的两个 第一分布式布拉格反射镜DBR,用于反射所述TE模式的光或所述 TM模式的光;
设置于所述二维光栅偏振分束器主体外侧的、与所述第一DBR 垂直的第二DBR,用于反射所述TE模式的光和所述TM模式的光;
其中,所述TE模式的光经过所述第一DBR或所述第二DBR 的反射,从第一方向射出;所述TM模式的光经过所述第一DBR或 所述第二DBR的反射,从第二方向射出;所述第一方向与所述第二 方向垂直。
在第一种可能的实现方式中,根据第一方面,所述二维光栅偏 振分束器主体具体包括二维光栅。
在第二种可能的实现方式中,结合第一方面或第一种可能的实 现方式,所述二维光栅偏振分束器主体沿所述TE模式的光和所述 TM模式的光射出的平面的截面为正方形,所述二维光栅偏振分束器 主体的长度和宽度相等。
在第三种可能的实现方式中,结合第一方面或第一种可能的实 现方式或第二种可能的实现方式,
所述二维光栅偏振分束器主体位于相互平行的两个所述第一 DBR之间,相互平行的两个所述第一DBR之间的距离大于等于
Figure PCTCN2014079066-appb-000001
倍 的所述二维光栅偏振分束器主体的长度;
所述第一DBR的长度为
Figure PCTCN2014079066-appb-000002
倍的所述二维光栅偏振分束器主体 的长度;
所述第二DBR的长度大于等于2
Figure PCTCN2014079066-appb-000003
倍的所述二维光栅偏振分束 器主体的长度。
在第四种可能的实现方式中,结合第一方面或第一种可能的实 现方式至第三种可能的实现方式,
所述第一DBR与所述第一方向/所述第二方向的夹角在43°至 47°的范围内;
所述第二DBR与所述第一方向/所述第二方向的夹角在43°至 47°的范围内。
在第五种可能的实现方式中,结合第一方面或第一种可能的实 现方式至第四种可能的实现方式,
所述第一DBR与所述第一方向/所述第二方向的夹角为45°;
所述第二DBR与所述第一方向/所述第二方向的夹角为45°。
在第六种可能的实现方式中,结合第一方面或第一种可能的实 现方式至第五种可能的实现方式,
所述二维光栅偏振分束器主体,具体用于将射入所述二维光栅 偏振分束器主体的光分成沿着所述第二方向和第三方向传播的所述 TE模式的光,以及沿着所述第一方向和第四方向传播的所述TM模 式的光;其中,所述第一方向和所述第四方向方向相反,所述第二 方向和所述第三方向方向相反。
在第七种可能的实现方式中,结合第一方面或第一种可能的实 现方式至第六种可能的实现方式,
所述TE模式的光经过所述第一DBR或所述第二DBR的反射, 从第一方向射出,具体包括:
沿着所述第二方向传播的所述TE模式的光经过所述第一DBR 的反射,从所述第一方向射出;
沿着所述第三方向传播的所述TE模式的光经过所述第二DBR 的反射,从所述第一方向射出;
所述TM模式的光经过所述第一DBR或所述第二DBR的反射, 从第二方向射出,具体包括:
沿着所述第一方向传播的所述TM模式的光经过所述第一DBR 的反射,从所述第二方向射出;
沿着所述第四方向传播的所述TM模式的光经过所述第二DBR 的反射,从所述第二方向射出。
第二方面,本发明实施例提供一种光相干接收机,包括具有上 述任一特征的所述二维光栅偏振分束器。
本发明实施例所提供的一种二维光栅偏振分束器及光相干接收 机,二维光栅偏振分束器包括二维光栅偏振分束器主体,用于将射 入二维光栅的光分成横向电场TE模式的光和横向磁场TM模式的 光;设置于二维光栅偏振分束器主体外侧的、相互平行的两个第一 分布式布拉格反射镜DBR,用于反射TE模式的光或TM模式的光; 以及设置于二维光栅偏振分束器主体外侧的、与第一DBR垂直的第 二DBR,用于反射TE模式的光和TM模式的光;其中,TE模式的 光经过第一DBR或第二DBR的反射,从第一方向射出;TM模式的 光经过第一DBR或第二DBR的反射,从第二方向射出;第一方向 与第二方向垂直。
基于上述实施例的描述,本发明将两个第一DBR和一个第二 DBR与二维光栅偏振分束器主体相结合形成了二维光栅偏振分束 器,通过二维光栅偏振分束器主体将射入所述二维光栅的光分成TE 模式的光和TM模式的光,TE模式的光和TM模式的光向四个方向 传输。经过第一DBR或第二DBR的反射,使得TE模式的光和TM 模式的光只从两个方向射出,其中,TE模式的光经过一次反射从第 一方向射出、TM模式的光经过一次反射从第二方向射出,第一方向 和第二方向垂直。因此能够在不影响2D Grating PBS带宽的基础上, 提高2D Grating PBS的耦合率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于 本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以 根据这些附图获得其他的附图。
图1为现有技术中传统的2D Grating PBS结构的结构示意图;
图2为现有技术中斜入射2D Grating PBS结构的结构示意图;
图3为现有技术中带有DBR的2D Grating PBS结构的结构示 意图;
图4为本发明实施例提供的一种二维光栅偏振分束器的结构示意 图;
图5为本发明实施例提供的一种二维光栅偏振分束器中TE模式 的光和TM模式的光的反射路径示意图一;
图6为本发明实施例提供的一种二维光栅偏振分束器的第一DBR 过长情况下的TE模式的光和TM模式的光的反射路径示意图;
图7为本发明实施例提供的一种二维光栅偏振分束器中TE模式 的光和TM模式的光的反射路径示意图二;
图8为本发明实施例提供的一种仿真结果示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术 方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明 一部分实施例,而不是全部的实施例。基于本发明中的实施例,本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例,都属于本发明保护的范围。
本发明实施例所描述的第一方向和第二方向为相互垂直的两个 方向,第一方向和第四方向方向相反,第二方向和第三方向方向相 反。以平面直角坐标系为例,第一方向可以是X+方向、第二方向可 以是Y+方向、第三方向可以是Y-方向、第四方向可以是X-方向; 也可以是其他满足上述关系的方向(例如第一方向是X+方向、第二 方向是Y-方向、第三方向是Y+方向、第四方向是X-方向)。本发明 实施例就是以第一方向是X+方向、第二方向是Y+方向、第三方向 是Y-方向、第四方向是X-方向为例,来进行本发明具体实施例的描 述的。
本发明实施例提供一种二维光栅偏振分束器1,如图4所示, 所述二维光栅偏振分束器1包括:
二维光栅偏振分束器主体10,用于将射入所述二维光栅偏振分 束器主体的光分成横向电场TE模式的光和横向磁场TM模式的光。
设置于所述二维光栅偏振分束器主体10两侧的、相互平行的两 个第一分布式布拉格反射镜DBR11,用于反射所述TE模式的光或 所述TM模式的光。
设置于所述二维光栅偏振分束器主体10外侧的、与所述第一 DBR11垂直的第二DBR12,用于反射所述TE模式的光和所述TM 模式的光。
其中,所述TE模式的光经过所述第一DBR11或所述第二DBR 12的反射,从第一方向射出(即X+方向);所述TM模式的光经过 所述第一DBR11或所述第二DBR12的反射,从第二方向射出(即 Y+方向);所述第一方向与所述第二方向垂直。
需要说明的是,射入所述二维光栅偏振分束器主体的光分成所 述TE模式的光(沿Y+、Y-方向传播)和所述TM模式的光(沿X+、 X-方向传播)。具体的,如图4所示,所述第一DBR11用于反射所 述TE模式的光或所述TM模式的光包括:位于图4左上方的所述第 一DBR11用于反射沿Y+方向传播的所述TE模式的光;位于图4 右下方的所述第一DBR11用于反射沿X+方向传播的所述TM模式 的光。
还需要说明的是,由于工艺的限制,本发明实施例提供的一种 二维光栅偏振分束器1的结构在实际生产应用中允许存在一定的误 差。
进一步地,所述二维光栅偏振分束器主体具体包括二维光栅。
进一步地,所述二维光栅偏振分束器主体沿所述TE模式的光 和所述TM模式的光射出的平面的截面为正方形,所述二维光栅偏 振分束器主体10的长度和宽度相等。
需要说明的是,所述二维光栅偏振分束器主体是二维光栅,能 够将射入所述二维光栅偏振分束器主体的光分成横向电场TE模式 的光和横向磁场TM模式的光。通常的,为了保证从第一方向射出 的所述TE模式的光和从第二方向射出的所述TM模式的光的耦合率 相同,所述二维光栅偏振分束器主体沿所述TE模式的光和所述TM 模式的光射出的平面的截面为正方形。
需要补充的是,二维光栅偏振分束器主体的制备方法通常为: 在220nm SOI的硅基上刻蚀出均匀分布的孔,即二维光栅(图4中 均匀分布的圆即为刻蚀出的孔)。其中,对孔的形状并没有严格的要 求,既可以是如图4所示的圆孔,也可以是方孔等其他形状的孔, 本发明不做限制。
二维光栅偏振分束器主体的作用是将射入所述二维光栅偏振分 束器主体的光分成TE模式的光和TM模式的光。具体的,二维光栅 偏振分束器中TE模式的光和TM模式的光的反射路径如图5所示, 光是从垂直于XY平面的方向射入所述二维光栅偏振分束器主体的, 随后二维光栅偏振分束器主体将光分成TE模式的光和TM模式的 光,其中,TE模式的光和TM模式的光正交,TE模式的光沿着Y+ 方向和Y-方向传播,TM模式的光沿着X+方向和X-方向传播。
进一步地,为了减少损耗,所述第一DBR和所述第二DBR的 长度存在如下关系:
所述二维光栅偏振分束器主体10位于相互平行的两个所述第 一DBR11之间,相互平行的两个所述第一DBR11之间的距离大于 等于
Figure PCTCN2014079066-appb-000004
倍的所述二维光栅偏振分束器主体10的长度。
进一步地,所述第一DBR11的长度为
Figure PCTCN2014079066-appb-000005
倍的所述二维光栅偏 振分束器主体10的长度。
所述第二DBR12的长度大于等于2
Figure PCTCN2014079066-appb-000006
倍的所述二维光栅偏振分 束器主体10的长度。
需要说明的是,为了让TE模式的光和TM模式的光只从两个 方向射出,本发明实施例将三个DBR与二维光栅偏振分束器主体相 结合形成了二维光栅偏振分束器,以使得TE模式的光和TM模式的 光均只经过一次反射分别从两个方向射出。同时,为了减少光之间 的干涉,本发明实施例所提供的二维光栅偏振分束器对第一DBR11 和第二DBR12的长度有着严格的要求:相互平行的两个所述第一 DBR11之间的距离为
Figure PCTCN2014079066-appb-000007
倍的所述二维光栅偏振分束器主体10的长 度;所述第一DBR11的长度为
Figure PCTCN2014079066-appb-000008
倍的所述二维光栅偏振分束器主 体10的长度;所述第二DBR12的长度大于等于2
Figure PCTCN2014079066-appb-000009
倍的所述二维 光栅偏振分束器主体10的长度。
如图5所示,TE模式的光沿着Y+方向和Y-方向传播,经过所 述第一DBR11或所述第二DBR12的反射,从X+方向射出;TM模 式的光沿着X+方向和X-方向传播,经过所述第一DBR11或所述第 二DBR12的反射,从Y+方向射出。若所述第一DBR11的长度过 长,如图6所示,TE模式的光或者TM模式的光经过所述第一DBR 11或所述第二DBR12的反射后,原本要射出的光线被所述第一DBR 11阻挡,进而发生二次反射。一次反射的光线和二次反射的光线之 间会产生干涉,降低了2D Grating PBS的带宽。
进一步地,所述第一DBR11与所述第一方向/所述第二方向的 夹角在43°至47°的范围内。
所述第二DBR12与所述第一方向/所述第二方向的夹角在43° 至47°的范围内。
优选的,所述第一DBR11与所述第一方向/所述第二方向的夹 角为45°。
所述第二DBR12与所述第一方向/所述第二方向的夹角为45°。
需要说明的是,由于TE模式的光和TM模式的光正交,为了 保证从X+方向射出的TE模式的光和从Y+方向射出的TM模式的光 仍旧正交,根据反射原理,所述第一DBR11与所述第一方向/所述 第二方向的夹角为45°;所述第二DBR12与所述第一方向/所述第 二方向的夹角为45°。由于生产应用中的制造工艺的限制,第一DBR 11和所述第二DBR12与所述第一方向/所述第二方向的夹角的大小 能够存在2°的容差,因此,所述第一DBR11与所述第一方向/所述 第二方向的夹角在43°至47°的范围内;所述第二DBR12与所述 第一方向/所述第二方向的夹角在43°至47°的范围内。
进一步地,所述二维光栅偏振分束器主体10,具体用于将射入 所述二维光栅的光分成沿着所述第二方向和第三方向传播的所述 TE模式的光,以及沿着所述第一方向和第四方向传播的所述TM模 式的光;其中,所述第一方向和所述第四方向方向相反,所述第二 方向和所述第三方向方向相反。
由于本发明实施例是以第一方向是X+方向、第二方向是Y+方 向、第三方向是Y-方向、第四方向是X-方向为例来说明的,因此所 述二维光栅偏振分束器主体10,具体用于将射入所述二维光栅的光 分成沿着Y-方向和Y+方向传播的所述TE模式的光,以及沿着X+ 方向和X-方向传播的所述TM模式的光。
进一步地,所述TE模式的光经过所述第一DBR11或所述第二 DBR12的反射,从第一方向射出,具体包括:
沿着所述第二方向传播的所述TE模式的光经过所述第一DBR 11的反射,从所述第一方向射出。
沿着所述第三方向传播的所述TE模式的光经过所述第二DBR 12的反射,从所述第一方向射出。
具体的,二维光栅偏振分束器中TE模式的光的反射路径如图7 中虚线部分所示,沿着Y+方向传播的所述TE模式的光经过所述第 一DBR11的反射,从X+方向射出;沿着Y-方向传播的所述TE模 式的光经过所述第二DBR12的反射,从X+方向射出。
进一步地,所述TM模式的光经过所述第一DBR11或所述第 二DBR12的反射,从第二方向射出,具体包括:
沿着所述第一方向传播的所述TM模式的光经过所述第一DBR 11的反射,从所述第二方向射出。
沿着所述第四方向传播的所述TM模式的光经过所述第二DBR 12的反射,从所述第二方向射出。
具体的,二维光栅偏振分束器中TM模式的光的反射路径如图 7中实线部分所示,沿着X+方向传播的所述TM模式的光经过所述 第一DBR11的反射,从Y+方向射出;沿着X-方向传播的所述TM 模式的光经过所述第二DBR12的反射,从Y+方向射出。
需要补充的是,本发明实施例中提到的第一DBR11和第二DBR 12是基于220nm SOI制备的,制备工艺可以采用刻蚀的方法和制备 2D Grating PBS的工艺兼容,结构设计简单,制作工艺容易实现。 同时在不影响2D Grating PBS带宽的基础上,提高2D Grating PBS 的耦合率。
针对上述实施例的描述,本发明实施例示例性的给出了仿真结 果,如图8所示。
其中,仿真结果一:图8中实线所示的仿真结果为利用图2所 示的现有技术中采用斜入射2D Grating PBS结构仿真得出的带宽- 损耗图;
仿真结果二:图8中短虚线所示的仿真结果为利用图3所示的 现有技术中采用带有DBR的2D Grating PBS结构仿真得出的带宽- 损耗图;
仿真结果三:图8中长虚线所示的仿真结果为利用图4所示的 本发明提供的二维光栅偏振分束器仿真得出的带宽-损耗图。
下面对这三种仿真分别进行说明:
仿真结果一:结合图2所示的斜入射2D Grating PBS结构图, 打破传统的2D Grating PBS结构的对称性,使大部分的光从两个端 口耦合输出,但是输出的TE模式的光和TM模式的光仍然会从四个 方向耦合射出,且TE模式的光和TM模式的光不正交。如图8中实 线所示,2D Grating PBS的带宽维持在56nm左右,但是损耗与仿真 结果二和仿真结果三相比较大,影响了2D Grating PBS的耦合率。
仿真结果二:结合图3所示的带有DBR的2D Grating PBS结 构图,由于DBR设置在X-方向和Y-方向上,使得TE模式的光和 TM模式的光只能从X+方向和Y+方向耦合射出,但是经过DBR反 射回去的光与未经过反射的光之间会产生干涉。如图8中短虚线所 示,与仿真结果一相比,虽然损耗减少导致耦合效率提高,但是2D Grating PBS的带宽却只能维持在32nm左右。
仿真结果三:结合图4所示的本发明提供的二维光栅偏振分束 器,由于将三个DBR与二维光栅偏振分束器主体相结合形成了二维 光栅偏振分束器,通过二维光栅偏振分束器主体将射入所述二维光 栅的光分成TE模式的光和TM模式的光,再经过两个第一DBR或 第二DBR的反射,使得TE模式的光和TM模式的光只从两个方向 射出,其中,TE模式的光经过一次反射从第一方向射出、TM模式 的光经过一次反射从第二方向射出。如图8中长虚线所示,与仿真 结果一和仿真结果二相比,仿真结果三不仅比仿真结果一和仿真结 果二损耗少、耦合效率高,而且2D Grating PBS的带宽也能维持在 56nm左右。
由此可以得出,本发明实施例提供的二维光栅偏振分束器,不 仅损耗小、耦合效率高,而且2D Grating PBS的带宽大,能够完全 覆盖光纤通讯的常规C波段(1530nm至1565nm),具有比现有的 2D Grating PBS结构更优的特性。
本发明实施例所提供的一种二维光栅偏振分束器,二维光栅偏 振分束器包括二维光栅偏振分束器主体,用于将射入二维光栅的光 分成横向电场TE模式的光和横向磁场TM模式的光;设置于二维光 栅偏振分束器主体外侧的、相互平行的两个第一分布式布拉格反射 镜DBR,用于反射TE模式的光或TM模式的光;以及设置于二维 光栅偏振分束器主体外侧的、与第一DBR垂直的第二DBR,用于反 射TE模式的光和TM模式的光;其中,TE模式的光经过第一DBR 或第二DBR的反射,从第一方向射出;TM模式的光经过第一DBR 或第二DBR的反射,从第二方向射出;第一方向与第二方向垂直。
基于上述实施例的描述,本发明将两个第一DBR和一个第二 DBR与二维光栅偏振分束器主体相结合形成了二维光栅偏振分束 器,通过二维光栅偏振分束器主体将射入所述二维光栅的光分成TE 模式的光和TM模式的光,TE模式的光和TM模式的光向四个方向 传输。经过第一DBR或第二DBR的反射,使得TE模式的光和TM 模式的光只从两个方向射出,其中,TE模式的光经过一次反射从第 一方向射出、TM模式的光经过一次反射从第二方向射出,第一方向 和第二方向垂直。因此能够在不影响2D Grating PBS带宽的基础上, 提高2D Grating PBS的耦合率。
本发明实施例还提供一种光相干接收机,包括具有上述任一特 征的所述二维光栅偏振分束器。
由于本发明实施例所提供的一种二维光栅偏振分束器将两个第 一DBR和一个第二DBR与二维光栅偏振分束器主体相结合形成了 二维光栅偏振分束器,通过二维光栅偏振分束器主体将射入所述二 维光栅的光分成TE模式的光和TM模式的光,TE模式的光和TM 模式的光向四个方向传输。经过第一DBR或第二DBR的反射,使 得TE模式的光和TM模式的光只从两个方向射出,其中,TE模式 的光经过一次反射从第一方向射出、TM模式的光经过一次反射从第 二方向射出,第一方向和第二方向垂直。因此能够在不影响2D Grating PBS带宽的基础上,提高2D Grating PBS的耦合率。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围 并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围 之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (9)

  1. 一种二维光栅偏振分束器,其特征在于,包括:
    二维光栅偏振分束器主体,用于将射入所述二维光栅偏振分束器 主体的光分成横向电场TE模式的光和横向磁场TM模式的光;
    设置于所述二维光栅偏振分束器主体两侧的、相互平行的两个第 一分布式布拉格反射镜DBR,用于反射所述TE模式的光或所述TM 模式的光;
    设置于所述二维光栅偏振分束器主体外侧的、与所述第一DBR 垂直的第二DBR,用于反射所述TE模式的光和所述TM模式的光;
    其中,所述TE模式的光经过所述第一DBR或所述第二DBR的 反射,从第一方向射出;所述TM模式的光经过所述第一DBR或所 述第二DBR的反射,从第二方向射出;所述第一方向与所述第二方 向垂直。
  2. 根据权利要求1所述的二维光栅偏振分束器,其特征在于, 所述二维光栅偏振分束器主体具体包括二维光栅。
  3. 根据权利要求1所述的二维光栅偏振分束器,其特征在于, 所述二维光栅偏振分束器主体沿所述TE模式的光和所述TM模式的 光射出的平面的截面为正方形,所述二维光栅偏振分束器主体的长度 和宽度相等。
  4. 根据权利要求1-3中任意一项所述的二维光栅偏振分束器, 其特征在于,
    所述二维光栅偏振分束器主体位于相互平行的两个所述第一 DBR之间,相互平行的两个所述第一DBR之间的距离大于等于
    Figure PCTCN2014079066-appb-100001
    倍 的所述二维光栅偏振分束器主体的长度;
    所述第一DBR的长度为
    Figure PCTCN2014079066-appb-100002
    倍的所述二维光栅偏振分束器主体的 长度;
    所述第二DBR的长度大于等于2
    Figure PCTCN2014079066-appb-100003
    倍的所述二维光栅偏振分束 器主体的长度。
  5. 根据权利要求1-4中任意一项所述的二维光栅偏振分束器, 其特征在于,
    所述第一DBR与所述第一方向/所述第二方向的夹角在43°至 47°的范围内;
    所述第二DBR与所述第一方向/所述第二方向的夹角在43°至 47°的范围内。
  6. 根据权利要求1-5中任意一项所述的二维光栅偏振分束器, 其特征在于,
    所述第一DBR与所述第一方向/所述第二方向的夹角为45°;
    所述第二DBR与所述第一方向/所述第二方向的夹角为45°。
  7. 根据权利要求1-6中任意一项所述的二维光栅偏振分束器, 其特征在于,所述二维光栅偏振分束器主体,具体用于将射入所述二 维光栅偏振分束器主体的光分成沿着所述第二方向和第三方向传播 的所述TE模式的光,以及沿着所述第一方向和第四方向传播的所述 TM模式的光;其中,所述第一方向和所述第四方向方向相反,所述 第二方向和所述第三方向方向相反。
  8. 根据权利要求7所述的二维光栅偏振分束器,其特征在于,
    所述TE模式的光经过所述第一DBR或所述第二DBR的反射, 从第一方向射出,具体包括:
    沿着所述第二方向传播的所述TE模式的光经过所述第一DBR 的反射,从所述第一方向射出;
    沿着所述第三方向传播的所述TE模式的光经过所述第二DBR 的反射,从所述第一方向射出;
    所述TM模式的光经过所述第一DBR或所述第二DBR的反射, 从第二方向射出,具体包括:
    沿着所述第一方向传播的所述TM模式的光经过所述第一DBR 的反射,从所述第二方向射出;
    沿着所述第四方向传播的所述TM模式的光经过所述第二DBR 的反射,从所述第二方向射出。
  9. 一种光相干接收机,其特征在于,包括:
    如权利要求1-8中任意一项所述的二维光栅偏振分束器。
PCT/CN2014/079066 2014-06-03 2014-06-03 二维光栅偏振分束器及光相干接收机 WO2015184581A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480079339.3A CN106415346B (zh) 2014-06-03 2014-06-03 二维光栅偏振分束器及光相干接收机
PCT/CN2014/079066 WO2015184581A1 (zh) 2014-06-03 2014-06-03 二维光栅偏振分束器及光相干接收机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079066 WO2015184581A1 (zh) 2014-06-03 2014-06-03 二维光栅偏振分束器及光相干接收机

Publications (1)

Publication Number Publication Date
WO2015184581A1 true WO2015184581A1 (zh) 2015-12-10

Family

ID=54765924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079066 WO2015184581A1 (zh) 2014-06-03 2014-06-03 二维光栅偏振分束器及光相干接收机

Country Status (2)

Country Link
CN (1) CN106415346B (zh)
WO (1) WO2015184581A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240015B (zh) * 2020-01-17 2020-12-18 北京理工大学 双侧对射出光均匀的衍射波导
CN113091896B (zh) * 2021-03-18 2023-03-14 西北工业大学 基于偏振光栅的动态测量任意光场完整信息的方法及光路
CN113267789B (zh) * 2021-04-30 2022-02-08 西安工业大学 一种红外全波段二维四向偏振调制光栅
CN115685443B (zh) * 2022-11-04 2023-04-18 之江实验室 一种基于超表面结构的紧凑型集成偏振分束器
CN116859521B (zh) * 2023-08-30 2024-01-09 之江实验室 光栅耦合器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235370A1 (en) * 2002-04-10 2003-12-25 Interuniversitair Microelektronica Centrum (Imec Vzw) Fiber-to-waveguide coupler
CN101251725A (zh) * 2008-03-31 2008-08-27 上海微电子装备有限公司 用于光刻装置的对准系统和标记、对准方法以及光刻装置
CN101720443A (zh) * 2007-04-05 2010-06-02 Imec公司 用于多路复用器波导耦合的方法和系统
CN102498425A (zh) * 2009-07-07 2012-06-13 阿尔卡特朗讯 包含二维光栅的偏振分集光栅耦合器
CN102859406A (zh) * 2010-04-07 2013-01-02 阿尔卡特朗讯 光学波导光栅耦合器
CN103149633A (zh) * 2013-02-27 2013-06-12 华中科技大学 一种双偏振态信号处理集成芯片

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219015B1 (en) * 1992-04-28 2001-04-17 The Board Of Directors Of The Leland Stanford, Junior University Method and apparatus for using an array of grating light valves to produce multicolor optical images
US6198860B1 (en) * 1998-09-22 2001-03-06 Massachusetts Institute Of Technology Optical waveguide crossings
US6775427B2 (en) * 2001-03-09 2004-08-10 Photodigm, Inc. Laterally coupled wave guides
US6788847B2 (en) * 2001-04-05 2004-09-07 Luxtera, Inc. Photonic input/output port
US7027689B2 (en) * 2003-01-24 2006-04-11 Lucent Technologies Inc. Optical routers based on surface plasmons
CN102305959B (zh) * 2011-09-05 2013-09-11 上海交通大学 具有光栅结构的聚光系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235370A1 (en) * 2002-04-10 2003-12-25 Interuniversitair Microelektronica Centrum (Imec Vzw) Fiber-to-waveguide coupler
CN101720443A (zh) * 2007-04-05 2010-06-02 Imec公司 用于多路复用器波导耦合的方法和系统
CN101251725A (zh) * 2008-03-31 2008-08-27 上海微电子装备有限公司 用于光刻装置的对准系统和标记、对准方法以及光刻装置
CN102498425A (zh) * 2009-07-07 2012-06-13 阿尔卡特朗讯 包含二维光栅的偏振分集光栅耦合器
CN102859406A (zh) * 2010-04-07 2013-01-02 阿尔卡特朗讯 光学波导光栅耦合器
CN103149633A (zh) * 2013-02-27 2013-06-12 华中科技大学 一种双偏振态信号处理集成芯片

Also Published As

Publication number Publication date
CN106415346A (zh) 2017-02-15
CN106415346B (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
WO2015184581A1 (zh) 二维光栅偏振分束器及光相干接收机
US9411106B2 (en) Polarization-independent grating coupler for silicon on insulator
US20040184156A1 (en) Polarization splitting grating couplers
US9244227B2 (en) Polarization splitter/combiner based on a one-dimensional grating coupler
CN106959485B (zh) 基于亚波长光栅的定向耦合型tm起偏器及分束器
JP2006505016A (ja) 波長非反応性集積光偏光スプリッター
WO2016172970A1 (zh) 一种偏振旋转器及光信号处理方法
US9971098B2 (en) Coupler and optical waveguide chip applying the coupler
JP5561305B2 (ja) 光素子
CN105866885B (zh) 偏振分束旋转器
JP2022532113A (ja) 偏光回転子
KR101900630B1 (ko) 교차 도파관
JP6270936B1 (ja) 光導波路素子
WO2015032095A1 (zh) 光栅耦合器的光栅耦合方法、装置及系统
JPWO2012102041A1 (ja) 導波路型偏波ビームスプリッタ
CN103955058A (zh) 利用光子晶体方向带隙实现的光隔离器
CN111830627B (zh) 偏振分束器及其形成方法
WO2015161488A1 (zh) 单模垂直腔面发射激光器收发模块及光信号传播方法
JP6440856B2 (ja) 導波路偏光回転子およびその構成方法
CN110426772B (zh) 一种可实现椭圆偏振光单向传输的光子晶体异质结构
JP6051792B2 (ja) コヒーレントミキサ
US20230085272A1 (en) Optical element
JP6663145B2 (ja) 光方向性結合器
CN114637074B (zh) 一种基于二维拓扑光子晶体奇异点的光学器件及其方法
CN206584084U (zh) 同轴光发射器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893992

Country of ref document: EP

Kind code of ref document: A1