WO2015149513A1 - 一种基于Mesh网的OFDMA系统及控制方法 - Google Patents

一种基于Mesh网的OFDMA系统及控制方法 Download PDF

Info

Publication number
WO2015149513A1
WO2015149513A1 PCT/CN2014/090260 CN2014090260W WO2015149513A1 WO 2015149513 A1 WO2015149513 A1 WO 2015149513A1 CN 2014090260 W CN2014090260 W CN 2014090260W WO 2015149513 A1 WO2015149513 A1 WO 2015149513A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
nodes
mesh network
control node
mesh
Prior art date
Application number
PCT/CN2014/090260
Other languages
English (en)
French (fr)
Inventor
周宗仪
廖晓如
程金鹏
Original Assignee
宽兆科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宽兆科技(深圳)有限公司 filed Critical 宽兆科技(深圳)有限公司
Publication of WO2015149513A1 publication Critical patent/WO2015149513A1/zh
Priority to US15/181,396 priority Critical patent/US20160345319A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/20Master-slave selection or change arrangements

Definitions

  • the invention belongs to the field of communication technologies, and in particular relates to an OFDMA system and a control method based on a Mesh network.
  • FDMA Frequency Division Multiple Access/Address
  • frequency division multiple access is a technology in data communication that can be used to implement channel sharing. Different users are allocated on channels with the same time slot and different frequencies. According to this technique, the frequency band centrally controlled in the frequency division multiple access transmission system is allocated to the user as required. Compared to fixed distribution systems, frequency division multiple access enables channel capacity to be dynamically exchanged as required. Frequency division multiple access adopts frequency modulation multiple access technology, and service channels are allocated to different users in different frequency bands, such as TAS system and AMPS system.
  • TDMA time division multiple Access
  • GSM Global System for Mobile Communications
  • PDC Personal Digital Cellular Systems
  • CDMA Code Division Multiple
  • CDMA Code Division Multiple Access
  • CDMA allows all users to use all frequency bands simultaneously (1.2288Mhz), and treats other users as signals, which does not need to consider signal collision. (collision) Question.
  • the voice coding technology provided in CDMA has better call quality than the current GSM, and can reduce the ambient noise of the user during conversation, so that the call is clearer.
  • CDMA positioning technology is a positioning technology based on location service development. It adopts a client/server architecture and has simple frequency planning. Users are distinguished by different sequence codes. Therefore, the same CDMA carrier can be used in adjacent cells, and the network planning is flexible and the expansion is simple.
  • OFDMA Orthogonal Frequency Division Multiple
  • OFDMA Orthogonal Frequency Division Multiple
  • OFDM transmission usually occupies all available subcarriers, and OFDMA is the use of OFDM for uplink multiple access.
  • Access each user occupies a different subcarrier, and the user is separated by subcarriers. It is optimized for multi-user communication, especially for cell phones and other mobile devices.
  • the downward data stream is divided into logical data streams, which can adopt different modulation and coding modes and users with different channel powers to access different channel characteristics, and the upper data stream subchannels are accessed by multiple access methods.
  • the medium access protocol that transmits the downlink allocates the sub-information to transmit the upstream data stream.
  • OFDMA is a multi-carrier digital modulation technology with high spectrum utilization and obvious advantages in resisting multipath effects, frequency selective fading or narrowband interference. Applicable to the current mainstream 4G system (WiMAX/LTE).
  • a central network is used for bearer, and the same address technology communication is performed between the base station and the terminal, which belongs to a central network.
  • the central network is damaged at the center, the entire system will be paralyzed.
  • WiFi-Mesh self-organizing network has limited spectrum utilization and resource allocation flexibility. Although it has the function of self-organizing network, In the low data transmission rate and resource sharing capacity, it is unable to meet the construction of an emergency self-organizing network with large capacity and high sharing requirements.
  • the technical problem to be solved by the present invention is to provide an OFDMA system and a control method based on a Mesh network, which aims to solve the problem of low spectrum utilization and unreasonable resource allocation in the prior art.
  • a Mesh network-based OFDMA system includes a Mesh network and a plurality of orthogonal and non-overlapping data blocks according to a time domain and a frequency domain.
  • the Mesh network includes a plurality of nodes. Each node is connected to one or more other nodes for receiving synchronization signals, transmitting and sharing data;
  • the data block has a reserved gap before the time domain, and the reserved gap is used for synchronizing with devices of each node;
  • a control node the control node is connected with a synchronization signal corresponding to the node, so that the signal of the node is synchronized with the signal of the control node; and all other in the same mesh network
  • the control node is responsible for managing and coordinating signal synchronization of all nodes in the Mesh network; the control node controls and coordinates the transmission and scheduling of the data blocks corresponding to each node by using a communication protocol;
  • the control node is further configured to control and manage common data blocks and their arrangement forms in the Mesh network in the same time domain and frequency domain, and simultaneously add synchronization frame headers in front of each frame in the time domain, so that other nodes are in the After the synchronization frame header in the reserved gap and the control node, the data is extracted according to the required data block, and the extracted data block is simultaneously transmitted to other nodes in a broadcast manner at a time other than the data is extracted.
  • the Mesh network has a GPS antenna, and the GPS antennas are respectively disposed on each node for receiving a GPS clock synchronization signal; when all nodes in the Mesh network can normally receive the GPS clock synchronization signal, the synchronization frame
  • the header is correspondingly a GPS sync frame header.
  • control node is a node temporarily assigned in the Mesh network, and can dynamically change according to the real-time topology of the Mesh network.
  • control node is a relay control node
  • the relay control node is a node closest to a physical location between two Mesh networks, and is used for synchronizing frame structures between two asynchronous communication Mesh networks. And re-dividing the two Mesh networks into the same time domain and frequency domain; the two Mesh networks with asynchronous communication are two originally independent and the respective edge nodes satisfy the condition of establishing mutual communication geographical position, the two A mesh network is used to detect whether each node can normally receive the GPS clock synchronization signal.
  • the relay control node is a node having a GPS antenna.
  • the present invention also provides a control method for an OFDMA system based on a Mesh network, the OFDMA system comprising a Mesh network having a plurality of nodes and a plurality of orthogonal and non-overlapping data blocks divided according to a time domain and a frequency domain, the control method Specifically, the following steps are included:
  • Step 1 Connect each of a plurality of nodes to another one or more nodes for receiving synchronization signals, transmitting and sharing data;
  • Step 2 The data block has a reserved gap before the time domain, and the reserved gap is used for synchronizing with the devices of each node;
  • Step 3 In the plurality of nodes, select a node as a control node, and the control node accesses a synchronization signal corresponding to the node; and all other nodes in the same Mesh network cannot receive the GPS clock signal synchronization.
  • the control node is responsible for managing and coordinating signal synchronization of all nodes in the Mesh network; the control node controls and coordinates the transmission and scheduling of data blocks corresponding to each node by using a communication protocol, and the control node can also be in the same time domain. And controlling and managing data blocks and their arrangement forms commonly used in the Mesh network in the frequency domain;
  • Step 4 The control node adds a synchronization frame header in front of each frame in the time domain, and causes other nodes to perform data extraction according to the required data block after the synchronization frame header of the control node and the control node. And the extracted data blocks are simultaneously transmitted to other nodes in a broadcast manner at a time other than the data is extracted.
  • control method further includes the step of: adding a GPS antenna for receiving a GPS clock synchronization signal in the Mesh network, where the GPS antennas are respectively disposed on each node for receiving a GPS clock synchronization signal;
  • the synchronization frame header is correspondingly the GPS synchronization frame header.
  • control node in the step 3 is a node temporarily assigned in the Mesh network, and can dynamically change according to the real-time topology of the Mesh network.
  • control node in the step 3 is a relay control node
  • the relay control node is a node that is closest to a physical location between two Mesh networks, and is used to connect two asynchronous meshes between Mesh networks.
  • the frame structure is synchronized, and the two Mesh networks are re-divided into the same time domain and frequency domain; the two Mesh networks with asynchronous communication are two originally independent and the respective edge nodes satisfy the establishment of mutual communication geographical conditions.
  • the two Mesh networks are used to detect whether each node can normally receive the GPS clock synchronization signal.
  • the relay control node is a node having a GPS antenna.
  • the present invention has the beneficial effects that: by combining the Mesh network with the latest OFDMA technology, the spectrum utilization rate of the Mesh network is significantly improved, and the resource sharing of the ad hoc network is greatly improved. Realize high-efficiency, high-definition, high-quality image and video sharing transmission between units in the ad hoc network.
  • FIG. 1 is a schematic structural diagram of an OFDMA system in an indoor application scenario according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an OFDMA system in an outdoor application scenario according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an OFDMA system in an indoor and outdoor hybrid scenario according to an embodiment of the present invention.
  • the invention combines the Mesh network with the latest OFDMA technology, and greatly improves the flexibility of spectrum utilization and resource allocation.
  • a Mesh network-based OFDMA system includes a Mesh network 102 and a plurality of orthogonal and non-overlapping data blocks 101 divided according to a time domain and a frequency domain, as shown in FIG.
  • the Mesh network 102 includes a plurality of nodes 1021, each of which is connected to another one or more nodes, and the node 1021 is configured to receive synchronization signals, transmit and share data, and complete synchronization functions of node transceiving.
  • the data block 101 has a reserved gap 103 in front of the time domain for synchronizing with devices of the respective nodes, the data block 101 for storing video image data.
  • a control node is included in the plurality of nodes 1021, and the control node is connected with a synchronization signal corresponding to the node 1021, so that the signal of the node 1021 is synchronized with the signal of the control node; and all other nodes in the same Mesh network cannot
  • the control node is responsible for managing and coordinating signal synchronization of all other nodes in the Mesh network; the control node is responsible for controlling and coordinating the transmission and scheduling of the data blocks corresponding to each node through the communication protocol.
  • the control node is further configured to control and manage common data blocks and their arrangement forms in the Mesh network 102 in the same time domain and frequency domain, and add a synchronization frame header 104 in front of each frame in the time domain to make other nodes.
  • the data is extracted according to the required data block 101, and the extracted data blocks are simultaneously transmitted to other broadcasts at a time other than the data is extracted. Nodes to improve the transmission efficiency of broadcast data such as audio and video.
  • the GPS synchronization signal cannot be obtained in all the Mesh networks 102.
  • any node in the network can be selected as the control node, for example, the node E is selected as the control node.
  • the control node is a node temporarily assigned in the network, and can dynamically change according to the real-time topology of the Mesh network.
  • the control node E accesses the same synchronization signal as the node A, the node B, the node C, the node D and the node F, so that the signals of the other nodes are synchronized with the signals of the control node E.
  • the control node E is responsible for controlling the transmission and scheduling of the data blocks corresponding to the respective nodes through the communication protocol.
  • the data broadcasted by each node (including the control node) in the Mesh network 102 is consistent.
  • the corresponding device of each node receives its own from the series of broadcast data according to its own needs. Part of the data.
  • GPS antennas 1022 are installed in each node of all units in the MESH network 102, and GPS antennas 1022 are respectively disposed on each node, and GPS can be acquired through each node of the GPS antenna 1022.
  • the synchronization frame header is correspondingly a GPS synchronization frame header.
  • the node A, the node B, the node C, the node D, the node E, and the node F are all provided with a GPS antenna 1022. At this point, any node in the network can be selected as the control node.
  • node E is selected as the control node.
  • the control node is temporarily assigned within the network and can change roles at any time.
  • the control node E with the GPS antenna is mainly responsible for controlling the transmission and scheduling of the data blocks corresponding to the respective nodes through the communication protocol.
  • the control node E is responsible for controlling and managing the common data blocks and arrangement forms in the Mesh network, and adding a GPS synchronization frame header 1041 in front of each frame, and other common nodes are synchronized in the reserved gap 103.
  • the data is extracted according to the required data block, and the resources in the network are shared to the node at other times.
  • the control node needs to be selected as the middle. Following the control node.
  • the node closest to the physical location between the two Mesh networks is selected as the relay control node, and the relay control node preferentially selects the node that can normally receive the outdoor GPS clock synchronization signal.
  • node E is selected as the relay control node.
  • the relay control node is configured to synchronize the frame structures between the two non-synchronized Mesh networks, and re-divide the two Mesh networks into the same time domain and frequency domain.
  • the two Mesh networks with asynchronous communication are two independent and each edge node satisfies the condition of establishing mutual communication geographical position. At the same time, a unified synchronization mode is adopted between the respective nodes of the two Mesh networks.
  • the two Mesh networks are mainly used to detect whether each node can normally receive the GPS clock synchronization signal.
  • the relay control node is used to unify the data block and the arrangement form, and at the same time, a synchronization frame header is added in front of each frame, and other common nodes synchronously control the node frame header in the reserved gap, and perform data extraction according to the required data block. At other times, the resources in the network are shared to this node.
  • a control method for an OFDMA system based on a Mesh network includes a mesh network having a plurality of nodes and a plurality of orthogonal and non-overlapping data blocks divided according to a time domain and a frequency domain
  • the control method specifically includes the following steps: Step 1: Connect each of a plurality of nodes to another one or more nodes for receiving synchronization signals, transmitting and sharing data; Step 2: Making the data The block has a reserved gap before the time domain, and the reserved gap is used for synchronizing with the devices of each node; Step 3: among the several nodes, one node is selected as the control node, and the control node is connected to the control node.
  • the corresponding synchronization signal of the node when all the other nodes in the same mesh network are unable to receive the GPS clock signal synchronization, the control node is responsible for managing and coordinating the signal synchronization of all nodes in the Mesh network.
  • the control node controls, by using a communication protocol, to coordinate transmission and scheduling of data blocks corresponding to each node, and the control node can also control and manage data blocks commonly needed in the Mesh network in the same time domain and frequency domain.
  • the control method further includes the step of: adding a GPS antenna for receiving a GPS clock synchronization signal in the Mesh network, the GPS antennas being respectively disposed on each node for receiving a GPS clock synchronization signal.
  • the synchronization frame header is correspondingly a GPS synchronization frame header.
  • the control node in the step 3 is a node temporarily assigned in the Mesh network, and can dynamically change according to the real-time topology of the Mesh network.
  • the control node in the step 3 is a relay control node, and the relay control node is a node that is closest to the physical location between the two Mesh networks, and is used to perform frame structure between two Mesh networks that are not synchronously communicated. Synchronize and re-divide the two mesh networks into the same time domain and frequency domain.
  • the relay control node is a node having a GPS antenna.
  • the two Mesh networks with asynchronous communication are two independent and each edge node satisfies the condition of establishing mutual communication geographical position, and at the same time, a unified synchronization mode is adopted between the respective nodes, and the two Mesh networks are mainly used.
  • the difference is that all nodes in the Mesh network can receive the GPS clock synchronization signal normally.
  • the Mesh network-based OFDMA system and its control method of the present invention will significantly change the current MESH
  • the low spectrum utilization rate of the WIFI network, the traditional efficiency and the low efficiency of sharing, through the implementation of the OFDMA system can provide a fast, efficient and easy to build high-efficiency shared MESH network, suitable for public security, fire, military emergency network and Information sharing of field collaboration tasks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明适用于通讯技术领域,提供了一种基于Mesh网的OFDMA系统,包括Mesh网和根据时域和频域划分的若干正交且互不重叠的数据块,所述Mesh网内包含若干个节点,每个节点均与其它一个或多个节点相连接;所述数据块在时域前具有保留间隙;在所述若干个节点中包括一控制节点,所述控制节点接入有与所述节点相应的同步信号,使节点的信号与控制节点的信号同步,控制节点通过通信协议来控制协调各节点数据块的发送和调度;控制节点还用于在同一时域和频域内控制和管理Mesh网内共同所需的数据块及其排列形式。所述的OFDMA系统通过Mesh网与OFDMA技术相结合,适用于通讯节点分布在室内或室外及室内室外混合分布的Mesh网络组网,改善了频谱利用率和资源分配及无线组网的灵活性。

Description

一种基于Mesh网的OFDMA系统及控制方法 技术领域
本发明属于通信技术领域,尤其涉及一种基于Mesh网的OFDMA系统及控制方法。
背景技术
FDMA(Frequency Division Multiple Access/Address)又称频分多址,是数据通信中的一种技术,可以用来实现信道共享。不同的用户分配在时隙相同而频率不同的信道上。按照这种技术,把在频分多址传输系统中集中控制的频段根据要求分配给用户。同固定分配系统相比,频分多址使通道容量可根据要求动态地进行交换。频分多址采用调频的多址技术,业务信道在不同的频段分配给不同的用户,如TAS系统、AMPS系统等。
TDMA(time division multiple access)又称时分多址,是把时间分割成周期性的帧(Frame),每一个帧再分割成若干个时隙向基站发送信号,在满足定时和同步的条件下,基站可以分别在各时隙中接收到各移动终端的信号而不混扰。同时,基站发向多个移动终端的信号都按顺序安排在预定的时隙中传输,各移动终端只要在指定的时隙内接收,就能在合路的信号中把发给它的信号区分并接收下来。TDMA应用在数字蜂窝电话系统通信中,它将每个蜂窝信道划分为三个时隙,这样就可以增加信道上负载数据的总量。TDMA应用在北美数字式先进移动电话系统(D-AMPS),全球移动通信系统(GSM)和个人数字蜂窝系统(PDC)中。
CDMA(Code Division Multiple Access)又称码分多址,是在无线通讯上使用的技术,CDMA允许所有使用者同时使用全部频带(1.2288Mhz),且把其他使用者发出讯号视为杂讯,完全不必考虑到讯号碰撞 (collision) 问题。CDMA中所提供语音编码技术,通话品质比目前GSM好,且可把用户对话时周围环境噪音降低,使通话更清晰。就安全性能而言,CDMA不但有良好的认证体制,更因其传输特性,用码来区分用户,防止被人盗听的能力大大增强。CDMA定位技术是基于位置业务开发的定位技术,采用客户端/服务端架构,频率规划简单。用户按不同的序列码区分,所以,相同CDMA载波可在相邻的小区内使用,网络规划灵活,扩展简单。
OFDMA(Orthogonal Frequency Division Multiple Access)又称正交频分多址,OFDM技术与OFDMA技术二者最显著的差别是接入技术本身,OFDM传输通常要占用所有可用的子载波,而OFDMA是利用OFDM的概现上行多址接入,每个用户占用不同的子载波,通过子载波将用户分开。它针对多用户通信进行了优化,尤其是蜂窝电话和其它移动设备。将向下数据流分为逻辑数据流,这些数据流可以采用不同的调制及编码方式以及以不同的信号功率接入不同信道特征的用户端,向上数据流子信道采用多址方式接入,通过下行发送的媒质接入协议分配子信息传输上行数据流。OFDMA是一种多载波数字调制技术,具有较高的频谱利用率,且在抵抗多径效应、频率选择性衰落或窄带干扰上具有明显的优势。适用于目前主流的4G系统(WiMAX/LTE)。
目前基于以上的技术多采用有中心网络进行承载,采用基站与终端间进行相同分址技术通信,属于有中心网络。有中心网络在中心被损坏时,整个系统将会瘫痪。
无中心自组织网络里目前采用的是Mesh-OFDM(WiFi)技术,显然目前的WiFi-Mesh自组织网络,在频谱利用率和资源分配灵活性方面都有限,虽然具有自组织网络的功能,但在数据传输速率和资源共享能力低下,无法满足大容量高共享需求的应急自组织网络的搭建。
技术问题
本发明所要解决的技术问题在于提供一种基于Mesh网的OFDMA系统及控制方法,旨在解决现有技术中频谱利用率低和资源分配不合理的问题。
技术解决方案
本发明是这样实现的,一种基于Mesh网的OFDMA系统,包括Mesh网和根据时域和频域划分的若干正交且互不重叠的数据块,所述Mesh网内包含若干个节点,每个节点均与其它一个或多个节点相连接,所述节点用于接收同步信号、传输和共享数据;
所述数据块在时域前具有保留间隙,所述保留间隙用于与各所述节点的设备进行同步;
在所述若干个节点中包括一控制节点,所述控制节点接入有与所述节点相应的同步信号,使所述节点的信号与所述控制节点的信号同步;在同一Mesh网内其余所有节点均无法接收GPS时钟信号同步时,所述控制节点负责管理和协调Mesh网内所有节点的信号同步;所述控制节点通过通信协议来控制协调各节点对应的数据块的发送和调度;所述控制节点还用于在同一时域和频域内控制和管理所述Mesh网内共同所需的数据块及其排列形式,同时在时域中每一帧前面增加同步帧头,使其它节点在所述保留间隙内和控制节点的同步帧头后,根据所需的数据块进行数据摘取,并在摘取数据之外的时间把摘取到的数据块以广播方式同时传输给其它节点。
进一步地,所述Mesh网具有GPS天线,所述GPS天线分别设置在每一个节点上,用于接收GPS时钟同步信号;所述Mesh网内所有节点均能正常接收GPS时钟同步信号时,同步帧头相应地为GPS同步帧头。
进一步地,所述控制节点为在Mesh网内临时指派的一节点,并可根据所述Mesh网络实时拓扑情况进行动态变动。
进一步地,所述控制节点为中继控制节点,所述中继控制节点为最接近两个Mesh网间的物理位置的节点,用于将两个不同步通讯的Mesh网间的帧结构进行同步,并重新将两个Mesh网划分在同一时域和频域内;所述的具有不同步通讯的两个Mesh网为两个原本独立的且各自边缘节点满足建立相互通讯地理位置条件,所述两个Mesh网用于检测各节点是否能正常接收GPS时钟同步信号。
进一步地,所述中继控制节点为具有GPS天线的节点。
本发明还提供一种基于Mesh网的OFDMA系统的控制方法,该OFDMA系统包括具有若干节点的Mesh网和根据时域和频域划分的若干正交且互不重叠的数据块,所述控制方法具体包括以下步骤:
步骤1:把若干节点中的每个节点与其它的一个或多个节点相连接,所述节点用于接收同步信号、传输和共享数据;
步骤2:使所述数据块在时域前具有保留间隙,所述保留间隙用于与各所述节点的设备进行同步;
步骤3:在所述若干个节点中,选取一节点作为控制节点,在所述控制节点接入有与所述节点相应的同步信号;在同一Mesh网内其余所有节点均无法接收GPS时钟信号同步时,所述控制节点负责管理和协调Mesh网内所有节点的信号同步;所述控制节点通过通信协议来控制协调各节点对应的数据块的发送和调度,所述控制节点还能在同一时域和频域内控制和管理所述Mesh网内共同所需的数据块及其排列形式;
步骤4:所述控制节点在时域中每一帧前面增加同步帧头,同时使其它节点在所述保留间隙内和控制节点的同步帧头后,根据所需的数据块进行数据摘取,并在摘取数据之外的时间把摘取到的数据块以广播方式同时传输给其它节点。
进一步地,所述的控制方法还包括步骤5:在Mesh网内增加用于接收GPS时钟同步信号的GPS天线,所述GPS天线分别设置在每一个节点上,用于接收GPS时钟同步信号;所述Mesh网内所有节点均能正常接收GPS时钟同步信号时,同步帧头相应地为GPS同步帧头。
进一步地,所述步骤3中的控制节点为在Mesh网内临时指派的一节点,并可根据所述Mesh网络实时拓扑情况进行动态变动。
进一步地,所述步骤3中的控制节点为中继控制节点,所述中继控制节点为最接近两个Mesh网间的物理位置的节点,用于将两个不同步通讯的Mesh网间的帧结构进行同步,并重新将两个Mesh网划分在同一时域和频域内;所述的具有不同步通讯的两个Mesh网为两个原本独立的且各自边缘节点满足建立相互通讯地理位置条件,所述两个Mesh网用于检测各节点是否能正常接收GPS时钟同步信号。
进一步地,所述中继控制节点为具有GPS天线的节点。
有益效果
本发明与现有技术相比,有益效果在于:通过把Mesh网与最新的OFDMA技术相结合,显著提高了Mesh网的频谱利用率,对自组网的资源共享性有很大的提高,能实现高效率、高清晰、高质量的自组网内单元间的图像、视频共享传输。
附图说明
图1是本发明实施例提供的在室内应用场景下OFDMA系统的结构示意图;
图2是本发明实施例提供的在室外应用场景下OFDMA系统的结构示意图;
图3是本发明实施例提供的在室内室外混合场景下OFDMA系统的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明通过Mesh网与最新的OFDMA技术相结合,大大改善了频谱利用率和资源分配的灵活性。
如图1所示,为本发明一较佳的实施例,一种基于Mesh网的OFDMA系统,包括Mesh网102和根据时域和频域划分的若干正交且互不重叠的数据块101,所述Mesh网102内包含若干个节点1021,每个节点均与其它的一个或多个节点相连接,所述节点1021用于接收同步信号、传输和共享数据,以及完成节点收发的同步功能。所述数据块101在时域前具有保留间隙103,所述保留间隙103用于与各个所述节点的设备进行同步,所述数据块101用于存储视频图像数据。在所述若干个节点1021中包括一控制节点,所述控制节点接入有与节点1021相应的同步信号,使节点1021的信号与控制节点的信号同步;在同一Mesh网内其余所有节点均无法接收GPS时钟信号同步时,所述控制节点负责管理和协调Mesh网内所有其它节点的信号同步;控制节点通过通信协议负责控制协调分配各节点对应的数据块的发送和调度。控制节点还用于在同一时域和频域内控制和管理所述Mesh网102内共同所需的数据块及其排列形式,同时在时域中每一帧前面增加同步帧头104,使其它节点在保留间隙103内和控制节点的同步帧头104后,根据所需的数据块101进行数据摘取,并在摘取数据之外的时间把摘取到的数据块以广播方式同时传输给其它节点,以提高音视频等广播数据的传输效率。
实施例一
在室内应用场景下,如图1所示,所有Mesh网102内都无法获取GPS同步信号,此时可选取网内任一节点作为控制节点,例如,选取节点E作为控制节点。该控制节点为网内临时指派的一节点,并可根据所述Mesh网络实时拓扑情况进行动态变动。控制节点E接入有与节点A、节点B、节点C、节点D和节点F相同的同步信号,使其它节点的信号与控制节点E的信号同步。控制节点E通过通信协议负责控制协调分配各节点对应的数据块的发送和调度。在同一时域里,Mesh网102内的各个节点(包括控制节点)往外广播的数据都是一致的,在接收时,各个节点对应的设备根据自己的需要从这一连串的广播数据中接收属于自己的一部分数据。
实施例二
在室外应用场景下,如图2所示,所有MESH网102内单元的各个节点均安装了GPS天线1022,GPS天线1022分别设置在每一个节点上,通过GPS天线1022每一个节点均能获取GPS时钟同步信号1022。所述Mesh网内所有节点均能正常接收GPS时钟同步信号时,同步帧头相应地为GPS同步帧头。如图2,节点A、节点B、节点C、节点D、节点E、节点F均设置有GPS天线1022。此时可选取网内任一节点作为控制节点,比如,选取节点E作为控制节点。该控制节点是网内临时指派并可随时变更角色,具有GPS天线的控制节点E主要通过通信协议,负责控制协调分配各个节点对应的数据块的发送和调度。在同一时域和频域内,控制节点E负责控制和管理Mesh网内共同所需的数据块及排列形式,同时在每一帧前面添加GPS同步帧头1041,其它普通节点在保留间隙103内同步控制节点的GPS同步帧头1041后,根据所需的数据块进行数据摘取,其它时间共享网内资源给其这节点。
实施例三
在室内室外或混合应用场景下,如图3所示,不同Mesh网间需求同步通讯时,两个未同步的网内节点所发的帧结构不尽相同此时需要选取所述控制节点作为中继控制节点。优选的,选取最接近两个Mesh网间的物理位置的节点作为中继控制节点,该中继控制节点优先选取能正常接受室外GPS时钟同步信号的节点。比如,选取节点E作为中继控制节点。所述中继控制节点用于将两个不同步通讯的Mesh网间的帧结构进行同步,并重新将两个Mesh网划分在同一时域和频域内。所述的具有不同步通讯的两个Mesh网为两个原本独立的且各自边缘节点满足建立相互通讯地理位置条件,同时,两个Mesh网的各自节点间采用统一的同步方式。所述两个Mesh网主要用于检测各节点是否能正常接收GPS时钟同步信号。所述中继控制节点用于统一数据块及排列形式,同时在每一帧前面添加同步帧头,其它普通节点在保留间隙内同步控制节点帧头后,根据所需的数据块进行数据摘取,其它时间共享网内资源给其这节点。
基于上述的OFDMA系统,一种基于Mesh网的OFDMA系统的控制方法,该OFDMA系统包括具有若干节点的Mesh网和根据时域和频域划分的若干正交且互不重叠的数据块,所述控制方法具体包括以下步骤:步骤1:把若干节点中的每个节点与其它的一个或多个节点相连接,所述节点用于接收同步信号、传输和共享数据;步骤2:使所述数据块在时域前具有保留间隙,所述保留间隙用于与各节点的设备进行同步;步骤3:在所述若干个节点中,选取一节点作为控制节点,并在控制节点接入有与所述节点相应的同步信号;在同一Mesh网内其余所有节点均无法接收GPS时钟信号同步时,所述控制节点负责管理和协调Mesh网内所有节点的信号同步。所述控制节点通过通信协议来控制协调各节点对应的数据块的发送和调度,所述控制节点还能在同一时域和频域内控制和管理所述Mesh网内共同所需的数据块及其排列形式;步骤4:所述控制节点在时域中每一帧前面增加同步帧头,同时使其它节点在保留间隙内和控制节点的同步帧头后,根据所需的数据块进行数据摘取,并在摘取数据之外的时间把摘取到的数据块以广播方式同时传输给其它节点。
所述的控制方法还包括步骤5:在Mesh网内增加用于接收GPS时钟同步信号的GPS天线,所述GPS天线分别设置在每一个节点上,用于接收GPS时钟同步信号。所述Mesh网内所有节点均能正常接收GPS时钟同步信号时,同步帧头相应地为GPS同步帧头。
所述步骤3中的控制节点为在Mesh网内临时指派的一节点,并可根据所述Mesh网络实时拓扑情况进行动态变动。所述步骤3中的控制节点为中继控制节点,所述中继控制节点为最接近两个Mesh网间的物理位置的节点,用于将两个不同步通讯的Mesh网间的帧结构进行同步,并重新将两个Mesh网划分在同一时域和频域内。所述中继控制节点为具有GPS天线的节点。所述的具有不同步通讯的两个Mesh网为两个原本独立的且各自边缘节点满足建立相互通讯地理位置条件,同时,各自的节点间采用统一的同步方式,所述两个Mesh网主要用于区别在于Mesh网内所有节点是否均能正常接收GPS时钟同步信号。
本发明的基于Mesh网的OFDMA系统及其控制方法将显著改变目前MESH WIFI网络的低频谱利用率,传统效率及共享效率低下的现状,通过OFDMA系统的实现,可提供快速、有效和轻易搭建的高效率共享型MESH网络,适合于公安、消防、部队应急组网和野外协作任务的信息共享。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于Mesh网的OFDMA系统,其特征在于,包括Mesh网和根据时域和频域划分的若干正交且互不重叠的数据块,所述Mesh网内包含若干个节点,每个节点均与其它一个或多个节点相连接,所述节点用于接收同步信号、传输和共享数据;
    所述数据块在时域前具有保留间隙,所述保留间隙用于与各所述节点的设备进行同步;
    在所述若干个节点中包括一控制节点,所述控制节点接入有与所述节点相应的同步信号,使所述节点的信号与所述控制节点的信号同步;在同一Mesh网内其余所有节点均无法接收GPS时钟信号同步时,所述控制节点负责管理和协调Mesh网内所有节点的信号同步;所述控制节点通过通信协议来控制协调各节点对应的数据块的发送和调度;所述控制节点还用于在同一时域和频域内控制和管理所述Mesh网内共同所需的数据块及其排列形式,同时在时域中每一帧前面增加同步帧头,使其它节点在所述保留间隙内和控制节点的同步帧头后,根据所需的数据块进行数据摘取,并在摘取数据之外的时间把摘取到的数据块以广播方式同时传输给其它节点。
  2. 根据权利要求1所述的OFDMA系统,其特征在于,所述Mesh网具有GPS天线,所述GPS天线分别设置在每一个节点上,用于接收GPS时钟同步信号;所述Mesh网内所有节点均能正常接收GPS时钟同步信号时,同步帧头相应地为GPS同步帧头。
  3. 根据权利要求1所述的OFDMA系统,其特征在于,所述控制节点为在Mesh网内临时指派的一节点,并可根据所述Mesh网络实时拓扑情况进行动态变动。
  4. 根据权利要求1所述的OFDMA系统,其特征在于,所述控制节点为中继控制节点,所述中继控制节点为最接近两个Mesh网间的物理位置的节点,用于将两个不同步通讯的Mesh网间的帧结构进行同步,并重新将两个Mesh网划分在同一时域和频域内;所述的具有不同步通讯的两个Mesh网为两个原本独立的且各自边缘节点满足建立相互通讯地理位置条件,所述两个Mesh网用于检测各节点是否能正常接收GPS时钟同步信号。
  5. 根据权利要求4所述的OFDMA系统,其特征在于,所述中继控制节点为具有GPS天线的节点。
  6. 一种基于Mesh网的OFDMA系统的控制方法,其特征在于,该OFDMA系统包括具有若干节点的Mesh网和根据时域和频域划分的若干正交且互不重叠的数据块,所述控制方法具体包括以下步骤:
    步骤1:把若干节点中的每个节点与其它的一个或多个节点相连接,所述节点用于接收同步信号、传输和共享数据;
    步骤2:使所述数据块在时域前具有保留间隙,所述保留间隙用于与各所述节点的设备进行同步;
    步骤3:在所述若干个节点中,选取一节点作为控制节点,在所述控制节点接入有与所述节点相应的同步信号;在同一Mesh内其余所有节点均无法接收GPS时钟信号同步时,所述控制节点负责管理和协调Mesh网内所有节点的信号同步;所述控制节点通过通信协议来控制协调各节点对应的数据块的发送和调度,所述控制节点还能在同一时域和频域内控制和管理所述Mesh网内共同所需的数据块及其排列形式;
    步骤4:所述控制节点在时域中每一帧前面增加同步帧头,同时使其它节点在所述保留间隙内和控制节点的同步帧头后,根据所需的数据块进行数据摘取,并在摘取数据之外的时间把摘取到的数据块以广播方式同时传输给其它节点。
  7. 根据权利要求6所述的基于Mesh网的OFDMA系统的控制方法,其特征在于,所述的控制方法还包括步骤5:在Mesh网内增加用于接收GPS时钟同步信号的GPS天线,所述GPS天线分别设置在每一个节点上,用于接收GPS时钟同步信号;所述Mesh网内所有节点均能正常接收GPS时钟同步信号时,同步帧头相应地为GPS同步帧头。
  8. 根据权利要求6所述的基于Mesh网的OFDMA系统的控制方法,其特征在于,所述步骤3中的控制节点为在Mesh网内临时指派的一节点,并可根据所述Mesh网络实时拓扑情况进行动态变动。
  9. 根据权利要求6所述的基于Mesh网的OFDMA系统的控制方法,其特征在于,所述步骤3中的控制节点为中继控制节点,所述中继控制节点为最接近两个Mesh网间的物理位置的节点,用于将两个不同步通讯的Mesh网间的帧结构进行同步,并重新将两个Mesh网划分在同一时域和频域内;所述的具有不同步通讯的两个Mesh网为两个原本独立的且各自边缘节点满足建立相互通讯地理位置条件,所述两个Mesh网用于检测各节点是否能正常接收GPS时钟同步信号。
  10. 根据权利要求9所述的基于Mesh网的OFDMA系统的控制方法,其特征在于,所述中继控制节点为具有GPS天线的节点。
PCT/CN2014/090260 2014-04-01 2014-11-04 一种基于Mesh网的OFDMA系统及控制方法 WO2015149513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/181,396 US20160345319A1 (en) 2014-04-01 2016-06-13 Ofdma system and control method based on mesh network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410128764.9A CN103974408B (zh) 2014-04-01 2014-04-01 一种基于Mesh网的OFDMA系统及控制方法
CN201410128764.9 2014-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/181,396 Continuation US20160345319A1 (en) 2014-04-01 2016-06-13 Ofdma system and control method based on mesh network

Publications (1)

Publication Number Publication Date
WO2015149513A1 true WO2015149513A1 (zh) 2015-10-08

Family

ID=51243317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090260 WO2015149513A1 (zh) 2014-04-01 2014-11-04 一种基于Mesh网的OFDMA系统及控制方法

Country Status (3)

Country Link
US (1) US20160345319A1 (zh)
CN (1) CN103974408B (zh)
WO (1) WO2015149513A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085814A1 (en) 2016-11-07 2018-05-11 Whelen Engineering Company, Inc. Network and connected devices for emergency response and roadside operations
WO2021213553A3 (zh) * 2020-04-20 2021-12-16 上海交通大学 Ofdma反向散射网络的频谱动态控制方法及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974408B (zh) * 2014-04-01 2017-09-15 宽兆科技(深圳)有限公司 一种基于Mesh网的OFDMA系统及控制方法
EP3166257B1 (en) * 2015-11-05 2018-09-26 Robert Bosch Gmbh Start-up triggering in an ethernet-based in-vehicle network
CN106060957A (zh) * 2016-05-18 2016-10-26 中国电子科技集团公司第五十四研究所 一种csma/tdma混合接入控制方法
GB2551328B (en) * 2016-06-10 2020-02-19 Bluwireless Tech Ltd Clock synchronisation in wireless mesh communications networks
US10492156B2 (en) * 2016-08-31 2019-11-26 Inizio Capital Llc Dynamic direct multinode (DDM) wireless network
RU2721157C1 (ru) * 2017-03-24 2020-05-18 Телефонактиеболагет Лм Эрикссон (Пабл) Широкополосное обнаружение сигнала синхронизации в системе nr
US10819820B1 (en) * 2017-03-24 2020-10-27 Amazon Technologies, Inc. On-path data caching in a mesh network
WO2018172044A1 (en) 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Receiving a periodic, wideband synchronization signal in a narrowband receiver
CN110290580B (zh) * 2019-06-05 2021-08-20 深圳市英特瑞半导体科技有限公司 一种基于1588协议传递时间的方法及其系统
CN110113127B (zh) * 2019-06-05 2021-08-20 深圳市英特瑞半导体科技有限公司 一种基于1588协议传递时间的方法及其系统
CN110224777B (zh) * 2019-06-05 2021-08-20 深圳市英特瑞半导体科技有限公司 一种基于1588协议传递时间的方法及其系统
CN112564839B (zh) * 2020-11-24 2023-04-28 中移(杭州)信息技术有限公司 时间同步方法、终端、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610594A (zh) * 2009-07-24 2009-12-23 西安电子科技大学 基于TD-OFDMA的动态分层PMP/Mesh混合网络系统及其超帧结构
CN102158453A (zh) * 2010-03-19 2011-08-17 北京交通大学 基于IEEE802.16d/e实现Mesh模式下的OFDM物理层系统
CN102780668A (zh) * 2011-05-11 2012-11-14 韩国电子通信研究院 无线网络系统中的同步设备和方法
CN103974408A (zh) * 2014-04-01 2014-08-06 宽兆科技(深圳)有限公司 一种基于Mesh网的OFDMA系统及控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379183C (zh) * 2004-11-30 2008-04-02 西安电子科技大学 移动无线自组织网络的互同步方法
US20070211757A1 (en) * 2006-03-07 2007-09-13 Ozgur Oyman OFDMA resource allocation in multi-hop wireless mesh networks
US7620370B2 (en) * 2006-07-13 2009-11-17 Designart Networks Ltd Mobile broadband wireless access point network with wireless backhaul
WO2009018212A1 (en) * 2007-07-30 2009-02-05 Innovative Wireless Technologies, Inc. Distributed ad hoc network protocol using synchronous shared beacon signaling
US8374163B2 (en) * 2007-11-09 2013-02-12 Qualcomm Incorporated Synchronization of wireless nodes
US8160491B2 (en) * 2008-07-31 2012-04-17 Designart Networks Ltd GPS synchronization method for mobile wireless networks
US8451814B2 (en) * 2010-06-11 2013-05-28 Clearwire Ip Holdings Llc Carrier signals for synchronization
KR20120012749A (ko) * 2010-08-03 2012-02-10 한국전자통신연구원 Ofdma에 기반한 무선 메쉬 네트워크에서의 분산 스케줄링 방법 및 장치
KR101825015B1 (ko) * 2010-12-23 2018-02-06 한국전자통신연구원 이동 무선 네트워크에서의 자원 할당 방법 및 그 장치
US8787954B2 (en) * 2012-01-12 2014-07-22 Qualcomm Incorporated Method and apparatus for synchronizing a wireless network with an external timing source
EP2820909B1 (en) * 2012-03-01 2017-09-06 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
JP5668732B2 (ja) * 2012-09-14 2015-02-12 株式会社デンソー 無線通信システム
US9439188B2 (en) * 2013-03-01 2016-09-06 Qualcomm Incorporated Scheduling for signaling and information transfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610594A (zh) * 2009-07-24 2009-12-23 西安电子科技大学 基于TD-OFDMA的动态分层PMP/Mesh混合网络系统及其超帧结构
CN102158453A (zh) * 2010-03-19 2011-08-17 北京交通大学 基于IEEE802.16d/e实现Mesh模式下的OFDM物理层系统
CN102780668A (zh) * 2011-05-11 2012-11-14 韩国电子通信研究院 无线网络系统中的同步设备和方法
CN103974408A (zh) * 2014-04-01 2014-08-06 宽兆科技(深圳)有限公司 一种基于Mesh网的OFDMA系统及控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085814A1 (en) 2016-11-07 2018-05-11 Whelen Engineering Company, Inc. Network and connected devices for emergency response and roadside operations
EP3535629A4 (en) * 2016-11-07 2020-07-15 Whelen Engineering Company, Inc. NETWORK AND CONNECTED DEVICES FOR EMERGENCY RESPONSE AND ROUTE FIRST OPERATIONS
US11297661B2 (en) 2016-11-07 2022-04-05 Whelen Engineering Company, Inc. Network and connected devices for emergency response and roadside operations
WO2021213553A3 (zh) * 2020-04-20 2021-12-16 上海交通大学 Ofdma反向散射网络的频谱动态控制方法及系统

Also Published As

Publication number Publication date
US20160345319A1 (en) 2016-11-24
CN103974408B (zh) 2017-09-15
CN103974408A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2015149513A1 (zh) 一种基于Mesh网的OFDMA系统及控制方法
CN107155187B (zh) 通信方法、终端设备和网络侧设备
WO2015169156A1 (zh) D2d通信中的不同cp长度共存的配置
US9961688B1 (en) Cloud ran architecture
CN104956752A (zh) 移动通信设备和用于基于ue能力分配虚拟载波外部的资源的方法
CN104956753A (zh) 移动通信基站和用于基于ue能力分配虚拟载波外部的资源的方法
TW201904329A (zh) 與無線回載網路中的鏈路建立有關的方法和裝置
WO2013135210A1 (zh) 小区配置方法和同步方法,用户设备和基站
JPH11285059A (ja) 移動通信システムにおける基地局と移動端末機との間のデ―タ通信方法
TW200824333A (en) Communication systems
CN107534980A (zh) 移动通信网络、方法、基站、中继节点和通信终端
GB2502274A (en) Allocating 3rd and 4th generation resources to low complexity devices
CN105900508A (zh) 用户终端、无线基站、无线通信系统以及无线通信方法
CN104812053B (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2013135094A1 (zh) 一种集群业务传输方法及装置
US20170359819A1 (en) Neighborhood Awareness Network and Multi-Channel Operation over OFDMA
EP3855836B1 (en) Method and apparatus for use in wireless communication node
GB2497939A (en) Radio subframe arrangement to support an additional physical channel for communication links operating in half-duplex mode
US8824413B2 (en) Direct communications in wireless networks
Gupta et al. A novel user selection and resource allocation framework for cooperative D2D communication
CN105075353A (zh) 通信控制装置、通信控制方法以及用户设备
CN102149146A (zh) 上行传输速率的控制方法和系统
CN104754754A (zh) 半静态调度下的迟后接入方法
Lin et al. 2.1 GHz Dynamic Spectrum Sharing Scheme for 4G/5G Mobile Network
CN103068053A (zh) 一种应用于集群通信系统的干扰抑制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887731

Country of ref document: EP

Kind code of ref document: A1