WO2015178685A1 - External cavity type tunable wavelength laser module for to-can packaging - Google Patents

External cavity type tunable wavelength laser module for to-can packaging Download PDF

Info

Publication number
WO2015178685A1
WO2015178685A1 PCT/KR2015/005062 KR2015005062W WO2015178685A1 WO 2015178685 A1 WO2015178685 A1 WO 2015178685A1 KR 2015005062 W KR2015005062 W KR 2015005062W WO 2015178685 A1 WO2015178685 A1 WO 2015178685A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
bragg grating
light
laser module
optical signal
Prior art date
Application number
PCT/KR2015/005062
Other languages
French (fr)
Korean (ko)
Inventor
이학규
박준오
서준규
신장욱
Original Assignee
(주)켐옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150069933A external-priority patent/KR101679660B1/en
Application filed by (주)켐옵틱스 filed Critical (주)켐옵틱스
Priority to US15/311,798 priority Critical patent/US20170093118A1/en
Publication of WO2015178685A1 publication Critical patent/WO2015178685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Definitions

  • the present invention relates to an external resonator type wavelength tunable laser module for low cost and reliable TO-CAN packaging while enabling wavelength tunability in a wide wavelength range.
  • WDM Widelength Division Multiplexing
  • optical communication technology is currently applied to most backbone networks and metro networks, and transmits a plurality of high-speed signals by performing wavelength division multiplexing on a single optical fiber.
  • the wavelength variable range of the DFB laser is narrow to 10 nm or less, so that all wavelengths within the C-band (1535 nm to 1565 nm) are supported.
  • the disadvantage is the use of ⁇ 4 sets of tunable DFB laser modules.
  • the wavelength-variable transponder using the DFB laser does not provide an efficient solution in view of reducing inventory burden because the light source is expensive and a multichannel transponder must be provided for backup. Accordingly, there is a need to develop an external resonator type wavelength variable laser module capable of varying all wavelengths of a WDM band (for example, C-band) required by one laser module.
  • FIG. 1 is a plan view of a butterfly package which is a conventional external resonator type wavelength variable laser module
  • FIG. 2 is a side view of a butterfly package which is a conventional external resonator type wavelength variable laser module, and more specifically, a laser diode chip.
  • This is a schematic diagram of a butterfly package with butt-coupling optical waveguides.
  • XMD packages which are smaller than butterfly packages, basically have a similar configuration.
  • an optical waveguide having a laser diode chip 10 for a light source positioned on the chip stem 11 and a Bragg grating 30 for wavelength tunability therein is formed.
  • a heater 40 provided above the optical waveguide 20
  • a beam splitter 50 for partially reflecting and partially transmitting an optical signal output from the optical waveguide 20, and transmitting the beam splitter 50.
  • a lens 60 for focusing the optical signal, a photodiode 70 for measuring the power of the optical signal reflected by the beam splitter 50, and a temperature for setting the operating temperature of the wavelength tunable laser module regardless of the external temperature environment. It may be configured to include a sensor 81 and a thermoelectric cooler (82).
  • the volume of the optical waveguide 20 including the Bragg grating 30 is large, which inevitably increases the volume of the entire wavelength tunable laser module.
  • the cost of packaging a variable laser module is also high.
  • TO-CAN packages are widely used in communication optical modules because of their low manufacturing cost and small volume compared to butterfly or XMD packages.
  • the output direction of the optical signal should be vertically upward with respect to the TO stem surface on which the optical elements are placed, the direction of the optical signal emitted parallel to the TO stem surface should be changed vertically upward. There is this.
  • An object of the present invention is to provide a structure in which the propagation direction of an optical signal that is not linear can be switched in an optical waveguide in which Bragg grating is formed to package optical elements constituting an external resonator type wavelength variable laser module. There is this.
  • the external resonator-type wavelength tunable laser module for generating broadband light;
  • a 45 degree reflector which is redirected by the turning waveguide region and transmits a part of the optical signal exiting the optical waveguide and reflects the rest vertically upward;
  • the turning waveguide region is configured to turn an optical signal obtained by adjusting the reflection band of the Bragg grating 180 degrees.
  • the external resonator type wavelength tunable laser module according to the present invention may further include a photodiode for measuring the power of the optical signal passing through the 45 degree reflector.
  • the external resonator type wavelength tunable laser module according to the present invention may further include a temperature sensor and a thermoelectric cooler, and are electrically connected to the heater, the temperature sensor and the thermoelectric cooler, and input a signal detected by the temperature sensor. It may further include a temperature control device for adjusting the heat generation of the heater and the heat absorption of the thermoelectric cooler.
  • the temperature sensor is provided on an upper portion of the optical waveguide, the thermoelectric cooler is provided on the lower portion of the optical waveguide.
  • the optical waveguide is a polymer optical waveguide made of a polymer.
  • the Bragg grating is a polymer Bragg grating made of a polymer, and the optical waveguide and the polymer forming the Bragg grating include a halogen element and include a functional group that is cured by ultraviolet rays or heat.
  • the optical waveguide and the polymer forming the Bragg grating are characterized in that the thermo-optic coefficient is -9.9 ⁇ 10 -4 to -0.5 ⁇ 10 -4 °C -1 .
  • the optical waveguide geometry is a rib structure, a ridge structure, an inverted rib structure, an inverted ridge structure, or a channel structure.
  • the optical waveguide in which the Bragg grating is formed in a structure that can change the traveling direction of the optical signal it is possible to reduce the volume of the external resonator-type wavelength variable laser module, thereby packaging TO-CAN .
  • FIG. 1 is a plan view of a butterfly package which is a conventional external resonator type wavelength variable laser module.
  • FIG. 2 is a side view of a butterfly package which is a conventional external resonator type wavelength variable laser module.
  • FIG. 3 is a plan view of an external resonator type wavelength tunable laser module for TO-CAN packaging according to an embodiment of the present invention.
  • FIG. 4 is a side view of an external resonator-type wavelength tunable laser module for TO-CAN packaging according to an embodiment of the present invention.
  • FIG. 5 is a view showing the structure of the optical waveguide and the formation position of the Bragg grating in the external resonator type wavelength variable laser module according to the present invention.
  • FIG 3 is a plan view of an external resonator-type wavelength tunable laser module for TO-CAN packaging according to an embodiment of the present invention
  • Figure 4 is an external resonator-type wavelength variable for TO-CAN packaging according to an embodiment of the present invention One side view of the laser module.
  • the present invention utilizes the thermo-optic effect of an optical waveguide (more preferably, an optical waveguide made of a polymer material) to externally control an optical signal required by adjusting a wavelength band reflected from a Bragg grating (that is, a reflection band of a Bragg grating).
  • an optical waveguide more preferably, an optical waveguide made of a polymer material
  • an optical signal required by adjusting a wavelength band reflected from a Bragg grating (that is, a reflection band of a Bragg grating).
  • the wavelength tunable laser module includes an external resonator-type light source 100 for generating broadband light, an optical waveguide 200 into which the broadband light output from the light source 100 is input, and an optical waveguide 200.
  • the Bragg grating 300 and the Bragg grating 300 are formed on the optical waveguide 200 formed thereon, and the heater 400 and Bragg grating 300 for adjusting the reflection band of the Bragg grating 300 by the thermo-optic effect.
  • the 45 degree reflector 500 for transmitting the light and reflecting the rest vertically upward, and the lens 600 for making the optical signal reflected upward and upward by the 45 degree reflector 500 into parallel light or convergent light. It can be made, including.
  • the external resonator type light source 100 may be a semiconductor optical amplifier or a semiconductor laser diode chip that generates broadband light, wherein the emission surface of the light has an anti-reflection (AR) coating of 1% or less and is opposite to the emission surface.
  • AR anti-reflection
  • Silver may have a high-reflection (HR) coating with a reflectivity of 80% or greater.
  • the semiconductor laser diode chip may include an active layer, a current blocking layer, a p-metal, and an n-metal layer where light is generated.
  • the InP substrate may be formed of a combination of Group 3-5 elements, such as InGaAsP, InGaAlAs, InAlAs, or a combination of Group 2-4 elements
  • the active layer is a multi-quantum well or bulk It may be a bulk active structure.
  • An optical coupling lens may be provided between the light source 100 and the optical waveguide 200, wherein the optical coupling lens collects the light output from the light source 100 to form the Bragg grating 300. Butt-coupling with the optical waveguide 200. More specifically, the optical waveguide 200 is composed of an upper cladding 210 and a lower cladding 220 and a core 230 through which light is transmitted, which induces total reflection. It may be input to the core 230 of the optical waveguide 200. On the other hand, the light source 100 may be provided on the chip stem 110 for physical support.
  • the optical waveguide 200 is a path through which broadband light output from the light source 100 is input at one end thereof and an optical signal obtained through the Bragg grating 300 is output at the other end.
  • the optical waveguide 200 may be provided and supported on an upper portion of the substrate 1000, wherein the substrate 1000 may be a silicon substrate, a polymer substrate, a glass substrate, or the like.
  • the optical waveguide 200 includes a cladding 210 and 220 and a core 230 surrounded by the claddings 210 and 220, and the refractive index of the core 230 is higher than that of the cladding 210 and 220.
  • the light incident on the 230 is totally reflected at the interface between the core 230 and the cladding 210, 220 according to the angle of incidence.
  • the Bragg grating 300 is formed by forming a groove having a predetermined period in the advancing direction of the light in the cladding (210, 220) or the core 230 of the optical waveguide 200, the empty space (air) of the groove to the Bragg grating Alternatively, the groove may be filled with a material such as silicon oxide or polysilicon to form the Bragg grating 300.
  • the periodic grooves forming the Bragg grating 300 reflect periodic wavelengths to the refractive index of the optical waveguide 200 through which light travels, thereby reflecting a wavelength determined by the spacing between the gratings.
  • the optical wave having the center wavelength of the reflection band of the Bragg grating 300 is generated by the resonance of the wavelength reflected by the Bragg grating 300 to be re-input to the emission surface of the light source 100.
  • the wavelength ⁇ reflected by the Bragg grating 300 is determined by the lattice equation shown in Equation 1 below.
  • Equation 1 m is an odd number such as 1,3,5,7 indicating the order of the Bragg grating, n is the effective refractive index of the optical waveguide, ⁇ is the period of the Bragg grating.
  • the Bragg grating 300 may satisfy the Bragg condition.
  • An optical signal (for example, an optical signal having a center wavelength of ⁇ i) is partially reflected and returned to one end of the optical waveguide 200, and the optical signals of the remaining wavelengths are output to the other end of the optical waveguide 200.
  • the optical signal reflected to one end of the optical waveguide 200 is fed back to the optical waveguide 200 in which the intensity of light is amplified in the light source (for example, a semiconductor laser diode chip) 100 and the Bragg grating 300 is formed.
  • the light source for example, a semiconductor laser diode chip
  • Equation 1 the change in Bragg reflection wavelength with temperature is derived from Equation 1 as shown in Equation 2 above.
  • Equation 2 M, n and ⁇ of Equation 2 are the same as Equation 1, and ⁇ 0 is the initial reflection wavelength. That is, the amount of change in the reflection wavelength with respect to temperature is proportional to the sum of the amount of change in the effective refractive index with the change in the lattice period.
  • the change in the reflected wavelength with respect to temperature is 0.085 nm / K for a 12 nm variable corresponding to 16 channels at 100 GHz intervals. It can be seen that the temperature is about 142K.
  • the thermo-optic coefficient of silicon, ⁇ n / ⁇ T was 1.9 ⁇ 10 ⁇ 4 / K, and the change in period due to temperature was ignored.
  • the heater 400 is preferably provided on the optical waveguide 200 on which the Bragg grating 300 is formed.
  • the heater 400 generates joule heat as a predetermined electrical signal is applied to vary the temperature of the optical waveguide 200 in which the Bragg grating 300 is formed, and by the thermo-optic effect of the optical waveguide 200.
  • the wavelength band reflected by the Bragg grating 300 is adjusted, and thus the center wavelength of the optical signal output to the other end of the optical waveguide 200 is varied.
  • the heater 400 may use any conventional metal heater which generates heat when electric power is applied, but preferably, such as Cr, Ni, Cu, Ag, Au, Pt, Ti, Al elements and nichrome It is preferable that it is a heater provided with the thin-film heating element selected from the group which consists of a laminated thin film which consists of alloys.
  • the redirecting waveguide region 250 refers to a waveguide region in which the optical signal obtained by the action of the Bragg grating 300 and the heater 400 is redirected at a predetermined angle among the entire regions of the optical waveguide 200.
  • the turning waveguide region 250 may be configured to switch the optical signal obtained by adjusting the reflection band of the Bragg grating 300 at one time to change the advancing direction of the optical signal three times by 60 degrees.
  • have. 3 may be considered to use three multi-mode total reflection mirrors therein.
  • the turning waveguide region 250 is not limited to the embodiment illustrated in FIG. 3, and may be configured to redirect the optical signal obtained by the action of the Bragg grating 300 and the heater 400 at various angles. have. However, when the optical signal obtained as the reflection band of the Bragg grating 300 is adjusted by 180 degrees by the turning waveguide region 250 has an advantage of minimizing the volume of the external resonator type wavelength variable laser module. .
  • the optical signal redirected by the turning waveguide region 250 exits the optical waveguide 200 and is partially transmitted by the 45 degree reflector 500 provided at the other end of the optical waveguide 200. It is reflected vertically upward.
  • the 45 degree reflector 500 may be provided by bonding a separate 45 degree mirror to the other end of the optical waveguide 200 or may be provided by etching the optical waveguide 200 itself to have an inclined surface of 45 degrees. have. At this time, the 45-degree reflector 500 is coated on the reflecting surface of the reflector 500 to have a constant reflectance, so that the light incident on the reflector 500 is reflected and transmitted at a constant rate can do.
  • An optical signal transmitted through the 45 degree reflector 500 may be incident on the photodiode 700, and at this time, the photodiode 700 converts the incident optical signal into electrical energy to output the entire wavelength-variable laser module. Monitor the change.
  • the optical signal reflected by the 45 degree reflector 500 and traveling vertically upward becomes parallel light or convergent light by the lens 600 positioned above the 45 degree reflector 500.
  • the focal length of the lens 600 is at the 45 degree reflector 500, the light becomes parallel light, and when the focal length of the lens 600 is farther than the distance from the 45 degree inclined plane to the lens 600. Become a converged light.
  • the optical signal collected by the lens 600 may be incident on an optical fiber (not shown) positioned outside the wavelength tunable laser module.
  • the shape or focal length of the lens 600 may be variously selected in consideration of the coupling loss to the optical fiber.
  • the reflection band of the Bragg grating 300 is controlled by the thermo-optic effect of the optical waveguide 200 according to the heat supply of the heater 400. Accordingly, the wavelength of the output optical signal can be varied.
  • the temperature sensor 810 is preferably provided on the upper portion of the optical waveguide 200 to measure the temperature of the optical waveguide 200 in real time to adjust the current applied to the heater 400.
  • the temperature sensor 810 may be any conventional temperature sensor whose electrical property (voltage, resistance or current amount) is changed by heat.
  • the temperature sensor 810 may include a thermistor.
  • Thermoelectric cooler 820 is preferably provided in the lower portion of the optical waveguide 200 to control the temperature change of the optical waveguide 200 independently of the external temperature environment so that the optical waveguide 200 has a precise thermo-optic effect. Do.
  • the thermoelectric cooler 820 may include a conventional thermoelectric element in which endotherm is generated by a predetermined electrical signal.
  • Both the heater 400 and the thermoelectric cooler 820 may adjust the temperature with a precision of less than 0.1 °C
  • the temperature sensor 810 is preferably capable of sensing the temperature with a precision of less than 0.1 °C.
  • the temperature sensor 810 and the thermoelectric cooler 820 may be further provided with a temperature control device (not shown) so that the output characteristic of the stable optical signal is displayed independently of the external temperature environment.
  • the temperature controller is electrically connected to the heater 400, the temperature sensor 810, and the thermoelectric cooler 820, and receives a signal detected by the temperature sensor 810 to generate heat and a thermoelectric cooler of the heater 400. 820 controls the endotherm.
  • the temperature control device may comprise a conventional microprocessor and a computer readable storage medium on which the control program is executed.
  • All of the above-described optical elements constituting the external resonator type wavelength tunable laser module according to the present invention may be mounted on the TO stem 1100 for physical support and TO-CAN packaging.
  • the TO stem 1100 is preferably made of a metal having high thermal conductivity.
  • thermoelectric cooler 820 may be mounted on the TO stem 1100 using UV or thermosetting polymer resin, and the substrate 1000 and the upper portion of the substrate 1000 are positioned on the thermoelectric cooler 820.
  • the chip stem 110 and the optical waveguide 200 may also be mounted using ultraviolet rays or a thermosetting polymer resin.
  • the electrode 900 penetrates through the TO stem 1100 and may be provided at a predetermined number and height on the left and right sides of the thermoelectric cooler 820.
  • the material of the optical waveguide 200 is a polymer optical waveguide which is a polymer
  • the material of the Bragg grating 300 is also a polymer Bragg grating which is a polymer. This is because the polymer material has an excellent thermo-optic effect compared to other materials.
  • the polymer forming the optical waveguide 200 (cladding 210, 220 and core 230) or Bragg grating 300 includes a low loss optical polymer.
  • the low loss optical polymer contains a halogen element such as fluorine (F) or deuterium in a general polymer, and preferably includes a functional group capable of heat or ultraviolet curing.
  • the polymer forming the optical waveguide 200 or Bragg grating 300 preferably has a thermo-optic coefficient of -9.9 ⁇ 10 -4 to -0.5 ⁇ 10 -4 (° C. ⁇ 1 ).
  • Optical waveguide 200 is composed of cladding (210, 220) and the core 230, the geometry of the optical waveguide 200 is a rib (ridge) structure, ridge structure, inver as shown in FIG. It may be a inverted rib structure, an inverted ridge structure, or a channel structure.
  • the external resonator type wavelength tunable laser module according to the exemplary embodiment of the present invention illustrated in FIGS. 3 and 4 illustrates a channel structure among the geometrical structures of the optical waveguide 200, and Bragg may have a structure other than the channel structure.
  • the grating 300 may be formed in the cladding 210, 220 or the core 230.
  • the effective refractive index of the optical waveguide 200 is the position of the Bragg grating, the thickness of the Bragg grating, the ON / OFF ratio of the Bragg grating, the order of the Bragg grating, the refractive index of the polymer materials constituting the core and cladding and the physical shape of the core Because of the function, it is not easy to theoretically predict the wavelength of the output optical signal in the various structures shown in FIG.
  • the optical waveguide 200 and the Bragg grating 300 are formed using a polymer, and in controlling the effective refractive index of the optical waveguide 200, the heater 400, the temperature sensor 810, and the thermoelectric cooler 820.
  • the temperature control device it is possible to predictably adjust the temperature of the optical waveguide 200 in the portion where the Bragg grating 300 is formed, thereby easily fixing the center wavelength of the output optical signal to a specific wavelength and It is desirable to be able to vary.

Abstract

An external cavity type tunable wavelength laser module, according to the present invention, comprises: an external cavity type light source that generates wideband light; a light waveguide to which the wideband light output from the light source is input; a Bragg lattice formed in the light waveguide; a heater that is provided above the light waveguide having the Bragg lattice formed therein and adjusts a reflection band of the Bragg lattice by a thermo-optic effect; a direction change guide region for changing, by a predetermined angle, the direction of an optical signal obtained by adjusting the reflection band of the Bragg lattice; a 45-degree reflection part that transmits a part of the optical signal therethrough, which escapes from the light waveguide after the direction thereof is changed by the direction change guide region, and reflects the rest of the optical signal vertically upward; and a lens that makes the optical signal, which is reflected vertically upward by the 45-degree reflection part, collimated light or converged light. According to the present invention, a light waveguide having a Bragg lattice formed therein is designed in a structure in which the progress direction of a light signal can be changed, which leads to a reduction in the volume of an external cavity type laser module, thereby achieving standardized compact TO-CAN packaging, and accordingly reducing a cost.

Description

TO-CAN 패키징을 위한 외부 공진기형 파장가변 레이저 모듈External resonator type wavelength tunable laser module for TO-CAN packaging
본 발명은 넓은 파장 영역에서 파장가변이 가능함과 동시에, 저가이고 신뢰성 높은 TO-CAN 패키징을 위한 외부 공진기형 파장가변 레이저 모듈에 관한 것이다.The present invention relates to an external resonator type wavelength tunable laser module for low cost and reliable TO-CAN packaging while enabling wavelength tunability in a wide wavelength range.
WDM(Wavelength Division Multiplexing) 광통신 기술은 현재 대부분의 기간망 및 메트로망에 적용되는 기술로, 하나의 광섬유로 구성된 광선로에 파장분할 다중화하여 다수의 고속신호를 전송하는 기술이다. 최근 이러한 WDM 방식의 전송망에는 파장가변 레이저 모듈을 사용하여 전송망의 유연성을 높이면서도 재고 부담과 운용 비용을 낮추려는 노력이 대두되고 있다.WDM (Wavelength Division Multiplexing) optical communication technology is currently applied to most backbone networks and metro networks, and transmits a plurality of high-speed signals by performing wavelength division multiplexing on a single optical fiber. Recently, efforts have been made to reduce inventory burden and operation cost while increasing the flexibility of the transmission network by using a wavelength tunable laser module in such a WDM transmission network.
파장가변 레이저에 있어서 DFB(Distributed Feed Back) 구조를 활용한 레이저가 개발되어 상용되고 있으나, DFB 레이저의 파장가변 범위가 10nm 이하로 좁아 C-밴드(1535nm~1565nm) 내의 모든 파장을 지원하기 위해서는 3~4세트(set)의 파장가변 DFB 레이저 모듈을 사용해야 한다는 단점이 있다. 또한, DFB 레이저를 이용한 파장가변 트랜스폰더는 광원이 고가이고, 다채널 트랜스폰더를 백업용으로 구비해야 하기 때문에, 망 운영자에게 재고 부담을 줄이는 관점에서 효율적인 해결책을 제공하지 못하고 있다. 이에 따라, 한 개의 레이저 모듈로 필요한 WDM 밴드(예를 들면, C-band)의 모든 파장을 가변할 수 있는 외부 공진기형 파장가변 레이저 모듈의 개발이 필요한 실정이다.Lasers utilizing the DFB (Distributed Feed Back) structure have been developed and commercialized in wavelength tunable lasers.However, the wavelength variable range of the DFB laser is narrow to 10 nm or less, so that all wavelengths within the C-band (1535 nm to 1565 nm) are supported. The disadvantage is the use of ~ 4 sets of tunable DFB laser modules. In addition, the wavelength-variable transponder using the DFB laser does not provide an efficient solution in view of reducing inventory burden because the light source is expensive and a multichannel transponder must be provided for backup. Accordingly, there is a need to develop an external resonator type wavelength variable laser module capable of varying all wavelengths of a WDM band (for example, C-band) required by one laser module.
도 1은 종래의 외부 공진기형 파장가변 레이저 모듈인 버터플라이형 패키지의 평면도이고, 도 2는 종래의 외부 공진기형 파장가변 레이저 모듈인 버터플라이형 패키지의 일 측면도로서, 보다 구체적으로는 레이저 다이오드 칩과 광도파로를 버트커플링(butt-coupling)한 버터플라이형 패키지의 구성도이다. 버터플라이형 패키지보다 작은 사이즈인 XMD형 패키지도 기본적으로 이와 유사한 구성을 갖는다.1 is a plan view of a butterfly package which is a conventional external resonator type wavelength variable laser module, and FIG. 2 is a side view of a butterfly package which is a conventional external resonator type wavelength variable laser module, and more specifically, a laser diode chip. This is a schematic diagram of a butterfly package with butt-coupling optical waveguides. XMD packages, which are smaller than butterfly packages, basically have a similar configuration.
도 1 및 도 2에 나타낸 종래의 외부 공진기형 파장가변 레이저 모듈은 칩 스템(11) 상부에 위치하는 광원용 레이저 다이오드 칩(10), 내부에 파장가변을 위한 브래그 격자(30)가 형성된 광도파로(20), 광도파로(20) 상부에 구비된 히터(40), 상기 광도파로(20)에서 출력되는 광신호를 일부 반사, 일부 투과시키는 빔스플리터(50), 빔스플리터(50)를 투과하는 광신호를 집속시키는 렌즈(60), 빔스플리터(50)에 의해 반사된 광신호의 파워를 측정하는 포토다이오드(70), 외부 온도 환경과 무관하게 파장가변 레이저 모듈의 작동 온도를 설정하기 위한 온도센서(81) 및 열전냉각기(82)를 포함하여 구성될 수 있다.In the conventional external resonator type wavelength tunable laser module shown in FIGS. 1 and 2, an optical waveguide having a laser diode chip 10 for a light source positioned on the chip stem 11 and a Bragg grating 30 for wavelength tunability therein is formed. 20, a heater 40 provided above the optical waveguide 20, a beam splitter 50 for partially reflecting and partially transmitting an optical signal output from the optical waveguide 20, and transmitting the beam splitter 50. A lens 60 for focusing the optical signal, a photodiode 70 for measuring the power of the optical signal reflected by the beam splitter 50, and a temperature for setting the operating temperature of the wavelength tunable laser module regardless of the external temperature environment. It may be configured to include a sensor 81 and a thermoelectric cooler (82).
그러나 외부 공진기형 파장가변 레이저 모듈을 이와 같이 구성할 경우, 브래그 격자(30)를 포함하는 광도파로(20)의 부피가 크기 때문에 파장가변 레이저 모듈전체의 부피가 커질 수 밖에 없고, 이에 따라 상기 파장가변 레이저 모듈을 패키징하는 비용도 많이 소요될 수 밖에 없다.However, when the external resonator-type wavelength tunable laser module is configured in this way, the volume of the optical waveguide 20 including the Bragg grating 30 is large, which inevitably increases the volume of the entire wavelength tunable laser module. The cost of packaging a variable laser module is also high.
일반적으로 TO-CAN 패키지는 버터플라이형 또는 XMD형 패키지에 비해 제작 비용이 적고, 부피가 작은 장점이 있어 통신용 광모듈에 널리 채택되고 있다. 그러나 TO-CAN 패키징을 위해서는 광소자들이 놓이는 TO 스템면에 대하여 광신호의 출력 방향이 수직 상방이 되어야 하므로, TO 스템면에 대해 평행하게 방출되는 광신호의 진행방향을 수직 상방으로 전환시켜야 한다는 특성이 있다.In general, TO-CAN packages are widely used in communication optical modules because of their low manufacturing cost and small volume compared to butterfly or XMD packages. However, for TO-CAN packaging, since the output direction of the optical signal should be vertically upward with respect to the TO stem surface on which the optical elements are placed, the direction of the optical signal emitted parallel to the TO stem surface should be changed vertically upward. There is this.
한편, 브래그 격자를 이용한 광도파로형 폴리머 파장가변 필터 기술은 M.Oh 등이 Applied Physics Letters, 1998년 11월호(no2) pp.2543-2545에 게시한 "Tunable wavelength filters with Bragg gratings in polymer waveguides"에서 최초로 구현되었으며, 이와 관련된 기술이 2001년 미국특허 제6303040호로 등록되었다.Meanwhile, the optical waveguide polymer wavelength tunable filter technique using Bragg grating is described by M.Oh et al., "Tunable wavelength filters with Bragg gratings in polymer waveguides," published in Applied Physics Letters, Nov. 1998 (no2) pp.2543-2545. Was first implemented, and the related technology was registered in 2001 US Pat.
본 발명은 외부 공진기형 파장가변 레이저 모듈을 구성하는 광소자들을 TO-CAN 패키징하기 위하여, 브래그 격자가 형성된 광도파로를 직선형이 아닌 광신호의 진행방향이 전환될 수 있는 구조를 제공하는 것에 그 목적이 있다.An object of the present invention is to provide a structure in which the propagation direction of an optical signal that is not linear can be switched in an optical waveguide in which Bragg grating is formed to package optical elements constituting an external resonator type wavelength variable laser module. There is this.
상기의 목적을 해결하기 위하여, 본 발명에 의한 외부 공진기형 파장가변 레이저 모듈은, 광대역 광을 발생하는 외부 공진기형 광원; 상기 광원에서 출력되는 광대역 광이 입력되는 광도파로; 상기 광도파로에 형성된 브래그 격자; 상기 브래그 격자가 형성된 광도파로 상부에 구비되며, 열광학 효과에 의해 상기 브래그 격자의 반사 대역을 조절하는 히터; 상기 브래그 격자의 반사 대역이 조절됨에 따라 얻어지는 광신호를 일정 각도로 방향전환하기 위한 방향전환 도파영역; 상기 방향전환 도파영역에 의해 방향전환되어 상기 광도파로를 빠져 나오는 광신호의 일부는 투과시키고, 나머지는 수직 상방으로 반사시키는 45도 반사부; 및 상기 45도 반사부에 의해 수직 상방으로 반사된 광신호를 평행광 또는 수렴광으로 만들어주는 렌즈;를 포함하여 구성될 수 있다. In order to solve the above object, the external resonator-type wavelength tunable laser module according to the present invention, the external resonator-type light source for generating broadband light; An optical waveguide into which broadband light output from the light source is input; Bragg grating formed in the optical waveguide; A heater disposed above the optical waveguide on which the Bragg grating is formed, and configured to adjust a reflection band of the Bragg grating by a thermo-optic effect; A turning waveguide region for redirecting an optical signal obtained at a predetermined angle as the reflection band of the Bragg grating is adjusted; A 45 degree reflector which is redirected by the turning waveguide region and transmits a part of the optical signal exiting the optical waveguide and reflects the rest vertically upward; And a lens for making the optical signal reflected vertically upward by the 45 degree reflector into parallel light or converging light.
상기 방향전환 도파영역은 상기 브래그 격자의 반사 대역이 조절됨에 따라 얻어지는 광신호를 180도 방향전환하도록 구성되는 것을 특징으로 한다.The turning waveguide region is configured to turn an optical signal obtained by adjusting the reflection band of the Bragg grating 180 degrees.
본 발명에 따른 외부 공진기형 파장가변 레이저 모듈은, 상기 45도 반사부를 투과하는 광신호의 파워를 측정하는 포토다이오드를 더 포함할 수 있다.The external resonator type wavelength tunable laser module according to the present invention may further include a photodiode for measuring the power of the optical signal passing through the 45 degree reflector.
본 발명에 따른 외부 공진기형 파장가변 레이저 모듈은, 온도센서 및 열전냉각기를 더 포함할 수 있으며, 상기 히터, 상기 온도센서 및 열전냉각기와 전기적으로 연결되어, 상기 온도센서에 의해 감지되는 신호를 입력받아 상기 히터의 발열 및 상기 열전냉각기의 흡열을 조절하는 온도제어장치를 더 포함할 수 있다.The external resonator type wavelength tunable laser module according to the present invention may further include a temperature sensor and a thermoelectric cooler, and are electrically connected to the heater, the temperature sensor and the thermoelectric cooler, and input a signal detected by the temperature sensor. It may further include a temperature control device for adjusting the heat generation of the heater and the heat absorption of the thermoelectric cooler.
상기 온도센서는 광도파로의 상부에 구비되며, 상기 열전냉각기는 상기 광도파로의 하부에 구비되는 것을 특징으로 한다.The temperature sensor is provided on an upper portion of the optical waveguide, the thermoelectric cooler is provided on the lower portion of the optical waveguide.
상기 광도파로는 폴리머로 이루어진 폴리머 광도파로인 것을 특징으로 한다.The optical waveguide is a polymer optical waveguide made of a polymer.
상기 브래그 격자는 폴리머로 이루어진 폴리머 브래그 격자이며, 상기 광도파로 및 상기 브래그 격자를 형성하는 폴리머는 할로겐 원소를 포함하고, 자외선 또는 열에 의해 경화되는 관능기를 포함하는 것을 특징으로 한다.The Bragg grating is a polymer Bragg grating made of a polymer, and the optical waveguide and the polymer forming the Bragg grating include a halogen element and include a functional group that is cured by ultraviolet rays or heat.
상기 광도파로 및 상기 브래그 격자를 형성하는 폴리머는 열광학 계수가 -9.9×10-4 내지 -0.5×10-4-1인 것을 특징으로 한다.The optical waveguide and the polymer forming the Bragg grating are characterized in that the thermo-optic coefficient is -9.9 × 10 -4 to -0.5 × 10 -4-1 .
상기 광도파로의 기하학적 구조는 립(rib) 구조, 리지(ridge) 구조, 인버티드 립(inverted rib) 구조, 인버티드 리지(inverted ridge) 구조 또는 채널(chnnel) 구조인 것을 특징으로 한다.The optical waveguide geometry is a rib structure, a ridge structure, an inverted rib structure, an inverted ridge structure, or a channel structure.
본 발명에 의하면, 브래그 격자가 형성된 광도파로를 광신호의 진행방향이 전환될 수 있는 구조로 설계함으로써, 외부 공진기형 파장가변 레이저 모듈의 부피를 감소시킬 수 있고 이에 따라 TO-CAN 패키징이 가능하다.According to the present invention, by designing the optical waveguide in which the Bragg grating is formed in a structure that can change the traveling direction of the optical signal, it is possible to reduce the volume of the external resonator-type wavelength variable laser module, thereby packaging TO-CAN .
또한, 본 발명에 의한 외부 공진기형 파장가변 레이저 모듈을 구성하는 광소자들을 평면 광도파로와 접합함으로써 정렬 등의 까다로운 공정이 사라지고, 작업을 용이하게 함으로써 생산성 향상에 기여할 수 있다.In addition, by bonding the optical elements constituting the external resonator-type wavelength tunable laser module according to the present invention with a planar optical waveguide, a difficult process such as alignment is eliminated, thereby facilitating work and contributing to productivity.
또한, 표준화된 소형의 TO-CAN 패키지를 사용함으로써, 안정되고 재현성 및 신뢰성이 높은 파장 가변 기능을 수행할 수 있는 효과가 있다.In addition, by using a standardized small TO-CAN package, there is an effect that can perform a stable, reproducible and reliable wavelength variable function.
도 1은 종래의 외부 공진기형 파장가변 레이저 모듈인 버터플라이형 패키지의 평면도이다.1 is a plan view of a butterfly package which is a conventional external resonator type wavelength variable laser module.
도 2는 종래의 외부 공진기형 파장가변 레이저 모듈인 버터플라이형 패키지의 일 측면도이다.2 is a side view of a butterfly package which is a conventional external resonator type wavelength variable laser module.
도 3은 본 발명의 일 실시예에 따른 TO-CAN 패키징을 위한 외부 공진기형 파장가변 레이저 모듈의 평면도이다.3 is a plan view of an external resonator type wavelength tunable laser module for TO-CAN packaging according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 TO-CAN 패키징을 위한 외부 공진기형 파장가변 레이저 모듈의 일 측면도이다.4 is a side view of an external resonator-type wavelength tunable laser module for TO-CAN packaging according to an embodiment of the present invention.
도 5는 본 발명에 따른 외부 공진기형 파장가변 레이저 모듈에 있어서 광도파로의 구조 및 브래그 격자의 형성 위치를 예시적으로 나타낸 도면이다.5 is a view showing the structure of the optical waveguide and the formation position of the Bragg grating in the external resonator type wavelength variable laser module according to the present invention.
이하 첨부한 도면들을 참조하여 본 발명에 따른 TO-CAN 패키징을 위한 외부 공진기형 파장가변 레이저 모듈에 대해 상세하게 설명한다. 첨부한 도면들은 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것으로서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수 있다.Hereinafter, an external resonator type wavelength tunable laser module for TO-CAN packaging according to the present invention will be described in detail with reference to the accompanying drawings. The accompanying drawings are provided by way of example so as to fully convey the spirit of the present invention to those skilled in the art, the present invention may be embodied in other forms without being limited to the drawings presented below.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대해서는 그 설명을 생략한다.Unless otherwise defined in the technical and scientific terms used herein, it has the meaning commonly understood by those of ordinary skill in the art to which this invention belongs, and the gist of the invention in the following description and the accompanying drawings. The description of the known functions and configurations that may unnecessarily obscure them will be omitted.
도 3은 본 발명의 일 실시예에 따른 TO-CAN 패키징을 위한 외부 공진기형 파장가변 레이저 모듈의 평면도이고, 도 4는 본 발명의 일 실시예에 따른 TO-CAN 패키징을 위한 외부 공진기형 파장가변 레이저 모듈의 일 측면도이다.3 is a plan view of an external resonator-type wavelength tunable laser module for TO-CAN packaging according to an embodiment of the present invention, Figure 4 is an external resonator-type wavelength variable for TO-CAN packaging according to an embodiment of the present invention One side view of the laser module.
본 발명은 광도파로(보다 바람직하게는, 폴리머 재질의 광도파로)의 열광학 효과를 이용하여 브래그 격자에서 반사되는 파장 대역(즉, 브래그 격자의 반사 대역)을 조절함으로써 필요로 하는 광신호를 외부로 출력시키는 파장가변 레이저 모듈을 제공하되, TO-CAN 패키징을 위해 상기 파장가변 레이저 모듈의 부피를 감소시키는 것을 특징으로 한다.The present invention utilizes the thermo-optic effect of an optical waveguide (more preferably, an optical waveguide made of a polymer material) to externally control an optical signal required by adjusting a wavelength band reflected from a Bragg grating (that is, a reflection band of a Bragg grating). To provide a wavelength tunable laser module for outputting, characterized in that for reducing the volume of the tunable laser module for TO-CAN packaging.
이를 위하여 본 발명에 따른 파장가변 레이저 모듈은, 광대역 광을 발생하는 외부 공진기형 광원(100), 광원(100)에서 출력되는 광대역 광이 입력되는 광도파로(200), 광도파로(200)에 형성된 브래그 격자(300), 브래그 격자(300)가 형성된 광도파로(200) 상부에 구비되며, 열광학 효과에 의해 브래그 격자(300)의 반사 대역을 조절하는 히터(400), 브래그 격자(300)의 반사 대역이 조절됨에 따라 얻어지는 광신호를 일정 각도로 방향전환하기 위한 방향전환 도파영역(250), 방향전환 도파영역(250)에 의해 방향전환되어 상기 광도파로(200)를 빠져나오는 광신호의 일부는 투과시키고, 나머지는 수직 상방으로 반사시키는 45도 반사부(500), 및 45도 반사부(500)에 의해 수직 상방으로 반사된 광신호를 평행광 또는 수렴광으로 만들어주는 렌즈(600)를 포함하여 이루어질 수 있다.To this end, the wavelength tunable laser module according to the present invention includes an external resonator-type light source 100 for generating broadband light, an optical waveguide 200 into which the broadband light output from the light source 100 is input, and an optical waveguide 200. The Bragg grating 300 and the Bragg grating 300 are formed on the optical waveguide 200 formed thereon, and the heater 400 and Bragg grating 300 for adjusting the reflection band of the Bragg grating 300 by the thermo-optic effect. A part of the optical signal that is diverted by the turning waveguide region 250 and the turning waveguide region 250 to redirect the optical signal obtained by adjusting the reflection band at a predetermined angle and exits the optical waveguide 200. The 45 degree reflector 500 for transmitting the light and reflecting the rest vertically upward, and the lens 600 for making the optical signal reflected upward and upward by the 45 degree reflector 500 into parallel light or convergent light. It can be made, including.
외부 공진기형 광원(100)은 광대역 광을 발생하는 반도체 광 증폭기 또는 반도체 레이저 다이오드 칩일 수 있으며, 이 때 광의 출사면은 1% 이하의 AR(anti-reflection) 코팅이 되어 있고, 출사면의 반대면은 반사율이 80% 이상인 HR(high-reflection) 코팅이 되어 있을 수 있다.The external resonator type light source 100 may be a semiconductor optical amplifier or a semiconductor laser diode chip that generates broadband light, wherein the emission surface of the light has an anti-reflection (AR) coating of 1% or less and is opposite to the emission surface. Silver may have a high-reflection (HR) coating with a reflectivity of 80% or greater.
상기 광원(100)이 광대역 파장 발진용 반도체 레이저 다이오드 칩일 경우, 상기 반도체 레이저 다이오드 칩은 광이 발생되는 활성층, 전류방지층, p-메탈(p-metal) 및 n-메탈(n-metal)층을 포함하는 구조로서, InP 기판상에 InGaAsP, InGaAlAs, InAlAs 등의 3-5족 원소의 조합 또는 2-4족 원소의 조합으로 형성될 수 있으며, 활성층은 다중 양자우물(multi-quantum well) 또는 벌크 액티브(bulk active) 구조일 수 있다.When the light source 100 is a semiconductor laser diode chip for wideband wavelength oscillation, the semiconductor laser diode chip may include an active layer, a current blocking layer, a p-metal, and an n-metal layer where light is generated. Including a structure, the InP substrate may be formed of a combination of Group 3-5 elements, such as InGaAsP, InGaAlAs, InAlAs, or a combination of Group 2-4 elements, the active layer is a multi-quantum well or bulk It may be a bulk active structure.
광원(100) 및 광도파로(200) 사이에는 광결합 렌즈(미도시)가 구비될 수 있으며, 이 때 상기 광결합 렌즈는 광원(100)에서 출력되는 광을 집광하여 브래그 격자(300)가 형성된 광도파로(200)와 버트커플링(butt-coupling) 되도록 한다. 보다 구체적으로는, 상기 광도파로(200)는 전반사를 유도하는 상부 클래딩(210) 및 하부 클래딩(220)과 광의 전송이 일어나는 코어(230)로 구성되는데, 상기 광결합 렌즈에 의해 집광된 광은 광도파로(200)의 코어(230)에 입력될 수 있다. 한편, 광원(100)은 물리적 지지를 위한 칩 스템(110) 상에 구비될 수 있다.An optical coupling lens (not shown) may be provided between the light source 100 and the optical waveguide 200, wherein the optical coupling lens collects the light output from the light source 100 to form the Bragg grating 300. Butt-coupling with the optical waveguide 200. More specifically, the optical waveguide 200 is composed of an upper cladding 210 and a lower cladding 220 and a core 230 through which light is transmitted, which induces total reflection. It may be input to the core 230 of the optical waveguide 200. On the other hand, the light source 100 may be provided on the chip stem 110 for physical support.
광도파로(200)는 광원(100)에서 출력되는 광대역 광이 그 일단에서 입력되고 브래그 격자(300)를 통해 얻어지는 광신호는 타단으로 출력되는 통로이다. 광도파로(200)는 기판(1000)의 상부에 구비되어 지지될 수 있으며, 이 때 기판(1000)은 실리콘 기판, 폴리머 기판 또는 유리 기판 등일 수 있다.The optical waveguide 200 is a path through which broadband light output from the light source 100 is input at one end thereof and an optical signal obtained through the Bragg grating 300 is output at the other end. The optical waveguide 200 may be provided and supported on an upper portion of the substrate 1000, wherein the substrate 1000 may be a silicon substrate, a polymer substrate, a glass substrate, or the like.
광도파로(200)는 클래딩(210, 220) 및 상기 클래딩(210, 220)에 의해 둘러싸인 코어(230)로 구성되며, 코어(230)의 굴절률이 클래딩(210, 220)의 굴절률보다 높아 코어(230)에 입사되는 광은 그 입사각에 따라 코어(230)와 클래딩(210, 220)의 경계면에서 전반사가 일어나게 된다.The optical waveguide 200 includes a cladding 210 and 220 and a core 230 surrounded by the claddings 210 and 220, and the refractive index of the core 230 is higher than that of the cladding 210 and 220. The light incident on the 230 is totally reflected at the interface between the core 230 and the cladding 210, 220 according to the angle of incidence.
브래그 격자(300)는 광도파로(200)의 클래딩(210, 220) 또는 코어(230)에 광의 진행방향으로 일정한 주기를 갖는 홈을 형성하여 제작되며, 홈의 빈 공간(공기)이 브래그 격자를 형성하거나, 상기 홈에 실리콘 산화물, 폴리 실리콘과 같은 물질이 채워져 브래그 격자(300)를 형성할 수 있다.The Bragg grating 300 is formed by forming a groove having a predetermined period in the advancing direction of the light in the cladding (210, 220) or the core 230 of the optical waveguide 200, the empty space (air) of the groove to the Bragg grating Alternatively, the groove may be filled with a material such as silicon oxide or polysilicon to form the Bragg grating 300.
브래그 격자(300)를 형성하는 상기 주기적인 홈은 광이 진행하는 광도파로(200)의 굴절률에 주기적인 섭동을 가함으로써, 격자 사이의 간격에 의해서 결정되는 파장을 반사한다. 그리고 브래그 격자(300)에 의해 반사되는 상기 파장은 광원(100)의 출사면으로 재입력되는 공진에 의해 브래그 격자(300)의 반사 대역의 중심 파장을 갖는 광신호가 생성된다.The periodic grooves forming the Bragg grating 300 reflect periodic wavelengths to the refractive index of the optical waveguide 200 through which light travels, thereby reflecting a wavelength determined by the spacing between the gratings. The optical wave having the center wavelength of the reflection band of the Bragg grating 300 is generated by the resonance of the wavelength reflected by the Bragg grating 300 to be re-input to the emission surface of the light source 100.
이에 대해 보다 상세히 설명하면, 상기 브래그 격자(300)에 의해 반사되는 파장(λ)은 다음의 식 1에 나타낸 격자 방정식에 의해 결정된다.In more detail, the wavelength λ reflected by the Bragg grating 300 is determined by the lattice equation shown in Equation 1 below.
[식 1][Equation 1]
mλ=2nΛmλ = 2nΛ
상기 식 1에서 m은 브래그 격자의 차수를 나타내는 1,3,5,7 등의 홀수, n은 광도파로의 유효 굴절률, Λ는 브래그 격자의 주기이다.In Equation 1, m is an odd number such as 1,3,5,7 indicating the order of the Bragg grating, n is the effective refractive index of the optical waveguide, Λ is the period of the Bragg grating.
광도파로(200)의 일단에 입사되는 다 파장의 광대역 광신호들(예를 들어, 중심파장이 λ1~λn인 광신호들) 중, 브래그 격자(300)에 의해 브래그 조건을 만족하는 특정 파장의 광신호(예를 들어, 중심 파장이 λi인 광신호)는 일정부분 반사되어 광도파로(200)의 일단으로 되돌아가고, 나머지 파장의 광신호들은 광도파로(200)의 타단으로 출력된다. 이 때 광도파로(200)의 일단으로 반사된 광신호는 광원(예를 들어, 반도체 레이저 다이오드 칩)(100) 내에서 광의 세기가 증폭되어 브래그 격자(300)가 형성된 광도파로(200)로 피드백되며, 그 결과 좁은 선폭을 갖는 중심 파장이 λi인 레이저가 발진되어 광도파로(200)의 타단으로 출력되게 된다.Among the wideband optical signals (for example, optical signals having a central wavelength of λ1 to λn) of the multi-wavelength incident on one end of the optical waveguide 200, the Bragg grating 300 may satisfy the Bragg condition. An optical signal (for example, an optical signal having a center wavelength of λi) is partially reflected and returned to one end of the optical waveguide 200, and the optical signals of the remaining wavelengths are output to the other end of the optical waveguide 200. At this time, the optical signal reflected to one end of the optical waveguide 200 is fed back to the optical waveguide 200 in which the intensity of light is amplified in the light source (for example, a semiconductor laser diode chip) 100 and the Bragg grating 300 is formed. As a result, a laser having a narrow line width having a center wavelength of λi is oscillated and output to the other end of the optical waveguide 200.
한편, 온도에 따른 브래그 반사 파장의 변화는 상기 식 1로부터 식 2와 같이 유도된다.Meanwhile, the change in Bragg reflection wavelength with temperature is derived from Equation 1 as shown in Equation 2 above.
[식 2][Equation 2]
m·dλ/dT = 2d(nΛ)/dT = λ0(1/n·dn/dT + 1/Λ·dΛ/dT)m · dλ / dT = 2d (nΛ) / dT = λ 0 (1 / ndn / dT + 1 / ΛdΛ / dT)
상기 식 2의 m,n 및 Λ는 상기 식 1과 동일하며, λ0는 초기 반사 파장이다. 즉, 온도에 대한 반사 파장의 변화량은 온도에 대한 유효 굴절률의 변화량과 격자 주기의 변화량의 합에 비례한다. 예를 들어, 격자 차수 m이 1이고 초기 파장 λ0가 1550nm인 실리콘 도파로 브래그 격자를 가정하면, 온도에 대한 반사 파장의 변화는 0.085nm/K으로 100GHz 간격의 16채널에 해당하는 12nm 가변을 위한 온도는 약 142K임을 알 수 있다. 상기 예에서 실리콘의 열광학계수, Δn/ΔT는 1.9×10-4/K이고, 온도에 의한 주기의 변화는 무시했다.M, n and Λ of Equation 2 are the same as Equation 1, and λ 0 is the initial reflection wavelength. That is, the amount of change in the reflection wavelength with respect to temperature is proportional to the sum of the amount of change in the effective refractive index with the change in the lattice period. For example, assuming a silicon waveguide Bragg grating whose lattice order m is 1 and the initial wavelength λ 0 is 1550 nm, the change in the reflected wavelength with respect to temperature is 0.085 nm / K for a 12 nm variable corresponding to 16 channels at 100 GHz intervals. It can be seen that the temperature is about 142K. In the above example, the thermo-optic coefficient of silicon, Δn / ΔT, was 1.9 × 10 −4 / K, and the change in period due to temperature was ignored.
이와 같이 열광학 효과를 이용하여 브래그 격자(300)의 반사 대역을 조절하기 위해서는, 브래그 격자(300)가 형성된 광도파로(200) 상에 히터(400)를 구비하는 것이 바람직하다.As such, in order to adjust the reflection band of the Bragg grating 300 using the thermo-optic effect, the heater 400 is preferably provided on the optical waveguide 200 on which the Bragg grating 300 is formed.
히터(400)는 소정의 전기적 신호가 인가됨에 따라 줄열(Joule heat)을 생성하여 브래그 격자(300)가 형성된 광도파로(200)의 온도를 가변하고, 광도파로(200)의 열광학 효과에 의해 브래그 격자(300)에서 반사되는 파장 대역을 조절하며, 이에 따라 광도파로(200)의 타단으로 출력되는 광신호의 중심 파장이 가변되도록 한다.The heater 400 generates joule heat as a predetermined electrical signal is applied to vary the temperature of the optical waveguide 200 in which the Bragg grating 300 is formed, and by the thermo-optic effect of the optical waveguide 200. The wavelength band reflected by the Bragg grating 300 is adjusted, and thus the center wavelength of the optical signal output to the other end of the optical waveguide 200 is varied.
히터(400)는 전력이 인가될 때 열이 발생하는 통상적인 금속 히터는 모두 사용 가능하나, 바람직하게는 Cr, Ni, Cu, Ag, Au, Pt, Ti, Al 원소들 및 니크롬과 같은 이들의 합금으로 구성된 적층 박막으로 이루어진 군에서 선택되는 박막형의 발열체가 구비된 히터인 것이 바람직하다.The heater 400 may use any conventional metal heater which generates heat when electric power is applied, but preferably, such as Cr, Ni, Cu, Ag, Au, Pt, Ti, Al elements and nichrome It is preferable that it is a heater provided with the thin-film heating element selected from the group which consists of a laminated thin film which consists of alloys.
방향전환 도파영역(250)은 광도파로(200)의 전체영역 중, 브래그 격자(300) 및 히터(400)의 작용에 의해 얻어지는 광신호를 일정 각도로 방향전환하는 도파영역을 가리킨다.The redirecting waveguide region 250 refers to a waveguide region in which the optical signal obtained by the action of the Bragg grating 300 and the heater 400 is redirected at a predetermined angle among the entire regions of the optical waveguide 200.
방향전환 도파영역(250)은 도 3에 나타낸 바와 같이, 브래그 격자(300)의 반사 대역이 조절됨에 따라 얻어지는 광신호를 한 번의 반사에 광신호의 진행방향이 60도씩 3회 전환되도록 구성될 수 있다. 도 3에 나타낸 방향전환 도파영역(250)은 그 내부에 멀티모드 전반사 거울 3개를 사용한 것으로 볼 수 있다.As shown in FIG. 3, the turning waveguide region 250 may be configured to switch the optical signal obtained by adjusting the reflection band of the Bragg grating 300 at one time to change the advancing direction of the optical signal three times by 60 degrees. have. 3 may be considered to use three multi-mode total reflection mirrors therein.
이 때, 방향전환 도파영역(250)은 도 3에 나타낸 실시예로 한정되는 것은 아니며, 브래그 격자(300) 및 히터(400)의 작용에 의해 얻어지는 광신호를 다양한 각도로 방향전환 되도록 구성될 수 있다. 다만, 브래그 격자(300)의 반사 대역이 조절됨에 따라 얻어지는 광신호가 방향전환 도파영역(250)에 의해 180도 방향전환될 경우에는 외부 공진기형 파장가변 레이저 모듈의 부피를 최소화할 수 있다는 장점이 있다.In this case, the turning waveguide region 250 is not limited to the embodiment illustrated in FIG. 3, and may be configured to redirect the optical signal obtained by the action of the Bragg grating 300 and the heater 400 at various angles. have. However, when the optical signal obtained as the reflection band of the Bragg grating 300 is adjusted by 180 degrees by the turning waveguide region 250 has an advantage of minimizing the volume of the external resonator type wavelength variable laser module. .
방향전환 도파영역(250)에 의해 방향전환된 광신호는 광도파로(200)를 빠져 나와 상기 광도파로(200)의 타단에 구비된 45도 반사부(500)에 의해 일부는 투과되고, 나머지는 수직 상방으로 반사된다.The optical signal redirected by the turning waveguide region 250 exits the optical waveguide 200 and is partially transmitted by the 45 degree reflector 500 provided at the other end of the optical waveguide 200. It is reflected vertically upward.
여기서, 45도 반사부(500)는 별도의 45도 거울을 상기 광도파로(200)의 타단에 접합하여 구비되거나, 광도파로(200) 자체를 45도의 경사면을 갖도록 식각(etching)하여 구비될 수 있다. 이 때, 45도 반사부(500)가 일정한 반사율을 갖도록 상기 반사부(500)의 반사면에 코팅을 함으로써, 상기 반사부(500)에 입사되는 광으로 하여금 일정한 비율로 반사 및 투과가 이루어지도록 할 수 있다.Here, the 45 degree reflector 500 may be provided by bonding a separate 45 degree mirror to the other end of the optical waveguide 200 or may be provided by etching the optical waveguide 200 itself to have an inclined surface of 45 degrees. have. At this time, the 45-degree reflector 500 is coated on the reflecting surface of the reflector 500 to have a constant reflectance, so that the light incident on the reflector 500 is reflected and transmitted at a constant rate can do.
45도 반사부(500)를 투과하는 광신호는 포토다이오드(700)에 입사될 수 있으며, 이 때 포토다이오드(700)는 상기 입사된 광신호를 전기 에너지로 변환하여 파장가변 레이저 모듈의 전체 출력 변화를 모니터링한다.An optical signal transmitted through the 45 degree reflector 500 may be incident on the photodiode 700, and at this time, the photodiode 700 converts the incident optical signal into electrical energy to output the entire wavelength-variable laser module. Monitor the change.
한편, 45도 반사부(500)에 의해 반사되어 수직 상방으로 진행하는 광신호는, 45도 반사부(500)의 상부에 위치한 렌즈(600)에 의해 평행광 또는 수렴광이 된다. 구체적으로, 렌즈(600)의 초점거리가 45도 반사부(500)에 있을 경우에는 평행광이 되고, 렌즈(600)의 초점거리가 45도 경사면부터 렌즈(600)까지의 거리보다 먼 경우에는 수렴광이 된다. 이 때, 렌즈(600)에 의해 집광된 광신호는 파장가변 레이저 모듈의 외부에 위치하는 광섬유(미도시)에 입사될 수 있다. 한편, 렌즈(600)의 형태나 초점거리는 광섬유로의 결합 손실을 고려하여 다양하게 선택할 수 있다.On the other hand, the optical signal reflected by the 45 degree reflector 500 and traveling vertically upward becomes parallel light or convergent light by the lens 600 positioned above the 45 degree reflector 500. Specifically, when the focal length of the lens 600 is at the 45 degree reflector 500, the light becomes parallel light, and when the focal length of the lens 600 is farther than the distance from the 45 degree inclined plane to the lens 600. Become a converged light. In this case, the optical signal collected by the lens 600 may be incident on an optical fiber (not shown) positioned outside the wavelength tunable laser module. On the other hand, the shape or focal length of the lens 600 may be variously selected in consideration of the coupling loss to the optical fiber.
앞서 설명한 바와 같이, 본 발명에 따른 외부 공진기형 파장가변 레이저 모듈은 히터(400)의 열 공급에 따른 광도파로(200)의 열광학 효과에 의해 브래그 격자(300)의 반사 대역이 조절되고, 이에 따라 출력 광신호의 파장을 가변할 수 있는 것을 특징으로 한다. 이 때, 보다 효율적이고 정확한 열광학 효과를 야기하기 위해서는 파장가변 레이저 모듈에 온도센서(810) 및 열전냉각기(820)를 구비하는 것이 바람직하다.As described above, in the external resonator type wavelength tunable laser module according to the present invention, the reflection band of the Bragg grating 300 is controlled by the thermo-optic effect of the optical waveguide 200 according to the heat supply of the heater 400. Accordingly, the wavelength of the output optical signal can be varied. In this case, in order to cause a more efficient and accurate thermo-optic effect, it is preferable to include a temperature sensor 810 and a thermoelectric cooler 820 in the wavelength tunable laser module.
온도센서(810)는 광도파로(200)의 온도를 실시간으로 측정하여 히터(400)에 인가되는 전류를 조절하도록 광도파로(200)의 상부에 구비되는 것이 바람직하다. 온도센서(810)는 열에 의해 전기적 성질(전압, 저항 또는 전류량)이 바뀌는 통상적인 온도센서이면 족하며, 일 예로 써미스터(thermistor)를 포함하여 구성될 수 있다.The temperature sensor 810 is preferably provided on the upper portion of the optical waveguide 200 to measure the temperature of the optical waveguide 200 in real time to adjust the current applied to the heater 400. The temperature sensor 810 may be any conventional temperature sensor whose electrical property (voltage, resistance or current amount) is changed by heat. For example, the temperature sensor 810 may include a thermistor.
열전냉각기(820)는 광도파로(200)의 온도 변화를 외부 온도 환경에 독립적으로 제어하여 상기 광도파로(200)가 정밀한 열광학 효과를 낼 수 있도록 광도파로(200)의 하부에 구비되는 것이 바람직하다. 열전냉각기(820)는 소정의 전기적 신호에 의해 흡열이 발생하는 통상의 열전소자를 포함하여 구성될 수 있다. Thermoelectric cooler 820 is preferably provided in the lower portion of the optical waveguide 200 to control the temperature change of the optical waveguide 200 independently of the external temperature environment so that the optical waveguide 200 has a precise thermo-optic effect. Do. The thermoelectric cooler 820 may include a conventional thermoelectric element in which endotherm is generated by a predetermined electrical signal.
히터(400)와 열전냉각기(820)는 모두 0.1℃ 미만의 정밀도로 온도를 조절할 수 있는 것이 바람직하며, 온도센서(810)는 0.1℃ 미만의 정밀도로 온도를 감지할 수 있는 것이 바람직하다.Both the heater 400 and the thermoelectric cooler 820 may adjust the temperature with a precision of less than 0.1 ℃, the temperature sensor 810 is preferably capable of sensing the temperature with a precision of less than 0.1 ℃.
그리고 온도센서(810) 및 열전냉각기(820)의 작용에 의해 외부 온도 환경에 독립적으로 안정된 광신호의 출력 특성이 나타나도록 하기 위해 온도제어장치(미도시)를 더 구비하는 것이 바람직하다. 이 때 온도제어장치는 히터(400), 온도센서(810) 및 열전냉각기(820)와 서로 전기적으로 연결되어 온도센서(810)로부터 감지되는 신호를 입력받아 히터(400)의 발열 및 열전냉각기(820)의 흡열을 조절하는 역할을 한다. 이 때, 상기 온도제어장치는 제어 프로그램이 실행되는 통상적인 마이크로프로세서 및 컴퓨터로 판독 가능한 저장매체를 포함하여 구성될 수 있다.In addition, the temperature sensor 810 and the thermoelectric cooler 820 may be further provided with a temperature control device (not shown) so that the output characteristic of the stable optical signal is displayed independently of the external temperature environment. In this case, the temperature controller is electrically connected to the heater 400, the temperature sensor 810, and the thermoelectric cooler 820, and receives a signal detected by the temperature sensor 810 to generate heat and a thermoelectric cooler of the heater 400. 820 controls the endotherm. At this time, the temperature control device may comprise a conventional microprocessor and a computer readable storage medium on which the control program is executed.
본 발명에 따른 외부 공진기형 파장가변 레이저 모듈을 구성하는 상술한 모든 광소자는 물리적 지지 및 TO-CAN 패키징을 위하여 TO 스템(1100) 상에 실장될 수 있다. 상기 TO 스템(1100)은 열 전도율이 높은 금속으로 이루어지는 것이 바람직하다.All of the above-described optical elements constituting the external resonator type wavelength tunable laser module according to the present invention may be mounted on the TO stem 1100 for physical support and TO-CAN packaging. The TO stem 1100 is preferably made of a metal having high thermal conductivity.
열전냉각기(820)는 TO 스템(1100) 상부에 자외선 또는 열 경화 고분자 수지를 이용하여 실장될 수 있으며, 열전냉각기(820)의 상부에 위치하는 기판(1000), 기판(1000)의 상부에 위치하는 칩 스템(110) 및 광도파로(200)도 이와 마찬가지로 자외선 또는 열 경화 고분자 수지를 이용하여 실장될 수 있다.The thermoelectric cooler 820 may be mounted on the TO stem 1100 using UV or thermosetting polymer resin, and the substrate 1000 and the upper portion of the substrate 1000 are positioned on the thermoelectric cooler 820. The chip stem 110 and the optical waveguide 200 may also be mounted using ultraviolet rays or a thermosetting polymer resin.
한편, 전극(900)은 TO 스템(1100)을 관통하는 형태로, 열전냉각기(820)의 좌우에 소정의 개수 및 높이로 구비될 수 있다.Meanwhile, the electrode 900 penetrates through the TO stem 1100 and may be provided at a predetermined number and height on the left and right sides of the thermoelectric cooler 820.
본 발명에 따른 외부 공진기형 파장가변 레이저 모듈에서 광도파로(200)의 물질은 폴리머인 폴리머 광도파로이고, 브래그 격자(300)의 물질도 폴리머인 폴리머 브래그 격자인 것이 바람직하다. 이는 폴리머 물질이 다른 물질들에 비해 우수한 열광학 효과를 갖기 때문이다. In the external resonator type wavelength tunable laser module according to the present invention, the material of the optical waveguide 200 is a polymer optical waveguide which is a polymer, and the material of the Bragg grating 300 is also a polymer Bragg grating which is a polymer. This is because the polymer material has an excellent thermo-optic effect compared to other materials.
상기 광도파로(200)(클래딩(210, 220) 및 코어(230)) 또는 브래그 격자(300)를 형성하는 폴리머는 저손실 광학 폴리머를 포함한다. 상기 저손실 광학 폴리머는 일반적인 폴리머에 불소(F) 등의 할로겐 원소 또는 중수소를 포함하며, 열 또는 자외선 경화 가능한 관능기를 포함하는 것이 바람직하다.The polymer forming the optical waveguide 200 ( cladding 210, 220 and core 230) or Bragg grating 300 includes a low loss optical polymer. The low loss optical polymer contains a halogen element such as fluorine (F) or deuterium in a general polymer, and preferably includes a functional group capable of heat or ultraviolet curing.
또한, 상기 광도파로(200) 또는 브래그 격자(300)를 형성하는 폴리머는 열광학 계수가 -9.9×10-4 내지 -0.5×10-4(℃-1)인 것이 바람직하다. 일 예로, 수소가 불소로 치환된 자외선 경화 가능한 아크릴레이트(acrylate) 계열의 폴리머, 불소계 폴리이미드, 불소 치환 폴리아크릴레이트, 불소 치환 메타아크릴레이트, 폴리실록산, 불소계 폴리아릴렌 에테르, 퍼풀루오르 시크로부탄 계열 폴리머 등을 사용하는 것이 바람직하다.In addition, the polymer forming the optical waveguide 200 or Bragg grating 300 preferably has a thermo-optic coefficient of -9.9 × 10 -4 to -0.5 × 10 -4 (° C. −1 ). For example, an ultraviolet curable acrylate-based polymer in which hydrogen is substituted with fluorine, a fluorine-based polyimide, a fluorine-substituted polyacrylate, a fluorine-substituted methacrylate, polysiloxane, a fluorine-based polyarylene ether, and per pulloir cich It is preferable to use a butane series polymer or the like.
도 5는 본 발명에 따른 외부 공진기형 파장가변 레이저 모듈에 있어서 광도파로의 구조 및 브래그 격자의 형성 위치를 예시적으로 나타낸 도면이다. 광도파로(200)는 클래딩(210, 220) 및 코어(230)로 구성되어 있으며, 광도파로(200)의 기하학적 형태는 도 5에 나타낸 바와 같이 립(rib) 구조, 리지(ridge) 구조, 인버티드 립(inverted rib) 구조, 인버티드 리지(inverted ridge) 구조 또는 채널(channel) 구조일 수 있다. 5 is a view showing the structure of the optical waveguide and the formation position of the Bragg grating in the external resonator type wavelength variable laser module according to the present invention. Optical waveguide 200 is composed of cladding (210, 220) and the core 230, the geometry of the optical waveguide 200 is a rib (ridge) structure, ridge structure, inver as shown in FIG. It may be a inverted rib structure, an inverted ridge structure, or a channel structure.
도 3 및 도 4에 나타낸 본 발명의 일 실시예에 따른 외부 공진기형 파장가변 레이저 모듈은 상기 광도파로(200)의 기하학적 구조 중에서 채널 구조를 도시한 것이며, 채널 구조 외에 다른 구조를 갖는 경우에도 브래그 격자(300)는 클래딩(210, 220) 또는 코어(230)에 형성될 수 있다.The external resonator type wavelength tunable laser module according to the exemplary embodiment of the present invention illustrated in FIGS. 3 and 4 illustrates a channel structure among the geometrical structures of the optical waveguide 200, and Bragg may have a structure other than the channel structure. The grating 300 may be formed in the cladding 210, 220 or the core 230.
한편, 광도파로(200)의 유효 굴절률은 브래그 격자의 위치, 브래그 격자의 두께, 브래그 격자의 ON/OFF 비율, 브래그 격자의 차수, 코어 및 클래딩을 구성하는 폴리머 물질들의 굴절률 및 코어의 물질적 모양의 함수이기 때문에, 도 5에 나타낸 다양한 구조에서 출력 광신호의 파장을 이론적으로 예측하는 것은 용이하지 않다.On the other hand, the effective refractive index of the optical waveguide 200 is the position of the Bragg grating, the thickness of the Bragg grating, the ON / OFF ratio of the Bragg grating, the order of the Bragg grating, the refractive index of the polymer materials constituting the core and cladding and the physical shape of the core Because of the function, it is not easy to theoretically predict the wavelength of the output optical signal in the various structures shown in FIG.
따라서 본 발명에서는 광도파로(200) 및 브래그 격자(300)를 폴리머를 이용하여 형성하고, 광도파로(200)의 유효 굴절률을 조절함에 있어서는 히터(400), 온도센서(810), 열전냉각기(820) 및 온도제어장치를 구비함으로써, 브래그 격자(300)가 형성된 부분의 광도파로(200)의 온도를 예측 가능하게 조절할 수 있도록 하고, 그에 따라 출력 광신호의 중심 파장을 특정 파장으로 용이하게 고정 및 가변할 수 있도록 하는 것이 바람직하다.Therefore, in the present invention, the optical waveguide 200 and the Bragg grating 300 are formed using a polymer, and in controlling the effective refractive index of the optical waveguide 200, the heater 400, the temperature sensor 810, and the thermoelectric cooler 820. And the temperature control device, it is possible to predictably adjust the temperature of the optical waveguide 200 in the portion where the Bragg grating 300 is formed, thereby easily fixing the center wavelength of the output optical signal to a specific wavelength and It is desirable to be able to vary.
이상, 본 발명의 바람직한 실시형태를 도면 및 예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시형태에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 다양한 변형 및 변경이 가능한 것은 자명하다.As mentioned above, although preferred embodiment of this invention was described in detail with reference to drawings and an example, this invention is not limited to the said embodiment, The person of ordinary skill in the art within the technical idea and the scope of the present invention is understood. It is obvious that various modifications and changes are possible.

Claims (9)

  1. 광대역 광을 발생하는 외부 공진기형 광원;An external resonator type light source for generating broadband light;
    상기 광원에서 출력되는 광대역 광이 입력되는 광도파로;An optical waveguide into which broadband light output from the light source is input;
    상기 광도파로에 형성된 브래그 격자;Bragg grating formed in the optical waveguide;
    상기 브래그 격자가 형성된 광도파로 상부에 구비되며, 열광학 효과에 의해 상기 브래그 격자의 반사 대역을 조절하는 히터;A heater disposed above the optical waveguide on which the Bragg grating is formed, and configured to adjust a reflection band of the Bragg grating by a thermo-optic effect;
    상기 브래그 격자의 반사 대역이 조절됨에 따라 얻어지는 광신호를 일정 각도로 방향전환하기 위한 방향전환 도파영역;A turning waveguide region for redirecting an optical signal obtained at a predetermined angle as the reflection band of the Bragg grating is adjusted;
    상기 방향전환 도파영역에 의해 방향전환되어 상기 광도파로를 빠져 나오는 광신호의 일부는 투과시키고, 나머지는 수직 상방으로 반사시키는 45도 반사부; 및A 45 degree reflector which is redirected by the turning waveguide region and transmits a part of the optical signal exiting the optical waveguide and reflects the rest vertically upward; And
    상기 45도 반사부에 의해 수직 상방으로 반사된 광신호를 평행광 또는 수렴광으로 만들어주는 렌즈;를 포함하는 외부 공진기형 파장가변 레이저 모듈.And a lens for making an optical signal reflected upward and upward by the 45 degree reflector into parallel light or convergent light.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 방향전환 도파영역은 상기 브래그 격자의 반사 대역이 조절됨에 따라 얻어지는 광신호를 180도 방향전환하도록 구성되는 것을 특징으로 하는 외부 공진기형 파장가변 레이저 모듈.The redirecting waveguide region is an external resonator type wavelength tunable laser module, characterized in that configured to redirect the optical signal obtained by adjusting the reflection band of the Bragg grating 180 degrees.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 45도 반사부를 투과하는 광신호의 파워를 측정하는 포토다이오드를 더 포함하는 외부 공진기형 파장가변 레이저 모듈.And a photodiode for measuring the power of the optical signal passing through the 45 degree reflector.
  4. 제 1 항에 있어서,The method of claim 1,
    온도센서 및 열전냉각기를 더 포함하며, 상기 히터, 상기 온도센서 및 열전냉각기와 전기적으로 연결되어, 상기 온도센서에 의해 감지되는 신호를 입력받아 상기 히터의 발열 및 상기 열전냉각기의 흡열을 조절하는 온도제어장치를 더 포함하는 외부 공진기형 파장가변 레이저 모듈.A temperature sensor and a thermoelectric cooler are further included, and are electrically connected to the heater, the temperature sensor and the thermoelectric cooler, and receive a signal sensed by the temperature sensor to control the heat generation of the heater and the endotherm of the thermoelectric cooler. External resonator type wavelength tunable laser module further comprising a control device.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 온도센서는 광도파로의 상부에 구비되며, 상기 열전냉각기는 상기 광도파로의 하부에 구비되는 것을 특징으로 하는 외부 공진기형 파장가변 레이저 모듈.The temperature sensor is provided in the upper portion of the optical waveguide, the thermoelectric cooler is an external resonator type wavelength tunable laser module, characterized in that provided in the lower portion of the optical waveguide.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 광도파로는 폴리머로 이루어진 폴리머 광도파로인 것을 특징으로 하는 외부 공진기형 파장가변 레이저 모듈.The optical waveguide is an external resonator type wavelength tunable laser module, characterized in that the polymer optical waveguide made of a polymer.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 브래그 격자는 폴리머로 이루어진 폴리머 브래그 격자이며,The Bragg grating is a polymer Bragg grating made of a polymer,
    상기 광도파로 및 상기 브래그 격자를 형성하는 폴리머는 할로겐 원소를 포함하고, 자외선 또는 열에 의해 경화되는 관능기를 포함하는 것을 특징으로 하는 외부 공진기형 파장가변 레이저 모듈.And the polymer forming the optical waveguide and the Bragg grating includes a halogen element, and includes a functional group that is cured by ultraviolet rays or heat.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 광도파로 및 상기 브래그 격자를 형성하는 폴리머는 열광학 계수가 -9.9×10-4 내지 -0.5×10-4-1인 것을 특징으로 하는 외부 공진기형 파장가변 레이저 모듈.And the polymer forming the optical waveguide and the Bragg grating has a thermo-optic coefficient of -9.9 × 10 -4 to -0.5 × 10 -4 ° C -1 .
  9. 제 1 항에 있어서,The method of claim 1,
    상기 광도파로의 기하학적 구조는 립(rib) 구조, 리지(ridge) 구조, 인버티드 립(inverted rib) 구조, 인버티드 리지(inverted ridge) 구조 또는 채널(chnnel) 구조인 것을 특징으로 하는 외부 공진기형 파장가변 레이저 모듈.The optical waveguide geometry may include a rib structure, a ridge structure, an inverted rib structure, an inverted ridge structure, or a channel structure. Tunable laser module.
PCT/KR2015/005062 2014-05-20 2015-05-20 External cavity type tunable wavelength laser module for to-can packaging WO2015178685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/311,798 US20170093118A1 (en) 2014-05-20 2015-05-20 External cavity type tunable wavelength laser module for to-can packaging

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0060578 2014-05-20
KR20140060578 2014-05-20
KR1020150069933A KR101679660B1 (en) 2014-05-20 2015-05-19 External cavity tunable laser module for to-can packaging
KR10-2015-0069933 2015-05-19

Publications (1)

Publication Number Publication Date
WO2015178685A1 true WO2015178685A1 (en) 2015-11-26

Family

ID=54554281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005062 WO2015178685A1 (en) 2014-05-20 2015-05-20 External cavity type tunable wavelength laser module for to-can packaging

Country Status (1)

Country Link
WO (1) WO2015178685A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050213618A1 (en) * 2004-03-29 2005-09-29 Sochava Sergei L Semi-integrated designs for external cavity tunable lasers
KR20080052319A (en) * 2006-12-05 2008-06-11 한국전자통신연구원 Planar lightwave circuit(plc) device, wavelength tunable light source comprising the same device and wavelength division multiplexing-passive optical network(wdm-pon) using the same light source
US20100208756A1 (en) * 2007-07-27 2010-08-19 Young-Ouk Noh Tunable laser module based on polymer waveguides
US20120099611A1 (en) * 2009-06-12 2012-04-26 Mel External cavity tunable laser module
US20130182728A1 (en) * 2012-01-12 2013-07-18 Mars Technology. Wavelength tunable external cavity laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050213618A1 (en) * 2004-03-29 2005-09-29 Sochava Sergei L Semi-integrated designs for external cavity tunable lasers
KR20080052319A (en) * 2006-12-05 2008-06-11 한국전자통신연구원 Planar lightwave circuit(plc) device, wavelength tunable light source comprising the same device and wavelength division multiplexing-passive optical network(wdm-pon) using the same light source
US20100208756A1 (en) * 2007-07-27 2010-08-19 Young-Ouk Noh Tunable laser module based on polymer waveguides
US20120099611A1 (en) * 2009-06-12 2012-04-26 Mel External cavity tunable laser module
US20130182728A1 (en) * 2012-01-12 2013-07-18 Mars Technology. Wavelength tunable external cavity laser

Similar Documents

Publication Publication Date Title
KR100910979B1 (en) Tunable Laser Module Based on Polymer Waveguides
US6393185B1 (en) Differential waveguide pair
KR101038264B1 (en) Wavelength Tunable External Cavity Semiconductor Laser Module
US6324204B1 (en) Channel-switched tunable laser for DWDM communications
US6321011B2 (en) Channel-switched cross-connect
US20230024334A1 (en) Adjustable grid tracking transmitters and receivers
WO2015018352A1 (en) Wavelength-tunable external cavity laser
US20020041735A1 (en) Multiple grating optical waveguide monitor
US9020351B1 (en) Method and system for multiplexing optical communication signals
KR100679241B1 (en) Tunable Multiplexer, Demultiplexer And Tunable Laser with Optical Deflector
US6934313B1 (en) Method of making channel-aligned resonator devices
KR101586747B1 (en) Tunable optical filter of transmission type using long period gratings
KR101679660B1 (en) External cavity tunable laser module for to-can packaging
WO2015178685A1 (en) External cavity type tunable wavelength laser module for to-can packaging
US20150349493A1 (en) Semiconductor laser with external cavity having non-straight waveguide
KR101845269B1 (en) Wavelength tunable optical receiver with waveguide bragg gratings
KR20150047699A (en) Highly Efficeient External Cavity Tunable Laser
JP2008166577A (en) Laser module with wavelength monitor
JP2004179465A (en) Wavelength stabilized laser
Zhou et al. Four-channel multimode wavelength-division-demultiplexer (WDM) system based on surface-normal volume holographic gratings and substrate-guided waves
US20180083420A1 (en) Thermally compensating spot-size converter for an athermal laser
WO2012109400A1 (en) High power planar lasing waveguide
EP1096280A1 (en) Multiple grating optical waveguide monitor
KR20150047700A (en) Tunable wavelength filter and tunable wavelength laser module with embedded thin film metal temperature sensor
KR20160047287A (en) Multichannel Wavelength Tunable External Cavity Laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15311798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796782

Country of ref document: EP

Kind code of ref document: A1