WO2015143823A1 - IPv6网络参数处理方法、装置、系统及AAA服务器 - Google Patents

IPv6网络参数处理方法、装置、系统及AAA服务器 Download PDF

Info

Publication number
WO2015143823A1
WO2015143823A1 PCT/CN2014/084669 CN2014084669W WO2015143823A1 WO 2015143823 A1 WO2015143823 A1 WO 2015143823A1 CN 2014084669 W CN2014084669 W CN 2014084669W WO 2015143823 A1 WO2015143823 A1 WO 2015143823A1
Authority
WO
WIPO (PCT)
Prior art keywords
radius
remote user
ipv6
transition technology
ipv6 transition
Prior art date
Application number
PCT/CN2014/084669
Other languages
English (en)
French (fr)
Inventor
孟伟
王翠
蔡磊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to ES14887584T priority Critical patent/ES2724973T3/es
Priority to JP2016559237A priority patent/JP2017511063A/ja
Priority to EP14887584.2A priority patent/EP3125487B1/en
Priority to US15/121,866 priority patent/US20170019406A1/en
Publication of WO2015143823A1 publication Critical patent/WO2015143823A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0892Network architectures or network communication protocols for network security for authentication of entities by using authentication-authorization-accounting [AAA] servers or protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/251Translation of Internet protocol [IP] addresses between different IP versions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4547Network directories; Name-to-address mapping for personal communications, i.e. using a personal identifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • H04L61/503Internet protocol [IP] addresses using an authentication, authorisation and accounting [AAA] protocol, e.g. remote authentication dial-in user service [RADIUS] or Diameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/025Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • H04L69/085Protocols for interworking; Protocol conversion specially adapted for interworking of IP-based networks with other networks

Definitions

  • the present invention relates to the field of communications, and in particular to an IPv6 network parameter processing method, apparatus, system, and authentication authorization accounting (Authorization Authorization and Accounting, referred to as AAA). ) Server, Remote Authentication Dial-In User Service (RADIUS) (or remote user dial-up authentication) Client and Broadband Network Gateway (BNG). BACKGROUND OF THE INVENTION
  • AAA IPv6 network parameter processing method, apparatus, system, and authentication authorization accounting
  • AAA authentication Authorization and Accounting
  • RADIUS Remote Authentication Dial-In User Service
  • BNG Broadband Network Gateway
  • IPv4 IPv4 to IPv4 network address translation
  • NAT44 IPv4 to IPv4 double-layer network address translation
  • ⁇ 444 Light-duplex stack
  • Light Weight 4over6 Lightweight IPv4 overlay IPv6 dual stack
  • Mapping Port Address Mapping Mapping of Address and Port
  • MAP IPv6 to IPv4 Network Address Translation
  • IPv6 IPv6
  • Public 4over6 Universal IPv4 Overlay IPv6
  • IVI IV-VI, Roman numeral 4-6, symbol IPv4-IPv6 stateless translation
  • FIG. 1 is a schematic diagram of a scenario in which multiple types of IPv6 transition technologies are supported in the related art. As shown in Figure 1, the network needs to support Lightweight 4over6 at this time. For User A, a smooth upgrade to Lightweight 4over6 technology is required.
  • both the CPE and the BNG are manually configured to implement the current IPv6 transition technology. If the CPE needs to be smoothly upgraded to support another transition technology, a large number of users are required. The CPE is configured to even upgrade the software and hardware of the CPE, thereby increasing the operation cost.
  • the carrier network BNG supports two or more transition technologies at the same time, in the related technology, the BNG must be configured to know which CPE is suitable for which transition technology, thus forming a massive configuration on the BNG, which is not easy to operate. management. Therefore, in the related art, the deployment of the IPv6 technology in the broadband network has a problem that the manual configuration workload is cumbersome, and the configuration is inflexible and the cost is high.
  • an IPv6 network parameter processing method including: receiving a RADIUS access request message sent by a remote user dial-up authentication RADIUS client corresponding to a remote user; After the remote user authentication is passed, the RADIUS client receives the RADIUS accepting access message carrying the IPv6 transition technology type information supported by the remote user.
  • the sending, by the RADIUS client, the RADIUS accepting access message carrying the IPv6 transition technology type information supported by the remote user includes: determining one or more types of IPv6 transition technologies supported by the remote user; And one or more identifier IDs corresponding to the one or more types of IPv6 transition technologies; and sending the RADIUS accepting access message encapsulated with the one or more IDs to the RADIUS client.
  • an IPv6 network parameter processing method including: sending a remote user dial-up authentication RADIUS access request message from a remote user to an authentication and authorization charging AAA server; receiving the feedback from the AAA server The RADIUS accepting access message carrying the IPv6 transition technology type information supported by the remote user.
  • the method further includes: supporting the remote user by using the identifier ID.
  • the transition technology type is identified, one or more IPv6 transition technology types corresponding to one or more IDs carried in the RADIUS accepting access message are parsed; and the one or more IDs are stored with the remote Corresponding relationship of the user; and/or, transmitting the one or more IPv6 transition technology types to the remote user.
  • an IPv6 network parameter processing apparatus including: a first receiving module, configured to receive a RADIUS access request message sent by a remote user dial-up authentication RADIUS client corresponding to a remote user;
  • the sending module is configured to send, to the RADIUS client, a RADIUS accepting access message carrying the IPv6 transition technology type information supported by the remote user, after the remote user is authenticated according to the RADIUS access request message.
  • the first sending module includes: a first determining unit, configured to determine one or more types of IPv6 transition technologies supported by the remote user; and a second determining unit, configured to determine the one or more IPv6 transitions One or more identifier IDs corresponding to the technology type; the sending unit is configured to send the RADIUS accepting access message encapsulating the one or more IDs to the RADIUS client.
  • an authentication and authorization charging AAA server comprising the apparatus of any of the above.
  • an IPv6 network parameter processing apparatus including: a second sending module, configured to send a remote user dial-up authentication RADIUS access request message from a remote user to an authentication and authorization charging AAA server;
  • the receiving module is configured to receive the RADIUS accepting access message carrying the IPv6 transition technology type information supported by the remote user, which is fed back by the AAA server.
  • the device further includes: a parsing module, configured to parse one or more of the RADIUS accepted access messages in the case that the type of the IPv6 transition technology supported by the remote user is identified by the identifier ID One or more IPv6 transition technology types corresponding to the ID; a storage module, configured to store a correspondence between the one or more IDs and the remote user; and/or a third sending module, configured to set the one Or multiple IPv6 transition technology types are sent to the remote user.
  • a remote user dial-up authentication RADIUS client is provided, comprising the apparatus of any of the above.
  • a broadband network gateway BNG is provided, comprising the apparatus of any of the above.
  • an IPv6 transition technology type processing system including the authentication and authorization charging AAA server and the broadband network gateway BNG described above.
  • the RADIUS access request packet sent by the remote user dial-up authentication RADIUS client corresponding to the remote user is received by the remote user, and after the remote user is authenticated according to the RADIUS access request packet, the RADIUS client is sent to the RADIUS client.
  • Sending an IPv6 transition technology type letter carrying the remote user support The RADIUS receiving access packet solves the problem that the manual configuration workload of the IPv6 transition technology type is complicated, the configuration is inflexible, and the cost is high, and the configuration method of the extended IPv6 transition technology type is realized, and the network is realized.
  • FIG. 1 is a schematic diagram of a scenario in which a plurality of IPv6 transition technologies are supported in the related art
  • FIG. 2 is a flowchart of a method 1 for processing IPv6 network parameters according to an embodiment of the present invention
  • FIG. 3 is a flowchart according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of an IPv6 network parameter processing apparatus 1 according to an embodiment of the present invention
  • FIG. 5 is a first sending module 44 in an IPv6 network parameter processing apparatus 1 according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram of an authentication and authorization charging AAA server according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of an IPv6 network parameter processing apparatus 2 according to an embodiment of the present invention
  • FIG. 8 is a block diagram of an IPv6 network parameter processing apparatus according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a remote user dial-up authentication RADIUS client according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a broadband network gateway BNG according to an embodiment of the present invention
  • 11 is a schematic structural diagram of an IPv6 transition technology type processing system according to an embodiment of the present invention
  • FIG. 12 is a diagram according to the present invention.
  • FIG. 13 is a schematic diagram of a format of a RADIUS packet according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a format of an attribute option packet of a RADIUS extended IPv6 transition technology type ID according to an embodiment of the present invention
  • 15 is a deployment scenario diagram based on a DS-Lite transition technology according to a preferred embodiment 1 of the present invention
  • 16 is a deployment scenario diagram of supporting DS-Lite and MAP transition technologies based on the same user according to a preferred embodiment of the present invention
  • FIG. 17 is a user-supported MAP transition technology according to a preferred embodiment of the present invention, user 2 Supports deployment scenarios for Lightweight 4over6.
  • FIG. 2 is a flowchart of a method for processing an IPv6 network parameter according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps: Step S202: Receive Remote user dial-up authentication to the remote user sent by the RADIUS client
  • Step S204 After the remote user is authenticated according to the RADIUS access request packet, the RADIUS client receives the RADIUS accepting access message carrying the IPv6 transition technology type information supported by the remote user.
  • the IPv6 transition technology type supported by the remote user is configured in the extension mode of the RADIUS packet exchange, and the manual configuration workload of the IPv6 transition technology type is complicated and configured in the related art.
  • the problem of inflexibility and high cost has reached the configuration method of extending the IPv6 transition technology type, and the effect of unified configuration management of the IPv6 transition technology type supported by the network is realized.
  • a RADIUS-received access packet carrying the information about the type of the IPv6 transition technology supported by the remote user can be used in the RADIUS client.
  • the simpler processing method is to identify the one or more IPv6 transition technologies. Determining one or more IPv6 transition technology types supported by the remote user; then, determining one or more identification IDs corresponding to the one or more IPv6 transition technology types; and finally, RADIUS encapsulating the one or more IDs Accept the access packet and send it to the RADIUS client.
  • FIG. 3 is a flowchart of a second method for processing an IPv6 network parameter according to an embodiment of the present invention. As shown in FIG.
  • Step S302 Sending a remote user dialing authentication from a remote user to an authentication and authorization charging AAA server RADIUS access request packet
  • Step S304 receiving a RADIUS accepting access message carrying the IPv6 transition technology type information supported by the remote user, which is fed back by the AAA server.
  • the client side obtains the IPv6 transition technology type supported by the remote user by using the extension mode of RADIUS packet exchange, and solves the cumbersome manual configuration workload for the IPv6 transition technology type in the related art, and the configuration.
  • the problem of inflexibility and high cost has reached the configuration method of extending the IPv6 transition technology type, and the effect of unified configuration management of the IPv6 transition technology type supported by the network is realized.
  • the following processing may be performed: when the IPv6 transition technology type supported by the remote user is identified by the identifier ID.
  • IPv6 transition technology types corresponding to one or more IDs carried in the RADIUS accepting access packet are parsed; then, the correspondence between one or more IDs and the remote user may be stored, so that the client locally Corresponding relationship learns the IPv6 transition technology type supported by the remote user, and stores the backup information of the remote user; and/or can also send one or more IPv6 transition technology types to the remote user, so that the remote user can smoothly perform the IPv6 technology transition. .
  • FIG. 4 is a structural block diagram of an IPv6 network parameter processing apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes a first receiving module 42 and a first transmitting module 44. The apparatus will be described below.
  • the first receiving module 42 is configured to receive the RADIUS access request message sent by the remote user dialing authentication RADIUS client corresponding to the remote user; the first sending module 44 is connected to the first receiving module 42 and configured to access according to the RADIUS. After the request packet is authenticated by the remote user, the RADIUS client receives the RADIUS accepting access message carrying the IPv6 transition technology type information supported by the remote user.
  • FIG. 5 is a block diagram of a preferred structure of the first sending module 44 in the IPv6 network parameter processing apparatus according to the embodiment of the present invention. As shown in FIG. 5, the first sending module 44 includes a first determining unit 52 and a second determining unit 54. And the transmitting unit 56, the first transmitting module 44 will be described below.
  • the first determining unit 52 is configured to determine one or more IPv6 transition technology types supported by the remote user; the second determining unit 54 is connected to the first determining unit 52, and configured to determine one or more IPv6 transition technologies. One or more identification IDs corresponding to the operation type; the sending unit 56 is connected to the second determining unit 54 and configured to send the RADIUS accepting access message encapsulated with one or more IDs to the RADIUS client.
  • FIG. 6 is a structural block diagram of an authentication and authorization charging AAA server according to an embodiment of the present invention. As shown in FIG. 6, the AAA server 60 includes the IPv6 network parameter processing device one 62 of any of the above.
  • FIG. 7 is a structural block diagram of an IPv6 network parameter processing apparatus 2 according to an embodiment of the present invention.
  • the apparatus includes a second sending module 72 and a second receiving module 74.
  • the apparatus will be described below.
  • the second sending module 72 is configured to send a remote user dial-up authentication RADIUS access request message from the remote user to the authentication and authorization charging AAA server.
  • the second receiving module 74 is connected to the second sending module 72, and is configured to receive the AAA.
  • the RADIUS-accepted packet that is fed back by the server and carries the IPv6 transition technology type information supported by the remote user.
  • FIG. 8 is a block diagram of a preferred structure of an IPv6 network parameter processing apparatus 2 according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes: a parsing module 82 and a storage module 84, in addition to all the structures shown in FIG.
  • the parsing module 82 is configured to parse one or more IPv6 transition technologies corresponding to one or more IDs carried in the RADIUS accepting access message when the IPv6 transition technology type supported by the remote user is identified by the identifier ID.
  • the storage module 84 is connected to the parsing module 82, and is configured to store a correspondence between one or more IDs and a remote user.
  • the third sending module 86 is connected to the parsing module 82 and configured to transition one or more IPv6s. The technology type is sent to the remote user.
  • FIG. 9 is a schematic structural diagram of a remote user dial-up authentication RADIUS client according to an embodiment of the present invention. As shown in FIG.
  • the RADIUS client 90 includes the IPv6 network parameter processing apparatus 92 of any of the above.
  • FIG. 10 is a schematic structural diagram of a broadband network gateway BNG according to an embodiment of the present invention. As shown in FIG. 10, the BNG 100 includes the IPv6 network parameter processing apparatus 92 of any of the above.
  • FIG. 11 is a schematic structural diagram of an IPv6 transition technology type processing system according to an embodiment of the present invention. As shown in FIG. 11, the IPv6 transition technology type processing system 110 includes the above-mentioned authentication and authorization charging AAA server 60 and broadband network gateway BNG100.
  • a user transition technology type management is performed on an Authentication and Authorization Accounting (AAA) server, and dialing is performed by a remote user.
  • AAA Authentication and Authorization Accounting
  • the Extended Attributes option of the Remote Authentication Dial In User Service (RADIUS) protocol which carries the type of IPv6 transition technology and passes it to BNG. Notify the type of IPv6 transition technology supported by this user. Therefore, the defects of various IPv6 transition technologies of different users are identified by manual configuration on BNG.
  • the IPv6 transition technology type is delivered through the extended attribute option of the RADIUS protocol.
  • FIG. 12 is a flowchart of RADIUS packet exchange according to an embodiment of the present invention. As shown in FIG. 12, the AAA server serves as a RADIUS server and the BNG serves as a RADIUS client. The following describes the behavior of the AAA server and BNG respectively.
  • the AAA server is a server that handles user access requests, providing authentication authorization and account services. In addition to being a billing server, it also includes storage of user and billing information, user and billing policy management, and the like.
  • the AAA server needs to be configured with the IPv6 transition technology type of the user.
  • the IPv6 transition technology type may include multiple types, for example, at least one of the following: NAT44 (IPv4 to IPv4 network address translation), DS-Lite (light dual stack), Light Weight 4over6 (light IPv4 overlay IPv6 dual stack) , MAP (Address Port Encapsulation Mapping), NAT64 (IPv6 to IPv4 Network Address Translation), Public 4over6 (Universal IPv4 Overlay IPv6), IVI (IV-VI, Roman numeral 4-6, symbolizing IPv4-IPv6 stateless translation).
  • NAT44 IPv4 to IPv4 network address translation
  • DS-Lite light dual stack
  • Light Weight 4over6 light IPv4 overlay IPv6 dual stack
  • MAP Address Port Encapsulation Mapping
  • NAT64 IPv6 to IPv4 Network Address Translation
  • Public 4over6 Universal IPv4 Overlay IPv6
  • IVI IV-VI, Roman numeral 4-6, symbolizing IPv4-IPv6 stateless translation
  • FIG. 13 is a schematic diagram of a RADIUS packet format according to an embodiment of the present invention, as shown in FIG. 13, wherein the Attributes field can be arbitrarily expanded according to an application.
  • 14 is a schematic diagram of a format of an attribute option packet of a RADIUS extended IPv6 transition technology type ID according to an embodiment of the present invention. As shown in FIG. 14, one can carry multiple IPv6 transition technology type IDs at a time, that is, one user can simultaneously support multiple IPv6s. Transition technology.
  • the BNG After receiving the dial-up authentication packet sent by the CPE, the BNG sends a RADIUS request packet. After obtaining the response packet from the RADIUS server, that is, the AAA server, the technology type attribute option carried in the packet is parsed to obtain the relevant transition technology ID number. The BNG associates the obtained transition technology ID number with the user side of the CPE side to obtain the IPv6 transition technology type supported by the user.
  • FIG. 15 is a deployment scenario diagram of a DS-Lite transition technology according to a preferred embodiment of the present invention. Based on FIG. 15, the IPv6 transition technology deployment includes the following steps: Step S1502: A user connects to a CPE through a DS-Lite technology.
  • Step S1504 the AAA server manages the user information, and the operator adds the IPv6 transition technology of the type DS-Lite to the information of the user; in step S1506, the user authenticates the Internet through the PPPoE dial-up.
  • the BNG encapsulates the dialing information in the RADIUS request packet and sends it to the AAA server.
  • the AAA server receives the RADIUS request packet and finds that the IPv6 transition technology type of the user is DS-Lite. Then, the ID for DS-Lite is filled in the attribute option as shown in Figure 4, and the type and length are filled in.
  • the AAA server sends the response message to the BNG.
  • step S1510 the AAA server sends the response message to the BNG.
  • the BNG receives the packet and parses the IPv6 transition technology type in the Attributes segment, and the user information relationship is saved locally. , continue to the next step of the user's DS-Lite technology related process.
  • FIG. 16 is a schematic diagram of a deployment scenario in which a DS-Lite and a MAP transition technology are simultaneously supported by the same user according to a preferred embodiment of the present invention. Based on FIG. 16, the IPv6 transition technology deployment includes the following steps: Step S1602, the user passes the CPE, and Connect to BNG and the Internet using DS-Lite and MAP technologies; Step S1604, the AAA server manages user information, and the operator adds types of DS-Lite and MAP.
  • the IPv6 transition technology is sent to the information of the user.
  • the user performs online authentication through PPPoE dialing.
  • the BNG encapsulates the dialing information in the RADIUS request packet and sends it to the AAA server.
  • the AAA server receives the RADIUS request packet and finds that the IPv6 transition technology type of the user is DS-Lite. And MAP, then the IDs of DS-Lite and MAP are filled in the attribute options as shown in FIG.
  • Step S610 The AAA server sends the response message to the BNG, and the BNG receives the packet and parses the IPv6 transition technology type in the Attributes segment, and the relationship between the user information is saved locally, and continues to proceed to the DS- of the user in the next step.
  • the process related to Lite and MAP technology. 17 is a deployment scenario diagram of user 1 supporting Lightweight 4 OV er6 based on user 1 supporting MAP transition technology according to a preferred embodiment of the present invention. Based on FIG.
  • the IPv6 transition technology deployment includes the following steps: Step S1702, user 1 passes CPE 1 and connected to BNG and Internet by MAP technology; Step S1704, User 2 connects to BNG and Internet through CPE 2 and adopts Lightweight 4over6 technology; Step S1706, AAA server manages user information, and operator adds IPv6 of type MAP In the information of the transition technology to the user 1, the IPv6 transition technology of the type of Lightweight 4over6 is added to the information of the user 2; in step S1708, the user 1 authenticates the Internet through the PPPoE dial-up. After receiving the relevant dialing request, the BNG encapsulates the dialing information in the RADIUS request packet and sends it to the AAA server.
  • step S1710 the AAA server receives the RADIUS request packet and finds that the IPv6 transition technology type of the user is MAP. Fill in the ID of the MAP as shown in the attribute option of Figure 4, where MAP corresponds to the IPv6 transition technology type ID 1, and fill in the type and length, and is appended in the Attributes section of the RADIUS response message;
  • Step S1712 the AAA server will The response message is sent to the BNG, and the BNG receives the packet and parses the IPv6 transition technology type in the Attributes section, and stores the information relationship with the user 1 and saves it locally, and continues the process related to the MAP technology of the user 1 in the next step;
  • user 2 authenticates the Internet through PPPoE dial-up.
  • the BNG After receiving the relevant dialing request, the BNG encapsulates the dialing information in the RADIUS request packet and sends it to the AAA server.
  • the AAA server receives the RADIUS request packet and finds that the IPv6 transition technology type of the user is Lightweight 4over6. Therefore, the ID for Lightweight 4over6 is filled in the attribute option as shown in FIG.
  • Step S1718 The AAA server sends the response message to the BNG, and the BNG receives the packet and parses the IPv6 transition technology type in the Attributes section, and stores the information relationship with the user 2, saves it locally, and proceeds to the next step of the user's Lightweight. 4over6 technology related processes.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
  • the above embodiments and preferred embodiments not only solve the problem that the manual configuration workload is cumbersome, the configuration is inflexible, and the cost is high for the IPv6 transition technology type in the related art, thereby achieving the extended IPv6 transition.
  • the configuration of the technology type implements the unified configuration and management of the IPv6 transition technology type supported by the network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Computer And Data Communications (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明提供了一种IPv6网络参数处理方法、装置、系统、认证授权计费AAA服务器、远程用户拨号认证RADIUS客户端及宽带网络网关BNG,该方法包括:接收到远程用户对应的远程用户拨号认证RADIUS客户端发送的RADIUS访问请求报文;在依据RADIUS访问请求报文对远程用户认证通过后,向RADIUS客户端发送携带有远程用户支持的IPv6过渡技术类型信息的RADIUS接受访问报文,通过本发明,解决了相关技术中对于IPv6过渡技术类型存在手工配置工作量烦杂,以及配置不灵活,成本高的问题,进而达到了扩展IPv6过渡技术类型的配置方式,实现了网络对用户支持的IPv6过渡技术类型进行统一配置管理的效果。

Description

IPv6网络参数处理方法、 装置、 系统及 AAA服务器 技术领域 本发明涉及通信领域, 具体而言,涉及一种 IPv6网络参数处理方法、装置、系统、 认证授权计费 (Authentication Authorization and Accounting, 简称为 AAA) 服务器、 远程认证拨号用户服务(Remote Authentication Dial-In User Service, 简称为 RADIUS ) (或称远程用户拨号认证) 客户端及宽带网络网关 (Broadband Network Gateway, 简 称为 BNG)。 背景技术 随着现代技术的飞速发展, 国际互联网已经广泛应用到各个领域。 现阶段使用的 协议 IPv4已不能满足时代的发展, 其定义的 IPv4已经分配完毕, 诸多国家和地区面 临 IPv4地址短缺的问题。 新一代地址协议 IPv6取代 IPv4是必然的趋势, 但要完成从 IPv4到 IPv6的过渡将是一个渐进的长期的过程。 在这个过程中出现了许多中 IPv6过 渡技术类型, 主要包括: IPv4到 IPv4的网络地址转换 (Network Address Translation IPv4-IPv4, 简称为 NAT44), IPv4 到 IPv4 的双层网络地址转换 (Network Address Translation ΙΡν4-ΙΡν4-ΙΡν4 , 简称为 ΝΑΤ444 ), 轻型双栈 (Dual-Stack Lite, 简称为 DS-Lite), Light Weight 4over6 (轻型 IPv4叠加 IPv6双栈),地址端口封装映射(Mapping of Address and Port with Encapsulation, 简称为 MAP), IPv6到 IPv4的网络地址转换 (Network Address Translation IPv6-IPv4, 简称为 NAT64), Public 4over6 (通用 IPv4 叠加 IPv6), IVI (IV- VI, 罗马数字 4-6, 象征 IPv4-IPv6无状态翻译) 等技术类型。 在相关技术中, 对于 IPv6 技术在宽带网络中的部署是基于对客户前置设备
( Customer Premise Equipment, 简称为 CPE, 一般是家庭网关、 Modem等设备)和宽 带接入网关 (Broadband Network Gateway, 简称为 BNG) 的配置进行的。 例如, 运营 商将支持 DS-Lite技术的 CPE提供给用户 A使用, 并接入支持 DS-Lite的 BNG设备; 过了一段时期之后, 运营商网络升级, BNG设备支持 Lightweight 4over6, 此时运营商 需要提供 Lightweight 4over6的 CPE设备给新开户的用户 B。 图 1是相关技术中支持多种 IPv6过渡技术类型的场景示意图, 如图 1所示, 运营 商此时网络需要支持 Lightweight 4over6, 对于用户 A, 需要平滑升级到 Lightweight 4over6技术。 而在相关技术中, CPE和 BNG都是通过手工配置来实现当前 IPv6过渡 技术的配置, 如果需要将 CPE平滑升级到支持另一种过渡技术, 则需要大量的对用户 的 CPE进行配置, 甚至要对 CPE进行软件和硬件的升级, 从而增加大量的运营成本。 此外, 如果运营商网络 BNG同时支持两种或多种过渡技术, 在相关技术中, BNG必 须通过配置才能知道哪个 CPE适设置为哪种过渡技术, 因此在 BNG上形成了海量配 置, 不易于运营管理。 因此, 在相关技术中, 对于 IPv6技术的过渡在宽带网络中的部署存在手工配置工 作量烦杂, 以及配置不灵活, 成本高的问题。 发明内容 本发明提供了一种 IPv6网络参数处理方法、 装置、 系统、 认证授权计费 AAA服 务器、远程用户拨号认证 RADIUS客户端及宽带网络网关 BNG, 以至少解决相关技术 中, 对于 IPv6技术的过渡在宽带网络中的部署存在手工配置工作量烦杂, 以及配置不 灵活, 成本高的问题。 根据本发明的一个方面, 提供了一种 IPv6网络参数处理方法, 包括: 接收到远程 用户对应的远程用户拨号认证 RADIUS客户端发送的 RADIUS访问请求报文;在依据 所述 RADIUS访问请求报文对所述远程用户认证通过后,向所述 RADIUS客户端发送 携带有所述远程用户支持的 IPv6过渡技术类型信息的 RADIUS接受访问报文。 优选地, 向所述 RADIUS客户端发送携带有所述远程用户支持的 IPv6过渡技术 类型信息的所述 RADIUS 接受访问报文包括: 确定所述远程用户支持的一个或多个 IPv6过渡技术类型; 确定所述一个或多个 IPv6过渡技术类型对应的一个或多个标识 ID; 将封装有所述一个或多个 ID的所述 RADIUS接受访问报文发送给所述 RADIUS 客户端。 根据本发明的另一方面, 提供了一种 IPv6网络参数处理方法, 包括: 向认证授权 计费 AAA服务器发送来自远程用户的远程用户拨号认证 RADIUS访问请求报文; 接 收到所述 AAA服务器反馈的携带有所述远程用户支持的 IPv6 过渡技术类型信息的 RADIUS接受访问报文。 优选地, 在接收到所述 AAA服务器反馈的携带有所述远程用户支持的 IPv6过渡 技术类型信息的所述 RADIUS接受访问报文之后, 还包括: 在通过标识 ID对所述远 程用户支持的 IPv6过渡技术类型进行标识的情况下, 解析出所述 RADIUS接受访问 报文中所携带的一个或多个 ID对应的一个或多个 IPv6过渡技术类型; 存储所述一个 或多个 ID与所述远程用户的对应关系; 和 /或, 将所述一个或多个 IPv6过渡技术类型 发送给所述远程用户。 根据本发明的还一方面, 提供了一种 IPv6网络参数处理装置, 包括: 第一接收模 块, 设置为接收到远程用户对应的远程用户拨号认证 RADIUS客户端发送的 RADIUS 访问请求报文; 第一发送模块, 设置为在依据所述 RADIUS访问请求报文对所述远程 用户认证通过后, 向所述 RADIUS客户端发送携带有所述远程用户支持的 IPv6过渡 技术类型信息的 RADIUS接受访问报文。 优选地, 所述第一发送模块包括: 第一确定单元, 设置为确定所述远程用户支持 的一个或多个 IPv6过渡技术类型; 第二确定单元, 设置为确定所述一个或多个 IPv6 过渡技术类型对应的一个或多个标识 ID; 发送单元, 设置为将封装有所述一个或多个 ID的所述 RADIUS接受访问报文发送给所述 RADIUS客户端。 根据本发明的再一方面, 提供了一种认证授权计费 AAA服务器, 包括上述任一 项所述的装置。 根据本发明的又一方面, 提供了一种 IPv6网络参数处理装置, 包括: 第二发送模 块, 设置为向认证授权计费 AAA 服务器发送来自远程用户的远程用户拨号认证 RADIUS访问请求报文; 第二接收模块, 设置为接收到所述 AAA服务器反馈的携带 有所述远程用户支持的 IPv6过渡技术类型信息的 RADIUS接受访问报文。 优选地, 该装置还包括: 解析模块, 设置为在通过标识 ID对所述远程用户支持的 IPv6过渡技术类型进行标识的情况下,解析出所述 RADIUS接受访问报文中所携带的 一个或多个 ID对应的一个或多个 IPv6过渡技术类型; 存储模块, 设置为存储所述一 个或多个 ID与所述远程用户的对应关系; 和 /或, 第三发送模块, 设置为将所述一个 或多个 IPv6过渡技术类型发送给所述远程用户。 根据本发明的还又一方面, 提供了一种远程用户拨号认证 RADIUS客户端, 包括 上述任一项所述的装置。 根据本发明的再一方面, 提供了一种宽带网络网关 BNG, 包括上述任一项所述的 装置。 根据本发明的还一方面, 提供了一种 IPv6过渡技术类型处理系统, 包括上述所述 的认证授权计费 AAA服务器和宽带网络网关 BNG。 通过本发明, 采用接收到远程用户对应的远程用户拨号认证 RADIUS客户端发送 的 RADIUS访问请求报文;在依据所述 RADIUS访问请求报文对所述远程用户认证通 过后, 向所述 RADIUS客户端发送携带有所述远程用户支持的 IPv6过渡技术类型信 息的 RADIUS接受访问报文, 解决了相关技术中对于 IPv6过渡技术类型存在手工配 置工作量烦杂, 以及配置不灵活, 成本高的问题, 进而达到了扩展 IPv6过渡技术类型 的配置方式, 实现了网络对用户支持的 IPv6过渡技术类型进行统一配置管理的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是相关技术中支持多种 IPv6过渡技术类型的场景示意图; 图 2是根据本发明实施例的 IPv6网络参数处理方法一的流程图; 图 3是根据本发明实施例的 IPv6网络参数处理方法二的流程图; 图 4是根据本发明实施例的 IPv6网络参数处理装置一的结构框图; 图 5是根据本发明实施例的 IPv6网络参数处理装置一中第一发送模块 44的优选 结构框图; 图 6是根据本发明实施例的认证授权计费 AAA服务器的结构框图; 图 7是根据本发明实施例的 IPv6网络参数处理装置二的结构框图; 图 8是根据本发明实施例的 IPv6网络参数处理装置二的优选结构框图; 图 9是根据本发明实施例的远程用户拨号认证 RADIUS客户端的结构示意图; 图 10是根据本发明实施例的宽带网络网关 BNG的结构示意图; 图 11是根据本发明实施例的 IPv6过渡技术类型处理系统的结构示意图; 图 12是根据本发明实施例的 RADIUS报文交互的流程图; 图 13是根据本发明实施例的 RADIUS报文格式示意图; 图 14是根据本发明实施例 RADIUS扩展 IPv6过渡技术类型 ID的属性选项报文 格式示意图; 图 15是根据本发明优选实施例一的基于 DS-Lite过渡技术的部署场景图; 图 16是根据本发明优选实施例二的基于同一个用户同时支持 DS-Lite和 MAP过 渡技术的部署场景图; 图 17是根据本发明优选实施例三的基于用户 1支持 MAP过渡技术, 用户 2支持 Lightweight 4over6的部署场景图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在本实施例中提供了一种 IPv6 网络参数处理方法, 图 2是根据本发明实施例的 IPv6网络参数处理方法一的流程图, 如图 2所示, 该流程包括如下步骤: 步骤 S202, 接收到远程用户对应的远程用户拨号认证 RADIUS 客户端发送的
RADIUS访问请求报文; 步骤 S204, 在依据 RADIUS访问请求报文对远程用户认证通过后, 向 RADIUS 客户端发送携带有远程用户支持的 IPv6过渡技术类型信息的 RADIUS接受访问报文。 通过上述步骤, 对于网络服务器一侧而言, 通过采用 RADIUS报文交互的扩展方 式配置远程用户支持的 IPv6过渡技术类型, 解决了相关技术中对于 IPv6过渡技术类 型存在手工配置工作量烦杂, 以及配置不灵活, 成本高的问题, 进而达到了扩展 IPv6 过渡技术类型的配置方式,实现了网络对用户支持的 IPv6过渡技术类型进行统一配置 管理的效果。 向 RADIUS客户端发送携带有远程用户支持的 IPv6过渡技术类型信息的 RADIUS 接受访问报文可以采用多种方式, 例如, 较为简单的处理方式为对该一个或多个 IPv6 过渡技术类型进行标识,比如,先确定远程用户支持的一个或多个 IPv6过渡技术类型; 之后, 确定该一个或多个 IPv6过渡技术类型对应的一个或多个标识 ID; 最后, 将封 装有该一个或多个 ID的 RADIUS接受访问报文发送给 RADIUS客户端。 图 3是根据本发明实施例的 IPv6网络参数处理方法二的流程图, 如图 3所示, 该 流程包括如下步骤: 步骤 S302, 向认证授权计费 AAA服务器发送来自远程用户的远程用户拨号认证 RADIUS访问请求报文; 步骤 S304,接收到 AAA服务器反馈的携带有远程用户支持的 IPv6过渡技术类型 信息的 RADIUS接受访问报文。 通过上述步骤, 对于客户端一侧而言, 通过采用 RADIUS报文交互的扩展方式获 取远程用户支持的 IPv6过渡技术类型, 解决了相关技术中对于 IPv6过渡技术类型存 在手工配置工作量烦杂, 以及配置不灵活, 成本高的问题, 进而达到了扩展 IPv6过渡 技术类型的配置方式,实现了网络对用户支持的 IPv6过渡技术类型进行统一配置管理 的效果。 在接收到 AAA服务器反馈的携带有远程用户支持的 IPv6 过渡技术类型信息的 RADIUS接受访问报文之后,还可以进行以下处理:在通过标识 ID对远程用户支持的 IPv6过渡技术类型进行标识的情况下,先解析出 RADIUS接受访问报文中所携带的一 个或多个 ID对应的一个或多个 IPv6过渡技术类型;之后可以存储一个或多个 ID与远 程用户的对应关系,使得客户端本地依据该对应关系获知远程用户所支持的 IPv6过渡 技术类型, 对远程用户的信息进行存储备份; 和 /或, 也可以将一个或多个 IPv6过渡 技术类型发送给远程用户, 使得远程用户顺利进行 IPv6技术过渡。 在本实施例中还提供了一种 IPv6网络参数处理装置,该装置用于实现上述实施例 及优选实施方式, 已经进行过说明的不再赘述。 如以下所使用的, 术语 "模块"可以 实现预定功能的软件和 /或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来 实现, 但是硬件, 或者软件和硬件的组合的实现也是可能并被构想的。 图 4是根据本发明实施例的 IPv6网络参数处理装置一的结构框图, 如图 4所示, 该装置包括第一接收模块 42和第一发送模块 44, 下面对该装置进行说明。 第一接收模块 42,设置为接收到远程用户对应的远程用户拨号认证 RADIUS客户 端发送的 RADIUS访问请求报文; 第一发送模块 44, 连接至上述第一接收模块 42, 设置为在依据 RADIUS访问请求报文对远程用户认证通过后,向 RADIUS客户端发送 携带有远程用户支持的 IPv6过渡技术类型信息的 RADIUS接受访问报文。 图 5是根据本发明实施例的 IPv6网络参数处理装置一中第一发送模块 44的优选 结构框图, 如图 5所示, 该第一发送模块 44包括第一确定单元 52、 第二确定单元 54 和发送单元 56, 下面对该第一发送模块 44进行说明。 第一确定单元 52, 设置为确定远程用户支持的一个或多个 IPv6过渡技术类型; 第二确定单元 54, 连接至上述第一确定单元 52, 设置为确定一个或多个 IPv6过渡技 术类型对应的一个或多个标识 ID; 发送单元 56, 连接至上述第二确定单元 54, 设置 为将封装有一个或多个 ID的 RADIUS接受访问报文发送给 RADIUS客户端。 图 6是根据本发明实施例的认证授权计费 AAA服务器的结构框图, 如图 6所示, 该 AAA服务器 60包括上述任一项的 IPv6网络参数处理装置一 62。 图 7是根据本发明实施例的 IPv6网络参数处理装置二的结构框图, 如图 7所示, 该装置包括第二发送模块 72和第二接收模块 74, 下面对该装置进行说明。 第二发送模块 72, 设置为向认证授权计费 AAA服务器发送来自远程用户的远程 用户拨号认证 RADIUS访问请求报文; 第二接收模块 74, 连接至上述第二发送模块 72, 设置为接收到 AAA服务器反馈的携带有远程用户支持的 IPv6过渡技术类型信息 的 RADIUS接受访问报文。 图 8是根据本发明实施例的 IPv6网络参数处理装置二的优选结构框图,如图 8所 示, 该装置除包括图 7所示的所有结构外, 还包括: 解析模块 82、 存储模块 84, 和 / 或, 第三发送模块 86, 下面对该装置进行说明。 解析模块 82, 设置为在通过标识 ID对远程用户支持的 IPv6过渡技术类型进行标 识的情况下, 解析出 RADIUS接受访问报文中所携带的一个或多个 ID对应的一个或 多个 IPv6过渡技术类型; 存储模块 84, 连接至上述解析模块 82, 设置为存储一个或 多个 ID与远程用户的对应关系; 第三发送模块 86, 连接至上述解析模块 82, 设置为 将一个或多个 IPv6过渡技术类型发送给远程用户。 图 9是根据本发明实施例的远程用户拨号认证 RADIUS客户端的结构示意图, 如 图 9所示, 该 RADIUS客户端 90包括上述任一项的 IPv6网络参数处理装置二 92。 图 10是根据本发明实施例的宽带网络网关 BNG的结构示意图, 如图 10所示, 该 BNG100包括上述任一项的 IPv6网络参数处理装置二 92。 图 11是根据本发明实施例的 IPv6过渡技术类型处理系统的结构示意图, 如图 11 所示, 该 IPv6过渡技术类型处理系统 110, 包括上述的认证授权计费 AAA服务器 60 和宽带网络网关 BNG100。 基于相关技术中所存在的上述问题, 在本实施例中, 提供了一种在认证授权计费 (Authentication^ Authorization Accounting, 简称为 AAA)服务器上进行用户过渡技 术类型的管理, 并通过远程用户拨号认证 (Remote Authentication Dial In User Service, 简称为 RADIUS ) 协议的扩展属性选项, 携带 IPv6过渡技术的类型并传递给 BNG, 通知该用户支持的 IPv6过渡技术类型。 从而解决 BNG上通过手工配置, 来识别不同 用户的各种 IPv6过渡技术类型的缺陷。 在本实施例中, 通过 RADIUS协议的扩展属性选项, 来传递 IPv6过渡技术类型。 图 12是根据本发明实施例的 RADIUS报文交互的流程图,如图 12所示,其中的 AAA 服务器作为 RADIUS服务器端, BNG作为 RADIUS客户端。下面针对 AAA服务器和 BNG分别进行的行为进行说明。
AAA服务器的行为。
AAA服务器是一个能够处理用户访问请求的服务器, 提供验证授权以及帐户服 务。 除了作为计费服务器外, 还包括用户和计费信息的存储、用户和计费策略管理等。 AAA服务器除需要配置用户计费、 策略等信息之外, 需要配置该用户的 IPv6过渡技 术类型。该 IPv6过渡技术类型可以包括多种,例如,可以为以下至少之一: NAT44 ( IPv4 到 IPv4的网络地址转换)、 DS-Lite (轻型双栈)、 Light Weight 4over6 (轻型 IPv4叠加 IPv6双栈)、 MAP (地址端口封装映射)、 NAT64 (IPv6到 IPv4的网络地址转换)、 Public 4over6 (通用 IPv4叠加 IPv6)、 IVI (IV- VI, 罗马数字 4-6, 象征 IPv4-IPv6无状态翻 译)。
AAA服务器针对上述每一种过渡技术分别设置 ID (识别号) 来进行区分。 如果 AAA服务器收到 RADIUS客户端发来的 RADIUS验证请求报文, 则将上述过渡技术 ID号封装在新创建的技术类型属性选项内, 发送给 RADIUS客户端。 图 13是根据本发明实施例的 RADIUS报文格式示意图, 如附图 13所示, 其中 Attributes (属性选项)字段可以根据应用任意扩充。图 14是根据本发明实施例 RADIUS 扩展 IPv6过渡技术类型 ID的属性选项报文格式示意图, 如图 14所示, 可以支持一次 携带多个 IPv6过渡技术类型 ID, 即一个用户可以同时支持多种 IPv6过渡技术。
BNG的行为
BNG作为 RADIUS客户端,接收到 CPE侧发来的拨号认证报文后,发起 RADIUS 请求报文。 在获得 RADIUS服务器端, 即 AAA服务器的回应报文后, 解析报文中所 携带的技术类型属性选项, 获取相关的过渡技术 ID号。 BNG将获取到的过渡技术 ID 号和 CPE侧即用户侧关联, 从而获取该用户支持的 IPv6过渡技术类型。 通过上述 RADIUS报文交互处理, 解决了相关技术中 BNG上通过手工配置, 来 识别不同用户的各种 IPv6过渡技术类型的缺陷,利用 AAA服务器对用户管理的机制, 增加用户 IPv6过渡技术类型的管理, 并在 RADIUS报文中新增 IPv6过渡技术类型的 属性选项, 实现 BNG获取用户 IPv6过渡技术类型。 下面结合附图对本发明优选实施方式进行说明。 图 15是根据本发明优选实施例一的基于 DS-Lite过渡技术的部署场景图, 基于图 15, 该 IPv6过渡技术部署包括如下步骤: 步骤 S1502, 用户通过 CPE, 并采用 DS-Lite技术连接到 BNG和因特网; 步骤 S1504, AAA服务器管理用户信息, 操作员添加类型为 DS-Lite的 IPv6过渡 技术到该用户的信息中; 步骤 S1506, 用户通过 PPPoE拨号进行上网认证。 BNG收到相关的拨号请求后, 将拨号信息封装在 RADIUS请求报文中, 并发送给 AAA服务器; 步骤 S1508, AAA服务器接收到 RADIUS请求报文, 发现该用户的 IPv6过渡技 术类型为 DS-Lite, 于是将 DS-Lite所对于的 ID填入如图 4的属性选项中, 并填入类 型和长度。 附加在 RADIUS应答报文的 Attributes段中; 步骤 S1510, AAA服务器将上述应答报文发送给 BNG, BNG收到该报文并解析 Attributes段中的 IPv6过渡技术类型, 和用户信息关系, 保存在本地, 继续进行下一 步对该用户的 DS-Lite技术的相关流程。 图 16是根据本发明优选实施例二的基于同一个用户同时支持 DS-Lite和 MAP过 渡技术的部署场景图, 基于图 16, 该 IPv6过渡技术部署包括如下步骤: 步骤 S1602, 用户通过 CPE, 并采用 DS-Lite和 MAP技术连接到 BNG和因特网; 步骤 S1604, AAA服务器管理用户信息, 操作员添加类型为 DS-Lite和 MAP的
IPv6过渡技术到该用户的信息中; 步骤 S1606, 用户通过 PPPoE拨号进行上网认证。 BNG收到相关的拨号请求后, 将拨号信息封装在 RADIUS请求报文中, 并发送给 AAA服务器; 步骤 S1608, AAA服务器接收到 RADIUS请求报文, 发现该用户的 IPv6过渡技 术类型为 DS-Lite和 MAP, 于是将 DS-Lite和 MAP所对于的 ID填入如图 4的属性选 项中,其中 DS-Lite对应 IPv6过渡技术类型 ID 1, MAP对应 IPv6过渡技术类型 ID 2, 同时填入类型和长度, 附加在 RADIUS应答报文的 Attributes段中; 步骤 S610, AAA服务器将上述应答报文发送给 BNG, BNG收到该报文并解析 Attributes段中的 IPv6过渡技术类型, 和用户信息关系, 保存在本地, 继续进行下一 步对该用户的 DS-Lite和 MAP技术的相关流程。 图 17是根据本发明优选实施例三的基于用户 1支持 MAP过渡技术, 用户 2支持 Lightweight 4OVer6的部署场景图, 基于图 17, 该 IPv6过渡技术部署包括如下步骤: 步骤 S1702, 用户 1通过 CPE 1 , 并采用 MAP技术连接到 BNG和因特网; 步骤 S1704, 用户 2通过 CPE 2, 并采用 Lightweight 4over6技术连接到 BNG和 因特网; 步骤 S1706, AAA服务器管理用户信息, 操作员添加类型为 MAP的 IPv6过渡技 术到用户 1的信息中, 添加类型为 Lightweight 4over6的 IPv6过渡技术到用户 2的信 息中; 步骤 S1708,用户 1通过 PPPoE拨号进行上网认证。 BNG收到相关的拨号请求后, 将拨号信息封装在 RADIUS请求报文中, 并发送给 AAA服务器; 步骤 S1710, AAA服务器接收到 RADIUS请求报文, 发现该用户的 IPv6过渡技 术类型为 MAP, 于是将 MAP所对于的 ID填入如图 4的属性选项中, 其中 MAP对应 IPv6过渡技术类型 ID 1, 并填入类型和长度, 附加在 RADIUS应答报文的 Attributes 段中; 步骤 S1712, AAA服务器将上述应答报文发送给 BNG, BNG收到该报文并解析 Attributes段中的 IPv6过渡技术类型, 和用户 1信息关系, 保存在本地, 继续进行下 一步对用户 1的 MAP技术的相关流程; 步骤 S1714,用户 2通过 PPPoE拨号进行上网认证。 BNG收到相关的拨号请求后, 将拨号信息封装在 RADIUS请求报文中, 并发送给 AAA服务器; 步骤 S1716, AAA服务器接收到 RADIUS请求报文, 发现该用户的 IPv6过渡技 术类型为 Lightweight 4over6, 于是将 Lightweight 4over6所对于的 ID填入如图 4的属 性选项中, 其中 Lightweight 4over6对应 IPv6过渡技术类型 ID 2, 并填入类型和长度, 附加在 RADIUS应答报文的 Attributes段中; 步骤 S1718, AAA服务器将上述应答报文发送给 BNG, BNG收到该报文并解析 Attributes段中的 IPv6过渡技术类型, 和用户 2信息关系, 保存在本地, 继续进行下 一步对用户 2的 Lightweight 4over6技术的相关流程。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 如上所述, 通过上述实施例及优选实施方式, 不仅解决了相关技术中对于 IPv6过 渡技术类型存在手工配置工作量烦杂, 以及配置不灵活, 成本高的问题, 进而达到了 扩展 IPv6过渡技术类型的配置方式, 实现了网络对用户支持的 IPv6过渡技术类型进 行统一配置管理的效果。

Claims

权 利 要 求 书
1. 一种 IPv6网络参数处理方法, 包括: 接收到远程用户对应的远程用户拨号认证 RADIUS客户端发送的 RADIUS 访问请求报文;
在依据所述 RADIUS 访问请求报文对所述远程用户认证通过后, 向所述 RADIUS 客户端发送携带有所述远程用户支持的 IPv6 过渡技术类型信息的 RADIUS接受访问报文。
2. 根据权利要求 1所述的方法, 其中, 向所述 RADIUS客户端发送携带有所述远 程用户支持的 IPv6过渡技术类型信息的所述 RADIUS接受访问报文包括: 确定所述远程用户支持的一个或多个 IPv6过渡技术类型;
确定所述一个或多个 IPv6过渡技术类型对应的一个或多个标识 ID;
将封装有所述一个或多个 ID 的所述 RADIUS 接受访问报文发送给所述 RADIUS客户端。
3. 一种 IPv6网络参数处理方法, 包括:
向认证授权计费 AAA 服务器发送来自远程用户的远程用户拨号认证 RADIUS访问请求报文; 接收到所述 AAA服务器反馈的携带有所述远程用户支持的 IPv6过渡技术 类型信息的 RADIUS接受访问报文。
4. 根据权利要求 3所述的方法, 其中, 在接收到所述 AAA服务器反馈的携带有 所述远程用户支持的 IPv6过渡技术类型信息的所述 RADIUS接受访问报文之 后, 还包括:
在通过标识 ID对所述远程用户支持的 IPv6过渡技术类型进行标识的情况 下, 解析出所述 RADIUS接受访问报文中所携带的一个或多个 ID对应的一个 或多个 IPv6过渡技术类型;
存储所述一个或多个 ID与所述远程用户的对应关系; 和 /或, 将所述一个 或多个 IPv6过渡技术类型发送给所述远程用户。 一种 IPv6网络参数处理装置, 包括: 第一接收模块, 设置为接收到远程用户对应的远程用户拨号认证 RADIUS 客户端发送的 RADIUS访问请求报文; 第一发送模块, 设置为在依据所述 RADIUS访问请求报文对所述远程用户 认证通过后, 向所述 RADIUS客户端发送携带有所述远程用户支持的 IPv6过 渡技术类型信息的 RADIUS接受访问报文。 根据权利要求 5所述的装置, 其中, 所述第一发送模块包括:
第一确定单元,设置为确定所述远程用户支持的一个或多个 IPv6过渡技术 类型;
第二确定单元,设置为确定所述一个或多个 IPv6过渡技术类型对应的一个 或多个标识 ID;
发送单元, 设置为将封装有所述一个或多个 ID的所述 RADIUS接受访问 报文发送给所述 RADIUS客户端。 一种认证授权计费 AAA服务器, 包括权利要求 5至 6中任一项所述的装置。 一种 IPv6网络参数处理装置, 包括: 第二发送模块, 设置为向认证授权计费 AAA服务器发送来自远程用户的 远程用户拨号认证 RADIUS访问请求报文; 第二接收模块, 设置为接收到所述 AAA服务器反馈的携带有所述远程用 户支持的 IPv6过渡技术类型信息的 RADIUS接受访问报文。 根据权利要求 8所述的装置, 其中, 还包括: 解析模块, 设置为在通过标识 ID对所述远程用户支持的 IPv6过渡技术类 型进行标识的情况下,解析出所述 RADIUS接受访问报文中所携带的一个或多 个 ID对应的一个或多个 IPv6过渡技术类型; 存储模块, 设置为存储所述一个或多个 ID 与所述远程用户的对应关系; 和 /或,
第三发送模块,设置为将所述一个或多个 IPv6过渡技术类型发送给所述远 程用户。 一种远程用户拨号认证 RADIUS客户端, 包括权利要求 8至 9中任一项所述的 装置。 一种宽带网络网关 BNG, 包括权利要求 8至 9中任一项所述的装置。 一种 IPv6过渡技术类型处理系统, 包括权利要求 7所述的认证授权计费 AAA 服务器和权利要求 11所述的宽带网络网关 BNG。
PCT/CN2014/084669 2014-03-28 2014-08-18 IPv6网络参数处理方法、装置、系统及AAA服务器 WO2015143823A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES14887584T ES2724973T3 (es) 2014-03-28 2014-08-18 Método de procesamiento de parámetros de red IPv6, dispositivo, sistema y servidor AAA
JP2016559237A JP2017511063A (ja) 2014-03-28 2014-08-18 IPv6ネットワークパラメーター処理方法、装置、システム及びAAAサーバー
EP14887584.2A EP3125487B1 (en) 2014-03-28 2014-08-18 Ipv6 network parameter processing method, device, system and aaa server
US15/121,866 US20170019406A1 (en) 2014-03-28 2014-08-18 Method, Device and System for Processing IPv6 Network Parameter, and AAA server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410123995.0A CN104954336B (zh) 2014-03-28 2014-03-28 IPv6网络参数处理方法、装置、系统及AAA服务器
CN201410123995.0 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015143823A1 true WO2015143823A1 (zh) 2015-10-01

Family

ID=54168696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084669 WO2015143823A1 (zh) 2014-03-28 2014-08-18 IPv6网络参数处理方法、装置、系统及AAA服务器

Country Status (6)

Country Link
US (1) US20170019406A1 (zh)
EP (1) EP3125487B1 (zh)
JP (1) JP2017511063A (zh)
CN (1) CN104954336B (zh)
ES (1) ES2724973T3 (zh)
WO (1) WO2015143823A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659045B2 (ja) * 2017-11-08 2020-03-04 Necプラットフォームズ株式会社 IPv6ネットワークシステム、ホームゲートウェイ装置、マイグレーション技術適用方法、同適用プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744597A (zh) * 2004-09-01 2006-03-08 华为技术有限公司 IPv6网络中主机用户获取IP地址参数的方法
CN101697550A (zh) * 2009-10-30 2010-04-21 北京星网锐捷网络技术有限公司 一种双栈网络访问权限控制方法和系统
CN101741924A (zh) * 2009-12-09 2010-06-16 赛尔网络有限公司 支持IPv4环境下可扩展IPv6接入的业务控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235989B (en) * 2004-06-08 2005-07-11 Fujitsu Ltd Liquid crystal display apparatus
US20070189219A1 (en) * 2005-11-21 2007-08-16 Mruthyunjaya Navali Internet protocol tunneling on a mobile network
US20090029053A1 (en) * 2007-07-25 2009-01-29 United Solar Ovonic Llc Method for stabilizing silicone material, stabilized silicone material, and devices incorporating that material
US7940697B2 (en) * 2008-03-17 2011-05-10 Nokia Corporation Transition between IP protocol versions
US20090290539A1 (en) * 2008-05-21 2009-11-26 Huawei Technologies, Co., Ltd. Method and apparatus for home agent address acquisition for IPv4 mobile nodes
CN102130884A (zh) * 2010-01-19 2011-07-20 中兴通讯股份有限公司 一种协商配置IPv6网络参数的系统及方法
CN102158563B (zh) * 2010-02-12 2013-10-30 华为技术有限公司 IPv6过渡网络中获取IPv6配置信息的方法、系统以及装置
CN102244688B (zh) * 2010-05-11 2014-07-16 华为技术有限公司 一种报文转发的方法、装置及系统
CN102959906B (zh) * 2011-04-08 2015-04-15 华为技术有限公司 多归属站点内主机的路由选择方法和装置
CN102781093B (zh) * 2011-05-09 2017-08-25 中兴通讯股份有限公司 一种用户信息的通知方法及系统
US8959130B2 (en) * 2011-06-30 2015-02-17 Altera Corporation Compression of floating-point data in encoding groups
CN102957759B (zh) * 2011-08-26 2018-07-13 中兴通讯股份有限公司 一种IPv6地址前缀的分配方法和系统
CN102710802B (zh) * 2012-05-07 2017-10-17 中兴通讯股份有限公司 IPv6配置信息提供装置及获取方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744597A (zh) * 2004-09-01 2006-03-08 华为技术有限公司 IPv6网络中主机用户获取IP地址参数的方法
CN101697550A (zh) * 2009-10-30 2010-04-21 北京星网锐捷网络技术有限公司 一种双栈网络访问权限控制方法和系统
CN101741924A (zh) * 2009-12-09 2010-06-16 赛尔网络有限公司 支持IPv4环境下可扩展IPv6接入的业务控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125487A4 *

Also Published As

Publication number Publication date
CN104954336B (zh) 2019-05-17
JP2017511063A (ja) 2017-04-13
US20170019406A1 (en) 2017-01-19
EP3125487A1 (en) 2017-02-01
CN104954336A (zh) 2015-09-30
ES2724973T3 (es) 2019-09-18
EP3125487A4 (en) 2017-02-15
EP3125487B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
US20160294575A1 (en) System, Apparatus, and Method for Automatically Configuring Application Terminals in Home Network
EP2866389B1 (en) Method and device thereof for automatically finding and configuring virtual network
US8458359B2 (en) System for the internet connections, and server for routing connection to a client machine
EP1753180B1 (en) Server for routing a connection to a client device
EP2840743A1 (en) Method and system for realizing virtual network
WO2008045618A1 (en) Methods and apparatus to install voice over internet protocol (voip) devices
US9244754B2 (en) Error code conversion method and system, PPPoE server and mobile terminal
WO2009065354A1 (fr) Procédé, système et dispositif pour le traitement d'informations de demande d'accès
US20070195804A1 (en) Ppp gateway apparatus for connecting ppp clients to l2sw
WO2018133334A1 (zh) 基于l2tp的无线接入系统及其交互方法
CN108307694A (zh) 一种网络连接信息获取方法及路由器
CN102111289B (zh) 一种认证部署方法和设备
CN104519077A (zh) 多媒体分享方法、注册方法、服务器及代理服务器
WO2012041029A1 (zh) 一种服务器处理业务的方法及装置
CN101867509B (zh) 对家庭网络中应用终端进行自动配置的装置、系统和方法
CN107547467B (zh) 一种电路认证处理方法、系统及控制器
CN101599834A (zh) 一种认证部署方法和一种管理设备
WO2015143823A1 (zh) IPv6网络参数处理方法、装置、系统及AAA服务器
WO2014032518A1 (zh) L2tp隧道的建立方法及系统
JP2004194313A (ja) クライアント機器への接続をルーティングするためのサーバ
CN114650197A (zh) 通信方法、装置及用户面网元和存储介质
JP2006229265A (ja) ゲートウェイシステム
WO2015143824A1 (zh) IPv6过渡技术类型处理方法、装置及系统
CN103262492A (zh) 一种发送业务流的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15121866

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014887584

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887584

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016559237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE