WO2015163857A1 - Determining an optimized summarizer architecture for a selected task - Google Patents

Determining an optimized summarizer architecture for a selected task Download PDF

Info

Publication number
WO2015163857A1
WO2015163857A1 PCT/US2014/034997 US2014034997W WO2015163857A1 WO 2015163857 A1 WO2015163857 A1 WO 2015163857A1 US 2014034997 W US2014034997 W US 2014034997W WO 2015163857 A1 WO2015163857 A1 WO 2015163857A1
Authority
WO
WIPO (PCT)
Prior art keywords
meta
summaries
selected task
summarization
value
Prior art date
Application number
PCT/US2014/034997
Other languages
French (fr)
Inventor
Steven J Simske
Malgorzata M Sturgill
Marie Vans
Leandro Marcondes FARINATT
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to US15/305,875 priority Critical patent/US10572525B2/en
Priority to EP14890125.9A priority patent/EP3134822A4/en
Priority to PCT/US2014/034997 priority patent/WO2015163857A1/en
Publication of WO2015163857A1 publication Critical patent/WO2015163857A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/34Browsing; Visualisation therefor
    • G06F16/345Summarisation for human users
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/3331Query processing
    • G06F16/3332Query translation
    • G06F16/3334Selection or weighting of terms from queries, including natural language queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/335Filtering based on additional data, e.g. user or group profiles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/907Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually

Definitions

  • Summaries provide a concise account of the main facts or features of some type of content, such as a document.
  • each approach to summarization is viewed individually, as a variety of distinctive approaches to statistical language processing (SLP) and natural language processing (NLP) exist.
  • SLP statistical language processing
  • NLP natural language processing
  • Figure 1 is a functional block diagram illustrating one example of a system for determining an optimized summarizer architecture for a selected task.
  • Figure 2 is a block diagram illustrating one example of a processing system for implementing the system for determining an optimized summarizer architecture for a selected task.
  • Figure 3 is a flow diagram illustrating one example of a method for determining an optimized summarizer architecture for a selected task.
  • Figure 4 is a flow diagram illustrating another example of a method for determining an optimized summarizer architecture for a selected task. Detailed Description
  • Figure 1 is a functional block diagram illustrating one example of a system 100 for determining an optimized summarizer architecture for a selected task.
  • the system receives content, such as a text document, and filters the content.
  • the filtered content is then processed by a plurality of different summarization engines to provide a plurality of summaries.
  • the summaries may be further processed by a plurality of different meta-algorithmic patterns to provide a plurality of meta-summaries.
  • the summaries and/or meta-summaries are then evaluated to determine a value or relevance of each summary and/or meta-summary, respectively, for the selected task.
  • the summarization engine and/or meta-algorithmic pattern that provides a summary and/or meta-summary, respectively, having a significant value or relevance for the selected task is then recommended for deployment. In this way, a summarizer architecture optimized for a particular task is determined.
  • Meta-summaries are summarizations created by the intelligent combination of two or more standard or primary summaries.
  • the intelligent combination of multiple intelligent algorithms, systems, or engines is termed "meta-algorithmics", and first-order, second-order, and third-order patterns for meta-algorithmics can be defined.
  • System 100 includes content 102, a filter 104, filtered content 106, summarization engines 108, summaries 110(1)-110(x), meta-algorithmic patterns 112(1)-112(y), meta-summaries 114(1)-114(z), an evaluator 116, and a selector 18, where "x", "y", and “z” are any suitable numbers of summaries, meta-algorithmic patterns, and meta-summaries, respectively.
  • Content 102 includes text and/or other content, such as images, sound, and/or video.
  • Content 102 may include a book, an article, a document, or other suitable information.
  • Filter 104 filters content 102 to provide filtered content 106 suitable for processing by summarization engines 108.
  • filter 104 may remove common words (e.g., stop words such as "the”, “a”, “an”, “for”, and “of) from content 102.
  • Filter 104 may also remove images, sound, video and/or other portions of content 102 to provide filtered content 106.
  • filter 104 is excluded and content 102 is provided directly to summarization engines 108.
  • Summarization engines 108 summarize filtered content 106 to provide a plurality of summaries 110(1)-110(x). In one example, each of the
  • a summarization engine may provide a summary including another suitable summarization output.
  • Different statistical language processing (SLP) and natural language processing (NLP) techniques may be used to generate the summaries.
  • Meta-algorithmic patterns 1 12(1)-112(y) are used to summarize summaries 110(1)-110(x) to provide a plurality of meta-summaries 114(1)- 114(z). Each of the meta-algorithmic patterns is applied to two or more summaries to provide a meta-summary. In one example, each of the plurality of meta-algorithmic patterns is based on one or more of the following approaches: (1) weighted voting;
  • a meta-algorithmic pattern may be based on another suitable approach.
  • the output of multiple summarization engines is combined and relatively weighted based on the relative confidence in each summarization engine and the relative weighting of the terms, phrases, clauses, sentences, and chunks in each summarization.
  • the expert feedback may be information from a larger corpus as to which words, phrases, and concepts in a document stand out in comparison to a general corpus.
  • first and second order meta-algorithmics are chained.
  • one summarization engine may be substituted for another summarization engine based on an attribute of the document, such as the document length or language.
  • the (5) predictive selection approach may include looking at the general topic associated with the key terms in a portion of text and applying a specific summarization engine or set of summarization engines based on membership within a class associated with a particular topic or set of topics.
  • [0013J Evaluator 116 determines a value or relevance of each summary 110(1)- 110(x) and each meta-summary 114(1)-114(z) for the selected task.
  • the selected task may include one or a combination of the following:
  • the selected task may include another suitable application.
  • Each summary and meta-summary is evaluated for its relative value in the selected task.
  • the relative value in the selected task (i.e., the relevance or utility for the selected task), is evaluated based on a ground truth set, feedback received from users, or other suitable criteria applicable to the selected task.
  • Each task is described in more detail below.
  • Selector 118 selects the summary or meta-summary based on the assessed value, (or utility or relevance), to the selected task to provide recommended deployment settings. In one example, selector 118 selects the summary or meta-summary having the highest assessed value to the selected task to provide recommended deployment settings. In other examples, selector 18 selects the summary or meta-summary having an assessed value over a predefined threshold for the selected task to provide recommended deployment settings.
  • the recommended deployments settings include the summarization engines and/or meta-algorithmic patterns that provide the optimum
  • the optimum summarization architecture can be integrated into a system real-time.
  • the system can be reconfigured per preference, schedule, need, or upon the completion of a significant amount of new instances of the tasks.
  • Text classification is assigning text chunks, which range from phrases, clauses, and paragraphs to documents or sets of documents, to specific classes of interest to the user population. Text classification is related to (4) document classification described below except that text classification has different boundaries for the text segmentation.
  • the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the text classification that significantly matches the training (i.e., the ground truth) set.
  • the training i.e., the ground truth
  • the larger the training set and the larger the number of summarization engines available the better the final system performance. System performance is optimized, however, when the training set is much larger than the number of summarization engines.
  • the summarization architecture is then selected and recommended for deployment.
  • the summaries and meta- summaries are evaluated to determine the summarization architecture that provides the educational materials that result in the highest absolute and/or relative scores. The summarization architecture is then selected and recommended for deployment.
  • Training is learning tied to proof of ability. Training materials are delivered to users followed by scoring of the capability of the users (e.g., by the ability to perform a task). For the training task, the summaries and meta- summaries are evaluated to determine the summarization architecture that provides the training materials that result in the highest absolute and/or relative scores. The summarization architecture is then selected and recommended for deployment.
  • Document classification is the assignment of documents to different (i.e., separate) classes that optimize the similarity within classes while ensuring distinction between classes.
  • Summaries provide one means to classify documents since they provide a distilled set of text that can be used for indexing and searching.
  • the summaries and meta- summaries are evaluated to determine the summarization architecture that provides the document classification that significantly matches the training (i.e., ground truth) set. The summarization architecture is then selected and recommended for deployment.
  • Summarization engines can be combined to provide a consensus for the data extracted.
  • data mining can provide an exhaustive description of the text information.
  • data mining can provide the gist of the document content or the content that distinguishes the document from other documents.
  • the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the data mining results that provide a significant recovery of tagged content (e.g., ground truth to-be-mined data). The summarization architecture is then selected and recommended for deployment.
  • Metadata tagging is related to (5) data mining, in that the output of the summarizers are used to tag documents.
  • the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the metadata tags (e.g., indices, descriptors, semantic tags) that provide a significant match to the ground truth set.
  • metadata tags e.g., indices, descriptors, semantic tags
  • summarization architecture is then selected and recommended for deployment.
  • Keyword identification is related to (4) document classification.
  • keyword identification the keywords of a text element are used to tag a document for classification. Keyword identification, unlike (10) topic
  • the keywords can be unsupervised, in which case the keywords are not known a priori.
  • the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the highest accuracy keyword definition (e.g., for text classification or search accuracy). The summarization architecture is then selected and recommended for deployment.
  • Re-structuring of the text is for the preparation for column-based or other structured data analytics.
  • different summaries may provide better output for meaningful analytics than the original text.
  • Different summarization engines may ignore different "non-payload" text, such as HTML tags and meta-data, so that the summaries correspond better with the actual payload, or content, of the text.
  • the summaries and meta-summaries are evaluated to determine the summarization architecture that provides a re-structuring of the text such that the analytics significantly match the raw text for a known, ground truth set. The summarization architecture is then selected and recommended for deployment.
  • Text chunking/segmentation is a method of summarizing or presenting text that splits concepts into small pieces of information to make reading and understanding more efficacious.
  • Chunking includes bulleted lists, short subheadings, condensed sentences with one or two ideas per sentence, condensed paragraphs, scan-friendly text (e.g., with key words and concepts italicized or boldfaced), and graphics designed to guide the eyes to key sections.
  • scan-friendly text e.g., with key words and concepts italicized or boldfaced
  • graphics designed to guide the eyes to key sections.
  • the summaries and meta- summaries are evaluated to determine the summarization architecture that results in better understanding (e.g., see (2) education and (3) training tasks discussed above) or results in better matching to an expert-provided
  • chunking/segmentation e.g., a blurb.
  • the summarization architecture is then selected and recommended for deployment.
  • Topic identification is related to (4) document classification.
  • the topic identification is a means of filing or otherwise assigning a text element to a class.
  • Identification of the topic or topics unlike (7) keyword identification, is generally associated with selecting from a list or taxonomy.
  • the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the highest accuracy association of text elements with a list, dictionary, or taxonomy.
  • summarization architecture is then selected and recommended for deployment.
  • Author identification is using author word usage, key phrases, and word patterns to identify the author's identity. Different approaches include determination of the author's native language from the types of text errors that exist in the document, determination of style (e.g., stylometry) using machine learning and rules such as "rare pairs", and other summarizer outputs.
  • style e.g., stylometry
  • the summarization engines used for author identification are often quite different from those used for the other tasks described herein, since the sentences, phrases, etc., which identify an author do not necessarily "stand out” from a general corpus. Therefore, in one example, summarization engines intentionally configured to perform differently from their default settings may be used for author identification. For the author identification task, the summaries and meta-summaries are evaluated to determine the summarization architecture that works better to identify authors of known (e.g., ground truth) documents. The summarization architecture is then selected and recommended for deployment.
  • Jargon identification is identifying irregular word usage that is consistent with jargon. Irregular word usage consistent with jargon can be the output of specific summarizers. Alternatively, jargon can often be identified by the difference in the output of separate summarizers. Jargon can also be associated with differences in part of speech assignment. The terms for which participation in summarizers is entropic, for example, may be jargon.
  • the summaries and meta-summaries are evaluated to determine the summarization architecture that significantly identifies known jargon. This means that sentences and phrases containing a disproportionate amount of jargon are preferable. Summarization engines sensitive to part of speech usage of words and their deviation from expected part of speech usage, therefore, may be of optimal value for jargon identification. The summarization architecture is then selected and recommended for deployment.
  • FIG. 2 is a block diagram illustrating one example of a processing system 200 for implementing system 100 for determining an optimized summarizer architecture for a selected task.
  • Processing system 200 includes a processor 202, a memory 204, input devices 216, and output devices 218.
  • Processor 202, memory 204, input devices 216, and output devices 218 are communicatively coupled to each other through communication link 220 (e.g., a bus).
  • communication link 220 e.g., a bus
  • Processor 202 includes a Central Processing Unit (CPU) or another suitable processor.
  • memory 204 stores machine readable instructions executed by processor 202 for operating processing system 200.
  • Memory 204 includes any suitable combination of volatile and/or non-volatile memory, such as combinations of Random Access Memory (RAM), Read-Only Memory (ROM), flash memory, and/or other suitable memory.
  • Memory 204 stores content 206 for processing by processing system 200.
  • Memory 204 also stores instructions to be executed by processor 202 including instructions for a filter 208, summarization engines 210, meta- algorithmic patterns 212, and an evaluator 214.
  • filter 208, summarization engines 2 0, meta-algorithmic patterns 212, and evaluator 214 include filter 104, summarization engines 108, meta-algorithmic patterns 112(1)- 112(y), and evaluator 116, respectively, as previously described and illustrated with reference to Figure 1.
  • Processor 202 executes instructions of filter 208 to filter content 206 to provide filtered content.
  • Processor 202 executes instructions of summarization engines 210 to summarize the filtered content to provide summaries.
  • Processor 202 executes instructions of meta-algorithmic patterns 212 to summarize the summaries to provide meta-summaries.
  • Processor 202 executes instructions of evaluator 214 to evaluate the summaries and meta-summaries to determine the optimum summarization architecture for a selected task. The optimum summarization architecture for the selected task is then recommended for deployment by processing system 200.
  • Input devices 216 include a keyboard, mouse, data ports, and/or other suitable devices for inputting information into processing system 200. In one example, input devices 216 are used to input feedback from users for evaluating the summaries and meta-summaries for a selected task, such as for education or training.
  • Output devices 218 include a monitor, speakers, data ports, and/or other suitable devices for outputting information from processing system 200. In one example, output devices 218 are used to output summaries and meta- summaries to users and to recommend the optimum summarization architecture for a select task.
  • FIG. 3 is a flow diagram illustrating one example of a method 300 for determining a summarizer architecture optimized for a selected task.
  • content to be processed is received.
  • the content is summarized using summarization engines to provide summaries.
  • summarization engines to provide summaries.
  • a value of each of the summaries for a selected task is determined.
  • a summarization engine is recommended based on the assessed values of the summaries.
  • FIG. 4 is a flow diagram illustrating another example of a method 400 for determining an optimized summarizer architecture for a selected task.
  • content to be processed is received.
  • the content is summarized using summarization engines to provide summaries.
  • the summaries are summarized using meta-algorithmic patterns to provide meta-summaries.
  • a value of each of the summaries and each of the meta-summaries for a selected task is determined.
  • a summarization engine or meta- algorithmic pattern is recommended based on the assessed values of the summaries and meta-summaries.
  • Examples of the disclosure provide a generalized system for using multiple summaries and meta-algorithmics to optimize a text-related intelligence generating or machine intelligence system.
  • the generalized system provides a pattern-based, automatable approach to summarization that can learn and improve over time, and is not fixed on a single technology or machine learning approach. In this way, the content used to represent a larger body of text, suitable to a wide range of applications, can be optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Library & Information Science (AREA)
  • Artificial Intelligence (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

One example is a system including a plurality of summarization engines, an evaluator, and a selector. Each of the plurality of summarization engines receives content to provide a summary of the content. The evaluator determines a value of each summary for a selected task. The selector selects a summarization engine for the selected task based on the assessed value of each summary.

Description

DETERMINING AN OPTIMIZED SUMMARIZER ARCHITECTURE FOR A
SELECTED TASK
Background
[0001] Summaries provide a concise account of the main facts or features of some type of content, such as a document. There are many different approaches to summarize content. Typically, each approach to summarization is viewed individually, as a variety of distinctive approaches to statistical language processing (SLP) and natural language processing (NLP) exist. Summaries can be used in a wide variety of applications to reduce content into a form more beneficial to a user than the original content.
Brief Description of the Drawings
[0002] Figure 1 is a functional block diagram illustrating one example of a system for determining an optimized summarizer architecture for a selected task.
[0003] Figure 2 is a block diagram illustrating one example of a processing system for implementing the system for determining an optimized summarizer architecture for a selected task.
[0004] Figure 3 is a flow diagram illustrating one example of a method for determining an optimized summarizer architecture for a selected task.
[0005] Figure 4 is a flow diagram illustrating another example of a method for determining an optimized summarizer architecture for a selected task. Detailed Description
[0006] In the following detailed description, reference is made to the
accompanying drawings which form a part hereof, and in which is shown by way of illustration specific examples in which the disclosure may be practiced. It is to be understood that other examples may be utilized, and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims. It is to be understood that features of the various examples described herein may be combined, in part or whole, with each other, unless specifically noted otherwise.
[0007] Figure 1 is a functional block diagram illustrating one example of a system 100 for determining an optimized summarizer architecture for a selected task. The system receives content, such as a text document, and filters the content. The filtered content is then processed by a plurality of different summarization engines to provide a plurality of summaries. The summaries may be further processed by a plurality of different meta-algorithmic patterns to provide a plurality of meta-summaries. The summaries and/or meta-summaries are then evaluated to determine a value or relevance of each summary and/or meta-summary, respectively, for the selected task. The summarization engine and/or meta-algorithmic pattern that provides a summary and/or meta-summary, respectively, having a significant value or relevance for the selected task is then recommended for deployment. In this way, a summarizer architecture optimized for a particular task is determined.
[0008] Meta-summaries are summarizations created by the intelligent combination of two or more standard or primary summaries. The intelligent combination of multiple intelligent algorithms, systems, or engines is termed "meta-algorithmics", and first-order, second-order, and third-order patterns for meta-algorithmics can be defined.
[0009] System 100 includes content 102, a filter 104, filtered content 106, summarization engines 108, summaries 110(1)-110(x), meta-algorithmic patterns 112(1)-112(y), meta-summaries 114(1)-114(z), an evaluator 116, and a selector 18, where "x", "y", and "z" are any suitable numbers of summaries, meta-algorithmic patterns, and meta-summaries, respectively. Content 102 includes text and/or other content, such as images, sound, and/or video.
Content 102 may include a book, an article, a document, or other suitable information. Filter 104 filters content 102 to provide filtered content 106 suitable for processing by summarization engines 108. In one example, filter 104 may remove common words (e.g., stop words such as "the", "a", "an", "for", and "of) from content 102. Filter 104 may also remove images, sound, video and/or other portions of content 102 to provide filtered content 106. In one example, filter 104 is excluded and content 102 is provided directly to summarization engines 108.
[0010] Summarization engines 108 summarize filtered content 106 to provide a plurality of summaries 110(1)-110(x). In one example, each of the
summarization engines provides a summary including one or more of the following summarization outputs:
(1 ) a set of key words;
(2) a set of key phrases;
(3) an extractive set of clauses;
(4) an extractive set of sentences;
(5) an extractive set of clustered sentences, paragraphs, and other text chunks; or
(6) an abstractive summarization or semantic.
In other examples, a summarization engine may provide a summary including another suitable summarization output. Different statistical language processing (SLP) and natural language processing (NLP) techniques may be used to generate the summaries.
[0011] Meta-algorithmic patterns 1 12(1)-112(y) are used to summarize summaries 110(1)-110(x) to provide a plurality of meta-summaries 114(1)- 114(z). Each of the meta-algorithmic patterns is applied to two or more summaries to provide a meta-summary. In one example, each of the plurality of meta-algorithmic patterns is based on one or more of the following approaches: (1) weighted voting;
(2) expert feedback;
(3) generalized hybridization;
(4) constrained substitute; or
(5) predictive selection.
In other examples, a meta-algorithmic pattern may be based on another suitable approach.
[0012] In the (1) weighted voting approach, the output of multiple summarization engines is combined and relatively weighted based on the relative confidence in each summarization engine and the relative weighting of the terms, phrases, clauses, sentences, and chunks in each summarization. In the (2) expert feedback approach, the expert feedback may be information from a larger corpus as to which words, phrases, and concepts in a document stand out in comparison to a general corpus. In the (3) generalized hybridization approach, first and second order meta-algorithmics are chained. In the (4) constrained substitute approach, one summarization engine may be substituted for another summarization engine based on an attribute of the document, such as the document length or language. The (5) predictive selection approach may include looking at the general topic associated with the key terms in a portion of text and applying a specific summarization engine or set of summarization engines based on membership within a class associated with a particular topic or set of topics.
[0013J Evaluator 116 determines a value or relevance of each summary 110(1)- 110(x) and each meta-summary 114(1)-114(z) for the selected task. In one example, the selected task may include one or a combination of the following:
(1) text classification;
(2) education;
(3) training;
(4) document classification;
(5) data mining;
(6) metadata tagging;
(7) keyword identification; (8) Re-structuring of the text;
(9) text chunking/segmentation;
(10) topic identification;
(11) author identification; or
(12) jargon identification.
In other examples, the selected task may include another suitable application. Each summary and meta-summary is evaluated for its relative value in the selected task. The relative value in the selected task, (i.e., the relevance or utility for the selected task), is evaluated based on a ground truth set, feedback received from users, or other suitable criteria applicable to the selected task. Each task is described in more detail below.
[0014] Selector 118 selects the summary or meta-summary based on the assessed value, (or utility or relevance), to the selected task to provide recommended deployment settings. In one example, selector 118 selects the summary or meta-summary having the highest assessed value to the selected task to provide recommended deployment settings. In other examples, selector 18 selects the summary or meta-summary having an assessed value over a predefined threshold for the selected task to provide recommended deployment settings. The recommended deployments settings include the summarization engines and/or meta-algorithmic patterns that provide the optimum
summarization architecture for the selected task. The optimum summarization architecture can be integrated into a system real-time. The system can be reconfigured per preference, schedule, need, or upon the completion of a significant amount of new instances of the tasks.
[0015] (1) Text classification is assigning text chunks, which range from phrases, clauses, and paragraphs to documents or sets of documents, to specific classes of interest to the user population. Text classification is related to (4) document classification described below except that text classification has different boundaries for the text segmentation. For a text classification task, the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the text classification that significantly matches the training (i.e., the ground truth) set. Generally, the larger the training set and the larger the number of summarization engines available, the better the final system performance. System performance is optimized, however, when the training set is much larger than the number of summarization engines. The summarization architecture is then selected and recommended for deployment.
[0016] (2) Education is learning tied to proof of understanding. Educational materials are delivered to users followed by scoring the proficiency of the users (e.g., by using tests, quizzes, or other means of assessing material
familiarity/confluence). For the education task, the summaries and meta- summaries are evaluated to determine the summarization architecture that provides the educational materials that result in the highest absolute and/or relative scores. The summarization architecture is then selected and recommended for deployment.
[0017] (3) Training is learning tied to proof of ability. Training materials are delivered to users followed by scoring of the capability of the users (e.g., by the ability to perform a task). For the training task, the summaries and meta- summaries are evaluated to determine the summarization architecture that provides the training materials that result in the highest absolute and/or relative scores. The summarization architecture is then selected and recommended for deployment.
[0018] (4) Document classification is the assignment of documents to different (i.e., separate) classes that optimize the similarity within classes while ensuring distinction between classes. Summaries provide one means to classify documents since they provide a distilled set of text that can be used for indexing and searching. For the document classification task, the summaries and meta- summaries are evaluated to determine the summarization architecture that provides the document classification that significantly matches the training (i.e., ground truth) set. The summarization architecture is then selected and recommended for deployment.
[0019] (5) Data mining is the discovery of patterns in large data sets.
Summarization engines can be combined to provide a consensus for the data extracted. On the inclusive side, data mining can provide an exhaustive description of the text information. On the exclusive side, data mining can provide the gist of the document content or the content that distinguishes the document from other documents. For the data mining task, the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the data mining results that provide a significant recovery of tagged content (e.g., ground truth to-be-mined data). The summarization architecture is then selected and recommended for deployment.
[0020] (6) Metadata tagging is related to (5) data mining, in that the output of the summarizers are used to tag documents. For the metadata tagging task, the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the metadata tags (e.g., indices, descriptors, semantic tags) that provide a significant match to the ground truth set. The
summarization architecture is then selected and recommended for deployment.
[0021] (7) Keyword identification is related to (4) document classification. In keyword identification, the keywords of a text element are used to tag a document for classification. Keyword identification, unlike (10) topic
identification described below, can be unsupervised, in which case the keywords are not known a priori. For the keyword identification task, the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the highest accuracy keyword definition (e.g., for text classification or search accuracy). The summarization architecture is then selected and recommended for deployment.
[0022] (8) Re-structuring of the text is for the preparation for column-based or other structured data analytics. When text is prepared for data mining, different summaries may provide better output for meaningful analytics than the original text. Different summarization engines may ignore different "non-payload" text, such as HTML tags and meta-data, so that the summaries correspond better with the actual payload, or content, of the text. For the re-structuring of text task, the summaries and meta-summaries are evaluated to determine the summarization architecture that provides a re-structuring of the text such that the analytics significantly match the raw text for a known, ground truth set. The summarization architecture is then selected and recommended for deployment. [0023] (9) Text chunking/segmentation is a method of summarizing or presenting text that splits concepts into small pieces of information to make reading and understanding more efficacious. Chunking includes bulleted lists, short subheadings, condensed sentences with one or two ideas per sentence, condensed paragraphs, scan-friendly text (e.g., with key words and concepts italicized or boldfaced), and graphics designed to guide the eyes to key sections. For the text chunking/segmentation task, the summaries and meta- summaries are evaluated to determine the summarization architecture that results in better understanding (e.g., see (2) education and (3) training tasks discussed above) or results in better matching to an expert-provided
chunking/segmentation (e.g., a blurb). The summarization architecture is then selected and recommended for deployment.
[0024] (10) Topic identification is related to (4) document classification. The topic identification is a means of filing or otherwise assigning a text element to a class. Identification of the topic or topics, unlike (7) keyword identification, is generally associated with selecting from a list or taxonomy. For the topic identification task, the summaries and meta-summaries are evaluated to determine the summarization architecture that provides the highest accuracy association of text elements with a list, dictionary, or taxonomy. The
summarization architecture is then selected and recommended for deployment.
[0025] (1 1) Author identification is using author word usage, key phrases, and word patterns to identify the author's identity. Different approaches include determination of the author's native language from the types of text errors that exist in the document, determination of style (e.g., stylometry) using machine learning and rules such as "rare pairs", and other summarizer outputs. The summarization engines used for author identification are often quite different from those used for the other tasks described herein, since the sentences, phrases, etc., which identify an author do not necessarily "stand out" from a general corpus. Therefore, in one example, summarization engines intentionally configured to perform differently from their default settings may be used for author identification. For the author identification task, the summaries and meta-summaries are evaluated to determine the summarization architecture that works better to identify authors of known (e.g., ground truth) documents. The summarization architecture is then selected and recommended for deployment.
[0026] (12) Jargon identification is identifying irregular word usage that is consistent with jargon. Irregular word usage consistent with jargon can be the output of specific summarizers. Alternatively, jargon can often be identified by the difference in the output of separate summarizers. Jargon can also be associated with differences in part of speech assignment. The terms for which participation in summarizers is entropic, for example, may be jargon. For the jargon identification task, the summaries and meta-summaries are evaluated to determine the summarization architecture that significantly identifies known jargon. This means that sentences and phrases containing a disproportionate amount of jargon are preferable. Summarization engines sensitive to part of speech usage of words and their deviation from expected part of speech usage, therefore, may be of optimal value for jargon identification. The summarization architecture is then selected and recommended for deployment.
[0027] Figure 2 is a block diagram illustrating one example of a processing system 200 for implementing system 100 for determining an optimized summarizer architecture for a selected task. Processing system 200 includes a processor 202, a memory 204, input devices 216, and output devices 218. Processor 202, memory 204, input devices 216, and output devices 218 are communicatively coupled to each other through communication link 220 (e.g., a bus).
[0028] Processor 202 includes a Central Processing Unit (CPU) or another suitable processor. In one example, memory 204 stores machine readable instructions executed by processor 202 for operating processing system 200. Memory 204 includes any suitable combination of volatile and/or non-volatile memory, such as combinations of Random Access Memory (RAM), Read-Only Memory (ROM), flash memory, and/or other suitable memory.
[0029] Memory 204 stores content 206 for processing by processing system 200. Memory 204 also stores instructions to be executed by processor 202 including instructions for a filter 208, summarization engines 210, meta- algorithmic patterns 212, and an evaluator 214. In one example, filter 208, summarization engines 2 0, meta-algorithmic patterns 212, and evaluator 214 include filter 104, summarization engines 108, meta-algorithmic patterns 112(1)- 112(y), and evaluator 116, respectively, as previously described and illustrated with reference to Figure 1.
[0030] Processor 202 executes instructions of filter 208 to filter content 206 to provide filtered content. Processor 202 executes instructions of summarization engines 210 to summarize the filtered content to provide summaries. Processor 202 executes instructions of meta-algorithmic patterns 212 to summarize the summaries to provide meta-summaries. Processor 202 executes instructions of evaluator 214 to evaluate the summaries and meta-summaries to determine the optimum summarization architecture for a selected task. The optimum summarization architecture for the selected task is then recommended for deployment by processing system 200.
[0031] Input devices 216 include a keyboard, mouse, data ports, and/or other suitable devices for inputting information into processing system 200. In one example, input devices 216 are used to input feedback from users for evaluating the summaries and meta-summaries for a selected task, such as for education or training. Output devices 218 include a monitor, speakers, data ports, and/or other suitable devices for outputting information from processing system 200. In one example, output devices 218 are used to output summaries and meta- summaries to users and to recommend the optimum summarization architecture for a select task.
[0032] Figure 3 is a flow diagram illustrating one example of a method 300 for determining a summarizer architecture optimized for a selected task. At 302, content to be processed is received. At 304, the content is summarized using summarization engines to provide summaries. At 306, a value of each of the summaries for a selected task is determined. At 308, a summarization engine is recommended based on the assessed values of the summaries.
[0001] Figure 4 is a flow diagram illustrating another example of a method 400 for determining an optimized summarizer architecture for a selected task. At 402, content to be processed is received. At 404, the content is summarized using summarization engines to provide summaries. At 406, the summaries are summarized using meta-algorithmic patterns to provide meta-summaries. At 408, a value of each of the summaries and each of the meta-summaries for a selected task is determined. At 410, a summarization engine or meta- algorithmic pattern is recommended based on the assessed values of the summaries and meta-summaries.
[0002] Examples of the disclosure provide a generalized system for using multiple summaries and meta-algorithmics to optimize a text-related intelligence generating or machine intelligence system. The generalized system provides a pattern-based, automatable approach to summarization that can learn and improve over time, and is not fixed on a single technology or machine learning approach. In this way, the content used to represent a larger body of text, suitable to a wide range of applications, can be optimized.
[0033] Although specific examples have been illustrated and described herein, a variety of alternate and/or equivalent implementations may be substituted for the specific examples shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific examples discussed herein. Therefore, it is intended that this disclosure be limited only by the claims and the equivalents thereof.

Claims

1. A system comprising:
a plurality of summarization engines, each summarization engine to receive content to provide a summary of the content via a processing system; an evaluator to determine a value of each summary for a selected task via the processing system; and
a selector to select, via the processing system, a summarization engine for the selected task from the plurality of summarization engines based on the assessed value of each summary.
2. The system of claim 1 , further comprising:
a plurality of meta-algorithmic patterns, each meta-algorithmic pattern to be applied to at least two summaries to provide a meta-summary using the at least two summaries via the processing system,
wherein the evaluator determines a value of each meta-summary for the selected task, and
wherein the selector selects a meta-algorithmic pattern for the selected task from the plurality of meta-algorithmic patterns based on the assessed value of each meta-summary.
3. The system of claim 1 , further comprising:
a plurality of meta-algorithmic patterns, each meta-algorithmic pattern to be applied to at least two summaries to provide a meta-summary using the at least two summaries via the processing system,
wherein the evaluator determines a value of each meta-summary for the selected task, and
wherein the selector selects for deployment the meta-algorithmic pattern or the summarization engine that provides the meta-summary or summary, respectively, having the highest assessed value for the selected task.
4. The system of claim 3, wherein the selector selects for deployment the meta-algorithmic patterns and/or the summarization engines which provide the meta-summaries and/or summaries, respectively, having the highest assessed values for the selected task.
5. The system of claim 1 , wherein the selected task comprises text classification, education, training, document classification, data mining, metadata tagging, keyword identification, re-structuring of text, text
chunking/segmentation, topic identification, author identification, or jargon identification.
6. A system comprising:
a processor; and
a memory communicatively coupled to the processor, the memory storing instructions causing the processor, after execution of the instructions by the processor, to:
filter content to provide filtered content;
generate a plurality of summaries from the filtered content;
generate a plurality of meta-summaries from the summaries; evaluate each summary and each meta-summary to determine a value of each summary and each meta-summary for a selected task; and select a summary or meta-summary for the selected task based on the assessed value for each summary and each meta-summary.
7. The system of claim 6, wherein the selected task comprises text classification, education, training, document classification, data mining, metadata tagging, keyword identification, re-structuring of text, text
chunking/segmentation, topic identification, author identification, or jargon identification.
8. The system of claim 6, wherein the summaries are generated by a plurality of summarization engines, each of the plurality of summarization engines to output a set of key words; a set of key phrases; an extractive set of clauses; an extractive set of sentences; an extractive set of clustered sentences, paragraphs, and text chunks; or an abstractive summarization.
9. The system of claim 6, wherein the meta-summaries are generated by applying a plurality of meta-algorithmic patterns, each of the plurality of meta- algorithmic patterns based on a weighted voting approach, expert feedback, generalized hybridization, constrained substitute, or predictive selection.
10. The system of claim 6, wherein the evaluation of each summary and meta-summary comprises comparing each summary and meta-summary to a ground truth set.
11. A method for determining a summarizer architecture optimized for a selected task, the method comprising:
receiving content via a processing system;
summarizing the content using a plurality of summarization engines to provide a plurality of summaries via the processing system;
determining a value of each of the plurality of summaries for the selected task via the processing system; and
recommending for deployment, via the processing system, a
summarization engine based on the assessed values of the summaries.
12. The method of claim 11 , further comprising:
summarizing the plurality of summaries using a plurality of meta- algorithmic patterns to provide a plurality of meta-summaries via the processing system;
determining a value of each of the plurality of meta-summaries for the selected task via the processing system; and
recommending for deployment, via the processing system, a meta- algorithmic pattern based on the assessed values of the meta-summaries.
13. The method of claim 11 , further comprising:
filtering the content prior to summarizing the content.
14. The method of claim 11 , wherein determining the value of each of the plurality of summaries comprises determining the relative value of each of the plurality of summaries based on feedback received from users of each of the plurality of summaries for the selected task.
15. The method of claim 11 , wherein determining the value of each of the plurality of summaries comprises comparing each of the plurality of summaries to a known data set for the selected task.
PCT/US2014/034997 2014-04-22 2014-04-22 Determining an optimized summarizer architecture for a selected task WO2015163857A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/305,875 US10572525B2 (en) 2014-04-22 2014-04-22 Determining an optimized summarizer architecture for a selected task
EP14890125.9A EP3134822A4 (en) 2014-04-22 2014-04-22 Determining an optimized summarizer architecture for a selected task
PCT/US2014/034997 WO2015163857A1 (en) 2014-04-22 2014-04-22 Determining an optimized summarizer architecture for a selected task

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/034997 WO2015163857A1 (en) 2014-04-22 2014-04-22 Determining an optimized summarizer architecture for a selected task

Publications (1)

Publication Number Publication Date
WO2015163857A1 true WO2015163857A1 (en) 2015-10-29

Family

ID=54332890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/034997 WO2015163857A1 (en) 2014-04-22 2014-04-22 Determining an optimized summarizer architecture for a selected task

Country Status (3)

Country Link
US (1) US10572525B2 (en)
EP (1) EP3134822A4 (en)
WO (1) WO2015163857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108353213A (en) * 2015-10-30 2018-07-31 惠普发展公司,有限责任合伙企业 Video content is summarized and class selection

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171709A1 (en) * 2015-04-24 2016-10-27 Hewlett-Packard Development Company, L.P. Text restructuring
KR101656245B1 (en) * 2015-09-09 2016-09-09 주식회사 위버플 Method and system for extracting sentences
CN108307240B (en) * 2018-02-12 2019-10-22 北京百度网讯科技有限公司 Video recommendation method and device
CN110727789A (en) * 2018-06-29 2020-01-24 微软技术许可有限责任公司 Summary generation of documents
US12045272B2 (en) * 2021-07-08 2024-07-23 Adobe Inc. Auto-creation of custom models for text summarization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7292972B2 (en) * 2003-01-30 2007-11-06 Hewlett-Packard Development Company, L.P. System and method for combining text summarizations
US20080109425A1 (en) * 2006-11-02 2008-05-08 Microsoft Corporation Document summarization by maximizing informative content words
US20120035912A1 (en) * 2010-07-30 2012-02-09 Ben-Gurion University Of The Negev Research And Development Authority Multilingual sentence extractor
US20120240032A1 (en) * 2002-09-16 2012-09-20 Mckeown Kathleen R System and method for document collection, grouping and summarization
WO2014058433A1 (en) * 2012-10-12 2014-04-17 Hewlett-Packard Development Company, L.P. A combinatorial summarizer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337227C (en) 2002-10-31 2007-09-12 艾瑞赞公司 Methods and apparatus for summarizing document content for mobile communication devices
GB2399427A (en) 2003-03-12 2004-09-15 Canon Kk Apparatus for and method of summarising text
WO2005055011A2 (en) * 2003-11-29 2005-06-16 American Board Of Family Medicine, Inc. Computer architecture and process of user evaluation
US20080115103A1 (en) 2006-11-13 2008-05-15 Microsoft Corporation Key performance indicators using collaboration lists
US9268878B2 (en) 2010-06-22 2016-02-23 Microsoft Technology Licensing, Llc Entity category extraction for an entity that is the subject of pre-labeled data
US10691737B2 (en) * 2013-02-05 2020-06-23 Intel Corporation Content summarization and/or recommendation apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120240032A1 (en) * 2002-09-16 2012-09-20 Mckeown Kathleen R System and method for document collection, grouping and summarization
US7292972B2 (en) * 2003-01-30 2007-11-06 Hewlett-Packard Development Company, L.P. System and method for combining text summarizations
US20080109425A1 (en) * 2006-11-02 2008-05-08 Microsoft Corporation Document summarization by maximizing informative content words
US20120035912A1 (en) * 2010-07-30 2012-02-09 Ben-Gurion University Of The Negev Research And Development Authority Multilingual sentence extractor
WO2014058433A1 (en) * 2012-10-12 2014-04-17 Hewlett-Packard Development Company, L.P. A combinatorial summarizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3134822A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108353213A (en) * 2015-10-30 2018-07-31 惠普发展公司,有限责任合伙企业 Video content is summarized and class selection
EP3369252A4 (en) * 2015-10-30 2019-06-12 Hewlett-Packard Development Company, L.P. Video content summarization and class selection
US10521670B2 (en) 2015-10-30 2019-12-31 Hewlett-Packard Development Company, L.P. Video content summarization and class selection

Also Published As

Publication number Publication date
US20170053027A1 (en) 2017-02-23
EP3134822A4 (en) 2018-01-24
US10572525B2 (en) 2020-02-25
EP3134822A1 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6150282B2 (en) Non-factoid question answering system and computer program
Haddi et al. The role of text pre-processing in sentiment analysis
US10572525B2 (en) Determining an optimized summarizer architecture for a selected task
US9965459B2 (en) Providing contextual information associated with a source document using information from external reference documents
US20080235190A1 (en) Method and System For Intelligently Retrieving and Refining Information
Klebanov et al. Supervised word-level metaphor detection: Experiments with concreteness and reweighting of examples
WO2015009620A1 (en) Systems and methods for keyword determination and document classification from unstructured text
EP3210130A2 (en) Data clustering system, methods, and techniques
Bairi et al. Summarization of multi-document topic hierarchies using submodular mixtures
US10515267B2 (en) Author identification based on functional summarization
US20150254332A1 (en) Document classification device, document classification method, and computer readable medium
Kusumaningrum et al. Classification of Indonesian news articles based on Latent Dirichlet Allocation
Chirawichitchai Emotion classification of Thai text based using term weighting and machine learning techniques
Aquino et al. Keyword identification in spanish documents using neural networks
Jarvis Data mining with learner corpora
CN113254655B (en) Text classification method, electronic device and computer storage medium
Swanson et al. Extracting the native language signal for second language acquisition
Rygl Automatic adaptation of author’s stylometric features to document types
Pokou et al. Authorship Attribution using Variable Length Part-of-Speech Patterns.
Handayani et al. Sentiment analysis for Malay language: Systematic literature review
Bartík Text-based web page classification with use of visual information
Ndabula et al. Detection of hate speech code mix involving english and other nigerian languages
CN115794998A (en) Professional field term mining method based on comparative learning
US10366126B2 (en) Data extraction based on multiple meta-algorithmic patterns
Gajewski et al. Topic detection and tracking: a focused survey and a new variant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890125

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014890125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014890125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15305875

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE