WO2015177429A1 - Rotor de turbine pour un moteur a turbine a gaz - Google Patents
Rotor de turbine pour un moteur a turbine a gaz Download PDFInfo
- Publication number
- WO2015177429A1 WO2015177429A1 PCT/FR2015/051211 FR2015051211W WO2015177429A1 WO 2015177429 A1 WO2015177429 A1 WO 2015177429A1 FR 2015051211 W FR2015051211 W FR 2015051211W WO 2015177429 A1 WO2015177429 A1 WO 2015177429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow
- disk
- turbine
- rotor
- ferrule
- Prior art date
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 30
- 238000009413 insulation Methods 0.000 claims abstract description 13
- 238000009423 ventilation Methods 0.000 description 23
- 230000004907 flux Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/001—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to a turbine rotor for a gas turbine engine, intended to equip aircraft, and more particularly to a low or medium pressure turbine rotor.
- turbomachines it is common to use air taken in particular on the high pressure compressor to cool the parts located in thermally hot areas downstream of the combustion chamber of the turbomachine.
- the rotor of the low pressure turbine must be ventilated with "cool" air to cool the links or fasteners of the vanes on the rotor discs by an appropriate air flow at the connection between the foot vanes and rim of the disc.
- FIG. 1 schematically illustrates a prior art turbine rotor comprising an upstream disk 1, a downstream disk 5, an annular flange b.
- a first shell 1 1 connects the upstream disk 1 to the annular flange b.
- a second ferrule 51 connects the downstream disk 5 to the annular flange b.
- the rotor also comprises a flow-separating device 4, a second portion 41 of which is disposed between the first shell 11 and the second shell 51. These three elements: portion 41, first ferrule 11 and second ferrule 51 are held together by the annular flange b.
- the flow-separating device is called labyrinth ring, because of its annular shape at 360 ° C and the presence of wipers c.
- the wipers c of the labyrinth ring 4 make it possible to seal between zones of the turbine under different pressures. They are located vis-à-vis cartridges of abradable material on the stator part. These cartridges prevent the destruction of wipers when they come into contact with the stator.
- the flow separator device 4 in this rotor has a Y-shape to protect the ferrules of the disks and channel the air flows that cool the disks.
- Three heat flows f1, f2 and fv coexist within the rotor arrangement: a first flow f 1 for the ventilation of the upstream disk, a second stream f2 for the ventilation of the downstream disk and a stream of vein fv coming from an air stream of the turbine.
- the first ventilation flow f1 in order to cool the upstream disk, passes (in the direction of the arrow) through the upstream disk by cells formed in the upstream disk 1 and then by at least one hole 45 formed in the flow separating device 4.
- the second ventilation flow f2 to cool the downstream disk, passes (in the direction of the arrow) through a plurality of lunules (not visible in Figure 1) of the flow separator device 4 and the through the downstream disk by cells made in the downstream disk 5.
- the device of Figure 1 has as a major drawback the presence of thermal gradients at the annular flange due to the cohabitation between the different air streams having different temperatures.
- the annular flange together holds the ferrule of the upstream disk 1 1, the ferrule of the downstream disk 51 and the flow separator device 4.
- the thermal gradients induce mechanical stresses on the annular flange. These mechanical stresses can induce a deterioration or even a rupture of the annular flange.
- the invention aims to remedy all or part of the disadvantages of the state of the art identified above, and in particular to provide means for reducing the mechanical stresses at the annular flange connecting a turbine disc upstream and downstream turbine disk of a turbine rotor.
- one aspect of the invention relates to a turbine rotor for a gas turbine engine, said rotor comprising:
- an airflow separator device comprising:
- first portion forming a first ring, disposed between the upstream turbine disk and the downstream turbine disk; a second portion, forming a second ring, said second portion having a first portion disposed facing the downstream turbine disk and a second portion disposed between the first ring and the second ring; and a zone of thermal insulation placed between the first part and the second part.
- the air ventilation flows between the upstream portion and the downstream portion are dissociated.
- the thermal insulation zone as well as the first part and the second part form a physical boundary between the ventilation flow for the cooling of the upstream disk and the ventilation flow for the cooling of the downstream disk.
- the rotor according to the invention may have one or more additional characteristics among the following, considered individually or according to the technically possible combinations:
- the thermal insulation zone is a space filled with air
- the thermal insulation zone is disposed between a lower portion of the first portion and an upper portion of the second portion and is opposite the second ferrule;
- the first part of the flow-separating device and the second part of the flow-separating device are in one piece; the first part of the flow-separating device and the second part of the flow-separating device are separate parts;
- the first part of the flow separator device is a labyrinth seal, said labyrinth seal having at least one wiper;
- a third portion of the first portion bears against the upstream disk, a fourth portion of the first portion bears against the first portion of the second portion, said first portion being configured to radially maintain the first portion.
- the first part is thus held in abutment between the upstream disk and the second part, the latter part itself being held in abutment against the downstream disk and the annular flange;
- the annular flange maintains between them the first ferrule, the second ferrule and the second part of the flux separator device.
- the invention also relates to a turbomachine comprising a rotor according to one of the embodiments described above.
- the invention also relates to an aircraft comprising a rotor according to one of the previously described embodiments.
- Figure 1 is a schematic sectional view of a turbine rotor for a gas turbine engine according to the prior art
- Figure 2 is a schematic sectional view of a turbine rotor for a gas turbine engine according to one embodiment of the invention.
- FIG. 2 is schematically illustrated a sectional view of a turbine rotor for a gas turbine engine of an aircraft, and more particularly a rotor of a low pressure turbine.
- the rotor comprises an upstream turbine disk 1 and a downstream turbine disk 5.
- the upstream turbine disk 1 is part, for example, of the first stage of the low turbine pressure and the downstream turbine disk 5 is part of the second stage of the low pressure turbine.
- the rotor also comprises a first ferrule 11 and a second ferrule 51.
- the first ferrule 11 and the second ferrule 51 are cylindrical ferrules.
- the first shell 1 1 connects the upstream disk 1 to an annular flange b.
- the second ferrule 51 connects the downstream disk 1 to an annular flange b.
- the annular flange b makes it possible to maintain in connection the first ferrule 1 1 and the second ferrule 51.
- the rotor also comprises an airflow separator device (3, 4).
- This device has the function of allowing the separation of the air flows circulating in the rotor, namely a first flow f1 (direction of circulation illustrated by an arrow in FIG. 2) which serves for the ventilation of the upstream disk 1 and a second flow f2 (direction of flow illustrated by an arrow in Figure 2) which serves for ventilation of the downstream disk 5.
- the flux separator device comprises a first part 3 and a second part 4.
- the first part 3 and the second part 4 are separate parts.
- the first part 3 forming a first ring 3 is disposed between the upstream turbine disk 1 and the downstream turbine disk 5.
- the first part in this embodiment is a labyrinth seal and comprises at least one wiper c.
- the wiper c during operation of the turbine, comes into contact with an abradable material of a cartridge 2 of the stator of the turbine.
- the second part 4 forming a second ring is disposed between the downstream turbine disc 5 and the first 1 1 and second ferrule 51.
- the second portion 4 comprises a first portion 42 disposed facing the downstream turbine disk 5.
- the first portion 42 is here in abutment against the downstream turbine disk 5.
- the second portion 4 comprises a second portion disposed between the first shell 1 1 and the second ferrule 51 and held in position by the annular flange b.
- the flux separator device also comprises a thermal insulation zone 6 between the first part 3 and the second part 4.
- the thermal insulation zone 6 is an air-filled space between the two separate parts. that is the first ring 3 and the second ring 4.
- the thermal insulation zone 6 is situated between a lower part of the first ring 3 and an upper part of the second ring 4. It is facing at least the second ring 51 which connects the downstream turbine disk 5 to the annular flange b.
- the thermal insulation zone 6 is a space filled with air insulating the annular flange of the first ventilation flow f1 and the second ventilation flow f2.
- a third portion 31 of the first portion bears against the upstream turbine disk 1 and a fourth portion 32 of the first portion bears against the first portion 42 of the second part.
- the first portion 42 of the second portion radially retains the first portion 3.
- the first portion 42 forms a hook in which is inserted the fourth portion 32 of the first portion.
- the rotor comprises a first ventilation arrangement comprising a plurality of cells (not visible) of the upstream disk 1 and at least one hole 45 of a wall of the first part of the flow separator device.
- the first ventilation arrangement allows the circulation of the first ventilation flow f1 for the ventilation of the upstream disk.
- the first ventilation flow f1 encounters the stream of vein fv coming from an air stream at its exit from the hole 45 made in the wall of the first part of the flow-separating device.
- the rotor also comprises a second ventilation arrangement comprising a plurality of (non-visible) lunules formed in the second part of the flow-separating device so as to circulate a second ventilation flow f2 between the first ferrule and the second ferrule towards a space between the second portion 4 of the flow-separating device and the second ferrule 51.
- the second ventilation arrangement also comprises a plurality of cells formed in the downstream disk 5. The second ventilation arrangement allows the circulation of the second ventilation flow f2 for ventilation of the downstream disk.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15724345.2A EP3146157B1 (fr) | 2014-05-20 | 2015-05-07 | Rotor de turbine pour un moteur à turbine à gaz |
RU2016149668A RU2676507C2 (ru) | 2014-05-20 | 2015-05-07 | Ротор турбины для газотурбинного двигателя |
BR112016027188-2A BR112016027188B1 (pt) | 2014-05-20 | 2015-05-07 | Rotor de turbina para um motor com turbina a gás |
US15/312,850 US10526893B2 (en) | 2014-05-20 | 2015-05-07 | Turbine rotor for a gas turbine engine |
CA2949597A CA2949597C (fr) | 2014-05-20 | 2015-05-07 | Rotor de turbine pour un moteur a turbine a gaz |
CN201580029116.0A CN106460521B (zh) | 2014-05-20 | 2015-05-07 | 燃气轮机发动机的涡轮转子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1454500 | 2014-05-20 | ||
FR1454500A FR3021348B1 (fr) | 2014-05-20 | 2014-05-20 | Rotor de turbine pour un moteur a turbine a gaz |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015177429A1 true WO2015177429A1 (fr) | 2015-11-26 |
Family
ID=51830395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2015/051211 WO2015177429A1 (fr) | 2014-05-20 | 2015-05-07 | Rotor de turbine pour un moteur a turbine a gaz |
Country Status (8)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3306035A1 (en) * | 2016-10-06 | 2018-04-11 | United Technologies Corporation | Axial-radial cooling slots on inner air seal |
FR3062414A1 (fr) * | 2017-02-02 | 2018-08-03 | Safran Aircraft Engines | Optimisation de percage d'anneau mobile |
EP3523507B1 (fr) | 2016-10-07 | 2020-06-24 | Safran Aircraft Engines | Assemblage d'anneau mobile de turbine de turbomachine |
US11098604B2 (en) | 2016-10-06 | 2021-08-24 | Raytheon Technologies Corporation | Radial-axial cooling slots |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017108581A1 (de) * | 2017-04-21 | 2018-10-25 | Rolls-Royce Deutschland Ltd & Co Kg | Strömungsmaschine mit einer adaptiven Dichteinrichtung |
FR3075254B1 (fr) * | 2017-12-19 | 2019-11-22 | Safran Aircraft Engines | Dispositif amortisseur |
CN111615584B (zh) * | 2017-12-18 | 2022-08-16 | 赛峰飞机发动机公司 | 阻尼装置 |
US10767485B2 (en) * | 2018-01-08 | 2020-09-08 | Raytheon Technologies Corporation | Radial cooling system for gas turbine engine compressors |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1106557B (de) * | 1957-07-18 | 1961-05-10 | Rolls Royce | Gasturbine, deren Laeuferschaufeln innere Kuehlkanaele aufweisen |
US3575528A (en) * | 1968-10-28 | 1971-04-20 | Gen Motors Corp | Turbine rotor cooling |
EP0169798A1 (en) * | 1984-07-23 | 1986-01-29 | United Technologies Corporation | Rotating seal for gas turbine engine |
DE3310529A1 (de) * | 1982-03-23 | 1996-10-31 | Snecma | Vorrichtung zum Kühlen des Rotors einer Gasturbine |
GB2307520A (en) * | 1995-11-14 | 1997-05-28 | Rolls Royce Plc | Gas turbine engine sealing arrangement |
EP1264964A1 (fr) * | 2001-06-07 | 2002-12-11 | Snecma Moteurs | Agencement de rotor de turbomachine à deux disques aubages séparés par une entretoise |
EP1736635A2 (de) * | 2005-05-31 | 2006-12-27 | Rolls-Royce Deutschland Ltd & Co KG | Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1809127A1 (en) * | 1977-07-13 | 1993-04-15 | Motornyj Z | Gas-turbine engine turbine |
US4526508A (en) * | 1982-09-29 | 1985-07-02 | United Technologies Corporation | Rotor assembly for a gas turbine engine |
FR2600377B1 (fr) * | 1986-06-18 | 1988-09-02 | Snecma | Dispositif de controle des debits d'air de refroidissement d'une turbine de moteur |
FR2893359A1 (fr) * | 2005-11-15 | 2007-05-18 | Snecma Sa | Lechette annulaire destinee a un laryrinthe d'etancheite, et son procede de fabrication |
FR2937371B1 (fr) * | 2008-10-20 | 2010-12-10 | Snecma | Ventilation d'une turbine haute-pression dans une turbomachine |
US8382432B2 (en) * | 2010-03-08 | 2013-02-26 | General Electric Company | Cooled turbine rim seal |
IT1403415B1 (it) * | 2010-12-21 | 2013-10-17 | Avio Spa | Turbina a gas per motori aeronautici |
RU2507401C1 (ru) * | 2012-11-07 | 2014-02-20 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Турбина низкого давления газотурбинного двигателя |
-
2014
- 2014-05-20 FR FR1454500A patent/FR3021348B1/fr active Active
-
2015
- 2015-05-07 WO PCT/FR2015/051211 patent/WO2015177429A1/fr active Application Filing
- 2015-05-07 RU RU2016149668A patent/RU2676507C2/ru active
- 2015-05-07 CA CA2949597A patent/CA2949597C/fr active Active
- 2015-05-07 CN CN201580029116.0A patent/CN106460521B/zh active Active
- 2015-05-07 US US15/312,850 patent/US10526893B2/en active Active
- 2015-05-07 BR BR112016027188-2A patent/BR112016027188B1/pt active IP Right Grant
- 2015-05-07 EP EP15724345.2A patent/EP3146157B1/fr active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1106557B (de) * | 1957-07-18 | 1961-05-10 | Rolls Royce | Gasturbine, deren Laeuferschaufeln innere Kuehlkanaele aufweisen |
US3575528A (en) * | 1968-10-28 | 1971-04-20 | Gen Motors Corp | Turbine rotor cooling |
DE3310529A1 (de) * | 1982-03-23 | 1996-10-31 | Snecma | Vorrichtung zum Kühlen des Rotors einer Gasturbine |
EP0169798A1 (en) * | 1984-07-23 | 1986-01-29 | United Technologies Corporation | Rotating seal for gas turbine engine |
GB2307520A (en) * | 1995-11-14 | 1997-05-28 | Rolls Royce Plc | Gas turbine engine sealing arrangement |
EP1264964A1 (fr) * | 2001-06-07 | 2002-12-11 | Snecma Moteurs | Agencement de rotor de turbomachine à deux disques aubages séparés par une entretoise |
EP1736635A2 (de) * | 2005-05-31 | 2006-12-27 | Rolls-Royce Deutschland Ltd & Co KG | Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3306035A1 (en) * | 2016-10-06 | 2018-04-11 | United Technologies Corporation | Axial-radial cooling slots on inner air seal |
US10415410B2 (en) | 2016-10-06 | 2019-09-17 | United Technologies Corporation | Axial-radial cooling slots on inner air seal |
US11041396B2 (en) | 2016-10-06 | 2021-06-22 | Raytheon Technologies Corporation | Axial-radial cooling slots on inner air seal |
US11098604B2 (en) | 2016-10-06 | 2021-08-24 | Raytheon Technologies Corporation | Radial-axial cooling slots |
EP3523507B1 (fr) | 2016-10-07 | 2020-06-24 | Safran Aircraft Engines | Assemblage d'anneau mobile de turbine de turbomachine |
FR3062414A1 (fr) * | 2017-02-02 | 2018-08-03 | Safran Aircraft Engines | Optimisation de percage d'anneau mobile |
Also Published As
Publication number | Publication date |
---|---|
RU2016149668A (ru) | 2018-06-20 |
CA2949597C (fr) | 2022-03-15 |
CN106460521B (zh) | 2020-04-07 |
BR112016027188B1 (pt) | 2022-07-05 |
BR112016027188A2 (US06515009-20030204-C00004.png) | 2017-08-15 |
FR3021348B1 (fr) | 2016-06-10 |
CA2949597A1 (fr) | 2015-11-26 |
US10526893B2 (en) | 2020-01-07 |
EP3146157A1 (fr) | 2017-03-29 |
FR3021348A1 (fr) | 2015-11-27 |
EP3146157B1 (fr) | 2019-07-31 |
US20170167264A1 (en) | 2017-06-15 |
RU2676507C2 (ru) | 2018-12-29 |
RU2016149668A3 (US06515009-20030204-C00004.png) | 2018-10-24 |
CN106460521A (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3146157B1 (fr) | Rotor de turbine pour un moteur à turbine à gaz | |
EP3523507B1 (fr) | Assemblage d'anneau mobile de turbine de turbomachine | |
CA2979474C (fr) | Ensemble d'anneau de turbine comprenant une pluralite de secteurs d'anneau en materiau composite a matrice ceramique | |
EP1818615B1 (fr) | Chambre de combustion annulaire d'une turbomachine | |
EP3049636B1 (fr) | Ensemble rotatif pour turbomachine | |
FR2970030A1 (fr) | Procede d'etancheite de rebord entre etages d'une turbine | |
FR2872541A1 (fr) | Aube fixe de turbine a refroidissement ameliore | |
EP3874131B1 (fr) | Secteur d'anneau de turbine a languettes d'etancheite refroidies | |
EP2504529A1 (fr) | Isolation d'un rebord circonférentiel d'un carter externe de turbomachine vis-à-vis d'un secteur d'anneau correspondant | |
WO2015044579A1 (fr) | Ensemble rotatif pour turbomachine | |
FR2955152A1 (fr) | Turbomachine a circulation de flux d'air de purge amelioree | |
FR3000985A1 (fr) | Dispositif de refroidissement pour un carter de turbine | |
EP4136327B1 (fr) | Dispositif de refroidissement d'un carter de turbine | |
EP3350417B1 (fr) | Dispositif de ventilation d'un carter de turbine d'une turbomachine | |
WO2024061737A1 (fr) | Turbomachine axiale triple-flux avec échangeur de chaleur | |
WO2024061740A1 (fr) | Turbomachine axiale triple-flux avec échangeur de chaleur étanche dans le troisième flux | |
EP3105424A1 (fr) | Système échangeur de chaleur | |
EP4416379A1 (fr) | Distributeur de turbine comportant un élément annulaire d'étanchéité | |
FR3140137A1 (fr) | Turbomachine triple-flux avec échangeur de chaleur supportant une virole interne | |
EP4298319A1 (fr) | Anneau d'etancheite de turbine | |
FR3111964A1 (fr) | Assemblage d’une pièce de chambre de combustion par recouvrement par une autre pièce | |
FR3086328A1 (fr) | Turbine a aubes retenues axialement, pour turbomachine | |
FR3093131A1 (fr) | Ensemble pour turbomachine | |
FR3011272A1 (fr) | Dispositif de connexion d'une partie fixe de turbomachine et d'un pied de distributeur d'une turbine de turbomachine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15724345 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2949597 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15312850 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016027188 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016149668 Country of ref document: RU Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015724345 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015724345 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112016027188 Country of ref document: BR Kind code of ref document: A2 Effective date: 20161121 |