WO2015149519A1 - 一种用于污泥热水解处理的辐流式水热反应器 - Google Patents

一种用于污泥热水解处理的辐流式水热反应器 Download PDF

Info

Publication number
WO2015149519A1
WO2015149519A1 PCT/CN2014/090725 CN2014090725W WO2015149519A1 WO 2015149519 A1 WO2015149519 A1 WO 2015149519A1 CN 2014090725 W CN2014090725 W CN 2014090725W WO 2015149519 A1 WO2015149519 A1 WO 2015149519A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
cylinder
tube
pipe
hydrothermal reactor
Prior art date
Application number
PCT/CN2014/090725
Other languages
English (en)
French (fr)
Inventor
王树众
钱黎黎
唐兴颖
孙盼盼
Original Assignee
西安交通大学
王树众
钱黎黎
唐兴颖
孙盼盼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学, 王树众, 钱黎黎, 唐兴颖, 孙盼盼 filed Critical 西安交通大学
Priority to US15/112,688 priority Critical patent/US9994473B2/en
Publication of WO2015149519A1 publication Critical patent/WO2015149519A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the invention belongs to the field of sludge reduction treatment, and particularly relates to a radial flow hydrothermal reactor for sludge thermal hydrolysis treatment.
  • Municipal sludge is a by-product of urban sewage treatment and is a general term for a small amount of sediment, particulate matter and floating matter produced by conventional methods for treating urban sewage. It mainly has the following characteristics:
  • composting, landfilling and incineration are common methods for sludge disposal, and these methods all have certain requirements on the moisture content of the sludge.
  • the sludge filling water content needs to be less than 60%, and the sludge composting needs to be added with a leavening agent to adjust the water content to about 50%.
  • the sludge incineration needs to reduce the moisture content of the sludge to about 30%. Therefore, a wet sludge having a moisture content of about 80% requires further dehydration treatment.
  • the further dewatering of the sludge can be carried out by a thermal drying method, which can reduce the moisture content of the sludge to less than 50%, the volume reduction effect is good, and the product is stable.
  • the method has high technical requirements, complicated management, large energy consumption, and high processing cost.
  • the thermal drying method of sludge it takes 887025kcal of heat per ton of water to be evaporated, and 107m 3 of natural gas with a combined heat value of 8300kcal.
  • the sludge hydrothermal treatment technology is a technology that heats the sludge, hydrolyzes the viscous organic matter in the sludge under a certain temperature and pressure, destroys the colloidal structure of the sludge, and improves the dehydration performance and anaerobic digestion performance, which is also called thermal conditioning.
  • the hydrothermal treatment technology divides the hydrothermal treatment into two types, thermal hydrolysis and wet oxidation, according to whether or not an oxidizing agent is added during the treatment. Thermal hydrolysis does not pass through the oxidant, while wet oxidation requires the introduction of an oxidant into the reactor.
  • the sludge thermal hydrolysis technology can further reduce the moisture content of the sludge more efficiently and economically.
  • the microbial flocs in the sludge are dissolved, the microbial cells are broken, and the organic matter in the sludge is hydrolyzed to reduce the viscosity of the sludge and reduce the binding ability of the viscous material to water.
  • the organic cells in the sludge are broken, the macromolecular organic matter in the cells is released and hydrolyzed, and the water combined with various macromolecules is also released, resulting in water being easier to The sludge particles are separated, thereby dehydrating and drying the sludge with low energy consumption and high efficiency.
  • the hydrothermal reactor is the core equipment of the sludge thermal hydrolysis technology, but the existing hydrothermal reactor has problems such as insufficient reaction, poor continuity, compact structure and large floor space.
  • the object of the present invention is to overcome the defects existing in the prior art and to provide a radial flow hydrothermal reactor for thermal hydrolysis treatment of sludge, which has high thermal hydrolysis reaction efficiency, good continuity, and can effectively reduce heat.
  • the water content of the sludge after dewatering is dehydrated, thereby achieving the advantages of the reduction requirement, and the reactor is integrated with heating and reaction, and has a compact structure.
  • the present invention adopts the following technical solutions to achieve:
  • a radial flow hydrothermal reactor for thermal hydrolysis treatment of sludge comprises: a stirrer, a cylinder and an outer cylinder and an inner cylinder which are arranged coaxially inside the cylinder, and between the outer cylinder and the inner cylinder a guide tube is arranged, and a guide tube is opened at a lower portion of the side wall of the guide tube;
  • the bottom of the inner cylinder is connected to the inlet pipe, and the bottom of the outer cylinder is provided with a sewage pipe, a cylinder body and an outer cylinder An overflow tank is arranged between the bottom, and an outlet pipe is opened at the bottom of the overflow tank;
  • the agitator comprises: a motor, a blade, a stirring shaft and a support member at the bottom; the motor is located at the top of the cylinder, one end of the stirring shaft is connected to the motor, and the other end runs through the cylinder along the central axis and extends into the inlet pipe, stirring The shaft is positioned by the support member; the blade is disposed on the stirring shaft and is located in the inner cylinder;
  • the inlet tube comprises: an inner tube and an outer tube which are coaxially and nested, and the inner tube is further provided with a scraper tangential to the wall surface thereof, the scraper is fixedly connected with the stirring shaft; A steam pipe is provided, and the steam pipe is connected obliquely downward to the outer pipe.
  • the height-to-diameter ratio of the cylinder is less than 1, and is a stainless steel material or a reinforced concrete structure; and the cylinder is tapered above, and the upper part is provided with a sealing head for sealing; the bottom surface of the lower part of the cylinder and the horizontal plane have a slope of 1° to 2° .
  • a welded or flanged connection is used between the barrel and the head.
  • the inner tube is uniformly provided with a plurality of holes for allowing the outer tube steam to enter the inner tube and the sludge to be mixed.
  • the agitator is one of a ribbon agitator, a ribbon screw agitator or other agitator having an axial pushing action.
  • the upper part of the draft tube is provided with a top cover of the draft tube to prevent sludge from flowing out.
  • the draft tube is inclined obliquely downward and evenly distributed along the outer wall of the draft tube.
  • the height of the overflow trough receiving the outlet pipe is lower than the height of the asymmetrical axis of the agitating shaft, and the height from the overflow trough receiving the outlet pipe to the axis symmetry of the agitating axis is gradually increased.
  • a groove is arranged above the sewage pipe.
  • the invention has the following beneficial effects: compared with the prior art, since the inlet pipe is disposed below the cylinder, the sludge is moved in and out in the inner cylinder, and the diameter of the inner cylinder is small, so that the heating time can be ensured. Because the height-to-diameter ratio of the cylinder is small, the sludge with better fluidity after heating can smoothly flow out from the draft tube, and the radiant outward flow in the outer cylinder, with the flow radius increasing, the flow cross-sectional area Increase, the flow rate is reduced, so that the reaction time can be guaranteed in the limited space of the reactor and the reactor Compact structure and small footprint; when the heating time and reaction time are guaranteed, the reactor can run continuously and the reactor is compact.
  • the cylinder body may be a stainless steel material or a concrete material, the stainless steel material is simply processed, and the concrete material is used to save cost. Since the upper portion of the cylinder body is provided with a sealing head for sealing, the pressure inside the reactor can be maintained. Further, since the upper portion of the cylinder is sealed by the sealing head, it can be welded or flanged, so that the radial flow hydrothermal reactor is convenient to seal.
  • a scraper is arranged in the inner tube of the inlet pipe, and the scraper is tangential to the wall surface of the inner pipe, so as to avoid the sludge from sticking to the inner pipe wall to minimize the small hole, and the steam pipe is inclined downward and the outer pipe Connection, so that even if a small amount of sludge enters the outer pipe, it will not enter the steam pipe to block the steam pipe, so it can ensure that the steam can effectively enter the inner pipe to heat the sludge.
  • the outer tube steam can uniformly enter the inner tube and the sludge is mixed, thereby improving the heating efficiency.
  • the agitator is a powerful agitator with an axial pushing action, so that the sludge can be transported from the bottom up while vigorously stirring, and quickly overflows from the upper cylinder after reaching the reaction parameters.
  • the guiding tube is inclined obliquely downward, so that the sludge can be prevented from flowing out from the upper part of the guiding tube after exiting the inner tube, thereby ensuring sludge from the guiding tube.
  • the draft tube enters the outer cylinder and then slowly overflows into the upper overflow tank during the radiant flow.
  • the draft tube is uniformly distributed along the circumference of the draft tube, the sludge can uniformly flow radially to the outer tube space.
  • the height of the overflow trough outlet pipe is lower than the height of the asymmetry axis of the agitating shaft, and the height from the overflow trough outlet pipe to the axis of symmetry of the agitating axis is gradually increased, Thereby all flooded sludge can flow into the outlet pipe.
  • a groove is arranged above the sewage pipe, so that the sewage outlet can be ensured at the lowest point to better collect the sewage.
  • Figure 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a schematic view showing the structure of an inlet pipe of the present invention.
  • a radial flow hydrothermal reactor for sludge thermal hydrolysis treatment comprises: a stirrer 5, a stainless steel material having a height to diameter ratio of less than 1 or a cylinder 1 of a reinforced concrete structure and An outer cylinder 2 and an inner cylinder 4 are disposed coaxially disposed inside the cylinder 1 , and a guide tube 3 is disposed between the outer cylinder 2 and the inner cylinder 4 , and a guide tube 9 is disposed on the side wall of the draft tube 3 .
  • the flow tube 9 is inclined obliquely downward and uniformly distributed along the circumferential direction of the outer wall of the draft tube 3.
  • the upper portion of the draft tube 3 is provided with a draft tube top cover 6 for preventing sludge from flowing out; the upper portion of the barrel 1 is tapered, and the upper part is welded or
  • the flange 7 is connected to the head 7 , the bottom of the inner cylinder 4 is connected to the inlet pipe 10 , the bottom of the outer cylinder 2 is provided with a sewage pipe 11 , and the sewage pipe 11 is provided with a groove; the cylinder 1 and the outer cylinder 2 are arranged
  • the height is gradually increased at the axis of symmetry of the agitating shaft 502; the agitator 5 is a ribbon agitator, a ribbon screw agitator or the like having a strong axial direction One of the pushers that pushes.
  • the agitator 5 includes: a motor 501, a blade 502, a stirring shaft 503, and a support member 504 at the bottom; the motor 501 is located at the top of the cylinder 1, and one end of the agitating shaft 503 is connected to the motor 501, and the other end is passed through the cylinder 1 along the central axis.
  • the agitating shaft 503 is positioned by the support member 504; the vane 502 is disposed on the agitating shaft 503 and located inside the inner cylinder 4; the inlet pipe 10 includes an inner tube 101 and an outer tube which are coaxially and nested. 102, and the inner tube 101 is further provided with a scraper 103 tangential to the wall surface thereof, the scraper 103 is fixedly connected with the stirring shaft 503; and the steam tube 104 is further disposed on the side wall of the outer tube 102. And the steam tube 104 is connected obliquely downward to the outer tube 102.
  • the inner tube 101 is uniformly provided with a plurality of holes for allowing the outer tube steam to enter the inner tube and the sludge to be mixed.
  • the sludge enters the inner cylinder 4 from the inner tube 10, and under the action of the strong agitator 5 having an axial force, the sludge is continuously transported with steam while being transported from the bottom to the top, since the sludge is lowered into the inner cylinder 4
  • the diameter of the inner cylinder 4 is small, so the heating time can be ensured, and after heating to the reaction condition, it overflows from the inner cylinder 4 and enters the guiding cylinder 3.
  • the sludge can only be Entering the annulus of the draft tube 3 and the inner cylinder 4, and then flowing out of the draft tube 9, since the plurality of draft tubes 9 are uniformly distributed in the circumferential direction below the draft tube 3 and the draft tube 9 is inclined obliquely downward, thus heating Good sludge can only enter the bottom of the large space of the outer cylinder 2 uniformly along the circumference of the draft tube 3.
  • the cylinder 1 is a container with a low aspect ratio, and the colloid structure is destroyed after the sludge is heated, the viscosity is lowered, and the fluidity is improved, and the radiant type can be smoothly flowed to the surroundings, and the hydrothermal reaction continuously proceeds during the flow.
  • the flow radius increases, the flow cross-sectional area increases, and the flow rate decreases, so that the reaction time can be ensured in the limited space of the reactor. Therefore, the radial flow hydrothermal reactor can be continuously operated, and the structure is compact, and the area is compact. small.
  • the cells break open, release intracellular water, hydrolyze organic matter, further destroy the colloidal structure, and reduce sludge viscosity.
  • the sludge begins to overflow, collects at the lowest point on the upper portion of the outlet pipe 12, and then flows out through the outlet pipe 12. If the sewage needs to be drained after a certain period of time, the valve of the sewage pipe 11 is opened, and the sewage is collected at the groove above the sewage pipe 11 through the bottom slope of the cylinder 2, and finally flows out through the sewage pipe 11.
  • the working principle of the inlet pipe is as follows:
  • the sludge enters from below the inner tube 10, and the steam enters the outer tube 102 obliquely downward from the steam tube 104.
  • the inner tube 101 is uniformly opened with a plurality of small holes in the circumferential direction and the axial direction, so that the steam in the outer tube 102 can be uniformly introduced into the inner tube 101 and mixed with the sludge.
  • the inner tube 101 is provided with a scraper 103 which is tangent to the wall surface of the inner tube 101, so that the sludge can be prevented from sticking to the inner wall of the inner tube 101.
  • the steam tube 104 is disposed obliquely downward so that even if a small amount of sludge enters the outer tube 102, it does not further enter the steam tube 104 to block the steam tube 104.

Abstract

本发明属于污泥减量化处理领域,具体涉及一种用于污泥热水解处理的辐流式水热反应器。反应器的筒体内依次嵌套外筒和内筒,且外筒和内筒之间设置有导流筒,导流筒侧壁上开设有导流管,内筒的内部安装有搅拌器,使得污泥在内筒中达到反应参数后粘度很低,流动性很好。由于入口管路设置于内筒的下方,使得污泥在内筒中是下进上出,且内筒直径不大,因此可以保证加热时间;由于辐流式水热反应器的高径比很小,且污泥加热后流动性很好,所以污泥在外筒大空间内是辐射式的向外流动,随着流动半径的增大,流速降低,反应不断进行,这样就能在反应器的有限空间内保证反应时间。这样辐流式水热反应器就能够连续运行,且结构紧凑。

Description

一种用于污泥热水解处理的辐流式水热反应器 技术领域
本发明属于污泥减量化处理领域,具体涉及一种用于污泥热水解处理的辐流式水热反应器。
背景技术
城市污泥是城镇污水处理过程中的副产物,是对采用常规方法处理城市污水所产生的少量沉淀物、颗粒物和漂浮物等物质的统称。其主要具有以下几个特点:
(1)产量大,无害化率低:污泥年产量为2800万吨(含水率80%,2011年),3/4未有效处理。
(2)含水率高,水分难以脱除:传统污泥机械脱水方式仅能将污泥含水率降低到80%左右。
(3)有害性和有用性:城市污泥存在多种有机污染物和重金属,直接排放对环境有害,但是其热值高(7500~15000kJ/kg干污泥),可以资源化利用。
目前,堆肥、填埋和焚烧是污泥处置常用的方法,这些方法都对污泥的含水率有一定要求。例如污泥填埋含水率需要低于60%,污泥堆肥需要添加膨松剂调整至含水率50%左右,污泥焚烧需要将污泥的含水率降低到30%左右。因此,含水率80%左右的湿污泥需要进一步的脱水处理。
污泥进一步的脱水可以采用热干化方法,该方法可以将污泥的含水率降低到50%以下,减容效果好,产品稳定。但是该方法技术要求高,管理较复杂,耗费大量能源,处理成本较高。污泥热干化法中蒸发每吨水需要消耗887025kcal的热量,合热值为8300kcal的天然气107m3。如湿污泥的水分按80%,干化到10%,则每吨干污泥大约需消耗428m3的天然气及300kW·h的电力,则每吨干污泥的干化成本达到1144.9元(不计人员工资,设备折旧等)。 这就存在建的起,用不起问题。因此,急需一种经济的方法代替传统热干化法。
污泥水热处理技术是将污泥加热,在一定温度和压力下使污泥中的粘性有机物水解,破坏污泥的胶体结构,改善脱水性能和厌氧消化性能的技术,也称热调质。水热处理技术按照处理过程中是否加入氧化剂,把水热处理分成热水解和湿式氧化两种。热水解没有通入氧化剂,而湿式氧化需要向反应器内通入氧化剂。
污泥热水解技术可以进一步高效经济地降低污泥的含水率。在污泥加热过程中,污泥中的微生物絮体解散,微生物细胞破裂,污泥中的有机物水解进而降低了污泥的黏度,降低了黏性物质对水的束缚能力。此外,当污泥被加热至一定温度时,污泥中的有机物细胞破裂,胞内的大分子有机物释放并水解,胞内与各类大分子相结合的水也被释放,导致水更容易与污泥颗粒分离,从而低能耗、高效率地实现污泥的脱水干化。
水热反应器是污泥热水解技术的核心设备,但是现有的水热反应器存在着反应不充分、连续性较差、结构不紧凑、占地面积大等问题。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,提供一种用于污泥热水解处理的辐流式水热反应器,具有热水解反应效率高,连续性好,能够有效降低热水解后污泥脱水的含水率,从而达到减量化要求的优点且反应器集加热和反应为一体,结构紧凑。
为了达到上述目的,本发明采取如下技术方案予以实现:
一种用于污泥热水解处理的辐流式水热反应器,包括:搅拌器、筒体和位于筒体内部依次同轴设置的外筒和内筒,且外筒和内筒之间设置有导流筒,导流筒侧壁下部开有导流管;
所述的内筒的底部连接入口管,外筒的底部开设有排污管,筒体和外筒 之间设置有溢流槽,溢流槽的底部开设出口管;
所述的搅拌器包括:电机、叶片、搅拌轴和位于底部的支撑件;电机位于筒体的顶部,搅拌轴的一端连接电机,另一端沿中轴贯穿筒体并伸入入口管中,搅拌轴由支撑件定位;叶片设置于搅拌轴上,且位于内筒内;
所述的入口管包括:同轴且嵌套设置的内管和外管,且所述的内管中还设置有与其壁面相切的刮刀,刮刀与搅拌轴固定连接;外管侧壁上还设有蒸汽管,且蒸汽管斜向下和外管连接。
所述的筒体的高径比小于1,为不锈钢材料或钢筋混凝土结构;且筒体上方渐缩,上部设置有用于密封的封头;筒体下部底面和水平面有1°到2°斜度。
所述的筒体和封头之间采用焊接或法兰连接。
所述的内管上均匀开设有若干能够使外管蒸汽进入内管中和污泥混合的孔。
所述的搅拌器为螺带式搅拌器、螺带螺杆式搅拌器或者其它具有轴向推动作用的搅拌器中的一种。
所述的导流筒上部设有避免污泥流出的导流筒顶盖。
所述的导流管斜向下倾斜,且沿导流筒的外壁周向均布。
所述的溢流槽接出口管处高度低于以搅拌轴为对称轴对称处的高度,且从溢流槽接出口管处到其以搅拌轴为对称轴对称处的高度逐渐升高。
所述的排污管上方设有凹槽。
本发明具有以下的有益效果:相比现有技术,由于入口管路设置于筒体的下方,使得污泥在内筒中是下进上出,且内筒的直径小,这样就能保证加热时间;由于筒体高径比小,加热后流动性较好的污泥就能平稳地从导流管中流出,且在外筒中是辐射式的向外流动,随着流动半径的增大,流通截面积增大,流速降低,这样就能在反应器的有限空间内保证反应时间且反应器 结构紧凑,占地面积小;当加热时间和反应时间都得到保证后,反应器就能够连续运行,且反应器结构紧凑。
进一步的,由于筒体可以是不锈钢材料也可以是混凝土材料,采用不锈钢材料加工简单,采用混凝土材料节约成本,由于筒体上部设置有用于密封的封头,则能够维持反应器内部的压力。进一步的,由于筒体上部由封头密封,可以焊接,也可以法兰连接,因此辐流式水热反应器密封方便。
进一步的,入口管中的内管中设有刮刀,刮刀与内管的壁面相切,从而能够最大限度避免污泥黏在内管壁上堵塞小孔,加上蒸汽管斜向下和外管连接,这样即使少量污泥进入外管,也不会进一步进入蒸汽管中堵塞蒸汽管,因此可以保证蒸汽可以有效进入内管对污泥进行加热。
进一步的,由于内管上均有开有若干孔,从而使得外管蒸汽可以均匀进入内管中和污泥混合,提高了加热效率。
进一步的,搅拌器是具有轴向推动作用的强力搅拌器,这样可以在强力搅拌的同时把污泥从下向上输运,快速达到反应参数后从内筒上方溢出。
进一步的,由于导流筒上部设有导流筒顶盖,导流管斜向下倾斜,从而能避免污泥从内筒中出来后直接从导流筒上部流出,从而保证污泥从导流筒的导流管进入外筒,然后在辐射式流动过程中缓慢溢流进入上部溢流槽。
进一步的,由于导流管沿导流筒周向均布多个,从而使得污泥能够沿四周均匀辐射式地流向外筒大空间。
进一步的,由于溢流槽接出口管处高度低于以搅拌轴为对称轴对称处的高度,且从溢流槽接出口管处到其以搅拌轴为对称轴对称处的高度逐渐升高,从而能够使得所有溢流的污泥都能流入出口管中流出。
进一步的,由于筒体下部有一定斜度,排污管上方设有凹槽,这样能够保证排污口在最低处,更好地汇集排污物。
附图说明
下面结合附图,对本发明作进一步详细说明
图1为本发明的结构示意图;
图2为本发明的入口管结构示意图。
图中:1:筒体,2:外筒,3:导流筒,4:内筒,5:搅拌器,501:电机,502:叶片,503:搅拌轴,504:支撑件,6:导流筒顶盖,7:封头,8:溢流槽,9:导流管,10:入口管,101:内管,102:外管,103:刮刀,104:蒸汽管,11:排污管,12:出口管。
具体实施方式
参照图1和2所示,一种用于污泥热水解处理的辐流式水热反应器,包括:搅拌器5、高径比小于1的不锈钢材料或钢筋混凝土结构的筒体1和位于筒体1内部依次同轴设置的外筒2和内筒4,且外筒2和内筒4之间设置有导流筒3,导流筒3侧壁上开设有导流管9,导流管9斜向下倾斜,且沿导流筒3的外壁周向均布,导流筒3上部设有避免污泥流出的导流筒顶盖6;筒体1上方渐缩,上部有采用焊接或法兰连接设置的封头7,内筒4的底部连接入口管10,外筒2的底部开设有排污管11,且排污管11上方设有凹槽;筒体1和外筒2之间设置有溢流槽8,溢流槽8底部开设出口管12;溢流槽8接出口管12处高度低于以搅拌轴502为对称轴对称处的高度,且从溢流槽8接出口管12处到其以搅拌轴502为对称轴对称处的高度逐渐升高;搅拌器5为螺带式搅拌器、螺带螺杆式搅拌器或者其它具有强力轴向推动作用的搅拌器中的一种。搅拌器5包括:电机501、叶片502、搅拌轴503和位于底部的支撑件504;电机501位于筒体1的顶部,搅拌轴503的一端连接电机501,另一端沿中轴贯穿筒体1并伸入入口管10内,搅拌轴503由支撑件504定位;叶片502设置于搅拌轴503上,且位于内筒4的内;入口管10包括同轴且嵌套设置的内管101和外管102,且所述的内管101中还设置有与其壁面相切的刮刀103,刮刀103与搅拌轴503固定连接;外管102侧壁上还设有蒸汽管104, 且蒸汽管104斜向下和外管102连接。内管101上均匀开设有若干能够使外管蒸汽进入内管中和污泥混合的孔。
本发明的工作原理如下:
污泥从内管10进入内筒4,在具有轴向力的强力搅拌器5的作用下污泥由下向上输运的同时不断和蒸汽混合,由于污泥在内筒4中是下进上出的,且内筒4的直径较小,所以加热时间可以得到保证,加热到反应条件后从内筒4溢出,进入导流筒3,由于导流筒顶盖6的作用,污泥只能进入导流筒3和内筒4的环隙中,然后从导流管9中流出,由于导流筒3下方沿周向均布多个导流管9且导流管9斜向下倾斜,这样加热好的污泥只能沿导流筒3四周均匀进入外筒2大空间底部。由于筒体1是一个低高径比的容器,且污泥加热后胶体结构破坏,粘度降低,流动性提高,就能平稳的辐射式的向四周流动,流动过程中水热反应不断进行,随着流动半径的增大,流通截面积增大,流速降低,这样就能在反应器的有限空间内保证反应时间,因此辐流式水热反应器就可以连续运行,且结构紧凑,占地面积小。在反应过程中,细胞破壁,释放胞内水分,有机物水解,胶体结构进一步破坏,污泥粘性降低。待外筒2内液面上升至溢流槽8的高度,污泥开始溢流,在出口管12上部最低处汇集,然后经出口管12流出。若使用一定时间后需要排污,则打开排污管11阀门,通过筒体2底部斜面,排污物将汇集在排污管11上方凹槽处,最后经排污管11流出。
入口管的工作原理如下:
污泥从内管10下方进入,蒸汽从蒸汽管104斜向下进入外管102。内管101沿周向和轴向均匀开有很多小孔,这使得外管102内的蒸汽可以均匀进入内管101中和污泥混合。内管101中设有刮刀103,刮刀103与内管101的壁面相切,这样就能避免污泥黏在内管101内壁上堵塞小孔。蒸汽管104斜向下布置,这样即使少量污泥进入外管102,也不会进一步进入蒸汽管104中堵塞蒸汽管104。

Claims (9)

  1. 一种用于污泥热水解处理的辐流式水热反应器,其特征在于:包括:搅拌器(5)、筒体(1)和位于筒体(1)内部依次同轴设置的外筒(2)和内筒(4),且外筒(2)和内筒(4)之间设置有导流筒(3),导流筒(3)侧壁下部开有导流管(9);
    所述的内筒(4)的底部连接入口管(10),外筒(2)的底部开设有排污管(11),筒体(1)和外筒(2)之间设置有溢流槽(8),溢流槽(8)的底部开设出口管(12);
    所述的搅拌器(5)包括:电机(501)、叶片(502)、搅拌轴(503)和位于底部的支撑件(504);电机(501)位于筒体(1)的顶部,搅拌轴(503)的一端连接电机(501),另一端沿中轴贯穿筒体(1)并伸入入口管(10)中,搅拌轴(503)由支撑件(504)定位;叶片(502)设置于搅拌轴(503)上,且位于内筒(4)内;
    所述的入口管(10)包括:同轴且嵌套设置的内管(101)和外管(102),且所述的内管(101)中还设置有与其壁面相切的刮刀(103),刮刀(103)与搅拌轴(503)固定连接;外管(102)侧壁上还设有蒸汽管(104),且蒸汽管(104)斜向下和外管(102)连接。
  2. 根据权利要求1所述的一种用于污泥热水解处理的辐流式水热反应器,其特征在于,所述的筒体(1)的高径比小于1,为不锈钢材料或钢筋混凝土结构;筒体(1)上方渐缩,上部设置有用于密封的封头(7);筒体(1)下部底面和水平面有1°到2°斜度。
  3. 根据权利要求2所述的一种用于污泥热水解处理的辐流式水热反应器,其特征在于,所述的筒体(1)和封头(7)之间采用焊接或法兰连接。
  4. 根据权利要求1所述的一种用于污泥热水解处理的辐流式水热反应器,其特征在于,所述的内管(101)上均匀开设有若干能够使外管(102)蒸汽进入内管(101)中和污泥混合的孔。
  5. 根据权利要求1所述的一种用于污泥热水解处理的辐流式水热反应器, 其特征在于,所述的搅拌器(5)为螺带式搅拌器、螺带螺杆式搅拌器或者其它具有轴向推动作用的搅拌器中的一种。
  6. 根据权利要求1所述的一种用于污泥热水解处理的辐流式水热反应器,其特征在于,所述的导流筒(3)上部设有避免污泥流出的导流筒顶盖(6)。
  7. 根据权利要求1所述的一种用于污泥热水解处理的辐流式水热反应器,其特征在于,所述的导流管(9)斜向下倾斜,且沿导流筒(3)的外壁周向均布。
  8. 根据权利要求1所述的一种用于污泥热水解处理的辐流式水热反应器,其特征在于,所述的溢流槽(8)接出口管(12)处高度低于以搅拌轴(502)为对称轴对称处的高度,且从溢流槽(8)接出口管(12)处到其以搅拌轴(502)为对称轴对称处的高度逐渐升高。
  9. 根据权利要求1所述的一种用于污泥热水解处理的辐流式水热反应器,其特征在于,所述的排污管(11)上方设有凹槽。
PCT/CN2014/090725 2014-04-03 2014-11-10 一种用于污泥热水解处理的辐流式水热反应器 WO2015149519A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/112,688 US9994473B2 (en) 2014-04-03 2014-11-10 Radial flow hydrothermal reactor for sludge thermal hydrolysis treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410133371.7 2014-04-03
CN201410133371.7A CN103936243B (zh) 2014-04-03 2014-04-03 一种用于污泥热水解处理的辐流式水热反应器

Publications (1)

Publication Number Publication Date
WO2015149519A1 true WO2015149519A1 (zh) 2015-10-08

Family

ID=51184167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090725 WO2015149519A1 (zh) 2014-04-03 2014-11-10 一种用于污泥热水解处理的辐流式水热反应器

Country Status (3)

Country Link
US (1) US9994473B2 (zh)
CN (1) CN103936243B (zh)
WO (1) WO2015149519A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108503396A (zh) * 2017-12-13 2018-09-07 中山市和智电子科技有限公司 一种滚筒式堆肥反应器
CN114380480A (zh) * 2021-12-23 2022-04-22 南通展望科技资讯有限公司 一种连续式污泥水热处理反应釜装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936243B (zh) * 2014-04-03 2015-10-28 西安交通大学 一种用于污泥热水解处理的辐流式水热反应器
CN104710093B (zh) * 2015-02-17 2017-05-03 中国科学院重庆绿色智能技术研究院 一种连续式污泥水热处理反应釜装置
CN105347637A (zh) * 2015-12-14 2016-02-24 北京洁绿科技发展有限公司 一种连续式污泥热水解系统及方法
CN108097107A (zh) * 2017-12-12 2018-06-01 浙江凯盈新材料有限公司 一种银浆的制备装置
WO2021245444A1 (en) * 2020-06-04 2021-12-09 Newway Technologies Ltd. Integrated sludge pulping and hydrolyzing equipment
CN113105094A (zh) * 2021-03-15 2021-07-13 上海仁创环境科技有限公司 一种污泥高温破壁调理机、破壁调理脱水系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136175A (ja) * 2002-10-16 2004-05-13 Asahi Techno:Kk 汚泥乾燥装置
WO2009028519A1 (ja) * 2007-08-24 2009-03-05 System Kikou Co., Ltd. 含油スラッジの減量化装置
CN201224692Y (zh) * 2008-04-30 2009-04-22 南京中电联环保股份有限公司 变流澄清中水处理器
CN202465470U (zh) * 2012-02-21 2012-10-03 北京科力丹迪技术开发有限责任公司 一种污泥水热干化处理装置的水热反应器
CN202465468U (zh) * 2012-02-21 2012-10-03 北京科力丹迪技术开发有限责任公司 一种污泥水热干化处理装置的均质反应器
CN103936243A (zh) * 2014-04-03 2014-07-23 西安交通大学 一种用于污泥热水解处理的辐流式水热反应器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2538412A (en) * 1945-12-29 1951-01-16 Infilco Inc Sludge heater
US3649534A (en) * 1970-05-15 1972-03-14 Du Pont Wet oxidation of acidified activated sludge
US4507127A (en) * 1981-12-21 1985-03-26 Nippon Furnace Kogyo Co., Ltd. System for recovering resources from sludge
US4983296A (en) * 1989-08-03 1991-01-08 Texaco Inc. Partial oxidation of sewage sludge
WO1999007641A1 (fr) * 1997-08-11 1999-02-18 Ebara Corporation Procede et appareil d'electrolyse hydrothermale
US6475396B1 (en) * 2000-11-14 2002-11-05 Hydroprocessing, Llc Apparatus and method for applying an oxidant in a hydrothermal oxidation process
CA2516601A1 (en) * 2003-02-20 2004-09-02 Werkstoff + Funktion Grimmel Wassertechnik Gmbh Catalytic reactor
EP1990106A1 (en) * 2006-09-28 2008-11-12 Eco Material Co.Ltd. Organic waste disposal system
JP4966239B2 (ja) * 2008-03-28 2012-07-04 メタウォーター株式会社 有機性廃棄物処理方法、ガス化炉、改質炉、有機性廃棄物処理装置
CN102531315B (zh) * 2011-12-28 2013-11-20 北京科力丹迪技术开发有限责任公司 一种污泥水热干化处理装置及其水热反应器
US20150021278A1 (en) * 2012-02-08 2015-01-22 Veolia Water Solutions & Technologies Support Apparatus for continuous hydrolysis
CN202643519U (zh) * 2012-02-21 2013-01-02 北京科力丹迪技术开发有限责任公司 一种污泥水热干化处理装置的浆化反应器
FR2992308B1 (fr) * 2012-06-20 2017-05-12 Degremont Procede de traitement de dechets organiques, en particulier de boues de stations d'epuration, et installation pour la mise en œuvre de ce procede
CN103588365A (zh) * 2012-08-14 2014-02-19 中国石油化工股份有限公司 城市污泥的水热处理方法
CN203256107U (zh) * 2013-05-17 2013-10-30 奚旸 一种含油及挥发性物质污泥裂解装置
FR3037055B1 (fr) * 2015-06-05 2019-11-29 Degremont Reacteur de carbonisation hydrothermale a melange optimise de boue et vapeur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136175A (ja) * 2002-10-16 2004-05-13 Asahi Techno:Kk 汚泥乾燥装置
WO2009028519A1 (ja) * 2007-08-24 2009-03-05 System Kikou Co., Ltd. 含油スラッジの減量化装置
CN201224692Y (zh) * 2008-04-30 2009-04-22 南京中电联环保股份有限公司 变流澄清中水处理器
CN202465470U (zh) * 2012-02-21 2012-10-03 北京科力丹迪技术开发有限责任公司 一种污泥水热干化处理装置的水热反应器
CN202465468U (zh) * 2012-02-21 2012-10-03 北京科力丹迪技术开发有限责任公司 一种污泥水热干化处理装置的均质反应器
CN103936243A (zh) * 2014-04-03 2014-07-23 西安交通大学 一种用于污泥热水解处理的辐流式水热反应器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108503396A (zh) * 2017-12-13 2018-09-07 中山市和智电子科技有限公司 一种滚筒式堆肥反应器
CN114380480A (zh) * 2021-12-23 2022-04-22 南通展望科技资讯有限公司 一种连续式污泥水热处理反应釜装置
CN114380480B (zh) * 2021-12-23 2023-06-06 南通展望科技资讯有限公司 一种连续式污泥水热处理反应釜装置

Also Published As

Publication number Publication date
US9994473B2 (en) 2018-06-12
US20170008789A1 (en) 2017-01-12
CN103936243A (zh) 2014-07-23
CN103936243B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2015149519A1 (zh) 一种用于污泥热水解处理的辐流式水热反应器
WO2015149520A1 (zh) 一种基于热水解技术的污泥脱水系统及工艺
CN103936252B (zh) 一种用于污泥热水解处理的连续式塔式反应器
KR101272243B1 (ko) 유기성 폐기물 처리를 위한 선택 작동식 혐기성 소화 시스템
CN105417912A (zh) 一种脱水污泥厌氧干发酵的装置
CN102108002B (zh) 一种用于污泥水热反应的卧式反应釜
CN202829741U (zh) 一种餐厨垃圾高油脂废水的油水分离组合系统
CN102531315B (zh) 一种污泥水热干化处理装置及其水热反应器
JP5351346B1 (ja) メタン発酵槽の運転方法
CN106190788A (zh) 改进型的厌氧消化器沼液搅拌与破壳循环管路
CN105366904A (zh) 一种水力空化反应器及反应方法
CN202465470U (zh) 一种污泥水热干化处理装置的水热反应器
CN105565489B (zh) 污泥循环型高效水解反应装置
CN203284246U (zh) 一种用于垃圾渗滤液处理的厌氧反应器
CN202594857U (zh) 一种处理高固体含量废水的厌氧反应装置
CN105540696B (zh) 一种高浓度工业有机废液热催化‑碳化制备固态衍生燃料的方法及其装置
CN104710093B (zh) 一种连续式污泥水热处理反应釜装置
CN206396031U (zh) 一种城市生活污水处理厂剩余污泥深度脱水系统
CN207520649U (zh) 一种原油油泥脱水分离装置
JP5412598B1 (ja) メタン発酵槽の運転方法
KR100921538B1 (ko) 수직형 건식 혐기성 소화조를 이용한 바이오가스 생성장치
CN109336254B (zh) 一种用于垃圾渗滤液废水处理的新型厌氧反应器
CN202643519U (zh) 一种污泥水热干化处理装置的浆化反应器
CN208018280U (zh) 湿式电除尘出口排放烟囱用脱水装置
CN206395885U (zh) 微电解防堵结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15112688

Country of ref document: US

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14888220

Country of ref document: EP

Kind code of ref document: A1