WO2015172591A1 - 一种湿法离心抛射研磨料的金属板带表面处理方法 - Google Patents
一种湿法离心抛射研磨料的金属板带表面处理方法 Download PDFInfo
- Publication number
- WO2015172591A1 WO2015172591A1 PCT/CN2015/071825 CN2015071825W WO2015172591A1 WO 2015172591 A1 WO2015172591 A1 WO 2015172591A1 CN 2015071825 W CN2015071825 W CN 2015071825W WO 2015172591 A1 WO2015172591 A1 WO 2015172591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal strip
- throwing
- wet
- jet
- surface treatment
- Prior art date
Links
- 239000002184 metal Substances 0.000 title claims abstract description 221
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 221
- 238000000034 method Methods 0.000 title claims abstract description 108
- 238000004381 surface treatment Methods 0.000 title claims abstract description 78
- 238000005097 cold rolling Methods 0.000 claims abstract description 9
- 238000009826 distribution Methods 0.000 claims description 73
- 229910000831 Steel Inorganic materials 0.000 claims description 49
- 239000010959 steel Substances 0.000 claims description 49
- 239000002002 slurry Substances 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 39
- 239000007788 liquid Substances 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 33
- 238000012545 processing Methods 0.000 claims description 31
- 239000003082 abrasive agent Substances 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 24
- 229910052593 corundum Inorganic materials 0.000 claims description 21
- 239000010431 corundum Substances 0.000 claims description 21
- 239000008188 pellet Substances 0.000 claims description 16
- 238000005422 blasting Methods 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 13
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 12
- 230000009471 action Effects 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 10
- 238000000227 grinding Methods 0.000 claims description 10
- 239000008235 industrial water Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052580 B4C Inorganic materials 0.000 claims description 6
- 229910021418 black silicon Inorganic materials 0.000 claims description 6
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 6
- 230000033001 locomotion Effects 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 230000001747 exhibiting effect Effects 0.000 claims description 5
- 239000004576 sand Substances 0.000 claims description 5
- 239000004519 grease Substances 0.000 claims description 4
- 239000006061 abrasive grain Substances 0.000 claims description 3
- 239000006187 pill Substances 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 230000002238 attenuated effect Effects 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910000975 Carbon steel Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000010962 carbon steel Substances 0.000 description 4
- 238000011010 flushing procedure Methods 0.000 description 4
- 239000011268 mixed slurry Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000004439 roughness measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 241000896693 Disa Species 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000013556 antirust agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C3/00—Abrasive blasting machines or devices; Plants
- B24C3/08—Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C11/00—Selection of abrasive materials or additives for abrasive blasts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C5/00—Devices or accessories for generating abrasive blasts
- B24C5/06—Impeller wheels; Rotor blades therefor
Definitions
- the invention belongs to the technical field of surface treatment of cold metal strip (strip steel), and mainly adopts a mixed jet ejection of a rotating projection shaft of a centrifugal projection head and a width direction of the metal strip (or a running direction of the metal strip).
- a high-speed mixed slurry fluid mixed with abrasive particles is used to uniformly and uniformly grind the surface of the cold metal strip to achieve a wide and wide surface of the cold metal strip - that is,
- the surface of the plate is subjected to a continuous and uniform surface treatment process, and at the same time, the front and back surfaces of the metal strip after the jet treatment are free from debris and the surface roughness satisfies the requirements of the subsequent process.
- the metal material forms a dense covering composed of metal oxide on its surface, commonly known as “scale skin”.
- scale skin The existence of the scale skin will affect the further processing: on the one hand The surface cracks of the material are not easily found in advance, which causes quality problems in the finished product; on the other hand, it is easy to press the scales into the metal surface, causing surface quality problems; in addition, the presence of hard oxides accelerates the rolls or The wear of the drawing machine. Therefore, it is necessary to carry out a surface treatment process such as descaling on the surface of the steel sheet before entering the cold rolling mill, which is one of the necessary technological equipment on the cold rolling production line.
- the method and apparatus include, for example, electric scale removal, electrolytic grinding and descaling, discharge descaling, electron beam descaling, laser descaling, grinding descaling, shot blasting, repeated bending and descaling, and the combination of the above different methods. Scale method.
- the high-pressure jet descaling technology has developed the fastest, and its industrialization process has become more and more obvious.
- Hunan Nonferrous Metals Heavy Machinery Co., Ltd. used a mixed jet method to remove the surface scale of the alloy rod. According to this method, the surface of the descaled rod is cleaned by high pressure air.
- the main drawback of this method is that it is impossible to purify the sand embedded on the surface of the bar, causing the surface to have hard particles remaining, which causes the bar to be easily generated in the next rolling process because of the hard particle pressure. Surface defects formed.
- German Airmatic also uses a mixed jet method to clean the metal plane.
- the treatment method is as follows: using the principle of vacuuming, the surface deposits after the treatment are quickly sucked to realize the surface cleaning treatment.
- this method also has the above problems: that is, not only the problem of embedding of hard particles cannot be effectively removed, but also the flatness required for the stripping of the strip is required to be high, and the strip shape is poor and the tension is not Under stable conditions, the treatment effect will have poor stability defects, which may easily cause some surfaces to be cleaned.
- the high-speed centrifugal force of centrifugal throwing (projecting) is used to realize the high-speed and continuous impact of the surface of the metal strip on the mixed slurry, thereby realizing the wet descaling of the surface of the metal strip.
- This technology is also known as EPS technology.
- the above EPS technology has defects such as poor uniformity of plate impact strength, low jet utilization ratio, significant difference in roughness value in the lateral direction of the plate width, uneven distribution of descaling ability in the width direction of the plate, and the like, due to the existence of these defects,
- the board surface quality after descaling, descaling energy efficiency and strip descaling speed are limited (see Figure 8 - Figure 10).
- JP06108277A discloses a descaling process using a combination of a spray acid and a brush roll on a continuous cold rolling line.
- Japanese JP55034688A discloses a combined PV rolling scale-mixed abrasive high-pressure jet descaling method.
- the prior art has not been able to provide such a uniform impact on the board surface, and the jet is fluent.
- an object of the present invention is to provide a surface treatment method for a metal strip of a wet centrifugally-expanded abrasive, according to the present invention, a rotating shaft of a throwing head (head) and a width direction of a metal strip (or The running direction of the metal strip is set at an angle, and the centrifugal ejecting medium of the surface treatment method of the wet centrifugal ejecting abrasive is a mixed slurry of abrasive particles and water, thereby realizing a typical width of the metal strip. Synchronous removal of unevenly distributed deposits and ensuring a strict consistency of surface topography in the width direction of the strip.
- each of the throwing head jets exhibits a typical uniform, symmetric distribution characteristic in the width direction of the plate; and in the non-edge portion of the jet, there is a long, uniform uniform section, so that the uniformity of the jet is greatly improved.
- the ineffective jet and the "excessive strength" region are greatly reduced.
- the uniformity of the surface treatment and the uniform sheet quality after the cleaning can be effectively improved.
- the complexity of the projectile system can be reduced, thereby directly increasing the reliability of the system and reducing the system cost. According to the present invention, it is ensured that the process proceeds to the next step without affecting the next process.
- the rotating shaft of the throwing head is disposed in parallel with the width direction of the metal strip, that is, perpendicular to the running direction of the metal strip, and the centrifugal ejecting medium of the surface treatment method of the wet centrifugal ejecting abrasive is abrasive particles and water.
- each of the jets of the throwing head exhibits a typical uniform and symmetric distribution in the width direction of the panel, and
- the non-edge area of the jet has a long and uniform uniform section, which greatly improves the uniformity of the jet; the ineffective jet and the "excessive strength" area are greatly reduced; the uniformity of the surface treatment and the uniformity after the removal can be effectively improved.
- Surface quality reduce the complexity of the projectile system, thereby directly improving the reliability of the system and reducing the system cost; ensuring that it does not affect the next process after entering the next processing stage.
- the surface treatment method of the wet centrifugally-expanded abrasive material disposed at a certain angle between the rotating shaft of the throwing head and the width direction of the metal strip (or the running direction of the metal strip) can be realized in the width direction of the strip and the board A more uniform descaling effect in the length direction.
- the descaling effect can be specifically stated as: the fluctuation range of the scale residual rate and the surface roughness value is uniform in the longitudinal direction of the strip and the width direction of the strip; avoiding the unevenness of the jet, resulting in a plate
- the lead and the tail are removed because the scale is thicker, and the non-head and tail sections of the strip are removed due to the thin scale.
- the scales are thicker and the scales are thicker on both sides. The removal is not complete, and the middle portion of the strip width is removed due to the thin scale.
- the surface treatment method of the wet centrifugal projection abrasive material which is arranged at an angle between the rotating shaft of the throwing head and the width direction of the metal strip (or the running direction of the metal strip) according to the present invention is particularly suitable for the length direction and the width direction scale.
- a sheet metal strip with a typical uneven distribution of skin such as a sheet metal strip that is subjected to a high temperature coiling process after hot rolling.
- the thickness of the scale of the head and tail sections of this type of metal strip is obviously higher than that of the middle area, and the thickness of the scales on both sides of the width direction of the strip is obviously higher than that of the middle of the width.
- the surface treatment method of the wet centrifugally-expanded abrasive material disposed at a certain angle between the rotating shaft of the throwing head and the width direction of the metal strip (or the running direction of the metal strip), and the impeller width value of the centrifugal throwing head used Compared with the TMW-EPS throwing head, it is 150-200mm, that is, the invention adopts a wide-blade centrifugal throwing head, thereby wide-blade throwing a wide abrasive material by high-speed rotation through medium supply. Jet.
- the surface of the wet-drawn centrifugal abrasive is a mixture of abrasive particles and water, the abrasive particles are natural corundum abrasives (such as brown corundum, white corundum, single crystal corundum, etc.), and carbide abrasives (such as black silicon carbide, green silicon carbide).
- the abrasives include various sharp or non-sharp forms of corundum abrasives, carbide abrasives or artificial Abrasives, etc.
- the object of the present invention is to provide a surface treatment method for a wet centrifugal projectile abrasive having a rotating shaft of a throwing head and a width direction of the metal strip (or a running direction of the metal strip), the wet centrifugation
- the intensity difference between the local peak of the jet intensity distribution formed by a single throwing head and the uniform flat line forming the effective jet intensity distribution is small, in the strip width range
- the range of invalid areas outside is small, and the area of “excessive intensity” is also The reduction, thereby effectively saving system power consumption and mechanical loss, directly improving system energy efficiency and reducing system cost.
- a surface treatment method of a wet centrifugally-expanded abrasive material which is disposed at an angle of a width direction of a metal strip (or a running direction of a metal strip), and a wet centrifugally-expanded abrasive
- the surface treatment method is especially suitable for sensitive steel grades in which the strip gauge specifications vary greatly, and the length direction and width direction are easily affected by the environment, resulting in uneven distribution of scales, especially for full length, full width and positive of carbon steel sheets.
- the reverse synchronization descaling process is especially suitable for sensitive steel grades in which the strip gauge specifications vary greatly, and the length direction and width direction are easily affected by the environment, resulting in uneven distribution of scales, especially for full length, full width and positive of carbon steel sheets.
- a surface treatment method of a wet centrifugally-expanded abrasive material which is disposed at an angle of a width direction of a metal strip (or a running direction of a metal strip), and a wet centrifugally-expanded abrasive
- the surface treatment method is particularly suitable for the full length, full plate width, and front and back surface descaling treatment of the steel strip, wherein the scale has a scale difference of 5 ⁇ m or more between the sides and the middle portion in the width direction of the metal strip.
- the scale has a typical non-uniform characteristic of the scale distribution in which the thickness difference between the two sides and the intermediate portion is more than 3 ⁇ m in the width direction of the metal strip, and the head and the tail in the longitudinal direction of the metal strip The thickness of the area is more than 5um.
- the scale distribution of the scale shows the typical non-uniform characteristics of the steel.
- a surface treatment method of a wet centrifugally-expanded abrasive material which is disposed at an angle of a width direction of a metal strip (or a running direction of a metal strip), and a wet centrifugally-expanded abrasive
- the surface treatment method is particularly suitable for full-plate wide surface treatment where the strip is frequently deflected during operation.
- Another object of the present invention is to provide a surface treatment apparatus for a wet centrifugal projection wide abrasive having a rotation axis of the throwing head and a width direction of the metal strip (or a running direction of the metal strip).
- a metal plate strip surface treatment method for a wet centrifugally-expanded abrasive provided with a processing unit, the processing unit comprising a centrifugal projection throwing head for surface surface of a cold metal strip before entering the cold rolling mill Processing, characterized in that
- the centrifugal projection throwing head is formed by connecting the feeding tube on the feeding tube with the high-speed mixed fluid slurry mixed with the abrasive particles to form a uniform, full-plate width continuous hitting on the surface of the cold metal strip. Grinding Cutting, thereby achieving continuous and uniform surface treatment of the upper and lower wide faces of the cold metal strip, that is, the full surface;
- the rotation axis of the throwing head is set at an angle of 0 to 45° with respect to the width direction of the metal strip.
- the throwing head rotation axis is disposed in parallel with the width direction of the metal strip, that is, perpendicular to the running direction of the metal strip.
- the central axis 8 is perpendicular to the central axis of the running speed V1 of the metal strip 5, and is parallel to the plate surface of the metal strip 5, and the direction of the central axis 8 is the width direction of the metal strip 5, also called It is the width direction.
- the angle of rotation of the throwing head is between 35 and 45 degrees in the width direction of the metal strip.
- a surface treatment method for a metal strip of a wet centrifugally-expanded abrasive characterized in that the centrifugal throwing head 2a is provided with a plurality of centrifugal blades 1a, and the centrifugal throwing head 2a functions as an external driving source.
- the plurality of centrifugal blades 1a fixed to the upper portion thereof are rotated together at the same angular velocity W1.
- a method for treating a surface of a metal strip with a wet centrifugally-expanded abrasive characterized in that a throwing head for centrifugal projection is provided in pairs on the upper and lower sides of the metal strip;
- the centrifugal throwing head 2a is provided with 4 to 20 centrifugal blades 1a, and the centrifugal throwing head 2a drives the centrifugal blades 1a fixed thereto to rotate at the same angular velocity W1 under the action of an external driving source.
- the outer circumference radius of the centrifugal blade 1a is larger than the maximum outer diameter of the feed pipe 3a, and after the slurry is conveyed to the inside of the feed pipe 3a, it flows to the high-speed rotating centrifugal blade 1a to realize an overall accelerated throwing process of the slurry 4.
- a method for surface treatment of a metal strip of a wet centrifugally-expanded abrasive according to the present invention is characterized in that the centrifugal throwing head 2a is provided with 4 to 8 centrifugal blades 1a.
- the centrifugal throwing head has an impeller width value of 150 to 200 mm, thereby achieving a high-speed rotating wide impeller through the medium supply. Throw out a wide jet of abrasive.
- the feed tube 3a is in communication with and disposed on the shaft portion of the centrifugal throwing head 2a.
- the outer circle radius of the blade 1a is significantly larger than the maximum outer diameter of the feed pipe 3a, the solid abrasive particles and the liquid (which may be a liquid such as oil or water, especially water) are mixed, and the mixture of the two media, the slurry 4, passes.
- the conveying line is forcibly input into the feeding pipe 3a under a state of a certain pressure and flow rate to realize the conveying of the slurry 4.
- the centrifugal throwing head 2a is generated by the external driving source.
- the angular velocity W1 is rotated, and at the same time, the plurality of centrifugal blades 1a fixed to the upper portion thereof are rotated together at the same angular velocity, and the rotational angular velocity value is also equal to W1.
- the slurry medium 4 inside the feed pipe 3a automatically generates a certain centrifugal force, causing it to flow to the high-speed rotating blade 1a according to a predetermined passage, and the blade 1a is given by the outer radius thereof.
- the maximum outer diameter of the material pipe 3a is significantly larger, so that the linear velocity is significantly increased under the action of the equal angular velocity W1, so that the acceleration effect on the slurry 4 is achieved; and under the centrifugal force, the slurry 4 is in the centrifugal blade.
- the acceleration of 1a disengages from the surface of the blade 1a and flies outward along the tangential direction of the outer circumference of the blade 1a.
- the overall acceleration and throwing process of the slurry 4 is achieved.
- a method for treating a metal strip surface of a wet centrifugally-expanded abrasive characterized in that the rotary motion of the feed tube 3a, the throwing head 2a and the blade 1a all surround the same throwing head rotation axis , that is, the central axis 8, rotating at a high speed at the same angular velocity.
- a method for treating a surface of a metal strip of a wet centrifugally-expanded abrasive characterized in that
- the rotational angular velocity w2 is equal to the absolute value of W1, but the rotational direction is opposite.
- the rotational angular velocity w2 is equal to the absolute value of W1, and the purpose thereof is to ensure that the linear velocity, the jet distribution state, and the like of the slurry hitting the plate surface are completely identical, and the ultimate goal is to ensure that the descaling quality of the front and back surfaces of the steel plate is exactly the same.
- the throwing head 2b disposed above and below the metal strip is the same type of throwing head 2b, because in the actual descaling production, the front and back sides need the same surface quality, so the same type of head is needed.
- the same type of head throwing equipment facilitates subsequent equipment management and mutual replacement, achieving lower spare parts inventory management and quick repair.
- the same type of throwing head 2b is provided with the same model. The tube 3b and the blade 1b.
- a surface treatment method for a metal strip of a wet centrifugally-expanded abrasive according to the present invention is characterized in that the number of the throwing head 2 and the feeding tube 3 is 2 to 16 and the number of the feeding tubes is the same.
- a processing unit is characterized in that the number of the throwing head 2 and the feeding tube 3 is 2 to 16 and the number of the feeding tubes is the same.
- processing unit refers to a standardized module that facilitates copying and concatenation of subsequent large production equipment. Because the descaling ability of a single unit is limited, the descaling speed is not too high. In the actual production period, in order to meet the upstream and downstream capacity requirements, the speed may exceed the descaling ability of a single unit. In this case, multiple processing units are required. Series to increase speed and productivity.
- Metal sheet strip surface treatment method for wet centrifugal centrifugal abrasive characterized Yes,
- the jet 4 has a typical two-stage jet intensity gradually attenuating region P1 and an intermediate jet intensity exhibiting a uniform distribution of the uniform flat region P2 in the width direction of the metal strip 5;
- the intermediate jet intensity region P2 is an effective jet processing region for surface treatment of the metal strip 5 .
- the degrading effect of the two-stage jet intensity gradual attenuation region P1 is poor, and some other jets need to be supplemented by the other jets, and the same descaling effect similar to the intermediate jet intensity region can be achieved by supplementing other jets.
- a method for treating a surface of a metal strip of a wet centrifugally-expanded abrasive characterized in that
- the ratio of the width of the single throwing head attenuation region P1 ⁇ 2 over the entire jet distribution region width (P1 ⁇ 2+P2), that is, the jet intensity loss rate is 10 to 60%.
- the ratio of the width of the single throwing head attenuation region P1 ⁇ 2 over the entire jet distribution region width (P1 ⁇ 2+P2), that is, the jet intensity loss rate is 10 to 30%.
- the vertical distance between the central axis 8 of the centrifugal rotation in the throwing scheme and the wide face closest to the metal strip 5 is greater than the outer radius value produced by the most distal rotation of the blade mounted on the throwing head.
- a surface treatment method for a metal strip of a wet centrifugally-expanded abrasive characterized in that each of the throwing heads 2a, 2b, 2c, 2d is dislocated in the width direction of the metal strip 5,
- the specific dislocation requirements are as follows: the jet intensity of each throwing head has a mapping distribution curve in the width direction of the plate, and the curve shows the distribution law of "attenuation at both ends - the middle is straight", and the straight segment P2+P1
- the width value is the amount of misalignment between every two throws in the width direction.
- P1 is an attenuation region, both sides, and P2 is a flat region.
- the specific amount of misalignment is directly related to this curve.
- the misalignment of the two throwing heads is usually "the intensity of the jet flow intensity of the single throwing projection in the plate width direction”.
- the width value of the straight section P2+P1 is the amount of misalignment between every two throwing heads in the width direction.
- the distance between the two throwing heads adjacent in the plate width direction is P1 + P2 according to the P1 value and the P2 value in the abrasive strength distribution curve of each of the throwing heads.
- a method for surface treatment of a metal strip of a wet centrifugally-expanded abrasive according to the present invention is characterized in that the slurry 4 is industrial water or a fluid medium having fluidity.
- the temperature is below 100 ° C and the pH is between 6.5 and 9.
- a surface treatment method for a metal strip of a wet centrifugally-expanded abrasive characterized in that, when the liquid medium is a grease medium, it is a liquid substance having fluidity or a certain liquid medium or solid. a mixed liquid substance formed after dissolving in a liquid medium.
- an oily anti-rust agent is added to the water of the slurry, this is a mixture of oils and fats, and the water is mixed with it to form an emulsified mixed liquid.
- the purpose is to ensure that the surface after descaling can prevent rust in time and eliminate the yellow spot. occur.
- a method for treating a surface of a metal strip of a wet centrifugally-expanded abrasive characterized in that
- the solid medium has a particle diameter of 0.1 mm to 2.0 mm, and the solid medium shape is preferably spherical or columnar particles;
- the particle diameter of the solid medium is preferably 0.2 mm to 0.5 mm;
- the slurry has a solid medium particle diameter of 0.1 mm to 2.0 mm, preferably 0.2 mm to 0.5 mm, and the solid medium shape is preferably spherical, columnar, polygonal, or a mixture of two or more.
- the shape of the solid medium is preferably a mixture of two or more kinds of spherical, columnar or polygonal particles
- two or three of the three different shaped particles are mixed in a certain ratio, for example, steel shot and steel grit
- the ratio is in the range of 1:1 to 1:5.
- a method for treating a metal strip surface of a wet centrifugally-expanded abrasive characterized in that the solid medium can be specifically described as a natural corundum abrasive (such as brown fused alumina, white corundum, single crystal corundum, etc.) ), carbide abrasives (such as black silicon carbide, green silicon carbide, boron carbide, etc.), or artificial abrasives, such as steel pellets, steel sand, steel wire cutting pills and other metal processing pellets, preferably steel pellets and steel wire pellets.
- a natural corundum abrasive such as brown fused alumina, white corundum, single crystal corundum, etc.
- carbide abrasives such as black silicon carbide, green silicon carbide, boron carbide, etc.
- artificial abrasives such as steel pellets, steel sand, steel wire cutting pills and other metal processing pellets, preferably steel pellets and steel wire pellets.
- a method for treating a surface of a metal strip with a wet centrifugally-expanded abrasive characterized in that the metal strip is a steel type exhibiting a typical uneven characteristic of a scale distribution, that is, the scale is on a metal plate.
- the difference in thickness between the sides and the intermediate portion in the width direction of the belt is 5 um to 10 um, or the difference in thickness between the head and the tail portion of the scale in the longitudinal direction of the metal strip is 7 um to 15 um.
- a method for treating a surface of a metal strip with a wet centrifugally-expanded abrasive according to the present invention characterized in that the method is suitable for a sheet shape defect of a metal plate or a plate during ejection and descaling due to tension fluctuation With the surface jitter distance, that is, the "wave height value" exceeds 20mm, but does not exceed 100mm.
- the original wave shape and the boring curve of the plate surface are very serious, and the wave height is usually more than 20 mm, which affects the distance between the jet and the plate surface, resulting in the actual area.
- the received jet density is inconsistent with the design value, which tends to result in inconsistent panel quality after descaling.
- the plate belt is shaken by the plate surface during the projectile descaling, that is, the height of the plate perpendicular to the plate surface.
- the “wave height” is to place the steel plate horizontally on a large flat plate, because the steel plate is “wave shape”. Make The local area is raised, which is the “wave height”.
- An important indicator of the convex value is the “wave height value”.
- the metal strip is a steel type having a typical unevenness distribution, that is, the scale has a thickness difference of 3 um to 10 um in the width direction of the metal strip, or a scale.
- the difference in thickness between the head end portion and the intermediate portion in the longitudinal direction of the metal strip is 5 um to 15 um.
- the technical scheme of the surface treatment device for a metal plate with a wet centrifugally-expanded abrasive according to the present invention is as follows:
- a metal strip belt surface treatment apparatus for wet centrifugally ejecting abrasive provided with a processing unit, the processing unit comprising a centrifugal projection throwing head for surface surface of a cold metal strip before entering the cold rolling mill Processing, wherein the processing unit comprises:
- the centrifugal projection throwing head is formed by connecting the feeding tube on the feeding tube with the high-speed mixed fluid slurry mixed with the abrasive particles to form a uniform, full-plate width continuous hitting on the surface of the cold metal strip. Grinding, thereby achieving continuous and uniform surface treatment of the upper and lower wide faces of the cold metal strip, that is, the full surface;
- the rotation axis of the throwing head is set at an angle of 0 to 45° with respect to the width direction of the metal strip.
- the throwing head rotation axis is disposed in parallel with the width direction of the metal strip, that is, perpendicular to the running direction of the metal strip.
- the central axis 8 is perpendicular to the central axis of the running speed V1 of the metal strip 5, and is parallel to the plate surface of the metal strip 5, and the direction of the central axis 8 is the width direction of the metal strip 5, also called It is the width direction.
- the angle of rotation of the throwing head is between 35 and 45 degrees in the width direction of the metal strip.
- the number of throws set by a unit is generally based on 4, 8, or 16.
- the number of throwing heads set by one unit is usually even, because the number of upper and lower surfaces of the steel plate is equal, so the total number is usually even, and if there are four on the upper surface of the steel plate, the lower surface must also be four. It is to ensure that the descaling effect is consistent.
- a metal strip surface treatment apparatus for a wet centrifugally-expanded abrasive characterized in that
- a throwing head for centrifugal projection is provided in pairs on the upper and lower sides of the metal strip;
- the centrifugal throwing head 2a is provided with 4 to 20 centrifugal blades 1a, and the centrifugal throwing head 2a is driven externally.
- the centrifugal blades 1a fixed thereto are driven to rotate at the same angular velocity W1 by the action of the moving source.
- the outer circumference radius of the centrifugal blade 1a is larger than the maximum outer diameter of the feed pipe 3a, and after the slurry is conveyed to the inside of the feed pipe 3a, it flows to the high-speed rotating centrifugal blade 1a to realize an overall accelerated throwing process of the slurry 4.
- a metal sheet belt surface treating apparatus for a wet centrifugally-expanded abrasive according to the present invention is characterized in that the centrifugal throwing head 2a is provided with 4 to 8 centrifugal blades 1a.
- the centrifugal blade 1a is angularly disposed on the surface of the centrifugal throwing head 2a, and the set angle is 35-45.
- a metal strip surface treatment apparatus for a wet centrifugally-expanded abrasive characterized in that
- the rotation movements of the feed pipe 3a, the throwing head 2a, and the blade 1a all rotate around the same throwing head rotation axis, that is, the center axis 8, at a high angular velocity at the same angular velocity.
- the angular velocity is usually from 1500 rpm to 2200 rpm.
- a metal sheet belt surface treatment apparatus for a wet centrifugally-expanded abrasive according to the present invention
- the metal strip 5 runs at a linear velocity V1 along its length. At this time, the central axis 8 of the centrifugal throwing head 2 and the blade 1 thereon rotates at an angle of 35 to 45 with the plate width direction of the metal strip 5. .
- the central axis 8 is perpendicular to the central axis of the running speed V1 of the metal strip 5 while being parallel to the plate surface of the metal strip 5, and the direction of the axis 8 is the width direction of the metal strip 5, also It is called the width direction.
- a metal sheet belt surface treatment apparatus for a wet centrifugally-expanded abrasive according to the present invention
- the throwing head provided on the upper and lower sides of the metal strip is the same type of throwing head, because in the actual descaling production, the front and back sides need the same surface quality, so the same type of throwing head is needed to realize At the same time, the same type of throwing head equipment facilitates subsequent equipment management and mutual replacement, achieving lower spare parts inventory management and quick repair.
- the same type of throwing head 2b is provided with the same model. The tube 3b and the blade 1b.
- a metal strip surface treatment apparatus for a wet centrifugally-expanded abrasive characterized in that
- the mixed jet 4 produced by the throwing scheme has a typical two-stage jet intensity P1 gradually decreasing in the width direction of the metal strip 5, and the intermediate jet intensity P2 exhibits a uniform and flat intensity distribution law (see FIGS. 3 and 5). ;
- the intermediate jet intensity region P2 is an effective jet processing region for surface treatment of the metal strip 5;
- the vertical distance between the centrifugal rotating shaft 8 in the throwing scheme and the wide surface closest to the metal strip 5 is greater than the outer radius value produced by the most distal rotation of the impeller 1 mounted on the centrifugal wheel.
- a metal strip surface treatment apparatus for a wet centrifugally-expanded abrasive characterized in that
- the plurality of throwing heads 2a, 2b, 2c, 2d are arranged in a misalignment in the width direction of the metal strip 5 .
- a metal strip surface treatment apparatus for a wet centrifugally-expanded abrasive characterized in that
- the solid medium has a particle diameter of 0.1 mm to 2.0 mm, and the solid medium shape is preferably spherical or columnar particles;
- the solid medium has a particle diameter of preferably 0.2 mm to 0.5 mm.
- a metal strip surface treatment apparatus for a wet centrifugally-expanded abrasive characterized in that
- the solid medium can be specifically described as natural corundum abrasives (such as brown fused alumina, white corundum, single crystal corundum, etc.), carbide abrasives (such as black silicon carbide, green silicon carbide, boron carbide, etc.), or artificial abrasives.
- natural corundum abrasives such as brown fused alumina, white corundum, single crystal corundum, etc.
- carbide abrasives such as black silicon carbide, green silicon carbide, boron carbide, etc.
- artificial abrasives for example, metal processing pellets such as steel pellets, steel grit, and steel wire cutting pellets, preferably steel pellets and steel wire cutting pellets.
- the present invention has the following typical differences from prior art (e.g., EPS):
- the intensity distribution of the throwing head uses the projection scheme of the traditional shot blasting machine, and the actual curve of the intensity distribution of the throwing jet density in the width direction of the conventional shot blasting machine is shown in the following figure (see Figure 11).
- the jet distribution resulting in a single throwing head cannot be completely uniform in the width direction of the plate. Therefore, in order to ensure that the jet of the jet in the width direction of the plate is as uniform as possible, the blasting machine manufacturer usually adopts two throwing boring heads to form a unit, that is, the two throwing boring heads adopt a mutually reverse rotation scheme to perform mutual strength. Make up, thus forming a near-homogenized distribution.
- TMW Company realizes the jet intensity distribution in the plate width direction by the jets of each of the EPS throwing heads 10a, 10b in this mutual compensation manner, which has the characteristics shown in FIG. 9A, namely the throwing heads 10a, 10b. In the opposite direction of rotation, its distribution characteristics exhibit typical asymmetrical, non-normal distribution characteristics.
- the jet intensity distribution of the jets of each of the throwing heads 2a, 2b, 2c, 2d in the sheet width direction It has the feature shown in FIG. 3 or FIG. 5A that the respective jets of each of the throwing heads 2a, 2b, 2c, 2d exhibit a typical uniform and symmetric distribution in the width direction of the plate, and in the non-edge region of the jet, With a longer, uniform uniform section, the jet uniformity disclosed herein is greatly enhanced relative to the EPS throwing mode disclosed by TMW.
- Throwing head stacking intensity distribution According to the patented scheme proposed by TMW, when the metal strip has a double throwing head on one side of the wide side, the double throwing head adopts a mutually oppositely rotating projecting mode, and the superposition effect of the jet intensity is as shown in the figure. As shown in Fig. 9B, the total intensity of the superimposed layer still has a typical unevenness in the width direction of the metal strip 5, and in the entire distribution curve, there are features of "low end, middle bottom, and high near side". The unevenness of the intensity distribution directly brings about unevenness in the effect of the surface treatment of the strip 5 . The quality of the plate surface in different areas of jet intensity is also directly reflected (see Fig. 12A, Fig. 12AB).
- the shape of the plate pit with appropriate jet strength is relatively flat and uniform, and the phenomenon of "stacking" is rare; the jet intensity is too high. Large plate pits are not uniform in shape, and the "stacking" phenomenon is very common, directly weakening the surface quality level.
- the invention adopts a projection mode in which the rotation axis is 0 to 45° in the direction of the plate width, in particular, completely parallel (ie, the rotation axis is 0° in the direction of the plate width) (for example, for a typical hot-rolled high-temperature coiled steel, both sides thereof are
- the scales are usually 15um thick and very dense, mainly composed of Fe 3 O 4 , and the jet density required for cleaning is high, while the thickness of the strip in the middle of the width of the strip is usually 10um and relatively sparse).
- the rotating shaft of the throwing head and the width direction of the metal strip are 0 to 45°, or the descaling process is performed in a completely parallel manner, and the grinding feed amount or the throwing head of the throwing head of the strip side of the steel strip is appropriately increased.
- the rotation speed that is, the simultaneous removal of the scales on both sides and the width of the strip in the middle of the strip is achieved, and the disadvantages of excessive jet treatment are avoided.
- a more uniform jet intensity distribution can be easily achieved.
- four throwing heads 2a, 2b, 2c, 2d are used on one side of the metal strip.
- the throwing heads arranged in front and rear by the mechanical device are arranged in a displacement manner in the plate width direction of the centrifugal vanes, and the misalignment is realized.
- the jets of a certain width generated by the throwing heads are arranged to complement each other in the width direction of the plate to ensure a uniform consistency in the width direction of the plate.
- the superposition effect of the jet intensity is shown in Fig. 5B, and the total intensity after superposition has a remarkable uniformity in the width direction of the metal strip 5, and in the entire distribution curve, there are "significant reduction at both ends and uniformity in the middle.
- the feature of localized convexity, the uniform intensity distribution characteristics directly bring about the uniform effect on the surface treatment of the strip 5, and the microscopic morphology of the treated surface is mainly shown in Fig. 12A.
- the present invention based on the uniform characteristics of the jet in the width direction of the plate, it is particularly convenient in realizing the improvement of the strip speed and the reduction of the ineffective jet region.
- the present invention is Uniformity and consistency are achieved, which can improve the processing speed under the same power loss, and the effective jet at the edge of the strip can be effectively reduced, which can significantly improve the effective utilization of the jet and reduce Motor energy consumption.
- the jet distribution disclosed by TMW-EPS is shown in Fig. 10.
- Fig. 9B Based on the principle of minimum surface treatment of the strip 5, there are three different peaks on the superimposed jet intensity distribution curve (see Fig. 9B), respectively. Peak, center peak and near-side peak, there are typical intensity differences between the three peaks, the difference is ⁇ P2 and ⁇ P3, respectively, in order to achieve the surface treatment quality of the strip 5 to meet the process requirements, must be strip 5
- the lowest peak of the intensity distribution in the width direction is used as the reference for the running speed of the strip 5, that is, at the lowest peak, the highest speed at which the strip 5 can operate is the process speed of the final stable processing.
- the jet loss rate disclosed in the present invention can be explained by means of Figs. 3 and 6, based on the throwing of the present invention.
- the running speed of the strip 5 must be set to the process speed with a uniform flat line strength.
- the solution disclosed by the present invention can obtain a higher surface treatment speed on the basis of the same labor consumption.
- the jet distribution disclosed by TMW-EPS is shown in Fig. 10.
- Fig. 9B Based on the principle of minimum surface treatment of the strip 5, there are three different peaks on the superimposed jet intensity distribution curve (see Fig. 9B), respectively. Peak, center peak and near-side peak, there are typical intensity differences between the three peaks, the difference is ⁇ P2 and ⁇ P3, respectively, in order to achieve the surface treatment quality of the strip 5 to meet the process requirements, must be strip 5
- the lowest peak of the intensity distribution in the width direction is used as the reference for the running speed of the strip 5, that is, at the lowest peak, the highest speed at which the strip 5 can operate is the final stable processing speed, and the jet outside the peak is as shown in the figure.
- the regions 13a and 13c shown in 9B are both ineffective jets, and the ineffective jets also lose system power consumption and mechanical loss.
- the ineffective jet regions 13a+13b occupy the ratio of the entire jet region 13a+13b+13c, which is the jet intensity loss.
- the jet region is higher than the lowest peak, and the surface is in an "excessive strength" state, which also directly causes "jet loss".
- a single unit must be compatible with a variety of different width specifications of the sheet material, then the TMW-EPS double-head throwing scheme in the production of extremely wide specifications, the jet flow loss is reflected by the uneven jet flow loss Deterioration, as shown in detail in Figure 10B.
- the jet loss rate disclosed in the present invention can be explained by means of Figs. 3 and 6, based on the throwing of the present invention.
- the solution of the invention can effectively save the system power consumption and mechanical loss, and directly improve the system energy efficiency; if the power of the auxiliary system is connected Reduced, the descaling process disclosed in the present invention has an energy efficiency improvement of more than 10% compared to the TMW-EPS process. Therefore, under the premise of maintaining uniform quality and better stability, the improvement of energy efficiency directly reduces the processing cost per unit product.
- the EPS product of TMW Company of the United States is determined by the installation method of the shot blasting device: the distribution of the surface roughness value after descaling in the direction of the width of the plate presents a typical defect of “big side, low middle”, through measurement,
- the Ra value of the stripe on both sides of the strip (the key measure of roughness, measured here as Ra1Max) is more than 1um higher than the Ra value (measured value of Ra1min) in the middle of the width, which has a great influence on the user's use, especially The impact of yield and quality stability.
- R a1 is an average value of roughness values in the width direction of the plate
- This unevenness of roughness is the key to affecting the user's yield.
- the main reason for the special distribution law of this roughness is that when the rotation axis of the throwing head is perpendicular to the width direction of the plate, the distribution of the jet in the width direction of the plate is as shown in Fig. 13A.
- the jetting speed of the jet of the throwing head in the width direction of the plate ie, the flying speed value of the abrasive
- the abrasive flying angles of different regions in the width direction of the plate vary greatly, as shown in FIG.
- the projection 10A produces The impact angle of the jet in the wide side of the panel is "approximating perpendicular", and the "pit" depth generated by the abrasive attack of the same speed is the deepest; and the abrasive speed of the same speed in the region farthest from the projection head 10A in the width direction of the panel
- the "pit" depth is much shallower because its flight direction is approximately parallel to the plane of the steel plate. This shallow "pit” is relatively difficult for the user to use when compared to the deepest "pit”.
- the process requirements of "the roughness of the board surface must be strictly consistent in the width direction”.
- the rotation axis of the projection head 2a disclosed in the present invention has a certain angle with the width direction of the plate, and the minimum value of the angle is "0", that is, the rotation axis and the plate width of the projection head 2a The directions are completely parallel (see Figure 13b).
- the single projection head disclosed by the present invention relies on its wider centrifugal blade
- a special law of jet distribution is created - "middle straight - both sides of attenuation" (see Figure 5), and although this jet produces multiple abrasives of the same flying speed at different angles, the angle of flight of these abrasives is The difference is large, but they are distributed along the length of the strip (ie, the length of the strip), and in the direction of the width of the strip, the number of jets, the speed of flight, and the angle (the combination of multiple different angles)
- the result of the action that is, the combination of "shallow pit” and "deep pit” is uniform (see Figs. 13B and 14B).
- This also directly ensures that the "pit" distribution of the steel sheet in the width direction of the sheet has a good consistency, thus ensuring the consistency of the roughness value Ra in the sheet width direction:
- ⁇ R a-2 Ra2 Max -Ra2 Min
- R a2 is an average value of roughness values in the width direction of the plate
- This roughness unevenness index can well meet the user's process requirements for the surface roughness, thus ensuring the user's finished product rate, thereby directly ensuring cost control.
- Figure 1 is a side elevational view of the arrangement of the single throwing boring head of the present invention
- FIG. 2 is a plan view of an arrangement of a single throwing boring head disclosed in the present invention.
- FIG. 3 is a schematic view showing a jet intensity distribution of a single throwing boring head according to the present invention.
- Figure 4 is a plan view of the arrangement of the multiple throwing head disclosed in the present invention.
- 5A is a schematic view showing the intensity distribution of a single throwing head according to the present invention.
- 5B is a schematic view showing the intensity distribution and superposition of four throwing heads according to the present invention.
- FIG. 6 is a schematic diagram showing the division of effective strength and attenuation intensity in the superimposed strength of four throwing heads disclosed in the present invention
- FIG. 7A, FIG. 7B and FIG. 7C are respectively schematic diagrams showing the distribution of different descaling conditions of the surface of a typical uneven steel plate with respect to the thickness distribution of the scale after the stacking of the four throwing heads according to the present invention
- Figure 7A - for removing strips with uniform scales in the width direction of the panel
- Fig. 7B an area for removing the scales of both ends of the width of the plate and having a thin scale in the middle of the plate width;
- 8A and 8B are a plan view and a side view, respectively, of a typical shot blasting machine
- Figure 9A is a schematic view showing the intensity distribution of a typical single throwing head
- Figure 9B is a diagram showing the jet intensity and post-stacking intensity distribution after a typical double-head shot blasting machine
- 10A, B are schematic diagrams showing the division of the effective intensity and the attenuation intensity of the jet intensity after ejection of the typical double-head shot blasting machine in the width of the strip of different specifications;
- Figure 10A is a diagram showing the jet intensity distribution of a strip of a certain width after a typical double-head shot blasting machine is thrown;
- Figure 10B is a diagram showing the jet intensity distribution of a wider strip after a typical double-head shot blasting machine is thrown;
- Figure 11 is a graph showing the intensity distribution of the shot blasting machine pellet on the sheet width disclosed by DISA;
- Figure 12A is a surface topography of a jet intensity
- Figure 12B is a surface topography of the jet intensity excess
- Figure 13A is a distribution diagram of abrasives flying at different angles in the width direction of the TMW-EPS when ejecting;
- FIG. 13B is a distribution diagram of different angles of flying abrasives in a running direction of a strip in a strip according to the present invention.
- Fig. 14B is a typical distribution diagram of the roughness index Ra value in the width direction of the strip after ejection descaling according to the present invention.
- 1 centrifugal blade, 2 throwing head, 2a, 2b, 2c, 2d are four throwing heads arranged above the metal strip, 3a, 3b are feeding tubes corresponding to 2a, 2b, etc., 4
- 10a, 10b two sets of throwing heads disposed on one side of the metal strip
- 11a, 11b jets of two sets of throwing heads disposed on one side of the metal strip.
- 12a and 12c are respectively the jet intensity attenuation region, 12b is the effective jet intensity region, and 12a+12b+12c is the total jet intensity region.
- 13a and 13c are respectively the jet intensity attenuation region
- 13b is the effective jet intensity region
- 13a+13b+13c is the total jet intensity region
- W1 and w2 are the rotational angular velocities of the throwing heads disposed above and below the metal strip, respectively.
- P1 is the throwing head jet attenuation region (width) in the plate width direction according to the present invention
- p2 is a flat region (width) of the throwing head effective jet in the plate width direction according to the present invention
- p3 is according to the present invention.
- ⁇ P1 is a small intensity difference value existing between the local peak of the throwing head and the uniform flat line according to the present invention
- ⁇ P2 is the intersection of the local peak superimposed regions of the two throwing heads existing in the adjacent misalignment.
- ⁇ P3 is the typical intensity difference between the local center peak of the throwing head and the intersection of its adjacent local peak area.
- the value ⁇ Ra-1 is the fluctuation amplitude value of the roughness measurement index Ra value (international standard, key parameter of roughness) of the TMW-EPS in the width direction of the board
- Ra1 is the Ra value of the TMW-EPS in the board width direction.
- a method for surface treatment of a metal strip with a wet centrifugally-expanded abrasive in which a centrifugal projection throwing head is arranged in pairs above and below the metal strip.
- the centrifugally throwing throwing head is used to carry out continuous and full-plate width continuous and full-plate width on the surface of the cold metal strip by a high-speed mixed fluid mixed with abrasive particles, thereby realizing the upper and lower wide faces of the cold metal strip. - that is, a continuous, uniform surface treatment of the full surface.
- the metal strip is a steel type exhibiting a typical uneven characteristic of a scale distribution, that is, the scale has a thickness difference of 3 um to 10 um on both sides and an intermediate portion in the width direction of the metal strip, or the scale is on the metal strip.
- the difference in thickness between the head and the tail in the longitudinal direction is 5 um to 15 um.
- the plate surface jitter distance during the ejection descaling is in the range of 20 mm to 100 mm.
- the rotary shaft of the throwing head is disposed at an angled angle with the width direction of the metal strip (or the running direction of the metal strip).
- a single centrifugal throwing head 2a is the same as the other centrifugal throwing heads.
- the centrifugal throwing head 2a is provided with a plurality of centrifugal blades 1a, and the centrifugal throwing head 2a drives the plurality of centrifugal blades 1a fixed to the upper portion thereof to rotate at the same angular velocity W1 by the external driving source.
- the outer radius of the centrifugal head of the blade 1a is larger than the maximum outer diameter of the feeding pipe 3a, and the slurry is conveyed to the feeding pipe 3a under the action of the angle W1 (the feeding pipe 3a is connected and disposed on the shaft of the centrifugal throwing head 2a) After the inside, it flows to the blade 1a that rotates at a high speed, and the throwing process of the overall acceleration of the slurry 4 is realized.
- the centrifugal throwing head 2a After the inside of the feed pipe 3a, the centrifugal throwing head 2a generates a certain angular velocity W1 under the action of an external driving source. Rotation, while driving the plurality of centrifugal blades 1a fixed to the upper portion thereof to rotate together at the same angular velocity, the rotational angular velocity value is also equal to W1.
- the slurry medium 4 inside the feed pipe 3a automatically generates a certain centrifugal force, causing it to flow to the high-speed rotating blade 1a according to a predetermined passage, and the blade 1a is given by the outer radius thereof.
- the maximum outer diameter of the material pipe 3a is significantly larger, so that the linear velocity is significantly increased under the action of the equal angular velocity W1, so that the acceleration effect on the slurry 4 is achieved; and under the centrifugal force, the slurry 4 is in the centrifugal blade.
- the acceleration of 1a disengages from the surface of the blade 1a and flies outward along the tangential direction of the outer circumference of the blade 1a.
- the overall acceleration and throwing process of the slurry 4 is achieved.
- the rotary motion of the feed tube 3a, the throwing head 2a, and the blade 1a are all rotated at a high speed at the same angular velocity about the same throwing head rotation axis, that is, the central axis 8.
- the main body arrangement of the present invention is shown in Figs. 1 to 6 .
- the continuous descaling of the cold steel plate is as follows:
- Cold strip 5 (carbon steel strip with a temperature not higher than 200 ° C, width 600 mm, thickness 5 mm, full continuous head and tail welding) through the roller conveyor to the upper and lower throwing heads of each of the two groups (attached) 2a, 2b, 2c, and 2d in the figure respectively indicate four upper throwing boring heads, and four corresponding lower throwing boring heads are the same as the same, and the repetitive description of the corresponding effective descaling area is omitted, and the upper and lower throwing heads pass through the middle portion.
- the feed pipe 3 is arranged to convey a large amount of slurry 4 mixed with abrasive particles to the impeller 1, the inner diameter of the feed pipe 3 is 200 mm, and the slurry 4 conveyed therein contains a particle size of G50 (80% of the abrasive grains)
- the number of abrasive grains having a particle size of 0.33 mm is a polyhedral shape, and the volume ratio of the grit to water is 25%.
- This slurry was conveyed through the feed pipe 3 to the blade 1 at a speed of 20 m 3 /min.
- the centrifugal throwing directions of the upper throwing heads 2a, 2b, 2c, and 2d may be the same or different from each other during centrifugal throwing.
- the throwing heads 2a, 2b, 2c, 2d When the throwing heads 2a, 2b, 2c, 2d perform surface treatment on the wide surface of the metal strip 5, the throwing heads 2a, 2b, 2c, 2d realize misalignment in the width direction of the metal strip 5 cloth.
- the plurality of throwing heads 2a, 2b, 2c, and 2d have strict distances between the two throwing heads in the width direction of the metal strip 5, and the plurality of throwing heads 2a, 2b, 2c, 2d, the spacing value in the longitudinal direction of the metal strip 5, with no interference between the jets as the arrangement reference.
- the high-speed rotational angular velocity generated by the upper and lower throwing heads accelerates the slurry 4 conveyed by the feeding pipe to the target speed.
- the slurry 4 is accelerated to the final 60 m/s linear velocity and flew away from the blade 1, effectively destroying and grinding the surface scale of the metal strip 5 to reach the scale Effective removal of the skin.
- the centrifugal throwing head has an impeller width value of 200 mm.
- the scale removal method for the other wide side of the strip 5 is exactly the same as the surface, except that the rotational angular velocity w2 of the lower throwing head is reversed. A uniform descaling target for the other wide side of the strip 5 is guaranteed.
- the de-scaled strip 5 is subjected to a low-pressure jet flushing of the two wide faces of the strip 5 through a flushing beam 6 which sprays the low-pressure water jet 7, respectively, thereby achieving the goal of descaling and cleaning the panel.
- the plate surface jitter distance during the projectile descaling is in the range of 40 mm to 70 mm due to poor plate shape or tension fluctuation of the metal strip.
- the rotation axis of the throwing head is set at an angle of 15-25° with the width direction of the metal strip.
- the scale has a thickness difference of 3 um to 7 um in the width direction of the metal strip, and the thickness difference between the head and the tail in the longitudinal direction of the strip is 5 um to 12 um.
- Strip size 8.0mm thick ⁇ 1200mm wide, made of carbon steel sheet for truck girders;
- Strip descaling requirements full plate width, front and back synchronous descaling
- Type of medium high-speed grinding and descaling using a mixed jet of abrasive and water
- the rotation axis of the throwing head is parallel to the width direction of the metal strip, that is, perpendicular to the running direction of the metal strip.
- Strip size 8.0mm thick ⁇ 1200mm wide, made of carbon steel sheet for truck girders;
- Strip descaling requirements full plate width, front and back synchronous descaling
- Descaling speed full plate width and uniform speed 20m/min;
- Type of medium high-speed grinding and descaling using a mixed jet of abrasive and water; the liquid medium may be ordinary industrial water or a fluid medium having fluidity.
- the temperature is below 100 ° C, and the pH is between 6.5 and 9.
- the liquid medium is a grease medium, it is a liquid substance having fluidity or a certain liquid medium. Or a mixed liquid substance formed after the solid is dissolved in the liquid medium, that is, the medium must be in a liquid state at a normal temperature range, that is, below 100 ° C.
- the solid medium has a spherical or columnar particle diameter of 0.2 mm to 0.5 mm;
- the solid medium is a carbide abrasive (such as black silicon carbide, green silicon carbide, boron carbide, etc.) and an artificial abrasive such as steel shot and steel grit, or a wire cut pellet mixture.
- a carbide abrasive such as black silicon carbide, green silicon carbide, boron carbide, etc.
- an artificial abrasive such as steel shot and steel grit, or a wire cut pellet mixture.
- the ratio of the steel shot to the steel sand or the steel cut pellet is in the range of 1:1 to 1:5.
- the metal strip is specifically a scale having a thickness difference of 5 um to 8 um on both sides and an intermediate portion in the width direction of the metal strip, or a head and a tail in the longitudinal direction of the strip.
- the thickness difference is between 7um and 10um. Due to poor plate shape or tension fluctuation of the metal strip, the plate surface jitter distance during the projectile descaling is in the range of 20 mm to 40 mm.
- the total power value of the auxiliary system of the disclosed solution is correspondingly reduced due to the decrease of the power of the projection head. Therefore, if the power reduction of the auxiliary system is taken into consideration, the energy efficiency of the descaling process disclosed in the present invention is 10% higher than that of the TMW-EPS process. the above.
- the rotary motions of the feed pipe 3a, the throwing head 2a, and the blade 1a are all rotated at a high speed around the same rotating shaft-center axis 8, and the rotational angular velocities are completely the same, both being W1.
- the angular velocity is 2 x ⁇ x 1800 rpm.
- the centrifugal throwing head has an impeller width value of 16 mm.
- the metal strip 5 runs along the longitudinal direction thereof at a constant linear velocity V1, at which time the central axis 8 of the centrifugal throwing head 2 and the blade 1 thereon is strictly perpendicular to the running speed V1 of the metal strip 5, And the central axis 8 is parallel to the plate surface of the metal strip 5 at the same time, the direction of the axis 8 is the plate width direction of the metal strip 5, also referred to as the width direction.
- the blade 1 and the throwing head 2 Since the same rotation center axis 8 of the feed pipe 3, the blade 1 and the throwing head 2 is completely perpendicular to the width symmetry axis 9 in the running direction of the strip 5, the high speed slurry jet 4 produced by the throwing head 2 is in the belt steel 5
- the distribution of flow rate and velocity in the width direction is very consistent. This consistent performance is very good to ensure the consistency of the scale removal in the direction of the strip 5.
- the same type of throwing head is arranged on the other surface of the strip 5, and the same type of feeding tube and blade are provided on the throwing head, only the angular velocity of rotation
- the absolute values of w2 and W1 are exactly equal, and the direction of rotation is the opposite direction.
- the plurality of throwing heads 2a, 2b, 2c, 2d may have the same centrifugal rotation direction or different from each other;
- the throwing heads 2a, 2b, 2c, 2d When the plurality of throwing heads 2a, 2b, 2c, 2d perform surface treatment on the single-sided wide side of the metal strip 5, the throwing heads 2a, 2b, 2c, 2d are in the width direction of the metal strip 5
- the misalignment arrangement is implemented; the misalignment arrangement is an equidistant setting of the throwing head in the running direction of the metal strip 5, or two throwing heads are disposed in the same width direction, and the other two are in the running direction of the metal strip 5
- the equal spacing on the top is set after the first two throws.
- the plurality of throwing heads 2a, 2b, 2c, 2d have strict distances between the two throwing heads in the width direction of the metal strip 5; the plurality of throwing heads 2a, 2b, 2c, 2d, the spacing value in the longitudinal direction of the metal strip 5, with no interference between the jets as the arrangement reference.
- the mixed jet 4 produced by the throwing scheme has a typical two-stage jet intensity P1 gradually decreasing in the width direction of the metal strip 5, and the intermediate jet intensity P2 exhibits a uniform flat intensity distribution law (see Figure 3 and Figure 5).
- the ratio of the width of the single throwing head attenuation region (P1 ⁇ 2) over the entire jet distribution region width (P1 ⁇ 2+P2), that is, the jet intensity loss rate is 20-30%.
- the invention fully utilizes the high-speed jet grinding effect generated by the centrifugal throwing method, and realizes a uniform, continuous and efficient surface treatment on the cold scale of the cold metal plate surface, and the invention can be used not only for the continuous descaling of the metal strip, It can be used for continuous treatment of internal and external surfaces such as heterogeneous metal materials and scattered castings. Since the technology adopted by the present invention is mature, it can be implemented, and the promotion and application is completely feasible. On the other hand, the invention can well adapt to the company's environmental protection requirements for metallurgical production and further enhance the competitiveness of products, and improve the ability of metallurgical enterprises to save energy and reduce emissions. Therefore, the present invention has broad application prospects in the field of cold rolling production.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
一种湿法离心抛射研磨料的金属板带表面处理方法,用于对进入冷轧机前的冷态金属板带(5)表面进行处理,在金属板带上或下方或上下方设置离心抛射抛甩头(2),抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定夹角角度设置。抛甩头射流在板宽方向上呈均匀、对称分布,在射流非边部区域具有较长的完全均匀段,无效射流及"强度过剩"区域减小,有效提高表面处理的均匀性和清除后的板面质量。还公开了一种湿法离心抛射研磨料的金属板带表面处理装置。
Description
本发明属于冷态金属板带(带钢)表面处理的技术领域,主要通过一种离心抛射头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定夹角角度的混合射流抛射方式,实现以混合有磨料颗粒的高速混合浆料流体对冷态金属板带表面进行均匀、全板宽的连续击打、磨削,从而实现对冷态金属板带的上下宽面—即全板面进行连续、均匀的表面处理工艺,同时实现射流处理后的金属板带的正反面无杂物残留、表面粗糙度满足后工序要求。
金属材料在热态轧制或热处理过程中会在其表面形成一层由金属氧化物组成的致密覆盖物,俗称“鳞皮”,该鳞皮的存在对进一步加工处理会造成影响:一方面使材料的表面裂缝不易被提前发现,从而使加工出的成品存在质量问题;另一方面,易将鳞皮压入金属表面,造成表面质量问题;此外,坚硬的氧化物的存在,会加速轧辊或拉拔机的磨损。因此必须对进入冷轧机前的钢板表面进行除鳞等表面处理工序,这是冷轧产线上必备的工艺装备之一。
针对金属板带表面鳞皮的影响,以往,国内外生产企业均采用化学湿法进行清洗的加工方式来清除板带表面的附着鳞皮。通常,对于钢板来说,常采用硫酸、盐酸及氢氟酸等强酸性溶液的化学湿法酸洗工艺。这种化学湿法酸洗工艺的生产环境非常恶劣,且因产生大量残酸而须进行循环再生处理,另外,目前所述酸再生工艺也必然产生对应的废气排放。所述酸再生工艺产生的对应的排放废气中含有大量的酸性、腐蚀性成分,如HCL、SO2等,这又直接导致对大气的污染。
基于此,为解决化学方法清洗所带来的严重环境污染问题,科研工作者进行了大量的研究,并研制开发了多种技术方法和设备,以替代这种化学方法去除金属表面的鳞皮。所述方法及设备包括,如电解除鳞、电解研削除鳞、放电除鳞、电子束除鳞、激光除鳞、研磨除鳞、抛丸除鳞、反复弯曲除鳞以及上述不同方法组合的除鳞方法。在近年来的发展过程中,其中高压射流除鳞技术发展最快,其工业化进程也越发明显。
为保证高压射流除鳞的射流方式除鳞后的金属板带能顺利地进入下一步处理
工艺环节,同时又不影响下一步工艺处理的效果,许多研发单位提出了一系列具有针对性的解决措施。具体如下:
1)湖南有色金属重型机械有限公司就曾利用混合射流方法清除合金棒的表面鳞皮,根据该方法,除鳞后的棒材表面采用高压空气的吹扫方式来进行表面清除。然而,这种方法存在的主要缺陷是,无法吹扫那种嵌入棒材表面的沙粒,造成表面有硬物颗粒残留,从而造成棒材在下一步轧制工序中,容易产生因为硬物颗粒压入形成的表面缺陷。
2)德国Airmatic公司同样也利用混合射流方法清洗金属平面。其后处理方式为:利用抽真空的原理,对处理后的表面堆积物进行快速抽吸,实现板面净化处理。然而,这种方式同样存在以上的问题:即,不仅不能有效去除硬物颗粒的嵌入问题,同时因抽吸所需的板带平直度要求较高,在板带板形较差、张力不稳定等工况下,其处理效果会出现稳定性差的缺陷,容易造成某些表面无法清除干净的现象。
3)美国TMW(The Material Works)公司提出这样一种技术方案(见该申请人中国公开号为“CN101516532A”的中国专利及美国公开号为“US7601226B2”的美国专利):利用离心抛甩的方式——抛丸机的抛射原理,在其磨料中利用水介质代替传统抛丸机的空气,形成水与磨料颗粒的二项混合浆料,而后将浆料通过某种装置以一定的压力与流量注入高速旋转的离心抛甩头内,通过离心抛甩(抛射)的高速离心力作用实现混合浆料高速、持续的击打金属板带表面,以此来实现金属板带表面的湿法除鳞,该技术也称为EPS技术。
然而,上述EPS技术存在板面击打强度均匀性差、射流利用率较低、板宽横向的粗糙度值显著差异、板宽方向的除鳞能力分布不均匀等缺陷,由于这些缺陷的存在,直接限制了除鳞后的板面质量、除鳞能效与板带除鳞速度(参见图8-图10)。
通过查阅相关专利,也发现国外尤其是日本、德国等冶金技术发达国家,提出过诸多的连续射流、磨刷除鳞技术。如日本JP06108277A公开了一种在连续冷轧线上采用喷酸与刷辊组合使用的除鳞工艺,日本JP55034688A公开了一种联合PV轧制破鳞—混合磨料高压射流除鳞方式。此外,还有日本JP57142710A、JP57068217A、JP59097711A、JP05092231A、JP09085329A、JP2002102915及美国US5388602等专利。
然而,如同前述,以往技术尚未能提供这样一种板面击打强度均匀、射流利
用率高、板宽横向粗糙度一致性良好、板宽方向除鳞能力分布均匀的高压射流除鳞的技术方案。
特别是,根据以往技术,尚难以适用于板带在运行过程中频繁跑偏的全板宽表面均匀处理,及难以适用于基于金属板带宽度方向或长度方向存在区域间厚度差的鳞皮分布呈现典型不均匀特性的钢种的全板宽表面均匀处理等。
另外,以往技术尚未能提供这样一种高压射流除鳞的技术方案,所述技术方案可降低抛射系统的复杂性,从而直接提高系统的可靠性和降低系统成本。
发明内容
为克服上述问题,本发明的目的在于,提供一种湿法离心抛射研磨料的金属板带表面处理方法,根据本发明,抛甩头(抛头)的旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置,所述湿法离心抛射研磨料的表面处理方法的离心抛射介质为磨料颗粒与水的混合浆料,由此,可实现金属板带在宽度上呈现典型不均匀分布的附着物的同步清除,并确保板带宽度方向上的表面微观形貌具有严格的一致性。根据本发明,各抛甩头射流在板宽方向上呈现典型的均匀、对称分布特征;且在射流非边部区域,具有一段较长的完全均匀段,使得射流均匀性具有极大的提高。根据本发明,无效射流及“强度过剩”区域大幅减小。根据本发明,可有效提高表面处理的均匀性和清除后的均匀板面质量。根据本发明,可降低抛射系统的复杂性,从而直接提高系统的可靠性和降低系统成本。根据本发明,确保其进入下一步处理段后完全不影响下一步的工艺处理效果。
本发明的目的又在于,提供一种湿法离心抛射研磨料的金属板带表面处理方法。根据本发明,抛甩头旋转轴与金属板带宽度方向平行设置,即与金属板带运行方向垂直设置,所述湿法离心抛射研磨料的表面处理方法的离心抛射介质为磨料颗粒与水的混合浆料,通过这种方式可实现金属板带在宽度上呈现典型不均匀分布的附着物的同步清除;各抛甩头射流在板宽方向上均呈现典型的均匀、对称分布特征,且在射流非边部区域,具有一段较长的完全均匀段,使得射流均匀性具有极大提高;无效射流及“强度过剩”区域大幅减小;可有效提高表面处理的均匀性和清除后的均匀板面质量;降低抛射系统的复杂性,从而直接提高系统的可靠性和降低系统成本;确保其进入下一步处理段后完全不影响下一步的工艺处理效果。
根据本发明所述抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射研磨料的表面处理方法,可以实现在板带宽度方向上与板带长度方向上更加均匀一致的除鳞效果。
根据本发明,所述除鳞效果具体可说明为:鳞皮残留率、表面粗糙度值的波动范围在整个板带长度方向上、板带宽度方向上均匀一致;避免因射流不均匀,造成板带头、尾部因为鳞皮较厚而去除不尽,在带钢非头尾段因鳞皮较薄而去除过量;同时在带钢宽度方向上,因两侧边部区域鳞皮较厚而鳞皮去除不尽,板带宽度的中间部位因鳞皮较薄,而去除过量。
根据本发明所述抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射研磨料的表面处理方法,可特别适用于长度方向与宽度方向鳞皮分布典型不均匀的金属板带,如热轧后采用高温卷取工艺的金属板带料。这类金属板带的头尾段鳞皮厚度值较之中间区域明显偏高,同时在带钢宽度方向的两侧边部鳞皮厚度较之宽度中间区域明显偏高。
根据本发明所述抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射研磨料的表面处理方法,采用的离心抛甩头其叶轮宽度值比之TMW-EPS抛甩头更大,为150~200mm,即本发明采用的是一种宽叶片离心抛甩头,由此,通过介质供应实现高速旋转的宽叶轮抛甩出宽的研磨料射流。
根据本发明所述抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射研磨料的表面处理方法,所述湿法离心抛射研磨料的表面处理方法的离心抛射介质为磨料颗粒与水的混合物,所述磨料颗粒为天然的刚玉类磨料(如棕刚玉、白刚玉、单晶刚玉等)、碳化物磨料(如黑碳化硅、绿碳化硅、碳化硼等)等,或人造类磨料,如钢丸、钢砂、钢丝切丸等金属加工丸类,所述磨料包括各种尖锐或非尖锐形态的刚玉类磨料、碳化物磨料或人造类磨料等。
本发明的目的又在于:提供一种抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射研磨料的表面处理方法,所述湿法离心抛射研磨料的表面处理方法叠加后的射流强度分布曲线中,单个抛甩头形成的射流强度分布局部峰值与形成有效射流强度分布的均匀平直线之间的强度差异较小,在板带宽度范围之外的无效区域范围较小,同时“强度过剩”区域也显
著减小,由此,可有效节约了系统电耗与机械损耗,直接提高了系统能效和降低系统成本。
根据本发明所述一种抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射研磨料的表面处理方法,所述湿法离心抛射研磨料的表面处理方法特别适用于板带规格变化范围大,长度方向与宽度方向容易受环境影响而导致鳞皮分布不均匀的敏感型钢种,尤其适用于碳钢板材的全长度、全板宽、正反面的同步除鳞处理。
根据本发明所述一种抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射研磨料的表面处理方法,所述湿法离心抛射研磨料的表面处理方法特别适用于钢板带材的全长度、全板宽、正反面同步除鳞处理,所述鳞片在金属板带宽度方向上呈现两侧与中间区域的厚度差在5um以上的鳞皮分布呈现典型不均匀特性的钢种,在金属板带长度方向的头尾部与中间区域的厚度差在7um以上的鳞皮分布呈现典型不均匀特性的钢种,同时适用于金属板带的板形不良或张力波动导致带钢在抛射除鳞期间板面抖动距离超过20mm,但不超过100mm的极端工况。
优选的是,所述鳞片在金属板带宽度方向上呈现两侧与中间区域的厚度差在3um以上的鳞皮分布呈现典型不均匀特性的钢种,在金属板带长度方向的头尾部与中间区域的厚度差在5um以上的鳞皮分布呈现典型不均匀特性的钢种.
根据本发明所述一种抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射研磨料的表面处理方法,所述湿法离心抛射研磨料的表面处理方法特别适用于板带在运行过程中频繁跑偏的全板宽表面处理。
本发明目的还在于:提供一种所述抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定角度设置的湿法离心抛射宽研磨料的表面处理装置。
本发明的湿法离心抛射研磨料的金属板带表面处理方法的技术方案如下:
一种湿法离心抛射研磨料的金属板带表面处理方法,设置有处理单元,所述处理单元包括离心抛射用抛甩头,用于对进入冷轧机前的冷态金属板带表面进行表面处理,其特征在于,
在所述金属板带上或下方,或上、下方设置离心抛射用抛甩头;
所述离心抛射用抛甩头通过连接其上的给料管,以混合有磨料颗粒的高速混合流体浆料形成射流4,对冷态金属板带表面进行均匀、全板宽的连续击打、磨
削,从而实现对冷态金属板带的上下宽面—即全板面进行连续、均匀的表面处理;
所述抛甩头旋转轴与金属板带宽度方向呈0~45°夹角设置。
优选的是,所述抛甩头旋转轴与金属板带宽度方向平行设置,即与金属板带运行方向垂直设置。
即,中心轴线8与金属板带5的运行速度V1方向中心轴线垂直,同时平行于金属板带5的板面,则该中心轴线8的方向即为金属板带5的板宽方向,也称之为宽度方向。
优选的是,所述抛甩头旋转轴与金属板带宽度方向夹角为35~45°。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,离心抛甩头2a上设置有多片离心叶片1a,离心抛甩头2a在外部驱动源的作用下带动固定于其上部的多片离心叶片1a一起以同一角速度W1旋转,
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,在所述金属板带上下方成对对应设置离心抛射用抛甩头;
所述离心抛甩头2a上设置有4~20片离心叶片1a,离心抛甩头2a在外部驱动源的作用下带动固定于其上的离心叶片1a一起以同一角速度W1旋转,
离心叶片1a外圆半径大于给料管3a的最大外径,浆料输送至给料管3a内部之后,流动至高速旋转的离心叶片1a上,实现浆料4的整体加速的抛甩过程。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述离心抛甩头2a上设置有4~8片离心叶片1a。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,优选的是,离心抛甩头其叶轮宽度值为150~200mm,由此,通过介质供应实现高速旋转的宽叶轮抛甩出宽的研磨料射流。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,优选的是,所述给料管3a连通、设置于离心抛甩头2a轴部。
因叶片1a外圆半径明显大于给料管3a的最大外径,混合有固体磨料颗粒与液体(可以是油、水等液体,尤其是水),这两种介质的混合物—浆料4,通过输送管路在一定压力与流速的状态下强制向给料管3a中输入,实现浆料4的输送给料。输送至给料管3a内部之后,离心抛甩头2a在外部驱动源的作用下产生
一定角速度W1旋转,同时带动固定于其上部的多片离心叶片1a一起以同角速度旋转,其旋转角速度值同样等于W1。
在此角度度W1作用下,给料管3a内部的浆料介质4自动产生一定的离心力,促使其按照预定的通道流动至高速旋转的叶片1a上,而叶片1a因为其外圆半径比之给料管3a的最大外径明显更大,故其在同等角速度W1作用下,线性速度显著增大,如此即实现了对浆料4的加速作用;同时在离心力作用下,浆料4在离心叶片1a的加速作用下脱离叶片1a的表面,并沿叶片1a外圆的切线方向向外飞出,至此,即实现了浆料4的整体加速、抛甩过程。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述给料管3a、抛甩头2a以及叶片1a的旋转运动均围绕同一抛甩头旋转轴线,即中心轴线8,以同一角速度高速旋转。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,
所述旋转角速度w2与W1的绝对值相等,但旋转方向相反。
所述旋转角速度w2与W1的绝对值相等,其目的是确保浆料击打板面的线速度、射流分布状态等都完全一致,其最终目标也是确保钢板正反面的除鳞质量完全一样。
优选的是,所述金属板带上下方设置的抛甩头2b为相同型号的抛甩头2b,因在实际除鳞生产中,正反面是需要同等表面质量的,因此需要同型号的抛头来实现介质抛甩,同时,同型号的抛头设备便于后续的设备管理与相互更换,实现更低的备件库存管理与快速抢修,同样,相同型号的抛甩头2b上设置有同样型号的给料管3b与叶片1b。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述抛甩头2、给料管3设置数量2~16个,且其设置数量相同,构成一个处理单元。
这里所说的“处理单元”是指一个标准化模块,便于后续大生产设备的拷贝、串联。因为单个单元的除鳞能力有限,除鳞速度不会太高,在实际生产期间,为满足上下游的产能要求,可能速度要超过单个单元的除鳞能力,这时候就需要多个处理单元进行串联,以提高速度与产能。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征
在于,
所述射流4,在金属板带5宽度方向上具有典型的两端射流强度逐步衰减区域P1和中间射流强度呈现均匀平直区域P2的强度分布规律;
所述中间射流强度区域P2为金属板带5表面处理的有效射流处理区域。
所述两端射流强度逐步衰减区域P1除鳞效果较差,需要有一些其它射流对其进行补充,通过其它射流的补充,可实现类似于中间射流强度区域的同等除鳞效果。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,
所述单个抛甩头衰减区域P1×2的宽度在整个射流分布区域宽度(P1×2+P2)上的比值,即,射流强度损耗率为10~60%。
优选的是,所述单个抛甩头衰减区域P1×2的宽度在整个射流分布区域宽度(P1×2+P2)上的比值,即,射流强度损耗率为10~30%。
所述抛甩方案中的离心旋转的中心轴线8距离金属板带5最近的宽面之间的垂直距离值大于该抛甩头上所安装叶片最远端旋转所产生的外圆半径值。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,各抛甩头2a、2b、2c、2d在金属板带5的宽度方向上实现错位排布,其具体错位要求为:每个抛甩头的射流强度在板宽方向都有一个映射分布曲线,该曲线呈现“两端衰减-中间平直”的分布规律,且其平直段P2+P1的宽度值即为宽度方向上每两个抛头之间的错位量。
如图3与图5a所示,其P1为衰减区域,两侧都有,P2为平直区域。其具体错位量与这个曲线直接相关,通常在确保射流能效与均匀除鳞的目的时,两个抛头的错位量通常为“单个抛头抛射的研磨料射流强度在板宽方向的映射曲线中,其平直段P2+P1的宽度值即为宽度方向上每两个抛头之间的错位量”。
即在板宽方向上,根据各抛甩头的研磨料强度分布曲线中的P1值与P2值,在板宽方向上相邻的两个抛甩头之间的距离为P1+P2。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述浆料4为工业用水或具备流动性的油脂类介质。
优选的是,所述液体介质为普通工业水时,温度在100℃以下、PH值在6.5~9。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述液体介质为油脂类介质时,为具有流动性的液态物质或某几种液体介质或固体溶解于液体介质后形成的混合液态物质。
如在浆料的水体中加入油性防锈试剂,这就是一种油脂类的混合物,水与其混合后形成乳化状的混合液体,其目的是确保除鳞后的板面能及时防锈,杜绝黄斑发生。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,
所述固体介质粒径为0.1mm~2.0mm,所述固体介质形状优选球状或柱状颗粒;
所述固体介质粒径优选0.2mm~0.5mm的颗粒;
所述浆料的固体介质粒径为0.1mm~2.0mm,优选0.2mm~0.5mm的颗粒,所述固体介质形状优选球状、柱状、多棱角状颗粒,或二种以上的混合物。
优选的是,所述固体介质形状优选球状、柱状、多棱角状颗粒的二种以上的混合物时,三种不同形状颗粒的其中两种或三种按照一定比例混合,例如,钢丸与钢砂的配比在1:1~1:5比例范围。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述固体介质可特别说明为天然的刚玉类磨料(如棕刚玉、白刚玉、单晶刚玉等)、碳化物磨料(如黑碳化硅、绿碳化硅、碳化硼等)等,或人造类磨料,如钢丸、钢砂、钢丝切丸等金属加工丸类,优选钢丸与钢丝切丸。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述金属板带为一鳞皮分布呈现典型不均匀特性的钢种,即,鳞片在金属板带宽度方向上呈现两侧与中间区域的厚度差在5um~10um,或,鳞片在金属板带长度方向的头尾部与中间区域的厚度差在7um~15um。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述方法适用于金属板带板形不良,或因张力波动导致板带在抛射除鳞期间板带板面抖动距离,即“浪高值”超过20mm,但不超过100mm的工况。
如热轧冷却后的钢板,但未经过平整工艺处理,其板面原始浪形、镰刀弯等十分严重,浪高通常可达20mm以上,影响射流与板面之间的距离而导致该区域实际接收的射流密度与设计值不一致,从而容易导致除鳞后板面质量不一致。
因张力波动导致板带在抛射除鳞期间板带板面抖动距离,即其垂直于板面的高度值,“浪高”就是将钢板水平放置在一块大平板上,钢板因为“浪形”,造
成局部区域凸起,这就是“浪高”,凸起值的一个重要指标就是“浪高值”。
优选的是,所述金属板带为一鳞皮分布呈现典型不均匀特性的钢种,即,鳞片在金属板带宽度方向上呈现两侧与中间区域的厚度差在3um~10um,或,鳞片在金属板带长度方向的头尾部与中间区域的厚度差在5um~15um。
本发明的一种湿法离心抛射研磨料的金属板带表面处理装置的技术方案如下:
一种湿法离心抛射研磨料的金属板带表面处理装置,设置有处理单元,所述处理单元包括离心抛射用抛甩头,用于对进入冷轧机前的冷态金属板带表面进行表面处理,其特征在于,所述处理单元包括:
在所述金属板带上或下方,或上、下方设置离心抛射用抛甩头;
所述离心抛射用抛甩头通过连接其上的给料管,以混合有磨料颗粒的高速混合流体浆料形成射流4,对冷态金属板带表面进行均匀、全板宽的连续击打、磨削,从而实现对冷态金属板带的上下宽面—即全板面进行连续、均匀的表面处理;
所述抛甩头旋转轴与金属板带宽度方向呈0~45°夹角设置。
优选的是,所述抛甩头旋转轴与金属板带宽度方向平行设置,即与金属板带运行方向垂直设置。
即,中心轴线8与金属板带5的运行速度V1方向中心轴线垂直,同时平行于金属板带5的板面,则该中心轴线8的方向即为金属板带5的板宽方向,也称之为宽度方向。
优选的是,所述抛甩头旋转轴与金属板带宽度方向夹角为35~45°。
一个单元设置的抛头数量一般以4个、8个或16个为基准。
一个单元设置的抛头数量通常是偶数,因为钢板的上、下表面的数量要相等,因此总数通常是偶数,在钢板的上表面如设置4个,那下表面也必须是4个,其目的是确保除鳞效果一致。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,
在所述金属板带上下方成对对应设置离心抛射用抛甩头;
所述离心抛甩头2a上设置有4~20片离心叶片1a,离心抛甩头2a在外部驱
动源的作用下带动固定于其上的离心叶片1a一起以同一角速度W1旋转,
离心叶片1a外圆半径大于给料管3a的最大外径,浆料输送至给料管3a内部之后,流动至高速旋转的离心叶片1a上,实现浆料4的整体加速的抛甩过程。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,所述离心抛甩头2a上设置有4~8片离心叶片1a。
优选的是,所述离心叶片1a有角度设置于离心抛甩头2a表面,所述设置角度为35-45°。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,
所述给料管3a、抛甩头2a以及叶片1a的旋转运动均围绕同一抛甩头旋转轴,即中心轴线8,以同一角速度高速旋转。
所述角速度通常为1500转/min~2200转/min。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,
所述金属板带5沿其长度方向以线速度V1运行,此时离心抛甩头2及其上面的叶片1所旋转的中心轴线8与金属板带5的板宽方向夹角35~45°。
优选的是,中心轴线8与金属板带5的运行速度V1方向中心轴线垂直,同时平行于金属板带5的板面,则该轴线8的方向即为金属板带5的板宽方向,也称之为宽度方向。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,
优选的是,所述金属板带上下方设置的抛甩头为相同型号的抛甩头,因在实际除鳞生产中,正反面是需要同等表面质量的,因此需要同型号的抛头来实现介质抛甩,同时,同型号的抛头设备便于后续的设备管理与相互更换,实现更低的备件库存管理与快速抢修,同样,例如,相同型号的抛甩头2b上设置有同样型号的给料管3b与叶片1b。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,
所述抛甩方案产生的混合射流4,在金属板带5宽度方向上具有典型的两端射流强度P1逐步衰减、中间射流强度P2呈现均匀平直的强度分布规律(参见图3与图5);
所述中间射流强度区域P2为金属板带5表面处理的有效射流处理区域;
所述抛甩方案中的离心旋转轴线8距离金属板带5最近的宽面之间的垂直距离值大于该离心轮上所安装叶轮1最远端旋转所产生的外圆半径值。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,
所述多个抛甩头2a、2b、2c、2d在金属板带5的宽度方向上实现错位排布。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,
所述固体介质粒径为0.1mm~2.0mm,所述固体介质形状优选球状或柱状颗粒;
所述固体介质粒径优选0.2mm~0.5mm的颗粒。
根据本发明所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,
所述固体介质可特别说明为天然的刚玉类磨料(如棕刚玉、白刚玉、单晶刚玉等)、碳化物磨料(如黑碳化硅、绿碳化硅、碳化硼等)等,或人造类磨料,如钢丸、钢砂、钢丝切丸等金属加工丸类,优选钢丸与钢丝切丸。
本发明与以往技术(例如EPS)具有如下典型差异:
抛甩头强度分布:EPS采用传统抛丸机的抛射方案,而传统抛丸机的抛射射流密度在板宽方向上的强度分布的实际曲线如下图(参见图11)所示,这种分布特征造成单个抛甩头的射流分布在板宽方向上无法完全均匀。因此,为确保射流在板宽方向上的射流尽可能均匀,抛丸机厂家通常采用两个抛甩头形成一个单元的方案,即两个抛甩头采用相互反向旋转的方案,进行强度互相弥补,从而形成一种接近均匀化的分布方式。
基于此,TMW公司对EPS每个抛甩头10a、10b的射流通过这种相互弥补的方式实现其在板宽方向上的射流强度分布具有图9A所示的特征,即抛甩头10a、10b旋转方向的相反,其分布特性呈现典型的非对称、非正态分布特征。
在本发明具有多个抛甩头,例如,四个抛甩头2a、2b、2c、2d的场合,每个抛甩头2a、2b、2c、2d的射流在板宽方向上的射流强度分布具有图3或图5A所示的特征,即每个抛甩头2a、2b、2c、2d的各自射流在板宽方向上均呈现典型的均匀、对称分布特征,且在射流非边部区域,具有一段较长的完全均匀段,相对于TMW公开的EPS抛射方式,本发明公开的射流均匀性具有极大提高。
多个抛甩头的强度叠加后的分布均匀性存在显著差异:
抛甩头叠加强度分布:按照TMW公开的专利方案,金属板带一侧宽面上采用双抛甩头时,双抛甩头采用相互反向旋转的抛射方式,其射流强度的叠加效果如图9B所示,其叠加后的总强度在金属板带5宽度方向上的分布仍然存在典型的不均匀性,在整个分布曲线中,存在“两端低、中间底、近边区域高”的特征,强度分布的不均匀直接带来对板带5板面处理效果的不均匀。在射流强度不同区域的板面质量也会直接体现(参见图12A,图12AB)所示,射流强度适当的板面凹坑形状较为平直、均匀,“叠层”现象很少;射流强度过大的板面凹坑形状不均匀,“叠层”现象十分普遍,直接弱化了表面的质量水平。
本发明通过旋转轴线与板宽方向0~45°,特别是完全平行(即旋转轴线与板宽方向0°)的抛射方式(举例:对于典型的热轧高温卷取钢,其两侧边部鳞皮通常在15um厚度,且十分致密,以Fe3O4为主,清除所需的射流密度较高,而带钢宽度中部的鳞皮厚度通常为10um水平,且较为稀疏),如此可设置抛甩头旋转轴与金属板带宽度方向0~45°,或完全平行的方式进行除鳞处理,通过合理增大负责两侧带钢边部抛射头的研磨料进给量或抛甩头的旋转速度,即实现了两侧鳞皮与带钢宽度中部鳞皮的同步清除,且避免了射流过量处理的弊端。
根据本发明,可轻松实现更加均匀的射流强度分布,按照本发明图4所示的多抛甩头方案中,金属板带一侧宽面上采用四个抛甩头2a、2b、2c、2d时,四个抛甩头2a、2b、2c、2d在金属板带5的宽度方向上,通过机械装置实现前后布置的抛甩头在离心叶片的板宽方向上进行错位排布,通过错位实现前后布置抛甩头产生的一定宽度射流在板宽方向上实现有效除鳞宽度的相互补充,如此可确保在板宽方向上具有典型的一致性。
其射流强度的叠加效果如图5B所示,其叠加后的总强度在金属板带5宽度方向上的分布具有显著的均匀特征,在整个分布曲线中,存在“两端显著减低、中间总体均匀、局部存在凸起”的特征,均匀的强度分布特性直接带来对板带5板面处理效果的均匀,其处理后的板面微观形貌以图12A为主。
更高的处理能效,更低的处理成本:
根据本发明,基于板宽方向上的射流均匀特征,从而在实现板带速度提升、降低无效射流区域方面具有特殊的便捷性,相对于传统离心抛丸机对板带除鳞方式,本发明因为均匀性一致性好,可实现在同等功率损耗下的处理速度提升,同时在板带边部的无效射流可有效减少,如此可显著提升射流的有效利用率,降低
电机能耗。
TMW-EPS公开的射流分布参见图10所示,基于板带5的表面处理最低要求原则,叠加后的射流强度分布曲线(参见图9B所示)上存在三个不同的峰值,分别为边部峰值、中心峰值以及近边峰值,三个峰值之间均存在典型的强度差异,其差值分别为△P2与△P3,为实现板带5的表面处理质量满足工艺要求,必须以板带5宽度方位上的强度分布最低峰值作为板带5运行速度的基准,即在最低峰值处,板带5能运行的最高速度作为最终稳定处理的工艺速度。
在本发明具有多个抛甩头,例如,四个抛甩头2a、2b、2c、2d的场合,本发明公开的射流损耗率可通过图3与图6解释,基于本发明公开的抛甩头2a、2b、2c、2d叠加后的射流强度分布,其叠加后的射流强度分布曲线中(参见图6),局部峰值与均匀平直线之间的强度差异较小,为△P1,此时板带5运行速度必须以均匀平直线的强度来设定工艺速度。
由以上可知,在同等工耗的基础上,本发明公开的方案可以获得更高的表面处理速度。
(1)本发明公开的射流利用率更高:
TMW-EPS公开的射流分布参见图10所示,基于板带5的表面处理最低要求原则,叠加后的射流强度分布曲线(参见图9B所示)上存在三个不同的峰值,分别为边部峰值、中心峰值以及近边峰值,三个峰值之间均存在典型的强度差异,其差值分别为△P2与△P3,为实现板带5的表面处理质量满足工艺要求,必须以板带5宽度方位上的强度分布最低峰值作为板带5运行速度的基准,即在最低峰值处,板带5能运行的最高速度作为最终稳定处理的工艺速度,而边部峰值之外的射流,如图9B所示的13a与13c区域,均为无效射流,而该无效射流同样损耗系统电耗与机械损耗,该无效射流区域13a+13b占用整个射流区域13a+13b+13c的比值,为射流强度损耗率;同时,板宽方向上高于最低峰值处的射流区域,表面处于“强度过剩”状态,这同样直接造成“射流损耗”。且在实际生产时,单个机组必须能兼容各种不同宽度规格的板料,则TMW-EPS的双头抛甩方案在进行极宽规格生产时,其射流强度不均匀所体现的射流损耗量进一步恶化,具体参见图10B所示。
由以上可知,TMW公开的EPS技术中的射流损耗率较高。
在本发明具有多个抛甩头,例如,四个抛甩头2a、2b、2c、2d的场合,本发明公开的射流损耗率可通过图3与图6解释,基于本发明公开的抛甩头2a、2b、
2c、2d叠加后的射流强度分布,其叠加后的射流强度分布曲线中(参见图6),局部峰值与均匀平直线之间的强度差异较小,为△P1,此时板带5运行速度必须以均匀平直线的强度来设定工艺速度,而此时在板带5宽度范围之外的无效区域12a、12c范围较小,占总射流强度区域12a+12b+12c的比值(即射流强度损耗率)较之EPS技术显著降低,同时“强度过剩”区域也显著减小,基于此,本发明方案可有效节约了系统电耗与机械损耗,直接提高了系统能效;如果连带辅助系统的功率降低,本发明公开的除鳞工艺能效比之TMW-EPS工艺提升10%以上。由此,在保持质量均匀、稳定性更优的前提下,能效的提升直接降低了单位产品的处理成本。
(2)美国TMW公司的EPS产品其受抛丸装置的安装方式决定:除鳞后的板面粗糙度值在板宽方向的分布呈现典型的“两边大,中间低”的缺陷,通过测量,带钢两边区域的Ra值(粗糙度的关键测量指标,此处测量为Ra1Max)比之宽度中间区域的Ra值(测量值为Ra1min)高出1um以上,对用户的使用影响很大,尤其是成材率与质量稳定性的影响。
参见图14A所示:
△Ra-1=Ra1Max-Ra1Min
Ra1为板宽方向上粗糙度值的平均值;
这种粗糙度的不均匀指标是影响用户成材率的关键。
造成这种粗糙度的特殊分布规律(参见图14A)的主要原因为:抛甩头的旋转轴与板宽方向垂直时,射流在板宽方向的分布规律如图13A所示,此时,单个抛甩头的射流在板宽方向的打击速度(即磨料的飞行速度值)一致性较强,但板宽方向不同区域的磨料飞行角度差异很大,如图13A所示,抛射头10A产生的射流在板宽边部区域的打击角度“近似垂直”,其同等速度的磨料打击产生的“凹坑”深度最深;而在板宽方向距离该抛射头10A最远的区域,同等速度的磨料打击的“凹坑”深度要浅很多,因为其飞行方向近似平行于钢板平面,这种较浅的“凹坑”相对于最深的“凹坑”,在用户使用的时候,通常难以达到用户所需的“板面粗糙度在宽度方向必须严格一致”的工艺要求。
本发明公开方案的粗糙度分布:本发明公开的抛射头2a的旋转轴与板宽方向呈一定的夹角,该夹角的最小值为“0”,即抛射头2a的旋转轴与板宽方向完全平行(参见图13b)。此时,本发明公开的单个抛射头依托其更宽的离心叶片产
生了一种特殊的射流分布规律——“中间平直-两侧衰减”(参见图5),且这种射流虽然产生了多个不同角度的同等飞行速度的磨料,这些磨料的飞行角度虽然相差较大,但都是沿着板带长度方向(即板长方向)分布,而在板宽方向上,每个区域所承担的射流数量值、飞行速度以及角度(属于多种不同角度的综合作用结果,即“浅凹坑”与“深凹坑”的组合作用)等都是一致的(参见图13B与14B)。这也就直接确保了钢板在板宽方向上的“凹坑”分布具有较好的一致性,如此即保证了:板宽方向上的粗糙度值Ra的一致性:
参见图14B所示:
△Ra-2=Ra2Max-Ra2Min
Ra2为板宽方向上粗糙度值的平均值;
这种粗糙度不均匀指标能很好的满足用户对板面粗糙度的工艺要求,因此保证了用户的成材率,从而直接保证了成本的控制。
附图概述
本发明的具体特征、性能由以下的实施例及其附图进一步给出。
图1为本发明公开的单抛甩头的布置方案的侧视图;
图2为本发明公开的单抛甩头的布置方案的俯视图;
图3为本发明公开的单抛甩头的射流强度分布示意图;
图4为本发明公开的多抛甩头的布置方案的俯视图;
图5A为本发明单个抛甩头的强度分布示意图;
图5B为本发明四个抛甩头的强度分布与叠加示意图;
图6为本发明公开的四个抛甩头的叠加后强度中有效强度与衰减强度分割示意图;
图7A、图7B以及图7C分别为本发明四个抛甩头叠加后,针对鳞皮厚度分布典型不均匀钢板表面的不同除鳞工况的分布示意图;
图7A—用于清除板宽方向鳞皮均匀,但都比较薄的板带;
图7B—用于清除板宽的两端鳞皮厚,板宽中间区域鳞皮薄的区域;
图7C—用于清除板带的头尾段:即鳞皮较为均匀,但是都很厚的区域;
图8A,图8B分别为典型抛丸机抛射处理的俯视图与侧视图;
图9A为典型单个抛甩头的强度分布示意图;
图9B为典型双头抛丸机抛射后的射流强度与叠加后强度分布图;
图10A,B显示所述典型双头抛丸机抛射后的射流强度在不同规格金属板带宽度上的分布中有效强度与衰减强度的分割示意图;
图10A为典型双头抛丸机抛射后对一定宽度板带的射流强度分布图;
图10B为典型双头抛丸机抛射后对更宽板带的射流强度分布图;
图11为DISA公开的—抛丸机丸粒在板宽上的强度分布曲线图;
图12A为射流强度适当的表面微观形貌图;
图12B为射流强度过量的表面微观形貌图;
图13A为TMW-EPS抛射时在板宽方向上不同角度飞行磨料的分布图;
图13B为本发明公开的单个抛头在板带运行方向上的不同角度飞行磨料的分布图;
图14A为TMW-EPS抛射除鳞后板带宽度方向上的粗糙度指标Ra值的典型分布图;
图14B为本发明公开的抛射除鳞后板带宽度方向上的粗糙度指标Ra值的典型分布图。
图中,1离心叶片,2抛甩头,2a、2b、2c、2d为设置于金属板带上方的四个抛甩头,3a、3b分别为对应于2a、2b等的给料管,4混合有磨料颗粒的浆料射流,5、5a、5b均为金属板带,6,6a,6b分别为冲洗横梁,7低压冲洗射流,8a、8b、8c、8d分别为对应于2a、2b、2c、2d等抛甩头旋转的中心轴线、9板带运行方向上的宽度中心线。
10a、10b:为设置于金属板带一侧的二个一组的抛甩头,11a、11b:为设置于金属板带一侧的二个一组的抛甩头的射流。
12a、12c分别为射流强度衰减区域,12b为有效射流强度区域,12a+12b+12c:总射流强度区域。
13a、13c分别为射流强度衰减区域,13b为有效射流强度区域,13a+13b+13c:总射流强度区域。W1与w2分别为设置于所述金属板带上下方的抛甩头旋转角速度。
p1为根据本发明的板宽方向上,抛甩头射流衰减区域(宽度),p2为根据本发明的板宽方向上,抛甩头有效射流的平直区域(宽度),p3为根据本发明的板宽方向上有效射流区域中、相邻错位的两个抛甩头的叠加区域(宽度)。
△P1为根据本发明的、存在于抛甩头局部峰值与均匀平直线之间的较小的强度差异值,△P2为以往存在于相邻错位的两个抛甩头局部峰值叠加区域交叉点(谷点)与抛甩头局部峰值的射流衰减区域交叉点之间的典型强度差异值,△P3为以往存在于抛甩头局部中心峰值与其相邻局部峰值区域交叉点之间的典型强度差异值,△Ra-1为TMW-EPS在板宽方向上的粗糙度测量指标Ra值(国际标准,粗糙度的关键指标)的波动幅度值;Ra1为TMW-EPS在板宽方向上Ra值的算术平均值;△Ra-2为本发明公开的在板宽方向上的粗糙度测量指标Ra值(国际标准,粗糙度的关键指标)的波动幅度值;Ra2为本发明公开的在板宽方向上Ra值的算术平均值;
一种湿法离心抛射研磨料的金属板带表面处理方法,在所述金属板带上下方成对设置离心抛射抛甩头。由所述离心抛射抛甩头以混合有磨料颗粒的高速混合流体对冷态金属板带表面进行均匀、全板宽的连续击打、磨削,从而实现对冷态金属板带的上下宽面—即全板面进行连续、均匀的表面处理。
所述金属板带为一鳞皮分布呈现典型不均匀特性的钢种,即,鳞片在金属板带宽度方向上呈现两侧与中间区域的厚度差在3um~10um,或,鳞片在金属板带长度方向的头尾部与中间区域的厚度差在5um~15um。
因金属板带的板形不良或张力波动导致带钢在抛射除鳞期间板面抖动距离在20mm-~100mm的范围。
所述抛甩头旋转轴与金属板带宽度方向(或金属板带运行方向)呈一定夹角角度设置。
以单个离心抛甩头2a举例,其他离心抛甩头相同。离心抛甩头2a上设置有多片离心叶片1a,离心抛甩头2a在外部驱动源的作用下带动固定于其上部的多片离心叶片1a一起以同一角速度W1旋转。
叶片1a离心抛甩头外圆半径大于给料管3a的最大外径,在此角度度W1作用下,浆料输送至给料管3a(给料管3a连通、设置于离心抛甩头2a轴部)内部之后,流动至高速旋转的叶片1a上,实现浆料4的整体加速的抛甩过程。
因叶片1a外圆半径明显大于给料管3a的最大外径,混合有固体磨料颗粒与液体(可以是油、水等液体,尤其是水),这两种介质的混合物—浆料4,输送至给料管3a内部之后,离心抛甩头2a在外部驱动源的作用下产生一定角速度W1
旋转,同时带动固定于其上部的多片离心叶片1a一起以同角速度旋转,其旋转角速度值同样等于W1。
在此角度度W1作用下,给料管3a内部的浆料介质4自动产生一定的离心力,促使其按照预定的通道流动至高速旋转的叶片1a上,而叶片1a因为其外圆半径比之给料管3a的最大外径明显更大,故其在同等角速度W1作用下,线性速度显著增大,如此即实现了对浆料4的加速作用;同时在离心力作用下,浆料4在离心叶片1a的加速作用下脱离叶片1a的表面,并沿叶片1a外圆的切线方向向外飞出,至此,即实现了浆料4的整体加速、抛甩过程。
所述给料管3a、抛甩头2a以及叶片1a的旋转运动均围绕同一抛甩头旋转轴线,即中心轴线8,以同一角速度高速旋转。
本发明的主体布置方式参见图1~图6所示。
实施例1
冷态钢板的连续性除鳞,具体如下:
冷态带钢5(温度不高于200℃的碳钢板带,宽度为600mm,厚度5mm,为全连续头尾焊接式)通过辊道运行至由二组各4个的上下抛甩头(附图中的2a、2b、2c、2d分别表示4个上抛甩头,4个对应的下抛甩头与其相同,省略重述)对应构成的有效除鳞区域时,上下抛甩头通过其中部布置的给料管3,向叶轮1输送大量的混合有磨料颗粒的浆料4,给料管3内孔直径为200mm,其内部输送的浆料4中含有粒度为G50(磨料颗粒中80%数量的磨料颗粒粒径为0.33mm的多棱角形状)钢砂,该钢砂与水的体积比浓度为25%。这种浆料在通过给料管3向叶片1以20m3/min的速度输送。
所述上抛甩头2a、2b、2c、2d在离心抛甩期间,其离心旋转方向可以相同,也可以相互不同。
所述抛甩头2a、2b、2c、2d在实现对金属板带5宽面进行表面处理作业时,各抛甩头2a、2b、2c、2d在金属板带5的宽度方向上实现错位排布。
所述多个抛甩头2a、2b、2c、2d,其在金属板带5宽度方向上距离最近的两个抛甩头之间的距离值均严格一致,所述多个抛甩头2a、2b、2c、2d,其在金属板带5长度方向上的间距值,以射流之间不产生干涉为布置基准。
此时,上下抛甩头产生的高速旋转角速度(上抛甩头产生W1角速度的旋转,下抛甩头产生w2角速度的旋转)将给料管输送的浆料4加速至目标速度抛甩而出,该旋转角速度w=2000转/min,通过合理设计抛甩头2、叶片1的外形尺
寸,实现以该角速度w=2000转/min时,达到对浆料4加速至最终60m/s线速度飞离叶片1,有效对金属板带5表面鳞皮的破坏与磨削,达到对鳞皮的有效清除。所述离心抛甩头其叶轮宽度值为200mm,
对于带钢5另一宽面的鳞皮清除方式与该面完全一样,只是下抛甩头的旋转角速度w2的旋转方向相反。保证带钢5另一个宽面的均匀除鳞目标。
除鳞后的带钢5通过一个喷射低压水射流7的冲洗横梁6,分别对带钢5的两个宽面进行低压喷射冲洗,从而达到板面除鳞、清洗的目标。
本实施例中,因金属板带的板形不良或张力波动导致带钢在抛射除鳞期间板面抖动距离在40mm-70mm的范围。所述抛甩头旋转轴与金属板带宽度方向呈15-25°夹角角度设置。鳞片在金属板带宽度方向上呈现两侧与中间区域的厚度差在3um-7um,或,鳞片在金属板带长度方向的头尾部与中间区域的厚度差在5um-12um。
实验参数说明:
板带规格:8.0mm厚×1200mm宽,材质为卡车大梁用碳钢板材;
板带除鳞要求:全板宽、正反面同步除鳞处理;
介质种类:采用磨料与水的混合射流进行高速磨削除鳞;
比较TMW-EPS的实验结果记录:
实施例2
所述抛甩头旋转轴与金属板带宽度方向平行,即与金属板带运行方向垂直。
板带规格:8.0mm厚×1200mm宽,材质为卡车大梁用碳钢板材;
板带除鳞要求:全板宽、正反面同步除鳞处理;
除鳞速度:全板宽匀速20m/min;
介质种类:采用磨料与水的混合射流进行高速磨削除鳞;所述液体介质,可以是普通的工业用水或具备流动性的油脂类介质。
所述液体介质为普通工业水时:温度在100℃以下、PH值在6.5~9。
所述液体介质为油脂类介质时,为具有流动性的液态物质或某几种液体介质
或固体溶解于液体介质后形成的混合液态物质,即该介质在常温范围内,即100℃以下必须为液态。
所述固体介质粒径为0.2mm~0.5mm的球状或柱状颗粒;
所述固体介质为碳化物磨料(如黑碳化硅、绿碳化硅、碳化硼等)及人造类磨料,如钢丸与钢砂,或钢丝切丸混合物。此时,钢丸与钢砂,或钢丝切丸的配比在1:1~1:5比例范围。
本实施例中,所述金属板带具体为鳞片在金属板带宽度方向上呈现两侧与中间区域的厚度差在5um~8um,或,鳞片在金属板带长度方向的头尾部与中间区域的厚度差在7um~10um。因金属板带的板形不良或张力波动导致带钢在抛射除鳞期间板面抖动距离在20mm~40mm的范围。
比较TMW-EPS的实验结果:
同时,本发明公开方案的辅助系统总功率值因为抛射头功率的降低而相应降低,因此,如果连带考虑辅助系统的功率降低,本发明公开的除鳞工艺能效比之TMW-EPS工艺提升10%以上。
此时给料管3a、抛甩头2a以及叶片1a的旋转运动均围绕同一旋转轴—中心轴8高速旋转,且旋转角速度完全相同,均为W1。所述角速度为2×π×1800转/min。
所述离心抛甩头其叶轮宽度值为16mm,
此时金属板带5沿其长度方向以稳定的线速度V1运行,此时离心抛甩头2及其上面的叶片1所旋转的中心轴线8与金属板带5的运行速度V1方向严格垂直,且该中心轴线8同时平行于金属板带5的板面,则该轴线8的方向即为金属板带5的板宽方向,也称之为宽度方向。
因为给料管3、叶片1以及抛甩头2的同一个旋转中心轴线8均与带钢5运行方向上的宽度对称轴线9完全垂直,故抛甩头2产生的高速浆料射流4在带钢
5宽度方向上的流量、速度等分布均十分一致,这种一致性能很好的确保带钢5看度方向上的鳞皮清除一致性。
为实现金属板带5的反面鳞皮清除,在该金属板带5的另一表面设置完全相同型号的抛甩头,该抛甩头上设置有同样型号的给料管与叶片,只是旋转角速度w2与W1的绝对值完全相等,旋转方向为完全相反的方向。
所述多个抛甩头2a、2b、2c、2d,其离心旋转方向可以相同,也可以相互不同;
所述多个抛甩头2a、2b、2c、2d在实现对金属板带5单侧宽面进行表面处理作业时,各抛甩头2a、2b、2c、2d在金属板带5的宽度方向上实现错位排布;所述错位排布为抛甩头在金属板带5运行方向上的等间距设置,或二个抛甩头设置于同一宽度方向,另二个在金属板带5运行方向上的等间距设置前二抛甩头之后。
所述多个抛甩头2a、2b、2c、2d,其在金属板带5宽度方向上距离最近的两个抛甩头之间的距离值均严格一致;所述多个抛甩头2a、2b、2c、2d,其在金属板带5长度方向上的间距值,以射流之间不产生干涉为布置基准。
根据本发明实施例,所述抛甩方案产生的混合射流4,在金属板带5宽度方向上具有典型的两端射流强度P1逐步衰减、中间射流强度P2呈现均匀平直的强度分布规律(参见图3与图5所示)。所述单个抛甩头衰减区域(P1×2)的宽度在整个射流分布区域宽度(P1×2+P2)上的比值,即,射流强度损耗率在20-30%。
本发明充分利用离心抛甩方式产生的高速射流磨削作用,实现了对冷态金属板面鳞皮的一次均匀、连续、高效的表面处理,本发明不仅可用于金属板带的连续除鳞、除锈处理,同时可用于对异性金属材料、零散铸件等内外表面的连续处理。由于本发明所采用技术已经成熟,可以实施,推广应用完全可行。另一方面,本发明能很好的适应公司对冶金生产的环保要求以及进一步提升产品竞争力的要求,提高冶金企业的节能减排的能力。因此,本发明在冷轧生产领域具有广阔的应用前景。
Claims (17)
- 一种湿法离心抛射研磨料的金属板带表面处理方法,提供处理单元,所述处理单元包括离心抛射用抛甩头,用于对进入冷轧机前的冷态金属板带表面进行表面处理,其特征在于,在所述金属板带上或下方,或上、下方设置所述抛甩头;将所述抛甩头的旋转轴与金属板带宽度方向平行或者呈0~45°夹角设置,以及将给料管连接于所述离心抛射用抛甩头上,以使混合有磨料颗粒的高速混合流体浆料形成射流,从而所述射流在金属板带宽度方向上具有在两端射流强度逐步衰减的衰减区域和在中间射流强度呈现均匀平直的平直区域,对冷态金属板带表面进行均匀的连续击打、磨削。
- 如权利要求1所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,在所述金属板带上下方成对对应设置所述抛甩头;在所述抛甩头上设置多片离心叶片,使所述抛甩头在外部驱动源的作用下带动固定于其上的所述离心叶片一起以同一角速度旋转,将所述离心叶片的外圆半径设置成大于所述给料管的最大外径,借此将浆料输送至给料管内部之后,流动至高速旋转的离心叶片上,将浆料的整体加速的抛甩过程。
- 如权利要求1所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,对应于同一所述抛甩头,使所述给料管、所述抛甩头以及所述离心叶片的旋转运动均围绕所述旋转轴的旋转轴线,即中心轴线,以同一角速度高速旋转。
- 如权利要求1所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,使单个所述抛甩头的两个所述衰减区域(P1×2)的宽度与整个所述射流的宽度(P1×2+P2)之间的比值,即,射流强度损耗率为10~30%。
- 如权利要求1所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,将多个所述抛甩头在对金属板带单侧宽面进行表面处理作业,并使该多个抛甩头在金属板带的宽度方向上以及在金属板带的运行方向上错位排布,宽度方向上相邻的所述抛甩头之间的错位量设置为一个所述射流的一个所述衰减区域和一个所述平直区域的宽度值之和。
- 如权利要求1所述一种湿法离心抛射研磨料的金属板带表面处理方法,其 特征在于,所述浆料的液体介质选自工业用水或具备流动性的油脂类介质,所述液体介质为普通工业水时,温度在100℃以下、PH值在6.5~9,所述液体介质为油脂类介质时,为具有流动性的液态物质或某几种液体介质或固体溶解于液体介质后形成的混合液态物质。
- 如权利要求1所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述浆料的固体介质粒径为0.1mm~2.0mm,所述固体介质形状优选球状、柱状、多棱角状颗粒,或二种以上的混合物,所述固体介质选自天然的刚玉类磨料、碳化物磨料、人造类磨料、钢丸、钢砂、钢丝切丸的金属加工丸类,所述天然的刚玉类磨料选自棕刚玉、白刚玉、单晶刚玉,所述碳化物磨料选自黑碳化硅、绿碳化硅、碳化硼。
- 如权利要求1所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述金属板带为一鳞皮分布呈现典型不均匀特性的钢种,即,鳞片在金属板带宽度方向上呈现两侧与中间区域的厚度差在5um~10um,或,鳞片在金属板带长度方向的头尾部与中间区域的厚度差在7um~15um。
- 如权利要求1所述一种湿法离心抛射研磨料的金属板带表面处理方法,其特征在于,所述方法适用于金属板带板形不良,或因张力波动导致板带在抛射除鳞期间板带板面抖动距离,即“浪高值”超过20mm,但不超过100mm的工况。
- 一种湿法离心抛射研磨料的金属板带表面处理装置,设置有处理单元,所述处理单元包括离心抛射用抛甩头,用于对进入冷轧机前的冷态金属板带表面进行表面处理,其特征在于,所述处理单元包括:在所述金属板带上或下方,或上、下方设置所述抛甩头;所述抛甩头的旋转轴与金属板带宽度方向平行或者呈0~45°夹角设置,所述抛甩头通过连接其上的给料管,以混合有磨料颗粒的高速混合流体浆料形成射流,所述射流在金属板带宽度方向上具有在两端射流强度逐步衰减的衰减区域和在中间射流强度呈现均匀平直的平直区域,对冷态金属板带表面进行均匀连续击打、磨削。
- 如权利要求10所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,在所述金属板带上下方成对对应设置所述抛甩头;所述甩头上设置有多片离心叶片,所述抛甩头在外部驱动源的作用下带动固定于其上的所述离心叶片一起以同一角速度旋转,所述离心叶片的外圆半径大于给料管的最大外径,浆料输送至给料管内部之后,流动至高速旋转的所述离心叶片上,实现浆料的整体加速的抛甩过程。
- 如权利要求10所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,所述抛甩头上设置有4~8片离心叶片。
- 如权利要求10所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,对应于同一所述抛甩头,所述给料管、所述抛甩头以及所述离心叶片的旋转运动均围绕所述旋转轴的旋转轴线,即中心轴线,以同一角速度高速旋转。
- 如权利要求10所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,单个所述抛甩头的两个所述衰减区域(P1×2)的宽度与整个所述射流的宽度(P1×2+P2)之间的比值,即,射流强度损耗率为10~30%。
- 如权利要求10所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,多个所述抛甩头在对金属板带单侧宽面进行表面处理作业,在金属板带的宽度方向上以及在金属板带的运行方向上错位排布,宽度方向上相邻的所述抛甩头之间的错位量为一个所述射流的一个所述衰减区域和一个所述平直区域的宽度值之和。
- 如权利要求10所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,所述浆料的液体介质选自工业用水或具备流动性的油脂类介质,所述液体介质为普通工业水时,温度在100℃以下、PH值在6.5~9,所述液体介质为油脂类介质时,为具有流动性的液态物质或某几种液体介质或固体溶解于液体介质后形成的混合液态物质。
- 如权利要求10所述一种湿法离心抛射研磨料的金属板带表面处理装置,其特征在于,所述浆料的固体介质粒径为0.1mm~2.0mm,所述固体介质形状优选球状或柱状颗粒,所述固体介质选自天然的刚玉类磨料、碳化物磨料、人造类磨料、钢丸、钢砂、钢丝切丸的金属加工丸类,所述天然的刚玉类磨料选自棕刚玉、白刚玉、单晶刚玉,所述碳化物磨料选自黑碳化硅、绿碳化硅、碳化硼。
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410209220.5 | 2014-05-16 | ||
| CN201410209220.5A CN105081984A (zh) | 2014-05-16 | 2014-05-16 | 一种湿法离心抛射研磨料的金属板带表面处理方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015172591A1 true WO2015172591A1 (zh) | 2015-11-19 |
Family
ID=54479281
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2015/071825 WO2015172591A1 (zh) | 2014-05-16 | 2015-01-29 | 一种湿法离心抛射研磨料的金属板带表面处理方法 |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN105081984A (zh) |
| WO (1) | WO2015172591A1 (zh) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105563347A (zh) * | 2016-02-23 | 2016-05-11 | 满城县永红铸造机械有限公司 | 一种用于清洗底侧梁的抛丸清洗机 |
| CN111054751B (zh) * | 2019-12-30 | 2021-05-28 | 西南铝业(集团)有限责任公司 | 一种粗糙度u型分布的铝合金毛化板及其制备方法 |
| CN112318379A (zh) * | 2020-09-27 | 2021-02-05 | 山西太钢工程技术有限公司 | 用于热轧板的表面处理设备及表面处理方法 |
| CN117140000A (zh) * | 2023-09-13 | 2023-12-01 | 广西北港不锈钢有限公司 | 一种不锈钢固溶生产方法及除锈装置 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3841025A (en) * | 1971-06-28 | 1974-10-15 | R Maeda | Deflector for abrasive-accelerator in blasting machine |
| US4566230A (en) * | 1982-03-08 | 1986-01-28 | Kennecott Corporation | Impact blasting system for etching metal surfaces |
| CN1646266A (zh) * | 2002-04-16 | 2005-07-27 | 杰富意钢铁株式会社 | 金属板表面处理设备、金属板制造方法和金属板的制造装置 |
| CN102896584A (zh) * | 2011-07-29 | 2013-01-30 | 宝山钢铁股份有限公司 | 一种混合射流清洗的工艺布置方法 |
| CN103447969A (zh) * | 2013-08-22 | 2013-12-18 | 杭州浙大精益机电技术工程有限公司 | 钢板除鳞、清洗及风干装置 |
| CN103465174A (zh) * | 2013-09-30 | 2013-12-25 | 杭州浙大精益机电技术工程有限公司 | 型钢的多角度抛丸除鳞装置 |
| CN203471582U (zh) * | 2013-08-22 | 2014-03-12 | 杭州浙大精益机电技术工程有限公司 | 一种钢板除鳞、清洗及风干装置 |
| CN203495769U (zh) * | 2013-09-30 | 2014-03-26 | 杭州浙大精益机电技术工程有限公司 | 一种型钢的多角度抛丸除鳞装置 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09155435A (ja) * | 1995-11-30 | 1997-06-17 | Kawasaki Steel Corp | ショットブラストによる鋼材の脱スケール方法及び装置 |
| JP2003305649A (ja) * | 2002-04-16 | 2003-10-28 | Jfe Steel Kk | 金属板の表面処理設備、及び金属板の製造方法 |
| US7601226B2 (en) * | 2006-09-14 | 2009-10-13 | The Material Works, Ltd. | Slurry blasting apparatus for removing scale from sheet metal |
-
2014
- 2014-05-16 CN CN201410209220.5A patent/CN105081984A/zh active Pending
-
2015
- 2015-01-29 WO PCT/CN2015/071825 patent/WO2015172591A1/zh active Application Filing
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3841025A (en) * | 1971-06-28 | 1974-10-15 | R Maeda | Deflector for abrasive-accelerator in blasting machine |
| US4566230A (en) * | 1982-03-08 | 1986-01-28 | Kennecott Corporation | Impact blasting system for etching metal surfaces |
| CN1646266A (zh) * | 2002-04-16 | 2005-07-27 | 杰富意钢铁株式会社 | 金属板表面处理设备、金属板制造方法和金属板的制造装置 |
| CN102896584A (zh) * | 2011-07-29 | 2013-01-30 | 宝山钢铁股份有限公司 | 一种混合射流清洗的工艺布置方法 |
| CN103447969A (zh) * | 2013-08-22 | 2013-12-18 | 杭州浙大精益机电技术工程有限公司 | 钢板除鳞、清洗及风干装置 |
| CN203471582U (zh) * | 2013-08-22 | 2014-03-12 | 杭州浙大精益机电技术工程有限公司 | 一种钢板除鳞、清洗及风干装置 |
| CN103465174A (zh) * | 2013-09-30 | 2013-12-25 | 杭州浙大精益机电技术工程有限公司 | 型钢的多角度抛丸除鳞装置 |
| CN203495769U (zh) * | 2013-09-30 | 2014-03-26 | 杭州浙大精益机电技术工程有限公司 | 一种型钢的多角度抛丸除鳞装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105081984A (zh) | 2015-11-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2015172591A1 (zh) | 一种湿法离心抛射研磨料的金属板带表面处理方法 | |
| CN103419137B (zh) | 一种轧辊表面强化与粗糙度控制方法 | |
| CN103418624B (zh) | 一种冷态金属板带连续射流除鳞工艺 | |
| CN202922415U (zh) | 一种浆体射流湿法抛砂装置 | |
| CN105033867A (zh) | 铁路钢轨喷丸清理装置 | |
| CN208867003U (zh) | 一种基于抛丸冲击的带钢除鳞装置 | |
| CN201907065U (zh) | 一种抛丸清理设备 | |
| CN108621037B (zh) | 一种高压水混合带钢除锈装置 | |
| CN111230749A (zh) | 一种金属带材表面除鳞装置及方法 | |
| CN107639550A (zh) | 多喷头自动喷砂除锈枪 | |
| CN114345959A (zh) | 一种可获取优良表面形貌的无酸除鳞系统及除鳞方法 | |
| CN107639549A (zh) | 单喷头自动喷砂枪 | |
| CN103567880B (zh) | 一种抛丸机清扫装置及方法 | |
| CN107755437B (zh) | 一种用于冷轧带钢表面清洗的抛流清洗系统及清洗方法 | |
| CN204748355U (zh) | 铁路钢轨喷丸清理装置 | |
| WO2014047754A1 (zh) | 一种射流清洗喷嘴的布置方法 | |
| CN102764778A (zh) | 一种大直径金属管壁内外表面射流除鳞系统及方法 | |
| CN216030233U (zh) | 一种喷砂叶轮以及喷砂装置 | |
| CN203210188U (zh) | 一种辊道通过式抛丸清理机 | |
| CN204725336U (zh) | 风电塔筒外壁抛丸清理装置 | |
| CN111251194B (zh) | 金属板带除鳞设备与方法及其使用的抛砂器 | |
| CN212637527U (zh) | 一种金刚石存储转运装置 | |
| CN106826570A (zh) | 金属管表面清洁处理工艺 | |
| CN203228120U (zh) | 钢板除锈装置 | |
| CN116810622A (zh) | 一种玻璃表面高效粗化铣磨头 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15793474 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 15793474 Country of ref document: EP Kind code of ref document: A1 |

