WO2015141686A1 - Olefin separation method and zeolite membrane complex - Google Patents

Olefin separation method and zeolite membrane complex Download PDF

Info

Publication number
WO2015141686A1
WO2015141686A1 PCT/JP2015/057923 JP2015057923W WO2015141686A1 WO 2015141686 A1 WO2015141686 A1 WO 2015141686A1 JP 2015057923 W JP2015057923 W JP 2015057923W WO 2015141686 A1 WO2015141686 A1 WO 2015141686A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
olefin
zeolite membrane
type zeolite
separation
Prior art date
Application number
PCT/JP2015/057923
Other languages
French (fr)
Japanese (ja)
Inventor
松方 正彦
瀬下 雅博
求 酒井
信啓 木村
足立 倫明
俊雄 和久
Original Assignee
Jx日鉱日石エネルギー株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 学校法人早稲田大学 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2015141686A1 publication Critical patent/WO2015141686A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/22Type X
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides

Definitions

  • the present invention relates to an olefin separation method and a zeolite membrane composite.
  • inorganic films having good chemical resistance, oxidation resistance, heat stability, and pressure resistance have been proposed to solve these problems.
  • Separation and concentration using inorganic membranes can reduce the amount of energy used compared to separation by distillation or adsorbent, and can be separated and concentrated in a wider temperature range than polymer membranes. It has an advantage that it can be applied to separation of a mixture containing an organic substance that cannot be separated by a molecular membrane.
  • zeolite membranes have regular sub-nanometer pores, so they function as molecular sieves, so they can selectively permeate specific molecules and are expected to exhibit high separation performance. .
  • Crystalline aluminosilicate which is collectively called zeolite, has a fine space (nanospace) of molecular size in one crystal, and is called “molecular sieve”.
  • molecular sieve Depending on the crystal structure, there are many types such as LTA (A type), MFI (ZSM-5 type), MOR, FER, and FAU (X type, Y type).
  • Zeolite with such a unique higher order structure exhibits shape selection function (molecular sieving function), adsorption / separation purification function, ion exchange function, solid acid function, catalytic function, etc., so it can be used in a wide range of industrial fields. Has been.
  • a zeolite membrane composite in which zeolite is formed in a film form on a support is usually used.
  • a separation method using a zeolite membrane for example, a method of concentrating alcohol by selectively permeating water by a pervaporation method using a mixture of an organic substance and water by an A-type zeolite membrane complex (see, for example, Patent Document 1) ), A method of selectively permeating water from a mixed system of alcohol and water using a mordenite-type zeolite membrane complex (see, for example, Patent Document 2), alcohol using a NaX-type zeolite membrane, and A method for separating MTBE (see, for example, Patent Document 3) has been proposed.
  • Non-Patent Document 4 describes the separation of olefins from a mixed fluid of olefin and paraffin using NaX type (faujasite) zeolite membrane composite (see, for example, Non-Patent Document 4).
  • JP-A-7-185275 Japanese Patent Laid-Open No. 2003-144871 Japanese Patent No. 3754520 JP 2002-537990 Gazette JP 2002-348579 A JP 2008-188564 A
  • Non-Patent Document 4 Although the separation of olefins from an olefin / paraffin mixed fluid is described in Non-Patent Document 4, it is disclosed in Non-Patent Document 4 from an olefin / paraffin mixed fluid because the separation factor is not sufficiently satisfactory.
  • propylene was separated using a NaX-type zeolite membrane, it was difficult to obtain the separated propylene having a purity required to be a polymer raw material.
  • the present invention has been made in view of the above, and a method for separating olefin from an olefin / paraffin mixed fluid using a zeolite membrane composite having high separation performance and practically sufficient permeability. And providing a zeolite membrane composite.
  • a zeolite membrane composed of an AgX-type zeolite obtained by ion-exchanging an ion-exchangeable cation such as Na in NaX-type zeolite with Ag ions is obtained from a paraffin / olefin mixed fluid. It has been found that olefins can be selectively separated. The present invention has been accomplished based on these findings.
  • the present invention is a method of selectively separating olefin from an olefin / paraffin mixed fluid by a zeolite membrane composite in which an X-type zeolite is formed on a porous support, wherein the X-type zeolite is the X-type zeolite. It is characterized by being composed of an AgX-type zeolite obtained by ion-exchanging ion-exchangeable cations in zeolite with Ag ions.
  • the X-type zeolite is preferably composed of AgX-type zeolite obtained by ion exchange of Na ions in the NaX-type zeolite with Ag ions.
  • the present invention provides a zeolite membrane composite in which an X-type zeolite is formed on a porous support and selectively separates olefins from an olefin / paraffin mixed fluid, wherein the X-type zeolite is contained in the X-type zeolite. It is characterized by being composed of an AgX-type zeolite obtained by ion-exchangeable ion-exchangeable cations with Ag ions.
  • the Ag content in the AgX-type zeolite is preferably 26% by mass or more, more preferably 26 to 46% by mass.
  • a zeolite membrane composite formed with such an AgX-type zeolite membrane is more excellent in the separation of olefins from an olefin / paraffin mixed fluid.
  • the olefin selectively separated by the zeolite membrane composite is preferably propylene.
  • propylene is separated from an olefin / paraffin mixed fluid containing propylene, a further selective separation property is exhibited. .
  • the zeolite membrane composite has an olefin permeability of 2 ⁇ 10 ⁇ 8 mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 ⁇ Pa ⁇ 1 or more at 80 ° C., and an olefin / paraffin separation factor of 15
  • the above is preferable.
  • high-purity olefins can be obtained on an industrial scale.
  • the olefin / paraffin partial pressure of the olefin / paraffin mixed fluid is preferably 50/50 to 95/5.
  • An appropriate range in which the partial pressure of the olefin is not too high and not too low can contribute to energy saving including the cost of the membrane.
  • the separation temperature of the olefin from the olefin / paraffin mixed fluid by the zeolite membrane composite is preferably 40 ° C. or higher. This is because by setting the separation temperature to 40 ° C. or higher, the olefin permeability is further improved.
  • a zeolite membrane composite excellent in olefin separation and a selective olefin separation method from an olefin / paraffin mixed fluid using the same are provided.
  • FIG. 1 is a schematic view of an example of an apparatus for separating olefins by vapor permeation using the zeolite membrane composite according to the present invention.
  • zeolite membrane in addition to the X-type zeolite, an inorganic binder such as silica and alumina, an organic substance such as a polymer, or a silylating agent for modifying the surface of the X-type zeolite is included as necessary. Also good.
  • the zeolite membrane may partially contain an amorphous component or the like, but is preferably a zeolite membrane substantially composed of only X-type zeolite.
  • the thickness of the zeolite membrane is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.6 ⁇ m or more, more preferably 1.0 ⁇ m or more. Moreover, it is the range of 100 micrometers or less normally, Preferably it is 60 micrometers or less, More preferably, it is 20 micrometers or less. If the thickness of the zeolite membrane is too large, the amount of permeation tends to decrease, and if it is too small, the selectivity tends to decrease or the membrane strength tends to decrease.
  • the particle size of the X-type zeolite constituting the zeolite membrane is not particularly limited, but if it is too small, there is a tendency to decrease permeation selectivity and the like due to an increase in grain boundaries. Therefore, it is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and the upper limit is the thickness of the film or less, for example, 100 ⁇ m or less. Furthermore, it is more preferable that the particle size of the X-type zeolite is the same as the thickness of the zeolite membrane. When the particle size of the X-type zeolite is the same as the film thickness, the grain boundary of the X-type zeolite is the smallest.
  • the zeolite membrane obtained by hydrothermal synthesis described later is preferable because the particle size of the X-type zeolite and the thickness of the zeolite membrane may be the same.
  • the zeolite constituting the zeolite membrane is X-type zeolite.
  • the aluminosilicate is mainly composed of an oxide of Si and Al, and may contain other elements as long as the effects of the present invention are not impaired.
  • the Si / Al molar ratio of the X-type zeolite is in the range of 1 to 1.5.
  • AgX-type zeolite can be prepared by ion-exchange of cations of various types of X-type zeolite such as sodium type, ammonium type and proton type into Ag ions. Of these, sodium type X zeolite is preferably used.
  • silver is usually prepared as a cation dissolved in water. Specific examples thereof include an aqueous solution of silver nitrate and silver perchlorate, an aqueous solution of silver ammine complex ion, and the like, and an aqueous silver nitrate solution is most preferably used.
  • the concentration of the aqueous solution containing silver ions is usually 0.0001 to 1 mol%, preferably 0.001 to 0.5 mol%, as the concentration of silver.
  • the ion exchange method is not particularly limited, but the above-mentioned zeolite membrane is usually immersed in a solution containing the above-mentioned cationic silver, and usually 1 to 90 ° C., preferably 20 to 70 ° C.
  • the ion exchange treatment is performed for a period of time to several hours, preferably with stirring. This ion exchange treatment can be repeated.
  • it may be baked at 200 to 600 ° C., preferably 250 to 400 ° C. for about several hours.
  • the target silver ion-exchanged X-type zeolite can be obtained.
  • the amount of Ag in the X-type zeolite is preferably 26% by mass or more, and more preferably 26 to 46% by mass. When it is less than 26% by mass, the olefin separation performance may not be sufficient, and when it is more than 46% by mass, the performance corresponding to the amount of silver added may not be exhibited.
  • the porous support may be any porous inorganic substance having a chemical stability that allows the X-type zeolite to be crystallized into a film on the surface thereof.
  • sintered ceramics such as silica, ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide, sintered metals such as iron, bronze, and stainless steel, glass And carbon moldings.
  • ⁇ -alumina and stainless steel are preferred from the viewpoints of heat resistance, mechanical strength, chemical resistance, ease of preparation of the support, and availability.
  • the shape of the porous support is not particularly limited as long as it can effectively separate the olefin / paraffin mixed fluid, and specifically, for example, a flat plate shape, a tubular shape, a cylindrical shape, a cylindrical shape, or a prismatic shape. Honeycomb-like ones having a large number of pores, monoliths and the like can be mentioned.
  • a zeolite membrane composed of X-type zeolite is formed on the surface of the inorganic porous support or the like, and preferably the X-type zeolite is crystallized into a membrane.
  • the average pore diameter of the porous support is not particularly limited, but those having controlled pore diameters are preferred, usually 0.02 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, It is 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. If the average pore diameter is too small, the amount of permeation tends to be small, and if it is too large, the strength of the support itself is insufficient, or a dense zeolite membrane tends not to be formed.
  • the porosity of the porous support is not particularly limited and does not need to be controlled in particular, but the porosity is usually preferably 20% or more and 60% or less.
  • the porosity affects the permeation flow rate when separating the gas or liquid, and if it is less than the lower limit, it tends to inhibit the diffusion of the permeate, and if it exceeds the upper limit, the strength of the support tends to decrease.
  • the zeolite membrane composite according to the present invention is such that X-type zeolite is fixed in the form of a membrane on the surface of a porous support, for example, hydrothermal synthesis of X-type zeolite on the surface of a porous support, etc.
  • the material crystallized in the form of a film is used.
  • a zeolite membrane When forming an X-type zeolite film on a porous support, it is preferable to form a zeolite membrane by hydrothermal synthesis after depositing a zeolite seed crystal on the porous support.
  • a dispersion in which a zeolite seed crystal powder is dispersed in a solvent on the porous support.
  • the zeolite seed crystals can be adhered to the porous support by mixing the zeolite seed crystals as part of the raw material during the production of the support.
  • a dispersion containing a zeolite seed crystal may be simply dropped on the porous support, or it may be obtained by immersing the porous support in a dispersion containing the zeolite seed crystal.
  • a widely used method such as spin coating, spray coating, roll coating, slurry coating, and filtration can also be used. From the viewpoint of reproducibility by controlling the amount of seed crystals deposited on the porous support, a method of preparing a dispersion containing zeolite seed crystals and immersing the porous support in the dispersion is preferred.
  • a commercially available zeolite seed crystal may be used, or it may be produced from a raw material.
  • a raw material for example, it can be produced by a known method from sodium silicate, silica gel, silica sol or silica powder as a silica raw material and sodium aluminate or aluminum hydroxide as an alumina raw material.
  • a commercially available product When a commercially available product is used, it is pulverized to a desired size with a pulverizer and then dispersed in water to prepare a dispersion.
  • the prepared dispersion is appropriately attached to the porous support by the above method.
  • the dispersion may be in any state such as slurry, sol, solution, etc., and can be appropriately prepared according to the coating method employed.
  • the method of immersing the porous support is employed, From the standpoint of ease, it is preferably a slurry.
  • a zeolite membrane is formed on the porous support by hydrothermal synthesis using a porous support to which a zeolite seed crystal is adhered, obtained by the above method.
  • hydrothermal synthesis a known method can be appropriately used.
  • the X-type zeolite membrane composite has a molar composition ratio of each component of H 2 O, Na 2 O, SiO 2 and Al 2 O 3 to H
  • the porous alumina support thus prepared is immersed, heated to 50 to 200 ° C., and allowed to react for 3 to 10 hours.
  • Such a method is disclosed in, for example, Japanese Patent No. 3754520.
  • the shape of the zeolite membrane composite according to the present invention is not particularly limited, and any shape such as a tubular shape, a hollow fiber shape, a monolith type, and a honeycomb type can be adopted.
  • the size is not particularly limited.
  • a length of 2 cm to 200 cm, an inner diameter of 0.05 cm to 2 cm, and a thickness of 0.5 mm to 4 mm are practical and preferable.
  • the zeolite membrane composite of the present invention can be used extremely effectively for the separation of liquid mixtures by the pervaporation method and the vapor permeation method.
  • Specific examples of the olefin / paraffin mixed fluid to be separated by the zeolite membrane composite of the present invention include ethylene / methane, ethylene / ethane, ethylene / propane, ethylene / butane, propylene / methane, propylene / ethane, propylene / Examples include propane, propylene / butane, butylene / methane, butylene / ethane, butylene / propane, butylene / butane, and the like.
  • the mixed fluid is not limited to two components, and may be three or more components.
  • the amount of water as a dispersion solvent at this time is usually 250 ml, and the seed crystal to be dispersed is usually 0.01 g.
  • the ultrasonic wave was removed for 10 minutes to remove the aggregation of the seed crystal in the dispersion, and the measurement was performed by a flow method.
  • the diameter (median diameter) giving a height of 50% was defined as D50 (average particle diameter).
  • the pore distribution of the porous support is a mercury intrusion method from 0.53 psia (corresponding to a pore diameter of 404 ⁇ m) to 60000 psia (corresponding to a pore diameter of 0.0036 ⁇ m) after performing a decompression treatment under reduced pressure (50 ⁇ mHg or less) for 10 minutes. It was determined by measuring the press fit curve. From this mercury intrusion method intrusion curve, D50 (pore diameter when the sum of pore volumes accumulated from large pores reached 50% of the total pore volume) was determined and used as the average pore diameter.
  • Example 1 Preparation of porous support with seed crystal
  • a cylindrical ⁇ -alumina support having a diameter of 1 cm and a length of 3 cm was prepared as a porous support.
  • the average pore diameter of the support was 150 nm, and the porosity was 37%.
  • the ⁇ -alumina support was immersed in the seed crystal slurry for 3 minutes to obtain a seed support porous support 1.
  • the amount of seed crystal supported by the seed crystal-supported porous support 1 was measured to be 2.2 mg. When the surface and cross section of the porous support were observed with an SEM, the seed crystal was mainly supported on the support. It was.
  • the Na zeolite membrane composite 1 was immersed in a 0.01 M silver nitrate aqueous solution under reduced pressure for 1 hour, washed repeatedly with distilled water, and then dried at room temperature under reduced pressure to obtain an Ag zeolite membrane composite 1.
  • the obtained Ag zeolite membrane composite 1 was an AgX-type zeolite, and the proportion of Ag in the AgX-type zeolite was 46% by mass.
  • the amount of Ag in the zeolite was calculated from the change in weight before and after ion exchange.
  • the structure of the zeolite was determined from the peak pattern in the XRD measurement.
  • Example 2 The Na zeolite membrane composite 1 produced in the same manner as in Example 1 was immersed in a 0.003M silver nitrate aqueous solution under reduced pressure for 1 hour to obtain an Ag zeolite membrane composite 2.
  • the obtained Ag zeolite membrane composite 2 was an AgX type zeolite, and the proportion of Ag in the AgX type zeolite was 12% by mass.
  • Example 3 The Na zeolite membrane composite 1 produced in the same manner as in Example 1 was immersed in a 0.006M silver nitrate aqueous solution under reduced pressure for 1 hour to obtain an Ag zeolite membrane composite 3.
  • the obtained Ag zeolite membrane composite 3 was an AgX-type zeolite, and the proportion of Ag in the AgX-type zeolite was 26% by mass.
  • Example 2 A Na zeolite membrane composite 3 is obtained by the same method as in Example 1 except that a commercially available ZSM-5 zeolite powder (manufactured by Tosoh Corporation) is used as a seed crystal, and the Na zeolite membrane composite 3 is ion-exchanged. As a result, an Ag zeolite membrane composite 5 was obtained. The obtained Ag zeolite membrane composite 5 was an AgZSM-5 type zeolite.
  • Examples 4 to 21 and Comparative Examples 1 to 8 A vapor permeation test was conducted using the apparatus shown in FIG. 1 using the Ag zeolite membrane composites 1 to 5 and the Na zeolite membrane composite 1 obtained in Examples 1 to 3, Synthesis Examples 1 and 2.
  • a mixed fluid in which the supply amounts of olefin gas and paraffin gas were adjusted by a mass flow controller (not shown) was heated by a heater and supplied into a separation cell maintained at atmospheric pressure.
  • the separation cell has a structure in which a mixed fluid to be separated is supplied to the outer surface of the cylindrical zeolite membrane composite and a permeate gas is obtained from the inner surface.
  • the total supply amount of the mixed gas to be supplied was fixed at 200 ml / min, and the ratio of the olefin gas and the paraffin gas was changed according to the example or the comparative example.
  • helium gas was flowed as a carrier gas at a rate of 200 mL / min. Collect the recovered gas containing the gas that has passed through the zeolite membrane and analyze it with a gas chromatograph. The permeability (mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 ⁇ Pa ⁇ 1 ) and separation of the permeated gas that has passed through the zeolite membrane Coefficients were calculated and evaluated. The results are shown in Tables 1 to 4.
  • the olefin separation method and zeolite membrane composite of the present invention are useful for the selective separation of olefins from olefin / paraffin mixed fluids.

Abstract

 The present invention provides an olefin separation method that employs a zeolite membrane complex having high separation capability, and endowed with a permeation rate sufficient for practical purposes; and a zeolite membrane complex for olefin separation. The present invention is a method for selective separation of an olefin from an olefin/paraffin mixed fluid, using a zeolite membrane complex having a zeolite X film formed on a porous substrate, characterized in that the zeolite X is composed of an AgX zeolite in which the ion-exchangeable cations within the zeolite X have undergone ion exchange with Ag ions.

Description

オレフィンの分離方法およびゼオライト膜複合体Olefin separation method and zeolite membrane composite
 本発明は、オレフィンの分離方法およびゼオライト膜複合体に関する。 The present invention relates to an olefin separation method and a zeolite membrane composite.
 従来、有機物を含有する気体または液体の混合物からの含有成分の分離、濃縮は、対象となる物質の性質に応じて、蒸留法、共沸蒸留法、溶媒抽出/蒸留法、吸着剤などにより行われている。
 しかしながら、これらの方法は、多くのエネルギーを必要とする、あるいは分離、濃縮対象の適用範囲が限定的であるといった欠点がある。
Conventionally, separation and concentration of components from a gas or liquid mixture containing organic substances is performed by distillation, azeotropic distillation, solvent extraction / distillation, adsorbent, etc., depending on the properties of the target substance. It has been broken.
However, these methods have drawbacks that they require a lot of energy or have a limited application range for separation and concentration.
 これらの方法に代わる分離方法として、高分子膜やゼオライト膜などの膜を用いた膜分離、濃縮方法が提案されている。しかし、高分子膜は加工性に優れる特徴をもつ一方で、熱や化学物質、圧力により劣化して性能が低下することが問題であった。 As a separation method instead of these methods, a membrane separation and concentration method using a membrane such as a polymer membrane or a zeolite membrane has been proposed. However, while the polymer film has the characteristics of excellent processability, it has been a problem that the performance deteriorates due to deterioration due to heat, chemicals, and pressure.
 近年、これらの問題を解決すべく耐薬品性、耐酸化性、耐熱安定性、耐圧性が良好な種々の無機膜が提案されてきている。無機膜を用いた分離、濃縮は、蒸留や吸着剤による分離に比べ、エネルギーの使用量を削減できるほか、高分子膜よりも広い温度範囲で分離、濃縮を実施でき、更に劣化の問題により高分子膜では分離できない有機物を含む混合物の分離にも適用できるという利点を有している。その中でもゼオライト膜は、サブナノメートルの規則的な細孔を有しているため、分子ふるいとしての働きをもつので選択的に特定の分子を透過でき、高分離性能を示すことが期待されている。 In recent years, various inorganic films having good chemical resistance, oxidation resistance, heat stability, and pressure resistance have been proposed to solve these problems. Separation and concentration using inorganic membranes can reduce the amount of energy used compared to separation by distillation or adsorbent, and can be separated and concentrated in a wider temperature range than polymer membranes. It has an advantage that it can be applied to separation of a mixture containing an organic substance that cannot be separated by a molecular membrane. Among them, zeolite membranes have regular sub-nanometer pores, so they function as molecular sieves, so they can selectively permeate specific molecules and are expected to exhibit high separation performance. .
 ゼオライトと総称される結晶性アルミノケイ酸塩は、一つの結晶内に分子サイズの微空間(ナノスペース)を有しており、「分子ふるい」の名で呼ばれている。また、その結晶構造により、LTA(A型)、MFI(ZSM-5型)、MOR、FER、FAU(X型、Y型)といった数多くの種類が存在する。このような特異な高次構造を備えたゼオライトは、形状選択機能(分子ふるい機能)、吸着/分離精製機能、イオン交換機能、固体酸機能、触媒機能などを発揮するので、広い産業分野で利用されている。 Crystalline aluminosilicate, which is collectively called zeolite, has a fine space (nanospace) of molecular size in one crystal, and is called “molecular sieve”. Depending on the crystal structure, there are many types such as LTA (A type), MFI (ZSM-5 type), MOR, FER, and FAU (X type, Y type). Zeolite with such a unique higher order structure exhibits shape selection function (molecular sieving function), adsorption / separation purification function, ion exchange function, solid acid function, catalytic function, etc., so it can be used in a wide range of industrial fields. Has been.
 ゼオライト膜を分離、濃縮に使用する場合、通常、支持体上に膜状にゼオライトを形成させたゼオライト膜複合体が用いられている。
 ゼオライト膜を用いた分離法として、例えば、有機物と水との混合物をA型ゼオライト膜複合体でパーベーパレーション法により水を選択的に透過させてアルコールを濃縮する方法(例えば、特許文献1参照)や、モルデナイト型ゼオライト膜複合体を用いてアルコールと水の混合系から水を選択的に透過させてアルコールを濃縮する方法(例えば、特許文献2参照)、NaX型ゼオライト膜を用いたアルコールとMTBEを分離する方法(例えば、特許文献3参照)などが提案されている。
When a zeolite membrane is used for separation and concentration, a zeolite membrane composite in which zeolite is formed in a film form on a support is usually used.
As a separation method using a zeolite membrane, for example, a method of concentrating alcohol by selectively permeating water by a pervaporation method using a mixture of an organic substance and water by an A-type zeolite membrane complex (see, for example, Patent Document 1) ), A method of selectively permeating water from a mixed system of alcohol and water using a mordenite-type zeolite membrane complex (see, for example, Patent Document 2), alcohol using a NaX-type zeolite membrane, and A method for separating MTBE (see, for example, Patent Document 3) has been proposed.
 また、MFI型ゼオライトによりパラキシレンを選択的に分離し、オルトキシレンとメタキシレンを阻止する、キシレン異性体の分離(例えば、特許文献4および非特許文献1参照)が開示されている。 Also, separation of xylene isomers is disclosed in which para-xylene is selectively separated by MFI-type zeolite and ortho-xylene and meta-xylene are blocked (see, for example, Patent Document 4 and Non-Patent Document 1).
 さらに、MFI型ゼオライト膜を使用した直鎖炭化水素と側鎖炭化水素の分離(例えば、特許文献5参照)や、直鎖炭化水素と芳香族炭化水素の分離(例えば、特許文献6参照)が開示されている。 Further, separation of linear hydrocarbons and side chain hydrocarbons using an MFI type zeolite membrane (for example, see Patent Document 5), separation of linear hydrocarbons and aromatic hydrocarbons (for example, see Patent Document 6). It is disclosed.
 さらにまた、ゼオライト結晶固有の細孔よりも大きな細孔があるゼオライト膜において、炭素数が4の炭化水素異性体である直鎖のブタン(ノルマルブタン)と側鎖のブタン(イソブタン)の分離が可能であることが開示されている(例えば、非特許文献2および3参照)。 Furthermore, separation of linear butane (normal butane) and side chain butane (isobutane), which are hydrocarbon isomers having 4 carbon atoms, is performed in a zeolite membrane having pores larger than the pores inherent to zeolite crystals. It is disclosed that it is possible (see, for example, Non-Patent Documents 2 and 3).
 また、オレフィンとパラフィン混合流体から、NaX型(フォージャサイト)ゼオライト膜複合体を用いたオレフィンの分離について記載されている(例えば、非特許文献4参照)。 Also, it describes the separation of olefins from a mixed fluid of olefin and paraffin using NaX type (faujasite) zeolite membrane composite (see, for example, Non-Patent Document 4).
特開平7-185275号公報JP-A-7-185275 特開2003-144871号公報Japanese Patent Laid-Open No. 2003-144871 特許第3754520号公報Japanese Patent No. 3754520 特表2002-537990号公報JP 2002-537990 Gazette 特開2002-348579号公報JP 2002-348579 A 特開2008-188564号公報JP 2008-188564 A
 オレフィンとパラフィン混合流体からのオレフィンの分離については、非特許文献4に記載があるものの、分離係数が十分満足できるものではないために、例えば、オレフィン/パラフィン混合流体から非特許文献4に開示されるNaX型ゼオライト膜でプロピレンを分離した場合、分離したプロピレンはポリマー用原料として要求される程度の純度のものを得ることが困難であった。 Although the separation of olefins from an olefin / paraffin mixed fluid is described in Non-Patent Document 4, it is disclosed in Non-Patent Document 4 from an olefin / paraffin mixed fluid because the separation factor is not sufficiently satisfactory. When propylene was separated using a NaX-type zeolite membrane, it was difficult to obtain the separated propylene having a purity required to be a polymer raw material.
 本発明は、上記に鑑みてなされたものであって、高い分離性能を有するとともに、実用上十分な透過度を備えたゼオライト膜複合体を用いた、オレフィン/パラフィン混合流体からのオレフィンの分離方法およびゼオライト膜複合体を提供することにある。 The present invention has been made in view of the above, and a method for separating olefin from an olefin / paraffin mixed fluid using a zeolite membrane composite having high separation performance and practically sufficient permeability. And providing a zeolite membrane composite.
 本発明者らは、鋭意検討した結果、NaX型ゼオライト中のNa等のイオン交換可能なカチオンを、Agイオンでイオン交換したAgX型ゼオライトから構成されるゼオライト膜が、パラフィン/オレフィンの混合流体からオレフィンを選択的に分離できることを見出した。本発明はこれらの知見に基づいて成し遂げられたものである。 As a result of intensive studies, the inventors of the present invention have found that a zeolite membrane composed of an AgX-type zeolite obtained by ion-exchanging an ion-exchangeable cation such as Na in NaX-type zeolite with Ag ions is obtained from a paraffin / olefin mixed fluid. It has been found that olefins can be selectively separated. The present invention has been accomplished based on these findings.
 すなわち本発明は、多孔質支持体上にX型ゼオライトを成膜したゼオライト膜複合体によりオレフィン/パラフィン混合流体からオレフィンを選択的に分離する方法であって、前記X型ゼオライトは、前記X型ゼオライト中のイオン交換可能なカチオンをAgイオンでイオン交換したAgX型ゼオライトで構成されることを特徴とする。前記X型ゼオライトは、NaX型ゼオライト中のNaイオンをAgイオンでイオン交換したAgX型ゼオライトで構成されることが好ましい。 That is, the present invention is a method of selectively separating olefin from an olefin / paraffin mixed fluid by a zeolite membrane composite in which an X-type zeolite is formed on a porous support, wherein the X-type zeolite is the X-type zeolite. It is characterized by being composed of an AgX-type zeolite obtained by ion-exchanging ion-exchangeable cations in zeolite with Ag ions. The X-type zeolite is preferably composed of AgX-type zeolite obtained by ion exchange of Na ions in the NaX-type zeolite with Ag ions.
 また、本発明は、多孔質支持体上にX型ゼオライトを成膜した、オレフィン/パラフィン混合流体からオレフィンを選択的に分離するゼオライト膜複合体において、前記X型ゼオライトは、X型ゼオライト中のイオン交換可能なカチオンをAgイオンでイオン交換したAgX型ゼオライトで構成されることを特徴とする。 Further, the present invention provides a zeolite membrane composite in which an X-type zeolite is formed on a porous support and selectively separates olefins from an olefin / paraffin mixed fluid, wherein the X-type zeolite is contained in the X-type zeolite. It is characterized by being composed of an AgX-type zeolite obtained by ion-exchangeable ion-exchangeable cations with Ag ions.
 本発明において、AgX型ゼオライト中のAg量は26質量%以上であることが好ましく、さらに好ましくは26~46質量%である。このようなAgX型ゼオライト膜が製膜されたゼオライト膜複合体は、オレフィン/パラフィン混合流体からのオレフィンの分離に一層優れる。 In the present invention, the Ag content in the AgX-type zeolite is preferably 26% by mass or more, more preferably 26 to 46% by mass. A zeolite membrane composite formed with such an AgX-type zeolite membrane is more excellent in the separation of olefins from an olefin / paraffin mixed fluid.
 また、本発明において、前記ゼオライト膜複合体により選択的に分離するオレフィンはプロピレンであることが好ましく、プロピレンを含むオレフィン/パラフィン混合流体からプロピレンを分離する場合、一層の選択分離性が発揮される。 Further, in the present invention, the olefin selectively separated by the zeolite membrane composite is preferably propylene. When propylene is separated from an olefin / paraffin mixed fluid containing propylene, a further selective separation property is exhibited. .
 さらに、本発明において、前記ゼオライト膜複合体の80℃におけるオレフィンの透過度が2×10-8mol・m-2・s-1・Pa-1以上で、かつオレフィン/パラフィンの分離係数が15以上であることが好ましい。透過度、および分離係数を上記以上とした場合、工業規模のスケールで高純度のオレフィンを得ることができる。 Further, in the present invention, the zeolite membrane composite has an olefin permeability of 2 × 10 −8 mol · m −2 · s −1 · Pa −1 or more at 80 ° C., and an olefin / paraffin separation factor of 15 The above is preferable. When the permeability and the separation factor are above, high-purity olefins can be obtained on an industrial scale.
 さらにまた、本発明において、オレフィン/パラフィン混合流体のオレフィン/パラフィン分圧は、50/50~95/5が好ましい。オレフィンの分圧が高すぎず、低すぎない適度な範囲のものが膜のコストも含め省エネルギーに寄与できる。 Furthermore, in the present invention, the olefin / paraffin partial pressure of the olefin / paraffin mixed fluid is preferably 50/50 to 95/5. An appropriate range in which the partial pressure of the olefin is not too high and not too low can contribute to energy saving including the cost of the membrane.
 また、本発明において、前記ゼオライト膜複合体によるオレフィン/パラフィン混合流体からのオレフィンの分離温度は、40℃以上であることが好ましい。分離温度を40℃以上とすることで、オレフィンの透過性能が一層優れるようになるためである。 In the present invention, the separation temperature of the olefin from the olefin / paraffin mixed fluid by the zeolite membrane composite is preferably 40 ° C. or higher. This is because by setting the separation temperature to 40 ° C. or higher, the olefin permeability is further improved.
 本発明によれば、オレフィンの分離に優れたゼオライト膜複合体及びそれを用いたオレフィン/パラフィン混合流体からの選択的なオレフィンの分離方法が提供される。 According to the present invention, a zeolite membrane composite excellent in olefin separation and a selective olefin separation method from an olefin / paraffin mixed fluid using the same are provided.
図1は、本発明にかかるゼオライト膜複合体を用いてベーパーパーミエーションによりオレフィンを分離する装置の一例の概略図である。FIG. 1 is a schematic view of an example of an apparatus for separating olefins by vapor permeation using the zeolite membrane composite according to the present invention.
 本発明に係るゼオライト膜複合体及びオレフィン/パラフィン混合流体からのオレフィンの分離方法の好適な実施形態について、更に詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 The preferred embodiments of the method for separating olefins from the zeolite membrane composite and the olefin / paraffin mixed fluid according to the present invention will be described in more detail. It is an example, and the present invention is not limited to these contents, and various modifications can be made within the scope of the gist.
(ゼオライト膜)
 本発明において、ゼオライト膜を構成する成分としては、X型ゼオライト以外にシリカ、アルミナなどの無機バインダー、ポリマーなどの有機物、あるいはX型ゼオライト表面を修飾するシリル化剤などを必要に応じ含んでいてもよい。ゼオライト膜は、一部アモルファス成分などが含有されていてもよいが、好ましくは実質的にX型ゼオライトのみで構成されるゼオライト膜である。
(Zeolite membrane)
In the present invention, as a component constituting the zeolite membrane, in addition to the X-type zeolite, an inorganic binder such as silica and alumina, an organic substance such as a polymer, or a silylating agent for modifying the surface of the X-type zeolite is included as necessary. Also good. The zeolite membrane may partially contain an amorphous component or the like, but is preferably a zeolite membrane substantially composed of only X-type zeolite.
 ゼオライト膜の厚さは特に限定されないが、通常0.1μm以上、好ましくは0.6μm以上、より好ましくは1.0μm以上である。また、通常100μm以下、好ましくは60μm以下、より好ましくは20μm以下の範囲である。ゼオライト膜の膜厚が大きすぎると透過量が低下する傾向があり、小さすぎると選択性が低下したり、膜強度が低下する傾向がある。 The thickness of the zeolite membrane is not particularly limited, but is usually 0.1 μm or more, preferably 0.6 μm or more, more preferably 1.0 μm or more. Moreover, it is the range of 100 micrometers or less normally, Preferably it is 60 micrometers or less, More preferably, it is 20 micrometers or less. If the thickness of the zeolite membrane is too large, the amount of permeation tends to decrease, and if it is too small, the selectivity tends to decrease or the membrane strength tends to decrease.
 ゼオライト膜を構成するX型ゼオライトの粒子径は特に限定されないが、小さすぎると粒界が大きくなるなどして透過選択性などを低下させる傾向がある。それ故、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上であり、上限は膜の厚さ以下、例えば、100μm以下である。さらに、X型ゼオライトの粒子径がゼオライト膜の厚さと同じである場合がより好ましい。X型ゼオライトの粒子径が膜の厚さと同じであるとき、X型ゼオライトの粒界が最も小さくなる。後に述べる水熱合成で得られたゼオライト膜は、X型ゼオライトの粒子径とゼオライト膜の厚さが同じになる場合があるので好ましい。 The particle size of the X-type zeolite constituting the zeolite membrane is not particularly limited, but if it is too small, there is a tendency to decrease permeation selectivity and the like due to an increase in grain boundaries. Therefore, it is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and the upper limit is the thickness of the film or less, for example, 100 μm or less. Furthermore, it is more preferable that the particle size of the X-type zeolite is the same as the thickness of the zeolite membrane. When the particle size of the X-type zeolite is the same as the film thickness, the grain boundary of the X-type zeolite is the smallest. The zeolite membrane obtained by hydrothermal synthesis described later is preferable because the particle size of the X-type zeolite and the thickness of the zeolite membrane may be the same.
(ゼオライト)
 本発明において、ゼオライト膜を構成するゼオライトはX型ゼオライトである。X型ゼオライトは、アルミノ珪酸塩は、SiとAlの酸化物を主成分とするものであり、本発明の効果を損なわない限り、それ以外の元素が含まれていてもよい。本発明において、X型ゼオライトのSi/Alのモル比は1~1.5の範囲である。
(Zeolite)
In the present invention, the zeolite constituting the zeolite membrane is X-type zeolite. In the X-type zeolite, the aluminosilicate is mainly composed of an oxide of Si and Al, and may contain other elements as long as the effects of the present invention are not impaired. In the present invention, the Si / Al molar ratio of the X-type zeolite is in the range of 1 to 1.5.
 AgX型ゼオライトは、ナトリウム型、アンモニウム型、プロトン型など様々な形態のX型ゼオライトのカチオンをAgイオンにイオン交換して調整することができる。これらのうちナトリウム型X型ゼオライトが好ましく使用される。一方、銀は通常カチオンとして水に溶解した形態で準備される。その具体例としては、硝酸銀や過塩素酸銀などの水溶液、銀のアンミン錯イオン水溶液、などを挙げることができるが、硝酸銀水溶液が最も好ましく使用される。銀イオンを含む水溶液の濃度は銀の濃度として、通常0.0001~1モル%、好ましくは0.001~0.5モル%の範囲である。 AgX-type zeolite can be prepared by ion-exchange of cations of various types of X-type zeolite such as sodium type, ammonium type and proton type into Ag ions. Of these, sodium type X zeolite is preferably used. On the other hand, silver is usually prepared as a cation dissolved in water. Specific examples thereof include an aqueous solution of silver nitrate and silver perchlorate, an aqueous solution of silver ammine complex ion, and the like, and an aqueous silver nitrate solution is most preferably used. The concentration of the aqueous solution containing silver ions is usually 0.0001 to 1 mol%, preferably 0.001 to 0.5 mol%, as the concentration of silver.
 イオン交換の方法には特に制限はないが、通常は上記のカチオン性の銀を含む溶液に、前述のゼオライト膜を浸漬させ、通常0~90℃、好ましくは20~70℃の温度範囲において1時間ないし数時間程度、好ましくは撹拌しながらイオン交換処理する。このイオン交換処理は繰り返し行うことができる。次に必要であれば、200~600℃、好ましくは250~400℃で数時間程度焼成処理しても良い。このような方法により、目的の銀イオン交換X型ゼオライトを得ることができる。 The ion exchange method is not particularly limited, but the above-mentioned zeolite membrane is usually immersed in a solution containing the above-mentioned cationic silver, and usually 1 to 90 ° C., preferably 20 to 70 ° C. The ion exchange treatment is performed for a period of time to several hours, preferably with stirring. This ion exchange treatment can be repeated. Next, if necessary, it may be baked at 200 to 600 ° C., preferably 250 to 400 ° C. for about several hours. By such a method, the target silver ion-exchanged X-type zeolite can be obtained.
 X型ゼオライト中のAg量は、26質量%以上であることが好ましく、26~46質量%であることがより好ましい。26質量%より小さい場合にはオレフィンの分離性能が十分でない場合があり、46質量%より多い場合には銀の添加量に見合った性能が発揮されない場合がある。 The amount of Ag in the X-type zeolite is preferably 26% by mass or more, and more preferably 26 to 46% by mass. When it is less than 26% by mass, the olefin separation performance may not be sufficient, and when it is more than 46% by mass, the performance corresponding to the amount of silver added may not be exhibited.
(多孔質支持体)
 多孔質支持体は、その表面などにX型ゼオライトを膜状に結晶化できるような化学的安定性がある多孔質の無機物質であれば如何なるものであってもよい。具体的には、例えば、シリカ、α-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などのセラミックス焼結体、鉄、ブロンズ、ステンレスなどの焼結金属や、ガラス、カーボン成型体などが挙げられる。このうち、耐熱性、機械的強度、耐薬品性、支持体作成の容易さや、入手容易性の点から、α-アルミナ、ステンレスが好ましい。
(Porous support)
The porous support may be any porous inorganic substance having a chemical stability that allows the X-type zeolite to be crystallized into a film on the surface thereof. Specifically, for example, sintered ceramics such as silica, α-alumina, γ-alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide, sintered metals such as iron, bronze, and stainless steel, glass And carbon moldings. Of these, α-alumina and stainless steel are preferred from the viewpoints of heat resistance, mechanical strength, chemical resistance, ease of preparation of the support, and availability.
 多孔質支持体の形状は、オレフィン/パラフィン混合流体を有効に分離できるものであれば特に制限されず、具体的には、例えば、平板状、管状のもの、または円筒状、円柱状や角柱状の孔が多数存在するハニカム状のものやモノリスなどが挙げられる。本発明においては、無機多孔質支持体の表面などにX型ゼオライトから構成されるゼオライト膜を形成、好ましくはX型ゼオライトを膜状に結晶化させる。 The shape of the porous support is not particularly limited as long as it can effectively separate the olefin / paraffin mixed fluid, and specifically, for example, a flat plate shape, a tubular shape, a cylindrical shape, a cylindrical shape, or a prismatic shape. Honeycomb-like ones having a large number of pores, monoliths and the like can be mentioned. In the present invention, a zeolite membrane composed of X-type zeolite is formed on the surface of the inorganic porous support or the like, and preferably the X-type zeolite is crystallized into a membrane.
 多孔質支持体が有する平均細孔径は特に制限されないが、細孔径が制御されているものが好ましく、通常0.02μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上であり、通常20μm以下、好ましくは10μm以下、より好ましくは5μm以下である。平均細孔径が小さすぎると透過量が小さくなる傾向があり、大きすぎると支持体自体の強度が不十分になったり、緻密なゼオライト膜が形成されにくくなる傾向がある。 The average pore diameter of the porous support is not particularly limited, but those having controlled pore diameters are preferred, usually 0.02 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm or more, It is 20 μm or less, preferably 10 μm or less, more preferably 5 μm or less. If the average pore diameter is too small, the amount of permeation tends to be small, and if it is too large, the strength of the support itself is insufficient, or a dense zeolite membrane tends not to be formed.
 また、多孔質支持体の気孔率は特に制限されず、また特に制御する必要は無いが、気孔率は、通常20%以上60%以下であることが好ましい。気孔率は、気体や液体を分離する際の透過流量を左右し、前記下限未満では透過物の拡散を阻害する傾向があり、前記上限超過では支持体の強度が低下する傾向がある。 Further, the porosity of the porous support is not particularly limited and does not need to be controlled in particular, but the porosity is usually preferably 20% or more and 60% or less. The porosity affects the permeation flow rate when separating the gas or liquid, and if it is less than the lower limit, it tends to inhibit the diffusion of the permeate, and if it exceeds the upper limit, the strength of the support tends to decrease.
(ゼオライト膜複合体)
 本発明にかかるゼオライト膜複合体は、多孔質支持体の表面などにX型ゼオライトが膜状に固着しているものであり、例えば、多孔質支持体の表面などにX型ゼオライトを水熱合成により膜状に結晶化させたものが用いられる。
(Zeolite membrane composite)
The zeolite membrane composite according to the present invention is such that X-type zeolite is fixed in the form of a membrane on the surface of a porous support, for example, hydrothermal synthesis of X-type zeolite on the surface of a porous support, etc. The material crystallized in the form of a film is used.
 多孔質支持体上にX型ゼオライトを成膜する場合、多孔質支持体上にゼオライト種晶を付着させた後、ゼオライト膜を水熱合成により形成することが好ましい。一般的に、多孔質支持体にゼオライト種晶を付着させるためには、ゼオライト種晶の粉末を溶剤に分散させた分散液を多孔質支持体上に塗布することが好ましいが、その他、多孔質支持体製造時に原料の一部としてゼオライト種晶粉末を混入させることで、多孔質支持体にゼオライト種晶を付着させることもできる。塗布の方法としては、ゼオライト種晶を含む分散液を多孔質支持体に単純に滴下するだけでも良く、ゼオライト種晶を含む分散液に多孔質支持体を浸漬することでも得られる。また、スピンコート、スプレーコート、ロールコート、スラリーの塗布、濾過など汎用されている方法を用いることもできる。多孔質支持体上の種晶の付着量を制御し、再現性の観点から、ゼオライト種晶を含む分散液を調製し、該分散液に多孔質支持体を浸漬する方法が好ましい。 When forming an X-type zeolite film on a porous support, it is preferable to form a zeolite membrane by hydrothermal synthesis after depositing a zeolite seed crystal on the porous support. In general, in order to attach a zeolite seed crystal to a porous support, it is preferable to apply a dispersion in which a zeolite seed crystal powder is dispersed in a solvent on the porous support. The zeolite seed crystals can be adhered to the porous support by mixing the zeolite seed crystals as part of the raw material during the production of the support. As a coating method, a dispersion containing a zeolite seed crystal may be simply dropped on the porous support, or it may be obtained by immersing the porous support in a dispersion containing the zeolite seed crystal. In addition, a widely used method such as spin coating, spray coating, roll coating, slurry coating, and filtration can also be used. From the viewpoint of reproducibility by controlling the amount of seed crystals deposited on the porous support, a method of preparing a dispersion containing zeolite seed crystals and immersing the porous support in the dispersion is preferred.
 ゼオライト種晶は、市販のものを用いてもよく、原料から製造してもよい。原料から製造する場合には、例えばシリカ原料としてケイ酸ナトリウム、シリカゲル、シリカゾル又はシリカ粉末、アルミナ原料としてアルミン酸ナトリウム又は水酸化アルミニウムなどから既知の方法で製造することができる。
 市販のものを用いる場合には、所望の大きさに粉砕機で粉砕した後、水に分散させ、分散液を調製する。調製した分散液は、適宜上記の方法で多孔質支持体に付着させる。該分散液は、スラリー、ゾル、溶液など、いずれの状態としても良く、採用する塗布方法に応じて適宜調製することができ、多孔質支持体を浸漬する方法を採用する場合には、付着の容易性からスラリー状であることが好ましい。
A commercially available zeolite seed crystal may be used, or it may be produced from a raw material. In the case of producing from a raw material, for example, it can be produced by a known method from sodium silicate, silica gel, silica sol or silica powder as a silica raw material and sodium aluminate or aluminum hydroxide as an alumina raw material.
When a commercially available product is used, it is pulverized to a desired size with a pulverizer and then dispersed in water to prepare a dispersion. The prepared dispersion is appropriately attached to the porous support by the above method. The dispersion may be in any state such as slurry, sol, solution, etc., and can be appropriately prepared according to the coating method employed. When the method of immersing the porous support is employed, From the standpoint of ease, it is preferably a slurry.
 上記方法により得られる、ゼオライト種晶を付着させた多孔質支持体を用いて、水熱合成することで、多孔質支持体上にゼオライト膜を形成する。水熱合成は、公知の方法を適宜用いることができ、例えば、X型ゼオライト膜複合体は、HO、NaO、SiO及びAlの各成分モル組成比を、それぞれHO/NaO=30~60、NaO/SiO=1~2、SiO/Al=4~12となるように調整した反応液中に、種晶を表面に施した多孔質アルミナ支持体を浸漬し、50~200℃に加温して3時間~10時間反応させることで製造することができる。このような方法は、例えば特許第3754520号公報に開示がある。 A zeolite membrane is formed on the porous support by hydrothermal synthesis using a porous support to which a zeolite seed crystal is adhered, obtained by the above method. For hydrothermal synthesis, a known method can be appropriately used. For example, the X-type zeolite membrane composite has a molar composition ratio of each component of H 2 O, Na 2 O, SiO 2 and Al 2 O 3 to H A seed crystal was applied to the surface in a reaction solution adjusted so that 2 O / Na 2 O = 30 to 60, Na 2 O / SiO 2 = 1 to 2, and SiO 2 / Al 2 O 3 = 4 to 12. The porous alumina support thus prepared is immersed, heated to 50 to 200 ° C., and allowed to react for 3 to 10 hours. Such a method is disclosed in, for example, Japanese Patent No. 3754520.
 本発明にかかるゼオライト膜複合体の形状は特に限定されず、管状、中空糸状、モノリス型、ハニカム型などあらゆる形状を採用できる。また大きさも特に限定されず、例えば、管状の場合は、通常長さ2cm以上200cm以下、内径0.05cm以上2cm以下、厚さ0.5mm以上4mm以下が実用的で好ましい。 The shape of the zeolite membrane composite according to the present invention is not particularly limited, and any shape such as a tubular shape, a hollow fiber shape, a monolith type, and a honeycomb type can be adopted. Also, the size is not particularly limited. For example, in the case of a tubular shape, a length of 2 cm to 200 cm, an inner diameter of 0.05 cm to 2 cm, and a thickness of 0.5 mm to 4 mm are practical and preferable.
 本発明のゼオライト膜複合体は、パーベーパレーション法、及びベーパーパーミエーション法による液体混合物の分離に極めて有効に使用することができる。本発明のゼオライト膜複合体が分離の対象とするオレフィン/パラフィン混合流体の具体例としては、エチレン/メタン、エチレン/エタン、エチレン/プロパン、エチレン/ブタン、プロピレン/メタン、プロピレン/エタン、プロピレン/プロパン、プロピレン/ブタン、ブチレン/メタン、ブチレン/エタン、ブチレン/プロパン、ブチレン/ブタンなどが挙げられる。混合流体としては2成分に限定されず、3成分以上であっても構わない。 The zeolite membrane composite of the present invention can be used extremely effectively for the separation of liquid mixtures by the pervaporation method and the vapor permeation method. Specific examples of the olefin / paraffin mixed fluid to be separated by the zeolite membrane composite of the present invention include ethylene / methane, ethylene / ethane, ethylene / propane, ethylene / butane, propylene / methane, propylene / ethane, propylene / Examples include propane, propylene / butane, butylene / methane, butylene / ethane, butylene / propane, butylene / butane, and the like. The mixed fluid is not limited to two components, and may be three or more components.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(粒度分布の測定)
種結晶の粒度分布の測定を、以下の条件で行った。
・装置名:レーザー回折式粒度分布計測装置LA-500
・測定方式:フランホーファ回折理論とミー散乱理論の併用
・測定範囲:0.1~200μm
・光源:He-Neレーザー(632.8nm)
・検出器:リング状シリコンフォトダイオード
・分散溶媒:水
 種結晶の粒度分布を測定するための分散液は、計測装置の超音波分散バスに水を入れて撹拌機で撹拌しながら、分散液をフローセルに循環させ、分散液を透過した光の強度が装置に表示される適正な光強度の範囲に入るように、超音波分散バス中の水に種結晶を加えることで調製した。このときの分散溶媒である水の量は通常250ml、分散させる種結晶は通常0.01gである。種結晶を入れた後、超音波を10分間かけて分散液中の種結晶の凝集を取り除き、フロー方式で測定した。得られた累積分布図(体積基準、粒子径の小さいものから積算)で、50%の高さを与える直径(メジアン径)をD50(平均粒径)とした。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(Measurement of particle size distribution)
The particle size distribution of the seed crystal was measured under the following conditions.
・ Device name: Laser diffraction particle size distribution analyzer LA-500
・ Measurement method: Combined use of Franhofer diffraction theory and Mie scattering theory ・ Measurement range: 0.1 to 200 μm
・ Light source: He-Ne laser (632.8 nm)
・ Detector: Ring-shaped silicon photodiode ・ Dispersion solvent: Water Dispersion for measuring the seed crystal particle size distribution is obtained by adding water to the ultrasonic dispersion bath of the measuring device and stirring with a stirrer. It was circulated through the flow cell and prepared by adding seed crystals to the water in the ultrasonic dispersion bath so that the intensity of light transmitted through the dispersion was within the range of appropriate light intensity displayed on the apparatus. The amount of water as a dispersion solvent at this time is usually 250 ml, and the seed crystal to be dispersed is usually 0.01 g. After putting the seed crystal, the ultrasonic wave was removed for 10 minutes to remove the aggregation of the seed crystal in the dispersion, and the measurement was performed by a flow method. In the obtained cumulative distribution diagram (volume basis, integration from the smallest particle diameter), the diameter (median diameter) giving a height of 50% was defined as D50 (average particle diameter).
(水銀圧入法による細孔分布測定)
 多孔質支持体の細孔分布は、減圧下(50μmHg以下)で10分間減圧処理を施した後、0.53psia(細孔径404μm相当)から60000psia(細孔径0.0036μm相当)までの水銀圧入法圧入曲線を測定することにより求めた。この水銀圧入法圧入曲線から、D50(大きい細孔から積算していった細孔容積の合計が全細孔容積の50%となったときの細孔径)を求め、平均孔径とした。 
(Measurement of pore distribution by mercury porosimetry)
The pore distribution of the porous support is a mercury intrusion method from 0.53 psia (corresponding to a pore diameter of 404 μm) to 60000 psia (corresponding to a pore diameter of 0.0036 μm) after performing a decompression treatment under reduced pressure (50 μmHg or less) for 10 minutes. It was determined by measuring the press fit curve. From this mercury intrusion method intrusion curve, D50 (pore diameter when the sum of pore volumes accumulated from large pores reached 50% of the total pore volume) was determined and used as the average pore diameter.
(実施例1)
・種晶付多孔質支持体の調製
 種晶として市販のUSYゼオライト粉末(Si/Al=3.5、東ソー社製)を準備し、ボールミルで湿式粉砕を行った。粉砕後のUSYゼオライト粉末の平均粒径を測定したところ200nmであった。粉砕後のUSYゼオライト粉末を水に加え攪拌後、4,000rpmで10分間、遠心分離を行った。上澄みを回収し、スラリー中の種晶の濃度が1.0g/Lとなるように種晶スラリー1を調製した。次に、多孔質支持体として、直径1cm、長さ3cmの円筒型のα-アルミナ支持体を準備した。支持体の平均孔径は150nmであり、気孔率は37%であった。α-アルミナ支持体を種晶スラリーに3分間浸漬し、種晶付多孔質支持体1を得た。種晶付多孔質支持体1の種晶担持量を測定したところ2.2mgであり、多孔質支持体の表面及び断面をSEMにて観察したところ、種晶は支持体上に主に担持されていた。
Example 1
-Preparation of porous support with seed crystal Commercially available USY zeolite powder (Si / Al = 3.5, manufactured by Tosoh Corporation) was prepared as a seed crystal, and wet pulverized with a ball mill. The average particle size of the pulverized USY zeolite powder was measured and found to be 200 nm. The pulverized USY zeolite powder was added to water and stirred, and then centrifuged at 4,000 rpm for 10 minutes. The supernatant was recovered, and seed crystal slurry 1 was prepared so that the concentration of seed crystals in the slurry was 1.0 g / L. Next, a cylindrical α-alumina support having a diameter of 1 cm and a length of 3 cm was prepared as a porous support. The average pore diameter of the support was 150 nm, and the porosity was 37%. The α-alumina support was immersed in the seed crystal slurry for 3 minutes to obtain a seed support porous support 1. The amount of seed crystal supported by the seed crystal-supported porous support 1 was measured to be 2.2 mg. When the surface and cross section of the porous support were observed with an SEM, the seed crystal was mainly supported on the support. It was.
・ゼオライト膜の形成
 ケイ酸ナトリウム、水酸化ナトリウム水溶液、及びアルミン酸ナトリウム+水酸化ナトリウム水溶液をそれぞれ混合し、4時間、100℃でエージングすることで、合成アルミノシリケートゲルを得た。ゲルの組成はモル比でNaO:Al:SiO:HO=80:1:9:5000であった。得られた合成アルミノシリケートゲルに種晶付多孔質支持体1を浸漬し、100℃で24時間、水熱合成を行い、Naゼオライト膜複合体1を得た。Naゼオライト膜複合体1は、NaX型ゼオライトであった。その後、Naゼオライト膜複合体1を0.01Mの硝酸銀水溶液に減圧下で1時間浸漬し、蒸留水で繰り返し洗浄した後、常温、減圧下で乾燥し、Agゼオライト膜複合体1を得た。得られたAgゼオライト膜複合体1は、AgX型ゼオライトであり、AgX型ゼオライト中のAgの割合は46質量%であった。ゼオライト中のAg量はイオン交換前後の重量変化から算出した。また、ゼオライトの構造はXRD測定におけるピークパターンから決定した。
-Formation of Zeolite Membrane Sodium silicate, sodium hydroxide aqueous solution, and sodium aluminate + sodium hydroxide aqueous solution were mixed and aged at 100 ° C for 4 hours to obtain a synthetic aluminosilicate gel. The composition of the gel was Na 2 O: Al 2 O 3 : SiO 2 : H 2 O = 80: 1: 9: 5000 in molar ratio. The porous support 1 with seed crystal was immersed in the obtained synthetic aluminosilicate gel, and hydrothermal synthesis was performed at 100 ° C. for 24 hours to obtain a Na zeolite membrane composite 1. The Na zeolite membrane composite 1 was NaX type zeolite. Thereafter, the Na zeolite membrane composite 1 was immersed in a 0.01 M silver nitrate aqueous solution under reduced pressure for 1 hour, washed repeatedly with distilled water, and then dried at room temperature under reduced pressure to obtain an Ag zeolite membrane composite 1. The obtained Ag zeolite membrane composite 1 was an AgX-type zeolite, and the proportion of Ag in the AgX-type zeolite was 46% by mass. The amount of Ag in the zeolite was calculated from the change in weight before and after ion exchange. Moreover, the structure of the zeolite was determined from the peak pattern in the XRD measurement.
(実施例2)
 実施例1と同様にして製造したNaゼオライト膜複合体1を、0.003Mの硝酸銀水溶液に減圧下で1時間浸漬して、Agゼオライト膜複合体2を得た。得られたAgゼオライト膜複合体2は、AgX型ゼオライトであり、AgX型ゼオライト中のAgの割合は12質量%であった。
(Example 2)
The Na zeolite membrane composite 1 produced in the same manner as in Example 1 was immersed in a 0.003M silver nitrate aqueous solution under reduced pressure for 1 hour to obtain an Ag zeolite membrane composite 2. The obtained Ag zeolite membrane composite 2 was an AgX type zeolite, and the proportion of Ag in the AgX type zeolite was 12% by mass.
(実施例3)
 実施例1と同様にして製造したNaゼオライト膜複合体1を、0.006Mの硝酸銀水溶液に減圧下で1時間浸漬して、Agゼオライト膜複合体3を得た。得られたAgゼオライト膜複合体3は、AgX型ゼオライトであり、AgX型ゼオライト中のAgの割合は26質量%であった。
Example 3
The Na zeolite membrane composite 1 produced in the same manner as in Example 1 was immersed in a 0.006M silver nitrate aqueous solution under reduced pressure for 1 hour to obtain an Ag zeolite membrane composite 3. The obtained Ag zeolite membrane composite 3 was an AgX-type zeolite, and the proportion of Ag in the AgX-type zeolite was 26% by mass.
(合成例1)
 ゼオライト膜形成用の合成アルミノシリケートゲルの組成を、NaO:Al:SiO:HO=22:1:25:990とした以外は、実施例1と同様の方法によりNaゼオライト膜複合体2を得て、Naゼオライト膜複合体2をイオン交換することによりAgゼオライト膜複合体4を得た。得られたAgゼオライト膜複合体4は、AgY型ゼオライトであり、AgY型ゼオライト中のAgの割合は32質量%であった。
(Synthesis Example 1)
The composition of the synthetic aluminosilicate gel for forming the zeolite membrane was changed to Na 2 O: Al 2 O 3 : SiO 2 : H 2 O = 22: 1: 25: 990 in the same manner as in Example 1 except that Na A zeolite membrane composite 2 was obtained, and the Na zeolite membrane composite 2 was ion-exchanged to obtain an Ag zeolite membrane composite 4. The obtained Ag zeolite membrane composite 4 was an AgY zeolite, and the proportion of Ag in the AgY zeolite was 32% by mass.
(合成例2)
 種晶として市販のZSM-5ゼオライト粉末(東ソー社製)を用いた以外は、実施例1と同様の方法によりNaゼオライト膜複合体3を得て、Naゼオライト膜複合体3をイオン交換することによりAgゼオライト膜複合体5を得た。得られたAgゼオライト膜複合体5は、AgZSM-5型ゼオライトであった。
(Synthesis Example 2)
A Na zeolite membrane composite 3 is obtained by the same method as in Example 1 except that a commercially available ZSM-5 zeolite powder (manufactured by Tosoh Corporation) is used as a seed crystal, and the Na zeolite membrane composite 3 is ion-exchanged. As a result, an Ag zeolite membrane composite 5 was obtained. The obtained Ag zeolite membrane composite 5 was an AgZSM-5 type zeolite.
(実施例4~21、および比較例1~8)
 実施例1~3、合成例1および2で得たAgゼオライト膜複合体1~5およびNaゼオライト膜複合体1を用い、図1に概略を示す装置を用いてベーパーパーミエーション試験を行った。図1において、マスフローコントローラー(図示しない)によりオレフィンガスとパラフィンガスの供給量が調整された混合流体を、ヒーターにより加熱され、大気圧に保持した分離セル内に供給した。分離セルは、円筒型のゼオライト膜複合体の外側表面に分離する混合流体を供給し、内側表面から透過ガスを得る構造をとる。供給する混合ガスの総供給量は200ml/minに固定し、オレフィンガスとパラフィンガスの比率は実施例または比較例に応じて変化させた。また、透過側にはキャリアガスとしてヘリウムガスを200mL/minの速度で流した。ゼオライト膜を透過したガスを含む回収ガスを分取し、ガスクロマトグラフにて分析を行ない、ゼオライト膜を透過した透過ガスの透過率(mol・m-2・s-1・Pa-1)および分離係数を算出し、評価した。その結果を表1~表4に示す。なお、分離係数とは、下記式で示されるように、供給ガス中のオレフィン濃度(モル%、S)とパラフィン濃度(モル%、S)との比に対する透過ガス中のオレフィン(モル%、P)とパラフィン(モル%、P)との比の値をいう。
  分離係数=(P/P)/(S/S
(Examples 4 to 21 and Comparative Examples 1 to 8)
A vapor permeation test was conducted using the apparatus shown in FIG. 1 using the Ag zeolite membrane composites 1 to 5 and the Na zeolite membrane composite 1 obtained in Examples 1 to 3, Synthesis Examples 1 and 2. In FIG. 1, a mixed fluid in which the supply amounts of olefin gas and paraffin gas were adjusted by a mass flow controller (not shown) was heated by a heater and supplied into a separation cell maintained at atmospheric pressure. The separation cell has a structure in which a mixed fluid to be separated is supplied to the outer surface of the cylindrical zeolite membrane composite and a permeate gas is obtained from the inner surface. The total supply amount of the mixed gas to be supplied was fixed at 200 ml / min, and the ratio of the olefin gas and the paraffin gas was changed according to the example or the comparative example. On the permeate side, helium gas was flowed as a carrier gas at a rate of 200 mL / min. Collect the recovered gas containing the gas that has passed through the zeolite membrane and analyze it with a gas chromatograph. The permeability (mol · m −2 · s −1 · Pa −1 ) and separation of the permeated gas that has passed through the zeolite membrane Coefficients were calculated and evaluated. The results are shown in Tables 1 to 4. The separation factor is the olefin (mol%) in the permeated gas with respect to the ratio of the olefin concentration (mol%, S 2 O 3 ) and the paraffin concentration (mol%, S P ) in the feed gas, as shown by the following equation , P 2 O 3 ) and paraffin (mol%, P P ).
Separation factor = ( PO / PP ) / ( SO / SP )
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明のオレフィンの分離方法およびゼオライト膜複合体は、オレフィン/パラフィン混合流体からのオレフィンの選択的な分離に有用である。 The olefin separation method and zeolite membrane composite of the present invention are useful for the selective separation of olefins from olefin / paraffin mixed fluids.

Claims (10)

  1.  多孔質支持体上にX型ゼオライトを成膜したゼオライト膜複合体によりオレフィン/パラフィン混合流体からオレフィンを選択的に分離する方法であって、
     前記X型ゼオライトは、前記X型ゼオライト中のイオン交換可能なカチオンをAgイオンでイオン交換したAgX型ゼオライトで構成されることを特徴とするオレフィンの分離方法。
    A method for selectively separating olefins from an olefin / paraffin mixed fluid by means of a zeolite membrane composite in which an X-type zeolite is formed on a porous support,
    The X-type zeolite is composed of AgX-type zeolite obtained by ion-exchange of ion-exchangeable cations in the X-type zeolite with Ag ions.
  2.  前記X型ゼオライトは、NaX型ゼオライト中のNaイオンをAgイオンでイオン交換したAgX型ゼオライトで構成されることを特徴とする請求項1に記載のオレフィンの分離方法。 The method for separating olefins according to claim 1, wherein the X-type zeolite is composed of AgX-type zeolite obtained by ion-exchange of Na ions in the NaX-type zeolite with Ag ions.
  3.  前記AgX型ゼオライト中のAgイオンの割合が26質量%以上であることを特徴とする、請求項1または2に記載のオレフィンの分離方法。 The method for separating olefins according to claim 1 or 2, wherein a ratio of Ag ions in the AgX-type zeolite is 26 mass% or more.
  4.  前記AgX型ゼオライト中のAgイオンの割合が26~46質量%であることを特徴とする、請求項1~3のいずれか一つに記載のオレフィンの分離方法。 The method for separating olefins according to any one of claims 1 to 3, wherein the proportion of Ag ions in the AgX-type zeolite is 26 to 46 mass%.
  5.  前記ゼオライト膜複合体により選択的に分離するオレフィンはプロピレンであることを特徴とする請求項1~3のいずれか一つに記載のオレフィンの分離方法。 The olefin separation method according to any one of claims 1 to 3, wherein the olefin selectively separated by the zeolite membrane composite is propylene.
  6.  前記ゼオライト膜複合体の80℃におけるオレフィンの透過度は2×10-8mol・m-2・s-1・Pa-1以上、かつオレフィン/パラフィンの分離係数が15以上であることを特徴とする請求項1~5のいずれか一つに記載のオレフィンの分離方法。 The zeolite membrane composite has an olefin permeability at 80 ° C. of 2 × 10 −8 mol · m −2 · s −1 · Pa −1 or more and an olefin / paraffin separation factor of 15 or more. The method for separating olefins according to any one of claims 1 to 5.
  7.  前記オレフィン/パラフィン混合流体のオレフィン/パラフィン分圧が、50/50~95/5であることを特徴とする請求項1~6のいずれか一つに記載のオレフィンの分離方法。 The olefin separation method according to any one of claims 1 to 6, wherein the olefin / paraffin partial pressure of the olefin / paraffin mixed fluid is 50/50 to 95/5.
  8.  前記ゼオライト膜複合体によるオレフィン/パラフィン混合流体からのオレフィンの分離温度は、40℃以上であることを特徴とする請求項1~7のいずれか一つに記載のオレフィンの分離方法。 The olefin separation method according to any one of claims 1 to 7, wherein the olefin separation temperature from the olefin / paraffin mixed fluid by the zeolite membrane composite is 40 ° C or higher.
  9.  多孔質支持体上にX型ゼオライトを成膜した、オレフィン/パラフィン混合流体からオレフィンを選択的に分離するゼオライト膜複合体において、
     前記X型ゼオライトは、X型ゼオライト中のイオン交換可能なカチオンをAgイオンでイオン交換したAgX型ゼオライトで構成されることを特徴とするゼオライト膜複合体。
    In a zeolite membrane composite in which an olefin is selectively separated from an olefin / paraffin mixed fluid in which an X-type zeolite film is formed on a porous support,
    The X-type zeolite is composed of an AgX-type zeolite obtained by ion-exchanging an ion-exchangeable cation in the X-type zeolite with Ag ions.
  10.  80℃におけるオレフィンの透過度が2×10-8mol・m-2・s-1・Pa-1以上、かつオレフィン/パラフィンの分離係数が15以上であることを特徴とする請求項9に記載のゼオライト膜複合体。 10. The olefin permeability at 80 ° C. is 2 × 10 −8 mol · m −2 · s −1 · Pa −1 or more, and the olefin / paraffin separation factor is 15 or more. Zeolite membrane composite.
PCT/JP2015/057923 2014-03-18 2015-03-17 Olefin separation method and zeolite membrane complex WO2015141686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014055192A JP6389625B2 (en) 2014-03-18 2014-03-18 Olefin separation method and zeolite membrane composite
JP2014-055192 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141686A1 true WO2015141686A1 (en) 2015-09-24

Family

ID=54144651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057923 WO2015141686A1 (en) 2014-03-18 2015-03-17 Olefin separation method and zeolite membrane complex

Country Status (2)

Country Link
JP (1) JP6389625B2 (en)
WO (1) WO2015141686A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034917A (en) * 2014-08-01 2016-03-17 Jx日鉱日石エネルギー株式会社 Method for separating normal paraffin or paraxylene and zeolite membrane composite
WO2016098417A1 (en) * 2014-12-19 2016-06-23 学校法人早稲田大学 Method for separating straight-chain conjugated diene
US11628394B2 (en) 2016-08-08 2023-04-18 Asahi Kasei Kabushiki Kaisha Gas separation membrane module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151854A1 (en) * 2014-04-01 2015-10-08 日本碍子株式会社 Zeolite, separation membrane structure, and process for producing zeolite
JP6270685B2 (en) * 2014-10-08 2018-01-31 学校法人早稲田大学 Separation method of normal paraffin
CN113474077B (en) 2019-03-26 2023-05-02 日本瑞翁株式会社 Process for separating branched diolefins and process for producing the same
EP3950100A4 (en) 2019-03-26 2022-12-28 Zeon Corporation Zeolite membrane composite, and method for separating branched chain diolefin using same and production method
JP7245699B2 (en) * 2019-03-28 2023-03-24 学校法人早稲田大学 Ethylene separation method
JP2021045711A (en) * 2019-09-18 2021-03-25 学校法人早稲田大学 Method for producing zeolite membrane composite body and zeolite membrane composite body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300715A (en) * 1992-10-09 1994-04-05 Uop Olefin process with removal of aromatic by-products
JPH10502609A (en) * 1994-07-08 1998-03-10 エクソン リサーチ アンド エンジニアリング カンパニー Zeolite layer with controlled crystal width and preferred orientation grown on growth promoting layer
JP2002523480A (en) * 1998-09-02 2002-07-30 ザ、プロクター、エンド、ギャンブル、カンパニー Improved production of surfactants by adsorption separation and products thereof
JP2012066242A (en) * 2010-08-26 2012-04-05 Mitsubishi Chemicals Corp Zeolite membrane composite for separating gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300715A (en) * 1992-10-09 1994-04-05 Uop Olefin process with removal of aromatic by-products
JPH10502609A (en) * 1994-07-08 1998-03-10 エクソン リサーチ アンド エンジニアリング カンパニー Zeolite layer with controlled crystal width and preferred orientation grown on growth promoting layer
JP2002523480A (en) * 1998-09-02 2002-07-30 ザ、プロクター、エンド、ギャンブル、カンパニー Improved production of surfactants by adsorption separation and products thereof
JP2012066242A (en) * 2010-08-26 2012-04-05 Mitsubishi Chemicals Corp Zeolite membrane composite for separating gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AGUADO, S.: "Absolute Molecular Sieve Separation of Ethylene/Ethane Mixtures with Silver Zeolite A", J. AM. CHEM. SOC., vol. 134, no. 36, 22 August 2012 (2012-08-22), pages 14635 - 14637, XP055226820 *
GIANNAKOPOULOS, I.G. ET AL.: "Separation of Propylene/Propane Mixtures Using Faujasite-Type Zeolite Membranes", IND. ENG. CHEM. RES., vol. 44, no. 1, pages 226 - 230, XP055226819 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034917A (en) * 2014-08-01 2016-03-17 Jx日鉱日石エネルギー株式会社 Method for separating normal paraffin or paraxylene and zeolite membrane composite
WO2016098417A1 (en) * 2014-12-19 2016-06-23 学校法人早稲田大学 Method for separating straight-chain conjugated diene
US9944576B2 (en) 2014-12-19 2018-04-17 Waseda University Method for separating straight-chain conjugated diene
US11628394B2 (en) 2016-08-08 2023-04-18 Asahi Kasei Kabushiki Kaisha Gas separation membrane module

Also Published As

Publication number Publication date
JP2015174081A (en) 2015-10-05
JP6389625B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6389625B2 (en) Olefin separation method and zeolite membrane composite
Caro et al. Zeolite membranes–Recent developments and progress
JP6211481B2 (en) Method for separating normal paraffin or paraxylene and zeolite membrane composite
JP3688706B2 (en) Molecular sieve layer and method for producing the same
Takata et al. Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicalite and application to the methylation of toluene
WO2014088756A1 (en) Gas separation method using ddr type zeolites with stabilized adsorption activity
Banihashemi et al. Xylene vapor permeation in MFI zeolite membranes made by templated and template-free secondary growth of randomly oriented seeds: Effects of xylene activity and microstructure
JP6479044B2 (en) Method for separating linear conjugated dienes
Zhang et al. Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures
JP6270685B2 (en) Separation method of normal paraffin
JP2007203241A (en) Separation membrane, its manufacturing method and substance separation method
WO2017150737A1 (en) Method for separating carbon dioxide and apparatus for separating carbon dioxide
JP6455923B2 (en) Method for producing para-xylene
JP2017213488A (en) Olefin highly purifying zeolite membrane
JP6134621B2 (en) Apparatus and method for separating and recovering olefins from a mixture of paraffin and olefin
JP2021045711A (en) Method for producing zeolite membrane composite body and zeolite membrane composite body
Zhang et al. Preparation and optimization of mordenite nanocrystal-layered membrane for dehydration by pervaporation
WO2018173929A1 (en) Method for separating hydrocarbon compound
Soydaş et al. Separation of gas and organic/water mixtures by MFI type zeolite membranes synthesized in a flow system
JP2017018848A (en) Dehydration concentration method of ethylene amine using zeolite membrane
JP2015150527A (en) Zeolite membrane for amine compound separation, method of producing the same and separation method
JP2013059714A (en) Method for producing support-zeolite membrane composite
JP2004026643A (en) Thin zeolite film, its preparation and its use for separation
Zhu et al. Functional zeolitic framework membranes for water treatment and desalination
JP6637747B2 (en) Separation membrane structure and method for concentrating para-xylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764837

Country of ref document: EP

Kind code of ref document: A1