WO2015171433A1 - Polyester polyols from thermoplastic polyesters and dimer fatty acids - Google Patents
Polyester polyols from thermoplastic polyesters and dimer fatty acids Download PDFInfo
- Publication number
- WO2015171433A1 WO2015171433A1 PCT/US2015/028644 US2015028644W WO2015171433A1 WO 2015171433 A1 WO2015171433 A1 WO 2015171433A1 US 2015028644 W US2015028644 W US 2015028644W WO 2015171433 A1 WO2015171433 A1 WO 2015171433A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyol
- glycol
- acid
- thermoplastic polyester
- dimer fatty
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/914—Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/916—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/03—Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/08—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/80—Phthalic acid esters
- C07C69/82—Terephthalic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/36—Hydroxylated esters of higher fatty acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4205—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
- C08G18/4208—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
- C08G18/4211—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
- C08G18/4213—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from terephthalic acid and dialcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4288—Polycondensates having carboxylic or carbonic ester groups in the main chain modified by higher fatty oils or their acids or by resin acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
- C08G18/735—Polyisocyanates or polyisothiocyanates acyclic containing one isocyanate or isothiocyanate group linked to a primary carbon atom and at least one isocyanate or isothiocyanate group linked to a tertiary carbon atom
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/52—Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
- C08G63/54—Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
- C08G63/553—Acids or hydroxy compounds containing cycloaliphatic rings, e.g. Diels-Alder adducts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/18—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
- C08J11/22—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
- C08J11/24—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
- C09D167/06—Unsaturated polyesters having carbon-to-carbon unsaturation
- C09D167/07—Unsaturated polyesters having carbon-to-carbon unsaturation having terminal carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/06—Polyurethanes from polyesters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0025—Foam properties rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the invention relates to polyol compositions produced from thermoplastic polyesters, including recycled or virgin polyethylene terephthalate.
- the polyols which are useful for formulating polyurethanes and other condensation polymers, incorporate a dimer fatty acid.
- Aromatic polyester polyols are commonly used intermediates for the manufacture of polyurethane products, including flexible and rigid foams, polyisocyanurate foams, coatings, sealants, adhesives, and elastomers.
- the aromatic content of these polyols contributes to strength, stiffness, and thermal stability of the urethane product.
- the aromatic polyester polyol is made by condensing aromatic diacid, diesters, or anhydrides (e.g., terephthalic acid, dimethyl terephthalate) with glycols such as ethylene glycol, propylene glycol, diethylene glycol, or the like.
- aromatic diacid diesters, or anhydrides
- glycols such as ethylene glycol, propylene glycol, diethylene glycol, or the like.
- Bio-renewable content alone can be misleading as an indicator of "green” chemistry.
- a food source such as corn
- the chemical or biochemical transformations needed to convert sugars or other bio-friendly feeds to useful chemical intermediates such as polyols can consume more natural resources and energy and can release more greenhouse gases and pollutants into the environment than their petro-based alternatives in the effort to achieve "green” status.
- Waste thermoplastic polyesters including waste polyethylene terephthalate (PET) streams (e.g., from plastic beverage containers), provide an abundant source of raw material for making new polymers.
- PET waste polyethylene terephthalate
- PET polybutylene terephthalate
- PBT polybutylene terephthalate
- Other recycled raw materials are also available.
- recycled propylene glycol is available from aircraft or RV deicing and other operations, and recycled ethylene glycol is available from spent vehicle coolants.
- Urethane formulators demand polyols that meet required specifications for color, clarity, hydroxyl number, functionality, acid number, viscosity, and other properties. These specifications will vary and depend on the type of urethane application. For instance, rigid foams generally require polyols with higher hydroxyl number than the polyols used to make flexible foams.
- Polyols suitable for use in making high-quality polyurethanes have proven difficult to manufacture from recycled materials, including recycled polyethylene terephthalate (rPET).
- rPET recycled polyethylene terephthalate
- Many references describe digestion of rPET with glycols (also called “glycolysis"), usually in the presence of a catalyst such as zinc or titanium. Digestion converts the polymer to a mixture of glycols and low-molecular-weight PET oligomers. Although such mixtures have desirably low viscosities, they often have high hydroxyl numbers or high levels of free glycols.
- the target product is a purified bis(hydroxyalkyl) terephthalate (see, e.g., U.S. Pat. Nos.
- ethylene glycol is used as the glycol reactant for glycolysis. This is sensible because it minimizes the possible reaction products. Usually, the glycolysis is performed under conditions effective to generate bis(hydroxyethyl) terephthalate (“BHET”), although sometimes the goal is to recover pure terephthalic acid.
- BHET bis(hydroxyethyl) terephthalate
- the glycolysis product is typically a crystalline or waxy solid at room temperature. Such materials are less than ideal for use as polyol intermediates because they must be processed at elevated temperatures. Polyols are desirably free-flowing liquids at or close to room temperature.
- Dimer fatty acids are chemical intermediates made by dimerizing unsaturated fatty acids (e.g., oleic acid, linoleic acid, ricinoleic acid) in the presence of a catalyst, such as a bentonite or montmorillonite clay.
- dimer fatty acids are usually mixtures of products in which the dimer acid predominates.
- Some commercial dimer acids are made by dimerizing tall oil fatty acids.
- Dimer fatty acids are commonly used to synthesize polyamide resins used in inks and hot-melt adhesives (see, e.g., U.S. Pat. No. 5,138,027). They are also components of alkyd resins, adhesives, surfactants, and other products.
- dimer fatty acids are used as urethane components, particularly when the urethane includes a recycled PET-based polyol.
- One exception is JP 2004- 307583, which describes a method for producing a polyester polyol and cured polyurethane.
- the '583 publication describes a two-step method in which recycled PET is digested with a glycol in the presence of a transesterification catalyst. The resulting product is then reacted with a polybasic acid having 20 or more carbons and no polymerizable double bond. Dimer acids are taught as suitable polybasic acids for the second step. The reaction product is subsequently reacted with MDI to make a simple urethane coating.
- dimer fatty acid In the working examples, a relatively large proportion of dimer fatty acid is used (one or more equivalents of dimer acid per equivalent of recycled PET), and it is unclear whether satisfactory results could be obtained with less dimer fatty acid.
- the large proportion of dimer fatty acid also severely limits the amount of recycle content (rPET plus any recycled glycol) in the polyol.
- the invention relates to polyester polyols and processes for making them.
- the polyol is made by a process which comprises two steps. First, a thermoplastic polyester such as PET, recycled PET, or their mixtures, is heated with a glycol to give a digested intermediate. The intermediate is then condensed with a dimer fatty acid to give the polyol.
- the invention relates to a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid.
- the molar ratio of dimer fatty acid to thermoplastic polyester is less than 0.8
- the molar ratio of glycol to thermoplastic polyester is at least 2.0
- the polyol has a hydroxyl number within the range of 25 to 800 mg KOH/g.
- the polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol.
- Aqueous polyurethane dispersions made from the polyols are also included.
- polyurethanes having desirable hydroxyl numbers, viscosities, appearance, and other attributes for formulating polyurethane products can be made by reacting, at certain equivalent ratios, a glycol-digested thermoplastic polyester, preferably a digested PET, and a dimer fatty acid.
- a glycol-digested thermoplastic polyester preferably a digested PET
- dimer fatty acid preferably a dimer fatty acid.
- the polyols which are valuable for formulating a variety of polyurethanes and related products- including polyurethane dispersions, flexible and rigid foams, coatings, adhesives, sealants, and elastomers-provide a sustainable alternative to bio- or petrochemical- based polyols.
- polyester polyols made by a two-step process are disclosed.
- a thermoplastic polyester is first heated with a glycol to give a digested intermediate.
- the digested intermediate is subsequently condensed with a dimer fatty acid to give the polyol.
- Thermoplastic polyesters suitable for use are well known in the art. They are condensation polymers produced from the reaction of glycols and aromatic dicarboxylic acids or acid derivatives. Examples include polyethylene terephthalate (PET); polybutylene terephthalate (PBT); polytrimethylene terephthalate (PTT); glycol-modified polyethylene terephthalate (PETG); copolymers of terephthalic acid and 1 ,4- cyclohexanedimethanol (PCT); PCTA (an isophthalic acid-modified PCT); polyhydroxy alkanoates, e.g., polyhydroxybutyrate; copolymers of diols with 2,5-furandicarboxylic acid or dialkyl 2,5-furandicarboxylates, e.g., polyethylene furanoate; copolymers of 2,2,4,4-tetramethyl-1 ,3-cyclobutanediol with isophthalic acid, terephthalic acid
- thermoplastics are described in Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, J. Scheirs and T. Long, eds., Wiley Series in Polymer Science, 2003, John Wiley & Sons, Ltd. Hoboken, NJ.
- Other examples of thermoplastic polyesters may be found in Chapters 18-20 of Handbook of Thermoplastics, O. Olabisi, ed., 1997, Marcel Dekker, Inc. New York.
- Suitable thermoplastic polyesters include virgin polyesters, recycled polyesters, or mixtures thereof.
- Polyethylene terephthalate is particularly preferred, especially recycled polyethylene terephthalate (rPET), virgin PET, and mixtures thereof.
- suitable thermoplastic polyesters see U.S. Pat. Appl. Publ. No. 2009/0131625, the teachings of which are incorporated herein by reference.
- Recycled polyethylene terephthalate suitable for use in making the inventive polyester polyols can come from a variety of sources.
- the most common source is the post-consumer waste stream of PET from plastic bottles or other containers.
- the rPET can be colorless or contain dyes (e.g., green, blue, or other colors) or be mixtures of these.
- a minor proportion of organic or inorganic foreign matter e.g., paper, other plastics, glass, metal, etc.
- a desirable source of rPET is "flake" rPET, from which many of the common impurities present in scrap PET bottles have been removed in advance.
- rPET is pelletized rPET, which is made by melting and extruding rPET through metal filtration mesh to further remove particulate impurities. Because PET plastic bottles are currently manufactured in much greater quantity than any recycling efforts can match, scrap PET will continue to be available in abundance.
- glycols suitable for use are well known.
- glycol we mean a linear or branched, aliphatic or cycloaliphatic compound or mixture of compounds having two or more hydroxyl groups.
- Other functionalities, particularly ether or ester groups, may be present in the glycol.
- two of the hydroxyl groups are separated by from 2 to 10 carbons, preferably 2 to 5 carbons.
- Suitable glycols include, for example, ethylene glycol, propylene glycol, 1 ,3-propanediol, 1 ,2-butylene glycol, 1 ,3-butylene glycol, 1 ,4-butanediol, 2-methyl-1 ,3-propanediol, pentaerythritol, sorbitol, neopentyl glycol, glycerol, trimethylolpropane, 2,2,4,4-tetramethyl-1 ,3-cyclobutanediol, 3-methyl- 1 ,5-pentanediol, 1 ,4-cyclohexanedimethanol, 1 ,3-cyclohexanedimethanol, bisphenol A ethoxylates, diethylene glycol, dipropylene glycol, triethylene glycol, 1 ,6-hexanediol, tripropylene glycol, tetraethylene glycol, polyethylene glycol
- the thermoplastic polyester and glycol are heated, optionally in the presence of a catalyst, to give a digested intermediate.
- the digested intermediate will commonly be a mixture of glycol reactant, glycol(s) generated from the thermoplastic polyester, terephthalate oligomers, and other glycolysis products.
- the digested intermediate will include a mixture of glycol reactant, ethylene glycol (generated from the PET or rPET), bis(2-hydroxyalkyl) terephthalate (“BHAT”), higher PET oligomers, and other glycolysis products.
- Similar digested mixtures in various forms have been made and characterized previously (see, e.g., D. Paszun et al., Ind.
- Heating is advantageously performed at temperatures within the range of 80°C to 260°C, preferably 100°C to 240°C, more preferably 130°C to 210°C, and most preferably 160°C to 185°C.
- the digested intermediate comprises glycols and a terephthalate component.
- the terephthalate component preferably comprises, by gel permeation chromatography using ultraviolet detection, 45 to 70 wt.% of bis(hydroxyalkyl)terephthalates.
- the terephthalate component further comprises 20 to 40 wt.% of terephthalate dimers.
- the terephthalate component of the digested intermediate comprises 45 to 65 wt.% of bis(hydroxyalkyl)terephthalates, 20 to 35 wt.% of terephthalate dimers, and 5 to 15 wt.% of terephthalate trimers.
- the terephthalate component comprises 50 to 60 wt.% of bis(hydroxyalkyl)-terephthalates, 25 to 30 wt.% of terephthalate dimers, and 8 to 12 wt.% of terephthalate trimers.
- Catalysts suitable for making the digested intermediate are well known (see, e.g.,
- suitable catalysts comprise titanium, zinc, antimony, germanium, zirconium, manganese, or other metals.
- titanium alkoxides e.g., tetrabutyl titanate
- titanium(IV) phosphate titanium(IV) phosphate
- zirconium alkoxides zinc acetate, lead acetate, cobalt acetate, manganese(ll) acetate, antimony trioxide, germanium oxide, or the like, and mixtures thereof.
- Catalysts that do not significantly promote isocyanate reaction chemistries are preferred.
- the amount of catalyst used is typically in the range of 0.005 to 5 wt.%, preferably 0.01 to 1 wt.%, more preferably 0.02 to 0.7 wt.%, based on the total amount of polyol being prepared.
- the digestion reaction is performed by heating the thermoplastic polyester, glycol(s), and any catalyst at least until the mixture liquefies and particles of the thermoplastic polyester are no longer apparent. Reaction times range from about 30 minutes to about 16 hours, more typically 1 to 10 hours, even more typically 3 to 8 hours, and will depend on the reaction temperature, source of the thermoplastic polyester, the particular glycol reactant used, mixing rate, desired degree of depolymerization, and other factors that are within the skilled person's discretion.
- the molar ratio of glycol to thermoplastic polyester is at least 2.0, preferably 2.0 to 6.0, more preferably 2.5 to 4.5.
- the glycol/thermoplastic polyester molar ratio is below 2.0, the products are often solids or too viscous to be practical for use as polyols.
- the glycol/thermoplastic polyester molar ratio is greater than about 6, the hydroxyl numbers tend to exceed the practical upper limit of about 800 mg KOH/g.
- dimer fatty acid is synonymous with “dimerized fatty acid” or “dimer acid.”
- Dimer fatty acids are chemical intermediates made by dimerizing unsaturated fatty acids (e.g., oleic acid, linoleic acid, linolenic acid, ricinoleic acid) in the presence of a catalyst, such as a bentonite or montmorillonite clay.
- a catalyst such as a bentonite or montmorillonite clay.
- dimer fatty acids are usually mixtures of products in which the dimerized product predominates.
- Some commercial dimer acids are made by dimerizing tall oil fatty acids.
- Dimer fatty acids frequently have 36 carbons and two carboxylic acid groups. They may be saturated or unsaturated. They may also be hydrogenated to remove unsaturation.
- the dimer fatty acid comprises dimerized oleic acid, trimerized oleic acid, dimerized linoleic acid, trimerized linolelic acid, dimerized linolenic acid, trimerized linolenic acid, or mixtures thereof.
- Suitable dimer fatty acids include PripolTM dimer fatty acids (products of Croda) such as PripolTM 1006, 1009, 1010, 1012, 1013, 1017, 1022, 1025, 1027, 1029, 1036, and 1098; UnidymeTM dimer acids (products of Arizona Chemical) such as Unidyme 10, 14, 18, 22, 35, M15, and M35; dimer acids available from Emery Oleochemicals, and FloraDymeTM dimer acids from Florachem Corporation.
- PripolTM dimer fatty acids such as PripolTM 1006, 1009, 1010, 1012, 1013, 1017, 1022, 1025, 1027, 1029, 1036, and 1098
- UnidymeTM dimer acids products of Arizona Chemical
- dimer acids available from Emery Oleochemicals and FloraDymeTM dimer acids from Florachem Corporation.
- Fatty acids having at least one carbon-carbon double bond are dimerized in the presence of a catalyst such as a montmorillonite, kaolinite, hectorite, or attapulgite clay (see, e.g., U.S. Pat. Nos. 2,793,220, 4,371 ,469, 5,138,027, and 6,281 ,373, the teachings of which are incorporated herein by reference; see also WO 2000/075252 and CA 10451 1 ).
- a catalyst such as a montmorillonite, kaolinite, hectorite, or attapulgite clay
- the reaction between the digested intermediate and the dimer fatty acid is performed under conditions effective to promote condensation between one or more acid groups of the dimer fatty acid and hydroxyl groups present in the digested intermediate.
- the condensation is preferably performed by heating at temperatures within the range of 80°C to 260°C, preferably 100°C to 240°C, more preferably 130°C to 230°C, and most preferably 160°C to 210°C. Water generated in this reaction is advantageously removed from the reaction mixture as it forms. On a lab scale, it is convenient to use a Dean-Stark trap or similar apparatus to remove the water of reaction, but other means will be more practical on a larger scale.
- the condensation reaction is normally continued until a pre- determined amount of water has been collected or a target acid number and/or hydroxyl number is reached for the product.
- the molar ratio of dimer fatty acid to thermoplastic polyester is less than 0.8, preferably less than 0.7, more preferably less than 0.6.
- the molar ratio of dimer fatty acid to thermoplastic polyester is preferably within the range of 0.1 to 0.6, more preferably 0.2 to 0.5. When the molar ratio is less than 0.1 , there is too little benefit from including the dimer fatty acid in terms of generating useful polyols (for instance, the hydroxyl numbers reach or exceed their useful upper limit).
- the molar ratio is greater than 0.8, formulation cost is higher than desirable, recycle content drops, and there is little or no additional performance benefit.
- dicarboxylic acids include, for example, glutaric acid, adipic acid, succinic acid, cyclohexane dicarboxylic acids, maleic acid, fumaric acid, itaconic acid, phthalic acid, 1 ,5-furandicarboxylic acid, isophthalic acid, and anhydrides thereof (e.g., maleic anhydride, phthalic anhydride, itaconic anhydride, and the like).
- DBA dicarboxylic acids
- a typical DBA composition might contain 51 -61 wt.% glutaric acid, 18-28 wt.% succinic acid, and 15- 25 wt.% adipic acid.
- the dimer fatty acid is present in a greater molar proportion compared with the additional dicarboxylic acid.
- the molar amount of dicarboxylic acid exceeds that of the dimer fatty acid, the polyol product has a greater tendency to solidify, has higher viscosity, and is prone to settling.
- the polyester polyol is made in a single step by reacting the thermoplastic polyester, glycol, and dimer fatty acid under conditions effective to produce the polyol.
- the molar ratio of dimer fatty acid to thermoplastic polyester is less than 0.8
- the molar ratio of glycol to thermoplastic polyester is at least 2.0
- the resulting polyol has a hydroxyl number within the range of 25 to 800 mg KOH/g.
- Example 1 1 illustrates the single-step process.
- the inventive polyester polyols have hydroxyl numbers within the range of 25 to 800 mg KOH/g, preferably 40 to 500 mg KOH/g, more preferably 200 to 400 mg KOH/g. Hydroxyl number can be measured by any accepted method for such a determination, including, e.g., ASTM E-222 ("Standard Test Methods for Hydroxyl Groups Using Acetic Anhydride Acetyl ati on").
- the inventive polyols preferably have average hydroxyl functionalities (i.e., the average number of -OH groups per molecule) within the range of 1 .5 to 3.5, more preferably 1 .8 to 2.5, and most preferably 2.0 to 2.4.
- the inventive polyols are flowable liquids under ambient conditions.
- the polyols have viscosities measured at 25°C less than 30,000 cP, more preferably less than 20,000 cP, most preferably less than 10,000 cP.
- a preferred range for the polyol viscosity is 300 to 5,000 cP, more preferably 500 to 3,900 cP.
- Viscosity can be determined by any industry-accepted method. It is convenient to use, for instance, a Brookfield viscometer (such as a Brookfield DV-III Ultra rheometer) fitted with an appropriate spindle, and to measure a sample at several different torque settings to ensure an adequate confidence level in the measurements.
- the polyols preferably have low acid numbers. Urethane manufacturers will often require that a polyol have an acid number below a particular specification. Low acid numbers can be ensured by driving the condensation step (with dimer fatty acid) to the desired level of completion or by adding a neutralizing agent (e.g., sodium hydroxide) at the conclusion of the condensation step.
- a neutralizing agent e.g., sodium hydroxide
- the polyols have an acid number less than 30 mg KOH/g, more preferably less than 10 mg KOH/g, and most preferably less than 5 mg KOH/g.
- an acid scavenger such as, for example, an epoxide derivative
- polyester polyols are their reduced reliance on bio- or petrochemical sources for raw material.
- the polyols include greater than 10 wt.%, more preferably greater than 25 wt.%, most preferably greater than 50 wt.% of recycle content.
- a preferred range for the recycle content is 25 to 98.5 wt.%.
- recycle content we mean the combined amounts of thermoplastic polyester and any recycled glycol or dicarboxylic acid.
- Some glycols, such as propylene glycol or ethylene glycol are available as recovered or recycled materials. For instance, propylene glycol is used in deicing fluids, and after use, it can be recovered, purified, and reused.
- the dimer fatty acid is prepared from renewable resources.
- Recycle content can be calculated, for instance, by combining the masses of thermoplastic polyester and any recycled PG or recycled dicarboxylic acids, dividing this sum by the total mass of reactants (glycols, thermoplastic polyester, dimer acid, and any dicarboxylic acids), and then multiplying the result by 100.
- Yet another desirable polyol attribute is the absence of settling, particularly upon prolonged storage. When settling is substantial, the polyol might have to be filtered or otherwise treated to remove the solids content; this is preferably avoided. Preferred inventive polyols exhibit no settling or only a slight degree of settling, and more preferred polyols exhibit no evidence of settling.
- the invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid, wherein the molar ratio of dimer fatty acid to thermoplastic polyester is less than 0.8, the molar ratio of glycol to thermoplastic polyester is at least 2.0, and the polyol has a hydroxyl number within the range of 25 to 800 mg KOH/g.
- the glycol-digested thermoplastic polyester and dimer fatty acid have already been described above.
- “Recurring units” means that the polyester polyol includes one or more units derived from each of the dimer fatty acid and the glycol-digested thermoplastic polyester.
- the invention relates to a process which comprises: (a) heating virgin PET, recycled PET, or a mixture thereof with propylene glycol in the presence of a zinc or titanium catalyst to give a digested intermediate; and (b) condensing the intermediate with a dimer fatty acid to give the polyol; wherein the molar ratio of dimer fatty acid to PET is less than 0.6, the molar ratio of glycol to PET is within the range of 2.5 to 4.5, and the polyol has a hydroxyl number within the range of 40 to 500 mg KOH/g, a viscosity at 25°C less than 5,000 cP, and a recycle content as defined herein greater than 25 wt.%.
- the inventive polyester polyols can be used to formulate a wide variety of polyurethane products. By adjusting the proportion of dimer fatty acid used, a desired degree of polyol hydrophobicity can be "dialed in.” The ability to control hydrophobicity is particularly valuable in the coatings industry.
- the polyols can be used for cellular, microcellular, and non-cellular applications including flexible foams, rigid foams (including polyisocyanurate foams), urethane dispersions, coatings, adhesives, sealants, and elastomers.
- the resulting polyurethanes are potentially useful for automotive and transportation applications, building and construction products, marine products, packaging foam, flexible slabstock foam, carpet backing, appliance insulation, cast elastomers and moldings, footwear, biomedical devices, and other applications.
- inventive polyester polyols may be derivatized to form mono-, di- and polyacrylates via esterification or transesterification with acrylic acid or methacrylic acid- derived raw materials.
- (meth)acrylation raw materials suitable for forming (meth)acrylate derivatives of the inventive polyester polyols include acryloyl chloride, methacryloyl chloride, methacrylic acid, acrylic acid, methyl acrylate, methyl methacrylate, and the like, or mixtures thereof.
- Such (meth)acrylate-derivatized inventive polyester polyols are useful for radiation or UV-cure coating formulations or applications.
- Prepolymers of the inventive polyester polyols may be derivatized to form urethane (meth)acrylates via reaction with hydroxyethyl (meth)acrylate.
- the resulting urethane acrylates may also be used in radiation or UV-cure coating formulations or applications.
- the invention relates to aqueous polyurethane dispersions made from the inventive polyester polyols.
- the dimer fatty acid-modified polyols are readily formulated into aqueous polyurethane dispersions having a desirable balance of properties, including high solids, low viscosities, and a low tendency to settle.
- Numerous ways to formulate aqueous polyurethane dispersions are known and suitable for use.
- the polyurethane dispersion is made by emulsifying an isocyanate- terminated prepolymer in water with the aid of an emulsifiying agent.
- Water, a water- soluble polyamine chain extender, or a combination thereof may be used to react with the emulsified prepolymer.
- the prepolymer is preferably made by reacting an inventive polyester polyol, a hydroxy-functional emulsifier, one or more auxiliary polyols, and one or more polyisocyanates.
- the aqueous polyurethane dispersions are preferably used to formulate water-borne coatings, adhesives, sealants, elastomers, and similar urethane products, and they are particularly valuable for reducing reliance on solvents. For instance, the dispersions can be used to formulate low- or zero-VOC compositions.
- Polyisocyanates suitable for use in making the prepolymers are well known; they include aromatic, aliphatic, and cycloaliphatic polyisocyanates. Examples include toluene diisocyanates (TDIs), MDIs, polymeric MDIs, naphthalene diisocyanates (NDIs), hydrogenated MDIs, trimethyl- or tetramethylhexamethylene diisocyanates (TMDIs), hexamethylene diisocyanate (HDI), isophorone diisocyanates (IPDIs), cyclohexane diisocyanates (CHDIs), xylylene diisocyanates (XDI), hydrogenated XDIs, and the like. Aliphatic diisocyanates, such as hexamethylene diisocyanate and isophorone diisocyanates are particularly preferred.
- auxiliary polyols suitable for use are also well known. They include polyether polyols, aliphatic polyester polyols, aromatic polyester polyols, polycarbonate polyols, glycols, and the like. Preferred auxiliary polyols have average hydroxyl functionalities within the range of 2 to 6, preferably 2 to 3, and number average molecular weights within the range of 500 to 10,000, preferably 1 ,000 to 8,000.
- Preferred polyester polyols are condensation products of dicarboxylic acids and diols or triols (e.g., ethylene glycol, propylene glycol, 2-methyl-1 ,3-propanediol, 3-methyl-1 ,5-pentanediol, 1 ,4-butanediol, neopentyl glycol, glycerin, trimethylolpropane, 1 ,4-cyclohexanedimethanol, bisphenol A ethoxylates), especially diols.
- the dicarboxylic acids can be aliphatic (e.g., glutaric, adipic, succinic) or aromatic (e.g., phthalic), preferably aliphatic.
- a hydroxy-functional emulsifier is also used to make the polyurethane dispersions.
- the role of this component is to impart water-dispersibility to the prepolymer, usually upon its combination with water and a neutralizing agent, such as an acid or base reactant.
- the hydroxy-functional emulsifier is an acid-functional diol such as dimethylolpropionic acid (DMPA) or dimethylolbutanoic acid (DMBA).
- DMPA dimethylolpropionic acid
- DMBA dimethylolbutanoic acid
- the acid functionality in the resulting prepolymer allows for neutralization with an amine or other basic reactant to generate a water-dispersible urethane.
- the hydroxy-functional emulsifier can also be an amine, such as N-methyldiethanolamine.
- the hydroxy-functional emulsifier is nonionic, e.g., a polyethylene glycol monomethyl ether.
- the hydroxy-functional emulsifier may be a monol- or diol-functionalized poly(ethylene oxide), such as for example YmerTM N120 dispersing monomer (product of Perstorp), or the methyl ether of polyethylene glycol.
- non-reactive, so-called “external emulsifiers,” such as the triethanolamine salt of dodecylbenzene sulfonic acid, may be included in the aqueous phase to assist in the emulsification and stabilization of the prepolymer and resulting polyurethane dispersion.
- a chain terminator may be used to control the molecular weight of polyurethane polymer contained within the aqueous polyurethane dispersion.
- Monofunctional compounds such as those containing hydroxyl, amino, and thio groups that have a single active hydrogen-containing group, are suitable chain terminators. Examples include alcohols, amines, thiols, and the like, especially primary and secondary aliphatic amines.
- Chain extenders can also be included in making the polyurethane dispersion.
- the chain extender is added in an amount sufficient to react 5 to 105 mole % of free NCO groups present.
- Suitable chain extenders contain at least two functional groups that are capable of reacting with isocyanates, e.g., hydroxyl, thio, or amino groups in any combination.
- Suitable chain extenders include, for example, diols (ethylene glycol, propylene glycol, diethylene glycol, neopentyl glycol, 1 ,4-butanediol, 2- methyl-1 ,3-propanediol, 3-methyl-1 ,5-pentanediol, 1 ,4-cyclohexanedimethanol, and the like), di- and polyamines (ethylenediamine, diethylenetriamine, Jeffamine ® T-403, Jeffamine ® D-230, Jeffamine ® ED-2001 , Jeffamine ® ED-600, Jeffamine ® ED-900, 1 ,6- hexamethylenediamine, butylenediamine, hydrazine, piperazine, N-hydroxyethyl ethylenediamine) alkanolamines (ethanolamine, diethanolamine, N-methyl diethanolamine, and the like), dithiols, and the like. Diol chain extenders are preferably added during
- the dimer fatty acid-modified polyester polyol, an acid-functional diol (DMPA), and auxiliary polyols are combined and reacted with a mixture of aliphatic diisocyanates (hexamethylene diisocyanate and isophorone diisocyanate) in the presence of a tin catalyst (dibutyltin dilaurate) or a bismuth catalyst (such as bismuth dioctanoate) and a solvent (acetone).
- a tin catalyst dibutyltin dilaurate
- a bismuth catalyst such as bismuth dioctanoate
- the resulting prepolymer is then dispersed in a mixture of water, triethanolamine (neutralizing agent), and a silicone defoamer.
- the resulting product is an aqueous polyurethane dispersion having high solids content (30%), low viscosity, and desirable settling properties.
- the invention relates to associative rheology modifiers made from the dimer fatty acid-modified polyester polyols.
- associative rheology modifier we mean an additive used to thicken or alter the viscosity of a product.
- Associative thickening may involve dynamic, non-specific interactions of hydrophobic end groups of a thickener molecule with itself and with other components of a formulation.
- Associative thickening is particularly applicable to water-based paints and coatings, where the rheology modifier, by virtue of inter- and intra-molecular network formations, is able to modify gloss, flow, shear, leveling, spatter resistance, or other properties.
- suitable formulations might include sealants, pharmaceuticals, cosmetics, or other products that can benefit from rheology modification.
- Certain categories of associative rheology modifiers are well known and can be formulated using the inventive polyester polyols alone or, more often, in combination with other polyol components.
- Such rheology modifiers include, for example, hydrophobically modified ethoxylated urethanes ("HEUR”), hydrophobically modified alkali-swellable emulsions ("HASE”), and hydrophobically modified polyethers (“HMPE”).
- HEUR hydrophobically modified ethoxylated urethanes
- HASE hydrophobically modified alkali-swellable emulsions
- HMPE hydrophobically modified polyethers
- Suitable HASE modifiers include, e.g., hydrophobically modified polyacrylates.
- a typical HEUR might be assembled from a hydrophilic diol (e.g., a polyethylene glycol of 6,000-8,000 g/mol), a polyisocyanate, and a hydrophobic monol or diol.
- the inventive polyester polyols can be utilized to supplement or replace the hydrophobic monol or diol.
- a reactor equipped with an overhead mixer, condenser, heating mantle, thermocouple, and nitrogen inlet is charged with zinc acetate dihydrate (0.55 wt.%), titanium(IV) butoxide (500-1000 ppm), or no catalyst (Ex. 32); recycled polyethylene terephthalate pellets; and glycol in the proportions shown in Table 1 .
- the mixture is heated without stirring to about 130°C. Stirring is then commenced at 60 rpm, and heating continues until the reactor contents reach 180°C. The mixture is heated until no particles of recycled PET remain (about 4 h). When the digestion reaction is considered complete, the mixture is cooled to about 100°C.
- Dimer fatty acid (and/or dicarboxylic acid) is added (see Table 1 for mole ratios), and the mixing rate is increased (200 rpm).
- the dimer fatty acid used is PripolTM 1017, product of Croda.
- a Dean-Stark trap is introduced between the reactor and condenser, and heating to 200°C is resumed. Water generated in the condensation reaction is removed until roughly the theoretical amount is removed.
- the polyol product is allowed to cool to 100°C and is then decanted from the reactor and filtered through cheesecloth.
- the glycols used are propylene glycol, 2-methyl-1 ,3-propanediol, 3-methyl-1 ,5- pentanediol, diethylene glycol, and 1 ,4-cyclohexanedimethanol.
- the dimer fatty acid (and/or dicarboxylic acid) is added following digestion of the recycled PET with the glycol, as described above. In a few examples, however, the dimer fatty acid (and/or dicarboxylic acid) is added at the outset, i.e., before digestion. Control runs in which no dimer fatty acid or dicarboxylic acid is used are also included.
- the dicarboxylic acid is "DBA," a well-known dibasic acid mixture available from INVISTA and other suppliers that contains primarily glutaric acid, succinic acid, and adipic acid.
- a typical DBA composition might contain 51 -61 wt.% glutaric acid, 18- 28 wt.% succinic acid, and 15-25 wt.% adipic acid.
- the dicarboxylic acids (or anhydrides) used are succinic acid, phthalic anhydride, adipic acid, and DBA.
- the digestions are catalyzed by zinc acetate unless otherwise indicated in the tables.
- Recycle content as used herein (wt.%) is determined by combining the masses of recycled glycol and recycled thermoplastic polyester, dividing this sum by the total mass of reactants (e.g., glycols, rPET, dimer acid, and any dicarboxylic acids), and then multiplying the result by 100.
- reactants e.g., glycols, rPET, dimer acid, and any dicarboxylic acids
- Viscosities are measured at 25°C using a Brookfield DV-III Ultra rheometer with spindle #31 at 25%, 50%, and 75% torque.
- polyols having hydroxyl numbers below 800 mg KOH/g (especially below 600 mg KOH/g), favorable viscosities (especially 1000 to 4000 cP), and recycle contents greater than 10 wt.% (especially greater than 25%) can be made by reacting glycol-digested recycled PET with dimer fatty acids, where the molar ratio of glycol to rPET is at least 2.0 and the molar ratio of dimer fatty acid to rPET is less than 0.8. Condensing the glycol-digested rPET with a dimer fatty acid also makes it possible to generate polyols that are in many cases transparent, especially when the glycol to rPET molar ratio is within the range of 2.5 to 4.5.
- dicarboxylic acid e.g., succinic acid
- some dicarboxylic acid can be included along with the dimer fatty acid, but such products are typically opaque. Settling is generally avoided by using the preferred glycol to rPET molar ratio range of 2.5 to 4.5.
- Comparative examples are provided in Tables 3 and 4.
- the glycol/rPET ratio is below 2.0, which typically results in an opaque and highly viscous or solid product.
- the glycol/rPET ratio is 2.0 or greater, but the dimer fatty acid is omitted in favor of a dicarboxylic acid or anhydride (e.g., succinic acid, phthalic anhydride, or DBA).
- the products are opaque and tend to be viscous.
- the glycol/rPET ratio is high (6.0 or 9.0), the hydroxyl number of the product is greater than 800 mg KOH/g.
- Other comparative examples show that digestion of the rPET alone gives a product with desirably low viscosity but the hydroxyl numbers are too high to be useful.
- a DFA-modified polyol prepared as in Example 30 is used to formulate a polyurethane dispersion as follows:
- a prepolymer is generated by combining the DFA-modified polyol (53.4 g),
- P2010 polyol (3-methyl-1 ,5-pentanediol adipate, 2000 mol. wt., 17.1 g, product of Kuraray), dimethylpropionic acid (9.5 g), polyethylene glycol (PEG 200, 1 .33 g), acetone (140 g), and dibutyltin dilaurate (0.24 g) with hexamethylene diisocyanate (8.8 g) and isophorone diisocyanate (64.8 g). The mixture is mixed well and allowed to react at 60°C for 7.5 h to form the prepolymer mixture.
- the prepolymer mixture (261 g) is combined and rapidly mixed with water (456 g), triethanolamine (14.4 g), and Byk ® 028 silicone defoamer (6.21 g of 10% solution in water) to generate an aqueous polyurethane dispersion.
- the polyurethane dispersion prepared above is filtered through a 190- ⁇ paint filter and into a settling cone.
- the cone is sealed with Parafilm ® "M” laboratory film and stored for 19 days in a dark cabinet. After the settling period is concluded, the dispersion shows no apparent settling ( ⁇ 0.0 ml_).
- a similar polyurethane dispersion prepared from a glycol-digested recycled polyethylene terephthalate (0.9 propylene glycol to 1 rPET) and not modified with dimer fatty acid has 0.4 ml_ of settled material after 19 days.
- a flask equipped with addition funnel, condenser, heating mantle, thermocouple, and mechanical stirring is charged with a dimer fatty acid-modified polyol (75.0 g, produced as described above from recycled polyethylene terephthalate (28.3 wt.%), propylene glycol (31 .4 wt.%), titanium(IV) butoxide (0.5 wt.%), and PripolTM 1017 dimer fatty acid (39.8 wt.%)), tetrahydrofuran (300 ml_), triethylamine (50.8 g), and phenothiazine (0.19 g).
- the stirred mixture is heated to 50°C.
- Coatings are produced using the DFA-modified polyol acrylate described above and a control formulation.
- the control formulation 50 wt.% solids in methyl ethyl ketone (MEK)
- MEK methyl ethyl ketone
- the control formulation is prepared from bisphenol A ethoxylate diacrylate (66.5 wt.%), ethylene glycol phenyl ether acrylate (26.5 wt.%), AddoxTM A40 adhesion promoter (5.0 wt.%, product of Doxa Chemical), and Irgacure ® 1 173 photoinitiator (2.0 wt.%, product of BASF).
- the DFA-modified polyol acrylate formulation (50 wt.% solids in MEK) is prepared from bisphenol A ethoxylate diacrylate (37.1 wt.%), ethylene glycol phenyl ether acrylate (15.9 wt.%), DFA-modified polyol acrylate (40 wt.%, prepared as described above), AddoxTM A40 adhesion promoter (5.0 wt.%), and Irgacure ® 1 173 photoinitiator (2.0 wt.%). Films are drawn down to provide cured coatings having an average film thickness of 1 .6-1 .8 mils. The coatings are cured with four passes of a Jelight handheld UV curing lamp followed by one pass on a UV bench top conveyor unit (Heraeus Noblelight) running at 5 ft./min. Results appear in Table 5.
- Dry film thickness is determined using a PosiTector 6000 (Defelsko Corporation) dry film thickness gauge. Konig hardness is measured using ISO 1522 using a TQC pendulum hardness tester (Model SPO500). The following ASTM test methods are used: pencil hardness: ASTM D3363; flexibility: ASTM D522; adhesion: ASTM D3359; stain testing: ASTM D1308.
- Part A comprised of PAPITM 27 isocyanate (polymeric MDI, 53.3 wt.% based on the combined amounts of Parts A and B, 260 NCO/OH index, product of Dow Chemical), is then quickly added.
- VOS power control mixer VWR International
- 3- inch diameter Cowles blade and mixed at up to 2000 RPM for ten seconds.
- the mixing time is controlled by an electronic timer with foot pedal attachment (GraLab Model 451 ).
- the well-mixed foam is poured into a 12"x12"x12" cardboard box and allowed to rise. After fully curing under ambient conditions, the foam is tested for compressive strength (ASTM D1621 ) and thermal conductivity (ASTM C177).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Sustainable Development (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Polyurethanes Or Polyureas (AREA)
- Polyesters Or Polycarbonates (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167033944A KR20170021239A (en) | 2014-05-05 | 2015-04-30 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
JP2017511152A JP6550125B2 (en) | 2014-05-05 | 2015-04-30 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
EP15721518.7A EP3140333B1 (en) | 2014-05-05 | 2015-04-30 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
CN201580023856.3A CN106459341A (en) | 2014-05-05 | 2015-04-30 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
BR112016025760A BR112016025760A8 (en) | 2014-05-05 | 2015-04-30 | process, polyester polyols, polyurethane and curable resin |
US14/822,528 US9840584B2 (en) | 2014-05-05 | 2015-08-10 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
US15/805,600 US10344121B2 (en) | 2014-05-05 | 2017-11-07 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
US16/383,951 US10611879B2 (en) | 2014-05-05 | 2019-04-15 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461988866P | 2014-05-05 | 2014-05-05 | |
US61/988,866 | 2014-05-05 | ||
US201462074819P | 2014-11-04 | 2014-11-04 | |
US62/074,819 | 2014-11-04 | ||
US201462078880P | 2014-11-12 | 2014-11-12 | |
US62/078,880 | 2014-11-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/822,528 Continuation US9840584B2 (en) | 2014-05-05 | 2015-08-10 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015171433A1 true WO2015171433A1 (en) | 2015-11-12 |
Family
ID=53059541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/028644 WO2015171433A1 (en) | 2014-05-05 | 2015-04-30 | Polyester polyols from thermoplastic polyesters and dimer fatty acids |
Country Status (7)
Country | Link |
---|---|
US (3) | US9840584B2 (en) |
EP (1) | EP3140333B1 (en) |
JP (1) | JP6550125B2 (en) |
KR (1) | KR20170021239A (en) |
CN (1) | CN106459341A (en) |
BR (1) | BR112016025760A8 (en) |
WO (1) | WO2015171433A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016123558A1 (en) * | 2015-01-30 | 2016-08-04 | Resinate Materials Group, Inc. | Integrated process for treating recycled streams of pet and ptt |
EP3269754A1 (en) | 2016-07-12 | 2018-01-17 | Allnex Belgium S.A. | (meth)acrylated compounds based on recycled pet |
TWI630221B (en) * | 2017-05-26 | 2018-07-21 | 遠東新世紀股份有限公司 | Polyester production method |
WO2019100058A1 (en) * | 2017-11-20 | 2019-05-23 | Resinate Materials Group, Inc. | Polyol compositions from thermoplastic polyesters and their use in hot-melt adhesives and binders |
EP3408308B1 (en) | 2016-01-26 | 2020-03-18 | Basf Se | Method for producing furane- based polyester |
US11236213B2 (en) * | 2019-01-07 | 2022-02-01 | Sun Chemical Corporation | Water-soluble or dispersible polyester resins made from terephthalate plastic materials useful as dispersant resins for inks |
CN116239949A (en) * | 2018-06-01 | 2023-06-09 | 科思创(荷兰)有限公司 | Radiation curable composition for coating optical fibers and coatings produced therefrom |
WO2024132976A1 (en) * | 2022-12-21 | 2024-06-27 | Basf Se | Polyester polyol based on polybutylene terephthalate |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017058504A1 (en) * | 2015-10-02 | 2017-04-06 | Resinate Materials Group, Inc. | High performance coatings |
CA3016464A1 (en) | 2016-03-08 | 2017-09-14 | Soo-Young Kang | Long lasting cosmetic compositions |
EP3464492A4 (en) * | 2016-05-23 | 2020-03-04 | Sun Chemical Corporation | Liquid modified pet polyesters for lithographic inks |
US10017454B2 (en) | 2016-05-24 | 2018-07-10 | Far Eastern New Century Corporation | Method of manufacturing BHCD and derivatives thereof |
CN107417526B (en) * | 2016-05-24 | 2020-09-25 | 远东新世纪股份有限公司 | Process for preparing 1,4-cyclohexane dicarboxylic acid dihydroxy ethyl ester and its derivative |
EP3515957B1 (en) | 2016-09-25 | 2023-01-11 | PTT Global Chemical Public Company Limited | Biorenewable high performance polyester polyols |
BR112019017672A2 (en) | 2017-03-03 | 2020-03-31 | Resinate Materials Group, Inc. | ENERGY-CURING, SUSTAINABLE POLYESTERS POLYESTERS AND THEIR COATINGS OR RIGID FOAMS |
CA3074845A1 (en) | 2017-09-13 | 2019-03-21 | Living Proof, Inc. | Color protectant compositions |
AU2018333932B2 (en) | 2017-09-13 | 2024-05-02 | Living Proof, Inc. | Long lasting cosmetic compositions |
CN107603435B (en) * | 2017-09-14 | 2020-03-24 | 陕西理工大学 | Process method for preparing resin-based composite material elastic coating from waste PET |
CN109535364A (en) * | 2017-11-16 | 2019-03-29 | 广东安之伴实业有限公司 | A kind of aqueous elastic polyester emulsion |
WO2019099966A1 (en) | 2017-11-20 | 2019-05-23 | Living Proof, Inc. | Properties for achieving long-lasting cosmetic performance |
CN112041365A (en) | 2018-04-27 | 2020-12-04 | 生活实验公司 | Long-lasting cosmetic composition |
US20210388149A1 (en) * | 2018-11-21 | 2021-12-16 | 3M Innovative Properties Company | A Polyester Polyol and Polyurethane Polymers Made Therefrom |
CN111269381B (en) * | 2018-12-05 | 2022-04-22 | 万华化学集团股份有限公司 | Thermoplastic polyurethane for color concentrate carrier |
WO2020114490A1 (en) | 2018-12-06 | 2020-06-11 | Eastman Chemical (China) Co., Ltd. | Adhesive compositions including 1, 4-cyclohexanedimethanol and methods of making same |
JP2023532875A (en) | 2020-06-25 | 2023-08-01 | ビーエーエスエフ ソシエタス・ヨーロピア | Polyisocyanurate resin foam with high compressive strength, low thermal conductivity and high surface quality |
CN112250845B (en) * | 2020-11-06 | 2022-02-22 | 中国科学院长春应用化学研究所 | Polyester polyol and preparation method thereof |
CN117487147A (en) * | 2023-10-08 | 2024-02-02 | 广东天龙油墨有限公司 | Method for preparing regenerated resin from PET reclaimed material and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004307583A (en) * | 2003-04-03 | 2004-11-04 | Japan Composite Co Ltd | Method for producing polyester polyol and cured polyurethane |
EP2565226A1 (en) * | 2011-06-23 | 2013-03-06 | Institutul National de Cercetare Dezvoltare Pentru Chimie si Petrochimie - Icechim | Method of obtaining aromatic polyester-ether polyols from waste poly (ethylene terephthalate) (PET) and aromatic polyester-ether polyols incorporating poly(ethylene terephthalate) wastes and renewable materials, obtained by respective procedure |
WO2013041552A1 (en) * | 2011-09-23 | 2013-03-28 | Dsm Ip Assets B.V. | Polymer composition containing a thermoplastic polyester elastomer |
Family Cites Families (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA104511A (en) | 1905-04-29 | 1907-04-02 | Denis Francis O'brien | Compression hydrant |
NL92418C (en) | 1954-12-13 | |||
US4054561A (en) | 1975-01-27 | 1977-10-18 | Owens-Corning Fiberglas Corporation | Thermoplastic additives for molding compounds |
US4096102A (en) | 1975-01-27 | 1978-06-20 | Owens-Corning Fiberglas Corporation | Moldable compositions comprising thermosetting polyester resin and thermoplastic resin |
US4155892A (en) | 1975-10-03 | 1979-05-22 | Rohm And Haas Company | Polyurethane thickeners for aqueous compositions |
US4079028A (en) | 1975-10-03 | 1978-03-14 | Rohm And Haas Company | Polyurethane thickeners in latex compositions |
US4223068A (en) * | 1978-09-27 | 1980-09-16 | Freeman Chemical Corporation | Rigid polyurethane foam containing polyester residue digestion product and building panel made therefrom |
US4371469A (en) | 1981-04-28 | 1983-02-01 | The United States Of America As Represented By The Secretary Of Agriculture | Process for the preparation of branched chain fatty acids and esters |
US4423179A (en) | 1981-09-29 | 1983-12-27 | Inmont | Dimer acid based polyurethane coating compositions |
US4439550A (en) | 1982-11-22 | 1984-03-27 | Texaco Inc. | Aromatic polyols made from recycled polyethylene terephthalate waste streams, alkylene glycol and dibasic acid waste streams |
US4469824A (en) * | 1983-11-18 | 1984-09-04 | Texaco, Inc. | Liquid terephthalic ester polyols and polyisocyanurate foams therefrom |
FR2560202B1 (en) | 1984-02-23 | 1986-11-07 | Witco Chemical | PROCESS FOR IMPROVING THE HYDROLYSIS RESISTANCE OF SATURATED URETHANE ELASTOMERS, COMPOSITIONS FOR CARRYING OUT SAID METHOD AND PRODUCTS OBTAINED |
US4546169A (en) | 1984-08-17 | 1985-10-08 | Foam Systems Company | Process for preparation of polyester polyols utilizing polyalkylene terephthalate |
US4758607A (en) | 1985-07-18 | 1988-07-19 | Sloss Industries Corporation | Distilled products of polyethylene terephthalate polymers and polycarboxylic acid-containing polyols and polymeric foams obtained therefrom |
US4608432A (en) * | 1985-09-23 | 1986-08-26 | Stepan Company | Self-compatibilizing polyester polyol blends based on polyalkylene terephthalate |
US4720571A (en) | 1986-06-18 | 1988-01-19 | Hercules Incorporated | Polyols from scrap polyethylene terephthalate and dimethyl terephthalate process residue |
JPH0717821B2 (en) * | 1987-09-08 | 1995-03-01 | ユニチカ株式会社 | Thermoplastic resin composition |
US5155163A (en) | 1990-08-06 | 1992-10-13 | Uniroyal Adhesives And Sealants, Inc. | Aqueous polyurethane dispersion synthesis for adhesive thermoforming applications |
JP2864287B2 (en) | 1990-10-16 | 1999-03-03 | 本田技研工業株式会社 | Method for producing high strength and high toughness aluminum alloy and alloy material |
US5138027A (en) | 1991-03-13 | 1992-08-11 | Henkel Corporation | Polyamide of dimer acids, alkylene diamine and polyalkylene polyamine |
US5371112A (en) | 1992-01-23 | 1994-12-06 | The Sherwin-Williams Company | Aqueous coating compositions from polyethylene terephthalate |
US5252615A (en) | 1992-01-23 | 1993-10-12 | The Sherwin-Williams Company | Aqueous coating compositions from polyethylene terephthalate |
US5281654A (en) | 1993-01-14 | 1994-01-25 | Rohm And Haas Company | Polyurethane mixture |
US5608000A (en) | 1993-09-24 | 1997-03-04 | H. B. Fuller Licensing & Financing, Inc. | Aqueous polyurethane dispersion adhesive compositions with improved heat resistance |
US5948828A (en) | 1994-10-17 | 1999-09-07 | Hoechst Aktiengesellschaft And Werner Reck, Technologie Entwicklung Und Beratung | Technology development and consultancy |
US5502247A (en) | 1994-11-17 | 1996-03-26 | Amoco Corporation | Process for recovery of aromatic acid or ester and polyol from waste polyester resins |
US5574127A (en) | 1995-04-05 | 1996-11-12 | Aqualon | Hydrophobically modified poly(acetal-polyethers) |
CA2215798A1 (en) | 1995-04-18 | 1996-10-24 | Unichema Chemie B.V. | Polymer material |
US5763526A (en) | 1995-07-31 | 1998-06-09 | Nippon Paint Co., Ltd. | Urethane prepolymer, process for producing urethane prepolymer, isocyanate compound, and polyurethane dispersion |
US5756554A (en) | 1996-02-02 | 1998-05-26 | Ashland Inc. | Low profile additives for polyester resin systems based on asymmetric glycols and aromatic diacids |
US5552478A (en) | 1996-02-02 | 1996-09-03 | Ashland Inc. | Low profile additives for polyester resin systems based on asymmetric glycols and aromatic diacids |
FR2753973B1 (en) | 1996-06-04 | 1999-01-29 | T B I | PROCESS FOR OBTAINING POLYOLS AND POLYOLS OBTAINED ACCORDING TO THE PROCESS |
US5858551A (en) | 1997-01-31 | 1999-01-12 | Seydel Research, Inc. | Water dispersible/redispersible hydrophobic polyester resins and their application in coatings |
US5922779A (en) | 1997-10-10 | 1999-07-13 | Stepan Company | Polyol blends for producing hydrocarbon-blown polyurethane and polyisocyanurate foams |
US6359022B1 (en) | 1997-10-10 | 2002-03-19 | Stepan Company | Pentane compatible polyester polyols |
AU3306199A (en) | 1998-02-23 | 1999-09-06 | Stepan Company | Low viscosity polyester polyols and methods for preparing same |
DE19812751C2 (en) | 1998-03-24 | 2001-11-22 | Skw Bauchemie Gmbh | Solvent-free polyurethane dispersion |
US6281373B1 (en) | 1998-05-19 | 2001-08-28 | Henkel Corporation | Process for the preparation of dimeric fatty acid C1-4 alkyl esters |
US6127436A (en) | 1998-10-26 | 2000-10-03 | Sun Chemical Corporation | Reclaimed poly (ethylene terephthalate) coating |
JP2000191766A (en) * | 1998-12-25 | 2000-07-11 | Nippon Polyurethane Ind Co Ltd | Production of terephthalic acid-based polyester polyol |
US6337366B1 (en) | 1999-03-25 | 2002-01-08 | Rohm And Haas | Method of improving viscosity stability of aqueous compositions |
WO2000075252A1 (en) | 1999-06-04 | 2000-12-14 | Cognis Corporation | Process for producing light color dimer acids from the dimerization of unsaturated fatty acids |
CA2318761A1 (en) | 1999-08-04 | 2001-02-04 | Aies Co., Ltd. | Bis-beta-hydroxyethyl terephthalate production process and purification process |
JP2001122825A (en) | 1999-10-28 | 2001-05-08 | Japan Organo Co Ltd | Method for purifying crude bishydroxyalkyl terephthalate |
EP1170319A1 (en) | 2000-07-03 | 2002-01-09 | Unichema Chemie B.V. | Block copolyester |
JP4746787B2 (en) * | 2000-07-31 | 2011-08-10 | 三井化学株式会社 | Polyester polyol production method and polyester polyol production apparatus |
TWI290933B (en) | 2000-07-31 | 2007-12-11 | Mitsui Takeda Chemicals Inc | Method and apparatus for producing polyester polyol, polyester polyol and polyurethane foam |
US6339125B1 (en) | 2000-10-30 | 2002-01-15 | Crompton Corporation | Cationic polyurethane dispersion and composition containing same |
DE60208732T8 (en) | 2001-03-30 | 2007-05-03 | Kansai Paint Co., Ltd., Amagasaki | Process for the preparation of an aqueous dispersion of an alkyd resin |
EP1503714A4 (en) | 2002-04-22 | 2007-01-24 | Philadelphia Children Hospital | Low profile combination device for gastrostomy or jejunostomy applications having anti-granuloma formation characteristics |
GB0229844D0 (en) | 2002-12-23 | 2003-01-29 | Ici Plc | Adhesive |
WO2004083274A1 (en) | 2003-03-13 | 2004-09-30 | Stepan Company | Polyester polyols for polyurethane adhesives |
US7045573B2 (en) | 2003-04-21 | 2006-05-16 | Bayer Materialscience Llc | Polyurethane dispersion (PUD) with improved isopropanol resistance, flexibility and softness |
JP4183548B2 (en) * | 2003-04-22 | 2008-11-19 | ソロテックス株式会社 | Depolymerization method |
US7342068B2 (en) | 2003-11-18 | 2008-03-11 | Air Products And Chemicals, Inc. | Aqueous polyurethane dispersion and method for making and using same |
DE102004011559A1 (en) | 2004-03-08 | 2005-09-29 | Rathor Ag | Phase stable polyurethane prepolymers |
DE102004031786A1 (en) | 2004-07-01 | 2006-01-26 | Cognis Deutschland Gmbh & Co. Kg | Polyurethane-based thickener |
US7192988B2 (en) | 2004-09-30 | 2007-03-20 | Invista North America S.Ar.L. | Process for recycling polyester materials |
KR101168766B1 (en) * | 2004-10-11 | 2012-07-26 | 김효성 | Polyols and Polyurethanes and Polyurethane Foams Using the Same |
US7560526B2 (en) | 2006-03-21 | 2009-07-14 | Oxid, L.P. | Polyol with high cyclopentane solubility |
GB0624542D0 (en) | 2006-12-08 | 2007-01-17 | Unichema Chemie Bv | Unsaturated Polymers |
US20090131625A1 (en) | 2007-11-21 | 2009-05-21 | Kurian Joseph V | Processes for making elastomeric polyester esters from post-consumer polyester |
EP2178933B1 (en) | 2007-08-03 | 2014-01-08 | Basf Se | Associative thickener dispersion |
US20120258269A1 (en) * | 2009-12-16 | 2012-10-11 | Basf Se | Preparing polyester polyols |
EP2361939B1 (en) | 2010-02-25 | 2012-08-22 | Cognis IP Management GmbH | Polyurethane thickener |
FR2956863B1 (en) | 2010-02-26 | 2013-02-08 | Coatex Sas | ASSOCIATIVE ACRYLIC EMULSION CONTAINING A MONOMER BASED ON OXO ALCOHOL, PROCESS FOR PRODUCING THE SAME, AND PROCESS FOR THICKENING AQUEOUS FORMULATION THEREFROM. |
US8673275B2 (en) | 2010-03-02 | 2014-03-18 | Basf Se | Block copolymers and their use |
WO2011134872A1 (en) | 2010-04-28 | 2011-11-03 | Dsm Ip Assets B.V. | Renewable barrier film |
US8871817B2 (en) * | 2010-10-22 | 2014-10-28 | Basf Se | Polyurethane thickeners |
WO2012135625A1 (en) | 2011-03-31 | 2012-10-04 | Dow Global Technologies Llc | Hydrophobic polyester polycarbonate polyols for use in polyurethane applications |
CA2869739C (en) | 2012-04-10 | 2020-08-11 | Huntsman International Llc | High functional polyester polyols |
US8916322B2 (en) | 2012-11-15 | 2014-12-23 | Xerox Corporation | Sustainable toner |
CN103113560A (en) * | 2013-02-20 | 2013-05-22 | 江苏永林油脂化工有限公司 | Preparation method of dimer acid type polyester polyol |
-
2015
- 2015-04-30 KR KR1020167033944A patent/KR20170021239A/en not_active Application Discontinuation
- 2015-04-30 WO PCT/US2015/028644 patent/WO2015171433A1/en active Application Filing
- 2015-04-30 CN CN201580023856.3A patent/CN106459341A/en active Pending
- 2015-04-30 JP JP2017511152A patent/JP6550125B2/en not_active Expired - Fee Related
- 2015-04-30 EP EP15721518.7A patent/EP3140333B1/en not_active Not-in-force
- 2015-04-30 BR BR112016025760A patent/BR112016025760A8/en active Search and Examination
- 2015-08-10 US US14/822,528 patent/US9840584B2/en active Active
-
2017
- 2017-11-07 US US15/805,600 patent/US10344121B2/en active Active
-
2019
- 2019-04-15 US US16/383,951 patent/US10611879B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004307583A (en) * | 2003-04-03 | 2004-11-04 | Japan Composite Co Ltd | Method for producing polyester polyol and cured polyurethane |
EP2565226A1 (en) * | 2011-06-23 | 2013-03-06 | Institutul National de Cercetare Dezvoltare Pentru Chimie si Petrochimie - Icechim | Method of obtaining aromatic polyester-ether polyols from waste poly (ethylene terephthalate) (PET) and aromatic polyester-ether polyols incorporating poly(ethylene terephthalate) wastes and renewable materials, obtained by respective procedure |
WO2013041552A1 (en) * | 2011-09-23 | 2013-03-28 | Dsm Ip Assets B.V. | Polymer composition containing a thermoplastic polyester elastomer |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10119006B2 (en) | 2015-01-30 | 2018-11-06 | Resinate Materials Group, Inc. | Integrated process for treating recycled streams of PET and PTT |
US9714334B2 (en) | 2015-01-30 | 2017-07-25 | Resinate Materials Group, Inc. | Integrated process for treating recycled PET and PTT materials |
US9752005B2 (en) | 2015-01-30 | 2017-09-05 | Resinate Materials Group, Inc. | Integrated process for treating recycled streams of PET and PTT |
WO2016123558A1 (en) * | 2015-01-30 | 2016-08-04 | Resinate Materials Group, Inc. | Integrated process for treating recycled streams of pet and ptt |
EP3408308B1 (en) | 2016-01-26 | 2020-03-18 | Basf Se | Method for producing furane- based polyester |
EP3269754A1 (en) | 2016-07-12 | 2018-01-17 | Allnex Belgium S.A. | (meth)acrylated compounds based on recycled pet |
WO2018011098A1 (en) | 2016-07-12 | 2018-01-18 | Allnex Belgium S.A. | (meth)acrylated compounds based on recycled pet |
US10941271B2 (en) | 2016-07-12 | 2021-03-09 | Allnex Belgium S.A. | (Meth)acrylated compounds based on recycled PET |
EP3845582A1 (en) | 2016-07-12 | 2021-07-07 | Allnex Belgium, S.A. | (meth)acrylated compounds based on recycled pet |
US11267949B2 (en) | 2016-07-12 | 2022-03-08 | Allnex Belgium S.A. | (Meth)acrylated compounds based on recycled PET |
TWI630221B (en) * | 2017-05-26 | 2018-07-21 | 遠東新世紀股份有限公司 | Polyester production method |
WO2019100058A1 (en) * | 2017-11-20 | 2019-05-23 | Resinate Materials Group, Inc. | Polyol compositions from thermoplastic polyesters and their use in hot-melt adhesives and binders |
CN116239949A (en) * | 2018-06-01 | 2023-06-09 | 科思创(荷兰)有限公司 | Radiation curable composition for coating optical fibers and coatings produced therefrom |
US11236213B2 (en) * | 2019-01-07 | 2022-02-01 | Sun Chemical Corporation | Water-soluble or dispersible polyester resins made from terephthalate plastic materials useful as dispersant resins for inks |
WO2024132976A1 (en) * | 2022-12-21 | 2024-06-27 | Basf Se | Polyester polyol based on polybutylene terephthalate |
Also Published As
Publication number | Publication date |
---|---|
US10611879B2 (en) | 2020-04-07 |
JP2017515964A (en) | 2017-06-15 |
US9840584B2 (en) | 2017-12-12 |
BR112016025760A8 (en) | 2021-05-04 |
CN106459341A (en) | 2017-02-22 |
KR20170021239A (en) | 2017-02-27 |
EP3140333A1 (en) | 2017-03-15 |
JP6550125B2 (en) | 2019-07-24 |
US20150344622A1 (en) | 2015-12-03 |
US10344121B2 (en) | 2019-07-09 |
EP3140333B1 (en) | 2019-02-27 |
US20180066106A1 (en) | 2018-03-08 |
US20190241702A1 (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10611879B2 (en) | Polyester polyols from thermoplastic polyesters and dimer fatty acids | |
US9988489B2 (en) | High recycle content polyols from thermoplastic polyesters and lignin or tannin | |
US10414859B2 (en) | High recycle content polyester polyols | |
EP3212687B1 (en) | High recycle content polyester polyols from hydroxy-functional ketal acids, esters or amides | |
US10040899B2 (en) | Cycloaliphatic polyester polyols from thermoplastic polyesters | |
US10934390B2 (en) | Polyester polyols with increased clarity | |
US11299614B2 (en) | Sustainable, energy-curable polyester polyols and coatings or rigid foams therefrom | |
WO2016028492A1 (en) | High recycle content polyester polyols | |
WO2016153780A1 (en) | Cycloaliphatic polyester polyols from thermoplastic polyesters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15721518 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017511152 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016025760 Country of ref document: BR |
|
REEP | Request for entry into the european phase |
Ref document number: 2015721518 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015721518 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167033944 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016025760 Country of ref document: BR Kind code of ref document: A2 Effective date: 20161103 |