WO2015181456A1 - Dispositif de post-traitement des gaz d'échappement d'un moteur a combustion - Google Patents
Dispositif de post-traitement des gaz d'échappement d'un moteur a combustion Download PDFInfo
- Publication number
- WO2015181456A1 WO2015181456A1 PCT/FR2015/051118 FR2015051118W WO2015181456A1 WO 2015181456 A1 WO2015181456 A1 WO 2015181456A1 FR 2015051118 W FR2015051118 W FR 2015051118W WO 2015181456 A1 WO2015181456 A1 WO 2015181456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalytic reduction
- selective catalytic
- nitrogen oxides
- catalyst
- scr
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2892—Exhaust flow directors or the like, e.g. upstream of catalytic device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2340/00—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2340/00—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
- F01N2340/02—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to means for treating pollutants from the exhaust gases of combustion engines.
- the pollutant emissions of combustion engines fitted to motor vehicles are regulated by standards. Regulated pollutants are, depending on the combustion engine technology considered, carbon monoxide (CO), unburnt hydrocarbons (HC), nitrogen oxides (NOx, ie NO and NO3 ⁇ 4, and particulate matter). (PM), which are formed during combustion of the fuel in the combustion chamber and then emitted to the exhaust.
- CO carbon monoxide
- HC unburnt hydrocarbons
- NOx nitrogen oxides
- NOx nitrogen oxides
- NOx ie NO and NO3 ⁇ 4
- particulate matter particulate matter
- An oxidation catalyst allows the treatment of carbon monoxide, unburned hydrocarbons, and under certain conditions nitrogen oxides; a particulate filter can be used for the treatment of soot particles.
- This type of device is generally referred to as the "after-treatment” device for the exhaust gases.
- a specific post-treatment system can be introduced into the exhaust line of vehicles, including vehicles equipped with diesel engines.
- SCR selective catalytic reduction
- Semiconductor Catalytic Reduction English
- reducing NOx by introducing a reducing agent (or a precursor of such a reducing agent) in the exhaust gas by catalyzed reactions.
- a "reducing agent” will generally be used to designate a reducing agent or a reducing agent precursor.
- the reducing agent generated makes it possible to reduce the nitrogen oxides by reaction in an SCR catalyst, that is to say a substrate carrying a catalytic impregnation capable of promoting the reduction of NOx by the reducing agent.
- upstream and downstream are understood as a function of the general direction of flow of the exhaust gases in the exhaust line integrating the post-processing units, since the engine to the end cannula of the exhaust line. It is, for example, known from the patent application WO 201 1/089330 a post-processing device grouping in the same envelope several bodies that will be successively traversed by the exhaust gas.
- a series of organs comprising upstream downstream: - an oxidation catalyst, - a urea reducing agent injector, - a mixer whose role is to intimately mix the droplets of urea injected into the envelope traversed by the gases, so as to decompose to ammonia as homogeneously as possible over the entire cross section of the envelope, - an organ SCR, - a particulate filter (called FAP by the after). It also proposes an alternative, consisting of replacing the SCR member and the FAP, with a FAP which is impregnated with a NOx reduction catalyst and which thus fulfills both the soot filter function and the reduction of the NOx (called SCRF later).
- a dedicated member SCR as described in this document may not prime thermally sufficiently early for reasons of adverse thermal, especially in urban driving conditions during which the temperatures in the exhaust line are quite bass.
- the variant incorporating the SCR catalyst in the particulate filter (SCRF) is also not good enough in urban driving conditions, because of the inertia the particle filter-specific substrate, even if it is positioned very close to the engine.
- the substrate which ensures the filtration of the particles and which is impregnated with the catalyst coating is a porous ceramic that consumes a lot of heat to increase the temperature. It will not be possible to start the SCR phase for a certain period of time, which will not allow this solution to comply with future developments in the standard.
- the invention therefore aims to design a post-treatment of the exhaust gas that overcomes the aforementioned drawbacks.
- One of its aims is to improve existing systems to meet higher standards for pollutant emissions, and more particularly for NOx emissions under unstabilized rolling conditions of the urban rolling type and / or an extended temperature range.
- it also aims to obtain a post-processing device that is more efficient and that remains, in addition, compact.
- the invention firstly relates to a device for post-treatment of the exhaust gas of a combustion engine which comprises, upstream to downstream:
- an introduction means (means which may be an injector) of reducing agent or precursor of a reducing agent for the selective catalytic reduction of SCR nitrogen oxides;
- a particulate filter element provided with a catalyst coating of selective catalytic reduction of NOx nitrogen oxides, said SCRF;
- said organs and mouthpiece being grouped together in a single envelope; said catalyst element for catalytic selective reduction of nitrogen oxides being of a length at least two times smaller, in particular at least 2.2 or at least 2.3 or at least 2.4 or 2, 5 to 3 times smaller (at least) than the length of the particulate filter.
- This post-processing device architecture has proved extremely favorable in several aspects. On the one hand, it preserves the compactness of the assembly, which is contained in a single envelope, and which can thus be advantageously housed as close to the exhaust manifold engine output on the line of exhaust.
- the device of the invention is better thermally primer, but it mitigates the impact of a possible degradation of the catalytic coating of the FAP in the event of a regeneration that would reach in the FAP excessive temperatures (over 1000 ° C, to give an order of magnitude).
- the device according to the invention will therefore treat the gaseous and particulate pollutants as they pass through the pollution control organs: they therefore first enter the first "brick" consisting of the oxidation catalyst, where CO and HC are oxidized to water (H 2 0) and carbon dioxide (C0 2 ).
- the catalytic selective catalytic reduction member of the nitrogen oxides has a length of at most 80 mm, in particular at most 76 mm, preferably between 45 and 55 mm, for example about 50 mm.
- the length of the SCRF member is at least 10 cm, in particular between 10 and 15 cm, in particular about 12 cm.
- the total length of the selective catalytic reduction catalytic reduction unit of the nitrogen oxides and of the particulate filter, including the possible space between them, is at most 200 mm, in particular from 0.degree. plus 190 mm, preferably between 170 and 180 mm
- the invention therefore maintains a moderate size compared to a solution using only a SCRF member: it does not significantly extend the post-treatment device, and thus preserves the compactness of all.
- the total length between the inlet of the oxidation catalyst member and the outlet of the particulate filter is at most 450 mm, in particular at most 400 mm, preferably between 280 and 380 mm.
- the oxidation catalyst member comprises an adsorber material of nitrogen oxides, also called PNA for the English expression "Passive NOx Adsorber”.
- the role of a PNA type material is to be able to store during the cold phases the nitrogen oxides emitted by the engine, as the bodies catalyzing the reduction of NOx (the SCR member and the SCRF catalytic coating particle filter) are not yet functional. Indeed, it is necessary to wait 180 to 200 ° C to be able to inject the reducer (urea) in the exhaust line and form the ammonia which will then convert the NOx. With NH 3 "pre-stored" in the SCR coating, the conversion of NOx can take place a few tens of degrees before (at about 140 ° C).
- the NAP works by storing NOx "cold” (thanks, in particular, to the addition, in the "classical” impregnation of an oxidation catalyst, of simple or mixed oxides with a basic character such as, for example , oxides of cerium or barium) before returning them to higher temperature when the SCR is fully operational (between 200 and 300 ° C).
- purge steps are provided to clean its surface which has been sulfated over time in a known manner.
- the oxidation catalyst member has a catalyst whose amount of noble metals is adjusted so as to obtain at the outlet of the organ exhaust gas whose ratio N0 2 / NOx is equal or similar of 0.5 (we understand by "neighbor” a variation of for example +/- 15% around this value).
- This ratio can be adjusted around this value by adjusting the composition of the oxidation catalyst.
- the formulation of this type of catalyst generally contains mostly doped Al 2 O 3 alumina, hydrated aluminosilicate type zeolites of metals (also known by the abbreviation ZSM5) and not exchanged in order to trap the HC cold, and precious metals such as Platinum (Pt) and Palladium (Pd), with a defined ratio. Indeed, depending on this ratio Pt / Pd, the oxidation catalyst will be more or less able to oxidize carbon monoxide (CO) and unburned hydrocarbons (HC): More catalyst contains Platinum plus its ability to oxidize NO in N0 2 will be large.
- the NOx emissions are predominantly composed of NO (> 90%).
- the oxidation catalyst will therefore efficiently oxidize NO to NO 2 to adjust the NO 2 / NOx ratio to the desired value.
- the catalyst of the selective catalytic reduction catalyst member is based on zeolite (s) exchanged (s) iron.
- the impregnation coatings based on zeolites exchanged with iron (Fe) have a lower temperature initiation than those based on zeolites exchanged with copper (Cu), since the ratio N0 2 / NOx is close to 0.5.
- a coating with zeolites exchanged with iron can convert NOx from 150 ° C.
- the catalyst of the particulate filter is based on zeolite (s) exchanged (s) copper.
- this type of catalyst is particularly suitable for impregnating a particulate filter: - it has a better thermal resistance than a catalyst based on zeolites exchanged with iron (it must indeed undergo damage without any regenerations) periodic filter very high temperature), - the combustion of soot by N0 2 at temperatures of 250 ° C to 350 ° C tends to reduce the ratio NO 2 / NOx, basic formulations of zeolites exchanged with copper (Cu) being also better adapted than those exchanged with iron, ⁇ it also has a higher NH 3 storage capacity.
- the copper exchanged zeolites proposed for the SCRF and / or exchanged with iron for the catalyst of the catalytic reduction catalyst member SCR are for example based on zeolites of the chabazite type, ferrierite or hydrated aluminosilicates (ZMS5 ), and may also contain at least one of the following oxides: cerium (Ce) oxide, zirconium (Zr), or at least one of the following metals: niobium (Nb), tungsten (W), titanium ( Ti).
- the support of the oxidation catalyst member and / or that of the selective catalytic reduction catalyst member is metallic, and optionally equipped with heating means, for example of the resistance type. electric. This reduces their rise time and therefore the time from which they start.
- heating means for example of the resistance type. electric. This reduces their rise time and therefore the time from which they start.
- the support of the SCRF particle filter may be, for example, silicon carbide (SiC), cordierite or aluminum titanate.
- the after-treatment device according to the invention also comprises a mixing member of the exhaust gas and the reducing agent and / or the precursor of the gearbox between the mouth of the gearbox introduction means and / or precursor of a reducing agent for the selective catalytic reduction of nitrogen oxides SCR and the catalyst element for selective catalytic reduction of nitrogen oxides.
- This mixer has the function of mixing as well as possible the exhaust with the reducing agent or reducing precursor, this being particularly useful when the precursor is of the liquid type, such as urea in aqueous phase.
- the invention also applies to the direct injection of the reducing gas, such as ammonia, which feeds the exhaust line from one or more salt cartridges (in particular of SrCI 2 type) capable of adsorbing ammonia and releasing it by thermal activation, in a known manner (technology commonly called “solid” SCR), and in this case, the mixer is less necessary.
- the reducing gas such as ammonia
- the mixer is of a type having a path length for gases passing through it at least twice the length it occupies longitudinally in the envelope.
- the purpose of the mixer is to homogenize the mixture between the exhaust gas and the reducing agent, and, if a precursor of a reducing agent is introduced, to promote the decomposition of the reducing agent precursor into a reducing agent.
- the use of a mixer imposing on the exhaust gas a relatively long path compared to the length of the mixer, for example of a type imposing gas a substantially helical path with impactor, is particularly suitable for the invention.
- the mixer may also be, for example, a T-mixer using downstream gas recirculation oxidation catalyst in a double jacket around the oxidation catalyst with an injection on the exit face of the oxidation catalyst.
- the post-treatment device according to the invention comprises a nitrogen oxide sensor upstream of the oxidation catalyst member and another downstream of the particulate filter, preferably out of the atmosphere. unique envelope.
- the "upstream" sensor can be replaced by modeling if necessary.
- the single envelope is substantially cylinder-shaped provided with an inlet divergent and an outlet convergent (in the form of cone sections), with a total length of at most 450 mm, in particular at most 400 mm, preferably between 280 and 380 mm, and therefore has a compactness quite compatible with an implantation in a sub-bonnet of a motor vehicle.
- the means for introducing the reducing agent is an actuator of the solenoid or piezoelectric actuator type or mechanical or hydropneumatic.
- the duct between the exhaust manifold and the device according to the invention may further comprise one or more turbocharger turbines in the context of a supercharged engine, and, in particular, the device according to the invention may be connected directly to the casing of a turbocharger, at the outlet of a turbine.
- the invention also relates to the exhaust line of a combustion engine incorporating the previously described post-processing device.
- the invention also relates to a vehicle with an engine compartment, such that the engine and the after-treatment device fitted to its exhaust line are contained in said engine compartment.
- FIG. 1 shows schematically a motor and its exhaust line of a motor vehicle comprising the post-processing device according to an example 1 the invention
- FIG. 3 presents a graph comparing the temperatures upstream of the SCR selective catalytic reduction members of Example 1 according to the invention and Comparative Example 2;
- FIG. 4 represents a graph comparing the NOx emissions at the end of the exhaust line with the after-treatment device according to example 1 of the invention and the post-processing device according to comparative example 2;
- FIG. 5 represents a comparison between two SCR impregnation coatings used in the post-treatment device according to example 1 of the invention.
- FIG. 6 represents a diagram illustrating the compared evolutions of C0 2 and NOx emissions of a motor at the source.
- a device for treating the exhaust gas of a motor 1 is integrated in the exhaust line connected to the manifold (not shown) of the exhaust gases of the engine 1. It comprises, in the same envelope 2 (which can also be referred to as the English word "canning") and, depending on the direction of flow of the exhaust gas (upstream then downstream) a catalyst member d 3, a mouth 41 of a reducing agent introduction means 4 (or a reducing agent precursor), a mixer 5, a catalyst element SCR 6 (selective catalytic reduction catalyst for nitrogen oxides) , and a SCRF particulate filter provided with an SCR impregnating coating 7.
- the casing 2 is situated as close as possible to the exhaust gas collector, in particular at about 35 cm from its outlet (for example at most 50 cm from its exit). It is arranged, in the motor vehicle, in the under-hood space accommodating the engine 1.
- the dimensional / geometric data are as follows:
- the envelope 2 is cylindrical and accommodates the various members 3, 6 and 7, also of substantially cylindrical outer shapes and sections of about 0.016 m 2 of frontal area.
- the ends of the casing 2 are in the form of cone sections, to allow connection to the rest of the exhaust line of much smaller section.
- the length L1 of the SCR member 6 is between 5 and 7.5 cm, for example 6 cm.
- the length L2 of the particulate filter 7 is between 4 and 6 inches, or between 10.16 and 15.24 cm, for example here 5 inches, or 12.7 cm.
- the length L12 measured from the upstream face of the SCR member 6 to the downstream face of the particle filter 7 is, knowing that they are separated by about 8 mm.
- the length L3 of the oxidation catalyst member is about 70 mm.
- the length L0 from the upstream face of the oxidation catalyst 3 to the downstream face of the particle filter 7 is between 28 and 38 cm. This length corresponds substantially to the length of the cylindrical portion of the casing 2.
- the total length LT of the casing 2, including the two connecting cones is a little higher.
- the first "brick" of this post-treatment device is the oxidation catalyst 3, which oxidizes the reducing species that are carbon monoxide (CO) and unburned hydrocarbons (HC).
- the reactions he favors are as follows:
- This phase comprises oxides such as alumina doped with various stabilizers (lanthanum, cerium, zirconium, titanium, silicon, etc.). On these oxides, precious metals (platinum, palladium) are deposited in order to catalyze low temperature oxidation reactions. Acidic compounds such as zeolites are also added. Their ability to store hydrocarbons at low temperatures and remove them from storage at high temperatures can improve the treatment of HC during cold phases. To these functions can be added (oxidation of carbon monoxide and unburned hydrocarbons and storage of these at low temperature) a storage function of nitrogen oxides, NOx also at low temperature.
- the mixing box 5 fed by an injector 4 itself fed by a gauge-pump module that draws urea in aqueous solution in a tank of about 20 liters (it may contain less because the volume of urea embedded depends on the consumption strategy adopted), ensures a mixture between the drops of urea and the exhaust gas sufficient for the reaction (R3) of thermolysis to be completely and the reaction (R4) d hydrolysis takes place in part before being "complete” on the organ SCR 6.
- the reactions (R3) and (R4) are explained below.
- the SCR member 6 and the SCRF particle filter 7 treat the nitrogen oxides.
- the principle of the reduction of these NOx by SCR (whether by the dedicated organ 6 or by the coating of the particulate filter 7) can be broken down into two main steps:
- the decomposition of the urea, injected by the injector 4 into the mixing box 5, is done in two stages: a first called “thermolysis” which forms a molecule of NH 3 and an isocyanic acid molecule ( HNCO) and a second which forms the second molecule of NH 3 from the hydrolysis of isocyanic acid.
- thermallysis which forms a molecule of NH 3 and an isocyanic acid molecule ( HNCO)
- HNCO isocyanic acid molecule
- the catalyst of the SCR member 6 is based on zeolites exchanged with iron, such as zeolites ⁇ , fer-ferrierite, ZSM5, and the SCR catalyst of the particle filter 7 is based on copper zeolites, such as chabazite. , ⁇ , ferrierite iron, ZSM5, As already mentioned above, it is the best choice, in particular for the SCR 6 catalyst to prime the most rapidly, at "low" temperature when the ratio N0 2 / NOx The exhaust is close to 0.5 at the inlet of the SCR member 6, and so that the catalyst of the particulate filter remains effective even at very high temperature (that it resists filter regenerations in particular).
- the porous support of the SCR member 6 is made of cordierite, whereas the porous support of the filter 7 is rather made of silicon carbide SiC.
- FIG. 2 represents a comparative example 2 of a post-processing device. Other things being equal, the SCR member 6 has been removed, and the SCRF particle filter 7 'has been lengthened by the length of the SCR member 6.
- FIG. 3 compares the temperatures measured upstream of the SCR brick 6 of the example 1 and upstream of the SCRF filter 7 of the comparative example 2.
- the graph indicates in abscissa the time in seconds, and in ordinate the measured temperature in ° C.
- the measurements were made with a motor whose exhaust line is equipped with one then the other of the after-treatment devices described above, the engine operating by simulating a WLTC driving cycle.
- Curve C1 refers to Example 1, and curve C2 to Example 2. It is observed that curve C1 is generally above curve C2, especially in the first 400 seconds of the cycle.
- example 1 With the architecture of example 1 according to the invention, more favorable thermal conditions are obtained, which results in a greater efficiency in the treatment of NOx: the output of the exhaust line has been measured at the level of NOx expressed in grams per kilometer on a WLTC cycle at the end of the exhaust line for each of the two examples, which gave the following results: - for example 1: level of 0.040 g / km
- the invention provides a very significant reduction of NOx emissions to the atmosphere, while preserving the compactness of the entire post-treatment device.
- FIG. 4 compares the NOx levels of the exhaust gases at different stages for example 1 and example 2.
- the abscissa is represented by the time in seconds, the ordinate represents the amount of NOx contained in the gas, cumulated over time.
- the curve C0 represents the amount of NOx at the motor output
- the curve C4 represents the amount of NOx at the outlet of the SCR member of Example 1 according to the invention
- the curve C5 represents the amount of NOx at the end of the exhaust line with the after-treatment device of Comparative Example 2
- the curve C6 represents the amount of NOx at the end of the exhaust line with the post-exhaust device. treatment according to Example 1 of the invention.
- SCRF particle filter 7 located downstream also plays an important role, since this brick ensures the removal of particles and performs NOx treatment that would not have been reduced in the SCR member 6, during heavy engine loads, for example.
- a NOx sensor (not shown in the figures) capable of indirectly measuring the NH 3 emissions.
- the system is therefore also "looped” to also avoid any risk of NH 3 leakage at the exit of the exhaust line. Indeed, if the NOx sensor measures ammonia at the outlet of the pollution control system, the injection of urea is rapidly reduced and NH 3 leakage is limited / stopped.
- the SCR catalytic coating SCRF filter 7 ' is destroyed by a severe regeneration, above 1000 ° C, the zeolite degrades and passes ammonia, which forces to reducing or even cutting the ammonia injection.
- FIG. 5 presents a graph in the form of a histogram representing, on the left, an SCR member with an impregnation coating comprising a zeolite impregnated with iron (Fe) and on the right, all things being equal, the same organ provided with an impregnating coating comprising a zeolite impregnated with copper (Cu) (the same as previously described with the example according to the invention).
- the ordinate shows the NOx reduction efficiency (in%) measured on aged SCR members and at low temperature, ie at about 150 ° C.
- the blocks of the two histograms correspond to different NO 2 / NOx ratios at the input of the SCR organ, from the darkest (the highest percentage in NO 2, equal to 90%) to the lightest (corresponding to 0% of NO 2). ). It is observed that the reduction of NOx is greater for ratios of NO 2 / NO x of 50%, and that, for a ratio of 50%, the efficiency is greater for a zeolite exchanged with iron than for a zeolite exchanged at copper. It is also verified with this graph that iron zeolites are very sensitive to the NO 2 / NOx ratio, which is clearly less the case for zeolites exchanged with copper, and that iron zeolites are generally more efficient at low temperatures than zeolites. to copper, excluding N0 2 ratio less than 10%.
- FIG. 6 very schematically illustrates the comparative evolutions of C0 2 and NOx emission from an engine to the source: on the abscissa is represented the NOx level of the exhaust gases (in grams per kilometer traveled). of the vehicle) and on the ordinate is the C0 2 level of the exhaust gas (also in grams per vehicle kilometer traveled), with, as regards the NOx level, the indication of the maximum value allowed according to the standard Euro 5 and according to the Euro 6 standard. It can be seen that the more the engine reduces its NOx emissions, the more its C0 2 emissions increase. Thus, when the engine is designed to greatly reduce the emissions of C0 2 , it emits a larger amount of NOx, as shown in this figure 6. Having an extremely effective post-processing system like that of the example 1 according to the invention, it is therefore possible to minimize the emissions at the source of C0 2 , and therefore fuel consumption, without degrading the level of NOx emission at the end of the exhaust line.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
L'invention porte sur un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion (1) qui comporte, d'amont en aval: un organe catalyseur d'oxydation DOC (3), une embouchure (41) d'un moyen d'introduction (4) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR, un organe catalyseur de réduction catalytique sélective des oxydes d'azote NOx(6) et un organe filtre à particules (7) muni d'un revêtement catalyseur de réduction catalytique sélective des oxydes d'azote NOxSCRF. Lesdits organes et embouchure étant regroupés dans une enveloppe (2) unique. Ledit organe catalyseur de réduction catalytique sélective des oxydes d'azote (6) étant d'une longueur au moins deux fois plus petite (L1) que la longueur (L2) du filtre à particules (7).
Description
DISPOSITIF DE POST-TRAITEMENT DES GAZ D'ECHAPPEMENT
D'UN MOTEUR A COMBUSTION
[001 ] L'invention est relative à des moyens de traitement des polluants des gaz d'échappement des moteurs à combustion.
[002] Les émissions polluantes des moteurs à combustion équipant les véhicules automobiles sont réglementées par des normes. Les polluants réglementés sont, selon la technologie de moteur à combustion considérée, le monoxyde de carbone (CO), les hydrocarbures imbrûlés (HC), les oxydes d'azotes (NOx, c'est-à-dire NO et NO¾ et les particules (PM), qui sont formés lors de la combustion du carburant dans la chambre de combustion puis émis à l'échappement.
[003] Il est connu d'employer un certain nombre de moyens de dépollution dans la ligne d'échappement des moteurs à combustion pour en limiter les émissions de polluants réglementés. Un catalyseur d'oxydation permet le traitement du monoxyde de carbone, des hydrocarbures imbrûlés, et dans certaines conditions des oxydes d'azote ; un filtre à particules peut être employé pour le traitement des particules de suie.
[004] On désigne de manière générale ce type de dispositif par le terme de dispositif de « post-traitement » des gaz d'échappement. [005] Pour satisfaire aux normes anti-pollution sur les émissions d'oxydes d'azote (NOx), un système spécifique de post-traitement peut être introduit dans la ligne d'échappement des véhicules, notamment des véhicules équipés de moteurs Diesel. Pour le traitement des oxydes d'azote (NOx), on connaît des technologies de réduction catalytique sélective, ou « SCR » pour « Sélective Catalytic Réduction » en anglais, qui consistent à réduire les NOx par introduction d'un agent réducteur (ou d'un précurseur d'un tel agent réducteur) dans les gaz d'échappement par réactions catalysées. Il peut par exemple s'agir d'une solution d'urée, dont la décomposition va permettre l'obtention d'ammoniac qui servira d'agent réducteur, mais également d'un réducteur ou d'un précurseur d'un tel réducteur sous forme gazeuse. On parlera dans la suite du présent document d'une manière générale de « réducteur » pour désigner un agent réducteur ou un précurseur d'agent réducteur.
[006] L'agent réducteur généré permet de réduire les oxydes d'azotes par réaction dans un catalyseur SCR, c'est-à-dire un substrat portant une imprégnation catalytique apte à favoriser la réduction des NOx par l'agent réducteur.
[007] Les normes européennes, notamment, tendent à devenir de plus en plus sévères. Et les solutions pour réduire les émissions de polluants en sortie de ligne d'échappement pour respecter les normes actuelles se révéleront insuffisantes au vu des évolutions de normes prévues au-delà de 2016.
[008] En effet, la première étape de la norme, Euro 6b (entrée en vigueur en septembre 2014) a conduit les constructeurs automobiles à choisir entre différentes options pour réduire plus spécifiquement l'émission des NOx : - la réduction des NOx « à la source », au niveau du fonctionnement même du moteur, via des technologies de type recyclage des gaz d'échappement dans le moteur, recyclage appelé aussi technologie EGR selon l'acronyme du terme anglais correspondant à « Exhaust Gas Recirculation » haute et basse pression, par exemple ; - la réduction des NOx au niveau de la ligne d'échappement via une technologie de traitement catalytique séquentiel appelée « piège à NOx » ; - la réduction des NOx au niveau de la ligne d'échappement également, via une technologie de traitement continu appelée « réduction catalytique sélective » telle que brièvement décrite plus haut (SCR) ; voire en cumulant plusieurs de ces solutions.
[009] Si ces solutions permettent de satisfaire cette première étape dans l'évolution de la norme (Euro6b), elles ne sont pas forcément capables de satisfaire la seconde étape qui s'annonce encore plus sévère (Euro 6c, entrée en vigueur prévue en septembre 2017), avec des mesures de polluants sur un nouveau cycle de roulage dit « WLTC » (pour « Worldwide Harmonized Light vehicles Test Cycle » en anglais, soit cycle de test harmonisé pour véhicules légers en français), contenant plus de phases transitoires que le cycle d'homologation actuel (dit « MVEG » pour Motor Vehicle Emissions Group en anglais, soit groupe d'émissions pour véhicules motorisés en français), mais aussi des mesures hors cycle (appelé « RDE » pour Real Driving Emission ou émissions en conditions réelles de conduite) devraient être instaurées.
[0010] Pour répondre notamment aux risques d'émissions trop élevées de NOx hors cycle, différentes solutions technologiques et architectures peuvent être envisagées. Elles ont leurs avantages et leurs inconvénients. Mais la technologie de traitement des oxydes d'azote la plus efficace est la réduction catalytique sélective (SCR) car elle est efficace dans des plages de température et de débit de gaz plus étendues que celles d'un piège à NOx, l'autre solution de post-traitement.
[001 1 ] Par ailleurs, s'ajoutent des contraintes d'implantation du dispositif de posttraitement. En effet, de façon générale, les systèmes de catalyseurs utilisés sont d'autant plus efficaces que la température des gaz d'échappement qui les traversent est élevée (jusqu'à un certain point) et stable. Ils s'amorceront alors d'autant plus vite après le démarrage du moteur quand la température des gaz d'échappement monte progressivement. On a donc intérêt à implanter les dispositifs de post-traitement au plus près du moteur, c'est-à-dire au plus près du collecteur des gaz d'échappement, sous capot, alors même que cet environnement est en général très encombré. Les dispositifs de post-traitement se doivent donc d'être aussi compacts que possible sans nuire à leurs performances.
[0012] Dans tout le présent texte, on comprend les termes « amont » et « aval » en fonction de la direction générale d'écoulement des gaz d'échappement dans la ligne d'échappement intégrant les organes de post-traitement, depuis le moteur jusqu'à la canule d'extrémité de la ligne d'échappement. [0013] Il est, par exemple, connu de la demande de brevet WO 201 1/089330 un dispositif de post-traitement regroupant dans une même enveloppe plusieurs organes qui vont être successivement traversés par les gaz d'échappement. Il y est proposé, notamment, une série d'organes comprenant d'amont en aval : - un catalyseur d'oxydation, - un injecteur d'agent réducteur de type urée, - un mélangeur dont le rôle est de mélanger intimement les gouttelettes d'urée injectées dans l'enveloppe traversée par les gaz, de façon à se décomposer en ammoniac de manière aussi homogène que possible sur toute la section droite de l'enveloppe, - un organe SCR, - un filtre à particules (appelé FAP par la suite). Il y est également proposé une alternative, consistant à remplacer l'organe SCR et le FAP, par un FAP qui est imprégné d'un catalyseur de réduction des NOx et qui remplit ainsi à la fois la fonction de filtre des suies et de réduction des NOx (appelé SCRF par la suite).
[0014] Cependant, un organe dédié SCR comme décrit dans ce document peut ne pas s'amorcer thermiquement suffisamment tôt pour des raisons de thermique non favorable, notamment dans des conditions de roulage urbain pendant lesquelles les températures dans la ligne d'échappement sont assez basses. Or, c'est justement pendant ce type de roulage urbain que les évolutions de la norme européenne (notamment) vont devenir contraignantes en termes de réduction des émissions de NOx.
[0015] Et la variante intégrant le catalyseur SCR dans le filtre à particules (SCRF) n'est pas non plus assez performante en conditions de roulage urbain, du fait de l'inertie
thermique importante du substrat spécifique aux filtres à particules, même s'il est positionné de façon très proche du moteur. En effet, le substrat qui assure la filtration des particules et qui est imprégné du revêtement de catalyseur (revêtement d'imprégnation appelé en anglais « washcoat ») est une céramique poreuse qui consomme beaucoup de chaleur pour monter en température. L'amorçage de la phase SCR ne pourra ainsi se faire qu'au bout d'un certain temps, ce qui ne permettra pas à cette solution de respecter les futures évolutions de la norme.
[0016] L'invention a donc pour but de concevoir un post-traitement des gaz d'échappement qui remédie aux inconvénients précités. Elle a notamment pour but d'améliorer les dispositifs existants pour permettre de respecter des normes plus sévères en matière d'émissions de polluants, et plus particulièrement concernant les émissions de NOx dans des conditions de roulage non stabilisées du type roulage urbain et/ou dans une plage de températures élargie. Avantageusement, elle a aussi pour but d'obtenir un dispositif de post-traitement plus performant et qui reste, en outre, compact. [0017] L'invention a tout d'abord pour objet un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion qui comporte, d'amont en aval :
- un organe catalyseur d'oxydation DOC ;
- une embouchure d'un moyen d'introduction (moyen qui peut être un injecteur) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR ;
- un organe catalyseur de réduction catalytique sélective des oxydes d'azote NOx;
- un organe filtre à particules muni d'un revêtement catalyseur de réduction catalytique sélective des oxydes d'azote NOx, dit SCRF ;
- lesdits organes et embouchure étant regroupés dans une enveloppe unique ; - ledit organe catalyseur de réduction catalytique sélective des oxydes d'azote étant d'une longueur au moins deux fois plus petite, notamment au moins 2,2 ou d'au moins 2,3 ou d'au moins 2,4 ou 2,5 jusqu'à 3 fois plus petite (au moins) que la longueur du filtre à particules.
[0018] Cette architecture de dispositif de post-traitement s'est avérée extrêmement favorable sur plusieurs aspects.
[0019] D'une part, on préserve la compacité de l'ensemble, qui est contenu dans une enveloppe unique, et qui pourra ainsi être avantageusement logé au plus près du collecteur des gaz d'échappement en sortie moteur sur la ligne d'échappement.
[0020] D'autre part, elle permet d'améliorer les performances du dispositif, notamment en ce qui concerne la réduction des NOx dans les conditions les moins favorables, à savoir, comme évoqué plus haut, dans des conditions de roulage urbain (où la température des gaz d'échappement reste inférieure à un roulage de type route ou autoroute); voire des conditions de type conduite dite agressive, avec de forts débits de gaz d'échappement par à-coups. Il a été également montré, subsidiairement, que cette architecture permettait de limiter au maximum les rejets d'ammoniac en bout de ligne d'échappement (ce qu'on désigne également en anglais sous le terme de « NH3 slip », rejets d'ammoniac provenant de l'agent réducteur injecté en amont de l'organe porteur du catalyseur SCR mais n'ayant pas réagi).
[0021 ] Et ces résultats très intéressants ont été obtenus par la combinaison de deux organes SCR : l'un dédié à cette fonction, l'autre intégré dans le filtre à particules, avec un ratio entre les longueurs des deux organes très spécifique correspondant à un organe SCR bien plus petit que le filtre à particules. Ainsi, on « répartit » la fonction de réduction des NOx sur deux organes successifs, avec un organe SCR dédié qui est petit, et de fait très efficace car s'amorçant thermiquement nettement mieux, à une température seuil inférieure à la température d'amorçage du SCR contenu dans le filtre à particules (SCRF). On peut ainsi considérer que l'organe SCR assure la majorité de la réduction globale des NOx du dispositif, notamment dans des conditions de roulage défavorables (température faible des gaz, débit fort des gaz), et que le SCRF voit sa contribution à la réduction des NOx s'élever une fois ces conditions de roulage défavorables quittées ou une fois les conditions de roulage stabilisées. En évitant d'utiliser un SCRF seul, non seulement le dispositif de l'invention s'amorce mieux thermiquement, mais il atténue l'impact d'une éventuelle dégradation du revêtement catalytique du FAP en cas d'une régénération qui ferait atteindre dans le FAP des températures excessives (plus de 1000°C, pour donner un ordre de grandeur). [0022] Le dispositif selon l'invention va donc traiter les polluants gazeux et particulaires au fur et à mesure qu'ils traversent les organes de dépollution : ils pénètrent donc d'abord dans la première « brique » constituée du catalyseur d'oxydation, où le CO et les HC sont oxydés en eau (H20) et en dioxyde de carbone (C02).
[0023] Sortent de cette première brique DOC, les produits de l'oxydation du CO et des HC à savoir H20 et C02, ainsi que les oxydes d'azote et les particules. Ces composés cheminent ensuite à travers la brique de catalyseur SCR (très courte/petite comme détaillée plus loin), qui réduit les NOx en azote (N2) suivant différentes réactions qui seront détaillées plus loin.
[0024] Restent en sortie du catalyseur SCR des NOx résiduels, l'excès de l'ammoniac (NH3) provenant du catalyseur (explicité ultérieurement) et des particules. Ces composés rentrent dans la brique SCRF, qui va terminer la réduction des NOx par NH3 et éliminer les particules en les stockant avant de les brûler lors des régénérations. [0025] De préférence, l'organe catalyseur de réduction catalytique sélective des oxydes d'azote présente une longueur d'au plus 80 mm, notamment d'au plus 76 mm, de préférence comprise entre 45 et 55 mm, par exemple d'environ 50 mm. Il s'agit donc vraiment d'un organe SCR très petit, qu'on peut désigner sous le terme de « tranche » SCR, qui s'est avéré remplir parfaitement son rôle alors qu'on aurait pu craindre qu'une si faible longueur/épaisseur le rendrait finalement peu performant (notamment du fait d'un temps de contact raccourci entre le catalyseur et les gaz d'échappement).
[0026] De préférence, la longueur de l'organe SCRF est d'au moins 10 cm, notamment comprise entre 10 et 15 cm, notamment d'environ 12 cm.
[0027] De préférence, la longueur totale de l'organe catalyseur de réduction catalytique sélective des oxydes d'azote et du filtre à particules, y compris l'espace éventuel entre eux, est d'au plus 200 mm, notamment d'au plus 190 mm, de préférence compris entre 170 et 180 mm L'invention maintient donc un encombrement modéré par rapport à une solution utilisant seulement un organe SCRF : elle ne vient pas rallonger notablement le dispositif de post-traitement, et préserve donc la compacité de l'ensemble. [0028] De préférence, la longueur totale entre l'entrée de l'organe catalyseur d'oxydation et la sortie du filtre à particules est d'au plus 450 mm, notamment d'au plus 400 mm, de préférence comprise entre 280 et 380 mm.
[0029] Avantageusement, l'organe catalyseur d'oxydation comprend un matériau adsorbeur d'oxydes d'azote, appelé aussi PNA pour l'expression anglaise « Passive NOx Adsorber ».
[0030] Le rôle d'un matériau de type PNA est de pouvoir stocker lors des phases froides les oxydes d'azote émis par le moteur, tant que les organes catalysant la réduction des
NOx (l'organe SCR et le filtre à particules avec revêtement catalytique SCRF) ne sont pas encore fonctionnels. En effet, il faut attendre 180 à 200 °C pour pouvoir injecter le réducteur (urée) dans la ligne d'échappement et former l'ammoniac qui convertira ensuite les NOx. Avec du NH3 « pré-stocké » dans le revêtement SCR, la conversion des NOx peut s'opérer quelques dizaines de degrés avant (aux environs de 140°C). Le PNA fonctionne en stockant les NOx « à froid » (grâce, notamment, à l'ajout, dans l'imprégnation « classique » d'un catalyseur d'oxydation, d'oxydes simples ou mixtes à caractère basique tels que, par exemple, les oxydes de cérium ou de baryum) avant de les restituer à plus haute température quand la SCR est pleinement opérationnelle (entre 200 et 300 °C). Pour assurer un fonctionnement correct eu PNA, on prévoit des phases de purges pour nettoyer sa surface qui s'est sulfatée au fur et à mesure du temps, de façon connue.
[0031 ] De préférence, l'organe catalyseur d'oxydation présente un catalyseur dont la quantité de métaux nobles est ajustée de façon à obtenir en sortie de l'organe des gaz d'échappement dont le ratio N02/NOx est égal ou voisin de 0,5 (on comprend par « voisin » une variation de par exemple +/- 15% autour de cette valeur).
[0032] Il a en effet été observé que, notamment quand le matériau du revêtement SCR (de l'organe SCR et/ou du filtre à particules SCRF) était choisi à base de zéolithes échangées au fer, on maximisait son efficacité en ménageant un ratio N02/NOx proche de 0,5 en entrée de l'organe SCR. L'organe avec des zéolithes échangées au fer fonctionne mieux à basse température qu'avec des zéolithes échangées au cuivre, et aussi bien à plus haute température.
[0033] Ce ratio peut être ajusté autour de cette valeur en ajustant la composition du catalyseur d'oxydation. La formulation de ce type de catalyseur contient généralement majoritairement de l'alumine Al203 dopée, des zéolithes de type aluminosilicates hydratés de métaux (connues également sous l'abréviation ZSM5) et non échangées afin de piéger les HC à froid, et des métaux précieux comme le Platine (Pt) et le Palladium (Pd), avec un ratio défini. En effet, en fonction de ce ratio Pt/Pd, le catalyseur d'oxydation sera plus ou moins apte à oxyder le monoxyde de carbone (CO) et les hydrocarbures imbrûlés (HC) : Plus le catalyseur contient de Platine plus sa capacité à oxyder NO en N02 sera grande. A noter qu'en sortie moteur, et donc à l'entrée de l'organe catalyseur d'oxydation, les émissions de NOx sont majoritairement composées de NO (>90%). Le catalyseur d'oxydation va donc oxyder efficacement NO en N02 pour ajuster le ratio N02/NOx à la valeur voulue.
[0034] De préférence, le catalyseur de l'organe catalyseur de réduction catalytique sélective est à base de zéolithe(s) échangée(s) au fer.
[0035] En effet, les revêtements d'imprégnation à base de zéolithes échangées au Fer (Fe) présentent un amorçage à plus basse température que ceux à base de zéolithes échangées au Cuivre (Cu), dès lors que le ratio N02/NOx est proche de 0,5. Quand cette condition est satisfaite, un revêtement à base de zéolithes échangées au Fer permet de convertir les NOx dès 150°C.
[0036] De préférence, le catalyseur du filtre à particules est à base de zéolithe(s) échangée(s) au cuivre. [0037] En effet, cette nature de catalyseur est particulièrement adaptée pour imprégner un filtre à particules : - il présente une meilleure résistance thermique qu'un catalyseur à base de zéolithes échangées au Fer (il doit en effet subir sans dégradations d'éventuelles régénérations périodiques du filtre à très haute température), - la combustion des suies par N02 à des températures proches de 250 °C à 350 °C tend àréduire le ratio N02/NOx, les formulations de base de zéolithes échangées au Cuivre (Cu) étant également mieux adaptés que celles échangées au fer, ~ il présente aussi une capacité de stockage de NH3 plus élevée. Cette dernière caractéristique est particulièrement intéressante, car le faible volume (la faible longueur pour une section inchangée) de l'organe SCR peut être à l'origine de fuites de NH3. Il est donc très utile que ces fuites d'ammoniac puissent être « captées » correctement dans la brique SCRF en aval de l'organe SCR.
[0038] A noter que les zéolithes échangées au Cuivre proposées pour le SCRF et/ou échangées au fer pour le catalyseur de l'organe catalyseur de réduction catalytique SCR sont par exemple à base de zéolithes du type chabazite, ferriérite ou aluminosilicates hydratés (ZMS5), et peuvent contenir également au moins un des oxydes suivants : oxyde de cérium (Ce), de zirconium (Zr), ou encore au moins un des métaux suivants : du niobium (Nb), du tungstène (W), du titane (Ti).
[0039] Selon un mode de réalisation, le support de l'organe catalyseur d'oxydation et/ou celui de l'organe catalyseur de réduction catalytique sélective est métallique, et optionnellement équipé(s) de moyens chauffants, par exemple de type résistances électriques. On réduit ainsi leurs durées de montée en température, et donc le temps à partir duquel ils s'amorcent.
[0040] Alternativement, on peut utiliser pour l'un et/ou l'autre de ces organes un matériau de type céramique comme la cordiérite.
[0041 ] Le support du filtre à particules SCRF peut être, par exemple, en carbure de silicium (SiC), en cordiérite ou en titanate d'aluminium. [0042] Avantageusement, le dispositif de post-traitement selon l'invention comprend également un organe mélangeur des gaz d'échappement et du réducteur et/ou du précurseur du réducteur entre l'embouchure du moyen d'introduction de réducteur et/ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR et l'organe catalyseur de réduction catalytique sélective des oxydes d'azote. [0043] Ce mélangeur a pour fonction de mélanger aussi bien que possible les gaz d'échappement avec le réducteur ou le précurseur de réducteur, cela étant notamment très utile quand le précurseur est de type liquide, comme de l'urée en phase aqueuse.
[0044] L'invention s'applique également à l'injection directe du gaz réducteur, comme de l'ammoniac, qui vient alimenter la ligne d'échappement à partir d'une ou plusieurs cartouches de sel (notamment de type SrCI2) apte à adsorber l'ammoniac et à le relarguer par activation thermique, de façon connue (technologie appelée communément SCR « solide »), et, dans ce cas-là, le mélangeur est moins nécessaire.
[0045] De préférence, le mélangeur est d'un type présentant une longueur de parcours pour des gaz le traversant au moins deux fois supérieure à la longueur qu'il occupe longitudinalement dans l'enveloppe. Le but du mélangeur est d'homogénéiser le mélange entre les gaz d'échappement et le réducteur, et, si l'on introduit un précurseur d'un agent réducteur, de favoriser la décomposition du précurseur de réducteur en agent réducteur. L'emploi d'un mélangeur imposant au gaz d'échappement un parcours relativement long comparativement à la longueur du mélangeur, par exemple d'un type imposant au gaz un cheminement sensiblement hélicoïdal avec impacteur, est particulièrement adapté à l'invention. Il permet, par l'obtention d'une distance de parcours des gaz d'échappement supérieure à ses propres dimensions, l'emploi dans un dispositif compact d'une solution à base d'urée en tant que précurseur d'ammoniac, alors même que la thermolyse de l'urée dans les gaz d'échappement nécessite un temps non négligeable. Le mélangeur peut être aussi, par exemple, un mélangeur en T utilisant la recirculation des gaz aval catalyseur d'oxydation dans une double enveloppe autour du catalyseur d'oxydation avec une injection sur la face de sortie du catalyseur d'oxydation.
[0046] De préférence, le dispositif de post-traitement selon l'invention comprend un capteur d'oxydes d'azote en amont de l'organe catalyseur d'oxydation et un autre en aval du filtre à particules, de préférence hors de l'enveloppe unique. Le capteur « amont » peut être remplacé par une modélisation le cas échéant. [0047] De préférence, l'enveloppe unique est sensiblement en forme de cylindre muni d'un divergent d'entrée et d'un convergent de sortie (en forme de tronçons de cône), d'une longueur totale d'au plus 450 mm, notamment d'au plus 400 mm, de préférence comprise entre 280 et 380 mm, et présente donc une compacité tout-à-fait compatible avec une implantation dans un sous-capot moteur d'un véhicule automobile. [0048] De préférence, le moyen d'introduction de l'agent réducteur est un injecteur du type à actionneur par solénoïde ou piézoélectrique ou mécanique ou hydropneumatique.
[0049] Le conduit entre le collecteur d'échappement et le dispositif selon l'invention peut en outre comporter une ou plusieurs turbines de turbocompresseur dans le cadre d'un moteur suralimenté, et, en particulier, le dispositif selon l'invention peut être raccordé directement au carter d'un turbocompresseur, à la sortie d'une turbine.
[0050] L'invention a également pour objet la ligne d'échappement d'un moteur à combustion intégrant le dispositif de post-traitement précédemment décrit.
[0051 ] L'invention porte également sur un véhicule doté d'un compartiment moteur, tel que le moteur et le dispositif de post-traitement équipant sa ligne d'échappement sont contenus dans ledit compartiment moteur.
[0052] L'invention est décrite plus en détail ci-après en référence aux figures relatives à un mode de réalisation non limitatif se rapportant à un dispositif de post-traitement des gaz d'échappement d'un moteur diesel :
- la figure 1 représente schématiquement un moteur et sa ligne d'échappement d' véhicule automobile comportant le dispositif de post-traitement selon un exemple 1 l'invention ;
- la figure 2 présente un moteur et sa ligne d'échappement comportant un dispositif de post-traitement à titre d'exemple 2 comparatif ;
- la figure 3 présente un graphe comparant les températures en amont des organes de réduction catalytique sélective SCR de l'exemple 1 selon l'invention et de l'exemple 2 comparatif ;
- la figure 4 représente un graphe comparant les émissions de NOx en bout de ligne d'échappement avec le dispositif de post-traitement selon l'exemple 1 de l'invention et le dispositif de post-traitement selon l'exemple 2 comparatif ;
- la figure 5 représente un comparatif entre deux revêtements d'imprégnation SCR utilisés dans le dispositif de post-traitement selon l'exemple 1 de l'invention ;
- la figure 6 représente un schéma illustrant les évolutions comparées d'émissions de C02 et de NOx d'un moteur à la source.
[0053] Les références reprises d'une figure à l'autre désignent des mêmes composants, et les différents composants représentés ne sont pas nécessairement à l'échelle.
[0054] Dans l'invention, et tel que représenté sur la figure 1 , on propose un dispositif de traitement des gaz d'échappement d'un moteur 1 . Ce dispositif est intégré à la ligne d'échappement raccordée au collecteur (non représenté) des gaz d'échappement du moteur 1 . Il comporte, dans une même enveloppe 2 (que l'on peut également désigner par le terme anglophone de « canning ») et, selon le sens d'écoulement des gaz d'échappement (d'amont en aval donc) un organe catalyseur d'oxydation 3, une embouchure 41 d'un moyen d'introduction 4 de réducteur (ou d'un précurseur d'agent réducteur), un mélangeur 5, un organe catalyseur SCR 6 (catalyseur de réduction catalytique sélective des oxydes d'azote), et un filtre à particules SCRF muni d'un revêtement d'imprégnation SCR 7. L'enveloppe 2 est située au plus près du collecteur des gaz d'échappement, notamment à environ 35 cm de sa sortie (par exemple d'au plus 50 cm de sa sortie). Elle est disposée, dans le véhicule automobile, dans l'espace sous-capot accueillant le moteur 1 .
[0055] Les données dimensionnelles/géométriques sont les suivantes : L'enveloppe 2 est cylindrique et permet de loger les différents organes 3, 6 et 7, également de formes extérieures sensiblement cylindriques et de sections d'environ 0,016 m2 de surface frontale. Les extrémités de l'enveloppe 2 sont en forme de tronçons de cône, afin d'en permettre le raccordement au reste de la ligne d'échappement de section nettement plus petite. La longueur L1 de l'organe SCR 6 est entre 5 et 7,5 cm, par exemple de 6 cm. La
longueur L2 du filtre à particules 7 est compris entre 4 et 6 pouces, soit entre 10,16 et 15,24 cm, par exemple ici de 5 pouces, soit 12,7 cm.
[0056] La longueur L12 mesurée depuis la face amont de l'organe SCR 6 jusqu'à la face aval du filtre à particules 7 est, sachant qu'ils sont séparés d'environ 8 mm. [0057] La longueur L3 de l'organe catalyseur d'oxydation est d'environ 70 mm.
[0058] La longueur L0 depuis la face amont du catalyseur d'oxydation 3 jusqu'à la face aval du filtre à particules 7 est entre 28 et 38 cm. Cette longueur correspond substantiellement à la longueur de la portion cylindrique de l'enveloppe 2. La longueur totale LT de l'enveloppe 2, incluant les deux cônes de raccordement est donc un peu supérieure.
[0059] La première « brique » de ce dispositif de post-traitement est le catalyseur d'oxydation 3, qui oxyde les espèces réductrices que sont le monoxyde de carbone (CO) et les hydrocarbures imbrûlés (HC). Les réactions qu'il favorise sont les suivantes :
CO + ½ 02 -> C02 (R1 ) Réaction d'oxydation du monoxyde de carbone
CxHy + (x+y/4) 02 -> x C02 + (y/2) H20 (R2) Réaction d'oxydation des hydrocarbures imbrûlés
[0060] Il est constitué d'un support en nid d'abeille de type cordiérite sur lequel est déposée une phase active catalytique (« washcoat »). Cette phase comporte des oxydes tels que l'alumine dopée par différents stabilisants (lanthane, cérium, zirconium, titane, silicium, etc .). Sur ces oxydes, des métaux précieux (platine, palladium) sont déposés afin de catalyser les réactions d'oxydation à basse température. Des composés acides tels que des zéolithes sont aussi ajoutés. Leur aptitude au stockage des hydrocarbures à basse température et leur déstockage à haute température permet d'améliorer le traitement des HC lors des phases froides. On peut ajouter à ces fonctions (oxydation du monoxyde de carbone et des hydrocarbures imbrûlés et stockage de ces derniers à basse température) une fonction de stockage des oxydes d'azote, NOx également à basse température. Cette fonction de stockage est assurée par l'introduction de matériaux de type oxydes simples ou mixtes à caractère basique tels que par exemple, les oxydes de cérium ou de baryum entre autres.
[0061 ] On ne décrit pas en détails ici l'injecteur 4 d'urée, ni le mélangeur 5 (appelé aussi boîte de mélange), déjà décrits et connus, notamment de la demande de brevet WO 201 1 /089330 précitée. On rappelle juste que la boîte de mélange 5 alimentée par un injecteur 4, lui-même alimenté par un module jauge-pompe qui puise de l'urée en solution aqueuse dans un réservoir d'environ 20 litres (il peut en contenir moins car le volume d'urée embarquée dépend de la stratégie de consommation adoptée), assure un mélange entre les gouttes d'urée et les gaz d'échappement suffisant pour que la réaction (R3) de thermolyse se fasse totalement et que la réaction (R4) d'hydrolyse se fasse en partie avant d'être « terminée » sur l'organe SCR 6. Les réactions (R3) et (R4) sont explicitées plus loin.
[0062] L'organe SCR 6 et le filtre à particules SCRF 7 traitent les oxydes d'azote. Le principe de la réduction de ces NOx par SCR (que ce soit par l'organe 6 dédié ou par le revêtement du filtre à particules 7) peut se décomposer en deux grandes étapes :
1 > Formation du réducteur (NH3) à partir d'Adblue ® qui est un mélange d'urée à 32,5% et d'eau
(NH2)2CO -» NH3 + HNCO (R3) thermolyse de l'urée
HNCO + H20 -» NH3 + C02 (R4) hydrolyse de l'acide isocyanique
[0063] La décomposition de l'urée, injectée par l'injecteur 4 dans la boîte de mélange 5, se fait en deux étapes : une première appelée « thermolyse » qui forme une molécule de NH3 et une molécule d'acide isocyanique (HNCO) et une seconde qui forme la seconde molécule de NH3 à partir de l'hydrolyse de l'acide isocyanique. Ces deux étapes, et surtout la première, nécessitent des températures d'au moins 180 à 200 °C, d'où l'intérêt que l'injecteur et la boîte de mélange gaz-liquide (urée) soient proche de la sortie du moteur 1 . Cette étape permet de former le réducteur indispensable au fonctionnement de la réduction SCR.
2 > Réduction catalytique sélective des NOx par NH3 par les revêtements SCR des organes 6 et 7:
4 NO + 02 + 4 NH3 4 N2 + 6 H20 (R5) SCR standard
NO + N02 + 2 NH3 ^ 2 N2 + 3 H20 (R6) SCR à cinétique rapide 6 N02 + 8 NH3 7 N2 + 12 H20 (R7) SCR basse température
[0064] Plusieurs réactions peuvent avoir lieu (R5 à R7), mais la conversion optimale et recherchée des NOx est obtenue grâce à la réaction (R6) dont la cinétique est la plus rapide mais dont la stœchiométrie impose un ratio N02/NOx proche de 0,5, surtout aux basses températures (c'est-à-dire d'au plus 250 °C). [0065] Le catalyseur de l'organe SCR 6 est à base de zéolithes échangées au fer, comme les zéolithes β, fer— ferriérite, ZSM5, et le catalyseur SCR du filtre à particules 7 est à base de zéolithes au cuivre, comme chabazite, β, fer ferriérite, ZSM5, Comme déjà mentionné plus haut, c'est le meilleur choix, notamment pour que le catalyseur SCR 6 s'amorce le plus rapidement, à « basse » température quand le ratio N02/NOx des gaz d'échappement est proche de 0,5 en entrée de l'organe SCR 6, et pour que le catalyseur du filtre à particules reste efficace même à très haute température (qu'il résiste aux régénérations du filtre notamment). Le support poreux de l'organe SCR 6 est en cordiérite, tandis que le support poreux du filtre 7 est plutôt en carbure de silicium SiC.
[0066] La figure 2 représente un exemple comparatif 2 d'un dispositif de post-traitement. Toutes choses égales par ailleurs, l'organe SCR 6 a été supprimé, et le filtre à particules SCRF 7' a été rallongé de la longueur de l'organe SCR 6.
[0067] La figure 3 permet de comparer les températures mesurées en amont de la brique SCR 6 de l'exemple 1 et en amont du filtre SCRF 7 de l'exemple 2 comparatif. Le graphe indique en abscisse le temps en secondes, et en ordonnée la température mesurée en °C. Les mesures ont été faites avec un moteur dont la ligne d'échappement est équipée de l'un puis de l'autre des dispositifs de post-traitement décrits plus haut, le moteur fonctionnant en simulant un cycle de roulage WLTC. La courbe C1 se rapporte à l'exemple 1 , et la courbe C2 à l'exemple 2. On observe que la courbe C1 est globalement au-dessus de la courbe C2, tout particulièrement dans les 400 premières secondes du cycle. On obtient donc avec l'architecture de l'exemple 1 selon l'invention des conditions thermiques plus favorables, ce qui se traduit par une plus grande efficacité dans le traitement des NOx : on a mesuré en sortie de ligne d'échappement le niveau de NOx exprimé en gramme par kilomètre sur un cycle WLTC en bout de ligne d'échappement pour chacun des deux exemples, ce qui a donné les résultats suivants : - pour l'exemple 1 : niveau de 0,040 g/km
- pour l'exemple 2 comparatif : niveau de 0,173 g/km
[0068] On obtient donc avec l'invention une réduction très significative des rejets de NOx à l'atmosphère, tout en préservant la compacité de l'ensemble du dispositif de posttraitement.
[0069] La figure 4 compare les niveaux de NOx des gaz d'échappement à différents stades pour l'exemple 1 et l'exemple 2. En abscisse est représenté le temps en secondes, en ordonnée est représenté la quantité de NOx contenue dans les gaz, en cumulé dans le temps. La courbe C0 représente la quantité de NOx en sortie moteur, la courbe C3 en sortie du catalyseur d'oxydation 3, la courbe C4 représente la quantité de NOx à la sortie de l'organe SCR de l'exemple 1 selon l'invention, la courbe C5 représente la quantité de NOx en bout de ligne d'échappement avec le dispositif de post traitement de l'exemple 2 comparatif, et la courbe C6 représente la quantité de NOx en bout de ligne d'échappement avec le dispositif de post-traitement selon l'exemple 1 de l'invention. La comparaison de ces différentes courbes confirme la meilleure efficacité dans la réduction des NOx de l'exemple de l'invention. Comparer les courbes C5 et C6 permet de souligner la complémentarité de l'organe SCR 6 et de l'organe SCRF 7, dont la combinaison permet d'atteindre en bout de ligne un niveau de NOx extrêmement faible: en taux cumulé à 1800 secondes, on voit le niveau de NOx avec l'invention (C6) a été diminué d'un facteur 3 au moins par rapport à celui obtenu avec l'exemple comparatif (C5). Comparer les courbes C4 et C5 permet également de souligner que l'organe SCR 6 selon l'invention, bien que de très faible longueur, a une capacité de réduction des NOx proche de celle du SCRF 7' de l'exemple comparatif, qui est nettement plus long, ce qui est particulièrement intéressant.
[0070] Mais le filtre à particules SCRF 7 située en aval (environ 8 millimètres derrière) joue aussi un rôle important, puisque cette brique assure l'élimination des particules et réalise le traitement des NOx qui n'auraient pas été réduits dans l'organe SCR 6, lors des fortes charges moteur, par exemple.
[0071 ] En aval de l'enveloppe 2 est positionné un capteur NOx (non représenté aux figures) capable de mesurer indirectement les émissions de NH3. Le système est donc en outre « bouclé » pour éviter également tout risque de fuite de NH3 en sortie de ligne d'échappement. En effet, si le capteur de NOx mesure de l'ammoniac en sortie du système de dépollution, l'injection d'urée est rapidement réduite et les fuites de NH3 limitées/stoppées. Dans le cas de l'exemple comparatif 2, si le revêtement catalytique SCR du filtre SCRF 7' est détruit par une régénération sévère, au-delà de 1000°C, la zéolithe se dégrade et laisse passer l'ammoniac, ce qui contraint à la réduction voire à la coupure de l'injection d'ammoniac. Comme on réduit - voire on stoppe - ainsi la réduction
catalytique des NOx, une alerte est envoyée au conducteur par l'intermédiaire d'un voyant qui s'allume au tableau de bord du véhicule. A contrario, dans le cas de l'exemple 1 selon l'invention, la présence de l'organe SCR 6, qui ne subit pas les régénérations thermiques d'un filtre à particules, permet de maintenir près de 80% de l'efficacité de la réduction des NOx (comme déjà souligné à l'aide du graphe de la figure 4), et permet de rester sous le seuil d'alerte du conducteur (tout en évitant des rejets d'ammoniac malodorants en bout de ligne d'échappement).
[0072] La figure 5 présente un graphe sous forme d'un histogramme représentant, à gauche, un organe SCR avec un revêtement d'imprégnation comprenant une zéolithe imprégnée au fer (Fe) et à droite, toutes choses égales par ailleurs, un même organe muni d'un revêtement d'imprégnation comprenant une zéolithe imprégnée au cuivre (Cu) (les mêmes que précédemment décrits avec l'exemple selon l'invention). En ordonnée, est représentée l'efficacité de réduction des NOx, (en %) mesurée sur des organes SCR vieillis et à basse température, i.e. à 150°C environ. Les pavés des deux histogrammes correspondent à différents ratios de N02/NOx en entrée de l'organe SCR, du plus foncé (le plus fort pourcentage en N02, égal à 90%), au plus clair (correspondant à 0% de N02). On observe que la réduction des NOx est plus importante pour des ratios de N02/NOx de 50%, et que, pour un ratio de 50%, l'efficacité est plus grande pour une zéolithe échangée au fer que pour une zéolithe échangée au cuivre. On vérifie également avec ce graphe que les zéolithes au fer sont très sensibles au ratio N02/NOx, ce qui est nettement moins le cas des zéolithes échangées au cuivre, et que les zéolithes au fer sont globalement plus performantes à basse température que les zéolithes au cuivre, hors ratio de N02 inférieur à 10%.
[0073] La figure 6 illustre de façon très schématique les évolutions comparées d'émission de C02 et de NOx d'un moteur à la source : en abscisse est représenté le niveau de NOx des gaz d'échappement (en gramme par kilomètre parcouru du véhicule) et en ordonnée est représenté le niveau de C02 des gaz d'échappement (également en gramme par kilomètre parcouru de véhicule), avec, en ce qui concerne le niveau de NOx l'indication de la valeur maximale autorisée selon la norme Euro 5 et selon la norme Euro 6. On constate que plus le moteur réduit ses émissions en NOx, plus ses émissions en C02 augmentent. Donc, lorsque le moteur est conçu de façon à diminuer fortement les émissions de C02, il émet une quantité plus importante de NOx, comme illustré par cette figure 6. En ayant un système de post-traitement extrêmement efficace comme celui de l'exemple 1 selon l'invention, il est donc possible de minimiser à la source les émissions
de C02, et donc la consommation de carburant, sans dégrader le niveau d'émission de NOx en bout de ligne d'échappement.
[0074] En conclusion, grâce au dispositif de post-traitement de l'invention, non seulement il est possible de répondre aux exigences croissantes des futures normes, notamment en ce qui concerne les niveaux d'émission de NOx, mais il est également possible de réduire la consommation de carburant en déplaçant, dans la conception et/ou le contrôle commande du moteur thermique, le compromis C02/NOx vers des stratégies « bas C02 », et on évite ou limite les rejets d'ammoniac en bout de ligne d'échappement.
Claims
REVENDICATIONS
Dispositif de post-traitement des gaz d'échappement d'un moteur à combustion (1 ) caractérisé en ce qu'il comporte, d'amont en aval :
• un organe catalyseur d'oxydation DOC (3) ;
• une embouchure (41 ) d'un moyen d'introduction (4) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR ;
• un organe catalyseur de réduction catalytique sélective des oxydes d'azote NOx (6) ;
• un organe filtre à particules (7) muni d'un revêtement catalyseur de réduction catalytique sélective des oxydes d'azote NOx SCRF ;
• lesdits organes et embouchure étant regroupés dans une enveloppe (1 ) unique ;
• ledit organe catalyseur de réduction catalytique sélective des oxydes d'azote (6) étant d'une longueur au moins deux fois plus petite (L1 ), notamment au moins 2,2 à 3 fois plus petite que la longueur (L2) du filtre à particules (7).
Dispositif de post-traitement selon la revendication précédente, caractérisé en ce que l'organe catalyseur de réduction catalytique sélective des oxydes d'azote (6) présente une longueur (L1 ) d'au plus 80 mm, notamment d'au plus 76 mm, de préférence comprise entre 45 et 55 mm.
Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que la longueur totale (L12) de l'organe catalyseur de réduction catalytique sélective (6) des oxydes d'azote et du filtre à particules (7), y compris l'espace éventuel entre eux, est d'au plus 200 mm, notamment d'au plus 190 mm, de préférence compris entre 170 et 180 mm.
Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que la longueur totale (L0) entre l'entrée de l'organe catalyseur d'oxydation (3) et la sortie du filtre à particules (7) est d'au plus 450 mm, notamment d'au plus 400 mm, de préférence comprise entre 280 et 380 mm.
Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que l'organe catalyseur d'oxydation (3) comprend un matériau adsorbeur d'oxydes d'azote PNA.
6. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que l'organe catalyseur d'oxydation (3) présente un catalyseur dont la quantité de métaux nobles est ajustée de façon à obtenir en sortie de l'organe des gaz d'échappement dont le ratio N02/NOx est égal ou voisin de 0,5. 7. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que le catalyseur de l'organe catalyseur de réduction catalytique sélective (6) est à base de zéolithe(s) échangée(s) au fer.
8. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que le catalyseur du filtre à particules (7) est à base de zéolithe(s) échangée(s) au cuivre.
9. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que le support de l'organe catalyseur d'oxydation (3) et/ou celui de l'organe catalyseur de réduction catalytique sélective (6) est métallique, et optionnellement équipé(s) de moyens chauffants. 10. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un organe mélangeur (5) pour le mélange des gaz d'échappement et du réducteur et/ou la conversion du précurseur en réducteur entre l'embouchure (41 ) du moyen d'introduction (4) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR et l'organe catalyseur de réduction catalytique sélective des oxydes d'azote (6).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15723268.7A EP3149300B1 (fr) | 2014-05-27 | 2015-04-24 | Dispositif de post-traitement des gaz d'échappement d'un moteur a combustion |
CN201580028270.6A CN106471230B (zh) | 2014-05-27 | 2015-04-24 | 用于燃烧式发动机的排放气体后处理装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1454753 | 2014-05-27 | ||
FR1454753A FR3021695B1 (fr) | 2014-05-27 | 2014-05-27 | Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015181456A1 true WO2015181456A1 (fr) | 2015-12-03 |
Family
ID=51168236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2015/051118 WO2015181456A1 (fr) | 2014-05-27 | 2015-04-24 | Dispositif de post-traitement des gaz d'échappement d'un moteur a combustion |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3149300B1 (fr) |
CN (1) | CN106471230B (fr) |
FR (1) | FR3021695B1 (fr) |
WO (1) | WO2015181456A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3369905A1 (fr) | 2017-03-02 | 2018-09-05 | PSA Automobiles SA | Véhicule intégrant un système de post-traitement des gaz d' échappement d'un moteur à combustion |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11098895B2 (en) | 2019-10-31 | 2021-08-24 | Total Combustion Llc | Emissions eliminator by total combustion |
FR3120094B1 (fr) | 2021-02-23 | 2023-05-19 | Psa Automobiles Sa | Ligne d’echappement de moteur thermique comprenant des elements de chauffage |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110138776A1 (en) * | 2010-09-02 | 2011-06-16 | Ford Global Technologies, Llc | Diesel engine exhaust treatment system |
WO2011089330A1 (fr) | 2010-01-25 | 2011-07-28 | Peugeot Citroën Automobiles SA | Dispositif de post - traitement des gaz d'echappement d'un moteur a combustion interne |
WO2012123660A1 (fr) * | 2011-03-16 | 2012-09-20 | Peugeot Citroen Automobiles Sa | Ensemble coudé de post-traitement des gaz d'echappement d'un moteur a combustion, groupe motopropulseur et vehicule associés |
FR2995349A1 (fr) * | 2012-09-13 | 2014-03-14 | Peugeot Citroen Automobiles Sa | Dispositif de traitement des emissions polluantes d'un moteur thermique par reduction catalytique, diminuant l'apport en reducteur embarque |
-
2014
- 2014-05-27 FR FR1454753A patent/FR3021695B1/fr not_active Expired - Fee Related
-
2015
- 2015-04-24 WO PCT/FR2015/051118 patent/WO2015181456A1/fr active Application Filing
- 2015-04-24 CN CN201580028270.6A patent/CN106471230B/zh not_active Expired - Fee Related
- 2015-04-24 EP EP15723268.7A patent/EP3149300B1/fr active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011089330A1 (fr) | 2010-01-25 | 2011-07-28 | Peugeot Citroën Automobiles SA | Dispositif de post - traitement des gaz d'echappement d'un moteur a combustion interne |
US20110138776A1 (en) * | 2010-09-02 | 2011-06-16 | Ford Global Technologies, Llc | Diesel engine exhaust treatment system |
WO2012123660A1 (fr) * | 2011-03-16 | 2012-09-20 | Peugeot Citroen Automobiles Sa | Ensemble coudé de post-traitement des gaz d'echappement d'un moteur a combustion, groupe motopropulseur et vehicule associés |
FR2995349A1 (fr) * | 2012-09-13 | 2014-03-14 | Peugeot Citroen Automobiles Sa | Dispositif de traitement des emissions polluantes d'un moteur thermique par reduction catalytique, diminuant l'apport en reducteur embarque |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3369905A1 (fr) | 2017-03-02 | 2018-09-05 | PSA Automobiles SA | Véhicule intégrant un système de post-traitement des gaz d' échappement d'un moteur à combustion |
Also Published As
Publication number | Publication date |
---|---|
FR3021695B1 (fr) | 2016-06-03 |
EP3149300A1 (fr) | 2017-04-05 |
CN106471230B (zh) | 2018-09-25 |
FR3021695A1 (fr) | 2015-12-04 |
CN106471230A (zh) | 2017-03-01 |
EP3149300B1 (fr) | 2018-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3230564B1 (fr) | Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion | |
EP3230563B1 (fr) | Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion | |
EP2426326A1 (fr) | Filtre à particules à trois revetements catalytiques | |
EP3153677B1 (fr) | Dispositif de post-traitement des gaz d'echappement d'un moteur à combustion | |
EP3149300B1 (fr) | Dispositif de post-traitement des gaz d'échappement d'un moteur a combustion | |
EP1617051B1 (fr) | Ligne d'echappement d'un moteur a combustion interne, et systeme d'epuration des gaz d'echappement la comprenant | |
FR3057020A1 (fr) | Dispositif de post-traitement des gaz d’echappement d’un moteur thermique | |
FR3081921A1 (fr) | Ligne d’echappement de moteur thermique comprenant un element de chauffage amont | |
FR3100839A1 (fr) | Ensemble comprenant un moteur à combustion interne avec un compresseur électrique et un élément chauffant | |
FR3029970A1 (fr) | Dispositif de post-traitement des gaz d’echappement d’un moteur a combustion | |
FR3037101A1 (fr) | Ligne d’echappement d’un moteur thermique | |
EP2411648B1 (fr) | Procede de controle des emissions polluantes d'un moteur a combustion | |
EP3369905A1 (fr) | Véhicule intégrant un système de post-traitement des gaz d' échappement d'un moteur à combustion | |
EP3464847A1 (fr) | Filtre a particules a geometrie de canal variable et methodes de fabrication d'un tel filtre | |
FR3041032A1 (fr) | Dispositif de post-traitement des gaz d’echappement d’un moteur a combustion | |
EP2411647A1 (fr) | Procede de controle des emissions polluantes d'un moteur a combustion, groupe motopropulseur et vehicule equipe de ce groupe motopropulseur | |
FR3043430B1 (fr) | Dispositif de post-traitement des gaz d’echappement d’un moteur thermique | |
FR3120094A1 (fr) | Ligne d’echappement de moteur thermique comprenant des elements de chauffage | |
FR2907159A1 (fr) | Systeme de traitement des gaz d'echappement d'un moteur diesel a turbocompresseur. | |
FR3007792A1 (fr) | Ligne d'echappement de gaz d'echappement d'un moteur thermique | |
WO2011104451A1 (fr) | Procede de controle d'un systeme de traitement des gaz d'echappement d'un moteur a combustion interne | |
FR3066541A1 (fr) | Systeme de post-traitement des gaz d'echappement d'un moteur a combustion interne | |
FR2955612A1 (fr) | Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion | |
FR3088958A1 (fr) | Système optimise de post-traitement des gaz d'echappement d'un moteur thermique | |
FR3042813A1 (fr) | Dispositif de post-traitement des gaz d’echappement d’un moteur a combustion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15723268 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015723268 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015723268 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |