WO2015173087A1 - Mechanism for filtering torque fluctuations - Google Patents

Mechanism for filtering torque fluctuations Download PDF

Info

Publication number
WO2015173087A1
WO2015173087A1 PCT/EP2015/059945 EP2015059945W WO2015173087A1 WO 2015173087 A1 WO2015173087 A1 WO 2015173087A1 EP 2015059945 W EP2015059945 W EP 2015059945W WO 2015173087 A1 WO2015173087 A1 WO 2015173087A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillating
flywheel
mechanism according
revolution
axis
Prior art date
Application number
PCT/EP2015/059945
Other languages
French (fr)
Inventor
Roel Verhoog
Benoit FLECHE
Franck CAILLERET
Original Assignee
Valeo Embrayages
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages filed Critical Valeo Embrayages
Priority to DE112015002215.5T priority Critical patent/DE112015002215T5/en
Publication of WO2015173087A1 publication Critical patent/WO2015173087A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1464Masses connected to driveline by a kinematic mechanism or gear system
    • F16F15/1471Masses connected to driveline by a kinematic mechanism or gear system with a kinematic mechanism, i.e. linkages, levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13128Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses the damping action being at least partially controlled by centrifugal masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13157Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses with a kinematic mechanism or gear system, e.g. planetary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • F16F15/13469Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/13476Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/13484Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
    • F16F15/13492Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs the sets of springs being arranged at substantially the same radius

Definitions

  • the invention relates to a mechanism for filtering the acyclisms of an internal combustion engine, located upstream of a gearbox, in particular for an application to a motor vehicle, including an integrated filtration mechanism to a torque converter or dry clutch mechanism.
  • connection between the connecting rod and the oscillating arm is not a simple pivot connection, but preferably a rolling connection implementing a roller rolling simultaneously on two cylindrical tracks of larger diameter, one secured to the connecting rod and the other swing arm, which allows a desired functional game in the link.
  • the articulated modules are opposed by centrifugal effect to the relative rotation of the masses of inertia by exerting a return torque substantially proportional to the relative rotation of the two masses of inertia and the square of the rotation speed of the mass of inertia linked to the crankshaft.
  • a blocking value for example 2500 rpm
  • the mechanism performs its function satisfactorily, but generates unwanted noise when the engine stops, or as soon as the speed of rotation is no longer sufficient to impose the position of the oscillating arms by centrifugal effect. Indeed, at these low speeds, the play in the connection between connecting rod and articulated arm leaves an undesirable freedom of movement in the mechanism.
  • This disadvantage can be overcome by replacing the roller connection with a pivot connection, but at the cost of greater fatigue of the mechanism, which reduces its service life.
  • the invention aims to overcome the disadvantages of the state of the art and reduce noise when stopping a filter mechanism torque variations.
  • a torque fluctuation filtration mechanism comprising a damping member rotating about an axis of revolution, an oscillating flywheel revolving around the axis of revolution relative to the member to be damped, and at least one connecting module allowing an angular displacement of the flywheel oscillating relative to the member to be damped on both sides of a position of reference, the link module comprising at least one pivoting arm pivoting about a pivot connected to the member to be damped and a kinematic connecting member between the oscillating arm and the oscillating flywheel.
  • the oscillating arm comprises a zone of contact with the kinematic connecting member and a heel, located on either side of the pivot, the heel being located opposite a stop track cooperating with the heel to limit pivoting. swing arm in a direction bringing the contact zone closer to the axis of revolution. This avoids the oscillating arm, when the speed of the member to be dampened to a halt and the centrifugal forces become insufficient, come beat by generating an undesirable noise.
  • the abutment track is preferably formed on the oscillating flywheel. According to one embodiment, the abutment track is shaped to further limit the pivoting of the oscillating arm in the direction closer to the contact zone of the axis of revolution when the oscillating flywheel is in the position. reference relative to the member to be damped only when the oscillating flywheel is located in another position relative to the member to be damped.
  • the torque fluctuation filtering mechanism further comprises a radial abutment located opposite a radial abutment zone of the oscillating arm to limit angular pivoting of the contact zone of the oscillating arm. swinging arm radially away from the axis of revolution.
  • the radial abutment comes into contact with the radial abutment zone only when the mechanism exceeds a speed threshold of revolution about the axis of revolution, for example due to an elastic deformation of the oscillating arm, the pivot or a piece of the link module.
  • the contact between the radial abutment and the radial abutment zone is obtained when the oscillating flywheel is in the reference position relative to the member to be damped.
  • the pivot is located between the heel and the radial abutment zone.
  • the contact zone may be located between the radial abutment zone and the pivot.
  • the radial stop is fixed relative to the member to be damped.
  • the radial stop may be fixed relative to the oscillating flywheel.
  • angular stops for limiting the angular displacement of the flywheel oscillating relative to the member to be damped.
  • These angular stops preferably comprise at least a first angular abutment integral with the member to be damped cooperating with a second angular abutment integral with the oscillating flywheel.
  • one of the angular stops constitutes the radial abutment. It can also be provided that the abutment track is shaped so as to form at least one of the angular abutments.
  • the kinematic connecting member may comprise a connecting rod. It may also comprise a connecting rolling body, preferably a roller, rolling on a raceway formed on the oscillating arm and on a raceway formed on the oscillating flywheel. In this latter configuration, the limitation of pivoting of the oscillating arm in a direction bringing the contact zone closer to the axis of revolution is also useful in order to avoid an escape of the rolling body.
  • FIG. 1 is a diagrammatic view of a torque converter incorporating a filtering mechanism torque fluctuations according to one embodiment of the invention
  • FIG. 2 is an exploded isometric view of one of the filtration mechanism according to one embodiment of the invention
  • Figure 3 a partially front and partially in cross section of the filter mechanism of Figure 2
  • FIG. 4 an axial sectional view of the filtration mechanism of FIG. 2, in the section plane IV of FIG. 3
  • FIG. 5 an axial sectional view of the filtration mechanism of FIG.
  • Figure 6 is an exploded isometric view of an oscillating mechanism of the filtration mechanism of Figure 2;
  • Figure 7 is an isometric view of an oscillating arm of the oscillating mechanism of Figure 6;
  • Figure 8 is a front view of a detail of the oscillating mechanism of Figure 6 in a first end position;
  • Figure 9 is a front view of a detail of the oscillating mechanism of Figure 6 in an intermediate position of maximum radial displacement;
  • Figure 10 is a front view of a detail of the oscillating mechanism of Figure 6 in a second end position;
  • Figure 11 is a front view of a detail of an oscillating mechanism according to an alternative embodiment, in an intermediate position of maximum radial displacement;
  • Figure 12 is an isometric view of a filter mechanism incorporating an oscillating mechanism according to another embodiment of the invention;
  • Figure 13 is a sectional view of the mechanism of Figure 12;
  • Figure 14 is a schematic view of a double flywheel incorporating a filter mechanism according to another embodiment of the invention;
  • FIG. 1 is schematically illustrated a torque converter 1 located between a crankshaft 2 and a gearbox input shaft 3.
  • This torque converter comprises in known manner a hydrokinetic converter 4 and a locking clutch 5 arranged in parallel between the crankshaft 2 and an input member 12 of a torque fluctuation filtration mechanism 10 whose output member 14 is integral with the input shaft of the box transmission 3.
  • An intermediate phasing member 15 is interposed between the organ input 12 and the output member 14, connected to the input member 12 by a first elastic member 16 of rigidity K1 and the output member 14 by a second elastic member 17 of rigidity K2.
  • This intermediate member is furthermore connected to an oscillating flywheel 22 by means of connecting modules 26 forming an oscillating mechanism 30.
  • the input and output members 14 are members rotating around a same rotational geometric axis 100, rotatable one by one. relative to the other, and each relative to the intermediate phasing member 15, itself also rotatable about the axis of rotation 100.
  • the oscillating flywheel 22 is likely to oscillate angularly relative to to the intermediate phasing member 15.
  • the first elastic member 16 and the second elastic member 17 are arranged in series between the input member 12 and the output member 14, in the sense that a quasistatic angular displacement in one direction of the output member 14 relative to the input member 12 causes an increase in the elastic potential energy of the two elastic members 16, 17, while a relative angular displacement in the opposite direction causes a decrease in e the elastic potential energy of the two elastic members 16, 17.
  • the input member 12 of the filtering mechanism 10 is constituted by a subassembly comprising a pair of guide washers 12.1, 12.2 fixed to one another in a known manner, a bell (not shown) of the locking clutch 18 attached to the guide ring 12.1 and a turbine hub (not shown) of the hydrokinetic converter 4 attached to the other guide ring 12.2.
  • the two guide washers 12.1, 12.2 delimit between them a volume 200 in which is disposed an outlet web 14.1 fixed to a central hub 14.2 and constituting with the latter the output member 14.
  • the central hub 14.2 is intended to come on the input shaft (not shown) of the gearbox 3.
  • the output sail 14.1 forms a star which, in this embodiment, has three branches 14.3.
  • the guide ring 12.1 is perforated by three large windows 12.11 in a circular arc separated in pairs by three bridges of radial material 12.12.
  • the angular positions of the material bridges 12.12 of the washer 12.1 and the branches 14.3 of the exit web 14.1 coincide, but their relative angular positioning can naturally vary with the angular variations between the input member 12 and the output member 14.
  • the intermediate phasing member 15 comprises a phasing web 15.1 provided with three arms 15.2 extending radially inside the volume 44, alternately with the branches 14.3 of the star exit web 14.1.
  • the phasing web 15.1 is rotatably mounted about the central hub 14.2.
  • the two guide rings 12.1, 12.2 are housed springs 16.1, 17.1 to the number of six, three constituting the first elastic member 16 and three constituting the second elastic member 17.
  • the three springs 16.1 constituting the first elastic member 16 are each bandaged between one of the arms 15.2 of the intermediate phasing member 15 and one of the bridges 12.12 formed in the guide ring 12.1, so as to work during relative angular movements between the intermediate phasing member 15 and the input member 12.
  • the three springs 17.1 constituting the second elastic member 17 are each bandaged between an arm 15.2 of the intermediate phasing member 15 and one of the branches 14.3 of the output sail 14.1, so as to work when relative angular movements between the intermediate phasing member 15 and the output member 14.
  • the bulk of the springs 16.1 of the first elas member 16 is greater than that of the springs 17.1 constituting the second elastic member 17, the stiffness K1 of the first elastic member 16 is preferably lower than that K2 of the second elastic member 17, in a ratio K2 / K1 for example between 2 and 5, and preferably between 2 and 3.
  • the intermediate phasing member 15 also comprises a flat annular support piece 15.3, located outside the guide rings 12.1, 12.2.
  • the phasing web 15.1 comprises spacers 15.4 which protrude axially through windows made in the guide ring 12.2 and are inserted in openings 15.5 provided for this purpose in the annular support piece 15.3, so as to secure the annular support piece 15.3 to the phasing web 15.1.
  • the oscillating flywheel 22, constituted by a peripheral ring, is guided in rotation about the axis of revolution 100 relative to the phasing member 15 with three pins 15.31 fixed on the annular support piece.
  • the oscillating flywheel 22 is connected to the phasing member 15 by means of three connecting modules 26 arranged at 120 ° from each other around the axis of revolution 100.
  • the 6 to 10 comprises an oscillating arm 26.1 hinged to the annular support piece 15.3 via a pivot 26.2 to pivot around it a pivot axis 200 parallel to the axis of revolution 100, and a rolling body 26.4, in this case a roller, rolling on a race 26.5 formed on the swing arm 26.1 and on a raceway 26.6 formed on the oscillating flywheel 22.
  • the race 26.5 formed on the oscillating arm 26.1 is turned radially outwards and towards the raceway 26.6 formed on the oscillating flywheel 22, which is rotated radially towards it. inside.
  • the two raceways 26.5, 26.6 are concave in cross section perpendicular to the axis of revolution 100 with different constant radii of curvature.
  • the raceway 26.5 is located between the pivot 26.2 and a mass extension 26.7 of the swingarm. A portion of the swingarm also forms a bearing face 26.8. Opposite the raceway 26.5 and the mass extension 26.7 relative to the pivot 26.2, the oscillating arm has a heel 26.9 projecting towards the secondary flywheel 22 and sliding on a curved track 26.10, here convex, which is opposes pivoting of the oscillating arm in the clockwise direction and thus prevents the roller from escaping from the housing formed radially between the raceways 26.5 and 26.6 and axially between the annular support piece 15.3 and a wall 26.11 of the oscillating arm 26.1.
  • FIG. 9 there is a plane perpendicular to the axis of revolution 100 which cuts the oscillating arm 26.1, the connecting rolling body 26.4 and the oscillating flywheel 22.
  • the rolling body of Link 26.4 is radially interposed between the raceways 26.5, 26.6 formed on the oscillating arm 26.1 and on the oscillating flywheel 22 in said plane.
  • the device operates in the following manner. At rest, at zero rotation speed, no centrifugal force is exerted on the oscillating arms 26.1.
  • the oscillating flywheel 22 can be positioned in a reference angular position with respect to the annular support piece 15.3 of the phasing member 15, as shown in FIG. 9.
  • each connection module 26 is then in a median position relative to the raceways 26.5, 26.6, and it is possible to draw, in a plane perpendicular to the axis of revolution 100, a radial axis 300 passing through the axis of revolution, by a point contact between the roller and the raceway formed on the oscillating arm and by a point of contact between the roller 26.4 and the race 26.5 formed on the oscillating flywheel 22, this axis 300 being perpendicular to the two paths of bearing 26.5, 26.6, at the two points of contact.
  • This reference position is therefore a position of equilibrium.
  • the roll is in the equilibrium position described above, and the resulting stresses at level 26.5 and 26.6, which are themselves radial, do not give rise to any return torque.
  • the fluctuations of the relative angular positioning of the phasing member 15 and the oscillating flywheel 22 have the effect of changing the angle of the resultant of the forces transmitted by the oscillating arm 26.1 to the phasing member 15, generating a return torque towards the equilibrium position, which increases with the amplitude of the angular deflection and the square of the rotation speed around the axis of revolution.
  • the oscillating mechanism 30, constituted by the oscillating flywheel 22 connected to the phasing member 15 by the connecting modules 26, behaves like a variable stiffness filter as a function of the speed, which opposes the torque variations of the damping member constituted by the phasing member 15.
  • the oscillating mechanism 30 is intended to damp the phasing member 15 in a critical range where there is evidence of resonance phenomena. As soon as the engine speed is sufficiently high and the natural frequency of the oscillating mechanism 30 is exceeded, the oscillating flywheel 22 oscillates in phase opposition with respect to the phasing member 15.
  • the phasing member 15 is thus biased couples that compensate at least partially, namely on the one hand the input and output torque transmitted by the springs 16 and 17, and secondly an oscillating torque originating in the steering wheel inertia, and transmitted to the phasing member 15 by the rollers 26.4, the oscillating arms 26.1 and the pivots 26.2.
  • the moment of inertia of the oscillating flywheel 22 is thus chosen so that the oscillating mechanism 30 has a very low natural frequency with respect to the frequencies of the torque oscillations at the target engine speed.
  • the oscillating mechanism 30 passes through a relatively short phase during which the centrifugal forces are no longer sufficient to ensure the support of the oscillating arms 26.1 on the rollers 26.4.
  • the angular pivoting of the oscillating arms 26.1 in the clockwise direction in the figures is, however, limited by the heels 26.9 which abut on the curved tracks 26.10, which prevents the rollers 26.1 from escaping their housings.
  • the amplitude of pivoting of the swing arms 26.1 is controlled, which also avoids unwanted noise when passing at a standstill.
  • a radial abutment 26.12 which is a support for the swing arm 26.1 in the intermediate position of maximum displacement.
  • the pivot 26.2 of the oscillating arm is thus cleaned by securing the oscillating flywheel 22 to the phasing member 15 when the speed of rotation increases.
  • the inertia of the oscillating flywheel 22 then adds to that of the phasing member 15 When the rotational speed continues to increase, the forces being distributed between the stop 26.12, the pivot 26.2, the roller 26.4 and the travel paths. bearing 26.5, 26.6.
  • FIGS. 12 and 13 is illustrated another embodiment of a torque fluctuation filtration mechanism 10 according to the block diagram of Figure 1.
  • this embodiment differs from the previous only by the structure of the connection modules 26 between the oscillating flywheel 22 and the phasing member 15 to produce the oscillating mechanism 30.
  • three connecting modules 26 are arranged at 120 ° from each other around the revolution axis 100.
  • Each link module 26, illustrated more precisely in FIGS. 12 and 13, comprises an oscillating arm 26.1 hinged to the annular support piece 15.3 by means of a pivot 26.2 for pivoting around a pivot axis parallel to the axis of revolution 100, and a link 26.40 connecting the oscillating arm 26.1 to the oscillating flywheel 22.
  • the connecting rod 26.40 is mounted by a pivot link 26.41 to the flywheel, and by a rolling bearing 26.42 to the swing arm, between the pivot 26.2 and a mass extension 26.7 of the swingarm.
  • This rolling connection 26.42 confers a limited degree of freedom in the positioning of the axis of rotation between the connecting rod 26.40 and the oscillating arm 26.1. It consists of a roller 26.421 rolling on a concave raceway 26.422 formed by a cylindrical cavity of the connecting rod 26.40 and on a concave raceway 26.423 formed by a cylindrical cavity of the oscillating arm 26.1, the bearing tracks 26.422 and 26.423 having a radius of curvature greater than that of the roller 26.421.
  • a portion of the swing arm 26.1 also forms a bearing face 26.8. Opposite the rolling connection 26.42 and the mass extension 26.7 relative to the pivot 26.2, the oscillating arm has a heel 26.9 projecting towards the secondary flywheel 22 and sliding on a curved track 26.10, here convex, which opposes the pivoting of the swingarm in a clockwise direction.
  • the connecting mechanism constituted by the three articulated modules 26 allows an angular displacement of the oscillating flywheel 22 with respect to the phasing member 15 on either side of the radial equilibrium position of the connecting rod.
  • the link 26.40 When the link 26.40 is radial, it generates no return torque between the oscillating flywheel 22 and the phasing member 15, and the system is in an equilibrium position.
  • the fluctuations of the relative angular positioning of the phasing member 15 and the oscillating flywheel 22 have the effect of changing the angle of the rod 26.40 and therefore the resultant of the forces transmitted by the connecting member 26 to the phasing member 15, generating a restoring torque to the equilibrium position, which increases with the amplitude of the angular deflection and the square of the rotational speed about the axis of revolution.
  • the oscillating mechanism 30, constituted by the oscillating flywheel 22 connected to the phasing member 15 by the connecting modules 26, behaves like a variable stiffness filter as a function of the speed, which opposes the torque variations of the damping member constituted by the phasing member 15.
  • the mechanism passes through a relatively short phase during which the centrifugal forces are no longer sufficient to ensure the positioning of the roller in the rolling connection 26.42 between 26.40 connecting rod and swingarm 26.1.
  • the angular pivoting of the oscillating arm 26.1 in the clockwise direction in the figures is, however, limited by the heel 26.9 which bears on the curved track 26.10, which makes it possible to control the amplitude of the pivoting of the oscillating arms 26.1 and avoids unwanted noise. at the stop.
  • the oscillating mechanism 30 can also be used in other applications requiring filtration of a rotating member.
  • FIG 14 a transmission linkage 1 of a motor vehicle having a dry clutch 5 located between a crankshaft 2 and a gearbox input shaft 3. Downstream of the clutch in the drive train transmission is arranged a filtration mechanism 10 constituting a double damping flywheel and having an input member 12 constituted by a primary flywheel connected to the secondary clutch and an output member 114 constituted by a secondary flywheel secured to the shaft transmission box 3. An elastic member 16 is interposed between the input member and the output member so as to work during angular positioning fluctuations between primary flywheel 12 and secondary flywheel 114.
  • An oscillating mechanism 30 according to the invention, comprising an oscillating flywheel 22 connected to the secondary flywheel 114 by modules of link 26, allows attenuation of vibrations at low speed of the secondary flywheel 114.
  • connection modules can be envisaged: axially between the oscillating flywheel 22 and the input member 12; between the secondary member 14 and the input member 12, or within a housing of the input member 12. It can also provide in the input member 12 a housing for the steering wheel oscillating inertia 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

A mechanism for filtering torque fluctuations comprises a member (15, 114) that is to be damped, rotating about an axis of revolution (100), an oscillating flywheel (22) rotating about the axis of revolution (100) with respect to the member (15, 114) that is to be damped, and at least one connecting module allowing the oscillating flywheel (22) an angular travel with respect to the member (15, 114) that is to be damped on each side of a reference position. The connecting module (26) comprises at least one oscillating arm (26.1) pivoting about a pivot (26.2) connected to the member that is to be damped and a member (26.4, 26.40) providing a kinematic connection between the oscillating arm (26.1) and the oscillating flywheel (22). The oscillating arm (26.1) comprises a zone (26.5, 26.42) of contact with the secondary flywheel (22) and a spur (26.9), which are situated one on each side of the pivot (26.2), the spur (26.9) being situated facing a thrust track (26.10) that collaborates with the spur (26.9) to limit the pivoting of the oscillating arm (26.1) in a direction that brings the zone of contact (26.5, 26.42) closer to the axis of revolution (100).

Description

MECANISME DE FILTRATION DE FLUCTUATIONS DE COUPLE  MECHANISM FOR FILTRATION OF TORQUE FLUCTUATIONS
DOMAINE TECHNIQUE DE L'INVENTION TECHNICAL FIELD OF THE INVENTION
[0001] L'invention se rapporte à un mécanisme de filtration des acyclismes d'un moteur à combustion interne, situé en amont d'une boîte de transmission, notamment pour une application à un véhicule automobile, et notamment à un mécanisme de filtration intégré à un convertisseur de couple ou à un mécanisme d'embrayage sec.  The invention relates to a mechanism for filtering the acyclisms of an internal combustion engine, located upstream of a gearbox, in particular for an application to a motor vehicle, including an integrated filtration mechanism to a torque converter or dry clutch mechanism.
ETAT DE LA TECHNIQUE ANTERIEURE STATE OF THE PRIOR ART
[0002] Afin d'atténuer les irrégularités de rotation d'un vilebrequin de moteur à combustion interne, principalement à des vitesses entre la vitesse de ralenti et une vitesse de régime intermédiaire, par exemple environ 2500 tours/min, il a été proposé, dans le document FR2857073 d'accoupler directement au vilebrequin d'un moteur à combustion interne un volant d'inertie atténuateur de vibrations de torsion ou de fluctuations de vitesse de rotation, constitué de deux masses d'inerties coaxiales dont une première est solidaire en rotation du vilebrequin, et comporte une couronne de démarreur et un plateau de réaction d'un embrayage à friction, alors que la deuxième est mobile en rotation par rapport à la première, grâce à des modules de liaison articulés comportant chacun au moins un bras oscillant pivotant par rapport à la première masse d'inertie autour d'un axe parallèle à l'axe de révolution, une masse oscillante positionnée à une extrémité libre du bras oscillant de manière à être mobile dans une direction essentiellement radiale, et une bielle reliant un point intermédiaire du bras oscillant à la deuxième masse d'inertie. La liaison entre la bielle et le bras oscillant n'est pas une simple liaison pivot, mais de préférence une liaison de roulement mettant en œuvre un rouleau roulant simultanément sur deux pistes cylindriques de plus grand diamètre, l'une solidaire de la bielle et l'autre du bras oscillant, ce qui permet un jeu fonctionnel souhaité dans la liaison. En fonctionnement, les modules articulés s'opposent par effet centrifuge à la rotation relative des masses d'inertie en exerçant un couple de rappel sensiblement proportionnel à la rotation relative des deux masses d'inertie et au carré de la vitesse de rotation de la masse d'inertie liée au vilebrequin. Lorsque la vitesse de rotation dépasse une valeur de blocage, par exemple 2500 tr/min, les masses d'inertie viennent en appui contre une jante du volant d'inertie. Le mécanisme assume sa fonction de manière satisfaisante, mais engendre des bruits indésirables à l'arrêt du moteur, ou dès que la vitesse de rotation n'est plus suffisante pour imposer la position des bras oscillants par effet centrifuge. En effet, à ces faibles vitesses, le jeu dans la liaison entre bielle et bras articulé laisse une liberté de mouvement indésirable dans le mécanisme. On peut pallier cet inconvénient en remplaçant la liaison à rouleau par une liaison pivot, mais au prix d'une fatigue plus importante du mécanisme, qui diminue sa durée de vie. In order to reduce the irregularities of rotation of an internal combustion engine crankshaft, mainly at speeds between the idling speed and an intermediate speed, for example about 2500 rpm, it has been proposed, in the document FR2857073 to directly couple to the crankshaft of an internal combustion engine a flywheel attenuating torsional vibrations or rotational speed fluctuations, consisting of two masses of coaxial inertia of which a first is rotationally fixed; of the crankshaft, and comprises a starter ring and a reaction plate of a friction clutch, while the second is rotatable relative to the first, by means of articulated connection modules each comprising at least one pivoting pivoting arm relative to the first mass of inertia around an axis parallel to the axis of revolution, an oscillating mass positioned at a free end of the rotor oscillating so as to be movable in a substantially radial direction, and a connecting rod connecting an intermediate point of the oscillating arm to the second mass of inertia. The connection between the connecting rod and the oscillating arm is not a simple pivot connection, but preferably a rolling connection implementing a roller rolling simultaneously on two cylindrical tracks of larger diameter, one secured to the connecting rod and the other swing arm, which allows a desired functional game in the link. In operation, the articulated modules are opposed by centrifugal effect to the relative rotation of the masses of inertia by exerting a return torque substantially proportional to the relative rotation of the two masses of inertia and the square of the rotation speed of the mass of inertia linked to the crankshaft. When the speed of rotation exceeds a blocking value, for example 2500 rpm, the masses of inertia come to bear against a rim of the flywheel. The mechanism performs its function satisfactorily, but generates unwanted noise when the engine stops, or as soon as the speed of rotation is no longer sufficient to impose the position of the oscillating arms by centrifugal effect. Indeed, at these low speeds, the play in the connection between connecting rod and articulated arm leaves an undesirable freedom of movement in the mechanism. This disadvantage can be overcome by replacing the roller connection with a pivot connection, but at the cost of greater fatigue of the mechanism, which reduces its service life.
EXPOSE DE L'INVENTION SUMMARY OF THE INVENTION
[0003] L'invention vise à remédier aux inconvénients de l'état de la technique et à diminuer les bruits lors de l'arrêt d'un mécanisme de filtration des variations de couple. The invention aims to overcome the disadvantages of the state of the art and reduce noise when stopping a filter mechanism torque variations.
[0004] Pour ce faire est proposé, selon un premier aspect de l'invention, un mécanisme de filtration de fluctuations de couple, comportant un organe à amortir tournant autour d'un axe de révolution, un volant d'inertie oscillant tournant autour de l'axe de révolution par rapport à l'organe à amortir, et au moins un module de liaison permettant un débattement angulaire du volant d'inertie oscillant par rapport à l'organe à amortir de part et d'autre d'une position de référence, le module de liaison comportant au moins un bras oscillant pivotant autour d'un pivot lié à l'organe à amortir et un organe de liaison cinématique entre le bras oscillant et le volant d'inertie oscillant. Le bras oscillant comporte une zone de contact avec le l'organe de liaison cinématique et un talon, situés de part et d'autre du pivot, le talon étant situé en regard d'une piste de butée coopérant avec le talon pour limiter un pivotement du bras oscillant dans un sens rapprochant la zone de contact de l'axe de révolution. [0005] On évite ainsi que le bras oscillant, lorsque la vitesse de l'organe à amortir diminue jusqu'à l'arrêt et que les efforts centrifuges deviennent insuffisants, ne viennent battre en engendrant un bruit indésirable. To do this is proposed, according to a first aspect of the invention, a torque fluctuation filtration mechanism comprising a damping member rotating about an axis of revolution, an oscillating flywheel revolving around the axis of revolution relative to the member to be damped, and at least one connecting module allowing an angular displacement of the flywheel oscillating relative to the member to be damped on both sides of a position of reference, the link module comprising at least one pivoting arm pivoting about a pivot connected to the member to be damped and a kinematic connecting member between the oscillating arm and the oscillating flywheel. The oscillating arm comprises a zone of contact with the kinematic connecting member and a heel, located on either side of the pivot, the heel being located opposite a stop track cooperating with the heel to limit pivoting. swing arm in a direction bringing the contact zone closer to the axis of revolution. This avoids the oscillating arm, when the speed of the member to be dampened to a halt and the centrifugal forces become insufficient, come beat by generating an undesirable noise.
[0006] La piste de butée est formée de préférence sur le volant d'inertie oscillant. [0007] Suivant un mode de réalisation, la piste de butée est conformée de manière à limiter davantage le pivotement du bras oscillant dans le sens rapprochant la zone de contact de l'axe de révolution lorsque le volant d'inertie oscillant est dans la position de référence par rapport à l'organe à amortir que lorsque le volant d'inertie oscillant est situé dans une autre position par rapport à l'organe à amortir. The abutment track is preferably formed on the oscillating flywheel. According to one embodiment, the abutment track is shaped to further limit the pivoting of the oscillating arm in the direction closer to the contact zone of the axis of revolution when the oscillating flywheel is in the position. reference relative to the member to be damped only when the oscillating flywheel is located in another position relative to the member to be damped.
[0008] Suivant un mode de réalisation, le mécanisme de filtration de fluctuations de couple comporte en outre une butée radiale, située en regard d'une zone de butée radiale du bras oscillant pour limiter d'un pivotement angulaire de la zone de contact du bras oscillant radialement en s'éloignant de l'axe de révolution. De préférence, la butée radiale entre en contact avec la zone de butée radiale uniquement lorsque le mécanisme dépasse un seuil de vitesse de révolution autour de l'axe de révolution, par exemple du fait d'une déformation élastique du bras oscillant, du pivot ou d'une pièce du module de liaison. Le contact entre la butée radiale et la zone de butée radiale est obtenu lorsque le volant d'inertie oscillant se trouve dans la position de référence par rapport à l'organe à amortir. According to one embodiment, the torque fluctuation filtering mechanism further comprises a radial abutment located opposite a radial abutment zone of the oscillating arm to limit angular pivoting of the contact zone of the oscillating arm. swinging arm radially away from the axis of revolution. Preferably, the radial abutment comes into contact with the radial abutment zone only when the mechanism exceeds a speed threshold of revolution about the axis of revolution, for example due to an elastic deformation of the oscillating arm, the pivot or a piece of the link module. The contact between the radial abutment and the radial abutment zone is obtained when the oscillating flywheel is in the reference position relative to the member to be damped.
[0009] Suivant un mode de réalisation, le pivot est situé entre le talon et la zone de butée radiale. La zone de contact peut être située entre la zone de butée radiale et le pivot. According to one embodiment, the pivot is located between the heel and the radial abutment zone. The contact zone may be located between the radial abutment zone and the pivot.
[0010] Suivant un mode de réalisation, la butée radiale est fixe par rapport à l'organe à amortir. Alternativement, la butée radiale peut être fixe par rapport au volant d'inertie oscillant. According to one embodiment, the radial stop is fixed relative to the member to be damped. Alternatively, the radial stop may be fixed relative to the oscillating flywheel.
[0011] Suivant un mode de réalisation, on prévoit également des butées angulaires de limitation du débattement angulaire du volant d'inertie oscillant par rapport à l'organe à amortir. Ces butées angulaires comportent de préférence au moins une première butée angulaire solidaire de l'organe à amortir coopérant avec une deuxième butée angulaire solidaire du volant d'inertie oscillant. According to one embodiment, there is also provided angular stops for limiting the angular displacement of the flywheel oscillating relative to the member to be damped. These angular stops preferably comprise at least a first angular abutment integral with the member to be damped cooperating with a second angular abutment integral with the oscillating flywheel.
[0012] Par économie de moyens, on peut prévoir que l'une des butées angulaires constitue la butée radiale. On peut également prévoir que la piste de butée soit conformée de manière à constituer au moins l'une des butées angulaires. [0013] L'organe de liaison cinématique peut comporter une bielle. Il peut également comporter un corps roulant de liaison, de préférence un rouleau, roulant sur un chemin de roulement formé sur le bras oscillant et sur un chemin de roulement formé sur le volant d'inertie oscillant. Dans cette dernière configuration, la limitation du pivotement du bras oscillant dans un sens rapprochant la zone de contact de l'axe de révolution est également utile pour éviter un échappement du corps roulant. By saving means, it can be provided that one of the angular stops constitutes the radial abutment. It can also be provided that the abutment track is shaped so as to form at least one of the angular abutments. The kinematic connecting member may comprise a connecting rod. It may also comprise a connecting rolling body, preferably a roller, rolling on a raceway formed on the oscillating arm and on a raceway formed on the oscillating flywheel. In this latter configuration, the limitation of pivoting of the oscillating arm in a direction bringing the contact zone closer to the axis of revolution is also useful in order to avoid an escape of the rolling body.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
[0014] D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent : la figure 1, une vue schématique d'un convertisseur de couple intégrant un mécanisme de filtration de fluctuations de couple selon un mode de réalisation de l'invention; la figure 2, une vue isométrique éclatée d'un du mécanisme de filtration selon un mode de réalisation de l'invention ; la figure 3, une partiellement de face et partiellement en coupe transversale du mécanisme de filtration de la figure 2; la figure 4, une vue en coupe axiale du mécanisme de filtration de la figure 2, dans le plan de coupe IV de la figure 3 - la figure 5, une vue en coupe axiale du mécanisme de filtration de la figure 2, dans le plan de coupe V de la figure 3; la figure 6, une vue isométrique éclatée d'un mécanisme oscillant du mécanisme de filtration de la figure 2; la figure 7, une vue isométrique d'un bras oscillant du mécanisme oscillant de la figure 6; la figure 8, une vue de face d'un détail du mécanisme oscillant de la figure 6 dans une première position de fin de course; la figure 9, une vue de face d'un détail du mécanisme oscillant de la figure 6 dans une position intermédiaire de débattement radial maximal; la figure 10, une vue de face d'un détail du mécanisme oscillant de la figure 6 dans une deuxième position de fin de course; la figure 11, une vue de face d'un détail d'un mécanisme oscillant selon une variante de réalisation, dans une position intermédiaire de débattement radial maximal; la figure 12, une vue isométrique d'un mécanisme de filtration intégrant un mécanisme oscillant selon un autre mode de réalisation de l'invention; la figure 13, une vue en coupe du mécanisme de la figure 12; la figure 14, une vue schématique d'un double volant d'inertie intégrant un mécanisme de filtration suivant un autre mode de réalisation de l'invention; la figure 15, une vue schématique d'un double volant d'inertie intégrant un mécanisme de filtration suivant un autre mode de réalisation de l'invention. Other features and advantages of the invention will emerge on reading the description which follows, with reference to the appended figures, which illustrate: FIG. 1 is a diagrammatic view of a torque converter incorporating a filtering mechanism torque fluctuations according to one embodiment of the invention; FIG. 2 is an exploded isometric view of one of the filtration mechanism according to one embodiment of the invention; Figure 3, a partially front and partially in cross section of the filter mechanism of Figure 2; FIG. 4, an axial sectional view of the filtration mechanism of FIG. 2, in the section plane IV of FIG. 3; FIG. 5, an axial sectional view of the filtration mechanism of FIG. section V of Figure 3; Figure 6 is an exploded isometric view of an oscillating mechanism of the filtration mechanism of Figure 2; Figure 7 is an isometric view of an oscillating arm of the oscillating mechanism of Figure 6; Figure 8 is a front view of a detail of the oscillating mechanism of Figure 6 in a first end position; Figure 9 is a front view of a detail of the oscillating mechanism of Figure 6 in an intermediate position of maximum radial displacement; Figure 10 is a front view of a detail of the oscillating mechanism of Figure 6 in a second end position; Figure 11 is a front view of a detail of an oscillating mechanism according to an alternative embodiment, in an intermediate position of maximum radial displacement; Figure 12 is an isometric view of a filter mechanism incorporating an oscillating mechanism according to another embodiment of the invention; Figure 13 is a sectional view of the mechanism of Figure 12; Figure 14 is a schematic view of a double flywheel incorporating a filter mechanism according to another embodiment of the invention; Figure 15 is a schematic view of a double flywheel incorporating a filter mechanism according to another embodiment of the invention.
[0015] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures. For clarity, identical or similar elements are identified by identical reference signs throughout the figures.
DESCRIPTION DÉTAILLÉE DE MODES DE REALISATION DETAILED DESCRIPTION OF EMBODIMENTS
[0016] Sur la figure 1 est illustré de façon schématique un convertisseur de couple 1 situé entre un vilebrequin 2 et un arbre d'entrée de boîte de transmission 3. Ce convertisseur de couple comporte de manière connue en soi un convertisseur hydro-cinétique 4 et un embrayage de verrouillage 5 disposés en parallèle entre le vilebrequin 2 et un organe d'entrée 12 d'un mécanisme de filtration de fluctuation du couple 10 dont l'organe de sortie 14 est solidaire à l'arbre d'entrée de la boîte transmission 3. Un organe intermédiaire de phasage 15 est interposé entre l'organe d'entrée 12 et l'organe de sortie 14, relié à l'organe d'entrée 12 par un premier organe élastique 16 de rigidité Kl et à l'organe de sortie 14 par un deuxième organe élastique 17 de rigidité K2. Cet organe intermédiaire est en outre relié à un volant d'inertie oscillant 22 par l'intermédiaire de modules de liaison 26 formant un mécanisme oscillant 30. In Figure 1 is schematically illustrated a torque converter 1 located between a crankshaft 2 and a gearbox input shaft 3. This torque converter comprises in known manner a hydrokinetic converter 4 and a locking clutch 5 arranged in parallel between the crankshaft 2 and an input member 12 of a torque fluctuation filtration mechanism 10 whose output member 14 is integral with the input shaft of the box transmission 3. An intermediate phasing member 15 is interposed between the organ input 12 and the output member 14, connected to the input member 12 by a first elastic member 16 of rigidity K1 and the output member 14 by a second elastic member 17 of rigidity K2. This intermediate member is furthermore connected to an oscillating flywheel 22 by means of connecting modules 26 forming an oscillating mechanism 30.
[0017] Comme il apparaîtra plus clairement dans les illustrations structurelles des figures 2 à 5, les organes d'entrée 12 et de sortie 14 sont des organes tournant autour d'un même axe géométrique de rotation 100, mobiles en rotation l'un par rapport à l'autre, et chacun par rapport à l'organe intermédiaire de phasage 15, lui- même également mobile en rotation autour de l'axe de rotation 100. Le volant d'inertie oscillant 22 est susceptible d'osciller angulairement par rapport à l'organe intermédiaire de phasage 15. Le premier organe élastique 16 et le deuxième organe élastique 17 sont disposés en série entre l'organe d'entrée 12 et l'organe de sortie 14, au sens où un déplacement angulaire quasistatique dans un sens de l'organe de sortie 14 par rapport à l'organe d'entrée 12 provoque une augmentation de l'énergie potentielle élastique des deux organes élastiques 16, 17, alors qu'un déplacement angulaire relatif dans le sens opposé provoque une diminution de l'énergie potentielle élastique des deux organes élastiques 16, 17. As will become more clearly apparent in the structural illustrations of FIGS. 2 to 5, the input and output members 14 are members rotating around a same rotational geometric axis 100, rotatable one by one. relative to the other, and each relative to the intermediate phasing member 15, itself also rotatable about the axis of rotation 100. The oscillating flywheel 22 is likely to oscillate angularly relative to to the intermediate phasing member 15. The first elastic member 16 and the second elastic member 17 are arranged in series between the input member 12 and the output member 14, in the sense that a quasistatic angular displacement in one direction of the output member 14 relative to the input member 12 causes an increase in the elastic potential energy of the two elastic members 16, 17, while a relative angular displacement in the opposite direction causes a decrease in e the elastic potential energy of the two elastic members 16, 17.
[0018] Structurellement, l'organe d'entrée 12 du mécanisme de filtration 10 est constitué par sous-ensemble comportant une paire de rondelles de guidage 12.1, 12.2 fixées l'une à l'autre de façon en soi connue, une cloche (non illustrée) de l'embrayage de verrouillage 18 fixée à la rondelle de guidage 12.1 et un moyeu de turbine (non illustré) du convertisseur hydrocinétique 4 fixé à l'autre rondelle de guidage 12.2. Les deux rondelles de guidage 12.1, 12.2 délimitent entre elles un volume 200 dans lequel est disposé un voile de sortie 14.1 fixé à un moyeu central 14.2 et constituant avec ce dernier l'organe de sortie 14. Le moyeu central 14.2 est destiné à venir s'emmancher sur l'arbre d'entrée (non représenté) de la boîte de transmission 3. Le voile de sortie 14.1 forme une étoile qui, dans ce mode de réalisation, présente trois branches 14.3. La rondelle de guidage 12.1 est ajourée par trois grandes fenêtres 12.11 en arc de cercle séparées deux à deux par trois ponts de matière radiaux 12.12. Sur les figures, les positions angulaires des ponts de matière 12.12 de la rondelle 12.1 et des branches 14.3 du voile de sortie 14.1 coïncident, mais leur positionnement angulaire relatif peut naturellement varier avec les variations angulaires entre organe d'entrée 12 et organe de sortie 14. Structurally, the input member 12 of the filtering mechanism 10 is constituted by a subassembly comprising a pair of guide washers 12.1, 12.2 fixed to one another in a known manner, a bell ( not shown) of the locking clutch 18 attached to the guide ring 12.1 and a turbine hub (not shown) of the hydrokinetic converter 4 attached to the other guide ring 12.2. The two guide washers 12.1, 12.2 delimit between them a volume 200 in which is disposed an outlet web 14.1 fixed to a central hub 14.2 and constituting with the latter the output member 14. The central hub 14.2 is intended to come on the input shaft (not shown) of the gearbox 3. The output sail 14.1 forms a star which, in this embodiment, has three branches 14.3. The guide ring 12.1 is perforated by three large windows 12.11 in a circular arc separated in pairs by three bridges of radial material 12.12. In the figures, the angular positions of the material bridges 12.12 of the washer 12.1 and the branches 14.3 of the exit web 14.1 coincide, but their relative angular positioning can naturally vary with the angular variations between the input member 12 and the output member 14.
[0019] L'organe intermédiaire de phasage 15 comporte un voile de phasage 15.1 pourvu de trois bras 15.2 s'étendant radialement à l'intérieur du volume 44, en alternance avec les branches 14.3 du voile de sortie en étoile 14.1. Le voile de phasage 15.1 est monté de manière à pouvoir tourner autour du moyeu central 14.2. The intermediate phasing member 15 comprises a phasing web 15.1 provided with three arms 15.2 extending radially inside the volume 44, alternately with the branches 14.3 of the star exit web 14.1. The phasing web 15.1 is rotatably mounted about the central hub 14.2.
[0020] Dans le volume délimité par les deux rondelles de guidage 12.1, 12.2 sont logés des ressorts 16.1, 17.1 au nombre de six, trois constituant le premier organe élastique 16 et trois constituant le deuxième organe élastique 17. Les trois ressorts 16.1 constituant le premier organe élastique 16 sont bandés chacun entre un des bras 15.2 de l'organe intermédiaire de phasage 15 et un des ponts 12.12 constitués dans la rondelle de guidage 12.1, de manière à travailler lors des mouvements angulaires relatifs entre l'organe intermédiaire de phasage 15 et l'organe d'entrée 12. Les trois ressorts 17.1 constituant le deuxième organe élastique 17 sont bandés chacun entre un bras 15.2 de l'organe intermédiaire de phasage 15 et une des branches 14.3 du voile de sortie 14.1, de manière à travailler lors des mouvements angulaires relatifs entre l'organe intermédiaire de phasage 15 et l'organe de sortie 14. On notera que l'encombrement des ressorts 16.1 du premier organe élastique 16 est plus important que celui des ressorts 17.1 constituant le deuxième organe élastique 17, la rigidité Kl du premier organe élastique 16 étant de préférence inférieure à celle K2 du deuxième organe élastique 17, dans un rapport K2/K1 par exemple compris entre 2 et 5, et de préférence entre 2 et 3. In the volume defined by the two guide rings 12.1, 12.2 are housed springs 16.1, 17.1 to the number of six, three constituting the first elastic member 16 and three constituting the second elastic member 17. The three springs 16.1 constituting the first elastic member 16 are each bandaged between one of the arms 15.2 of the intermediate phasing member 15 and one of the bridges 12.12 formed in the guide ring 12.1, so as to work during relative angular movements between the intermediate phasing member 15 and the input member 12. The three springs 17.1 constituting the second elastic member 17 are each bandaged between an arm 15.2 of the intermediate phasing member 15 and one of the branches 14.3 of the output sail 14.1, so as to work when relative angular movements between the intermediate phasing member 15 and the output member 14. It will be noted that the bulk of the springs 16.1 of the first elas member 16 is greater than that of the springs 17.1 constituting the second elastic member 17, the stiffness K1 of the first elastic member 16 is preferably lower than that K2 of the second elastic member 17, in a ratio K2 / K1 for example between 2 and 5, and preferably between 2 and 3.
[0021] L'organe intermédiaire de phasage 15 comporte également une pièce annulaire plate de support 15.3, située à l'extérieur des rondelles de guidage 12.1, 12.2. Le voile de phasage 15.1 comporte des entretoises 15.4 qui font saillie axialement au travers de fenêtres pratiquées dans la rondelle de guidage 12.2 et viennent s'insérer dans des ouvertures 15.5 prévues à cet effet dans la pièce annulaire de support 15.3, de manière à solidariser la pièce annulaire de support 15.3 au voile de phasage 15.1. [0022] Le volant d'inertie oscillant 22, constitué par un anneau périphérique, est guidé en rotation autour de l'axe de révolution 100 par rapport à l'organe de phasage 15 grâce à trois pions 15.31 fixés sur la pièce annulaire de support 15.3 et glissant sur trois pistes 22.1 aménagées sur le volant d'inertie oscillant 22, ces pistes définissant également des butées de fin de course 22.2, 22.3 limitant le débattement angulaire du volant d'inertie oscillant 22 par rapport à l'organe de phasage 15. Afin d'amortir les fluctuations de couple de l'organe de phasage, le volant d'inertie oscillant 22 est lié à l'organe de phasage 15 par l'intermédiaire de trois modules de liaison 26 disposés à 120° les uns des autres autour de l'axe de révolution 100. Chaque module de liaison 26, illustré plus précisément sur les figures 6 à 10, comporte un bras oscillant 26.1 articulé à la pièce annulaire de support 15.3 par l'intermédiaire d'un pivot 26.2 pour pivoter autour d'un axe de pivotement 200 parallèle à l'axe de révolution 100, et un corps roulant 26.4, en l'espèce un rouleau, roulant sur un chemin de roulement 26.5 formé sur le bras oscillant 26.1 et sur un chemin de roulement 26.6 formé sur le volant d'inertie oscillant 22. Le chemin de roulement 26.5 formé sur le bras oscillant 26.1 est tourné radialement vers l'extérieur et vers le chemin de roulement 26.6 formé sur le volant d'inertie oscillant 22, qui lui est tourné radialement vers l'intérieur. Les deux chemins de roulement 26.5, 26.6 sont concaves en coupe transversale perpendiculaire à l'axe de révolution 100 avec des rayons de courbure constants différents. Le chemin de roulement 26.5 est situé entre le pivot 26.2 et un prolongement massique 26.7 du bras oscillant. Une partie du bras oscillant forme également une face d'appui 26.8. À l'opposé du chemin de roulement 26.5 et du prolongement massique 26.7 par rapport au pivot 26.2, le bras oscillant présente un talon 26.9 se projetant vers le volant d'inertie secondaire 22 et glissant sur une piste incurvée 26.10, ici convexe, qui s'oppose au pivotement du bras oscillant dans le sens horaire et évite ainsi que le rouleau s'échappe du logement constitué radialement entre les chemins de roulement 26.5 et 26.6 et axialement entre la pièce annulaire de support 15.3 et une paroi 26.11 du bras oscillant 26.1. The intermediate phasing member 15 also comprises a flat annular support piece 15.3, located outside the guide rings 12.1, 12.2. The phasing web 15.1 comprises spacers 15.4 which protrude axially through windows made in the guide ring 12.2 and are inserted in openings 15.5 provided for this purpose in the annular support piece 15.3, so as to secure the annular support piece 15.3 to the phasing web 15.1. The oscillating flywheel 22, constituted by a peripheral ring, is guided in rotation about the axis of revolution 100 relative to the phasing member 15 with three pins 15.31 fixed on the annular support piece. 15.3 and sliding on three tracks 22.1 arranged on the oscillating flywheel 22, these tracks also defining end stops 22.2, 22.3 limiting the angular displacement of the oscillating flywheel 22 with respect to the phasing member 15 In order to damp the torque fluctuations of the phasing member, the oscillating flywheel 22 is connected to the phasing member 15 by means of three connecting modules 26 arranged at 120 ° from each other around the axis of revolution 100. Each link module 26, illustrated more precisely in FIGS. 6 to 10, comprises an oscillating arm 26.1 hinged to the annular support piece 15.3 via a pivot 26.2 to pivot around it a pivot axis 200 parallel to the axis of revolution 100, and a rolling body 26.4, in this case a roller, rolling on a race 26.5 formed on the swing arm 26.1 and on a raceway 26.6 formed on the oscillating flywheel 22. The race 26.5 formed on the oscillating arm 26.1 is turned radially outwards and towards the raceway 26.6 formed on the oscillating flywheel 22, which is rotated radially towards it. inside. The two raceways 26.5, 26.6 are concave in cross section perpendicular to the axis of revolution 100 with different constant radii of curvature. The raceway 26.5 is located between the pivot 26.2 and a mass extension 26.7 of the swingarm. A portion of the swingarm also forms a bearing face 26.8. Opposite the raceway 26.5 and the mass extension 26.7 relative to the pivot 26.2, the oscillating arm has a heel 26.9 projecting towards the secondary flywheel 22 and sliding on a curved track 26.10, here convex, which is opposes pivoting of the oscillating arm in the clockwise direction and thus prevents the roller from escaping from the housing formed radially between the raceways 26.5 and 26.6 and axially between the annular support piece 15.3 and a wall 26.11 of the oscillating arm 26.1.
[0023] Comme cela est visible sur la figure 9, il existe un plan perpendiculaire à l'axe de révolution 100 qui coupe le bras oscillant 26.1, le corps roulant de liaison 26.4 et le volant d'inertie oscillant 22. Le corps roulant de liaison 26.4 est radialement interposé entre les chemins de roulement 26.5, 26.6 formés sur le bras oscillant 26.1 et sur le volant d'inertie oscillant 22 dans le dit plan. As can be seen in FIG. 9, there is a plane perpendicular to the axis of revolution 100 which cuts the oscillating arm 26.1, the connecting rolling body 26.4 and the oscillating flywheel 22. The rolling body of Link 26.4 is radially interposed between the raceways 26.5, 26.6 formed on the oscillating arm 26.1 and on the oscillating flywheel 22 in said plane.
[0024] Le dispositif fonctionne de la manière suivante. Au repos, à vitesse de rotation nulle, aucune force centrifuge ne s'exerce sur les bras oscillants 26.1. On peut positionner le volant d'inertie oscillant 22 dans une position angulaire de référence par rapport à la pièce annulaire de support 15.3 de l'organe de phasage 15, comme illustré sur la figure 9. Le rouleau 26.4 de chaque module de liaison 26 se trouve alors dans une position médiane par rapport aux chemins de roulement 26.5, 26.6, et l'on peut tracer, dans un plan perpendiculaire à l'axe de révolution 100, un axe radial 300 passant par l'axe de révolution, par un point de contact entre le rouleau et le chemin de roulement formé sur le bras oscillant et par un point de contact entre le rouleau 26.4 et le chemin de roulement 26.5 formé sur le volant d'inertie oscillant 22, cet axe 300 étant perpendiculaire aux deux chemins de roulement 26.5, 26.6, au niveau des deux points de contact. Cette position de référence est donc une position d'équilibre. À partir de cette position angulaire d'équilibre, toute rotation relative du volant d'inertie oscillant 22 par rapport à l'organe de phasage 15, dans une direction ou l'autre, contribue a rapprocher le prolongement massique 26.7 des bras oscillants 26.1 de l'axe de révolution. The device operates in the following manner. At rest, at zero rotation speed, no centrifugal force is exerted on the oscillating arms 26.1. The oscillating flywheel 22 can be positioned in a reference angular position with respect to the annular support piece 15.3 of the phasing member 15, as shown in FIG. 9. The roller 26.4 of each connection module 26 is is then in a median position relative to the raceways 26.5, 26.6, and it is possible to draw, in a plane perpendicular to the axis of revolution 100, a radial axis 300 passing through the axis of revolution, by a point contact between the roller and the raceway formed on the oscillating arm and by a point of contact between the roller 26.4 and the race 26.5 formed on the oscillating flywheel 22, this axis 300 being perpendicular to the two paths of bearing 26.5, 26.6, at the two points of contact. This reference position is therefore a position of equilibrium. From this equilibrium angular position, any relative rotation of the oscillating flywheel 22 with respect to the phasing member 15, in one direction or the other, contributes to bringing the mass extension 26.7 of the oscillating arms 26.1 closer to one another. the axis of revolution.
[0025] Lorsque le vilebrequin 2 tourne à faible vitesse, les fluctuations de couple moteur ne sont pas filtrées efficacement par les organes élastiques 16, 17 du mécanisme de filtration 10. À ce régime, les fluctuations de couple à chaque allumage de cylindre sont transmises à l'organe de phasage 15 et font fluctuer le positionnement angulaire relatif de l'organe de phasage 15 et du volant oscillant 22, en retard de phase. Le mécanisme de liaison constitué par les trois modules articulés 26 permet un débattement angulaire du volant d'inertie oscillant 22 par rapport à l'organe de phasage 15 de part et d'autre de la position d'équilibre de la figure 9. Chaque bras oscillant 26.1, en tournant avec l'organe de phasage 15 autour de l'axe de révolution 100, applique, par l'effet centrifuge sur le prolongement massique 26.7, un effort sur le rouleau 26.4 dans la direction définie par les deux chemins de roulement 26.5 et 26.6. Lorsque le système est dans la position d'équilibre, le rouleau est dans la position d'équilibre décrite précédemment, et les efforts résultants au niveau des chemins de roulement 26.5 et 26.6, eux-mêmes radiaux, n'engendrent aucun couple de rappel. Les fluctuations du positionnement angulaire relatif de l'organe de phasage 15 et du volant oscillant 22 ont pour effet de changer l'angle de la résultante des efforts transmis par le bras oscillant 26.1 à l'organe de phasage 15, engendrant un couple de rappel vers la position d'équilibre, qui augmente avec l'amplitude du débattement angulaire et le carré de la vitesse de rotation autour de l'axe de révolution. Le mécanisme oscillant 30, constitué par le volant oscillant 22 relié à l'organe de phasage 15 par les modules de liaison 26, se comporte comme un filtre à raideur variable en fonction de la vitesse, qui s'oppose aux variations de couple de l'organe à amortir constitué par l'organe de phasage 15. When the crankshaft 2 rotates at low speed, the motor torque fluctuations are not effectively filtered by the elastic members 16, 17 of the filter mechanism 10. At this speed, the torque fluctuations at each cylinder ignition are transmitted to the phasing member 15 and make fluctuate the relative angular positioning of the phasing member 15 and the oscillating wheel 22, late phase. The linking mechanism constituted by the three articulated modules 26 allows an angular displacement of the oscillating flywheel 22 with respect to the phasing member 15 on either side of the equilibrium position of FIG. 9. Each arm oscillating 26.1, rotating with the phasing member 15 about the axis of revolution 100, applies, by the centrifugal effect on the mass extension 26.7, a force on the roller 26.4 in the direction defined by the two raceways 26.5 and 26.6. When the system is in the equilibrium position, the roll is in the equilibrium position described above, and the resulting stresses at level 26.5 and 26.6, which are themselves radial, do not give rise to any return torque. The fluctuations of the relative angular positioning of the phasing member 15 and the oscillating flywheel 22 have the effect of changing the angle of the resultant of the forces transmitted by the oscillating arm 26.1 to the phasing member 15, generating a return torque towards the equilibrium position, which increases with the amplitude of the angular deflection and the square of the rotation speed around the axis of revolution. The oscillating mechanism 30, constituted by the oscillating flywheel 22 connected to the phasing member 15 by the connecting modules 26, behaves like a variable stiffness filter as a function of the speed, which opposes the torque variations of the damping member constituted by the phasing member 15.
[0026] Lorsque la vitesse de rotation autour de l'axe de révolution augmente, la résultante des efforts centrifuges appliqués par le bras oscillant 26.1 sur le rouleau 26.4 augmente et l'amplitude des débattements angulaires entre l'organe de phasage 15 et le volant oscillant 24 diminue. Le bras oscillant tend à se déformer de manière élastique et la face d'appui 26.8 du bras oscillant se rapproche progressivement du volant d'inertie oscillant 22. Au-delà d'une vitesse critique donnée, par exemple 2200 tr/min, le face d'appui 26.8 du bras oscillant 26.1 entre en contact avec le pion 15.31, ce qui a pour effet de limiter l'effort sur le rouleau 26.4 et sur le pivot 26.2. When the speed of rotation about the axis of revolution increases, the resultant centrifugal forces applied by the oscillating arm 26.1 on the roller 26.4 increases and the amplitude of the angular movements between the phasing member 15 and the steering wheel. oscillating 24 decreases. The oscillating arm tends to deform elastically and the bearing surface 26.8 of the oscillating arm progressively approaches the oscillating flywheel 22. Beyond a given critical speed, for example 2200 rpm, the face 26.8 of the swing arm 26.1 comes into contact with the pin 15.31, which has the effect of limiting the force on the roller 26.4 and the pivot 26.2.
[0027] Le mécanisme oscillant 30 est destiné à amortir l'organe de phasage 15 dans une plage critique où l'on constate des phénomènes de résonnance. Dès que le régime moteur est suffisamment élevé et que la fréquence propre du mécanisme oscillant 30 est dépassée, le volant d'inertie oscillant 22 oscille en opposition de phase par rapport à l'organe de phasage 15. L'organe de phasage 15 est ainsi sollicité par des couples antagonistes qui se compensent au moins partiellement, à savoir d'une part les couples d'entrée et de sortie transmis par les ressorts 16 et 17, et d'autre part un couple oscillant trouvant son origine dans le volant d'inertie, et transmis à l'organe de phasage 15 par les rouleaux 26.4, les bras oscillants 26.1 et les pivots 26.2. Le moment d'inertie du volant d'inertie oscillant 22 est donc choisi de manière à ce que le mécanisme oscillant 30 ait une fréquence propre très faible par rapport à aux fréquences des oscillations de couple au régime moteur visé. [0028] En combinant le mécanisme de filtration de couple 10 avec le mécanisme oscillant 30, on bénéficie de l'excellente atténuation des vibrations de l'organe de phasage 15 aux bas régimes, puis on vient bloquer le mécanisme oscillant 30 à plus haut régime, ce blocage du volant oscillant 22 ayant pour effet une augmentation de l'inertie de l'organe de phasage 15. On évite ainsi une usure prématurée des modules de liaison 26. The oscillating mechanism 30 is intended to damp the phasing member 15 in a critical range where there is evidence of resonance phenomena. As soon as the engine speed is sufficiently high and the natural frequency of the oscillating mechanism 30 is exceeded, the oscillating flywheel 22 oscillates in phase opposition with respect to the phasing member 15. The phasing member 15 is thus biased couples that compensate at least partially, namely on the one hand the input and output torque transmitted by the springs 16 and 17, and secondly an oscillating torque originating in the steering wheel inertia, and transmitted to the phasing member 15 by the rollers 26.4, the oscillating arms 26.1 and the pivots 26.2. The moment of inertia of the oscillating flywheel 22 is thus chosen so that the oscillating mechanism 30 has a very low natural frequency with respect to the frequencies of the torque oscillations at the target engine speed. By combining the torque filtration mechanism 10 with the oscillating mechanism 30, we benefit from the excellent attenuation of the vibrations of the phasing member 15 at low speeds, then we come to block the oscillating mechanism 30 at higher speeds. this blocking of the oscillating flywheel 22 having the effect of increasing the inertia of the phasing member 15. This avoids premature wear of the connection modules 26.
[0029] Lorsque la vitesse de rotation diminue jusqu'à l'arrêt total, le mécanisme oscillant 30 passe par une phase relativement courte durant laquelle les efforts centrifuges ne sont plus suffisants pour garantir l'appui des bras oscillants 26.1 sur les rouleaux 26.4. Le pivotement angulaire des bras oscillants 26.1 dans le sens horaire sur les figures est toutefois limité par les talons 26.9 qui viennent en appui sur les pistes incurvées 26.10, ce qui évite que les rouleaux 26.1 s'échappent de leurs logements. L'amplitude des pivotements des bras oscillants 26.1 est maîtrisée, ce qui évite également des bruits indésirables au passage à l'arrêt. [0030] Suivant une variante illustrée sur la figure 11, on prévoit sur le volant d'inertie oscillant 22 une butée radiale 26.12 qui constitue un appui pour le bras oscillant 26.1 dans la position intermédiaire de débattement maximal. On ménage ainsi le pivot 26.2 du bras oscillant en solidarisant le volant d'inertie oscillant 22 à l'organe de phasage 15 lorsque la vitesse de rotation augmente. L'inertie du volant oscillant 22 s'ajoute alors à celle de l'organe de phasage 15 Lorsque la vitesse de rotation continue d'augmenter, les efforts étant répartis entre la butée 26.12, le pivot 26.2, le rouleau 26.4 et les chemins de roulement 26.5, 26.6. When the rotational speed decreases until the total stop, the oscillating mechanism 30 passes through a relatively short phase during which the centrifugal forces are no longer sufficient to ensure the support of the oscillating arms 26.1 on the rollers 26.4. The angular pivoting of the oscillating arms 26.1 in the clockwise direction in the figures is, however, limited by the heels 26.9 which abut on the curved tracks 26.10, which prevents the rollers 26.1 from escaping their housings. The amplitude of pivoting of the swing arms 26.1 is controlled, which also avoids unwanted noise when passing at a standstill. According to a variant illustrated in Figure 11, there is provided on the oscillating flywheel 22 a radial abutment 26.12 which is a support for the swing arm 26.1 in the intermediate position of maximum displacement. The pivot 26.2 of the oscillating arm is thus cleaned by securing the oscillating flywheel 22 to the phasing member 15 when the speed of rotation increases. The inertia of the oscillating flywheel 22 then adds to that of the phasing member 15 When the rotational speed continues to increase, the forces being distributed between the stop 26.12, the pivot 26.2, the roller 26.4 and the travel paths. bearing 26.5, 26.6.
[0031] Sur les figures 12 et 13 est illustré un autre mode de réalisation d'un mécanisme de filtration de fluctuation du couple 10 conforme au schéma de principe de la figure 1. En l'espèce, ce mode de réalisation diffère du précédent uniquement par la structure des modules de liaison 26 entre le volant d'inertie oscillant 22 et l'organe de phasage 15 pour réaliser le mécanisme oscillant 30. Comme précédemment, trois modules de liaison 26 sont disposés à 120° les uns des autres autour de l'axe de révolution 100. Chaque module de liaison 26, illustré plus précisément sur les figures 12 et 13, comporte un bras oscillant 26.1 articulé à la pièce annulaire de support 15.3 par l'intermédiaire d'un pivot 26.2 pour pivoter autour d'un axe de pivotement parallèle à l'axe de révolution 100, et une bielle 26.40 reliant le bras oscillant 26.1 au volant d'inertie oscillant 22. La bielle 26.40 est montée par une liaison pivot 26.41 au volant d'inertie, et par une liaison à roulement 26.42 au bras oscillant, entre le pivot 26.2 et un prolongement massique 26.7 du bras oscillant. Cette liaison à roulement 26.42 confère un degré de liberté limité dans le positionnement de l'axe de rotation entre la bielle 26.40 et le bras oscillant 26.1. Elle est constituée par un rouleau 26.421 roulant sur un chemin de roulement concave 26.422 formé par une cavité cylindrique de la bielle 26.40 et sur un chemin de roulement concave 26.423 formé par une cavité cylindrique du bras oscillant 26.1, les chemins de roulement 26.422 et 26.423 ayant un rayon de courbure supérieur à celui du rouleau 26.421. Une partie du bras oscillant 26.1 forme également une face d'appui 26.8. À l'opposé de la liaison à roulement 26.42 et du prolongement massique 26.7 par rapport au pivot 26.2, le bras oscillant présente un talon 26.9 se projetant vers le volant d'inertie secondaire 22 et glissant sur une piste incurvée 26.10, ici convexe, qui s'oppose au pivotement du bras oscillant dans le sens horaire. In Figures 12 and 13 is illustrated another embodiment of a torque fluctuation filtration mechanism 10 according to the block diagram of Figure 1. In this case, this embodiment differs from the previous only by the structure of the connection modules 26 between the oscillating flywheel 22 and the phasing member 15 to produce the oscillating mechanism 30. As before, three connecting modules 26 are arranged at 120 ° from each other around the revolution axis 100. Each link module 26, illustrated more precisely in FIGS. 12 and 13, comprises an oscillating arm 26.1 hinged to the annular support piece 15.3 by means of a pivot 26.2 for pivoting around a pivot axis parallel to the axis of revolution 100, and a link 26.40 connecting the oscillating arm 26.1 to the oscillating flywheel 22. The connecting rod 26.40 is mounted by a pivot link 26.41 to the flywheel, and by a rolling bearing 26.42 to the swing arm, between the pivot 26.2 and a mass extension 26.7 of the swingarm. This rolling connection 26.42 confers a limited degree of freedom in the positioning of the axis of rotation between the connecting rod 26.40 and the oscillating arm 26.1. It consists of a roller 26.421 rolling on a concave raceway 26.422 formed by a cylindrical cavity of the connecting rod 26.40 and on a concave raceway 26.423 formed by a cylindrical cavity of the oscillating arm 26.1, the bearing tracks 26.422 and 26.423 having a radius of curvature greater than that of the roller 26.421. A portion of the swing arm 26.1 also forms a bearing face 26.8. Opposite the rolling connection 26.42 and the mass extension 26.7 relative to the pivot 26.2, the oscillating arm has a heel 26.9 projecting towards the secondary flywheel 22 and sliding on a curved track 26.10, here convex, which opposes the pivoting of the swingarm in a clockwise direction.
[0032] À bas régime, les fluctuations de couple à chaque allumage de cylindre sont transmises à l'organe de phasage 15 et font fluctuer le positionnement angulaire relatif de l'organe de phasage 15 et du volant oscillant 22, en retard de phase. Le mécanisme de liaison constitué par les trois modules articulés 26 permet un débattement angulaire du volant d'inertie oscillant 22 par rapport à l'organe de phasage 15 de part et d'autre de la position d'équilibre radiale de la bielle. Lorsque la bielle 26.40 est radiale, elle n'engendre aucun couple de rappel entre le volant d'inertie oscillant 22 et l'organe de phasage 15, et le système est dans une position d'équilibre. Les fluctuations du positionnement angulaire relatif de l'organe de phasage 15 et du volant oscillant 22 ont pour effet de changer l'angle de la bielle 26.40 et donc la résultante des efforts transmis par l'organe de liaison 26 à l'organe de phasage 15, engendrant un couple de rappel vers la position d'équilibre, qui augmente avec l'amplitude du débattement angulaire et le carré de la vitesse de rotation autour de l'axe de révolution. Le mécanisme oscillant 30, constitué par le volant oscillant 22 relié à l'organe de phasage 15 par les modules de liaison 26, se comporte comme un filtre à raideur variable en fonction de la vitesse, qui s'oppose aux variations de couple de l'organe à amortir constitué par l'organe de phasage 15. [0033] Lorsque la vitesse de rotation autour de l'axe de révolution augmente, la résultante des efforts centrifuges appliqués par le bras oscillant 26.1 sur la bielle 26.40 augmente et l'amplitude des débattements angulaires entre l'organe de phasage 15 et le volant oscillant 24 diminue. Le bras oscillant 26.1 tend à se déformer de manière élastique et la face d'appui 26.8 du bras oscillant se rapproche progressivement du volant d'inertie oscillant 22. Au-delà d'une vitesse critique donnée, par exemple 2200 tr/min, le face d'appui 26.8 du bras oscillant 26.1 entre en contact avec le pion 15.31, ce qui a pour effet de limiter l'effort sur le rouleau 26.4 et sur le pivot 26.2. [0034] Lorsque la vitesse de rotation diminue jusqu'à l'arrêt total, le mécanisme passe par une phase relativement courte durant laquelle les efforts centrifuges ne sont plus suffisants pour garantir le positionnement du rouleau dans la liaison à roulement 26.42 entre bielle 26.40 et bras oscillant 26.1. Le pivotement angulaire du bras oscillant 26.1 dans le sens horaire sur les figures est toutefois limité par le talon 26.9 qui vient en appui sur la piste incurvée 26.10, ce qui permet de maîtriser l'amplitude des pivotements des bras oscillants 26.1 et évite des bruits indésirables au passage à l'arrêt. At low speed, torque fluctuations at each ignition cylinder are transmitted to the phasing member 15 and fluctuate the relative angular positioning of the phasing member 15 and the oscillating wheel 22, late phase. The connecting mechanism constituted by the three articulated modules 26 allows an angular displacement of the oscillating flywheel 22 with respect to the phasing member 15 on either side of the radial equilibrium position of the connecting rod. When the link 26.40 is radial, it generates no return torque between the oscillating flywheel 22 and the phasing member 15, and the system is in an equilibrium position. The fluctuations of the relative angular positioning of the phasing member 15 and the oscillating flywheel 22 have the effect of changing the angle of the rod 26.40 and therefore the resultant of the forces transmitted by the connecting member 26 to the phasing member 15, generating a restoring torque to the equilibrium position, which increases with the amplitude of the angular deflection and the square of the rotational speed about the axis of revolution. The oscillating mechanism 30, constituted by the oscillating flywheel 22 connected to the phasing member 15 by the connecting modules 26, behaves like a variable stiffness filter as a function of the speed, which opposes the torque variations of the damping member constituted by the phasing member 15. When the speed of rotation about the axis of revolution increases, the resultant centrifugal forces applied by the oscillating arm 26.1 on the rod 26.40 increases and the amplitude of the angular movements between the phasing member 15 and the steering wheel. oscillating 24 decreases. The oscillating arm 26.1 tends to deform elastically and the bearing surface 26.8 of the oscillating arm progressively approaches the oscillating flywheel 22. Beyond a given critical speed, for example 2200 rpm, the bearing surface 26.8 of the oscillating arm 26.1 comes into contact with the pin 15.31, which has the effect of limiting the force on the roller 26.4 and the pivot 26.2. When the rotational speed decreases until the total stop, the mechanism passes through a relatively short phase during which the centrifugal forces are no longer sufficient to ensure the positioning of the roller in the rolling connection 26.42 between 26.40 connecting rod and swingarm 26.1. The angular pivoting of the oscillating arm 26.1 in the clockwise direction in the figures is, however, limited by the heel 26.9 which bears on the curved track 26.10, which makes it possible to control the amplitude of the pivoting of the oscillating arms 26.1 and avoids unwanted noise. at the stop.
[0035] Le mécanisme oscillant 30 peut également être utilisé dans d'autres applications nécessitant une filtration d'un organe tournant. On peut notamment utiliser le mécanisme oscillant pour amortir certains régimes vibratoires d'un double volant amortisseur disposé dans une chaîne cinématique de transmission entre un vilebrequin et une boîte de transmission comportant un embrayage sec. C'est ce qui a été illustré de façon schématique et fonctionnelle sur les figures 14 et 15. The oscillating mechanism 30 can also be used in other applications requiring filtration of a rotating member. In particular, it is possible to use the oscillating mechanism to dampen certain vibratory regimes of a double damping flywheel arranged in a transmission kinematic chain between a crankshaft and a gearbox comprising a dry clutch. This has been schematically and functionally illustrated in Figures 14 and 15.
[0036] Sur la figure 14 est illustrée une chaîne cinématique de transmission 1 de véhicule automobile comportant un embrayage sec 5 situé entre un vilebrequin 2 et un arbre d'entrée de boîte de transmission 3. En aval de l'embrayage dans la chaîne cinématique de transmission est disposé un mécanisme de filtration 10 constituant un double volant amortisseur et comportant un organe d'entrée 12 constitué par un volant primaire relié au secondaire de l'embrayage et un organe de sortie 114 constitué par un volant secondaire solidaire à l'arbre d'entrée de la boîte transmission 3. Un organe élastique 16 est interposé entre l'organe d'entrée et l'organe de sortie de manière à travailler lors de fluctuations de positionnement angulaire entre volant primaire 12 et volant secondaire 114. Un mécanisme oscillant 30 selon l'invention, comportant un volant d'inertie oscillant 22 relié au volant secondaire 114 par des modules de liaison 26, permet une atténuation des vibrations à bas régime du volant secondaire 114. In Figure 14 is shown a transmission linkage 1 of a motor vehicle having a dry clutch 5 located between a crankshaft 2 and a gearbox input shaft 3. Downstream of the clutch in the drive train transmission is arranged a filtration mechanism 10 constituting a double damping flywheel and having an input member 12 constituted by a primary flywheel connected to the secondary clutch and an output member 114 constituted by a secondary flywheel secured to the shaft transmission box 3. An elastic member 16 is interposed between the input member and the output member so as to work during angular positioning fluctuations between primary flywheel 12 and secondary flywheel 114. An oscillating mechanism 30 according to the invention, comprising an oscillating flywheel 22 connected to the secondary flywheel 114 by modules of link 26, allows attenuation of vibrations at low speed of the secondary flywheel 114.
[0037] La configuration illustrée sur la figure 15 diffère de la précédente par l'emplacement du double volant amortisseur 10, cinématiquement interposé entre le vilebrequin 2 et un double embrayage 5 permettant d'entraîner deux arbres d'entrée coaxiaux 3.1, 3.2 d'une boîte de transmission 3. [0038] Dans les deux modes de réalisation des figures 14 et, 15, la structure des modules de liaison et celle du volant d'inertie oscillant sont identiques à ce qui a été décrit sur les figures 1 à 11 ou à ce qui a été décrit sur les figures 12 et 13. The configuration illustrated in Figure 15 differs from the previous one by the location of the double damping flywheel 10, kinematically interposed between the crankshaft 2 and a double clutch 5 for driving two coaxial input shafts 3.1, 3.2 d '. a transmission gearbox 3. In both embodiments of FIGS. 14 and 15, the structure of the link modules and that of the oscillating flywheel are identical to that described in FIGS. 1 to 11. or what has been described in Figures 12 and 13.
[0039] D'autres variantes sont naturellement possibles. Différents emplacements des modules de liaison peuvent être envisagés: axialement entre le volant d'inertie oscillant 22 et l'organe d'entrée 12; entre l'organe secondaire 14 et l'organe d'entrée 12, ou à l'intérieur d'un logement de l'organe d'entrée 12. On peut également prévoir dans l'organe d'entrée 12 un logement pour le volant d'inertie oscillant 22. Other variants are naturally possible. Different locations of the connection modules can be envisaged: axially between the oscillating flywheel 22 and the input member 12; between the secondary member 14 and the input member 12, or within a housing of the input member 12. It can also provide in the input member 12 a housing for the steering wheel oscillating inertia 22.

Claims

REVENDICATIONS
1 . Mécanisme de filtration de fluctuations de couple, comportant un organe à amortir (15, 114) tournant autour d'un axe de révolution (100), un volant d'inertie oscillant (22) tournant autour de l'axe de révolution (100) par rapport à l'organe à amortir (15, 114), et au moins un module de liaison permettant un débattement angulaire du volant d'inertie oscillant (22) par rapport à l'organe à amortir (15, 114) de part et d'autre d'une position de référence, le module de liaison (26) comportant au moins un bras oscillant (26.1) pivotant autour d'un pivot (26.2) lié à l'organe à amortir et un organe de liaison cinématique (26.4, 26.40) entre le bras oscillant (26.1) et le volant d'inertie oscillant (22), caractérisé en ce que le bras oscillant (26.1) comporte une zone de contact (26.5, 26.423) avec l'organe de liaison cinématique (26.4, 26.40) et un talon (26.9), situés de part et d'autre du pivot (26.2), le talon (26.9) étant situé en regard d'une piste de butée (26.10) coopérant avec le talon (26.9) pour limiter un pivotement du bras oscillant (26.1) dans un sens rapprochant la zone de contact (26.5, 26.423) de l'axe de révolution (100). 1. Mechanism for filtering torque fluctuations, comprising a damping member (15, 114) rotating around an axis of revolution (100), an oscillating flywheel (22) rotating around the axis of revolution (100) relative to the member to be damped (15, 114), and at least one connecting module allowing an angular displacement of the oscillating flywheel (22) with respect to the member to be damped (15, 114) from other than a reference position, the link module (26) comprising at least one oscillating arm (26.1) pivoting about a pivot (26.2) connected to the member to be damped and a kinematic connecting member (26.4). , 26.40) between the oscillating arm (26.1) and the oscillating flywheel (22), characterized in that the oscillating arm (26.1) has a contact zone (26.5, 26.423) with the kinematic linkage (26.4). , 26.40) and a heel (26.9), located on either side of the pivot (26.2), the heel (26.9) being located opposite an abutment track (26.10) cooperating with the heel (26.9) to limit pivoting of the oscillating arm (26.1) in a direction closer to the contact zone (26.5, 26.423) of the axis of revolution (100).
2. Mécanisme de filtration selon la revendication 1, caractérisé en ce que la piste de butée (26.10) est formée sur le volant d'inertie oscillant (22). 2. Filtering mechanism according to claim 1, characterized in that the stop track (26.10) is formed on the oscillating flywheel (22).
3. Mécanisme de filtration selon la revendication 2, caractérisé en ce que la piste de butée (26.10) est conformée de manière à limiter davantage le pivotement du bras oscillant (26.1) dans le sens rapprochant la zone de contact (26.5, 26.423) de l'axe de révolution (100) lorsque le volant d'inertie oscillant (22) est dans la position de référence par rapport à l'organe à amortir (15, 114) que lorsque le volant d'inertie oscillant (22) est situé dans une autre position par rapport à l'organe à amortir (15, 114). Filtration mechanism according to claim 2, characterized in that the abutment track (26.10) is shaped to further limit the pivoting of the oscillating arm (26.1) in the direction of approaching the contact area (26.5, 26.423). the axis of revolution (100) when the oscillating flywheel (22) is in the reference position with respect to the member to be damped (15, 114) only when the oscillating flywheel (22) is located in another position relative to the member to be damped (15, 114).
4. Mécanisme de filtration selon l'une quelconque des revendications précédentes, caractérisé en ce que le mécanisme de filtration comporte en outre une butée radiale (15.31, 26.12), située en regard d'une zone de butée radiale (26.8) du bras oscillant pour limiter un pivotement angulaire de la zone de contact (26.5, 4. Filtration mechanism according to any one of the preceding claims, characterized in that the filtration mechanism further comprises a radial abutment (15.31, 26.12), located opposite a radial abutment zone (26.8) of the oscillating arm. to limit angular pivoting of the contact area (26.5,
26.423) du bras oscillant (26.1) radialement en s'éloignant de l'axe de révolution (100). 26.423) of the swing arm (26.1) radially away from the axis of revolution (100).
5. Mécanisme selon la revendication 4, caractérisé en ce que le pivot (26.2) est situé entre le talon (26.9) et la zone de butée radiale (26.8). 5. Mechanism according to claim 4, characterized in that the pivot (26.2) is located between the heel (26.9) and the radial abutment zone (26.8).
6. Mécanisme selon la revendication 5, caractérisé en ce que la zone de contact (26.5, 26.423) est située entre la zone de butée radiale (26.8) et le pivot (26.2). 6. Mechanism according to claim 5, characterized in that the contact zone (26.5, 26.423) is located between the radial abutment zone (26.8) and the pivot (26.2).
7. Mécanisme selon l'une quelconque des revendications 4 à 6, caractérisé en ce que la butée radiale (15.31) est fixe par rapport à l'organe à amortir. 7. Mechanism according to any one of claims 4 to 6, characterized in that the radial abutment (15.31) is fixed relative to the member to be damped.
8. Mécanisme selon l'une quelconque des revendications 4 à 6, caractérisé en ce que la butée radiale (26.12) est fixe par rapport au volant d'inertie oscillant (22). 8. Mechanism according to any one of claims 4 to 6, characterized in that the radial abutment (26.12) is fixed relative to the oscillating flywheel (22).
9. Mécanisme selon l'une quelconque des revendications 4 à 8, caractérisé en ce que la butée radiale (15.31, 26.12) entre en contact avec la zone de butée radiale (26.8) uniquement lorsque le mécanisme dépasse un seuil de vitesse de révolution autour de l'axe de révolution (100). 9. Mechanism according to any one of claims 4 to 8, characterized in that the radial abutment (15.31, 26.12) comes into contact with the radial abutment zone (26.8) only when the mechanism exceeds a revolution speed threshold around of the axis of revolution (100).
10. Mécanisme selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre des butées angulaires (22.2, 22.3, 15.31) de limitation du débattement angulaire du volant d'inertie oscillant (22) par rapport à l'organe à amortir (15, 114). 10. Mechanism according to any one of the preceding claims, characterized in that it further comprises angular stops (22.2, 22.3, 15.31) for limiting the angular deflection of the oscillating flywheel (22) relative to the damping member (15, 114).
1 1 . Mécanisme selon la revendication 10, caractérisé en ce que les butées angulaires comportent au moins une première butée angulaire (15.31) solidaire de l'organe à amortir coopérant avec au moins une deuxième butée angulaire (22.2, 22.3) solidaire du volant d'inertie oscillant (22). Mécanisme selon l'une quelconque des revendications 10 à 11 en combinaison avec l'une quelconque des revendications revendication 4 à 9, caractérisé en ce que l'une des butées angulaires constitue la butée radiale (15.31). 1 1. Mechanism according to claim 10, characterized in that the angular stops comprise at least a first angular abutment (15.31) integral with the member to be damped cooperating with at least one second angular abutment (22.2, 22.3) integral with the oscillating flywheel (22). Mechanism according to any one of claims 10 to 11 in combination with any one of claims claims 4 to 9, characterized in that one of the angular stops constitutes the radial abutment (15.31).
Mécanisme selon l'une quelconque des revendications précédentes, caractérisé en ce que l'organe de liaison cinématique (26.4, 26.40) comporte un corps roulant (26.4, 26.421), de préférence un rouleau. Mechanism according to any one of the preceding claims, characterized in that the kinematic connecting member (26.4, 26.40) comprises a rolling body (26.4, 26.421), preferably a roller.
Mécanisme selon l'une quelconque des revendications précédentes, caractérisé en ce que l'organe de liaison cinématique (26.4, 26.40) comporte une bielle (26.40). Mechanism according to any one of the preceding claims, characterized in that the kinematic connecting member (26.4, 26.40) comprises a connecting rod (26.40).
PCT/EP2015/059945 2014-05-12 2015-05-06 Mechanism for filtering torque fluctuations WO2015173087A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015002215.5T DE112015002215T5 (en) 2014-05-12 2015-05-06 Mechanism for filtering torque fluctuations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454221A FR3020850B1 (en) 2014-05-12 2014-05-12 MECHANISM FOR FILTRATION OF TORQUE FLUCTUATIONS
FR1454221 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015173087A1 true WO2015173087A1 (en) 2015-11-19

Family

ID=51210608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/059945 WO2015173087A1 (en) 2014-05-12 2015-05-06 Mechanism for filtering torque fluctuations

Country Status (3)

Country Link
DE (1) DE112015002215T5 (en)
FR (1) FR3020850B1 (en)
WO (1) WO2015173087A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533523A (en) * 2015-12-11 2018-11-15 アマゾン テクノロジーズ インコーポレイテッド Feather propeller clutch mechanism
JP2019052715A (en) * 2017-09-15 2019-04-04 株式会社エクセディ Torque fluctuation control device, torque converter and power transmission device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387776A (en) * 1939-05-19 1945-10-30 Salomon Francois Marie Bernard Oscillation reducing device
FR2857073A1 (en) * 2003-07-04 2005-01-07 Eric Antoinon Andre Doremus IMPROVEMENT IN INERTIA WHEELS, IN PARTICULAR FOR MOTOR VEHICLES
WO2014033043A1 (en) * 2012-08-27 2014-03-06 Bayerische Motoren Werke Aktiengesellschaft Centrifugal pendulum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387776A (en) * 1939-05-19 1945-10-30 Salomon Francois Marie Bernard Oscillation reducing device
FR2857073A1 (en) * 2003-07-04 2005-01-07 Eric Antoinon Andre Doremus IMPROVEMENT IN INERTIA WHEELS, IN PARTICULAR FOR MOTOR VEHICLES
WO2014033043A1 (en) * 2012-08-27 2014-03-06 Bayerische Motoren Werke Aktiengesellschaft Centrifugal pendulum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533523A (en) * 2015-12-11 2018-11-15 アマゾン テクノロジーズ インコーポレイテッド Feather propeller clutch mechanism
US10994836B2 (en) 2015-12-11 2021-05-04 Amazon Technologies, Inc. Feathering propeller clutch mechanisms
JP2019052715A (en) * 2017-09-15 2019-04-04 株式会社エクセディ Torque fluctuation control device, torque converter and power transmission device
US10619703B2 (en) 2017-09-15 2020-04-14 Exedy Corporation Torque fluctuation inhibiting device, torque converter and power transmission device

Also Published As

Publication number Publication date
DE112015002215T5 (en) 2017-02-09
FR3020850B1 (en) 2016-05-13
FR3020850A1 (en) 2015-11-13

Similar Documents

Publication Publication Date Title
EP3063431B1 (en) Mechanism for filtering torque fluctuations of a secondary member
FR2569250A1 (en) DIVIDING WHEEL
EP3190310A1 (en) Pendulum damping device
EP3332147A1 (en) Device for damping torsional oscillations
WO2004016968A1 (en) Cam-driven damping double flywheel and cam follower for motor vehicle
EP3128204B1 (en) Device for damping torsional oscillations
FR2828543A1 (en) Double damped flywheel, especially for motor vehicle, has cam follower moving over cam profile through 360 deg round axis of flywheel's rotation
EP3069045A1 (en) Simplified torsion damping device having a pendulum
WO2006072752A1 (en) Flywheel for internal combustion engine
EP3220007B1 (en) Torsional damper comprising a cam guide
WO2015173087A1 (en) Mechanism for filtering torque fluctuations
WO2017072338A1 (en) Vibration damper
FR3020848A1 (en) MECHANISM FOR FILTRATION OF TORQUE FLUCTUATIONS OF A SECONDARY ORGAN
FR2771466A1 (en) ROTATION SWING SHOCK ABSORBER
EP3368789A1 (en) Vibration damper, associated damping mechanism and propulsion assembly
WO2015140456A1 (en) Damping device for drive chain of a vehicle
WO2015173086A1 (en) Mechanism for filtering torque fluctuations
WO2015086944A1 (en) Pendulum torsion damping device with improved effectiveness of filtration
FR3025275A1 (en) TORSION OSCILLATION DAMPING DEVICE
EP1642041B1 (en) Improved inertia flywheel in particular for a motor vehicle
FR3035942A1 (en) TORQUE FLUID FILTRATION MECHANISM AND ASSOCIATED PROPULSION ASSEMBLY
FR3011605A1 (en) TORSION DAMPING MECHANISM AND TORQUE CONVERTER THEREFOR
FR3073027A1 (en) PENDULAR DAMPING DEVICE WITH SPACER PLACING
FR3012554A1 (en) MECHANISM FOR FILTRATION OF TORQUE FLUCTUATIONS OF A SECONDARY ORGAN
FR3025575A1 (en) MECHANISM FOR FILTRATION OF TORQUE FLUCTUATIONS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15721219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015002215

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15721219

Country of ref document: EP

Kind code of ref document: A1