WO2015141767A1 - Concentration meter and method for measuring concentration - Google Patents

Concentration meter and method for measuring concentration Download PDF

Info

Publication number
WO2015141767A1
WO2015141767A1 PCT/JP2015/058205 JP2015058205W WO2015141767A1 WO 2015141767 A1 WO2015141767 A1 WO 2015141767A1 JP 2015058205 W JP2015058205 W JP 2015058205W WO 2015141767 A1 WO2015141767 A1 WO 2015141767A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
measurement cell
concentration
sample gas
target substance
Prior art date
Application number
PCT/JP2015/058205
Other languages
French (fr)
Japanese (ja)
Inventor
豊文 梅川
Original Assignee
豊文 梅川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊文 梅川 filed Critical 豊文 梅川
Priority to JP2016508782A priority Critical patent/JP6395089B2/en
Publication of WO2015141767A1 publication Critical patent/WO2015141767A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the present invention relates to a densitometer, and more particularly to a densitometer using the TDLAS method (modulation spectroscopy).
  • the moisture concentration in the gas may be required to be as small as possible depending on the application, but in order to improve this point, it is necessary to first measure the moisture concentration of the target gas.
  • low concentration moisture management is important in various furnaces (sintering furnace, nitriding furnace, non-oxidation superheated furnace, ammonia furnace).
  • a mirror-cooled dew point meter as a device for measuring the moisture concentration in gas. That is, as shown in FIG. 7, when the mirror surface is cooled while flowing the measurement gas G over the mirror surface 200, condensation occurs on the mirror surface when the temperature of the mirror surface and the dew point of the wet gas become equal. This state is detected by comparing the intensity received by the light receiving element 202 by reflecting the light from the light source 201 to the mirror surface and the intensity received directly by the light receiving element 203 without solving the mirror surface. Therefore, the amount of saturated water vapor at the temperature indicated by the thermometer 204 when the dew condensation occurs is the moisture concentration contained in the gas.
  • atmosphere gases other than nitrogen gas for example, gas whose dew point changes due to interaction with water such as hydrogen chloride
  • the influence of the interaction must be quantitatively understood in advance in order to correct the measured dew point.
  • TDLAS Tunable Diode Laser Absorption Spectroscopy
  • a measurement cell filled with atmospheric gas (sample gas) containing the target substance is irradiated with a laser around the absorption wavelength of the target substance from the wavelength tunable laser diode, and the concentration of the target substance is obtained from the magnitude of the waveform of the absorption signal It is about to try.
  • the TDLAS method is characterized by being able to measure ppm-level gas and moisture in high sensitivity and in real time (responsiveness is a few seconds) and is not affected by other gas components or coexisting substances.
  • the target substance is not contained in the atmosphere or the target substance concentration in the measurement cell is This method is based on the premise that the concentration of target substances in the atmosphere is negligibly small.
  • the moisture concentration at an atmospheric temperature of 25 ° C. and a relative humidity of 60% is 20000 ppm.
  • the concentration ratio is 1/2000.
  • the optical path length of the atmosphere is 0.1 mm. Therefore, in order to suppress the influence of the moisture concentration in the atmosphere to a value that can be ignored, it is necessary to shorten the optical path length in the atmosphere to about 10 ⁇ 4 to 10 ⁇ 3 mm.
  • the part where the optical path is exposed to the atmosphere includes the light emitting element and collimating lens, the collimating lens and the incident window of the measuring cell, and the gap between the emitting window and the light receiving element of the measuring cell. It is impossible to do.
  • the present invention has been proposed in view of the above-described conventional problems, and a concentration meter and concentration measurement that can accurately measure the concentration of a target substance even when the measurement cell is arranged in the air in the TDLAS method. It is intended to provide a method.
  • the present application adopts the following means.
  • the present invention presupposes an apparatus (method) for measuring the concentration of a target substance in a sample gas based on the TDLAS method.
  • the measurement cell is filled with sample gas at a pressure sufficiently lower than atmospheric pressure (for example, 1/10).
  • the laser light of a predetermined band around the absorption wavelength of the target substance contained in the sample gas is incident on the measurement cell from the laser light emitting element (wavelength variable laser diode).
  • the laser beam that has passed through the measurement cell is received by a light receiving element.
  • the signal waveform obtained from this light receiving element is input to the lock-in amplifier to obtain a waveform corresponding to the second derivative.
  • the signal thus obtained is a combination of a gentle absorption signal in a wide wavelength band that has passed through the atmosphere and a sharp absorption signal in a narrow wavelength band that has passed through the measurement cell, and the two signals have different waveforms. . Therefore, only the absorption signal corresponding to the laser light transmitted through the measurement cell is extracted, and the concentration of the target substance in the sample gas is calculated by the calculation means based on the extracted signal.
  • the concentration of the target substance contained in the sample gas in the measurement cell should be taken into account in the atmosphere. It becomes possible to measure without. In addition, it is possible to measure the concentration with high accuracy and in a short time regardless of the type of the atmospheric gas.
  • the figure explaining the TDLAS method The figure which shows the waveform of the output signal of each part shown in FIG.
  • the block diagram of the densitometer of this invention The figure which shows the waveform of the output signal of a light receiving element. Reference signal waveform diagram.
  • FIG. 1 is a conceptual diagram showing the principle of concentration measurement by the TDLAS method.
  • a triangular wave (or sawtooth wave) of about 10 Hz having a specific current bias as shown in FIG.
  • Laser light from a light emitting element (wavelength variable laser diode) 10 driven by a drive signal on which a sine wave of about 10 kHz is superimposed is incident. Accordingly, this laser beam has a wavelength shown in FIG. 1C in which the wavelength ⁇ changes in accordance with the magnitude of the triangular wave (the wavelength becomes shorter as the current increases), and the wavelength ⁇ changes in accordance with the sine wave. Become.
  • the incident laser light is absorbed in the vicinity of a specific wavelength corresponding to the target substance in the measurement cell 100 as shown in the upper part of FIG.
  • the concentration of the target substance is measured from the magnitude of the signal waveform corresponding to the second derivative of the absorption signal waveform.
  • the magnitude of the absorption signal mainly depends on the optical path length during measurement, the pressure of the measurement gas (sample gas), and the concentration of the target substance.
  • the half width of the absorption signal is proportional to the pressure of the measurement gas. The lower the pressure, the narrower the absorption wavelength band and the sharper the waveform of the absorption signal.
  • the half-value width means the width between the point where the increase rate of the absorption signal is the largest and the point where the decrease rate is the largest. When the second derivative of the absorption signal is taken, it appears as the width between the valley peaks.
  • the half width of the waveform of the absorption signal obtained in an environment of 1/10 of the atmospheric pressure is as shown in FIG. 2 (Aa).
  • the half-value width of the absorption signal waveform obtained from the atmospheric pressure (FIG. 2 (Ab)) is 1/10.
  • the half width of the waveform of the absorption signal near 1392.53 nm due to moisture is 0.02 nm at atmospheric pressure and 0.002 nm at 1/10 of atmospheric pressure.
  • the optical path extends over both the atmosphere and the measurement cell as described above.
  • the signal shown in (Ab) overlaps with the signal shown in FIG. 2 (Aa).
  • this signal waveform is individually differentiated to the second order, it becomes FIG. 2 (Ba) and (Bb).
  • the half-value width appears as the width of the base end (valley peak) of the rise, and this width Corresponds to the pressure of the measurement gas, and the height (size) corresponds to the concentration of the target substance.
  • a signal waveform shown in FIG. As will be described later, in the present invention, a signal waveform shown in FIG.
  • the size of the extracted waveform ( The concentration of the target substance contained in the sample gas is obtained from the center height between the valley peaks.
  • FIG. 3 is a block diagram showing an outline of the present invention.
  • the target substance is moisture.
  • the measurement gas 100 having a predetermined length is filled with a sample gas at a pressure sufficiently lower than the atmospheric pressure, for example, 1/10.
  • the sample gas filled in the measurement cell 100 is not stationary, but is always kept at the above-described pressure and in a predetermined amount (300 to 1000 ml / min).
  • the output from the sweep signal generation circuit 11 that outputs the scanning triangular wave (or sawtooth wave) and the sine wave modulation signal output from the modulation signal generation circuit 12 are superimposed by the LD driver 13, and the result is shown in FIG. A drive signal as shown is formed.
  • This drive signal is input to a laser light emitting element (wavelength tunable laser diode) 10 and a laser beam close to the absorption wavelength of the target substance (here, moisture) is emitted. This light is incident on the measurement cell 100 via the collimating lens 15.
  • a laser light emitting element wavelength tunable laser diode
  • This light is incident on the measurement cell 100 via the collimating lens 15.
  • the laser light-emitting element 10 driven by the output of the LD driver 13 has a wavelength shortened as shown in FIG. 1C according to the triangular wave current shown in FIG. Correspondingly, laser light whose wavelength changes is output.
  • the absorption wavelength of the laser beam has a peak at 1392.53 nm. Therefore, the waveform of the absorption signal in the measurement cell 100 is a waveform having a peak at 1392.53 nm as shown in FIG.
  • the above means absorption of laser light in the measurement cell 100, but before reaching the measurement cell 100, between the light emitting element 10 and the collimator lens 15, or between the collimator lens 15 and the measurement cell 100. There is a slight gap (about several millimeters as a whole) between the entrance window and between the exit window of the measuring cell 100 and the light receiving element 20, and the pressure is atmospheric pressure.
  • the absorption intensity of the laser light is proportional to the moisture concentration and the optical path length, and is also related to the pressure and temperature (here, the light emitting element 10 to the light receiving element 20 are placed in a constant temperature bath, and the inside of the measurement cell 100 And the atmospheric temperature are the same and can be regarded as constant, and the pressure in the measurement cell 100 is kept constant). Further, the half width of the wavelength band of the absorption signal is proportional to the pressure of the measurement atmosphere as described above.
  • the waveform of the absorption signal corresponding to the moisture concentration in the atmosphere portion appears in a wide range of the wavelength band of the laser beam as shown in FIG. 2A, and the waveform of the absorption signal due to the moisture concentration inside the measurement cell 100 is obtained. Appears in a narrow band as shown in FIG.
  • the lock-in amplifier 22 obtains a signal having a waveform corresponding to the second derivative of the signal waveform from the light receiving element 20.
  • a waveform having a wide wavelength band as shown in FIG. 2 (Ca) and a sharp waveform having a narrow band are combined, and the overlapped signal is input to the calculation means 23.
  • FIG. 4B shows the output of the lock-in amplifier 22 in the apparatus of FIG. 3 when the optical path length in the atmosphere is 1 mm, the length of the measurement cell 100 is 300 mm, 1/10 atm, and the moisture concentration is 20 ppm. Yes, equivalent to FIG. 2 (Ca).
  • FIG. 4 (a) shows the output of the lock-in amplifier 22 due to 10000 ppm of water in the atmosphere with an optical path length of 1 mm, which is equivalent to FIG. 2 (Bb).
  • a portion corresponding to the absorption signal in the measurement cell 100 is extracted from the signal obtained from the lock-in amplifier 22 as described above, and the moisture concentration is determined.
  • the half-value width of the secondary differential waveform corresponding to the absorption signal is proportional to the pressure, if the pressure in the measurement cell 100 is fixed, the valley of the reference pattern Ra on the measurement cell side will be described.
  • the trough width is a value corresponding to the pressure in the measurement cell 100 that has been fixed. Therefore, in the fitting process described later, the height may be adjusted according to the moisture concentration.
  • the bandwidth of the reference pattern corresponding to the atmosphere is almost constant around 1 atm, and the height corresponds to the humidity at that time. Therefore, the reference pattern Rb is adjusted to a standard humidity at 1 atm, for example, a moisture amount of 60%.
  • the two reference patterns are fitted to the waveform of the output signal from the lock-in amplifier 22.
  • the reference pattern Rb corresponding to the atmosphere is first finely adjusted in the wavelength direction and height (atmosphere humidity) direction with respect to the output signal waveform from the lock-in amplifier 22 (FIG. 6A). (Thick broken line in FIG. 6B).
  • the apex Q 0 of the absorption waveform of the measurement cell 100 and the apex P 0 of the reference waveform Ra of the measurement cell 100 are matched, and the height (size) direction of the reference waveform Ra is adjusted to adjust both end points P of the reference waveform. 10
  • P 20 is to overlap the reference waveform Rb of the air, the fitting is completed (thin broken line in FIG. 6).
  • the reference signal of the low-pressure portion after completion is extracted, and the position corresponding to the intermediate position between valley peaks (1/2 of P 1 -P 2 ) and the peak peak P 0 are extracted.
  • the calculation means 22 calculates the water concentration in the measurement cell 100.
  • a theoretical formula can be used, but the relationship between the height (size) h at a predetermined pressure and the moisture concentration is stored in a table. It can respond.
  • the storage means only one type is stored in the storage means as the reference pattern Ra corresponding to the measurement cell 100.
  • the absorption signal waveform differs somewhat depending on the concentration, the low concentration region, the medium concentration region, and the high concentration It is also possible to store about three types of reference patterns of areas.
  • the signal shown in FIG. 6B is equivalent to the waveform schematically shown in FIG.
  • the signal shown in FIG. 6C is equivalent to the waveform schematically shown in FIG.
  • the reference pattern Rb corresponding to the atmosphere is also stored in the calculation means, but only the reference waveform Ra corresponding to the measurement cell 100 may be stored.
  • the reference waveform Ra is directly fitted to the composite waveform shown by the solid line in FIG. 6C, but this method may be used if a slight error enlargement is allowed.
  • moisture is the target substance, but the present invention is not limited to this.
  • the concentration of the target substance (for example, moisture) in the atmospheric gas (sample gas) introduced into the measurement cell can be accurately determined in a short time even in the situation where the target substance exists in the atmosphere. Can be measured.
  • the concentration can be measured with high accuracy and in a short time regardless of the type of atmospheric gas, and the industrial applicability is extremely high.

Abstract

In the present invention, the effect of a target substance present in the atmosphere is excluded when measuring the concentration of the target substance in a sample gas by means of a TDLAS method. The present invention presupposes a device (method) for measuring the concentration of a subject substance in a gas on the basis of a TDLAS method. The sample gas fills a measurement cell at a sufficiently lower pressure than atmospheric pressure (for example, 1/10). By means of a laser light-emitting element (variable-wavelength laser diode), laser light of a wavelength in a predetermined band around the absorption wavelength of the subject substance contained in the sample gas is caused to enter the measurement cell, and the laser light that has passed through the measurement cell is received by a light-receiving element. The second derivative equivalent waveform of the received signal waveform is obtained, only the absorption signal corresponding to the laser light that has passed through the measurement cell is extracted therefrom, and on the basis of the extracted signal, the concentration of the subject substance in the sample gas is calculated by means of a computation means.

Description

濃度計および、濃度測定方法Densitometer and concentration measuring method
 本発明は濃度計に関し、特にTDLAS法(変調分光法)を用いた濃度計に関するものである。 The present invention relates to a densitometer, and more particularly to a densitometer using the TDLAS method (modulation spectroscopy).
 半導体製造時に使用するアンモニア、塩化水素などの各種のガスは純度が高い程、被加工物質に与えるダメージは少なくなる。ところが、僅かではあっても水分等の不純物が製造過程で混入してしまうのが現状である。 The higher the purity of various gases such as ammonia and hydrogen chloride used in semiconductor manufacturing, the less damage to the workpiece. However, the present situation is that impurities such as moisture are mixed in the manufacturing process even if it is slight.
 上記のようにガス中の水分濃度は用途に応じて、できるだけ少なくすることが要求されることがあるが、この点を改良するには、まず対象ガスの水分濃度を測定する必要がある。 As described above, the moisture concentration in the gas may be required to be as small as possible depending on the application, but in order to improve this point, it is necessary to first measure the moisture concentration of the target gas.
 また、各種炉(焼結炉、窒化炉、無酸化過熱炉、アンモニア炉)でも低濃度の水分管理が重要となっている。 Also, low concentration moisture management is important in various furnaces (sintering furnace, nitriding furnace, non-oxidation superheated furnace, ammonia furnace).
 ガス中の水分濃度を測定する装置として、鏡面冷却式露点計がある。すなわち、図7に示すように、鏡面200上に測定気体Gを流しながら、鏡面を冷却すると、鏡面の温度と湿潤気体の露点が等しくなった時点で、鏡面に結露が発生する。この様子を、光源201からの光を、鏡面に反射させて受光素子202で受光される強度と、鏡面を解さないで直接受光素子203で受光される強度を比較して検出する。従って、前記結露が生じた時点で温度計204の示す温度での飽和水蒸気の量がその気体に含有する水分濃度ということになる。 There is a mirror-cooled dew point meter as a device for measuring the moisture concentration in gas. That is, as shown in FIG. 7, when the mirror surface is cooled while flowing the measurement gas G over the mirror surface 200, condensation occurs on the mirror surface when the temperature of the mirror surface and the dew point of the wet gas become equal. This state is detected by comparing the intensity received by the light receiving element 202 by reflecting the light from the light source 201 to the mirror surface and the intensity received directly by the light receiving element 203 without solving the mirror surface. Therefore, the amount of saturated water vapor at the temperature indicated by the thermometer 204 when the dew condensation occurs is the moisture concentration contained in the gas.
 上記の鏡面冷却式露点計では、低湿度になると、結露量が少なくなるため平衡に達するまでに時間がかかり、応答性が悪くなる。従って、水分濃度40ppm(露点温度-50℃)以下の測定は必ずしも容易ではなく、高い精度の測定が要求されるときには適応できない。 In the above mirror-cooled dew point meter, when the humidity is low, the amount of condensation decreases, so it takes time to reach equilibrium and the responsiveness deteriorates. Therefore, measurement with a moisture concentration of 40 ppm (dew point temperature −50 ° C.) or less is not always easy and cannot be applied when high accuracy measurement is required.
 また、窒素ガス以外の雰囲気ガス、例えば塩化水素のように水との相互作用で露点が変化する気体では、測定した露点を補正するため、予め相互作用による影響が定量的に理解されている必要がある。更に、目的物質の沸点・昇華点が雰囲気ガスの沸点・昇華点より低い場合は原理的に測定することはできない等の理由から、鏡面冷却式露点計で測定できるガス種には制限がある。 In addition, in atmosphere gases other than nitrogen gas, for example, gas whose dew point changes due to interaction with water such as hydrogen chloride, the influence of the interaction must be quantitatively understood in advance in order to correct the measured dew point. There is. Furthermore, there is a limit to the types of gas that can be measured with a mirror-cooled dew point meter because, in principle, measurement cannot be performed when the boiling point / sublimation point of the target substance is lower than the boiling point / sublimation point of the atmospheric gas.
 ガス濃度を測定する方法としてTDLAS(Tunable Diode Laser Absorption Spectroscopy)法がある。対象物質を含む雰囲気ガス(試料ガス)を充填した測定セルに、波長可変レーザダイオードより、対象物質の吸収波長前後のレーザを照射し、その吸収信号の波形の大きさから対象物質の濃度を得ようとするものである。 There is a TDLAS (Tunable Diode Laser Absorption Spectroscopy) method as a method for measuring the gas concentration. A measurement cell filled with atmospheric gas (sample gas) containing the target substance is irradiated with a laser around the absorption wavelength of the target substance from the wavelength tunable laser diode, and the concentration of the target substance is obtained from the magnitude of the waveform of the absorption signal It is about to try.
 TDLAS法は、ppmレベルのガスや水分を高感度かつリアルタイム(応答性は数秒)に計測出来、他のガス成分や共存物質の影響を受けないという特徴がある。 The TDLAS method is characterized by being able to measure ppm-level gas and moisture in high sensitivity and in real time (responsiveness is a few seconds) and is not affected by other gas components or coexisting substances.
 この方法は、レーザ発光素子、受光素子が、前記測定セルの外部(通常は大気中)に配置されるところから、大気中に対象物質が含まれない、あるいは測定セル内の対象物質濃度に対して大気中の対象物質濃度が無視できる程小さいことを前提として成立する方法である。 In this method, since the laser light emitting element and the light receiving element are arranged outside the measurement cell (usually in the atmosphere), the target substance is not contained in the atmosphere or the target substance concentration in the measurement cell is This method is based on the premise that the concentration of target substances in the atmosphere is negligibly small.
 ここで、大気温度25℃、相対湿度60%時の水分濃度は20000ppmである。一方、200mmの長さの測定セルで10ppm(露点温度-60℃)の水分を測定する場合、その濃度比は1/2000となり、測定セル中のレーザ光吸収量と、大気中の吸収量が同等になるのは、大気の光路長が0.1mmとなる。従って、大気中の水分濃度の影響を無視できる程度の値に抑えるためには、前記大気中での光路長を10-4~10-3mm程度に短くする必要がある。 Here, the moisture concentration at an atmospheric temperature of 25 ° C. and a relative humidity of 60% is 20000 ppm. On the other hand, when measuring 10 ppm (dew point temperature –60 ° C) of water in a 200 mm long measurement cell, the concentration ratio is 1/2000. The equivalent is that the optical path length of the atmosphere is 0.1 mm. Therefore, in order to suppress the influence of the moisture concentration in the atmosphere to a value that can be ignored, it is necessary to shorten the optical path length in the atmosphere to about 10 −4 to 10 −3 mm.
 ところが、光路が大気中に露出する部分としては、発光素子とコリメートレンズ、コリメートレンズと測定セルの入射窓、測定セルの出射窓と受光素子との各間隙があり、その合計長を前記値にまですることは不可能である。 However, the part where the optical path is exposed to the atmosphere includes the light emitting element and collimating lens, the collimating lens and the incident window of the measuring cell, and the gap between the emitting window and the light receiving element of the measuring cell. It is impossible to do.
 本発明は上記従来の課題に鑑みて提案されたものであって、TDLAS法において測定セルが空気中に配置された場合であっても、精度よく対象物質の濃度が測定できる濃度計と濃度測定方法を提供することを目的とするものである。 The present invention has been proposed in view of the above-described conventional problems, and a concentration meter and concentration measurement that can accurately measure the concentration of a target substance even when the measurement cell is arranged in the air in the TDLAS method. It is intended to provide a method.
 上記目的を達成するために、本願は以下の手段を採用している。まず、本発明はTDLAS法に基づいて、試料ガス中の対象物質の濃度を測定する装置(方法)を前提とする。 In order to achieve the above object, the present application adopts the following means. First, the present invention presupposes an apparatus (method) for measuring the concentration of a target substance in a sample gas based on the TDLAS method.
 測定セルには大気圧より充分低い圧力(例えば1/10)で試料ガスが充填されている。 The measurement cell is filled with sample gas at a pressure sufficiently lower than atmospheric pressure (for example, 1/10).
 前記測定セルに対して、レーザ発光素子(波長可変レーザダイオード)より、試料ガスに含まれる対象物質の吸収波長前後の所定帯域の波長のレーザ光を入射する。前記測定セルを通過したレーザ光を、受光素子により受光する。 The laser light of a predetermined band around the absorption wavelength of the target substance contained in the sample gas is incident on the measurement cell from the laser light emitting element (wavelength variable laser diode). The laser beam that has passed through the measurement cell is received by a light receiving element.
 この受光素子より得られる信号波形をロックインアンプに入力して、2次微分相当の波形を得る。このようにして得られる信号は、大気中を通過した広い波長帯域の緩やかな吸収信号と、測定セル中を通過した狭い波長帯域の鋭い吸収信号の合成であり、この2つの信号は波形が異なる。そこで測定セルを透過したレーザ光に対応する吸収信号のみを抽出し、当該抽出された信号に基づいて、試料ガス中の対象物質の濃度を演算手段で算出する。 The signal waveform obtained from this light receiving element is input to the lock-in amplifier to obtain a waveform corresponding to the second derivative. The signal thus obtained is a combination of a gentle absorption signal in a wide wavelength band that has passed through the atmosphere and a sharp absorption signal in a narrow wavelength band that has passed through the measurement cell, and the two signals have different waveforms. . Therefore, only the absorption signal corresponding to the laser light transmitted through the measurement cell is extracted, and the concentration of the target substance in the sample gas is calculated by the calculation means based on the extracted signal.
 上記の方法(装置)によって、大気中に測定セルが配置されている場合であっても、測定セル内の試料ガスに含まれる対象物質の濃度を、大気中の対象物質の濃度を考慮することなく測定することが可能となる。また、雰囲気ガスの種類に関わらず高精度かつ短時間での濃度測定が可能である。 Even if the measurement cell is placed in the atmosphere by the above method (apparatus), the concentration of the target substance contained in the sample gas in the measurement cell should be taken into account in the atmosphere. It becomes possible to measure without. In addition, it is possible to measure the concentration with high accuracy and in a short time regardless of the type of the atmospheric gas.
TDLAS法を説明する図。The figure explaining the TDLAS method. 図1で示す各部の出力信号の波形を示す図。The figure which shows the waveform of the output signal of each part shown in FIG. 本発明の濃度計のブロック図。The block diagram of the densitometer of this invention. 受光素子の出力信号の波形を示す図。The figure which shows the waveform of the output signal of a light receiving element. 基準信号波形図。Reference signal waveform diagram. フィッティング処理を説明する図。The figure explaining a fitting process. 露点計を示す図。The figure which shows a dew point meter.
 <TDLAS法>
 図1はTDLAS法による濃度測定の原理を示す概念図である。
<TDLAS method>
FIG. 1 is a conceptual diagram showing the principle of concentration measurement by the TDLAS method.
 対象物質を含む試料ガスが充填された所定長さの測定セル100の一方端から、図1(b)に示すような、特定の電流バイアスを持った10Hz程度の三角波(もしくは鋸波)に、10KHz程度の正弦波が重畳された駆動信号によって駆動された発光素子(波長可変レーザダイオード)10からのレーザ光が入射される。従ってこのレーザ光は、三角波の大きさに対応して波長λが変化(電流が大きくなると波長が短くなる)し、かつ、正弦波に従って前記波長λが変化する図1(c)に示す波長となる。このように入射されたレーザ光は図1(d)の上段に示すように、測定セル100内で対象物質に対応する特定の波長付近で吸収される。この吸収信号波形の2次微分に対応する信号波形の大きさから、対象物質の濃度を測定することになる。 From one end of the measurement cell 100 of a predetermined length filled with the sample gas containing the target substance, a triangular wave (or sawtooth wave) of about 10 Hz having a specific current bias as shown in FIG. Laser light from a light emitting element (wavelength variable laser diode) 10 driven by a drive signal on which a sine wave of about 10 kHz is superimposed is incident. Accordingly, this laser beam has a wavelength shown in FIG. 1C in which the wavelength λ changes in accordance with the magnitude of the triangular wave (the wavelength becomes shorter as the current increases), and the wavelength λ changes in accordance with the sine wave. Become. The incident laser light is absorbed in the vicinity of a specific wavelength corresponding to the target substance in the measurement cell 100 as shown in the upper part of FIG. The concentration of the target substance is measured from the magnitude of the signal waveform corresponding to the second derivative of the absorption signal waveform.
 <本発明の原理>
 前記、吸収信号の大きさは、主として測定時の光路長、測定ガス(試料ガス)の圧力、対象物質の濃度に依存する。また、吸収信号の半値幅は測定ガスの圧力に比例し、圧力が低いほど、吸収波長の帯域は狭くなり、吸収信号の波形は鋭くなる。尚、上記半値幅とは、吸収信号の増加率が最も大きい点と減少率が最も大きい点間の幅を意味し、吸収信号の二次微分をとると、谷ピーク間の幅として現れる。
<Principle of the present invention>
The magnitude of the absorption signal mainly depends on the optical path length during measurement, the pressure of the measurement gas (sample gas), and the concentration of the target substance. The half width of the absorption signal is proportional to the pressure of the measurement gas. The lower the pressure, the narrower the absorption wavelength band and the sharper the waveform of the absorption signal. The half-value width means the width between the point where the increase rate of the absorption signal is the largest and the point where the decrease rate is the largest. When the second derivative of the absorption signal is taken, it appears as the width between the valley peaks.
 このように、吸収信号の波長帯域は測定ガスの圧力に比例するので、大気圧の1/10の環境下で得られる吸収信号の波形の前記半値幅は、図2(Aa)に示すように、大気圧から得られる吸収信号波形の半値幅(図2(Ab))の1/10となる。ちなみに水分による1392.53nm近辺の吸収信号の波形の半値幅は大気圧で0.02nm 、大気圧の1/10で0.002nmとなる。 Thus, since the wavelength band of the absorption signal is proportional to the pressure of the measurement gas, the half width of the waveform of the absorption signal obtained in an environment of 1/10 of the atmospheric pressure is as shown in FIG. 2 (Aa). The half-value width of the absorption signal waveform obtained from the atmospheric pressure (FIG. 2 (Ab)) is 1/10. Incidentally, the half width of the waveform of the absorption signal near 1392.53 nm due to moisture is 0.02 nm at atmospheric pressure and 0.002 nm at 1/10 of atmospheric pressure.
 前記測定セル100内の圧力を大気圧の1/10、測定セル100が置かれた環境を大気圧とすると、前記したように光路は大気中と測定セルの両方に跨ることになり、図2(Ab)に示す信号と、図2(Aa)に示す信号が重なった波形となる。この信号波形を個々に2次微分を取った場合には図2(Ba)、同(Bb)となり、ここでは、前記半値幅が立ち上りの基端部(谷ピーク)の幅として現れ、この幅が測定ガスの圧力に対応し、高さ(大きさ)が対象物質の濃度に対応することになる。 When the pressure in the measurement cell 100 is 1/10 of the atmospheric pressure and the environment in which the measurement cell 100 is placed is atmospheric pressure, the optical path extends over both the atmosphere and the measurement cell as described above. The signal shown in (Ab) overlaps with the signal shown in FIG. 2 (Aa). When this signal waveform is individually differentiated to the second order, it becomes FIG. 2 (Ba) and (Bb). Here, the half-value width appears as the width of the base end (valley peak) of the rise, and this width Corresponds to the pressure of the measurement gas, and the height (size) corresponds to the concentration of the target substance.
 後に説明するように、本願発明では、両者が重なった図2(Ca)に示す信号波形が得られる。ここで、図2(Ca)に示す信号波形から、図2(Cb)に示すように、測定セル100内での吸収信号の波形のみを抽出することによって、当該抽出された波形の大きさ(谷ピーク間の中央の高さ)から、試料ガスに含まれる対象物質の濃度が求められることになる。 As will be described later, in the present invention, a signal waveform shown in FIG. Here, by extracting only the waveform of the absorption signal in the measurement cell 100 from the signal waveform shown in FIG. 2 (Ca), as shown in FIG. 2 (Cb), the size of the extracted waveform ( The concentration of the target substance contained in the sample gas is obtained from the center height between the valley peaks.
 <装置>
 図3は本発明の概要を示すブロック図である。尚、以下の実施例では対象物質を水分とする。
<Device>
FIG. 3 is a block diagram showing an outline of the present invention. In the following examples, the target substance is moisture.
 所定長さの測定セル100に対して試料ガスが大気圧より充分低い圧力、例えば1/10の圧力で充填されるようになっている。尚、上記において、測定セル100に充填された試料ガスは、静止しているのではなく、常時前記の圧力でかつ所定の量(300~1000ml/min)流れている状態を保っている。 The measurement gas 100 having a predetermined length is filled with a sample gas at a pressure sufficiently lower than the atmospheric pressure, for example, 1/10. In the above description, the sample gas filled in the measurement cell 100 is not stationary, but is always kept at the above-described pressure and in a predetermined amount (300 to 1000 ml / min).
 スキャン用三角波(または鋸波)を出力するスイープ信号発生回路11からの出力と、変調信号発生回路12から出力される正弦波の変調信号がLDドライバ13で重畳されて、図1(b)に示すようなドライブ信号が形成される。 The output from the sweep signal generation circuit 11 that outputs the scanning triangular wave (or sawtooth wave) and the sine wave modulation signal output from the modulation signal generation circuit 12 are superimposed by the LD driver 13, and the result is shown in FIG. A drive signal as shown is formed.
 このドライブ信号は、レーザ発光素子(波長可変レーザダイオード)10に入力され、対象物質(ここでは水分)の吸収波長に近いレーザ光が発光される。この光はコリメートレンズ15を介して前記測定セル100に入射される。 This drive signal is input to a laser light emitting element (wavelength tunable laser diode) 10 and a laser beam close to the absorption wavelength of the target substance (here, moisture) is emitted. This light is incident on the measurement cell 100 via the collimating lens 15.
 従って、LDドライバ13の出力により駆動されたレーザ発光素子10は、図1(b)に示す三角波の電流に従って、図1(c)に示すように波長が短くなるとともに、変調波の正弦波に対応して波長が変化するレーザ光を出力することになる。 Therefore, the laser light-emitting element 10 driven by the output of the LD driver 13 has a wavelength shortened as shown in FIG. 1C according to the triangular wave current shown in FIG. Correspondingly, laser light whose wavelength changes is output.
 尚、水分が測定対象であるときは、前記レーザ光の吸収波長は1392.53nmをピークとする。従って、測定セル100での吸収信号の波形は図1(d)に示すように、1392.53nmをピークとする波形となる。 When moisture is a measurement target, the absorption wavelength of the laser beam has a peak at 1392.53 nm. Therefore, the waveform of the absorption signal in the measurement cell 100 is a waveform having a peak at 1392.53 nm as shown in FIG.
 上記は、測定セル100内でのレーザ光の吸収を意味しているが、測定セル100に至る前段には、発光素子10とコリメートレンズ15との間、あるいは、コリメートレンズ15と測定セル100の入射窓との間、更に、測定セル100の出射窓と受光素子20との間には、僅かな間隙(全体で数ミリ程度)があり、その圧力は大気圧である。 The above means absorption of laser light in the measurement cell 100, but before reaching the measurement cell 100, between the light emitting element 10 and the collimator lens 15, or between the collimator lens 15 and the measurement cell 100. There is a slight gap (about several millimeters as a whole) between the entrance window and between the exit window of the measuring cell 100 and the light receiving element 20, and the pressure is atmospheric pressure.
 前記したように、前記レーザ光の吸収強度は、水分濃度、光路長に比例し、圧力と温度にも関係する(ここでは発光素子10から受光素子20までを恒温槽に入れ、測定セル100内の温度と、前記大気部分の温度は同じで、かつ一定とみなせる状態とする。また、測定セル100内の圧力は一定に保持する)。また、吸収信号の波長帯域の半値幅は前記したように測定雰囲気の圧力に比例する。 As described above, the absorption intensity of the laser light is proportional to the moisture concentration and the optical path length, and is also related to the pressure and temperature (here, the light emitting element 10 to the light receiving element 20 are placed in a constant temperature bath, and the inside of the measurement cell 100 And the atmospheric temperature are the same and can be regarded as constant, and the pressure in the measurement cell 100 is kept constant). Further, the half width of the wavelength band of the absorption signal is proportional to the pressure of the measurement atmosphere as described above.
 従って、上記大気部分の水分濃度に対応する吸収信号の波形は、図2(Ab)に示すようにレーザ光の波長帯域の広い範囲で現れ、測定セル100の内部の水分濃度による吸収信号の波形は、図2(Aa)に示すように帯域の狭い範囲で表れる。 Therefore, the waveform of the absorption signal corresponding to the moisture concentration in the atmosphere portion appears in a wide range of the wavelength band of the laser beam as shown in FIG. 2A, and the waveform of the absorption signal due to the moisture concentration inside the measurement cell 100 is obtained. Appears in a narrow band as shown in FIG.
 ロックインアンプ22では、前記受光素子20からの信号波形の2次微分に相当する波形の信号を得る。当該2次微分によって、図2(Ca)に示すような波長帯域の広い波形と、帯域が狭くて鋭い波形が組み合わされ、その重なった信号は演算手段23に入力される。 The lock-in amplifier 22 obtains a signal having a waveform corresponding to the second derivative of the signal waveform from the light receiving element 20. By the second derivative, a waveform having a wide wavelength band as shown in FIG. 2 (Ca) and a sharp waveform having a narrow band are combined, and the overlapped signal is input to the calculation means 23.
 図4(b)は、図3の装置において、大気中の光路長が1mm、測定セル100の長さが300mmで1/10気圧、水分濃度20ppmでのロックインアンプ22の出力を示すものであり、図2(Ca)と等価である。一方、図4(a)は1mmの光路長の大気中での水分10000ppmによるロックインアンプ22の出力を示し、図2(Bb)と等価である。 FIG. 4B shows the output of the lock-in amplifier 22 in the apparatus of FIG. 3 when the optical path length in the atmosphere is 1 mm, the length of the measurement cell 100 is 300 mm, 1/10 atm, and the moisture concentration is 20 ppm. Yes, equivalent to FIG. 2 (Ca). On the other hand, FIG. 4 (a) shows the output of the lock-in amplifier 22 due to 10000 ppm of water in the atmosphere with an optical path length of 1 mm, which is equivalent to FIG. 2 (Bb).
 演算手段23では、上記のようにしてロックインアンプ22から得られた信号から、測定セル100での吸収信号に相当する部分を抽出し、水分濃度を決定する処理をする。 In the calculation means 23, a portion corresponding to the absorption signal in the measurement cell 100 is extracted from the signal obtained from the lock-in amplifier 22 as described above, and the moisture concentration is determined.
 まず、図5(a)に示す測定セル100で得られる吸収信号の2次微分波形の基準パターンRaと、図5(b)に示す大気中の吸収信号の2次微分波形の基準パターンRbを演算手段23の記憶手段に記憶させておく。 First, the reference pattern Ra of the secondary differential waveform of the absorption signal obtained in the measurement cell 100 shown in FIG. 5A and the reference pattern Rb of the secondary differential waveform of the absorption signal in the atmosphere shown in FIG. It is stored in the storage means of the calculation means 23.
 ここで、吸収信号に対応する2次微分波形の半値幅は、圧力に比例するのであるから、測定セル100内の圧力を固定にするようにしておくと、測定セル側の基準パターンRaの谷-谷幅(半値幅)は、前記固定にされた測定セル100内の圧力に対応した値となる。従って、後述するフィッティング処理においては、水分濃度に応じて高さを調整すればいいことになる。 Here, since the half-value width of the secondary differential waveform corresponding to the absorption signal is proportional to the pressure, if the pressure in the measurement cell 100 is fixed, the valley of the reference pattern Ra on the measurement cell side will be described. The trough width (half-value width) is a value corresponding to the pressure in the measurement cell 100 that has been fixed. Therefore, in the fitting process described later, the height may be adjusted according to the moisture concentration.
 一方、大気に対応する基準パターンの帯域幅は1気圧近辺でほぼ一定であり、高さは、そのときの湿度に対応することになる。従って前記基準パターンRbとしては、1気圧で標準的な湿度、例えば60%の水分量にあわせておく。 On the other hand, the bandwidth of the reference pattern corresponding to the atmosphere is almost constant around 1 atm, and the height corresponds to the humidity at that time. Therefore, the reference pattern Rb is adjusted to a standard humidity at 1 atm, for example, a moisture amount of 60%.
 前記の2つの基準パターンを、ロックインアンプ22からの出力信号の波形にフィッティングさせる。フィッティング処理は、ロックインアンプ22からの出力信号波形(図6(a))に対して、まず大気対応の基準パターンRbを、波長方向および高さ(大気の湿度)方向に微調整してフィッティングさせる(図6(b)の太い破線)。次いで、測定セル100の吸収波形の頂点Q0、と測定セル100の基準波形Raの頂点P0を一致させ、基準波形Raの高さ(大きさ)方向を調整して基準波形の両端点P10、P20が前記大気の基準波形Rbに重なるようにし、フィッティングが完了する(図6の細い破線)。 The two reference patterns are fitted to the waveform of the output signal from the lock-in amplifier 22. In the fitting process, the reference pattern Rb corresponding to the atmosphere is first finely adjusted in the wavelength direction and height (atmosphere humidity) direction with respect to the output signal waveform from the lock-in amplifier 22 (FIG. 6A). (Thick broken line in FIG. 6B). Next, the apex Q 0 of the absorption waveform of the measurement cell 100 and the apex P 0 of the reference waveform Ra of the measurement cell 100 are matched, and the height (size) direction of the reference waveform Ra is adjusted to adjust both end points P of the reference waveform. 10, P 20 is to overlap the reference waveform Rb of the air, the fitting is completed (thin broken line in FIG. 6).
 このようにしてフィッティングが完了すると、完了後の低圧部の基準信号を抽出して、谷ピーク間の中間位置(P1-P2の1/2)に対応する位置と山ピークP0間の高さhを求める。この高さhから演算手段22は測定セル100内の水分濃度を算出することになる。高さhから水分濃度を算出する具体的な方法としては、理論式を用いることもできるが、所定圧力での高さ(大きさ)hと水分濃度との関係をテーブルにして記憶させておくことで対応することができる。 When the fitting is completed in this way, the reference signal of the low-pressure portion after completion is extracted, and the position corresponding to the intermediate position between valley peaks (1/2 of P 1 -P 2 ) and the peak peak P 0 are extracted. Find the height h. From this height h, the calculation means 22 calculates the water concentration in the measurement cell 100. As a specific method for calculating the moisture concentration from the height h, a theoretical formula can be used, but the relationship between the height (size) h at a predetermined pressure and the moisture concentration is stored in a table. It can respond.
 上記では測定セル100に対応する基準パターンRaとして、一種類のみを記憶手段に記憶していることとしているが、吸収信号波形は濃度によって、多少異なるので、低濃度域、中濃度域、高濃度域の三種類程度の基準パターンを記憶しておくことでもよい。 In the above description, only one type is stored in the storage means as the reference pattern Ra corresponding to the measurement cell 100. However, since the absorption signal waveform differs somewhat depending on the concentration, the low concentration region, the medium concentration region, and the high concentration It is also possible to store about three types of reference patterns of areas.
 尚、図6(b)に示す信号は、図2(Ca)に模式的に描かれている波形と同等である。また、図6(c)に示す信号は、図2(Cb)に模式的に描かれている波形と同等である。また、大気に対応する基準パターンRbも演算手段に記憶するようにしているが、測定セル100に対応する基準波形Raのみを記憶させることでもよい。この場合基準波形Raを図6(c)に実線で示す複合波形に直接フィッティングすることになるが、若干の誤差の拡大を許容するとすればこの方法でもよいことになる。 The signal shown in FIG. 6B is equivalent to the waveform schematically shown in FIG. Further, the signal shown in FIG. 6C is equivalent to the waveform schematically shown in FIG. Further, the reference pattern Rb corresponding to the atmosphere is also stored in the calculation means, but only the reference waveform Ra corresponding to the measurement cell 100 may be stored. In this case, the reference waveform Ra is directly fitted to the composite waveform shown by the solid line in FIG. 6C, but this method may be used if a slight error enlargement is allowed.
 以上のようにして、水分濃度を算出すると、40ppm以下の濃度の水分であっても高い精度で値を得ることができる。 As described above, when the moisture concentration is calculated, a value can be obtained with high accuracy even if the moisture concentration is 40 ppm or less.
 以上の説明では水分を目的物質としたが、これに限定されることはない。 In the above description, moisture is the target substance, but the present invention is not limited to this.
 以上説明したように、本発明は測定セルに導入した雰囲気ガス(試料ガス)中の目的物質(例えば水分)の濃度を、大気中に目的物質が存在する状況であっても、精度よく短時間で測定できる。また、雰囲気ガスの種類に関わらず高精度かつ短時間での濃度測定が可能であり、産業上の利用可能性は極めて高い。 As described above, according to the present invention, the concentration of the target substance (for example, moisture) in the atmospheric gas (sample gas) introduced into the measurement cell can be accurately determined in a short time even in the situation where the target substance exists in the atmosphere. Can be measured. In addition, the concentration can be measured with high accuracy and in a short time regardless of the type of atmospheric gas, and the industrial applicability is extremely high.
 10 レーザ発光素子
 11 スイープ信号発生回路
 12 変調信号発生回路
 13 LDドライバ
 15 コリメートレンズ
 20 受光素子
 22 ロックインアンプ
 23 演算手段
 100 測定セル
 Ra 基準パターン
 Rb 基準パターン
 
DESCRIPTION OF SYMBOLS 10 Laser light emitting element 11 Sweep signal generation circuit 12 Modulation signal generation circuit 13 LD driver 15 Collimating lens 20 Light receiving element 22 Lock-in amplifier 23 Calculation means 100 Measurement cell Ra Reference pattern Rb Reference pattern

Claims (6)

  1.  TDLAS法に基づいて、試料ガス中の対象物質の濃度を測定する装置において、
     大気圧より充分低い圧力で試料ガスを充填した所定長さの測定セルと、
     前記測定セルに対して、試料ガスに含まれる対象物質の吸収波長前後の所定帯域の波長のレーザ光を出射するレーザ発光素子と、
     前記レーザ発光素子より入射されたレーザ光を前記測定セル内に充填した試料ガスを介して受光する受光素子と、
     前記受光素子よりの信号を入力し、当該入力された信号の波形を2次微分した波形として出力するロックインアンプと、
     前記ロックインアンプが出力する信号の波形から、試料ガス中の対象物質の吸収波形を抽出し、その大きさから濃度を算出する演算手段と
    を備えたことを特徴とする濃度計。
    Based on the TDLAS method, in a device that measures the concentration of the target substance in the sample gas,
    A measurement cell of a predetermined length filled with a sample gas at a pressure sufficiently lower than atmospheric pressure;
    A laser emitting element that emits laser light having a wavelength in a predetermined band around the absorption wavelength of the target substance contained in the sample gas with respect to the measurement cell;
    A light receiving element that receives laser light incident from the laser light emitting element through a sample gas filled in the measurement cell;
    A lock-in amplifier that receives a signal from the light receiving element and outputs a waveform obtained by second-order differentiation of the waveform of the input signal;
    A densitometer comprising: an arithmetic unit that extracts an absorption waveform of a target substance in a sample gas from a waveform of a signal output from the lock-in amplifier, and calculates a concentration from the magnitude.
  2.  前記演算手段に、前記測定セルの圧力で対象物質が所定の濃度であるときの前記ロックインアンプの出力を第1の基準波形として記憶しておき、当該第1の基準波形を前記ロックインアンプの出力の測定セルの吸収波形に対応する部分にフィッティングさせることによって、試料ガス中の対象物質の吸収波形を抽出する請求項1に記載の濃度計。 The calculation means stores the output of the lock-in amplifier when the target substance has a predetermined concentration at the pressure of the measurement cell as a first reference waveform, and the first reference waveform is stored in the lock-in amplifier. The concentration meter according to claim 1, wherein the absorption waveform of the target substance in the sample gas is extracted by fitting to a portion corresponding to the absorption waveform of the output measurement cell.
  3.  前記演算手段に、大気圧下で対象物質が所定の濃度であるときの前記ロックインアンプの出力を第2基準波形として記憶しておき、当該第2の基準の波形を前記ロックインアンプの出力の大気の吸収波形に対応する部分にフィッティングさせた後、第1の基準波形を前記ロックインアンプの出力の測定セルの吸収波形に対応する部分にフィッティングさせることによって、試料ガス中の対象物質の吸収波形を抽出する請求項1に記載の濃度計。 The calculation means stores an output of the lock-in amplifier when the target substance has a predetermined concentration under atmospheric pressure as a second reference waveform, and outputs the second reference waveform as an output of the lock-in amplifier. Of the target substance in the sample gas by fitting the first reference waveform to the portion corresponding to the absorption waveform of the measurement cell of the output of the lock-in amplifier. The densitometer according to claim 1, wherein an absorption waveform is extracted.
  4.  TDLAS法に基づいて、試料ガス中の対象物質の濃度を測定する方法において、
     所定長さの測定セル内の圧力を大気圧より充分低い圧力で試料ガスを充填するステップと、
     レーザ発光素子より前記測定セルに対して、試料ガスに含まれる対象物質の吸収波長前後の所定帯域の波長のレーザ光を入射するステップと、
     受光素子により、前記レーザ発光素子より入射されたレーザ光を前記測定セル内に充填した試料ガスを介して受光するステップ、
     ロックインアンプにて、前記受光素子よりの信号の波形を2次微分した波形として出力するステップ、
     演算手段で、前記ロックインアンプが出力する信号の波形から、試料ガス中の対象物質の吸収波形を抽出し、その大きさから濃度を算出するステップと
    を備えたことを特徴とする濃度測定方法。
    Based on the TDLAS method, in the method of measuring the concentration of the target substance in the sample gas,
    Filling the sample gas with a pressure sufficiently lower than atmospheric pressure in the measurement cell of a predetermined length; and
    Entering a laser beam having a wavelength in a predetermined band around the absorption wavelength of the target substance contained in the sample gas from the laser light emitting element to the measurement cell;
    Receiving a laser beam incident from the laser light emitting element through a sample gas filled in the measurement cell by a light receiving element;
    A step of outputting a second-order differentiated waveform of the signal from the light receiving element by a lock-in amplifier;
    A concentration measuring method comprising: a step of extracting an absorption waveform of a target substance in a sample gas from a waveform of a signal output from the lock-in amplifier, and calculating a concentration based on the waveform of the signal output from the lock-in amplifier. .
  5.  前記演算手段に、前記測定セルの圧力で対象物質が所定の濃度であるときの前記ロックインアンプの出力を第1の基準波形として記憶しておき、当該第1の基準波形を前記ロックインアンプの出力の測定セルの吸収波形に対応する部分にフィッティングさせることによって、試料ガス中の対象物質の吸収波形を抽出する請求項4に記載の濃度測定方法。 The calculation means stores the output of the lock-in amplifier when the target substance has a predetermined concentration at the pressure of the measurement cell as a first reference waveform, and the first reference waveform is stored in the lock-in amplifier. The concentration measurement method according to claim 4, wherein the absorption waveform of the target substance in the sample gas is extracted by fitting a portion corresponding to the absorption waveform of the output measurement cell.
  6.  前記演算手段に、大気圧下で対象物質が所定の濃度であるときの前記ロックインアンプの出力を第2基準波形として記憶しておき、当該第2の基準の波形を前記ロックインアンプの出力の大気の吸収波形に対応する部分にフィッティングさせた後、第1の基準波形を前記ロックインアンプの出力の測定セルの吸収波形に対応する部分にフィッティングさせることによって、試料ガス中の対象物質の吸収波形を抽出する請求項4に記載の濃度測定方法。 The calculation means stores an output of the lock-in amplifier when the target substance has a predetermined concentration under atmospheric pressure as a second reference waveform, and outputs the second reference waveform as an output of the lock-in amplifier. Of the target substance in the sample gas by fitting the first reference waveform to the portion corresponding to the absorption waveform of the measurement cell of the output of the lock-in amplifier. The concentration measuring method according to claim 4, wherein an absorption waveform is extracted.
PCT/JP2015/058205 2014-03-19 2015-03-19 Concentration meter and method for measuring concentration WO2015141767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508782A JP6395089B2 (en) 2014-03-19 2015-03-19 Densitometer and concentration measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014056190 2014-03-19
JP2014-056190 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141767A1 true WO2015141767A1 (en) 2015-09-24

Family

ID=54144729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058205 WO2015141767A1 (en) 2014-03-19 2015-03-19 Concentration meter and method for measuring concentration

Country Status (2)

Country Link
JP (1) JP6395089B2 (en)
WO (1) WO2015141767A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027963A (en) * 2017-07-31 2019-02-21 富士電機株式会社 Gas analyzer and gas analysis method
WO2019198467A1 (en) * 2018-04-09 2019-10-17 日産自動車株式会社 Manufacturing method of nonaqueous electrolyte secondary battery
JP2020052033A (en) * 2018-09-19 2020-04-02 富士電機株式会社 Laser type gas analyzer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258156A (en) * 1998-03-11 1999-09-24 Nippon Sanso Kk Apparatus and method for spectral analysis of gas
US6664533B1 (en) * 1999-01-20 2003-12-16 Gas Research Institute Apparatus and method of remote gas trace detection
JP2009243968A (en) * 2008-03-28 2009-10-22 Toyota Motor Corp Exhaust gas analyzer and analyzing method
JP2013113664A (en) * 2011-11-28 2013-06-10 Yokogawa Electric Corp Laser gas analyzer
JP2013164315A (en) * 2012-02-10 2013-08-22 Shimadzu Corp Laser gas analysis device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518562B1 (en) * 2000-01-20 2003-02-11 Gas Research Institute Apparatus and method of remote gas trace detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258156A (en) * 1998-03-11 1999-09-24 Nippon Sanso Kk Apparatus and method for spectral analysis of gas
US6664533B1 (en) * 1999-01-20 2003-12-16 Gas Research Institute Apparatus and method of remote gas trace detection
JP2009243968A (en) * 2008-03-28 2009-10-22 Toyota Motor Corp Exhaust gas analyzer and analyzing method
JP2013113664A (en) * 2011-11-28 2013-06-10 Yokogawa Electric Corp Laser gas analyzer
JP2013164315A (en) * 2012-02-10 2013-08-22 Shimadzu Corp Laser gas analysis device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027963A (en) * 2017-07-31 2019-02-21 富士電機株式会社 Gas analyzer and gas analysis method
WO2019198467A1 (en) * 2018-04-09 2019-10-17 日産自動車株式会社 Manufacturing method of nonaqueous electrolyte secondary battery
JP2019186009A (en) * 2018-04-09 2019-10-24 日産自動車株式会社 Method for manufacturing non-aqueous electrolyte secondary battery
JP2020052033A (en) * 2018-09-19 2020-04-02 富士電機株式会社 Laser type gas analyzer
JP7334502B2 (en) 2018-09-19 2023-08-29 富士電機株式会社 laser gas analyzer

Also Published As

Publication number Publication date
JP6395089B2 (en) 2018-09-26
JPWO2015141767A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
KR100747768B1 (en) Apparatus for measuring exhaust gas using wavelength modulation spectroscopy
US9052274B2 (en) Laser spectrometer and a method for operating a laser spectrometer
CN104903704B (en) Carry out the tunable diode laser absorption spectroscopy of steam measure
JP6624505B2 (en) Laser gas analyzer
JP6513762B2 (en) Analyzer, program for analyzer and analysis method
JP6394920B2 (en) External cavity laser absorption spectroscopy method and apparatus
KR101923003B1 (en) Method for determining the concentration of a gas component and spectrometer therefor
US20150160126A1 (en) Use of One or More Retro-reflectors in a Gas Analyzer System
JP6395089B2 (en) Densitometer and concentration measuring method
WO2017029791A1 (en) Concentration measurement device
Li et al. Hollow waveguide enhanced dimethyl sulfide sensor based on a 3.3 μm interband cascade laser
JP2016070686A (en) Device for measuring concentration by tdlas method
JP2008268064A (en) Multicomponent responsive laser type gas analyzer
US9546989B2 (en) Method for measuring the concentration of a gas component in a measurement gas
JP2011191246A (en) Laser-type gas analyzer
JP2016070687A (en) Concentration measurement device
KR20010005783A (en) Method of spectrochemical analysis of impurity in gas
JPS63182550A (en) Gas sensor
JPH03277945A (en) Gas detecting apparatus
US7164481B2 (en) Coefficient of linear expansion measuring apparatus and coefficient of linear expansion measuring method
JP2014142299A (en) Gas concentration measurement device
JP6201551B2 (en) Gas analyzer
JPH01254841A (en) Signal processing method for gas sensor
JP7437022B2 (en) gas analyzer
US20230204498A1 (en) Analysis device, program for analysis device, and analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764904

Country of ref document: EP

Kind code of ref document: A1