WO2015174118A1 - 情報処理システム、記憶媒体、およびコンテンツ取得方法 - Google Patents
情報処理システム、記憶媒体、およびコンテンツ取得方法 Download PDFInfo
- Publication number
- WO2015174118A1 WO2015174118A1 PCT/JP2015/055402 JP2015055402W WO2015174118A1 WO 2015174118 A1 WO2015174118 A1 WO 2015174118A1 JP 2015055402 W JP2015055402 W JP 2015055402W WO 2015174118 A1 WO2015174118 A1 WO 2015174118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- information processing
- user
- unit
- processing system
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims description 9
- 230000000694 effects Effects 0.000 abstract description 6
- 238000013480 data collection Methods 0.000 description 63
- 238000010801 machine learning Methods 0.000 description 30
- 230000006399 behavior Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 4
- 239000013589 supplement Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 235000012206 bottled water Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008450 motivation Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06311—Scheduling, planning or task assignment for a person or group
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/183—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/08—Payment architectures
- G06Q20/14—Payment architectures specially adapted for billing systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/63—Control of cameras or camera modules by using electronic viewfinders
Definitions
- This disclosure relates to an information processing system, a storage medium, and a content acquisition method.
- Patent Document 1 discloses a system that learns face detection (face recognition) from a captured image and evaluates facial expressions.
- the present disclosure proposes an information processing system, a storage medium, and a content acquisition method capable of collecting learning data by performing an alternative work.
- a providing unit that provides a user with a task for acquiring content related to a specific keyword, an acquisition unit that acquires content acquired by the user according to the task, and content for the keyword
- An information processing system includes a control unit that controls to notify the user that the acquired content is used to generate an intelligent information processing unit that can identify the relevance.
- the computer provides a user with a task for obtaining content related to a specific keyword, an acquisition unit that acquires the content acquired by the user according to the task, Stored is a program for functioning as a control unit that controls to notify the user that the acquired content is used to generate an intelligent information processing unit that can identify the relevance of the content to the keyword.
- a storage medium is proposed.
- a task for obtaining content related to a specific keyword is provided to the user via the client, and the content acquired by the user according to the task is provided via the client. Acquiring and controlling to notify the user via the client that the acquired content is used to generate an intelligent information processing unit capable of specifying the relevance of the content to the keyword.
- a content acquisition method is proposed.
- FIG. 1 An overview of Information Processing System According to an embodiment of the present disclosure will be described with reference to FIG.
- the information processing system according to the present embodiment performs an alternative work (hereinafter also referred to as “task” in this specification) for the client 2 in order to acquire data (content) necessary for learning. ), And a recognition server 3 that performs machine learning using data acquired by alternative work (hereinafter also referred to as “content”) to increase recognition accuracy.
- an alternative work hereinafter also referred to as “task” in this specification
- content data acquired by alternative work
- the data collection server 1 provides a task for collecting data necessary for machine learning performed by the recognition server 3 to improve accuracy for the client 2 used by the user A.
- a task for collecting data is provided as, for example, an in-game mission or a mini-game, thereby allowing the user to perform content collection work while having fun.
- the client 2 is a user terminal such as a smartphone, a tablet terminal, or a notebook PC (personal computer).
- the data collection server 1 is connected to the client 2 directly or via the network 5 and provides a task.
- the data collection server 1 transmits the content acquired by executing the task in the client 2 to the recognition server 3. Furthermore, the data collection server 1 gives a reward to the user A according to the content. Specifically, for example, the data collection server 1 gives a reward according to the contribution to learning by the content transmitted to the recognition server 3.
- the recognition server 3 constructs various recognition engines such as a recognition engine for recognizing a predetermined object from a captured image, a recognition engine for recognizing a character from an image, or a recognition engine for recognizing a predetermined sound from speech data by machine learning.
- An information processing apparatus having a function.
- the recognition server 3 returns the evaluation of learning performed based on the content provided from the data collection server 1 to the data collection server 1 as the degree of contribution to learning by the content.
- the recognition server 3 can use the recognition engine function via an API (Application Programming Interface) by a user B (or user A) that is different from the user A that provides content.
- API Application Programming Interface
- the content used in machine learning performed by the recognition server 3 to increase the accuracy of the recognition engine is acquired by the data collection server 1 presenting the alternative work to the client 2. can do.
- the learning data necessary for machine learning is not directly collected, but another work (alternative work) such as a game is presented and the user is caused to perform the alternative work.
- Collect learning data necessary for learning As a result, a large amount of learning data can be acquired while making many users entertain.
- the motivation for the user to perform an alternative work can be increased.
- FIG. 2 is a block diagram showing an example of the internal configuration of the data collection server 1 and the recognition server 3 included in the information processing system according to the present embodiment.
- the data collection server 1 includes a task providing unit 11, a content acquisition unit 13, a notification control unit 15, a reward granting control unit 17, and a content transmission unit 19.
- the task providing unit 11 has a function of generating and providing a task, which is an alternative work for obtaining learning data necessary for machine learning in the recognition server 3, to the client 2.
- a task is a task for allowing a user to acquire (including “select”) content (including a simple identifier) related to a specific keyword. For example, when learning data necessary for an engine for recognizing a sky image is acquired, a task for causing the user to acquire content (sky photos, moving images, etc.) related to the keyword “sky” is generated.
- Such a task can be provided, for example, as a mission or quest in the game.
- the content acquisition unit 13 is a reception unit having a function of acquiring content acquired by the user according to a task from the client 2.
- the content acquisition unit 13 outputs the acquired content to the content transmission unit 19.
- the content transmission unit 19 transmits the content output from the content acquisition unit 13 to the recognition server 3. Such content is used as teacher data for machine learning in the recognition server 3.
- the notification control unit 15 has a function of making various notifications to the client 2. Specifically, for example, the notification control unit 15 notifies that the acquired content is used for machine learning of the recognition engine (for example, used for generating an algorithm for the recognition engine). The notification control unit 15 may notify such a usage notification as a participation condition before executing the task, may be included in a consent form for executing the application, or the client 2 transmits the content after executing the task. You may notify as consent matter at the time. Further, the notification control unit 15 may notify again after the content is transmitted, or may notify again by an end roll.
- the notification control unit 15 may notify again after the content is transmitted, or may notify again by an end roll.
- the reward grant control unit 17 has a function of giving a reward to the user according to the content acquired from the client 2. For users (workers) who perform tasks (alternative work), if the task itself is designed to be sufficiently enjoyable, or if the execution of the task is a social contribution, no remuneration is required. It is also possible to increase the motivation of the user by giving. When giving rewards, paying with something of real value, such as cash or points, results in a cost to collect learning data, so in-game bonus scores, items, coins (virtual currency) Etc. can be considered as rewards. When virtual currency is linked to real value, a corresponding cost is incurred. Further, a task (alternative work) may be provided as a mission or quest in the network game, and the reward may be obtained by thanking the character in the network game after executing the task. In this case, no cost is incurred.
- a task alternative work
- the reward may be obtained by thanking the character in the network game after executing the task. In this case, no cost is
- Rewards can be changed depending on the quality of content (contribution to learning), the number of content, or the timing of acquiring content.
- the quality of the content is determined by the “degree of contribution to learning” calculated by the recognition server 3 based on the evaluation of the learning result using the content and transmitted to the data collection server 1.
- the reward granting control unit 17 performs control so that a greater reward is given as the degree of contribution to learning is greater, or a predetermined reward is given when a predetermined value is exceeded.
- the reward granting control unit 17 may perform control so as to give more rewards as the amount and number of contents transmitted from the user increase.
- the reward granting control unit 17 also acquires the content acquisition timing by the user, the transmission timing to the data collection server 1 (that is, the acquisition timing in the data collection server 1), or the timing at which the content is used for machine learning of the recognition server 3 ( That is, it may be controlled to give more rewards as the acquisition timing in the recognition server 3 is in the early stage of recognition engine creation. This is because it is required to acquire more learning data early in the initial stage of recognition engine creation. On the other hand, at the stage where a large amount of learning data has already been collected, since higher quality and correct learning data is required, rewards can be given according to the degree of contribution to learning described above.
- the recognition server 3 includes a task generation request unit 31, a machine learning unit 33, a recognition engine 35, and an evaluation unit 37.
- the task generation request unit 31 makes a task generation request to the data collection server 1 together with information about the target recognition engine, information for specifying necessary learning data, and the like.
- a task generation request is issued from the recognition server 3 to one data collection server 1, but this embodiment is not limited to this, and tasks are issued to a plurality of data collection servers.
- a generation request may be made. Thereby, the same learning data can be collected by various types of tasks by a plurality of data collection servers.
- the machine learning unit 33 performs machine learning (generation of a recognition algorithm) using learning data (teacher data) transmitted from the data collection server 1 in order to improve the accuracy of the recognition engine 35, and the learning result is recognized by the recognition engine. 35.
- the learning data is content acquired by the data collection server 1 from the client 2 by a task (alternative work).
- the machine learning algorithm executed by the machine learning unit 33 is not particularly limited, and is performed in accordance with general machine learning means. For example, a neural network or a genetic algorithm may be used.
- the recognition engine 35 is various recognition engines (recognition devices) such as an object recognition engine, a character recognition engine, or a voice recognition engine, for example, and is an example of an intelligent information processing unit that can specify the relevance of content to a specific keyword. It is.
- the evaluation unit 37 evaluates the learning result by the machine learning unit 33 and calculates the contribution degree to the learning of the content used for learning.
- the evaluation unit 37 transmits the calculated contribution to learning to the data collection server 1.
- the degree of contribution to learning may be calculated according to, for example, the amount of change in a recognition engine parameter (also referred to as a feature vector) due to learning. This is because, in general, it can be said that the greater the amount of change in the parameters of the recognition engine (recognition algorithm), the more effective the learning. Therefore, the amount of parameter change is large at the initial stage of creation of the recognition engine, and as a result, the degree of contribution to learning is large.
- FIG. 3 is a sequence diagram showing an operation process of the information processing system according to the present embodiment.
- the task generation request unit 31 of the recognition server 3 acquires a task (for acquiring data necessary for improving accuracy of the recognition engine) from the data collection server 1. Request to generate (alternative work).
- step S106 the task providing unit 11 of the data collection server 1 generates a task in response to a task generation request from the recognition server 3.
- a task generation request from the recognition server 3.
- step S109 the client 2 notifies the data collection server 1 of an intention to participate in the system.
- the task generated by the data collection server 1 is provided as a mission in the game, for example, the statement of intention to participate in the system is automatically transmitted from the client 2 when the game application is downloaded / updated. May be.
- the notification control unit 15 of the data collection server 1 notifies the client 2 of participation conditions in the subsequent step S115.
- participation conditions include, for example, the use of content acquired by the user through task execution to improve the accuracy of the recognition engine.
- step S118 the client 2 presents participation conditions. Specifically, for example, the client 2 displays a participation condition and an acceptance button on the game start screen. The user confirms the participation conditions and taps the accept button.
- step S121 when the user taps the consent button, the client 2 notifies the data collection server 1 that the participation condition is accepted.
- step S124 the task providing unit 11 of the data collection server 1 provides the generated task to the client 2.
- step S127 the client 2 provides a task to the user and acquires content by executing the task.
- step S130 the client 2 transmits the acquired content to the data collection server 1.
- step S133 the data collection server 1 transmits the content acquired by the content acquisition unit 13 from the content transmission unit 19 to the recognition server 3 as learning data.
- step S136 the machine learning unit 33 of the recognition server 3 performs machine learning for improving the accuracy of the recognition engine 35 using the content transmitted from the data collection server 1 as learning data.
- step S139 the recognition server 3 returns to the data collection server 1 the contribution to learning of the content transmitted from the data collection server 1 calculated by the evaluation unit 37.
- step S142 the reward granting control unit 17 of the data collection server 1 determines a reward according to the contribution to content learning.
- step S145 the reward granting control unit 17 of the data collection server 1 grants the determined reward to the client 2.
- learning data (contents) used for machine learning to improve the accuracy of the recognition engine can be collected by a task that is an alternative work. Specifically, for example, by providing a task as a mission in a network game, it is possible to cause many users to execute the task as part of the game and collect more content. If the task itself can be enjoyed, a large amount of content can be acquired as learning data without rewarding the user.
- the data collection server 1 provides the task after receiving the approval of the participation condition from the client 2 as shown in S121 to S124.
- the data collection server 1 may present the participation condition to the client 2 together with the provision of the task, and the task may be expanded on the client 2 side when the user's consent is obtained.
- the participation condition is presented when the content acquired by the client 2 is transmitted to the data collection server 1, and the content is transmitted from the client 2 to the data collection server 1 when the user's consent is obtained. It may be.
- before or after the execution of the task as a matter of caution, it may be simply indicated that the content acquired by the user by the task execution is used for improving the accuracy of the recognition engine.
- the reward granting control unit 17 of the data collection server 1 determines a reward according to the degree of contribution to content learning.
- the present embodiment is not limited to this, and for example, reward The grant control unit 17 may determine a reward according to the number of contents, the acquisition time of the contents, and the like.
- Task example An example of a task provided by the task providing unit 11 of the data collection server 1 will be described with reference to FIGS.
- FIG. 4 is a diagram for explaining an example of a task for acquiring photo content related to a specific keyword as a mission in the game.
- the mission screen 40 shown on the left side of FIG. 4 is a screen displayed on the client 2, and as today's mission, an explanatory note 401 indicating that the virtual currency in the game can be given as a reward by collecting pictures of water, It includes display areas 403, 404, and 405 for displaying images acquired by the user.
- the user captures plastic bottled water or the like as an image of nearby water by a camera function provided in the client 2 and inserts it into the display area 403.
- This mission is for acquiring an image of water necessary as teacher data when the recognition engine 35 of the recognition server 3 is an engine that recognizes an image of water such as plastic bottled water.
- captured images of various types of plastic bottled water are collected as teacher data and used for machine learning of the recognition server 3, thereby improving the accuracy of the recognition engine 35.
- a method of setting content related to a specific keyword as “today's mission” in the game can be considered.
- the mission screen 42 shown on the right side of FIG. 4 shows an explanatory sentence 420 indicating that items in the game, virtual currency, etc. can be given as rewards by taking a picture that the game character likes, a game character 421, and a game character's A profile 422 is included. Since the profile 422 indicates “beautiful flower” as a favorite of the game character 421, the user images a flower that is considered beautiful by the camera function provided in the client 2, for example.
- This mission is for acquiring a beautiful flower image required as teacher data when the recognition engine 35 of the recognition server 3 is an engine that recognizes a beautiful flower image.
- captured images of various types of beautiful flowers are collected as teacher data and used for machine learning of the recognition server 3, thereby improving the accuracy of the recognition engine 35.
- the collection of the target content is not directly indicated, but the user is indirectly prompted to acquire the target content by showing the target character in the profile 422 of the game character 421 as a favorite thing of the target game character. it can.
- FIG. 5 is a diagram for explaining an example of a task for selecting a photo content related to a specific keyword as a mission in the game.
- flower images 441, 442, and 443 are displayed in association with each of a plurality of bowling pins, and provided as a mission to defeat beautiful flowers. May be.
- an explanatory note 445 indicating that a bonus score is given as a reward by defeating a beautiful flower, the user's motivation can be increased without incurring costs.
- the data collection server 1 transmits to the recognition server 3 information as learning data, such as from which image in the bowling game it was defeated in order.
- This mission is for allowing the user to select better (correct) teacher data when the recognition engine 35 of the recognition server 3 is an engine that recognizes the degree of beauty of flowers, for example.
- the recognition engine 35 included in the recognition server 3 included in the information processing system is an example of an intelligent information processing unit that can specify the relevance of content with respect to a specific keyword.
- the intelligent information processing unit according to the present disclosure is not limited to this, and may be a relevance determination engine that determines the relevance of another keyword with respect to a specific keyword, for example.
- the relevance level determination engine is used, for example, in a related keyword presentation system that presents a keyword that is predicted to be input next as a candidate when a sentence is created. That is, the related keyword presentation system uses a relevance level determination engine to present a keyword having a high relevance level with a keyword input at the time of creating a sentence as a keyword predicted to be input next.
- the teacher data necessary for machine learning performed for improving the accuracy of the relevance level determination engine also provides the client 2 with the task (alternative work) generated by the task providing unit 11 of the data collection server 1 for the user. Collected by executing. An example of such a task will be described with reference to FIG.
- FIG. 6 is a diagram for explaining an example of a task for acquiring a keyword related to a specific keyword.
- a task such as a keyword associative game is provided, and a box 463 in which a specific keyword “influ (flu)” is already input and a blank box 461, 462, 464 to 466 are arranged side by side.
- the data collection server 1 can acquire data such that a keyword input to a box closer to the box 463 has a higher degree of association with a specific keyword.
- Behavior prediction engine An example of an intelligent information processing unit that can specify the relevance of content to a specific keyword is a crime prevention behavior prediction engine. That is, by identifying the relevance of a predetermined behavior pattern to a specific crime, a criminal act can be predicted from a certain behavior pattern, and can be used for crime prevention and investigation.
- Teacher data necessary for machine learning performed for improving the accuracy of the behavior prediction engine is also provided to the client 2 by the task (alternative work) generated by the task providing unit 11 of the data collection server 1 and executed by the user. It is collected by letting. For example, providing a game such as illegal use without detecting a stolen credit card as a task and allowing the user to use it in the virtual space of the game, such as card usage frequency, usage amount, usage location, usage time, etc. Data can be acquired as teacher data for unauthorized use.
- the behavior prediction engine includes a disaster prediction behavior prediction engine.
- a disaster prediction behavior prediction engine by identifying the relevance of a given behavior pattern to a specific disaster, it is possible to predict what kind of behavior pattern people will take in the event of a disaster, and it can be used to search for, rescue, and guide evacuation of missing persons Can be done.
- Teacher data necessary for machine learning performed for improving the accuracy of the behavior prediction engine is also provided to the client 2 by the task (alternative work) generated by the task providing unit 11 of the data collection server 1 and executed by the user. It is collected by letting.
- the task alternative work
- a game that creates a disaster more realistically and the user runs away is provided as a task, so that it corresponds to the user's attributes (age, gender, personality, etc.)
- Behavior and psychology can be acquired as teacher data for behavior when a disaster occurs.
- FIG. 7 shows an example of a hardware configuration of the information processing apparatus 100 that can realize both the data collection server 1 and the recognition server 3.
- the information processing apparatus 100 includes, for example, a CPU (Central Processing Unit) 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, a storage unit 104, and a communication I / O. F (interface) 105.
- the information processing apparatus 100 connects each component with a bus as a data transmission path, for example.
- the CPU 101 is configured by a microcomputer, for example, and controls each configuration of the information processing apparatus 100.
- the CPU 101 functions as a task providing unit 11, a notification control unit 15, and a reward granting control unit 17.
- the CPU 101 functions as a task generation request unit 31, a machine learning unit 33, a recognition engine 35, and an evaluation unit 37.
- the ROM 102 stores control data such as programs used by the CPU 101 and calculation parameters.
- the RAM 103 temporarily stores a program executed by the CPU 101, for example.
- the storage unit 104 stores various data.
- the storage unit 104 serves as a feature database used for the recognition engine 35 in the recognition server 3.
- the communication I / F 105 is a communication unit included in the information processing apparatus 100, and communicates with an external apparatus configuring the information processing system according to the present embodiment via a network (or directly).
- the communication I / F 105 transmits / receives data to / from the client 2 via the network 5 in the data collection server 1 or transmits / receives data to / from the recognition server 3 directly or via the network 5.
- the communication I / F 105 can function as the task providing unit 11, the content acquisition unit 13, the content transmission unit 19, and the like in the data collection server 1.
- a computer-readable storage medium storing the computer program is also provided.
- each server illustrated in FIG. 2 is an example, and each configuration of the information processing system according to the present embodiment is not limited thereto.
- the machine learning unit 33, the recognition engine 35, and the evaluation unit 37 of the recognition server 3 may be provided in the data collection server 1.
- this technique can also take the following structures.
- a provider that provides users with tasks to get content related to specific keywords;
- An acquisition unit for acquiring content acquired by a user according to a task;
- a control unit that controls to notify the user that the acquired content is used to generate an intelligent information processing unit that can identify the relevance of the content to the keyword;
- An information processing system comprising: (2)
- the information processing system includes: The information processing system according to (1), further including a reward granting control unit that controls the user to be rewarded according to the content acquired by the user acquired by the acquisition unit.
- the information processing system includes: The learning unit further includes a generation unit that generates a recognition unit as an intelligent information processing unit that automatically recognizes content related to the keyword by learning that the acquired content is related to the keyword.
- the information processing system according to any one of (6) to (6).
- the information processing system includes: The learning unit further includes a generation unit that generates a determination unit as an intelligent information processing unit that automatically determines the relevance level of the content related to the keyword by learning that the acquired content is related to the keyword.
- the information processing system according to any one of (1) to (7).
- Computer A provider that provides users with tasks to get content related to specific keywords; An acquisition unit for acquiring content acquired by a user according to a task; A control unit that controls to notify the user that the acquired content is used to generate an intelligent information processing unit that can identify the relevance of the content to the keyword;
- a storage medium storing a program for functioning as a computer.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Software Systems (AREA)
- Educational Administration (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Multimedia (AREA)
- Development Economics (AREA)
- Primary Health Care (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Studio Devices (AREA)
Abstract
特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、タスクに応じてユーザが取得したコンテンツを取得する取得部と、前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、を備える情報処理システムであり、代替作業を行わせることによって、学習用のデータを収集することが可能な情報処理システム。
Description
本開示は、情報処理システム、記憶媒体、およびコンテンツ取得方法に関する。
従来、認識エンジンなどの認識精度を高めるためには、多数の教師データを集めて機械学習を行う必要があった。
このような認識エンジンに関し、例えば下記特許文献1では、撮像画像からの顔検出(顔認識)を学習し、顔の表情を評価するシステムが開示される。
しかしながら、認識エンジンなどの精度を高めるために必要な多数の教師データの収集には多くの人手やコストをかかり、精度向上は容易な作業ではなかった。
そこで、本開示では、代替作業を行わせることによって、学習用のデータを収集することが可能な情報処理システム、記憶媒体、およびコンテンツ取得方法を提案する。
本開示によれば、特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、タスクに応じてユーザが取得したコンテンツを取得する取得部と、前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、備える、情報処理システムを提案する。
本開示によれば、コンピュータを、特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、タスクに応じてユーザが取得したコンテンツを取得する取得部と、前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、として機能させるためのプログラムが記憶された、記憶媒体を提案する。
本開示によれば、特定のキーワードに関連するコンテンツを取得してもらうためのタスクを、クライアントを介してユーザに提供することと、タスクに応じてユーザが取得したコンテンツを、前記クライアントを介して取得することと、前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記クライアントを介して前記ユーザに通知するよう制御することと、を含む、コンテンツ取得方法を提案する。
以上説明したように本開示によれば、代替作業を行わせることによって、学習用のデータを収集することが可能となる。
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、説明は以下の順序で行うものとする。
1.本開示の一実施形態による情報処理システムの概要
2.基本構成および動作処理
2-1.基本構成
2-1-1.データ収集サーバ
2-1-2.認識サーバ
2-2.動作処理
3.タスク例
3-1.第1のタスク例
3-2.第2のタスク例
4.補足
4-1.関連度判断エンジン
4-2.行動予測エンジン
4-3.ハードウェア構成
5.まとめ
1.本開示の一実施形態による情報処理システムの概要
2.基本構成および動作処理
2-1.基本構成
2-1-1.データ収集サーバ
2-1-2.認識サーバ
2-2.動作処理
3.タスク例
3-1.第1のタスク例
3-2.第2のタスク例
4.補足
4-1.関連度判断エンジン
4-2.行動予測エンジン
4-3.ハードウェア構成
5.まとめ
<<1.本開示の一実施形態による情報処理システムの概要>>
まず、本開示の一実施形態による情報処理システムの概要を図1に示して説明する。図1に示すように、本実施形態による情報処理システムは、学習のために必要なデータ(コンテンツ)を取得するためにクライアント2に対して代替作業(以下、本明細書では「タスク」とも称する)を提供するデータ収集サーバ1と、代替作業により取得されたデータ(以下、本明細書では「コンテンツ」とも称する)を用いて機械学習を行って認識精度を高める認識サーバ3と、を含む。
まず、本開示の一実施形態による情報処理システムの概要を図1に示して説明する。図1に示すように、本実施形態による情報処理システムは、学習のために必要なデータ(コンテンツ)を取得するためにクライアント2に対して代替作業(以下、本明細書では「タスク」とも称する)を提供するデータ収集サーバ1と、代替作業により取得されたデータ(以下、本明細書では「コンテンツ」とも称する)を用いて機械学習を行って認識精度を高める認識サーバ3と、を含む。
データ収集サーバ1は、ユーザAが利用するクライアント2に対して、認識サーバ3が精度を高めるために行う機械学習に必要なデータを収集するためのタスクを提供する。データを収集するためのタスクは、例えばゲーム内のミッションやミニゲームとして提供されることで、ユーザに楽しませながらコンテンツ収集作業を行わせることができる。クライアント2は、例えばスマートフォン、タブレット端末、ノートPC(パーソナルコンピュータ)等のユーザ端末である。データ収集サーバ1は、直接またはネットワーク5を介してクライアント2と接続し、タスクの提供を行う。
また、データ収集サーバ1は、クライアント2におけるタスクの実行により取得されたコンテンツを認識サーバ3に送信する。さらに、データ収集サーバ1は、コンテンツに応じてユーザAに対して報酬を付与する。具体的には、例えばデータ収集サーバ1は、認識サーバ3に送信したコンテンツによる学習への貢献度に応じた報酬を付与する。
認識サーバ3は、例えば撮像画像から所定の物体を認識する認識エンジン、画像から文字を認識する認識エンジン、または音声データから所定の音声を認識する認識エンジン等の各種認識エンジンを機械学習により構築する機能を有する情報処理装置である。また、認識サーバ3は、データ収集サーバ1から提供されたコンテンツに基づいて行った学習の評価を、コンテンツによる学習への貢献度としてデータ収集サーバ1に返信する。
また、認識サーバ3は、コンテンツの提供を行うユーザAとは別のユーザB(若しくはユーザAでもよい)により認識エンジン機能をAPI(Application Programming Interface)経由で利用され得る。
このように、本実施形態による情報処理システムでは、認識サーバ3で認識エンジンの精度を高めるために行う機械学習で利用するコンテンツを、データ収集サーバ1により代替作業をクライアント2に提示することで取得することができる。
また、本実施形態では、機械学習に必要な学習データを直接的に収集するのではなく、ゲーム化等した別の作業(代替作業)を提示し、ユーザに代替作業を実行させることで、機械学習に必要な学習データを収集する。これにより、多数のユーザを楽しませながら多量の学習データを取得することができる。また、取得したコンテンツに応じてユーザに対して報酬を与えることで、ユーザが代替作業を行うモチベーションを上げることができる。
以上、本開示の一実施形態による情報処理システムの概要について説明した。続いて、本実施形態の基本構成および動作処理について図2~図3を参照して順次説明する。
<<2.基本構成および動作処理>>
<2-1.基本構成>
図2は、本実施形態による情報処理システムに含まれるデータ収集サーバ1および認識サーバ3の内部構成の一例を示すブロック図である。
<2-1.基本構成>
図2は、本実施形態による情報処理システムに含まれるデータ収集サーバ1および認識サーバ3の内部構成の一例を示すブロック図である。
(2-1-1.データ収集サーバ)
図2に示すように、データ収集サーバ1は、タスク提供部11、コンテンツ取得部13、通知制御部15、報酬付与制御部17、およびコンテンツ送信部19を有する。
図2に示すように、データ収集サーバ1は、タスク提供部11、コンテンツ取得部13、通知制御部15、報酬付与制御部17、およびコンテンツ送信部19を有する。
タスク提供部11は、クライアント2に対して、認識サーバ3における機械学習で必要な学習データを取得する作業の代替作業であるタスクを生成し、提供する機能を有する。かかるタスクは、特定のキーワードに関連するコンテンツ(単なる識別子も含む)をユーザに取得(「選択」も含む)してもらうためのタスクである。例えば空の画像を認識するエンジンに必要な学習データを取得する場合には、「空」というキーワードに関連するコンテンツ(空の写真、動画等)をユーザに取得させるタスクが生成される。このようなタスクは、例えばゲーム内のミッションやクエストとして提供され得る。
コンテンツ取得部13は、クライアント2から、タスクに応じてユーザが取得したコンテンツを取得する機能を有する受信部である。また、コンテンツ取得部13は、取得したコンテンツをコンテンツ送信部19に出力する。
コンテンツ送信部19は、コンテンツ取得部13から出力されたコンテンツを認識サーバ3に送信する。かかるコンテンツは、認識サーバ3において、機械学習の教師データとして用いられる。
通知制御部15は、クライアント2に対する各種通知を行う機能を有する。具体的には、例えば通知制御部15は、取得したコンテンツを認識エンジンの機械学習に用いる旨(認識エンジン用のアルゴリズムの生成に使用する等)を通知する。通知制御部15は、このような用途通知を、タスク実行前に参加条件として通知してもよいし、当該アプリケーション実行の同意書に含めてもよいし、クライアント2がタスク実行後にコンテンツを送信する際に承諾事項として通知してもよい。さらに、通知制御部15は、コンテンツの送信後に再度通知してもよいし、エンドロールで再度通知してもよい。
報酬付与制御部17は、クライアント2から取得したコンテンツに応じた報酬をユーザに与える機能を有する。タスク(代替作業)を行うユーザ(作業者)にとって、タスクそのものが十分に楽しいものであるように設計されている場合やタスクの実行が社会貢献になる場合は特に報酬は必要無いが、何らかの報酬を与えることでユーザのモチベーションを上げることも可能である。報酬を与える場合、現金やポイントのような現実的に価値があるもので支払うと、結果的に学習データの収集にコストがかかってしまうため、ゲーム内のボーナススコア、アイテム、コイン(仮想通貨)等を報酬とすることが考えられる。なお仮想通貨が現実の価値と結びついている場合は相応のコストが発生する。また、タスク(代替作業)をネットワークゲーム内のミッションやクエストとして提供し、タスク実行後にネットワークゲーム内のキャラクターにお礼を言わせることで、その報酬としてもよい。この場合コストは発生しない。
報酬は、コンテンツの質(学習への貢献度)、コンテンツの数、またはコンテンツを取得したタイミングに応じて、変更され得る。例えば、コンテンツの質は、認識サーバ3が当該コンテンツを用いた学習結果の評価に基づいて算出し、データ収集サーバ1に送信する「学習への貢献度」によって判断される。報酬付与制御部17は、学習への貢献度が大きい程多くの報酬を、または所定値を超える場合に所定の報酬を付与するよう制御する。
また、報酬付与制御部17は、ユーザから送信されるコンテンツの量、数が多い程多くの報酬を付与するように制御してもよい。
また、報酬付与制御部17は、ユーザによるコンテンツの取得タイミング、データ収集サーバ1への送信タイミング(すなわちデータ収集サーバ1における取得タイミング)、または当該コンテンツを認識サーバ3の機械学習に利用したタイミング(すなわち認識サーバ3における取得タイミング)が、認識エンジン作成初期の段階である程、多くの報酬を付与するように制御してもよい。認識エンジン作成初期の段階では、より多くの学習データを早く取得することが求められるためである。一方、既に多くの学習データが収集された段階では、より質の高い、正しい学習データが求められるため、上述した学習への貢献度に応じた報酬付与が行われ得る。
(2-1-2.認識サーバ)
次に、認識サーバ3の構成について図2を参照して説明する。図2に示すように、認識サーバ3は、タスク生成依頼部31、機械学習部33、認識エンジン35、および評価部37を有する。
次に、認識サーバ3の構成について図2を参照して説明する。図2に示すように、認識サーバ3は、タスク生成依頼部31、機械学習部33、認識エンジン35、および評価部37を有する。
タスク生成依頼部31は、目的とする認識エンジンの情報や、必要な学習データを指定する情報等と共に、データ収集サーバ1に対してタスク生成依頼を行う。なお、図2に示す例では、認識サーバ3から一のデータ収集サーバ1に対してタスク生成依頼を行っているが、本実施形態はこれに限定されず、複数のデータ収集サーバに対してタスク生成依頼を行ってもよい。これにより、同じ学習データを、複数のデータ収集サーバで様々な種類のタスクにより収集することができる。
機械学習部33は、認識エンジン35の精度を向上させるために、データ収集サーバ1から送信された学習データ(教師データ)を用いて機械学習(認識アルゴリズムの生成)を行い、学習結果を認識エンジン35に反映させる。学習データとは、タスク(代替作業)によりデータ収集サーバ1がクライアント2から取得したコンテンツである。また、機械学習部33が実行する機械学習のアルゴリズムは特に限定せず、一般的な機械学習の手段に則って行われる。例えば、ニューラルネットワークや遺伝的アルゴリズムが用いられてもよい。
認識エンジン35は、例えば物体認識エンジン、文字認識エンジン、または音声認識エンジン等の各種認識エンジン(認識器)であって、特定のキーワードに対するコンテンツの関連性を特定可能な知的情報処理部の一例である。
評価部37は、機械学習部33による学習結果を評価し、学習に用いられたコンテンツの学習への貢献度を算出する。また、評価部37は、算出した学習への貢献度をデータ収集サーバ1に送信する。
学習への貢献度は、例えば学習による認識エンジンのパラメータ(特徴量ベクトルとも称す)の変化量に応じて算出されてもよい。一般的に、認識エンジン(認識アルゴリズム)のパラメータの変化量が多い程、学習効果があったと言えるためである。したがって、認識エンジンの作成初期段階ではパラメータの変化量が大きく、結果的に学習への貢献度が大きいものとされる。
<2-2.動作処理>
以上、本実施形態による情報処理システムに含まれるデータ収集サーバ1および認識サーバ3の各構成について具体的に説明した。続いて、本実施形態による情報処理システムの動作処理について、図3を参照して説明する。
以上、本実施形態による情報処理システムに含まれるデータ収集サーバ1および認識サーバ3の各構成について具体的に説明した。続いて、本実施形態による情報処理システムの動作処理について、図3を参照して説明する。
図3は、本実施形態による情報処理システムの動作処理を示すシーケンス図である。図3に示すように、まず、ステップS103において、認識サーバ3のタスク生成依頼部31は、データ収集サーバ1に対して、認識エンジンの精度向上のために必要なデータを取得するためのタスク(代替作業)の生成依頼を行う。
次に、ステップS106において、データ収集サーバ1のタスク提供部11は、認識サーバ3からのタスク生成依頼に応じて、タスクの生成を行う。具体的なタスクの一例については、図4~図5を参照して後述する。
一方、ステップS109において、クライアント2は、本システムへの参加意思の表明をデータ収集サーバ1に通知する。本システムへの参加意思の表明は、例えばデータ収集サーバ1により生成されるタスクがゲーム内のミッションとして提供される場合、当該ゲームのアプリケーションをダウンロード/更新した際にクライアント2から自動的に送信されてもよい。
次いで、ステップS112において、データ収集サーバ1は、クライアント2からの参加意思を受信すると、続くステップS115において、データ収集サーバ1の通知制御部15により、クライアント2に対して参加条件の通知を行う。かかる参加条件には、例えばタスク実行によりユーザが取得したコンテンツを認識エンジンの精度向上に用いる旨が含まれる。
次に、ステップS118において、クライアント2は参加条件の提示を行う。具体的には、例えばクライアント2は、ゲームスタート画面において参加条件と承諾ボタンとを表示する。ユーザは、参加条件を確認し、承諾ボタンをタップする。
次いで、ステップS121において、クライアント2は、ユーザが承諾ボタンをタップした場合、参加条件承諾の旨をデータ収集サーバ1に通知する。
次に、ステップS124において、データ収集サーバ1のタスク提供部11は、生成したタスクをクライアント2に提供する。
そして、ステップS127において、クライアント2はユーザにタスクを提供し、タスクの実行によりコンテンツを取得する。
続いて、ステップS130において、クライアント2は、取得したコンテンツをデータ収集サーバ1に送信する。
次に、ステップS133において、データ収集サーバ1は、コンテンツ取得部13により取得したコンテンツを、コンテンツ送信部19から認識サーバ3に学習データとして送信する。
次いで、ステップS136において、認識サーバ3の機械学習部33は、データ収集サーバ1から学習データとして送信されたコンテンツを用いて、認識エンジン35の精度向上のための機械学習を行う。
続いて、ステップS139において、認識サーバ3は、評価部37により算出される、データ収集サーバ1から送信されたコンテンツの学習への貢献度を、データ収集サーバ1に返信する。
次に、ステップS142において、データ収集サーバ1の報酬付与制御部17は、コンテンツの学習への貢献度に応じて報酬を決定する。
そして、ステップS145において、データ収集サーバ1の報酬付与制御部17は、決定した報酬をクライアント2に付与する。
以上説明したように、本実施形態による情報処理システムでは、認識エンジンの精度向上のために行う機械学習に利用する学習データ(コンテンツ)を、代替作業であるタスクにより収集することができる。具体的には、例えばネットワークゲーム内のミッションとしてタスクを提供することで、多くのユーザにゲームの一環としてタスクを実行させ、より多くのコンテンツを収集することができる。タスク自体が楽しめるものであれば、ユーザに報酬を与えなくとも多くのコンテンツを学習データとして取得することができる。
なお、図3に示す例では、上記S121~S124に示すように、参加条件承諾の旨をクライアント2から受信してからデータ収集サーバ1がタスクを提供しているが、本実施形態による動作処理はこれに限定されない。例えば、データ収集サーバ1は、タスクの提供と共に参加条件をクライアント2に提示し、ユーザの承諾が得られた場合にクライアント2側でタスクが展開されるようにしてもよい。または、タスク実行後、クライアント2が取得したコンテンツをデータ収集サーバ1に送信する際に参加条件を提示させ、ユーザの承諾が得られた場合にクライアント2からデータ収集サーバ1にコンテンツを送信するようにしてもよい。若しくは、タスク実行前または実行後に、注意事項として、タスク実行によりユーザが取得したコンテンツを認識エンジンの精度向上に用いる旨を提示するだけであってもよい。
また、上記S142では、データ収集サーバ1の報酬付与制御部17が、コンテンツの学習への貢献度に応じた報酬を決定する旨を記載したが、本実施形態はこれに限定されず、例えば報酬付与制御部17は、コンテンツの数やコンテンツの取得時期等に応じて報酬を決定してもよい。
<<3.タスク例>>
続いて、データ収集サーバ1のタスク提供部11により提供されるタスクの一例について図4~図5を参照して説明する。
続いて、データ収集サーバ1のタスク提供部11により提供されるタスクの一例について図4~図5を参照して説明する。
<3-1.第1のタスク例>
図4は、ゲーム内のミッションとして特定のキーワードに関連する写真コンテンツを取得するタスクの一例を説明するための図である。図4左に示すミッション画面40は、クライアント2に表示される画面であって、今日のミッションとして、水の写真を集めることでゲーム内の仮想通貨が報酬として貰えることを示す説明文401と、ユーザが取得した画像を表示する表示領域403、404、405を含む。ユーザは、例えばクライアント2に設けられているカメラ機能により身近に在る水の画像としてペットボトル飲料水等を撮像し、表示領域403に挿入する。
図4は、ゲーム内のミッションとして特定のキーワードに関連する写真コンテンツを取得するタスクの一例を説明するための図である。図4左に示すミッション画面40は、クライアント2に表示される画面であって、今日のミッションとして、水の写真を集めることでゲーム内の仮想通貨が報酬として貰えることを示す説明文401と、ユーザが取得した画像を表示する表示領域403、404、405を含む。ユーザは、例えばクライアント2に設けられているカメラ機能により身近に在る水の画像としてペットボトル飲料水等を撮像し、表示領域403に挿入する。
かかるミッションは、認識サーバ3の認識エンジン35がペットボトル飲料水等の水の画像を認識するエンジンである場合に教師データとして必要となる水の画像を取得するためのものである。これにより様々な種類のペットボトル飲料水の撮像画像が教師データとして収集され、認識サーバ3の機械学習に用いられることで認識エンジン35の精度が向上する。
この他、例えば「空」の画像を認識するエンジンである場合には空の画像を取得するミッション、「花」の画像を認識するエンジンである場合には花の画像を取得するミッションというように、特定のキーワードに関連するコンテンツをゲーム内の「今日のミッション」とする方法が考え得る。
また、図4右に示すミッション画面42は、ゲームキャラクターが好きな写真を撮ることでゲーム内のアイテムや仮想通貨等が報酬として貰えることを示す説明文420と、ゲームキャラクター421と、ゲームキャラクターのプロフィール422を含む。プロフィール422にはゲームキャラクター421が好きなものとして「美しい花」と示されていることで、ユーザは、例えばクライアント2に設けられているカメラ機能により美しいと思う花を撮像する。
かかるミッションは、認識サーバ3の認識エンジン35が美しい花の画像を認識するエンジンである場合に教師データとして必要となる美しい花の画像を取得するためのものである。これにより様々な種類の美しい花の撮像画像が教師データとして収集され、認識サーバ3の機械学習に用いられることで認識エンジン35の精度が向上する。また、説明文420では対象コンテンツの収集を直接的に明示せず、ゲームキャラクター421のプロフィール422において対象ゲームキャラクターの好きな物として示すことで、ユーザに対象コンテンツの取得を間接的に促すことができる。
<3-2.第2のタスク例>
また、機械学習において、教師データ(学習用のコンテンツ)がある程度収集された場合、より品質のよい、正しい教師データが求められる。したがって、この場合、データ収集サーバ1は、教師データのなかでより品質が良い(正しい)ものをユーザに選択してもらうというタスクを提供する。このようなタスクの一例について、図5を参照して説明する。
また、機械学習において、教師データ(学習用のコンテンツ)がある程度収集された場合、より品質のよい、正しい教師データが求められる。したがって、この場合、データ収集サーバ1は、教師データのなかでより品質が良い(正しい)ものをユーザに選択してもらうというタスクを提供する。このようなタスクの一例について、図5を参照して説明する。
図5は、ゲーム内のミッションとして特定のキーワードに関連する写真コンテンツを選択させるタスクの一例を説明するための図である。図5に示すように、ゲーム画面44において、ボーリングゲームが行われる際に、複数のボーリングのピンそれぞれに花の画像441、442、443を対応付けて表示し、美しい花から倒すミッションとして提供してもよい。この際、美しい花から倒すことでボーナススコアが報酬として与えられることを示す説明文445を表示することで、コストを掛けずにユーザのモチベーションを上げることができる。データ収集サーバ1は、かかるボーリングゲーム内でどの画像から順に倒されたかといった情報を学習データとして認識サーバ3に送信する。
かかるミッションは、例えば認識サーバ3の認識エンジン35が、花の美しさの度合いを認識するエンジンである場合に、より品質のよい(正しい)教師データをユーザに選択させるためのものである。
また、図5に示すボーリングゲームの他、例えばシューティングゲームにおいて、美しい花の画像が対応付けられた的から打ち落とさせるミッションであってもよい。
<<4.補足>>
以上、本実施形態による情報処理システムについて具体的に説明した。上述した実施形態は一例であって、本開示はこれに限定されない。以下、情報処理システムの補足について述べる。
以上、本実施形態による情報処理システムについて具体的に説明した。上述した実施形態は一例であって、本開示はこれに限定されない。以下、情報処理システムの補足について述べる。
<4-1.関連度判断エンジン>
上述した実施形態では、情報処理システムに含まれる認識サーバ3が有する認識エンジン35は、特定のキーワードに対するコンテンツの関連性を特定可能な知的情報処理部の一例であって、画像、音声等の認識を行う旨を説明した。しかし、本開示による知的情報処理部はこれに限定されず、例えば特定のキーワードに対する他のキーワードの関連度を判断する関連度判断エンジンであってもよい。
上述した実施形態では、情報処理システムに含まれる認識サーバ3が有する認識エンジン35は、特定のキーワードに対するコンテンツの関連性を特定可能な知的情報処理部の一例であって、画像、音声等の認識を行う旨を説明した。しかし、本開示による知的情報処理部はこれに限定されず、例えば特定のキーワードに対する他のキーワードの関連度を判断する関連度判断エンジンであってもよい。
関連度判断エンジンは、例えば文章作成時に、次に入力が予測されるキーワードを候補として提示する関連キーワード提示システムにおいて用いられる。すなわち、関連キーワード提示システムは、関連度判断エンジンを用いて、文章作成時に入力されたキーワードと関連度が高いキーワードを、次に入力が予測されるキーワードとして提示する。
このような関連度判断エンジンの精度向上のために行われる機械学習に必要な教師データも、データ収集サーバ1のタスク提供部11が生成したタスク(代替作業)をクライアント2に提供し、ユーザに実行させることで収集される。このようなタスクの一例について、図6を参照して説明する。
図6は、特定のキーワードに関連するキーワードを取得するタスクの一例を説明するための図である。図6に示すように、例えばキーワードの連想ゲームといったタスクを提供し、特定のキーワード「インフル(インフルエンザ)」が既に入力されたボックス463と、空白のボックス461、462、464~466を並べ、空白にキーワードを入力させる。これにより、データ収集サーバ1は、ボックス463に近いボックスに入力されたキーワード程、特定のキーワードとの関連度が高いといったデータを取得することができる。
<4-2.行動予測エンジン>
また、特定のキーワードに対するコンテンツの関連性を特定可能な知的情報処理部の一例として、防犯用の行動予測エンジンも挙げられる。すなわち、特定の犯罪に対する所定の行動パターンの関連性を特定することで、ある行動パターンから犯罪行為を予測することができ、犯罪防止や捜査に利用され得る。
また、特定のキーワードに対するコンテンツの関連性を特定可能な知的情報処理部の一例として、防犯用の行動予測エンジンも挙げられる。すなわち、特定の犯罪に対する所定の行動パターンの関連性を特定することで、ある行動パターンから犯罪行為を予測することができ、犯罪防止や捜査に利用され得る。
このような行動予測エンジンの精度向上のために行われる機械学習に必要な教師データも、データ収集サーバ1のタスク提供部11が生成したタスク(代替作業)をクライアント2に提供し、ユーザに実行させることで収集される。例えば、盗んだクレジットカードを発覚しないように不正使用するといったゲームをタスクとして提供し、ユーザにゲームの仮想空間内で使用させることで、カードの使用頻度、使用金額、使用場所、使用時間等のデータを不正使用の教師データとして取得することができる。
なお行動予測エンジンとしては、防災用の行動予測エンジンも挙げられる。すなわち、特定の災害に対する所定の行動パターンの関連性を特定することで、災害時に人々がどのような行動パターンを取るかを予測することができ、行方不明者の捜索や救助、避難誘導に利用され得る。
このような行動予測エンジンの精度向上のために行われる機械学習に必要な教師データも、データ収集サーバ1のタスク提供部11が生成したタスク(代替作業)をクライアント2に提供し、ユーザに実行させることで収集される。例えば、AR(Augmented Reality)を利用したゲームにおいて、よりリアルに災害の発生を演出し、ユーザが逃げるといったゲームをタスクとして提供することで、ユーザの属性(年齢、性別、性格等)に応じた行動や心理を災害発生時における行動の教師データとして取得することができる。
また、以上説明したような防犯、防災用の行動予測エンジンの精度向上のためにユーザのゲームデータが利用されることは、社会貢献の一環となり、報酬は謝意で十分となる。
<4-3.ハードウェア構成>
続いて、本実施形態による情報処理システムの補足として、データ収集サーバ1および認識サーバ3のハードウェア構成について、図7を参照して説明する。図7には、データ収集サーバ1および認識サーバ3のいずれも実現可能な情報処理装置100のハードウェア構成の一例を示す。
続いて、本実施形態による情報処理システムの補足として、データ収集サーバ1および認識サーバ3のハードウェア構成について、図7を参照して説明する。図7には、データ収集サーバ1および認識サーバ3のいずれも実現可能な情報処理装置100のハードウェア構成の一例を示す。
図7に示すように、情報処理装置100は、例えば、CPU(Central Processing Unit)101と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、記憶部104と、通信I/F(インタフェース)105とを有する。また、情報処理装置100は、例えば、データの伝送路としてのバスで各構成要素間を接続する。
CPU101は、例えばマイクロコンピュータにより構成され、情報処理装置100の各構成を制御する。また、CPU101は、データ収集サーバ1においてはタスク提供部11、通知制御部15、および報酬付与制御部17として機能する。また、CPU101は、認識サーバ3においてはタスク生成依頼部31、機械学習部33、認識エンジン35、および評価部37として機能する。
ROM102は、CPU101が使用するプログラムや演算パラメータなどの制御用データなどを記憶する。RAM103は、例えば、CPU101により実行されるプログラムなどを一時的に記憶する。
記憶部104は、様々なデータを記憶する。例えば、記憶部104は、認識サーバ3においては認識エンジン35に用いられる特徴量データベースの役目を果たす。
通信I/F105は、情報処理装置100が有する通信手段であり、ネットワークを介して(あるいは直接的に)、本実施形態に係る情報処理システムを構成する外部装置と通信を行う。例えば、通信I/F105は、データ収集サーバ1においてはネットワーク5を介してクライアント2とデータの送受信を行ったり、認識サーバ3と直接またはネットワーク5を介してデータの送受信を行ったりする。また、具体的には、通信I/F105は、データ収集サーバ1においてはタスク提供部11、コンテンツ取得部13、およびコンテンツ送信部19等として機能し得る。
以上、本実施形態による情報処理装置100のハードウェア構成の一例について説明した。
<<5.まとめ>>
上述したように、本開示の実施形態による情報処理システムでは、認識サーバ3で認識エンジンの精度を高めるために行う機械学習で利用するコンテンツを、データ収集サーバ1により代替作業(タスク)をクライアント2に提供することで取得することができる。
上述したように、本開示の実施形態による情報処理システムでは、認識サーバ3で認識エンジンの精度を高めるために行う機械学習で利用するコンテンツを、データ収集サーバ1により代替作業(タスク)をクライアント2に提供することで取得することができる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本技術はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
例えば、上述したデータ収集サーバ1、認識サーバ3に内蔵されるCPU、ROM、およびRAM等のハードウェアに、データ収集サーバ1、認識サーバ3の機能を発揮させるためのコンピュータプログラムも作成可能である。また、当該コンピュータプログラムを記憶させたコンピュータ読み取り可能な記憶媒体も提供される。
また、図2に示す各サーバの構成は一例であって、本実施形態による情報処理システムの各構成はこれに限定されない。例えば、認識サーバ3の機械学習部33、認識エンジン35、評価部37がデータ収集サーバ1に設けられていてもよい。
また、データ収集サーバ1の全てまたは一部の構成がクライアント2に設けられていてもよい。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、本技術は以下のような構成も取ることができる。
(1)
特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、
タスクに応じてユーザが取得したコンテンツを取得する取得部と、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、
を備える、情報処理システム。
(2)
前記情報処理システムは、
前記取得部により取得された前記ユーザが取得したコンテンツに応じて、前記ユーザに報酬を与えるよう制御する報酬付与制御部をさらに備える、前記(1)に記載の情報処理システム。
(3)
前記報酬付与制御部は、前記ユーザが取得したコンテンツの質に応じて、前記報酬を変更する、前記(2)に記載の情報処理システム。
(4)
前記報酬付与制御部は、前記ユーザが取得したコンテンツの数に応じて、前記報酬を変更する、前記(2)または(3)に記載の情報処理システム。
(5)
前記報酬付与制御部は、前記コンテンツの取得タイミングに応じて、前記報酬を変更する、前記(2)~(4)のいずれか1項に記載の情報処理システム。
(6)
前記提供部は、前記特定のキーワードに関連するコンテンツを取得する作業の代替作業となるタスクを、ゲーム内のミッションとして提供する、前記(1)~(5)のいずれか1項に記載の情報処理システム。
(7)
前記情報処理システムは、
前記取得したコンテンツが、前記キーワードに関連するとして学習することにより、自動的に当該キーワードに関連するコンテンツを認識する知的情報処理部としての認識部を生成する生成部をさらに備える、前記(1)~(6)のいずれか1項に記載の情報処理システム。
(8)
前記情報処理システムは、
前記取得したコンテンツが、前記キーワードに関連するとして学習することにより、自動的に当該キーワードに関連するコンテンツの関連度を判断する知的情報処理部としての判断部を生成する生成部をさらに備える、前記(1)~(7)のいずれか1項に記載の情報処理システム。
(9)
コンピュータを、
特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、
タスクに応じてユーザが取得したコンテンツを取得する取得部と、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、
として機能させるためのプログラムが記憶された、記憶媒体。
(10)
特定のキーワードに関連するコンテンツを取得してもらうためのタスクを、クライアントを介してユーザに提供することと、
タスクに応じてユーザが取得したコンテンツを、前記クライアントを介して取得することと、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記クライアントを介して前記ユーザに通知するよう制御することと、
を含む、コンテンツ取得方法。
(1)
特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、
タスクに応じてユーザが取得したコンテンツを取得する取得部と、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、
を備える、情報処理システム。
(2)
前記情報処理システムは、
前記取得部により取得された前記ユーザが取得したコンテンツに応じて、前記ユーザに報酬を与えるよう制御する報酬付与制御部をさらに備える、前記(1)に記載の情報処理システム。
(3)
前記報酬付与制御部は、前記ユーザが取得したコンテンツの質に応じて、前記報酬を変更する、前記(2)に記載の情報処理システム。
(4)
前記報酬付与制御部は、前記ユーザが取得したコンテンツの数に応じて、前記報酬を変更する、前記(2)または(3)に記載の情報処理システム。
(5)
前記報酬付与制御部は、前記コンテンツの取得タイミングに応じて、前記報酬を変更する、前記(2)~(4)のいずれか1項に記載の情報処理システム。
(6)
前記提供部は、前記特定のキーワードに関連するコンテンツを取得する作業の代替作業となるタスクを、ゲーム内のミッションとして提供する、前記(1)~(5)のいずれか1項に記載の情報処理システム。
(7)
前記情報処理システムは、
前記取得したコンテンツが、前記キーワードに関連するとして学習することにより、自動的に当該キーワードに関連するコンテンツを認識する知的情報処理部としての認識部を生成する生成部をさらに備える、前記(1)~(6)のいずれか1項に記載の情報処理システム。
(8)
前記情報処理システムは、
前記取得したコンテンツが、前記キーワードに関連するとして学習することにより、自動的に当該キーワードに関連するコンテンツの関連度を判断する知的情報処理部としての判断部を生成する生成部をさらに備える、前記(1)~(7)のいずれか1項に記載の情報処理システム。
(9)
コンピュータを、
特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、
タスクに応じてユーザが取得したコンテンツを取得する取得部と、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、
として機能させるためのプログラムが記憶された、記憶媒体。
(10)
特定のキーワードに関連するコンテンツを取得してもらうためのタスクを、クライアントを介してユーザに提供することと、
タスクに応じてユーザが取得したコンテンツを、前記クライアントを介して取得することと、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記クライアントを介して前記ユーザに通知するよう制御することと、
を含む、コンテンツ取得方法。
1 データ収集サーバ
11 タスク提供部
13 コンテンツ取得部
15 通知制御部
17 報酬付与制御部
19 コンテンツ送信部
2 クライアント
3 認識サーバ
31 タスク生成依頼部
33 機械学習部
35 認識エンジン
37 評価部
5 ネットワーク
100 情報処理装置
101 CPU
102 ROM
103 RAM
104 記憶部
105 通信I/F
11 タスク提供部
13 コンテンツ取得部
15 通知制御部
17 報酬付与制御部
19 コンテンツ送信部
2 クライアント
3 認識サーバ
31 タスク生成依頼部
33 機械学習部
35 認識エンジン
37 評価部
5 ネットワーク
100 情報処理装置
101 CPU
102 ROM
103 RAM
104 記憶部
105 通信I/F
Claims (10)
- 特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、
タスクに応じてユーザが取得したコンテンツを取得する取得部と、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、
を備える、情報処理システム。 - 前記情報処理システムは、
前記取得部により取得された前記ユーザが取得したコンテンツに応じて、前記ユーザに報酬を与えるよう制御する報酬付与制御部をさらに備える、請求項1に記載の情報処理システム。 - 前記報酬付与制御部は、前記ユーザが取得したコンテンツの質に応じて、前記報酬を変更する、請求項2に記載の情報処理システム。
- 前記報酬付与制御部は、前記ユーザが取得したコンテンツの数に応じて、前記報酬を変更する、請求項2に記載の情報処理システム。
- 前記報酬付与制御部は、前記コンテンツの取得タイミングに応じて、前記報酬を変更する、請求項2に記載の情報処理システム。
- 前記提供部は、前記特定のキーワードに関連するコンテンツを取得する作業の代替作業となるタスクを、ゲーム内のミッションとして提供する、請求項1に記載の情報処理システム。
- 前記情報処理システムは、
前記取得したコンテンツが、前記キーワードに関連するとして学習することにより、自動的に当該キーワードに関連するコンテンツを認識する知的情報処理部としての認識部を生成する生成部をさらに備える、請求項1に記載の情報処理システム。 - 前記情報処理システムは、
前記取得したコンテンツが、前記キーワードに関連するとして学習することにより、自動的に当該キーワードに関連するコンテンツの関連度を判断する知的情報処理部としての判断部を生成する生成部をさらに備える、請求項1に記載の情報処理システム。 - コンピュータを、
特定のキーワードに関連するコンテンツを取得してもらうためのタスクをユーザに提供する提供部と、
タスクに応じてユーザが取得したコンテンツを取得する取得部と、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記ユーザに通知するよう制御する制御部と、
として機能させるためのプログラムが記憶された、記憶媒体。 - 特定のキーワードに関連するコンテンツを取得してもらうためのタスクを、クライアントを介してユーザに提供することと、
タスクに応じてユーザが取得したコンテンツを、前記クライアントを介して取得することと、
前記キーワードに対するコンテンツの関連性を特定可能な知的情報処理部の生成に、前記取得したコンテンツを利用することを、前記クライアントを介して前記ユーザに通知するよう制御することと、
を含む、コンテンツ取得方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15792445.7A EP3144873A4 (en) | 2014-05-16 | 2015-02-25 | Information-processing system, storage medium, and content acquisition method |
US15/303,251 US20170039495A1 (en) | 2014-05-16 | 2015-02-25 | Information processing system, storage medium, and content acquisition method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014102189A JP2015220574A (ja) | 2014-05-16 | 2014-05-16 | 情報処理システム、記憶媒体、およびコンテンツ取得方法 |
JP2014-102189 | 2014-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015174118A1 true WO2015174118A1 (ja) | 2015-11-19 |
Family
ID=54479665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055402 WO2015174118A1 (ja) | 2014-05-16 | 2015-02-25 | 情報処理システム、記憶媒体、およびコンテンツ取得方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170039495A1 (ja) |
EP (1) | EP3144873A4 (ja) |
JP (1) | JP2015220574A (ja) |
WO (1) | WO2015174118A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018063689A (ja) * | 2017-02-02 | 2018-04-19 | 株式会社FiNC | 健康管理プログラム及び健康管理サーバ |
JP2019003402A (ja) * | 2017-06-15 | 2019-01-10 | Kddi株式会社 | 管理装置、管理方法及びプログラム |
JPWO2021075091A1 (ja) * | 2019-10-15 | 2021-04-22 | ||
WO2022195793A1 (ja) * | 2021-03-18 | 2022-09-22 | 日本電気株式会社 | 情報処理装置、データ流通方法、情報処理方法、および、制御プログラム |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10552752B2 (en) * | 2015-11-02 | 2020-02-04 | Microsoft Technology Licensing, Llc | Predictive controller for applications |
WO2018142764A1 (ja) * | 2017-02-03 | 2018-08-09 | パナソニックIpマネジメント株式会社 | 学習済みモデル生成方法、学習済みモデル生成装置、および学習済みモデル利用装置 |
US10282741B2 (en) | 2017-09-05 | 2019-05-07 | StormX, Inc. | Taskset-participant-configurable batch content transfer systems and methods |
CN107995428B (zh) * | 2017-12-21 | 2020-02-07 | Oppo广东移动通信有限公司 | 图像处理方法、装置及存储介质和移动终端 |
CN112423945B (zh) * | 2018-08-10 | 2023-11-24 | 川崎重工业株式会社 | 信息处理装置、机器人操作系统以及机器人操作方法 |
JP7384575B2 (ja) * | 2018-08-10 | 2023-11-21 | 川崎重工業株式会社 | 情報処理装置、仲介装置、シミュレートシステム、情報処理方法及びプログラム |
WO2020115862A1 (ja) * | 2018-12-06 | 2020-06-11 | 本田技研工業株式会社 | データ管理装置、データ管理方法、及びプログラム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003084654A (ja) * | 2001-09-12 | 2003-03-19 | Cr Advisors Kk | 言語学習システム、サーバ装置及び学習用データベース収集方法並びに記録媒体 |
JP2009289090A (ja) * | 2008-05-30 | 2009-12-10 | Brother Ind Ltd | 著作権者情報収集方法、著作権者情報収集装置、および著作権者情報収集プログラム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3625212B1 (ja) * | 2003-09-16 | 2005-03-02 | 独立行政法人科学技術振興機構 | 3次元仮想空間シミュレータ、3次元仮想空間シミュレーションプログラム、およびこれを記録したコンピュータ読み取り可能な記録媒体 |
US7603343B2 (en) * | 2005-02-04 | 2009-10-13 | Microsoft Corporation | Quality of web search results using a game |
US20080280662A1 (en) * | 2007-05-11 | 2008-11-13 | Stan Matwin | System for evaluating game play data generated by a digital games based learning game |
KR20090034034A (ko) * | 2007-10-02 | 2009-04-07 | 주식회사 하이닉스반도체 | 반도체 소자의 제조방법 |
JP2011090348A (ja) * | 2007-12-25 | 2011-05-06 | J Magic Kk | 広告管理システム、広告管理サーバ、広告管理方法、プログラム、および閲覧クライアント |
US8296305B2 (en) * | 2008-12-09 | 2012-10-23 | Yahoo! Inc. | Rules and method for improving image search relevance through games |
AU2008264197B2 (en) * | 2008-12-24 | 2012-09-13 | Canon Kabushiki Kaisha | Image selection method |
US8285706B2 (en) * | 2009-06-10 | 2012-10-09 | Microsoft Corporation | Using a human computation game to improve search engine performance |
US8571331B2 (en) * | 2009-11-30 | 2013-10-29 | Xerox Corporation | Content based image selection for automatic photo album generation |
US8140518B2 (en) * | 2010-01-08 | 2012-03-20 | Yahoo! Inc. | System and method for optimizing search results ranking through collaborative gaming |
US20130262188A1 (en) * | 2012-03-27 | 2013-10-03 | David Philip Leibner | Social media brand management |
US20140279818A1 (en) * | 2013-03-15 | 2014-09-18 | University Of Southern California | Game theory model for patrolling an area that accounts for dynamic uncertainty |
WO2014182638A2 (en) * | 2013-05-04 | 2014-11-13 | Christopher Decharms | Mobile security technology |
-
2014
- 2014-05-16 JP JP2014102189A patent/JP2015220574A/ja active Pending
-
2015
- 2015-02-25 WO PCT/JP2015/055402 patent/WO2015174118A1/ja active Application Filing
- 2015-02-25 EP EP15792445.7A patent/EP3144873A4/en not_active Ceased
- 2015-02-25 US US15/303,251 patent/US20170039495A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003084654A (ja) * | 2001-09-12 | 2003-03-19 | Cr Advisors Kk | 言語学習システム、サーバ装置及び学習用データベース収集方法並びに記録媒体 |
JP2009289090A (ja) * | 2008-05-30 | 2009-12-10 | Brother Ind Ltd | 著作権者情報収集方法、著作権者情報収集装置、および著作権者情報収集プログラム |
Non-Patent Citations (4)
Title |
---|
KOTA NAKATA ET AL.: "A Devisable Private CrowdSourcing System for Speech Collection", DAI 27 KAI ZENKOKU TAIKAI RONBUNSHU 2013 NENDO ANNUAL CONFERENCE OF JSAI (DAI 27 KAI) RONBUNSHU, THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, 7 June 2013 (2013-06-07), pages 1 - 4, XP055237052 * |
See also references of EP3144873A4 * |
SHOGO OSAWA ET AL.: "Crowdsourcing ni yoru Shokuji Gazo Ninshiki Model no Jido Kochiku", DAI 5 KAI FORUM ON DATA ENGINEERING AND INFORMATION MANAGEMENT (DAI 11 KAI THE DATABASE SOCIETY OF JAPAN NENJI TAIKAI), THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS DATA KOGAKU KENKYU SENMON IINKAI THE DATABASE SOCIETY OF JAP, 31 May 2013 (2013-05-31), XP008185408 * |
YONGQING SUN ET AL.: "Dynamic Visual Pattern Mining Based on Web Information", IEICE TECHNICAL REPORT, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 107, no. 115, 21 June 2007 (2007-06-21), pages 13 - 18, XP008184388 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018063689A (ja) * | 2017-02-02 | 2018-04-19 | 株式会社FiNC | 健康管理プログラム及び健康管理サーバ |
JP2019003402A (ja) * | 2017-06-15 | 2019-01-10 | Kddi株式会社 | 管理装置、管理方法及びプログラム |
JPWO2021075091A1 (ja) * | 2019-10-15 | 2021-04-22 | ||
WO2021075091A1 (ja) * | 2019-10-15 | 2021-04-22 | 日本電気株式会社 | 対価算出装置、制御方法、及びプログラム |
JP7393030B2 (ja) | 2019-10-15 | 2023-12-06 | 日本電気株式会社 | 対価算出装置、制御方法、及びプログラム |
WO2022195793A1 (ja) * | 2021-03-18 | 2022-09-22 | 日本電気株式会社 | 情報処理装置、データ流通方法、情報処理方法、および、制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
EP3144873A1 (en) | 2017-03-22 |
EP3144873A4 (en) | 2017-11-29 |
JP2015220574A (ja) | 2015-12-07 |
US20170039495A1 (en) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015174118A1 (ja) | 情報処理システム、記憶媒体、およびコンテンツ取得方法 | |
Sadowski | Too smart: How digital capitalism is extracting data, controlling our lives, and taking over the world | |
Hacker et al. | Matchin: eliciting user preferences with an online game | |
Didierjean et al. | Anticipatory representation of visual basketball scenes by novice and expert players | |
US9965675B2 (en) | Using virtual reality for behavioral analysis | |
JP6440205B2 (ja) | 問題をゲーム化するためのシステムおよび方法 | |
US20150224409A1 (en) | Information sharing system, information-processing device, storage medium, and information sharing method | |
CN116209506A (zh) | 对游戏活动分类以识别滥用行为 | |
US10398975B2 (en) | Information sharing system, information-processing device, storage medium, and information sharing method | |
CN108415984A (zh) | 链接关联分析系统和方法 | |
WO2015186393A1 (ja) | 情報処理装置、情報提示方法、プログラム、およびシステム | |
CA3038669C (en) | System and method for determining type of player in online game | |
CN115857704A (zh) | 一种基于元宇宙的展览系统、交互方法以及电子设备 | |
US11625754B2 (en) | Method for providing text-reading based reward-type advertisement service and user terminal for executing same | |
WO2021217167A1 (en) | Messaging system with trend analysis of content | |
KR20230169016A (ko) | 전자 장치 및 그의 제어방법 | |
Novotny et al. | User based intelligent adaptation of five in a row game for android based on the data from the front camera | |
US20200160233A1 (en) | Tap to reserve | |
CN115222406A (zh) | 基于业务服务账号的资源发放方法以及相关设备 | |
Novotny et al. | Face-based difficulty adjustment for the game five in a row | |
JP7361931B2 (ja) | 画像出力装置、画像出力方法、画像出力システム及びコンピュータプログラム | |
US20240152948A1 (en) | Systems and methods for user data collection within an augmented reality game | |
Kurtz et al. | Object understanding: Investigating the path from percept to meaning | |
Mottelson | Computer-Cognition Interfaces: Sensing and influencing mental processes with computer interaction | |
CN118197537A (zh) | 一种认知康复机器人的训练任务生成方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15792445 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15303251 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015792445 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015792445 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |