WO2015137698A1 - 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 신호의 유효성 판단 방법 및 이를 위한 장치 - Google Patents

무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 신호의 유효성 판단 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2015137698A1
WO2015137698A1 PCT/KR2015/002296 KR2015002296W WO2015137698A1 WO 2015137698 A1 WO2015137698 A1 WO 2015137698A1 KR 2015002296 W KR2015002296 W KR 2015002296W WO 2015137698 A1 WO2015137698 A1 WO 2015137698A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
primary cell
cell
subframe
Prior art date
Application number
PCT/KR2015/002296
Other languages
English (en)
French (fr)
Inventor
이승민
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2016570754A priority Critical patent/JP6360202B2/ja
Priority to EP15762192.1A priority patent/EP3119027A4/en
Priority to CN201580013023.9A priority patent/CN106105083B/zh
Priority to US15/122,803 priority patent/US10097335B2/en
Publication of WO2015137698A1 publication Critical patent/WO2015137698A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for determining validity of a signal in a wireless communication system supporting change of use of a radio resource.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTSC Evolved Universal Mobile Telecommunications System
  • UTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E, UMTS is located at an end of a user equipment (UE) and a base station (eNode B, eNB, network (E-UTRAN)) and connected to an external network (Access Gateway, AG)
  • UE user equipment
  • eNode B eNode B
  • E-UTRAN network
  • a base station can transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission service to multiple terminals. Different cells can be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals. Downlink, For DL) data, the base station transmits downlink scheduling information to inform the corresponding terminal of time / frequency domain, encoding, data size, and HARQ Hybrid Automatic Repeat and reQuest (related information) related data.
  • the base station transmits the uplink scheduling information to the terminal for uplink (Upl ink, UL) data, and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • An interface for transmitting user traffic or control traffic may be used between base stations.
  • Core network (CN) can be composed of network nodes for special features such as AG and terminal users.
  • the AG manages the mobility of the terminal in units of TA Vacking Areas).
  • Wireless communication technology has been developed up to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological advances are required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the terminal reports the current channel state information periodically and / or aperiodically to the base station. Since the state information of the reported channel may include the results calculated in consideration of various situations, a more efficient reporting method is required.
  • a signal reception method of a terminal that does not support Simul taneous Recept ion and Transition may be performed in a specific radio frame that is applied to a special subframe of a primary cell and a downlink subframe of a secondary cell.
  • TDD time division duplex
  • the method may further include receiving a downlink data channel (Physical Downlink Ink Shared CHannel, PDSCH) on the specific radio resource.
  • a downlink data channel Physical Downlink Ink Shared CHannel, PDSCH
  • the determining of the flexibility is performed only when the terminal is configured not to receive a downlink data channel (PDSCH) for a downlink subframe on the same time interval as the special subframe. It can be characterized by.
  • PDSCH downlink data channel
  • the acquisition of aggregated cells 1
  • the terminal that does not support transmission and reception (Simul taneous Recept ion and Transition), the radio frequency unit;
  • the processor is further configured to perform a process for the secondary cell on a specific radio resource corresponding to a special subframe of a primary cell (pri imary cel l) and a downlink subframe of a secondary cell (secondary cel l).
  • the primary cell receives downlink control information and determining validity of the downlink control information according to an uplink-downlink configuration of the primary cell, wherein the downlink control information is determined by the primary cell; In the non-fal lback mode, it is determined to be invalid. Characterized in that the primary cell is determined to be valid when the secondary cell is TDD Tied duplex uplink-downlink configuration according to a fal lback mode and the secondary cell is cross-carrier scheduled according to the primary cell. do.
  • a signal transmission method of a terminal that does not support Simultaneous Recept ion and Transmission includes a specific radio corresponding to a special subframe of a primary cell and a downlink subframe of a secondary cell 1.
  • TDD time division duplex
  • downlink HARQ reference configuration when the use of the radio resource is fixed, downlink HARQ reference configuration, uplink HARQ reference configuration, SIB based uplink-downlink configuration, uplink reference HARQ timeline, or downlink—HARQ time This may be the case corresponding to at least one uplink subframe among the lines.
  • the method may further include transmitting an uplink data channel (Physical Uplink Ink Shared CHannel, PUSCH) on the specific radio resource.
  • an uplink data channel Physical Uplink Ink Shared CHannel, PUSCH
  • simultaneous transmission and reception of aggregated cells may be performed.
  • a signal transmission method of a terminal that does not support Simultaneous Recept ion and Transmission may be performed on a specific radio resource corresponding to a special subframe of the primary cell (primary cel l) and a downlink subframe of the secondary cell (secondary eel 1).
  • the secondary cell Receiving a SRS (Sounding Reference Signal) triggering message for the secondary cell; And said And determining the validity of the SRS triggering message according to the uplink-downlink configuration of the lie cell, wherein the SRS triggering message includes a non-fal lback mode. If the primary cell is TDD (Time Division Duplex) uplink-downlink configuration according to a fal lback mode and the specific radio resource is fixed for uplink use, it is determined to be valid. It is characterized by.
  • TDD Time Division Duplex
  • the SRS triggering message may be determined to be valid when an uplink data channel (PUSCH) and the SRS are simultaneously scheduled on the specific radio resource.
  • PUSCH uplink data channel
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 illustrates a structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 illustrates physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 illustrates a structure of a wireless frame used in an LTE system.
  • FIG. 5 illustrates a resource grid for a downlink slot.
  • Figure 6 illustrates the structure of a downlink subframe.
  • FIG. 7 illustrates a structure of an uplink subframe used in LTE.
  • Figure 8 illustrates a Carrier Aggregat ion (CA) communication system.
  • FIG. 10 is a diagram illustrating an EPDCCH and a PDSCH scheduled by EPDCCH.
  • FIG. 11 illustrates a case in which legacy subframes are divided into a static subframe set and a floating subframe set in a TDD system environment.
  • FIG. 12 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • CDM code division mult iple access FDMA
  • frequency division mult iple access FDMA
  • time division mult iple access TDMA
  • orthogonal frequency division mul t iple access FDMA
  • SC-FDMA SC-FDMA
  • CDMA can be used in various wireless access systems such as single carrier frequency division mult iple access.
  • CDMA can be implemented with radio technologies such as UTRAOtaiversal Terrestrial Radio Access) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as Global System for Mobility Communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolut ion (EDGE).
  • GSM Global System for Mobility Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolut ion
  • 0FDMA may be implemented by a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.11 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • UTRA is part of the UMTSCUniversal Mobility Telecommuni- cation Systems.
  • 3GPP (3rd Generat ion Partnership Project) Long term evolut ion (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and employs 0FDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • 3GPP LTE Advanced
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service (Informat ion Transfer Service) to a higher layer by using a physical channel.
  • the physical layer is connected to the upper medium access control layer through a trans antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical channels between the physical layer on the sending and receiving sides.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated by a 0rthogonal frequency diversity multiple access (0FDMA) scheme in the downlink, and modulated by a SC-FDMAC single carrier frequency diversity access (UL) scheme in the uplink.
  • 0FDMA 0rthogonal frequency diversity multiple access
  • SC-FDMAC single carrier frequency diversity access (UL) scheme in the uplink.
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the packet data convergence protocol (PDCP) layer of the second layer efficiently transmits an IP packet such as IPv4 or IPv6 over a narrow bandwidth wireless interface. It performs header compression function to reduce unnecessary control information.
  • a radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in association with radio bearer (RB) configuration (Ref igurat ion), reconfiguration (Re-conf igurat ion), and release (Release).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layer of the terminal and the network exchanges RRC messages with each other. If there is an RRC connected between the terminal and the RC layer of the network, the terminal is in: RRC connected mode, otherwise the RRC idle state It is in Idle Mode.
  • the non-access stratum (NAS) layer on top of the RRC negotiation performs functions such as session management and mobility management.
  • One cell constituting the base station is set to a bandwidth amplification such as 1.4, 3, 5, 10, 15, 20Mhz, and provides downlink or uplink transmission service to multiple terminals. Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting a user traffic or control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message, and an uplink shared channel (SCH) for transmitting a user traffic or control message.
  • RACH random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transport channel, which is mapped to the transport channel is Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Mul
  • 3 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • a user equipment that is powered on again or newly enters a cell performs an initial cell search operation such as synchronizing with a base station.
  • the user equipment receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S—SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S—SCH Secondary Synchronization Channel
  • the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the user equipment may receive a downlink reference signal (DL 'RS) in the initial cell search step to check the downlink channel state.
  • DL 'RS downlink reference signal
  • the user equipment After the initial cell search, the user equipment performs physical downlink ink control channel (Physical Downl Ink Control Channel, PDCCH) and physical downlink control channel information according to physical downlink control channel information in step S302. , PDSCH) to obtain more specific system information.
  • PDCCH Physical Downl Ink Control Channel
  • PDSCH Physical Downlink control channel information
  • the user equipment may perform a random access procedure such as steps S303 to S306 to complete the access to the base station.
  • the user equipment transmits a preamble through a physical random access channel (PRACH) (S303), and a physical downlink control channel and a physical downlink shared channel to the preamble for the preamble.
  • PRACH physical random access channel
  • a response message may be received (S304).
  • a content ion resolut ion procedure such as transmission of an additional physical random access channel (S305) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S306) are performed. can do.
  • the user equipment which has performed the above-described procedure will then receive the physical downlink control channel / physical downlink shared channel as a general uplink / downlink signal transmission procedure.
  • UCI uplink control information
  • UCI includes HARQ ACK / NACKC Hybrid Automatic Repeat and reQuest Acknowledgment / Negative_ACK (SRCScheduling Request), Channel State Informat ion (CSI), and the like.
  • SRCScheduling Request HARQ ACK / NAC is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • CSI includes a CQK channel quality indicator), a PMK Precoding Matrix Indi cator), a RKRank Indicat ion), and the like.
  • UCI is generally transmitted through PUCCH, but can be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, UCI can be aperiodically transmitted through PUSCH by network request / instruction.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in a .LTE system.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe includes a plurality of OFDM symbols. It is defined as a certain time interval.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission sequence interval ( ⁇ ).
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • an OFDM symbol represents one symbol period.
  • An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • a resource block as a resource allocation unit (RB) may include a plurality of consecutive subcarriers in one slot.
  • the number of 0FDM heartbeats included in one slot may vary depending on the configuration of CP Cycl i c Pref ix).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • the number of 0FDM symbols included in one slot may be seven.
  • the 0FDM symbol is configured by an extended CP, since the length of one 0FDM symbol is increased, the number of 0FDM symbols included in one slot is smaller than that of the standard CP.
  • the number of 0FDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce symbol interference.
  • each subframe is allocated to the first up to three 0FDM cored PDCCHCphysical downl ink control channels).
  • the remaining OFDM symbols may be allocated to a PDIS (physica I downl ink shared channel).
  • Type 2 radio frame consists of two half frames, each half frame contains four general subframes including two slots, Down Ink Pi Lot Time Slot (DwPTS), and Guard Per It consists of a special subframe including iod, GP) and UpPTSOJpl ink Pi lot time slot).
  • DwPTS Down Ink Pi Lot Time Slot
  • Guard Per It consists of a special subframe including iod, GP) and UpPTSOJpl ink Pi lot time slot).
  • DwPTS is used for initial cell search, synchronization, or channel estimation in a user equipment.
  • UpPTS is used for channel estimation at base station and synchronization of uplink transmission of user equipment. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission.
  • UpPTS is used for PRACH preamble or SRS transmission.
  • the guard interval is a section for removing interference caused by the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the 3GPP standard document defines the configuration as shown in Table 1 below with respect to the special subframe.
  • the structure of the type 2 radio frame that is, UL / DL ring sub-frame configuration (UL / DL conf igurat ion) in the TDD system is shown in Table 2 below.
  • D denotes a downlink subframe
  • U denotes an uplink subframe
  • S denotes the special subframe.
  • Table 2 also shows a downlink-uplink switching period in the uplink / downlink subframe configuration in each system.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • FIG. 5 illustrates a resource grid for a downlink slot.
  • the downlink slot includes OFDM symbols in the time domain and N resource blocks in the frequency domain. Since each resource block includes subcarriers, the downlink slot includes N X N subcarriers in the frequency domain.
  • FIG. 5 illustrates that the downlink slot includes 70 FDM symbols and the resource block includes 12 subcarriers, but is not necessarily limited thereto.
  • the number of 0FDM thimbles included in the downlink pilot may be modified according to the length of the Cyclic Pref ix (CP).
  • Each element on the resource grid is called a Resource Element (RE), and one resource element is indicated by one 0FDM symbol index and one subcarrier index.
  • One RB is represented by N ⁇ bx N resource elements. Consists of. The number of resource blocks included in the downlink slot ⁇ ⁇ depends on the downlink transmission bandwidth set in the cell.
  • FIG. 6 illustrates a structure of a downlink subframe.
  • up to three (4) 0FDM symbols located at the front of the first slot of a subframe are indicated in a control region to which a control channel is allocated. left
  • the OFDM symbol corresponds to a data region to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • Examples of downlink control channels used in LTE include PCF: Physical Control Format Indicator Channel (ICH), Physical 'Downlink Control Channel (PDCCH), Physical Hybrid ARQ indicator Channel (PHICH), and the like.
  • PCFICH is transmitted in the first OFDM symbol of the subframe and carries information on the number of OFDM symbols used for transmission of the control channel in the subframe.
  • the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat requestacknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • HARQ ACK / NACK Hybrid Automatic Repeat requestacknowledgment / negative-acknowledgment
  • DCI downlink control information
  • the DCI includes resource allocation information and other control information for the user device or the user device group.
  • the DCr includes uplink / downlink scheduling information, uplink transmission (Tx) power control command, and the like.
  • the PDCCH includes transport format and resource allocation information of a downlink shared channel (DL-SCH), transport format and resource allocation information of an uplink shared channel (UL-SCH), and a paging channel.
  • Px information on paging channel (PCH) Px information on paging channel (PCH)
  • system information on DL-SCH resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual user devices in user device group , Tx power control command, activation instruction information of VoIPCVoice over IP).
  • a plurality of PDCCHs may be transmitted in the control region.
  • the user equipment can monitor multiple PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a coding rate based on radio channel conditions to the PDCCH.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station is sent to the user equipment
  • the PDCCH format is determined according to the DCI, and a CRC (cyclic redundancy check) is added to the control information.
  • the CRC is masked with an identifier (eg, radio network temporary identifier (RTI)) according to the owner of the PDCCH or the purpose of use.
  • RTI radio network temporary identifier
  • an identifier eg, eel 1-RNTI (CR TI)
  • PDCCH is for paging message
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • the SI-RNTKsystem Informat ion RNTI may be masked to the CRC.
  • a random access-RNTI RA-RNTI
  • FIG. 7 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality of (eg, two) slots.
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit data signals such as voice.
  • the control region includes a PUCCH and is used to transmit Uplink Control Information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and calls slot boundaries.
  • the PUCCH may be used to transmit the following control information.
  • -HARQ ACK / NAC This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • [72]-CSK Channel State Informat ion) Feedback information on a downlink channel.
  • the CSI includes a CQKChannel Quality Indicator (MQ0), and feedback information related to the MIM0 (Mult iple Input Mult iple Output) includes a RI (Rank Indicator), a PMKPrecoding Matrix Indicator (RI), and a PTKPrecoding Type Indicator. 20 bits are used per subframe.
  • the amount of control information (UCI) that a user equipment can transmit in a subframe depends on the number of SOFDMA available for transmission of control information.
  • SO FDMA available for control information transmission means the remaining SC-FDMA symbols except for the SC-FDMA symbol for the reference signal transmission in the subframe, and the SRSCSounding Reference Signal) is set. For frames, the last SC-FDMA symbol of the subframe is also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • FIG. 8 illustrates a Carrier Aggregat ion (CA) communication system.
  • a plurality of uplink / downlink component carriers may be collected to support a wider uplink / downlink bandwidth.
  • component carrier CC
  • the term "component carrier (CC)” may be replaced with other equivalent terms (e.g., carrier, cell, etc.).
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each component carrier It can be determined independently. it is also possible that the number of the number and DL CC for UL CC other asymmetric carrier aggregation.
  • the control information may be set to be transmitted and received only through the particular CC. This particular (X a primary CC ( Or anchor CC), and the remaining CCs may be referred to as secondary CCs.
  • the PDCCH for downlink allocation may be transmitted on DL CC # 0, and the corresponding PDSCH may be transmitted on DL CC # 2.
  • the introduction of a carrier indi- cator field may be considered:
  • the presence of CIF in the PDCCH is semi-static and terminal-specific by higher layer signaling (e.g., RRC signaling). (Or UE group-specific) can be configured in.
  • the baseline of the PDCCH transmission is as follows.
  • a PDCCH on a DL CC can allocate a specific DL / UL (PDSCH or PUSCH resource on X) among a plurality of merged DL / UL CCs using the CIF.
  • the base station may allocate the PDCCH monitoring DL CC set to reduce the BD complexity of the terminal.
  • the PDCCH monitoring DL CC set includes one or more DL CCs as part of the combined total DL CCs, and the UE detects / decodes the PDCCH only on the corresponding DL CCs. That is, when the base station schedules PDSCH / PUSCH to the UE, the PDCCH is transmitted only through the PDCCH monitoring DL CC set.
  • the PDCCH monitoring DL CC set may be configured in a UE-speci f i, a UE-group-specific or a cell-specific scheme.
  • the term "PDCCH monitoring DL CC” ' may be replaced with equivalent terms such as monitoring carrier, monitoring 3 ⁇ 4, etc.
  • the CC merged for the terminal may be replaced with equivalent terms such as serving CC, serving carrier, serving cell, etc. Can be.
  • DL CC A is set to PDCCH monitoring DL CC.
  • DL CC A to C may be referred to as a serving CC, a serving carrier, a serving cell, and the like.
  • each DL CC can transmit only PDCCH scheduling its PDSCH without CIF according to LTE PDCCH configuration.
  • DL CC A (Monitoring DL CC) schedules PDSCH of DL CC A using CIF.
  • the PDCCH scheduling the PDSCH of another CC may be transmitted.
  • PDCCH is not transmitted in DL CC B / C that is not configured as PDCCH monitoring DL CC.
  • the DL CC A (monitoring DL CC) must include both the PDCCH search region associated with the DL CC A, the PDCCH search region associated with the DL CC B, and the PDCCH search region associated with the DL CC C. In this specification, it is assumed that the PDCCH search region is defined for each carrier.
  • LTE-A considers the use of CIF in the PDCCH for cross-CC scheduling. Whether to use CIF (ie support for cross-CC scheduling mode or non-cross-CC scheduling mode) and switching between modes can be set semi-statically / terminal-specifically through RRC signaling, and the corresponding RRC signaling process Rough trailing Words can recognize whether CIF is used in the PDCCH to be scheduled to them.
  • FIG. 10 is a diagram illustrating an EPDCCH and a PDSCH scheduled by an EPDCCH.
  • an EPDCCH may generally define and use a portion of a PDSCH region for transmitting data, and a UE should perform a blind decoding process for detecting the presence or absence of its own EPDCCH. do.
  • the EPDCCH performs the same scheduling operation as the legacy legacy PDCCH (ie PDSCH and PUSCH control), but when the number of UEs connected to a node such as RRH increases, more EPDCCHs are allocated in the PDSCH region. There may be a disadvantage that the complexity may increase due to an increase in the number of blind decodings to be performed.
  • FIG. 11 illustrates a case where legacy subframes are divided into a static subframe set and a floating subframe set in a TDD system environment.
  • the existing uplink-downlink configuration configured through the SIBCSystem Informat ion Block) signal is uplink-downlink configuration # 1 (that is, DSUUDDSUUD), and the base station uses a signal previously defined to the terminal. It is assumed that the reset information of the purpose of the radio resource is informed.
  • the Reconf igurat ion message may appear later, i) including the time of receipt of the redirection message according to a pre-defined rule, or ii) or at the time of receipt of the redirection message. Iii) or the purpose of informing the purposes of radio resources appearing at a predefined time (i.e., after a subframe offset) from the time of receipt of the corresponding usage change message.
  • UL-DL Conf igurat ion i.e., uplink-downlink configuration
  • the terminal assumes when the reception method or a specific terminal fails to successfully receive a usage change message. Fallback operation and the like need to be defined.
  • the situation in which the terminal does not successfully receive the usage change message is, for example, If the terminal is found to be false when performing the CRC (Cyclic Redundancy Check) on the received usage change message, if the terminal misses the usage change message (eg, due to DRX operation) The terminal may have missed the usage change message).
  • CRC Cyclic Redundancy Check
  • the reconfiguration message may be a higher layer signal type (eg SIB / PBCH / MAC / RRC) or a physical layer signal type (eg PDCCH / EPDCCH /) on a predefined cell (eg, Primary Cell, PCell).
  • a higher layer signal type eg SIB / PBCH / MAC / RRC
  • a physical layer signal type eg PDCCH / EPDCCH /
  • the usage change message may also be UE-specific or cell-specific or UE-Group-Specific. Feature or UE group common (UE-Group-Co ⁇ on) may have a feature.
  • the usage change message may be transmitted through a UE-Specific Search Space (USS) or CSSCC on the Search Space (USS) on a predefined cell (eg, PCell).
  • USS UE-Specific Search Space
  • CSSCC Search Space
  • the channel measurement operation when the terminal decodes explicit L1 signaling for reconfiguration and detects a valid uplink-downlink configuration, the terminal explicitly expresses L1 signaling for reconfiguration. Only within subframes indicated by a DL subframe or a special subframe through.
  • CSI side Decide If the UE does not detect the L1 signaling for transmitting a valid uplink-downlink configuration for a radio frame, the UE performs CSI only within subframes indicated by a downlink subframe or a special subframe according to the SIB configuration. It can be measured.
  • the UE when the PDCCH or PDSCH reception operation is described, when the UE detects L1 signaling for transmitting a valid uplink-downlink configuration for a radio frame, the UE indicates non-signal indicated by explicit L1 signaling. Monitor the DRX downlink subframe or special subframe. If, when the terminal does not detect the L1 signaling for transmitting a valid uplink-downlink configuration for the radio frame, the terminal is a non-DRX downlink subframe for the PDCCH or EPDCCH indicated by the SIB-1 configuration or Monitor the special subframe.
  • the downlink HARQ reference configuration may be selected from Re ⁇ 8 TDD uplink-downlink configuration ⁇ 2, 4, 5 ⁇ .
  • TDD eIMTA Frether Enhancements to LTE Time Division Duplex (TDD) for Downl ink-Upl ink Interference Management and Traffic Adaptat ion
  • uplink scheduling timing and HARQ timing are signaled through SIB1.
  • TDD eIMTA Frether Enhancements to LTE Time Division Duplex (TDD) for Downl ink-Upl ink Interference Management and Traffic Adaptat ion
  • uplink scheduling timing and HARQ timing are signaled through SIB1.
  • the UL grant validity determination (UL grant val idat ion) will be described.
  • the UE In the fallback mode, if the UE is not included in the set of uplink subframes for each DL HARQ reference conf igurat i on, the UE grants an uplink grant corresponding to at least one uplink subframe for each SIB1. If received, the terminal may determine this as valid control information (val id grant). However, if the UE receives a NACK on the PHICH triggering the PUSCH transmission in the uplink subframes per SIB1 without being included in the set of uplink subframes for each DL HARQ reference conf igurat ion, the UE receives the PUSCH. To Send.
  • Type 1 SRS the determination of the subframe in which the Type 1 SRS transmission is scheduled when triggered is based on SIB1.
  • SRS transmission may be configured on an uplink subframe or SIB1 based UpPTS.
  • Falback Operation (Falback Operation) (or Falback Mode)
  • the base station successfully transmits a zero usage change message.
  • Malfunction of a terminal that has not been received eg, incorrect uplink data channel (PUSCH) and / or black uplink control channel (PUCCH) transmission due to control channel (PDCCH / EPDCCH) detection error (Fal se Detect ion)
  • PUSCH incorrect uplink data channel
  • PUCCH / EPDCCH control channel
  • detection error Fal se Detect ion
  • DL HARQ Buffer corrupt ion can be minimized.
  • cells having different (Di f ferent) uplink-downlink settings are used as a carrier aggregation technique (CA), and the terminal simultaneously transmits / receives on the corresponding cells (Simult neous Recept ion (RX) and Transition (TX)) When it fails to perform an operation, it is defined to perform the transmission / reception of uplink / downlink signals based on constraints as shown in Table 3.
  • CA carrier aggregation technique
  • the UE shall not transmit: any signal or channel on a secondary cell in the same subframe
  • the UE is not expected to receive any downlink transmissions on a secondary cell in the same subframe
  • the UE is not expected to receive PDSCH / EPDCCH / PMCH / PRS transmissions in the secondary cell in the same subframe, and the UE is not expected to receive any other signals on the secondary cell in! OFDM symbols that overlaps with the guard period or UpPTS in the primary ceil. ; Accordingly, in the present invention, in a situation in which a carrier aggregation technique (CA) is applied, the radio resource usage on a specific cell is dynamically changed (ie, elMTA Cell) according to a load state, and the UE is aggregated cells.
  • CA carrier aggregation technique
  • DL Grant DL grant scheduling control information
  • CA carrier aggregation technique
  • a TDD elMTA PCell and a TDD (elMTA or ⁇ -eIMTA) SCell are used as a carrier aggregation technique, and the TDD elMTA PCell is a fallback mode (ie, SIB1 uplink-downward).
  • black TDD elMTA PCell and TDD (elMTA or Non-elMTA) SCell are used as carrier aggregation techniques, and TDD elMTA PCell is operated in Non-Fa 11 back Mode. It may also be extended.
  • TDD elMTA PCell and FDD SCell are used as a carrier aggregation scheme, and TDD elMTA PCell is used in fallback mode (ie, SIB1 uplink-downlink configuration).
  • TDD elMTA PCell is used in fallback mode (ie, SIB1 uplink-downlink configuration).
  • PDSCH downlink data channel
  • DL Grant downlink Grant
  • special subframe configuration related to SIB1 UL-DL configuration of TDD elMTA PCell is i) Special Sub frame Configurations 0 (w / Normal). Downlink CP) ii) Special Sub frame Configurations 5 (w / Normal Downlink CP), iii) Special Sub frame Configurations 0 (w / Extended Downlink CP), or iv) Special Sub frame Configurations 4 (w / Extended Do ⁇ link CP) It may be defined to be applied only if it is designated as at least one of (ie, when interpreted as "No PDSCH Transmission in DwPTS" according to Table 3).
  • a special subframe (Special SF, on SIBl uplink-downlink configuration based on the fallback mode of the corresponding SF (that is, TDD elMTA PCell) is used. If the UE receives a DL Grant for scheduling the PDSCH on the FDD DL CC in the S SF of the TDD elMTA PCell, in the following S SF) and the DL SF on the FDD DL CC, the following rule 1-A or rule 1 -B can be applied.
  • Rule 1-A The UE may determine that the DL Grant is invalid (Invalid) and may not perform a PDSCH reception operation at a corresponding SF position on the FDD DL CC. This is to prevent the malfunction of the terminal due to the detection error (False Detect ion) of the DL grant. That is, rule 1—A may determine that the UE does not expect to receive a signal such as PDSCH / EPDCCH / PMCH / PRS at the corresponding SF position on the FDD DL CC. In other words, it may be determined that the UE does not expect to receive any other signals in the SF region of the FDD DL CC overlapping at least one of a guard period (GP) or UpPTS of the TDD elMTA PCell.
  • GP guard period
  • UpPTS of the TDD elMTA PCell.
  • Rule 1-B The UE determines that the corresponding DL Grant is valid (Valid), and may perform a PDSCH reception operation at a corresponding SF position on the FDD DL CC. That is, Rule 1-B may determine that the terminal expects ⁇ the signal reception such as the PDSCH / EPDCCH / PMCH / PRS from the SF position on the FDD DL CC. In other words, it may also be determined that the terminal expects to receive a predefined downlink signal in the SF region of the FDD DL CC overlapping with at least one of the GP or UpPTS of the TDD elMTA PCell (or the terminal is an FDD DL CC). SF can be interpreted as a DL SF of the corresponding position on the image).
  • the UE receives a DL Grant for scheduling a PDSCH on the FDD DL CC in the PDCCH region on the FDD DL CC or the TDD elMTA PCell. If a DL Grant for scheduling a PDSCH on an FDD DL CC is received in a PDCCH region on an FDD DL CC in a region overlapping with a DwPTS region of S SF, the following rule 1-C or rule 1-D may be applied.
  • Rule 1-C The UE determines that the corresponding DL Grant is invalid and may not perform a PDSCH reception operation at a corresponding SF position on the FDD DL CC. That is, rule 1-C may determine that the UE does not expect to receive a signal such as PDSCH / EPDCCH / PMCH / PRS at the corresponding SF position on the FDD DL CC. In other words, it may be determined that the UE does not expect to receive any other signals in the SF region of the FDD DL CC overlapping at least one of the guard period (GP) or UpPTS of the TDD elMTA PCel l. .
  • GP guard period
  • Rule 1-D The UE determines that the corresponding DL Grant is valid (val id), and may perform a PDSCH reception operation at a corresponding SF position on the FDD DL CC.
  • the rule 1-D may determine that the UE expects to receive a signal such as PDSCH / EPDCCH / PMCH / PRS at a corresponding SF position on the FDD DL CC.
  • the terminal may be determined that the terminal expects to receive a predefined downlink signal in the SF region of the FDD DL CC overlapping at least one of the GP or UpPTS of the TDD elMTA PCel l (the black terminal is The SF of the corresponding position on the FDD DL CC can be interpreted as a DL SF).
  • rule 1-A is based on the non-fall back mode of the TDD elMTA PCel l. Even if the special subframe (Special SF) on the uplink-downlink configuration (black is Val id uplink-downlink configuration) of the downlink and the downlink subframe (DL SF) on the FDD DL CC Extension can be applied.
  • Special subframe (Special SF) on the uplink-downlink configuration (black is Val id uplink-downlink configuration) of the downlink and the downlink subframe (DL SF) on the FDD DL CC Extension can be applied.
  • T sub system configuration the assumption of the downlink signal / channel reception of the UE according to the special subframe configuration (T sub system configuration) in the TDD system environment is described in Table 1, Table 2 and Table 4 below (LTE / LTE). -A standard document 3GPP TS 36.213).
  • msspof block is of ® s ecial s teae in hsx smctare typa 2 t tisan
  • the following rule 2 ⁇ A black may determine the validity of DL grant related to downlink data channel (PDSCH) transmission on a corresponding TDD elMTA Cell according to Rule 2-B.
  • rule 2-A black is rule 2B, i.
  • Special Subframe Configurations 0 (w / Normal Downl ink CP), ii) black is SIB1 uplink-downlink configuration.
  • Silver Speci l Subfr me Configurations 5 (w / Normal Downl ink CP) iii) Black Special Subframe Conf i gurations 0, (w / Extended Downlink GP) iv) or Special Sub frame ' Configurations 4 (w / Extended Downlink CP)' can be defined to be applied only when specified as at least one (that is, interpreted as "No PDSCH Transmission in DwPTS").
  • Special Sub frame ' Configurations 4 (w / Extended Downlink CP)' can be defined to be applied only when specified as at least one (that is, interpreted as "No PDSCH Transmission in DwPTS").
  • Rule 2-A The UE determines that the corresponding DL Grant is invalid (Invalid) and may not perform a PDSCH reception operation at the corresponding SF location.
  • Rule 2-B The UE determines that the corresponding DL Grant is valid (Valid), and can perform PDSCH reception operation at the corresponding SF location (or even if the UE regards the SF of the corresponding location as DL SF). Interpretable).
  • the radio resource usage on a specific cell is dynamically changed (that is, elMTA Cell) according to a load state under a situation in which carrier aggregation (CA) is applied, and a terminal simultaneously transmits on corresponding Cells (Aggregated Cells).
  • CA carrier aggregation
  • PUSCH uplink data channel
  • CA carrier aggregation technique
  • the present invention uses three or more cells as a carrier aggregation technique (CA). It is obvious that it can be extended to any situation.
  • the OTDD elMTA PCel 1 and the TDD (elMTA or Non-elMTA) SCell are used as a carrier aggregation scheme, and the TDD elMTA PCell is a fallback mode (ie, SIB1 uplink-downlink).
  • TDD elMTA PCell and TDD (elMTA or ⁇ -eIMTA) SCell are used as carrier aggregation techniques and can be extended even if the TDD elMTA PCell is operated in non-fallback mode. have.
  • TDD elMTA PCell and FDD SCell are used as a carrier aggregation scheme, and TDD elMTA PCell is used as a fallback mode (ie, SIB1 uplink-downlink configuration).
  • TDD elMTA PCell is used as a fallback mode (ie, SIB1 uplink-downlink configuration).
  • UL Grant scheduling information
  • PUSCH uplink data channel
  • rule 3A to rule 3-C will be described first.
  • Rule 3-A i) downlink HARQ reference configuration of a TDD elMTA PCell (on FDD UL CC) is ii) black uplink HARQ reference configuration (iii) or SIB1 UL according to at least one of uplink-downlink configuration, iv) or UL-Reference HARQ Timeline, v) or DL-Reference HARQ Timeline. According to whether or not to be performed at the same position as the SF position, the validity (Validation) of the corresponding UL Grant may be determined.
  • Rule 3—C The UE determines that a corresponding UL Grant is always valid (Valid), and may perform a PUSCH transmission operation in an FDD UL CC.
  • TDD elMTA PCell and FDD SCell are used as a carrier aggregation technique, and TDD elMTA PCell is a non-fall back mode (ie, liquid).
  • Scheduling related to uplink data channel (PUSCH) transmission on the FDD SCell based on rule 3-D when operated with an actual uplink-downlink configuration (or a valid uplink-downlink configuration)
  • the validity of the ring information (UL Grant) can be determined.
  • the radio resource usage on a specific cell is dynamically changed (ie, elMTA Cell) according to a load state in a situation in which a carrier aggregation technique (CA) is applied, and a UE simultaneously transmits on corresponding Cells (Aggregated Cells).
  • CA carrier aggregation technique
  • A-SRS Aperiodic SRS
  • TDD elMTA PCel.l and TDD (elMTA black non-elMTA) SCel 1 are used as carrier aggregation techniques, and TDD elMTA PCell is a fallback mode (ie, SIBl upward).
  • TDD elMTA PCell and TDD (elMTA or ⁇ -eIMTA) SCell are used as carrier aggregation techniques and the TDD elMTA PCell is operated in Non-Fa 11 back Mode. It can also be extended.
  • TDD elMTA PCell and FDD SCell are used as a carrier aggregation scheme, and TDD elMTA PCell is used as fallback mode (ie, SIBl uplink-downlink configuration).
  • TDD elMTA PCell is used as fallback mode (ie, SIBl uplink-downlink configuration).
  • the validity of the triggering message related to A-SRS transmission on the FDD SCell may be determined based on at least one of the following rule 4-A to rule 4-F.
  • Rule 4-A i) downlink HARQ reference configuration, ii) or uplink HARQ reference configuration of a TDD elMTA PCell (on FDD UL CC), iii) or SIB1 uplink-downlink Link setup iv) or uplink-referenced HARQ timeline, V) black or downlink-depending on whether or not to be performed at the same point as UL SF position, ⁇ and / or UpPTS position according to at least one of the reference HARQ timeline , Validation of the corresponding triggering message may be determined.
  • i) downlink HARQ reference configuration of TDD elMTA PCell, ⁇ ) or uplink HARQ reference configuration, iii) or SIB1 uplink-downlink configuration iv) black uplink-reference HARQ timeline, V ) Or UL SF location according to at least one of the downlink-reference HARQ timelines, vi) and / black are the same A-SRS transmission (on FDD UL CC) should be performed at the same point as the UpPTS location, the terminal triggers the corresponding triggering The message can be determined to be Valid. On the other hand, if it is not the same point as the position according to the i) to vi), it can be determined that the triggering message is invalid (Invalid).
  • Rule 4-B The corresponding A-SRS transmission (on FDD UL CC) is set to i) downlink HARQ reference configuration of the TDD elMTA PCell, ii) or uplink HARQ reference configuration, iii) black on SIB1 Downlink-downlink configuration IV) or uplink-reference HARQ timing line, V) or downlink-reference UL SF position according to at least one of the timeline, vi) and / or at the same point as the UpPTS position ( If A-SRS transmission (on FDD UL CC) should be performed, the UE determines that the corresponding triggering message is valid (Valid).
  • the corresponding A-SRS transmission is i) downlink HARQ reference configuration of the TDD elMTA PCell of the TDD elMTA PCell, ii) or uplink HARQ reference configuration, iii) or SIB1 uplink-downlink configuration iv) Or UL-SF position according to at least one of the uplink-referenced HARQ timeline, V) or the downlink-referenced HARQ timeline, vi) and / or A (at the FDD UL CC) at a different point than the UpPTS position.
  • the UE is only valid if the PUSCH transmission is scheduled at the same time (ie if the PUSCH and A-SRS should be transmitted simultaneously on one SF (on the FDD UL CC)). On the other hand, if the PUSCH transmission is not scheduled at the same time, it may be determined that the corresponding triggering message is invalid.
  • Rule 4-C If a UE is scheduled for PUSCH transmission simultaneously on SF of FDD UL CC in which corresponding A-SRS transmission is to be performed (that is, PUSCH and A-SRS on one SF (on FDD UL CC)) Only when it is transmitted at start-up), it can be determined that the corresponding triggering message is valid. On the other hand, if the PUSCH transmission is not scheduled at the same time, it can be determined that the triggering message is invalid (Invalid).
  • Rule 4-D The UE determines that the corresponding triggering message is always invalid (Invalid), and may not perform the A-SRS transmission operation in the FDD UL CC.
  • Rule 4-E The UE determines that the corresponding triggering message is always valid (Valid), and may perform the A-SRS transmission operation in the FDD UL CC.
  • TDD elMTA PCell and FDD SCell are used as a carrier aggregation technique
  • TDD elMTA PCell is a non-fallback mode (ie, actual ( Actual)
  • the corresponding A-SRS transmission (on the FDD UL CC) is: i) Actual uplink-downlink configuration, ⁇ ) or downlink MRQ reference configuration of the TDD elMTA PCell, iii) or Uplink HARQ reference configuration, iv) or SIB1 uplink-downlink configuration, v) or uplink-reference HARQ timeline, vi) black downlink-UL SF position according to reference HARQ timeline, vii) and / Or, if it should be performed at the same point as the UpPTS location, the terminal may determine that the corresponding triggering message is valid (Valid). However, if A-SRS transmission is to be performed at a point different from the positions according to the above i) to vii), it can be determined that the corresponding triggering message is invalid.
  • the radio resource usage on a specific cell is dynamically changed (ie, elMTA Cell) according to a load state in a situation in which carrier aggregation (CA) is applied, and the terminal simultaneously transmits / transmits on the corresponding cells (Aggregated Cells).
  • This section describes how to determine the validity of periodic SRS (P-SRS) transmission when the reception (Simultaneous TX and RX) operation is not performed.
  • CA carrier aggregation technique
  • a TDD elMTA PCell and a TDD (elMTA or Non-elMTA) SCell are used as a carrier aggregation scheme, and the TDD elMTA PCell is a fallback mode (ie, SIB1 uplink-downlink).
  • Link setup or ii) TDD elMTA PCell and TDD (elMTA or N- ⁇ -eIMTA) SCell are used as carrier aggregation schemes, and even when the TDD elMTA PCell is operated in Non-Fa 11 back Mode. Can be used.
  • TDD elMTA PCell and FDD SCell are used as a carrier aggregation technique, and TDD elMTA PCell is used as a fallback mode (Fallback Mod, ie, SIB1 uplink-downlink configuration).
  • Fallback Mod ie, SIB1 uplink-downlink configuration.
  • the validity of the P-SRS transmission on the FDD SCell can be determined based on the following rules 5-A to 5-F. First, in the case of cross carrier scheduling or self-scheduling, CCS will be described.
  • Rule 5-A i) downlink HARQ reference configuration of the TDD elMTA PCell (on FDD UL CC), ii) black uplink HARQ reference configuration, iii) black SIB1 uplink -Downlink configuration, iv) black uplink-reference HARQ timeline, V) or downlink-UL SF location according to at least one of the reference HARQ timeline, vi) and / black must be performed at the same point as the UpPTS location According to whether or not, the validity (Validation) of the corresponding P-SRS transmission may be determined.
  • Rule 5-B The corresponding P-SRS transmission (on the FDD UL CC) is set to i) downlink HARQ reference configuration of the TDD elMTA PCell, ii) or uplink HARQ reference configuration, iii) or SIB1 uplink_downlink.
  • Link establishment, iv) or uplink-reference HARQ timeline, V) or downlink-reference HARQ timeline If it is to be performed at the same point as the UL SF position, vi) and / or UpPTS position according to at least one terminal,
  • the P-SRS transmission may be valid (Valid).
  • corresponding P-SRS transmission is i) downlink HARQ reference configuration of the TDD e-IMTA PCell, ii) black uplink HARQ reference configuration, iii) or SIB1 uplink-downlink configuration, iv) Or if the UL SF location according to at least one of the uplink-reference HARQ timeline, V) or the downlink-reference HARQ timeline, vi) and / or the UpPTS location is to be performed, the UE can only Only when scheduled at the same time (i.e.
  • Rule 5-C UE transmits PUSCH and P— on one SF (on FDD UL CC) when PUSCH transmission is simultaneously scheduled on SF of FDD UL CC to which corresponding P-SRS transmission is to be performed Only when the SRS should be transmitted at the same time, it is determined that the corresponding P—SRS transmission is valid (Valid). On the other hand, if the PUSCH transmission is not scheduled at the same time, it is determined that the corresponding P-SRS transmission is invalid (Invalid).
  • Rule 5-D The UE determines that the corresponding P-SRS transmission is always invalid (Invalid), and may not perform the P—SRS transmission operation in the FDD UL CC.
  • Rule 167E The UE determines that the corresponding P-SRS transmission is always valid (Valid), and may not perform the P-SRS transmission operation in the FDD UL CC.
  • TDD elMTA PCell and FDD SCell are used as a carrier aggregation technique, and TDD elMTA PCell is a non-fall back mode (ie, liquid).
  • TDD elMTA PCell is a non-fall back mode (ie, liquid).
  • Rule 5-F i) Actual uplink-downlink configuration of the TDD elMTA PCell (on FDD UL CC), ii) black downlink HARQ reference configuration, iii) Or uplink HARQ reference configuration, iv) black SIB1 uplink-downlink configuration, v) or uplink—reference HARQ timeline, vi) or downlink-UL SF position according to reference HARQ timeline, vii) and / Or if it is to be performed at the same point as the UpPTS location, the terminal may determine that the corresponding P-SRS transmission is valid (Valid). However, if the P-SRS is transmitted at a point different from the positions i) to vii), it may be determined that the corresponding P-SRS transmission is invalid (Invalid).
  • the radio resource usage of at least one cell is dynamically changed according to the load state under the condition that the carrier aggregation technique (CA) is applied.
  • CA carrier aggregation technique
  • the transmission mode (TM) of at least one specific cell is designated as a predefined transmission mode
  • the uplink-downlink configuration of at least one cell e.g., TDD elMTA Cell.
  • UL-'DL Configuration In the case of (re) setting to a specific value, it can be set to be applied only in at least one case.
  • the proposed method / embodiment / rule / set of the invention as described above also may be included as one of the implementations of the method of the present invention ", may be considered to be a kind of embodiment is obvious.
  • the above-described proposal methods / embodiments / rules / settings may be independently implemented, some proposal methods / embodiments / rules / settings may be implemented in a combination or a merged form.
  • the information on the proposed method / embodiment / rules / settings described above or information on whether the proposed method / embodiment / rules / settings are applied or not is a signal previously defined by the base station to the terminal. (E.g. physical layer black is higher layer signal).
  • TDD Cell and FDD Cell are used as a carrier aggregation technique (CA) (eg, TDD (eIMTA / Non-eIMTA) PCell and FDD SCell or FDD PCell and TDD (eIMTA / Non)).
  • CA carrier aggregation technique
  • the proposed method / embodiment / rules / settings described above do not perform simultaneous transmit / receive (Simultaneous TX and RX) operations on the corresponding aggregated cells in a situation where a carrier aggregation technique (CA) is applied. It may be configured to be limitedly applied only when the use of a subframe on the primary cell (PCell) is preferred over those of the secondary CelKSCell.
  • CA carrier aggregation technique
  • the above-described proposed method / embodiment / rules / settings may not perform a simultaneous TX / RX operation on Aggregated Cells to which Carrier Aggregation (CA) is applied.
  • Half Duplex terminal can be configured to be applied only limitedly.
  • TDD uplink-downlink configuration eg, SIB1 uplink-downlink configuration (PCell), RadioResour ceConf i gCommonSCe 11 IE (SCell)
  • PCell SIB1 uplink-downlink configuration
  • SCell RadioResour ceConf i gCommonSCe 11 IE
  • CA carrier aggregation technique
  • the relay When the relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced by a relay in accordance with the situation.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • Processor 112 may be configured to implement the procedures and / or methods proposed herein.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • Terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • Processor 122 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the F unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • Base station 110 and / or terminal 120 may have a single antenna or multiple antennas.
  • a specific operation described as performed by a base station may be performed by an upper node in some cases. That is, including the base station Obviously, various operations performed for communication with a terminal in a network composed of a plurality of network nodes may be performed by a base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as fixed station, Node B, eNodeB (eNB), access point, and the like.
  • one embodiment of the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • one embodiment of the present invention may include one or more ASICs (appl icat ion speci f ic integrated circuits), DSPs (digi tal signal processors), DSPDs (digital signal processing devices), PLDs (rogrammable). logi c devices), FPGAs (ield programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • Software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 반송파 집성(Carrier aggregation) 및 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서, 집성된 셀들(aggregated cells)의 동시 송수신(Simultaneous Reception and Transmission)을 지원하지 않는 단말의 신호 수신 방법 및 장치에 관한 것이다. 구체적으로, 프라이머리 셀(primary cell)의 스페셜 서브프레임 및 세컨더리 셀(secondary cell)의 하향링크 서브프레임에 대응되는 특정 무선 자원 상에서, 세컨더리 셀에 대한 하향링크 제어 정보를 수신하는 단계 및 프라이머리 셀의 상향링크-하향링크 설정에 따라 하향링크 제어 정보의 유효성을 판단하는 단계를 포함하며, 하향링크 제어 정보는, 프라이머리 셀이 논-폴백 모드(non-fallback mode)인 경우 유효하지 않다고 판단되며, 프라이머리 셀이 폴백 모드(fallback mode)에 따른 TDD(Time Division Duplex) 상향링크-하향링크 설정이고 세컨더리 셀이 프라이머리 셀에 따라 크로스-캐리어 스케쥴링되는 경우 유효하다고 판단되는 것을 특징으로 한다.

Description

【명세서】
【발명의명칭】
무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 신호의 유효 성 판단방법 및 이를 위한 장치
【기술분야】
[1] 본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 신호의 유효성 판단 방법 및 이를 위한 장치에 관한 것이다.
【배경기술】
[2] 본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution, 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
[3] 도 1 은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시 한도면이다. E-UMTSC Evolved Universal Mobile Telecommunications System) 시 스템은 기존 U TS(Universal Mobile Telecommunications System)에서 진화한시 스템으로서, 현재 3GPP 에서 기초적인 표준화 작업을 진행하고 있다. 일반적으 로 E-UMTS 는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. IMTS 및 E-UMTS 의 기술 규격 (technical specif ication)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8올 참조할수 있다.
[4] 도 1 을 참조하면, Eᅳ UMTS는 단말 (User Equipment, UE)과 기지국 (eNode B, eNB, 네트워크 (E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이 (Access Gateway, AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트서비스 및 /또는 유니캐스트 서비스를 위해 다중 데이터 스토림을동 시에 전송할수 있다.
[5] 한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비 스를 제공한다. 서로다른 셀은서로 다른 대역폭을 제공하도특 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크 (Downlink, DL) 데이터에 대해 기지국은 하향 링크 스케즐링 정보를 전송하여 해당 단말에 게 데이터가 전송될 시간 /주파수 영역, 부호화, 데이터 크기, HARQ Hybrid Automat i c Repeat and reQuest ) 관련 정보 등을 알려준다. 또한, 상향 링크 (Upl ink , UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에 게 전송하여 해당 단말이 사용할 수 있는 시간 /주파수 영역, 부호화, 데이터 크 기 , HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트 래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망 (Core Network, CN)은 AG와단말의 사용자등특 등을 위한 네트워크 노드등으로 구성될 수 있다. AG 는 복수의 샐들로 구성되는 TA Vacking Area) 단위로 단말의 이동성을 관리한 다.
[6] 무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자 와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는새로운 기술 진 화가요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴 드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구 된다.
[7] 단말은 기지국의 무선 통신 시스템의 효율적인 운용을 보조하기 위하여, 현재 채널의 상태 정보를 기지국에게 주기적 및 /또는 비주기적으로 보고한다. 이렇게 보고되는 채널의 상태 정보는 다양한 상황을 고려하여 계산된 결과들을 포함할수 있기 때문에, 보다 더 효율적인 보고 방법이 요구되고 있는 실정이다.
【발명의상세한설명】
【기술적과제】
[8] 상술한 바와 같은 논의를 바탕으로 이하에서는 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 신호의 유효성 판단 방법 및 이를 위한 장치를 제안하고자 한다.
[9] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되 지 않으며, 언급하지 않은또 다른 기술작과제들은 아래의 기재로부터 본 발명 이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
;【기술적해결방법】 [10] 상술한 문제점을 해결하기 위한 본 발명의 일 양상인, 반송파 집성 (Carrier aggregat ion) 및 무선자원의 용도 변경을지원하는무선 통신 시스템 에서, 집성된 샐들 (aggregated cel ls)의 동시 송수신 (Simul taneous Recept ion and Transmi ssion)을 지원하지 않는 단말의 신호 수신 방법은, 프라이머리 셀 (primary cel l )의 스페셜 서브프레임 및 세컨더리 샐 (secondary cel l )의 하향링 크서브프레임에 대웅되는 특정 무선 자원 상에서, 상기 세컨더리 샐에 대한하 향링크 제어 정보를 수신하는 단계 ; 및 상기 프라이머리 셀의 상향링크-하향링 크설정에 따라상기 하향링크 제어 정보의 유효성올판단하는 단계를 포함하며 상기 하향링크 제어 정보는, 상기 프라이머리 셀이 논—폴백 모드 (non-fal lback mode)인 경우 유효하지 않다고 판단되며, 상기 프라이머리 샐이 폴백 모드 (fal lback mode)에 따른 TDD(Time Divi sion Du lex) 상향링크-하향링크 설정이 고상기 세컨더리 샐이 상기 프라이머리 셀에 따라크로스-캐리어 스케즐링되는 경우 유효하다고 판단되는 것을특징으로 한다.
[11] 나아가, 상기 하향링크 제어 정보가 유효하다고 판단되는 경우, 상기 특 정 무선 자원상에서 하향링크 데이터 채널 (Physi cal Downl ink Shared CHannel , PDSCH)을 수신하는 단계를 더 포함할수 있다.
[12] 나아가, 상기 유호성을 판단하는 단계는, 상기 단말에 대하여 상기 스페 셜 서브프레임과 동일한 시간 구간 상의 하향링크 서브프레임에 대하여 하향링 크 데이터 채널 (PDSCH)를 수신하지 않도록 설정된 경우에만수행되는 것을 특징 으로 할수 있다.
[13] 상술한 문제점을 해결하기 위한 본 발명의 다른 양상인, 반송파 집성 (Carrier aggregat ion) 및 무선 자원의 용도 변경을지원하는무선 통신 시스템 에서, 집성된 셀들 (aggregated cel ls)의 동入 1 송수신 (Simul taneous Recept ion and Transmi ssion)을 지원하지 않는 단말은, 무선 주파수 유닛; 및 프로세서를 포함하며, 상기 프로세서는, 프라이머리 셀 (pr imary cel l )의 스페셜 서브프레임 및 세컨더리 셀 (secondary cel l )의 하향링크 서브프레임에 대응되는 특정 무선 자원 상에세 상기 세컨더리 셀에 대한 하향링크 제어 정보를 수신하고, 상기 프라이머리 셀의 상향링크-하향링크 설정에 따라상기 하향링크 제어 정보의 유 효성을 판단하도특 구성되며, 상기 하향 ¾크 제어 정보는, 상기 프라이머리 셀 이 논 -폴백 모드 (non-fal lback mode)인 경우 유효하지 않다고 판단되며, 상기 프라이머리 샐이 폴백 모드 ( fal lback mode)에 따른 TDD Tiine Divi sion Duplex) 상향링크-하향링크 설정이고 상기 세컨더리 셀이 상기 프라이머리 샐에 따라크 로스-캐리어 스케쥴링되는 경우유효하다고 판단되는 것을특징으로 한다.
[14] 상술한 문제점을 해결하기 위한 본 발명의 다른 양상인, 반송파 집성 (Carr ier aggregat ion) 및 무선 자원의 용도 변경을지원하는무선 통신 시스템 에서, 집성된 셀들 (aggregated cel l s)의 동시 송수신 (Simultaneous Recept ion and Transmission)을 지원하지 않는 단말의 신호 송신 방법은, 프라이머리 셀 (pr imary cel l )의 스페셜 서브프레임 및 세컨더리 샐 (secondary eel 1 )의 하향링 크 서브프레임에 대응되는 특정 무선 자원 상의 상기 세컨더리 셀에 대한 상향 링크 제어 정보를 수신하는 단계; 및 상기 프라이머리 셀의 상향링크-하향링크 설정에 따라 상기 상향링크 제어 정보의 유효성을 판단하는 단계를 포함하며, 상기 상향링크 제어 정보는, 상기 프라이머리 셀이 논—플백 모드 (non-fal lback mode)인 경우 유효하지 않다고 판단되며, 상기 프라이머리 셀이 폴백 모드 (fal lback mode)에 따른 TDD(Time Divi sion Duplex) 상향링크-하향링크 설정이 고 상기 특정 무선 자원이 무선 자원의 용도가 고정된 경우 유효하다고 판단되 는 것을 특징으로 한다.
[15] 나아가, 상기 무선 자원의 용도가 고정된 경우는, 하향링크 HARQ 참조 설정, 상향링크 HARQ 참조 설정, SIB 기반 상향링크-하향링크 설정, 상향링크 참조 HARQ 타임라인, 혹은 하향링크— HARQ 타임라인 중 적어도 하나의 상향링크 서브프레임에 대응되는 경우일 수 있다.
[16] 나아가, 상기 상향링크 제어 정보가유효하다고 판단되는 경우ᅳ 상기 특 정 무선 자원상에서 상향링크 데이터 채널 (Physi cal Upl ink Shared CHannel , PUSCH)을송신하는 단계를 더 포함할 수 있다.
[17] 상술한 문제점을 해결하기 위한 본 발명의 다른 양상인, 반송파 집성 (Carrier aggregat ion) 및 무선 자원의 용도 변경을지원하는 무선 통신 시스템 에서, 집성된 셀들 (aggregated cel l s)의 동시 송수신 (Simultaneous Recept ion and Transmission)을 지원하지 않는 단말의 신호 송신 방법은, 프라이머리 셀 (primary cel l )의 스페셜 서브프레임 및 세컨더리 셀 (secondary eel 1 )의 하향링 크 서브프레임에 대응되는 특정 무선 자원 상의 상기 세컨더리 셀에 대한 SRS(Sounding Reference Signal ) 트리거링 메시지를 수신하는 단계; 및 상기 프 라이머리 셀의 상향링크-하향링크 설정에 따라 상기 SRS 트리거링 메시지의 유 효성을 판단하는 단계를포함하며, 상기 SRS트리거링 메시지는, 상기 프라이머 리 샐이 논 -폴백 모드 (non-fal lback mode)인 경우 유효하지 않다고 판단되며, 상기 프라이머리 셀이 폴백 모드 ( fal lback mode)에 따른 TDD(Time Divi sion Duplex) 상향링크-하향링크 설정이고 상기 특정 무선 자원이 상향링크 용도로 고정된 경우 유효하다고 판단되는 것을 특징으로 한다.
[18] 나아가, 상기 SRS트리거링 메시지는, 상기 특정 무선 자원 상에서 상향 링크 데이터 채널 (PUSCH)와상기 SRS가동시에 스케줄링된 경우유효하다고 판 단되는 것을 특징으로 할수 있다.
【유리한효과】
[19] 본 발명의 실시예에 따르면 무선 자원의 용도 변경을 지원하는 무선 통 신 시스템에서 신호의 유효성을 효율적으로 판단할수 있다.
[20] 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. 【도면의간단한설명】
[21] 본 발명에 관한 이해를 돕기 위해 상세한설명의 일부로 포함되는, 첨부 도면은본 발명에 대한실시예를 제공하고ᅳ 상세한 설명과 함께 본 발명의 기술 적 사상을설명한다.
[22] 도 1 은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 예시 한다.
[23] 도 2 는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜 (Radio Interface Protocol )의 제어평면 (Control Plane) 및 사용자평면 (User Plane) 구조를 예시한다.
[24] 도 3 은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적 인 신호 전송 방법을 예시한다.
[25] 도 4는 LTE시스템에서 사용되는무선 프레임의 구조를 예시한다.
[26] 도 5는 하향링크 슬롯에 대한 자원 그리드 (resource grid)를 예시한다.
[27] 도 6은하향링크 서브프레임의 구조를 예시한다.
[28] 도 7은 LTE에서 사용되는상향링크 서브프레임의 구조를 예시한다 :[293 도 8 은 캐리어 병합 (Carr ier Aggregat ion, CA) 통신 시스템을 예시한다.
[30] 도 9는 복수의 캐리어가 병합된 경우의 스케즐링을 예시한다.
[31] 도 10은 EPDCCH와 EPDCCH에 의하여 스케즐링되는 PDSCH를 예시하는도 면이다.
[32] 도 11 은 TDD 시스템 환경하에서 기존 (Legacy) 서브프레임들을 정적 서 브프레임 집합과유동서브프레임 집합으로 분할한 경우를 나타낸다.
[33] 도 12 는 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 나타 낸다.
【발명의실시를위한형태】
[34] 이하의기술은 CDM code division mult iple access) , FDMA( frequency divi sion mult iple access) , TDMA(t ime division mul t iple access) , 0FDMA(orthogonal frequency division mul t iple access) , SC-FDMA( single carrier frequency divi sion mult iple access) 등과 같은 다양한 무선 접속 시 스템에 사용될 수 있다. CDMA 는 UTRAOtaiversal Terrestrial Radio Access)나 CDMA2000 과같은 무선기술 (radio technology)로 구현될 수 있다. TDMA 는 GSM (Global System for Mobi le communi cat ions)/GPRS(General Packet Radio Service) /EDGE (Enhanced Data Rates for GSM Evolut ion)와 같은무선 기술로구 현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi ) , IEEE 802. 16 (WiMAX), IEEE 802- 20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA 는 UMTSCUniversal Mobi le Telecommunicat ions System)의일부이다. 3GPP(3rd Generat ion Partnership Project ) LTE( long term evolut ion)는 E-UTRA 를 사용 하는 E-UMTS( Evolved UMTS)의 일부로서 하향링크에서 0FDMA를 채용하고 상향링 크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의진화된버전이다.
[35] 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A 를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용 되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러 한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
C36] 도 2 는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜 (Radio Interface Protocol )의 제어평면 (Control Plane) 및 사용자평면 (User Plane) 구조를 나타내는 도면이다. 제어평면은 단말 (User Equipment ; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시 지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로 를 의미한다.
[37] 제 1계층인 물리계층은물리채널 (Physical Channel )을 이용하여 상위 계 층에게 정보 전송서비스 ( Informat ion Transfer Servi ce)를 제공한다. 물리계층 은 상위에 있는 매체접속제어 (Medium Access Control ) 계층과는 전송채널 (Trans 안테나포트 Channel )올통해 연결되어 있다. 상기 전송채널을 통해 매체접속제 어 계층과 물리계층 사이에 테이터가 이동한다. 송신측과수신측의 물리계층 사 이는물리채널올통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무 선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 0FDMA(0rthogonal Frequency Divi sion Mult iple Access) 방식으로 변조되고, 상 향 링크에서 SC-FDMAC Single Carr ier Frequency Divi sion Mul t iple Access) 방 식으로 변조된다.
[38] 제 2계층의 매체접속제어 (Medium Access Control ; MAC) 계층은 논리채널 (Logical Channel )을 통해 상위계충인 무선링크제어 (Radio Link Control ; RLC) 계층에 서비스를 제공한다. 제 2 계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC내부의 기능 블록으로 구현될 수도 있다.제 2 계층의 PDCP(Packet Data Convergence Protocol ) 계층은 대역폭이 좁은 무선 인 터페이스에서 IPv4나 IPv6와 같은 IP패¾을 효율적으로 전송하기 위해 불필요 한 제어정보를 줄여주는 헤더 압축 (Header Compression) 기능을 수행한다.
[39] 제 3 계층의 최하부에 위치한 무선 자원제어 (Radio Resource Control ; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러 (Radio Bearer ; RB)들의 설정 (Conf igurat ion) , 재설정 (Re-conf igurat ion) 및 해제 (Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB 는 단말과 네트워크 간의 데이터 전달을 위해 제 2 계층에 의해 제공되는 서비스를 의미한 다. 이를 위해, 단말과 네트워크의 RRC 계층은서로 RRC 메시지를 교환한다. 단 말과 네트워크의 R C 계층 사이에 RRC 연결 (RRC Connected)이 있을 경우, 단말 은 : RRC 연결 상태 (Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC휴지 상 태 (Idle Mode)에 있게 된다. RRC 계충의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리 (Session Management)와 이동성 관리 (Mobility Management ) 등 의 기능을수행한다.
[40] 기지국 (eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대 역폭 증 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를쩨공한 다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
[41] 네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송서비스의 트래픽 또는 제어 메시지의 경 우 하향 SCH 를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송 하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자트래픽이나 제어 메시지를 전송하는상향 SCH(Shared Channel) 가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널 (Logical Channel)로는 BCCH(Broadcast Control Channel ) , PCCH(Paging Control Channel ) , CCCH( Common Control Channel), MCCH(Mult icast Control Channel), MTCHCMulticast Traffic Channel) 등이 있다.
[42] 도 3 은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일 반적인 신호 전송 방법을 설명하기 위한 도면이다.
[43] 전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 샐에 진입한 사용 자 기기는 단계 S301 에서 기지국과 동기를 맞추는 등의 초기 샐 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 사용자 기기는 기지국으로부터 주동 기 채널 (Primary Synchronization Channel , P-SCH) 및 부동기 채널 (Secondary Synchronization Channel , S— SCH)올 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 사용자 기기는 기지국으로부터 물리방송채널 (Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 사용자 기기는 초기 셀 탐색 단계에서 하향링크 참조 신호 (Downlink Reference Signal , DL 'RS)를수신하여 하향링크 채널 상태를 확인할 수 있다. [44] 초기 셀 탐색을 마친 사용자 기기는 단계 S302 에서 물리 하향링크제어 채널 (Physical Downl ink Control Channel , PDCCH) 및 물리하향링크제어채널 정 보에 따른 물리하향링크공유 채널 (Physi cal Downl ink Control Channel , PDSCH) 을수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
[45] 이후, 사용자 기기는 기지국에 접속을 완료하기 위해 이후 단계 S303 내 지 단계 S306 과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 사용자 기기는 물리임의접속채널 (Physical Random Access Channel , PRACH)을통해 프리앰블 (preamble)을 전송하고 (S303) , 물리하향링크제 어채널 및 이에 대웅하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다 (S304) . 경쟁 기반 임의 접속의 경우 추가적인 물리임 의접속채널의 전송 (S305) 및 물리하향링크제어채널 및 이에 대응하는 물리하향 링크공유 채널 수신 (S306)과 같은 층돌해결절차 (Content ion Resolut ion Procedure)를수행할수 있다.
[46] 상술한 바와 같은 절차를 수행한 사용자 기기는 이후 일반적인 상 /하향 링크 신호 전송 절차로서 물리하향링크제어채널 /물리하향링크공유채널 수신
(S307) 및 물리상향링크공유채널 (Physi cal Upl ink Shared Channel , PUSCH)/물리 상향링크제어채널 (Physical Upl ink Control Channel , PUCCH) 전송 (S308)을 수행 할 수 있다. 사용자 기기가 기지국으로 전송하는 제어 정보를 통칭하여 상향링 크 제어 정보 (Upl ink Control Informat ion , UCI )라고 지칭한다. UCI 는 HARQ ACK/NACKC Hybrid Automat ic Repeat and reQuest Acknowledgement/Negat ive_ACK) SRCSchedul ing Request ) , CSI (Channel State Informat ion) 등을 포함한다. 본 명세서에서, HARQ ACK/NAC 은 간단히 HARQ-ACK혹은 ACK/NACK(A/N)으로지칭된 다 . HARQ-ACK 은 포지티브 ACK (간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX중 적어도 하나를포함한다. CSI 는 CQK Channel Qual ity Indicator ) , PMKPrecoding Matrix Indi cator ) , RKRank Indicat ion) 등을 포함한다. UCI 는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와트래픽 데이터가 동시에 전 송되어야 할 경우 PUSCH 를 통해 전송될 수 있다. 또한, 네트워크의 요청 /지시 에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할수 있다.
[47] 도 4 는 .LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면 이다. [48] 도 4 를 참조하면, 셀를라 OFDM 무선 패킷 통신 시스템에서, 상향링크 / 하향링크 데이터 패¾ 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서 브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE표준에서는 FDD(Frequency Divi si on Duplex)에 적용 가능한 타입 1무선 프 레임 (radio frame) 구조와 TDD(Time Divi sion Duplex)에 적용 가능한 타입 2 의 무선 프레임 구조를 지원한다.
[49] 도 4의 (a)는타입 1무선 프레임의 구조를 예시한다. 하향링크무선 프 레임 (radio frame)은 10 개의 서브프레임 (subframe)으로 구성되고, 하나의 서브 프레임은시간 영역 (t ime domain)에서 2 개의 슬롯 (slot )으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 ΊΤΙ (transmi ssion t ime interval )라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms 이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은시간 영역에서 복수의 OFDM심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 0FDMA 를 .사용하므로, OFDM 심 ^이 하나의 심볼 구 간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블특 (RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarrier)를포함할수 있다.
[50] 하나의 슬롯에 포함되는 0FDM 심불의 수는 CP Cycl i c Pref ix)의 구성 (conf igurat ion)에 따라 달라질 수 있다. CP 에는 확장된 CP(extended CP)와표 준 CP(normal CP)가 있다. 예를 들어, 0FDM 심볼이 표준 CP 에 의해 구성된 경 우, 하나의 슬롯에 포함되는 0FDM심볼의 수는 7 개일 수 있다. 0FDM심볼이 확 장된 CP 에 의해 구성된 경우, 한 0FDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 0FDM심볼의 수는표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예 를 들어, 하나의 슬롯에 포함되는 0FDM심볼의 수는 6 개일 수 있다. 사용자기 기가 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼 간간섭을 더욱 줄이기 위해 확장된 CP가사용될 수 있다.
[51] 표준 CP자사용되는 경우 하나의 술롯은 7개의 0FDM심볼을 포함하므로 하나의 서브프레임은 14 개의 0FDM심볼을 포함한다. 이때, 각서브프레임의 처 음 최대 3 개의 0FDM심붙은 PDCCHCphysical downl ink control channel )에 할당 되고 나머지 OFDM 심블은 PDSCH(physicaI downl ink shared channel )에 할당될 수 있다.
【52] 도 4의 (b)는 타입 2무선 프레임의 구조를 예시한다. 타입 2 무선 프 레임은 2 개의하프프레임 (hal f frame)으로 구성되며, 각 하프 프레임은 2 개의 슬롯을 포함하는 4 개의 일반 서브프레임과 DwPTS(Downl ink Pi lot Time Slot ) , 보호구간 (Guard Per iod, GP) 및 UpPTSOJpl ink Pi lot Time Slot )을 포함하는 특 별 서브프레임 (special subframe)으로 구성된다.
[53] 상기 특별 서브프레임에서, DwPTS 는 사용자 기기에서의 초기 샐 탐색, 동기화또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과사용자 기기의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는하향링크 전송 으로, UpPTS는 상향링크 전송으로사용되며, 특히 UpPTS는 PRACH프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와하향링크사이에 하 향링크 신호의 다증경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한구간이다.
[54] 상기 특별 서브프레임에 관하여 현재 3GPP 표준 문서에서는 아래 표 1 과 같이 설정을 정의하고 있다. 표 1 에서 rs =V(15000x 2048)인 경우 DwPTS와 UpPTS를 나타내며, 나머지 영역이 보호구간으로 설정된다.
[55] 【표 1】
Figure imgf000013_0001
[56] 한편, 타입 2 무선 프레임의 구조, 즉 TDD 시스템에서 상향링크 /하향링 크서브프레임 설정 (UL/DL conf igurat ion)은 아래의 표 2와 같다.
{573 :【표 2】
Figure imgf000014_0001
[58] 상기 표 2 에서 D는 하향링크 서브프레임, U는 상향링크 서브프레임을 지시하며, S 는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 2 는 각각의 시스템에서 상향링크 /하향링크 서브프레임 설정에서 하향링크-상향링크 스위칭 주기 역시 나타나있다.
[59] 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼 의 수는 다양하게 변경될 수 있다.
[60] 도 5는 하향링크 슬롯에 대한 자원 그리드 (resource gr id)를 예시한다.
[61] 도 5를 참조하면, 하향링크 슬롯은 시간 영역에서 OFDM심볼을 포 함하고 주파수 영역에서 N 자원블록을 포함한다. 각각의 자원블록이 부 반송파를 포함하므로 하향링크 슬롯은 주파수 영역에서 N X N 부반송파를 포함한다. 도 5 는 하향링크 슬롯이 7 0FDM 심볼을 포함하고 자원블록이 12 부 반송파를 포함하는 것으로 예시하고 있지만 반드시 이로 제한되는 것은 아니다. 예를 들어, 하향링크 술롯에 포함되는 0FDM 심블의 개수는 순환전치 (Cycl ic Pref ix; CP)의 길이에 따라 변형될 수 있다.
[62] 자원그리드 상의 각 요소를 자원요소 (Resource Element ; RE)라 하고, 하 나의 자원 요소는 하나의 0FDM 심볼 인덱스 및 하나의 부반송파 인텍스로 지시 된다ᅳ 하나의 RB는 N^b x N 자원요소로 구성되어 있다. 하향링크 슬롯에 포 함되는 자원블록의 수( Ν^ )는 셀에서 설정되는 하향링크 전송 대역폭 (bandwidth)에 종속한다.
[63] 도 6은 하향링크 서브프레임의 구조를 예시한다.
[64] 도 6 을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최 대 3(4)개의 0FDM 심볼은 제어 채널이 할당되는 제어 영역에 대웅한다. 남은 OFDM심볼은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역 에 해당한다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCF:ICH(Physical Control Format Indicator Channel), PDCCH (Physical 'Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는서브프레임의 첫 번째 OFDM심볼에서 전송되고 서브프레임 내에서 제 어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH 는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat requestacknowledgment/negat ive— acknowledgment ) 신호를 나른다.
[65] PDCCH 를 통해 전송되는 제어 정보를 DCI (Downlink Control Information) 라고 지칭한다. DCI 는 사용자 기기 또는 사용자 기기 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCr는 상향 /하향링크 스케줄 링 정보, 상향링크 전송 (Tx) 파워 제어 명령 등을 포함한다.
[66] PDCCH 는 하향링크 공유 채널 (downlink shared channel , DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (uplink shared channel ,UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널 (paging channel, PCH) 상의 페이징 정보, DL-SCH상의 시스템 정보, PDSCH상에서 전송되는 랜덤 접속 응답과 같은 상위 -계층 제어 메시지의 자원 할당 정보, 사용자 기기 그룹 내의 개별 사용자 기기들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIPCVoice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH 가 제어 영역 내에서 전송 될 수 있다. 사용자 기기는복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하 나 또는 복수의 연속된 제어 채널 요소 (control channel element, CCE)들의 집 합 (aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코 딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE 는 복수의 자원 요소 그룹 (resource element group, REG)에 대응한다. PDCCH 의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은사용자 기기에게 전송될
DCI 에 따라 PDCCH포떳을 결정하고, 제어 정보에 CRC( cyclic redundancy check) 를 부가한다. CRC 는 PDCCH 의 소유자 또는 사용 목적에 따라 식별자 (예, R TI (radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH 가 특정 사용자 기기를 위한 것일 경우, 해당 사용자 기기의 식별자 (예, eel 1- RNTI (C-R TI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것 일 경우, 페이징식별자 (예, paging-RNTI (P-RNTI ))가 CRC 에 마스킹 될 수 있다. PDCCH 가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (system Informat ion block, SIC))를 위한 것일 경우, SI-RNTKsystem Informat ion RNTI )가 CRC 에 마스킹 될 수 있다. PDCCH 가 랜덤 접속 웅답을 위한 것일 경우, RA- RNTI (random access-RNTI )가 CRC에 마스킹 될 수 있다 .
[67] 도 7은 LTE에서 사용되는 상향링크서브프레임의 구조를 예시한다 .
[68] 도 7을 참조하면, 상향링크 서브프레임은 복수 (예, 2개)의 술롯을포함 한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크서브프레임은주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터영역은 PUSCH를포함하고 음성등의 데이터 신호를 전송하는데 사용된다. 제어영역은 PUCCH를 포함하고상향링크 제어정보 (Upl ink Control Information, UCI )를 전송하는데 사용된다. PUCCH 는 주파수축에서 데이터 영역의 양끝 부분 에 위치한 RB쌍 (RB pair)을포함하며 슬롯을 경계로 호끰한다.
[69] PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
[70] - SR( Schedul ing Request ): 상향링크 UL-SCH 자원을 요청하는데 사용되 는 정보이다. 00K(0n-0ff Keying) 방식을 이용하여 전송된다.
[71] - HARQ ACK/NAC :PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이 다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크코드워드에 대한응답으로 ACK/NACK 1 비트가 전송되고, 두 개의 하향 링크 코드워드에 대한응답으로 ACK/NACK 2비트가 전송된다.
[72] - CSK Channel State Informat ion) : 하향링크 채널에 대한 피드백 정보 이다. CSI 는 CQKChannel Qual ity Indicator)를 포함하고, MIM0(Mult iple Input Mult iple Output ) 관련 피드백 정보는 RI(Rank Indicator) , PMKPrecoding Matrix Indicator) , PTKPrecoding타입 Indicator) 등을포함한 다. 서브프레임 당 20비트가사용된다.
[73] 사용자 기기가 서브프레임에서 전송할 수 있는 제어 정보 (UCI )의 양은 제어 정보 전송에 가용한 SOFDMA 의 개수에 의존한다. 제어 정보 전송에 가용 한 SO FDMA 는서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA심볼을 의미하고, SRSCSounding Reference Signal )가 설정된 서브 프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다.
[74] 도 8 은 캐리어 병합 (Carr ier Aggregat ion, CA) 통신 시스템을 예시한다.
[75] 도 8 을 참조하면, 복수의 상 /하향링크 컴포넌트 반송파 (Component Carr ier , CC)들을 모아서 더 넓은 상 /하향링크 대역폭을 지원할 수 있다. 용어 ( "컴포넌트 반송파 (CC)"는 등가의 다른 용어 (예, 캐리어, 셀 등)로 대체될 수 있다. 각각의 CC들은주파수 영역에서 서로 인접하거나 비-인접할수 있다. 각 컴포넌트 반송파의 대역폭은 독립적으로 정해질 수 있다. UL CC 의 개수와 DL CC 의 개수가다른 비대칭 반송파 집성도 가능하다. 한편, 제어 정보는특정 CC 를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 (X 를 프라이머리 CC (또는 앵커 CC)로 지칭하고, 나머지 CC를 세컨더리 CC로지칭할수 있다.
[76] 크로스-캐리어 스케줄링 (또는 크로스 (X 스케줄링)이 적용될 경우, 하 향링크 할당을위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있다. 크로스 -CC 스케줄링을 위해, 캐리어 지시 필드 (carrier indi cator f ield, CIF)의 도입이 고려될 수 있다. PDCCH 내에서 CIF 의 존재 여 부는상위 계층 시그널링 (예, RRC시그널링)에 의해 반 -정적 및 단말 -특정 (또는 단말그룹-특정) 방식으로 설정될 수 있다. PDCCH 전송의 베이스 라인을요약하 면 다음과 같다.
[77] ■CIF 디스에이블드 (di sabled) : DL CC 상의 PDCCH 는 동일한 DL CC상의 PDSCH자원을 할당하거나 하나의 링크된 UL CC상의 PUSCH자원을 할당 [78] · No CIF
[79] · LTE PDCCH 구조 (동일한 부호화, 동일한 CCE-기반 자원 맵핑) 및 DCI 포맷과동일
[80] 欄 CIF 이네이블드 (enabled) : DL CC상의 PDCCH는 CIF를 이용하 여 복수의 병합된 DL/UL CC 중에서 특정 DL/UL (X 상의 PDSCH 또는 PUSCH 자원 을 할당 가능
[81] · CIF를 가지는 확장된 LTE DCI 포맷
[82] - CIF (설정될 경우)는고정된 X-비트 필드 (예, x=3)
[83] - CIF (설정될 경우) 위치는 DCI 포맷 사이즈에 관계 없이 고정 됨 :[84] 秦 LTE PDCCH 구조를 재사용 (동일한 부호화, 동일한 CCE-기반 자 원 맵핑)
[85] CIF 가 존재할 경우, 기지국은 단말 측의 BD 복잡도를 낮추기 위해 PDCCH모니터링 DL CC세트를 할당할 수 있다. PDCCH모니터링 DL CC 세트는 병 합된 전체 DL CC의 일부로서 하나 이상의 DL CC를 포함하고 단말은 해당 DL CC 상에서만 PDCCH 의 검출 /복호화를 수행한다. 즉, 기지국이 단말에게 PDSCH/PUSCH를 스케줄링 할 경우, PDCCH는 PDCCH모니터링 DL CC세트를 통해 서만 전송된다. PDCCH모니터링 DL CC세트는 단말 -톡정 (UE-speci f i c) , 단말-그 룹 -특정 또는 셀 -특정 (cel l-speci f i c) 방식으로 설정될 수 있다. 용어 "PDCCH 모니터링 DL CC' '는 모니터링 캐리어, 모니터링 ¾ 등과 같은 등가의 용어로 대 체될 수 있다. 또한, 단말을 위해 병합된 CC는서빙 CC , 서빙 캐리어, 서빙 샐 등과 같은등가의 용어로 대체될 수 있다.
[86] 도 9는 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH모니터링 DL CC로 설정되었다 고 가정한다. DL CC A~C 는 서빙 CC , 서빙 캐리어, 서빙 셀 등으로 지칭될 수 있다. CIF가 디스에이블 된 경우, 각각의 DL CC는 LTE PDCCH설정에 따라 CIF 없이 자신의 PDSCH를 스케줄링 하는 PDCCH만을 전송할수 있다. 반면, 단말-특 정 (또는 단말 -그룹 -특정 또는 셀-특정) 상위 계층 시그널링에 의해 CIF 가 이 네이블 된 경우, DL CC A (모니터링 DL CC)는 CIF를 이용하여 DL CC A 의 PDSCH 를스케줄링 하는 PDCCH뿐만 아니라 다른 CC 의 PDSCH를 스케줄링 하는 PDCCH 도 전송할 수 있다. 이 경우, PDCCH 모니터링 DL CC 로 설정되지 않은 DL CC B/C 에서는 PDCCH 가 전송되지 않는다. 따라서, DL CC A (모니터링 DL CC)는 DL CC A와 관련된 PDCCH검색 영역, DL CC B 와관련된 PDCCH 검색 영역 및 DL CC C 와 관련된 PDCCH 검색 영역을 모두 포함해야 한다. 본 명세서에서, PDCCH 검 색 영역은 캐리어 별로 정의된다고 가정한다.
[87] 상술한 바와 같이, LTE-A는 크로스 -CC 스케줄링을 위하여 PDCCH내에서 CIF사용을 고려하고 있다. CIF 의 사용 여부 (즉, 크로스 -CC스케줄링 모드또 는 논-크로스 -CC스케줄링 모드의 지원) 및 모드간 전환은 RRC시그널링을 통해 반 -정적 /단말-특정하게 설정될 수 있고, 해당 RRC 시그널링 과정을 거친 후단 말은 자신에게 스케줄링 될 PDCCH내에 CIF 가사용되는지 여부를 인식할수 있 다ᅳ
[88] 도 10은 EPDCCH와 EPDCCH에 의하여 스케줄링되는 PDSCH를 예시하는 도 면이다.
[89] 도 10을 참조하면, EPDCCH는 일반적으로 데이터를 전송하는 PDSCH 영역 의 일부분올 정의하여 사용할 수 있으며, 단말은 자신의 EPDCCH유무를 검출하 기 위한블라인드 디코딩 (bl ind decoding) 과정을수행해야 한다. EPDCCH는 기 존의 레거시 PDCCH 와 동일한 스케줄링 동작 (즉, PDSCH, PUSCH 제어)을 수행하 지만, RRH 와 같은 노드에 접속한 단말의 개수가 증가하면 PDSCH 영역 안에 보 다 많은 수의 EPDCCH 가 할당되어 단말이 수행해야 할 블라인드 디코딩의 횟수 가증가하여 복잡도가높아질 수 있는 단점은존재할수 있다.
[90] 도 11 은 TDD 시스템 환경하에서 기존 (Legacy) 서브프레임들을 정적 서 브프레임 집합과유동서브프레임 집합으로 분할한 경우를 나타낸다. 도 8 에서 , SIBCSystem Informat ion Block) 시그널을 통해서 설정된 기존 상향링크-하향링 크 설정을 상향링크-하향링크 설정 #1(즉, DSUUDDSUUD)로 가정하였으며, 기지국 은 단말에게 사전에 정의된 시그널을통해서 무선 자원의 용도의 재설정 정보를 알려준다고 가정하였다.
[91] 무선 자원 용도 변경 메시지 (Reconf igurat ion Message)는 사전에 정의 된 규칙에 따라, i )해당 용도 변경 메시지 수신 시점올 포함하여 이후에 나타나 거나, i i )혹은 해당 용도 변경 메시지 수신 시점을 포함하지 않고 이후, i i i )혹은 해당용도 변경 메시지 수신 시점으로부터 사전에 정의된 시간 (즉, 서브프레임 오프셋 (Subframe Offset ) 이후)에 나타나는 무선 자원들의 용도들을 알려주는 목적으로 이용된다.
[92] 따라서, 시스템의 안정적인 하향링크 /상향링크 통신, 단말의 안정적인 채널 상태 정보 (Channel State Informat ion; CSI ) 도출 및 보고를 위해서 높은 성공 확률 (High Success Probabi l ity)의 용도 변경 메시지 송 /수신 방법 혹은 특정 단말이 용도 변경 메시지를성공적으로 수신하지 못하였을 경우에 해당 단 말이 가정하게 되는 상향링크-하향링크 설정 (UL-DL Conf igurat ion) (즉, 상향링 크-하향링크 설정에 대한폴백 (Fal lback) 동작) 등이 정의될 필요성이 있다. 여 기서, 단말이 용도 변경 메시지를성공적으로수신하지 못한상황은, 예를 들어, 단말이 수신된 용도 변경 메시지에 대한 CRC( Cyclic Redundancy Check)를수행 하였을 경우에 거짓 (False)으로 판명된 경우, 흑은 단말이 용도 변경 메시지를 누락 (Missing)한 경우 (예, DRX동작으로 인해서 단말이 용도 변경 메시지를누 락한 경우) 등이 있을 수 가 있다.
[93] 전술한 내용을 바탕으로, 본 발명에서는 반송파 집성 기법 (Carrier Aggregation, CA)이 적용된 상황 하에서, 특정 셀 상의 무선 자원 용도가 부하 상태에 따라 동적으로 변경 (이하, elMTA Cell)될 경우에, 하향링크 (Downlink, DL)/상향링크 (Uplink, LL) 시그널 전송의 유효성 (Validation)을 효율적으로 판 단하는 방법을 제안한다. 여기서 용도 변경 메시지 (Reconfiguration Message) 는 사전에 정의된 셀 (예, Primary Cell, PCell) 상에서 상위 계층 시그널 형태 (예, SIB/PBCH/MAC/RRC) 혹은 물리 계층 시그널 형태 (예, PDCCH/EPDCCH/PDSCH) 로 전송될 수 가 있으며, 또한, 해당 용도 변경 메시지는 단말 특정적인 (UE- Specific) 특성 흑은 샐 특정적인 (Cel Speci f ic) 특성 혹은 단말 그룹 특정적 인 (UE-Group-Specific) 특성 혹은 단말 그룹 공통 (UE-Group-Co麵 on) 특성을 가질 수 가 있다. 추가적으로, 용도 변경 메시지는사전에 정의된 셀 (예, PCell) 상에서 USS(UE-Specific Search Space) 흑은 CSSCCo隱 on Search Space)를 통해 서 전송될 수 가 있다.
[94] 이하에서는 설명의 편의를 위해, 3GPP LTE시스템을 기반으로 본 발명을 설명한다ᅳ 하지만, 본 발명이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장가능하다.
[95] 단말이 무선 자원 용도의 동적 변경이 적용되는 셀 (예, TDD elMTA Cell) 관련 용도 변경 메시지 (Reconfiguration Message)를 성공적으로 수신하지 못하 였을 때, SIB 1상의 상향링크-하향링크 설정 (UL-DL Configuration)을 기반으로 i)채널 측정 (CSI Measurement) 동작, Π)하향링크 제어 채널 (PDCCH) 모니터링 동작, iii)하향링크 데이터 채널 (PDSCH) 수신 등작, iv) 상향링크 데이터 채널 (PUSCH) 전송 동작 중 적어도 하나가수행되도록 설정될 수 있다.
[96] 여기서, 채널 측정 동작은 단말이 재설정 (reconfiguration)을 위한 명시 적인 L1시그널링을 디코드하고, 유효한 (valid)한 상향링크―하향링크 설정을 검 출한 경우, 단말은 재설정을 위한 명시적인 L1 시그널링을 통하여 하향링크 서 브프레임 혹은 스페셜 서브프레임으로 지시된 서브프레임들 내에서만. CSI 를 측 정한다 . 만약, 단말이 무선 프레임에 대하여 유효한 상향링크―하향링크 설정을 전달하는 L1 시그널링을 검출하지 못한 경우, 단말은 SIB설정에 따라 하향링크 서브프레임 혹은 스페셜 서브프레임으로 지시된 서브프레임들 내에서만 CSI 를 측정할수 있다.
[97] 또한, PDCCH 혹은 PDSCH 수신 동작에 대하여 설명하면, 단말이 무선 프 레임에 대하여 유효한 상향링크-하향링크 설정올 전달하는 L1 시그널링을 검출 한 경우, 단말은 명시적인 L1 시그널링에 의하여 지시된 non-DRX하향링크 서브 프레임 혹은 스페셜 서브프레임을 모니터링한다. 만약, 단말이 무선 프레임에 대하여 유효한 상향링크-하향링크 설정을 전달하는 L1 시그널링을 검출하지 못 한 경우, 단말은 SIB-1 설정에 의하여 지시된 PDCCH혹은 EPDCCH 를 위한 non- DRX하향링크서브프레임 혹은스페셜 서브프레임을모니터링한다.
[98] 여기서 , 유효한 상향링크-하향링크 설정을 설명하면, 하향링크 HARQ 참 조 설정은 Re卜 8 TDD 상향링크-하향링크 설정 {2, 4, 5}에서 선택될 수 있다. TDD eIMTA(Further Enhancements to LTE Time Divi sion Duplex (TDD) for Downl ink-Upl ink Interference Management and Traff ic Adaptat ion)가 설정된 단말에 대하여, 상향링크 스케즐링 타이밍 및 HARQ타이밍은 SIB1 을 통하여 시 그널링된 상향링크-하향링크 설정을 따른다. 단말은유호한상향링크 HARQ참조 설정 흑은 하향링크 HARQ 참조 설정 하에서, 하향링크 HARQ 참조 설정 상의 상 향링크 서버프레임 혹은 스페셜 서브프레임은, 하향링크 서브프레임으로동적으 로 사용되지 않는 것으로 간주하거나, 상향링크 HARQ 참조 설정 상의 하향링크 서버프레임 혹은 스페셜 서브프레임은, 상향링크 서브프레임으로 동적으로사용 되지 않는 것으로 간주할 수 있다.
[99] 또한, 상향링크 그랜트 유효성 판단 (UL grant val idat ion)에 관하여 설 명한다. 폴백 모드하에서, 만약 하향링크 HARQ 참조 설정 (DL HARQ reference conf igurat i on) 별 상향링크 서브프레임들의 집합에 포함되지 않고, SIB1 별 적 어도 하나의 상향링크서브프레임에 대응하는 상향링크 그랜트를 단말이 수신한 경우, 단말은 이를 유효한 제어정보 (val id grant )로 판단할 수 있다. 그러나, 만약 하향링크 HARQ 참조 설정 (DL HARQ reference conf igurat ion) 별 상향링크 서브프레임들의 집합에 포함되지 않고, SIB1 별 상향링크 서브프레임 내의 PUSCH 전송을트리거링하는 PHICH상에서 NACK를 수신한다면, 단말은 PUSCH 를 송신한다. 또한, SRS 전송유효성 판단 (SRS transmi ssion val idat ion)에 관하여 설명한다. 타입 1 SRS에 대하여 , 트리거되었을 때의 타입 1 SRS의 전송이 예정 된 서브프레임의 결정은 SIB1 에 기반한다. 타입 0 SRS 혹은 타입 1 의 SRS모 두에 대하여, SRS 전송은 상향링크 서브프레임 흑은 SIB1 기반의 UpPTS상에 설 정될 수 있다.
[100] 즉, 상술한 i ) 내지 iv)동작을 "폴백 동작 (Fal lback Operat ion) (혹은 풀백 모드 (Fal lback Mode) ) " 이라고 명명하며, 이를 통해서, 기지국은 0용도 변경 메시지를 성공적으로 수신하지 못한 단말의 오동작 (예, 제어 채널 (PDCCH/EPDCCH) 검출 오류 (Fal se Detect ion)로 인한 잘못된 상향링크 데이터 채 널 (PUSCH) 그리고 /흑은 상향링크 제어 채널 (PUCCH) 전송)으로부터 발생되는 간 섭 ( Interference)이 다른 단말과 기지국 간의 통신 (혹은 레거시 (Legacy) 단말 과 기지국 간의 통신)에 미치는 피해를 최소화하거나, i i )용도 변경 메시지를 성공적으로 수신하지 못한 단말의 하향링크 HARQ 버퍼 운영 오류 (DL HARQ Buffer corrupt ion) )를 최소화할 수 가 있다.
[101] 또한, 상이한 (Di f ferent ) 상향링크-하향링크 설정을 가지는 샐들이 반송 파 집성 기법 (CA)으로 이용되고, 단말이 해당 샐들 상에서 동시 송 /수신 (Simult neous Recept ion (RX) and Transmi ssion (TX) ) 동작을 수행하지 못할 때, 표 3와 같은 제한 (Constraint )를 기반으로 상향링크 /하향링크 시그널의 송 /수신 동작을수행하도톡 정의되어 있다.
[102] 【표 3】
• In case multiple cells with different uplink-downlink configurations are aggregated and the UE is not capable of simultaneous reception and transmission in the aggregated cells, the following constraints apply:
- If the subframe in the primary cell is a downlink subframe, the UE shall not transmit : any signal or channel on a secondary cell in the same subframe
- If the subframe in the primary cell is an uplink subframe, the UE is not expected to receive any downlink transmissions on a secondary cell in the same subframe
ᅳ If the subframe in the primary cell is a special subframe and the same subframe in a secondary cell is a downlink subframe, the UE is not expected to receive PDSCH/EPDCCH/PMCH/PRS transmissions in the secondary cell in the same subframe, and the UE is not expected to receive any other signals on the secondary cell in ! OFDM symbols that overlaps with the guard period or UpPTS in the primary ceil. ; [103] 따라서, 본 발명에서는 반송파 집성 기법 (CA)이 적용된 상황 하에서, 특 정 셀 상의 무선 자원 용도가부하상태에 따라동적으로 변경 (즉, elMTA Cell) 되고, 단말이 해당 셀들 (Aggregated Cells) 상에서 동시 송 /수신 (Simultaneous TX and RX) 동작을 수행하지 못할 때, 하향링크 데이터 채널 (PDSCH) 스케즐링 관련 제어 정보 (DL Grant)의 유효성을 판단하는 방법올 설명한다. 나아가, 이하 에서는본 발명에 대한설명의 편의를 위해서 두 개의 셀들이 반송파 집성 기법 (CA)으로 이용되는 상황올 가정하지만, 본 발명이 세 개 이상의 샐들이 반송파 집성 기법 (CA)으로 이용되는 상황에서도 확장 적용 가능한 것은 자명한 사실이 다.
[104] 또한, 본 발명에서의 제 1 방안은 TDD elMTA PCell 과 TDD (elMTA 혹은 Νοη-eIMTA) SCell 이 반송파 집성 기법으로 이용되고, TDD elMTA PCell 이 폴백 모드 (Fallback Mode 즉, SIB1 상향링크-하향링크 설정)로 운영되는 경우, 흑은 TDD elMTA PCell과 TDD (elMTA혹은 Non— elMTA) SCell이 반송파 집성 기법으로 이용되고, TDD elMTA PCell 이 논 -폴백 모드 (Non-Fa 11 back Mode)로 운영되는 경 우에도 확장 적용될 수 있다.
[105] 제 1방안
[106] TDD elMTA PCell 과 FDD SCell (즉, FDD UL CCᅳ FDD DL CC)이 반송파 집 성 기법으로 이용되고, TDD elMTA PCell 이 폴백 모드 (Fallback Mode, 즉, SIB1 상향링크-하향링크 설정)로 운영될 때, 이하 규칙 1-A내지 규칙 l-o를 기반으 로, FDD SCell 상의 하향링크 데이터 채널 (PDSCH) 전송 관련 스케줄링 정보 (DL Grant)의 유효성을 판단할수 있다.
[107] 나아가, 이하규칙 1-A내지 1-D는 TDD elMTA PCell 의 SIB1 상향링크- 하향링크 설정 (UL-DL Configuration) 관련 스페셜 서브프레임 설정이, i) Special Sub frame Configurations 0 (w/ Normal Downlink CP) i i )Special Sub frame Configurations 5 (w/ Normal Downlink CP) , i i i ) Special Sub frame Configurations 0 (w/ Extended Downlink CP), 혹은 iv)Special Sub frame Configurations 4 (w/ Extended Do皿 link CP) 중 적어도 하나로 지정되었을 경 우에만, (즉, 표 3 에 따라 "No PDSCH Transmission in DwPTS" 로 해석되는 경 우)에만 한정적으로 적용되도록 정의될 수도 있다. [108] 먼저, TDD elMTA PCell 의 플백 모드 (Fallback Mode) 기반의 SIBl 상향 링크-하향링크 설정상의 스페셜 서브프레임 (Special SF, 이하 S SF)과 FDD DL CC상의 DL SF이 겹칠 때 본 발명의 제 1 방안이 적용되는 경우를 살핀다,
[109] 크로스-캐리어 스케줄링 (Cross Carrier Scheduling, CCS)의 경우, 해당 SF (즉, TDD elMTA PCell 의 폴백 모드 (Fallback Mode) 기반의 SIBl 상향링크-하 향링크 설정상의 스페셜 서브프레임 (Special SF, 이하 S SF)과 FDD DL CC 상의 DL SF 이 겹치는 SF) 위치에서, 단말이 만약 TDD elMTA PCell 의 S SF 에서 FDD DL CC상의 PDSCH를스케줄링하는 DL Grant를수신한다면 , 이하규칙 1-A혹은 규칙 1-B를 적용할수 있다.
[110] 규칙 1-A: 단말은 해당 DL Grant 가유효하지 않다 (Invalid)고 판단하고, FDD DL CC 상의 해당 SF 위치에서 PDSCH 수신 동작을 수행하지 않을 수 있다. 이는 DL grant 의 검출 오류 (False Detect ion)으로 인한 단말의 오동작을 방지 하기 위함이다. 즉, 규칙 1— A 는 단말이 FDD DL CC 상의 해당 SF 위치에서 PDSCH/EPDCCH/PMCH/PRS 등과 같은 시그널의 수신을 기대하지 않는 것으로 판단 할수 있다. 다시 말하면, 단말이 TDD elMTA PCell 의 보호 구간 (Guard Period, GP) 혹은 UpPTS 중 적어도 하나와 겹치는 FDD DL CC 의 SF 영역에서 어떠한 다 른 시그널들의 수신을 기대하지 않는 것으로도판단될 수 있다.
[111] 규칙 1-B: 단말은 해당 DL Grant 가 유효하다 (Valid)고 판단하고, FDD DL CC상의 해당 SF위치에서 PDSCH수신 동작을 수행할 수 있다. 즉, 규칙 1-B 는 단말이 FDD DL CC 상의 해당 SF 위치에서 PDSCH/EPDCCH/PMCH/PRS 등과 같은 시그널의 수신을 기대하는 것으로 판단할 수 있다. 다시 말하면, 단말이 TDD elMTA PCell의 GP혹은 UpPTS중 적어도 하나와 겹치는 FDD DL CC의 SF 영역에 서 사전에 정의된 하향링크 시그널들의 수신을 기대하는 것으로도판단될 수 있 다 (혹은 단말이 FDD DL CC상의 해당위치의 SF를 DL SF으로 간주하는 것으로 도 해석 가능함).
[112] 만약, 샐프-스케쥴링 (Self-Scheduling)의 경우, 해당 SF 위치에서, 단말 이 만약 FDD DL CC상의 PDCCH 영역에서 FDD DL CC상의 PDSCH를 스케줄링하는 DL Grant를 수신하거나, 혹은 TDD elMTA PCell의 S SF의 DwPTS 영역과 겹치는 곳에서의 FDD DL CC상의 PDCCH 영역에서 FDD DL CC 상의 PDSCH 를 스케줄링하 는 DL Grant를 수신한다면, 이하의 규칙 1-C혹은 규칙 1-D를 적용할수 있다. [113] 규칙 1-C: 단말은 해당 DL Grant 가유효하지 않다 ( Invalid)고 판단하고, FDD DL CC 상의 해당 SF 위치에서 PDSCH 수신 동작을 수행하지 않을 수 있다. 즉, 규칙 1-C 는 단말이 FDD DL CC 상의 해당 SF 위치에서 PDSCH/EPDCCH/PMCH/PRS 등과 같은 시그널의 수신을 기대하지 않는 것으로 판단 할 수 있다. 다시 말하면, 다시 말하면, 단말이 TDD elMTA PCel l 의 보호 구간 (Guard Period, GP) 혹은 UpPTS중 적어도 하나와 겹치는 FDD DL CC의 SF 영역 에서 어떠한 다른 시그널들의 수신을 기대하지 않는 것으로도 판단될 수 있다.
[114] 규칙 1-D: 단말은 해당 DL Grant 가 유효하다 (Val id)고 판단하고, FDD DL CC상의 해당 SF 위치에서 PDSCH수신 동작을수행할수 있다. 이와 같은규 칙 1-D 는 단말이 FDD DL CC 상의 해당 SF 위치에서 PDSCH/EPDCCH/PMCH/PRS등 과 같은 시그널의 수신을 기대하도록 판단할 수있다. 다시 말하면, 단말이 TDD elMTA PCel l의 GP혹은 UpPTS중 적어도 하나와 겹치는 FDD DL CC의 SF 영역에 서, 사전에 정의된 하향링크 시그널들의 수신을 기대하는 것으로도 판단될 수 있다 (흑은 단말이 FDD DL CC상의 해당위치의 SF 를 DL SF으로 간주하는 것으 로도 해석 가능함) .
[115] 나아가, 상술한 규칙 1-A, 규칙 1-B, 규칙 1-C 혹은 규칙 1-D중 적어도 하나는, TDD elMTA PCel l 의 논 -폴백 모드 (Non-Fa 1 1 back Mode) 기반의 액츄얼 (Actual ) 상향링크-하향링크 설정 (흑은 Val id상향링크-하향링크 설정) 상의 스 페셜 서브프레임 (Special SF)과 FDD DL CC 상의 하향링크 서브프레임 (DL SF)이 겹치는 경우에도 확장 적용될 수 있다.
[116]
[117] 또한, TDD 시스템 환경 하에서 스페셜 서브프레임 설정 (Special subframe Conf igurat ion)에 따른 단말의 하향링크 신호 /채널 수신에 대한 가정 은 상술한 표 1 , 표 2 및 이하의 표 4(LTE/LTE-A표준 문서 3GPP TS 36.213 참 조)와같다.
[118] 【표 4】 7.1.7 Modulation order and transport block size determination
To d imnm ^ moduM^on order andtraasport block stza(s) m lie physical downlink i sd e mn l, ilia UE shall fust
- read 5-bit
Figure imgf000026_0001
£sld ( 》 ii A EX3
and second if &s Da CRC½ srazabW by P-RNTi, RA-RN I, ofSI-Ri thta
- foflXSfonnatlA:
- settheTabfe
Figure imgf000026_0002
to J ¾ from su dausa S J.3.I.31» [4]
- fofEWfonn^lC:
- use Table 7Λ.7.2.3-1 for de^nntaixigits toos ort block siz . sat N^m io&e total nma ar of alloc^td FRBs based οηΰχβ pr o€ d ra cblined m s bckus e 7.1. .
ifthe msspof block is
Figure imgf000026_0003
of ® s ecial s teae in hsx smctare typa 2t tisan
- for special su ^amd eozifigucmtioa 9 mth nonnal cyclic prefix or special sub&ama with
Figure imgf000026_0004
for oflier special subfirame coaii fations:
- ss례: ab 7 .72.l-i o>lu«ii indicator NFM = ΠΒΧ X<X75 js 1 , else, set the Table 7.1.7.2.1-i column indicator Nps = iV^ .
Figure imgf000026_0005
[119] 제 2 방안
[120] 본 발명의 제 2 방안에 따르면, TDD elMTA Cell (즉, Non— CA 경우)이 폴 백 모드 (Fallback Mode, 즉, SIB1 상향링크ᅳ하향링크 설정)로 운영될 때, 이하 규칙 2ᅳ A흑은규칙 2-B 에 따라 해당 TDD elMTA Cell 상의 하향링크 데이터 채 널 (PDSCH) 전송 관련 스케줄링 정보 (DL Grant)의 유효성을 판단할 수 있다.
[121] 예를 들어, 규칙 2-A흑은 규칙 2-B는 SIB1 상향링크-하향링크 설정 관 련 스페셜 서브프레임 설정이 i)Special Subframe Configurations 0 (w/ Normal Downl ink CP), i i )흑은 Speci l Subfr me Configurations 5 (w/ Normal Downl ink CP) i i i )흑은 Special Subframe Conf i gurations 0 ,(w/ Extended Downlink GP) iv)혹은 Special Sub frame 'Configurations 4 (w/ Extended Downlink CP)증 적어도 하나로 지정되었을 경우 (즉, "No PDSCH Transmission in DwPTS"로 해석되는 경우)에만 한정적으로 적용되도록 정의될 수 가 있으며, 또한, 이를 통해서 폴백 모드 (Fa 11 back Mode)로 인한 하향링크 성능 감소를 방 지할수 가 있다.
[122] 예를 들어, i)TDD elMTA Cell 의 폴백 모드 (Fallback Mode) 기반의 SIB1 상향링크-하향링크 설정 상의 Special SF과 (사전에 설정된) 하향링크 HARQ참 조 설정 (DL HARQ Reference Configuration) 상의 DL SF 이 겹치거나, ii)TDD elMTA Cell 의 폴백 모드 (Fallback Mode) 기반의 SIB1 상향링크-하향링크 설정 상의 Special SF과 이전 액츄얼 (Actual) 상향링크-하향링크 설정 상의 DL SF이 겹치거나, iii)TDD elMTA Cell 의 폴백 모드 (Fallback Mode) 기반의 SIB1 상향 링크-하향링크 설정 상의 Special SF과 이전 유효한 (Valid) 상향링크-하향링크 설정 증 하나 상의 DL SF 이 겹치는 경우에, 해당 (겹치는) SF위치에서, 단말 이 만약 TDD elMTA Cell의 Special SF에서 PDSCH를 스케줄링하는 DL Grant를 수신한다면, 이하규칙 2-A흑은 규칙 2-B가 적용될 수 있다.
[123] 규칙 2-A: 단말은 해당 DL Grant 가유효하지 않다 (Invalid)고 판단하고, 해당 SF위치에서 PDSCH수신 동작을 수행하지 않을수 있다.
[124] 규칙 2-B: 단말은 해당 DL Grant 가 유효하다 (Valid)고 판단하고, 해당 SF위치에서 PDSCH수신 동작을수행할수 있다 (혹은 단말이 해당 위치의 SF를 DL SF으로 간주하는 것으로도 해석 가능함).
[125] 이하에서는, 반송파 집성 기법 (CA)이 적용된 상황 하에서, 특정 셀 상의 무선 자원 용도가 부하 상태에 따라 동적으로 변경 (즉, elMTA Cell)되고, 단말 이 해당 셀들 (Aggregated Cells)상에서 동시 송 /수신 (Simultaneous TX and RX) 동작을수행하지 못할 때 상향링크 데이터 채널 (PUSCH) 스케줄링 관련 제어 정 보 (UL Grant)의 유효성을 판단하는 방법을 설명한다.
[126] 이하에서는 본 발명에 대한 설명의 편의를 위해서, 두 개의 샐들이 반송 파 집성 기법 (CA)으로 이용되는상황을 가정하지만, 본 발명이 세 개 이상의 셀 들이 반송파 집성 기법 (CA)으로 이용되는 상황에서도 확장 적용가능한 것은자 명한사실아다. [127】 또한, 이하 제 3 방안은 OTDD elMTA PCel 1 과 TDD (elMTA 혹은 Non- elMTA) SCell이 반송파 집성 기법으로 이용되고, TDD elMTA PCell이 폴백 모드 (Fallback Mode, 즉, SIB1 상향링크―하향링크 설정) 혹은 i i )TDD elMTA PCell 과 TDD (elMTA 혹은 Νοη-eIMTA) SCell 이 반송파 집성 기법으로 이용되고, TDD elMTA PCell 이 논 -폴백 모드 (Non— Fallback Mode)로 운영되는 경우에도 확장 적 용될 수 가 있다.
[128]
[129] 제 3방안
[130] TDD elMTA PCell 과 FDD SCell (즉, FDD UL CC, FDD DL CC)이 반송파 집 성 기법으로 이용되고, TDD elMTA PCell 이 폴백 모드 (Fallback Mode, 즉, SIB1 상향링크-하향링크설정)로운영될 때, 이하규칙 3-A내지 규칙 3-D를 기반으 로 FDD SCell 상의 상향링크 데이터 채널 (PUSCH) 전송 관련 스케줄링 정보 (UL Grant)의 유효성을 판단할수 있다.
[131] 만약, CCS Cross Carrier Scheduling) 흑은 셀프 스케즐링 (Self- Scheduling)의 경우 적용되는규칙 3-A내지 규칙 3-C를 먼저 설명한다.
[132] 규칙 3-A: (FDD UL CC 상의) 해당 PUSCH 전송이 TDD elMTA PCell 의 i) 하향링크 HARQ 참조 설정, ii)흑은 상향링크 HARQ 참조 설정 (UL HARQ Reference Configuration), iii) 혹은 SIB1 상향링크-하향링크 설정, iv)혹은 상향링크-참 조 HARQ타임라인 (UL-Reference HARQ Timeline), v)혹은 하향링크 -참조 HARQ타 임라인 (DL-Reference HARQ Timeline) 증 적어도하나에 따른 UL SF 위치와동일 한 위치에서 수행되어야 하는지의 여부에 따라, 해당 UL Grant 의 유효성 (Validation)이 결정될 수 있다.
[133] 구체적으로, TDD elMTA PCell 의 i)하향링크 HARQ 참조 설정, ii)혹은 상향링크 HARQ참조 설정 (UL HARQ Reference Configuration), iii)혹은 SIB1상 향링크-하향링크 설정, iv)혹은 상향링크 -참조 HARQ 타임라인 (UL-Reference HARQ Timeline), v)혹은 하향링크 -참조 HARQ 타임라인 (DL— Reference HARQ Timeline) 중 적어도 하나에 따른 UL SF 위치와 동일한 지점에서, 해당 FDD UL CC 상의 PUSCH 전송이 수행되어야 한다면, 단말은 해당 UL Grant 가 유효하다 (Valid)고 판단할 수 있다. 그러나, 상기 0내지 vi)에 따른 위치와 동일한 지 점이 아니라면면, 해당 UL Grant가유효하지 않다 (Invalid)고 판단할수 있다. [134] 규칙 3-B: 단말은 해당 UL Gf ant 가 (항상) 유효하지 않다 (Inval id)고 판단하고, FDD UL CC에서 .PUSCH송신 동작을 수행하지 않을 수 있다.
[135] 규칙 3— C: 단말은 해당 UL Grant 가 (항상) 유효하다 (Valid)고 판단하고, FDD UL CC에서 PUSCH송신 동작을 수행할수 있다.
[136] 또한, TDD elMTA PCell 과 FDD SCell (즉, FDD UL CC, FDD DL CC)이 반 송파 집성 기법으로 이용되고, TDD elMTA PCell 이 논 -폴백 모드 (Non-Fa 11 back Mode, 즉, 액츄얼 (Actual) 상향링크-하향링크 설정 (혹은 유효한 (Valid) 상향링 크-하향링크 설정)로 운영될 때, 규칙 3-D 를 기반으로 FDD SCell 상의 상향링 크 데이터 채널 (PUSCH) 전송 관련 스케즐링 정보 (UL Grant)의 유효성을 판단할 수 있다.
[137] 규칙 3—D: (FDD UL CC 상의) 해당 PUSCH 전송이 TDD elMTA PCell 의 i) 액츄얼 (Actual) 상향링크-하향링크 설정, Π)흑은 하향링크 HARQ 참조 설정, iii)흑은 상향링크 HARQ 참조 설정, iv)흑은 SIB1 상향링크-하향링크 설정, v) 흑은상향링크 -참조 HARQ타임라인, vi)하향링크 -참조 HARQ타임라인 중 적어도 하나에 따른 UL SF위치와동일한지점에서 수행되어야 한다면, 단말은 해당 UL Grant 가 유효하다 (Valid)고 판단할 수 있다. 그러나, 상기 i)내지 vi)에 따른 위치와 동일한 지점이 아니라면, 해당 UL Grant 가 유효하지 않다 (Invalid)고 판단할수 있다.
1138]
[139] 이하에서는, 반송파 집성 기법 (CA)이 적용된 상황 하에서, 특정 셀 상의 무선 자원 용도가 부하 상태에 따라 동적으로 변경 (즉, elMTA Cell)되고, 단말 이 해당 셀들 (Aggregated Cells) 상에서 동시 송 /수신 (Simultaneous TX and RX) 동작을 수행하지 못할 때, 비주기적 (Aperiodic) SRS(A-SRS) 전송 관련 트리거링 메시지 (triggering message, 예를 들어, UL grant 혹은 DL grant)의 유효성을 판단하는 방법을 설명한다.
[140] 이하에서는 본발명에 대한 설명의 편의를 위해서, 두 개의 샐들이 반송 파 집성 기법 (CA)으로 이용되는 상황을 가정하지만, 본 발명이 세 개 이상의 셀 들이 반송파 집성 기법 (CA)으로 이용되는 상황에서도 확장 적용가능한 것은자 명한사실이다. [1413 또한, 이하 제 4 방안^ i)TDD elMTA PCel.l 과 TDD (elMTA 흑은 Non- elMTA) SCel 1이 반송파 집성 기법으로 이용되고, TDD elMTA PCell이 폴백 모드 (Fallback Mode, 즉, SIBl 상향링크-하향링크 설정) 혹은 ii)TDD elMTA PCell 과 TDD (elMTA혹은 Νοη-eIMTA) SCell 이 반송파 집성 기법으로 이용되고, TDD elMTA PCell 이 논—폴백 모드 (Non-Fa 11 back Mode)로운영되는 경우에도 확장 적 용될 수 가 있다.
[142] 제 4방안
[143] TDD elMTA PCell 과 FDD SCell (즉, FDD UL CC, FDD DL CC)이 반송파 집 성 기법으로 이용되고, TDD elMTA PCell 이 폴백 모드 (Fallback Mode, 즉, SIBl 상향링크-하향링크 설정)로 운영될 때, 이하규칙 4-A내지 규칙 4-F증 적어도 하나를 기반으로 FDD SCell 상의 A-SRS 전송 관련 트리거링 메시지의 유효성을 판단할수 있다.
[144] 먼저, CCS(Cross Carrier Scheduling) 혹은 샐프-스케쥴링 (Self- Scheduling)의 경우, 제 4 방안이 적용되는 경우를 설명한다.
[145] 규칙 4-A: (FDD UL CC 상의) 해당 A-SRS 전송이 TDD elMTA PCell 의 i) 하향링크 HARQ참조 설정, ii)혹은 상향링크 HARQ참조 설정, iii)혹은 SIB1상 향링크-하향링크 설정 iv)혹은 상향링크 -참조 HARQ타임라인, V)흑은 하향링크- 참조 HARQ타임라인 중 적어도 하나에 따른 UL SF 위치, νθ그리고 /혹은 UpPTS 위치와동일한지점에서 수행되어야하는지의 여부에 따라, 해당트리거링 메시 지의 유효성 (Validation)이 결정될 수 있다.
[146] 구체적으로, TDD elMTA PCell 의 i)하향링크 HARQ 참조 설정, Π)혹은 상향링크 HARQ참조설정, iii)혹은 SIB1상향링크-하향링크 설정 iv)흑은 상향 링크 -참조 HARQ타임라인, V)혹은 하향링크 -참조 HARQ타임라인 중 적어도 하나 에 따른 UL SF 위치, vi)그리고 /흑은 UpPTS 위치와 동일한 지점에서 해당 (FDD UL CC상의) A-SRS 전송이 수행되어야 한다면, 단말은 해당 트리거링 메시지가 유효하다 (Valid)고판단할 수 있다. 반면에, 상기 i)내지 vi)에 따른 위치와동 일한 지점이 아니라면, 해당트리거링 메시지가유효하지 않다 (Invalid)고 판단 할수 있다.
[147] 규칙 4-B: (FDD UL CC상의) 해당 A-SRS 전송이 TDD elMTA PCell 의 i) 하향링크 HARQ참조 설정, ii)혹은 상향링크 HARQ참조 설정, iii)흑은 SIB1상 향링크-하향링크 설정 IV)혹은 상향 ¾크 -참조 HARQ타밈라인, V)혹은하향링크- 참조 HARQ 타임라인 중 적어도 하나에 따른 UL SF 위치, vi)그리고 /혹은 UpPTS 위치와 동일한 지점에서 해당 (FDD UL CC 상의) A-SRS 전송이 수행되어야 한다 면, 단말은 해당트리거링 메시지가유효하다 (Valid)고 판단한다.
[148] 반면에, 해당 A-SRS 전송이 TDD elMTA PCell의 TDD elMTA PCell의 i)하 향링크 HARQ 참조 설정, ii)혹은 상향링크 HARQ 참조 설정, iii)혹은 SIB1 상향 링크-하향링크 설정 iv)혹은상향링크 -참조 HARQ타임라인, V)혹은 하향링크-참 조 HARQ타임라인 중 적어도 하나에 따른 UL SF위치, vi)그리고 /혹은 UpPTS위 치와 다른 지점에서 해당 (FDD UL CC 상의) A-SRS 전송이 수행되어야 한다면, 단말은 오직 PUSCH 전송이 동시에 스케줄링된 경우 (즉, (FDD UL CC 상의) 하나 의 SF상에서 PUSCH와 A-SRS가동시에 전송되어야 하는 경우)에만 해당트리거 링 메시지가유효하다 (Valid)고 판단하고, 반면에 PUSCH 전송이 동시에 스케줄 링되지 않았다면 해당 트리거링 메시지가 유효하지 않다 (Invalid)고 판단할 수 있다.
[149] 규칙 4-C: 단말은 해당 A-SRS 전송이 수행되어야 하는 FDD UL CC 의 SF 상에서 PUSCH전송이 동시에 스케줄링된 경우 (즉, (FDD UL CC상의) 하나의 SF 상에서 PUSCH와 A-SRS가동시에 전송되어야하는 경우)에만, 해당 트리거링 메 시지가 유효하다 (Valid)고 판단할 수 있다. 반면에, PUSCH 전송이 동시에 스케 줄링되지 않았다면, 해당 트리거링 메시지가 유효하지 않다 (Invalid)고 판단할 수 있다.
[150] 규칙 4-D: 단말은 해당 트리거링 메시지가 (항상) 유효하지 않다 (Invalid)고 판단하고, FDD UL CC에서 A-SRS송신 동작을 수행하지 않을 수 있 다.
[151] 규칙 4-E: 단말은 해당 트리거링 메시지가 (항상) 유효하다 (Valid)고 판단하고, FDD UL CC에서 A-SRS송신 동작을 수행할수 있다.
[152] 또한, TDD elMTA PCell 과 FDD SCell (즉, FDD UL CC, FDD DL CC)이 반 송파 집성 기법으로 이용되고, TDD elMTA PCell 이 논 -폴백 모드 (Non— Fallback Mode, 즉, 액츄얼 (Actual) 상향링크-하향링크 설정 (혹은 Valid 상향링크 -하향 링크 설정))로 운영될 패, 규칙 4-F를 기반으로 FDD SCell 상의 A-SRS 전송 관 련 트리거링 메시지의 유효성을 판단할수 있다. [153] 규칙 4-F: (FDD UL CC 상의) 해당 A-SRS 전송이 TDD elMTA PCell 의 i) 액츄얼 (Actual) 상향링크-하향링크 설정, Π)혹은 하향링크 MRQ 참조 설정, iii)혹은 상향링크 HARQ 참조 설정, iv)혹은 SIB1 상향링크-하향링크 설정, v) 혹은 상향링크 -참조 HARQ타임라인, vi)흑은 하향링크 -참조 HARQ 타임라인에 따 른 UL SF 위치, vii)그리고 /혹은 UpPTS 위치와 동일한 지점에서 수행되어야 한 다면, 단말은 해당 트리거링 메시지가 유효하다 (Valid)고 판단할 수 있다. 그 러나, 상기 i) 내지 vii)에 따른 위치와 다른 지점에서 A-SRS 전송이 수행되어 야 한다면, 해당트리거링 메시지가유효하지 않다 (Invalid)고판단할수 있다.
[154]
[155] 이하에서는 반송파 집성 기법 (CA)이 적용된 상황 하에서 , 특정 셀 상의 무선 자원 용도가 부하 상태에 따라 동적으로 변경 (즉, elMTA Cell)되고, 단말 이 해당 셀들 (Aggregated Cells) 상에서 동시 송 /수신 (Simultaneous TX and RX) 동작을수행하지 못할 때, 주기적 (Periodic) SRS (P-SRS) 전송의 유효성올판단 하는 방법을 설명한다.
[156] 이하에서는 본 발명에 대한 설명의 편의를 위해서, 두 개의 셀들이 반송 파 집성 기법 (CA)으로 이용되는상황을 가정하지만, 본 발명이 세 개 이상의 셀 들이 반송파 집성 기법 (CA)으로 이용되는 상황에서도 확장 적용 가능한 것은 자 명한사실이다.
[157] 또한, 이하 제 5 방안은 i)TDD elMTA PCell 과 TDD (elMTA 혹은 Non- elMTA) SCell이 반송파 집성 기법으로 이용되고, TDD elMTA PCell이 폴백 모드 (Fallback Mode, 즉, SIB1 상향링크-하향링크 설정) 혹은 ii)TDD elMTA PCell 과 TDD (elMTA 혹은 Νοη-eIMTA) SCell 이 반송파 집성 기법으로 이용되고, TDD elMTA PCell 이 논 -폴백 모드 (Non-Fa 11 back Mode)로 운영되는 경우에도 확장 적 용될 수 가 있다.
[158] 제 5방안
[159] TDD elMTA PCell 과 FDD SCell (즉, FDD UL CC, FDD DL CC)이 반송파 집 성 기법으로 이용되고, TDD elMTA PCell 이 폴백 모드 (Fallback Mod, 즉, SIB1 상향링크-하향링크 설정)로 운영될 때, 이하 규칙 5-A 내지 5-F 에 기반하여 FDD SCell 상의 P-SRS전송의 유효성을 판단할수 있다. [160] 먼저, CCS(Cross Carrier Scheduling) 혹은 셀프 스케즐링 (Self- Scheduling)의 경우 제 5방안이 적용되는 경우를 설명한다.
[161] 규칙 5-A: (FDD UL CC 상의) 해당 P-SRS 전송이 TDD elMTA PCell 의 i) 하향링크 HARQ참조 설정, ii)흑은상향링크 HARQ 참조 설정, iii)흑은 SIB1상 향링크-하향링크 설정, iv)흑은 상향링크 -참조 HARQ타임라인, V)혹은 하향링크 -참조 HARQ타임라인 중 적어도 하나에 따른 UL SF 위치, vi)그리고 /흑은 UpPTS 위치와 동일한 지점에서 수행되어야 하는지의 여부에 따라, 해당 P-SRS 전송의 유효성 (Validation)이 결정될 수 있다.
[162] 구체적으로 TDD elMTA PCell 의 i)하향링크 HARQ 참조 설정, ii)혹은 상향링크 HARQ 참조 설정, iii)혹은 SIB1 상향링크-하향링크 설정, iv)혹은 상 향링크ᅳ참조 HARQ타임라인, V)흑은하향링크 -참조 HARQ타임라인 중 적어도 하 나에 따른 UL SF 위치, vi)그리고 /혹은 UpPTS 위치와 동일한 지점에서 해당 (FDD UL CC 상의) P-SRS 전송이 수행되어야 한다면 단말은 해당 P-SRS 전송이 유효하다 (Valid)고 판단할 수 있다. 그러나, i) 내지 vi)의 위치와 상이한 지 점에서 P-SRS 전송이 수행되어야 한다면, 해당 P-SRS 전송이 유효하지 않다 (Invalid)고 판단할수 있다.
[163] 규칙 5-B: (FDD UL CC 상의) 해당 P-SRS 전송이 TDD elMTA PCell 의 i) 하향링크 HARQ참조 설정, ii)혹은상향링크 HARQ 참조 설정, iii)혹은 SIB1상 향링크ᅳ하향링크 설정, iv)혹은상향링크 -참조 HARQ타임라인, V)혹은 하향링크 -참조 HARQ타임라인 증 적어도 하나에 따른 UL SF위치, vi)그리고 /혹은 UpPTS 위치와 동일한 지점에서 수행되어야 한다면, 단말은 해당 P-SRS 전송이 유효하 다 (Valid)고판단할 수 있다.
[164] 반면에, 해당 P-SRS 전송이 TDD e-IMTA PCell 의 i)하향링크 HARQ 참조 설정, ii)흑은 상향링크 HARQ 참조 설정, iii)혹은 SIB1 상향링크-하향링크 설 정, iv)혹은 상향링크—참조 HARQ 타임라인, V)혹은 하향링크—참조 HARQ 타임라 인 중 적어도 하나에 따른 UL SF 위치, vi)그리고 /혹은 UpPTS위치와 다른 지점 에서 수행되어야 한다면, 단말은 오직 PUSCH 전송이 동시에 스케줄링된 경우 (즉, (FDD UL CC상의 ) 하나의 SF상에서 PUSCH와 P— SRS가동시에 전송되어야 하는 경우)에만 해당 P-SRS 전송이 유효하다 (Valid)고 판단하고, 반면에 PUSCH 전송 이 동시에 스케즐링되지 않았다면 해당 P-SRS전송이 유효하지 않다 (Invalid)고 판단할 수 있다.
[165] 규칙 5-C: 단말은 해당 P-SRS 전송이 수행되어야 하는 FDD UL CC 의 SF 상에서 PUSCH 전송이 동시에 스케즐링된 경우 (즉, (FDD UL CC상의) 하나의 SF 상에서 PUSCH와 P— SRS가동시에 전송되어야 하는 경우)에만, 해당 P— SRS전송 이 유효하다 (Valid)고 판단한다. 반면에, PUSCH전송이 동시에 스케줄링되지 않 은 경우에는 해당 P-SRS전송이 유효하지 않다 (Invalid)고 판단한다.
[166] 규칙 5-D: 단말은 해당 P-SRS 전송이 (항상) 유효하지 않다 (Invalid)고 판단하고, FDD UL CC에서 P— SRS송신 동작을수행하지 않을수 있다.
[167] 규칙 5-E: 단말은 해당 P-SRS 전송이 (항상) 유효하다 (Valid)고 판단하 고, FDD UL CC에서 P-SRS송신 동작을 수행하지 않을수 있다.
[168] 또한, TDD elMTA PCell 과 FDD SCell (즉, FDD UL CC, FDD DL CC)이 반 송파 집성 기법으로 이용되고, TDD elMTA PCell 이 논 -폴백 모드 (Non-Fa 11 back Mode, 즉, 액츄얼 (Actual) 상향링크-하향링크 설정 (혹은 유효한 (Valid) 상향링 크-하향링크 설정)로 운영될 때, 이하규칙 5-F를 기반으로 FDD SCell 상의 P- SRS전송의 유효성을 판단할수 있다.
[169] 규칙 5-F: (FDD UL CC상의) 해당 P-SRS 전송이 TDD elMTA PCell 의 i) 액츄얼 (Actual) 상향링크―하향링크 설정, ii)흑은 하향링크 HARQ 참조 설정, iii)혹은 상향링크 HARQ 참조 설정, iv)흑은 SIB1 상향링크-하향링크 설정, v) 혹은상향링크—참조 HARQ타임라인, vi)혹은 하향링크 -참조 HARQ타임라인에 따 른 UL SF위치, vii)그리고 /혹은 UpPTS 위치와 동일한 지점에서 수행되어야 한 다면, 단말은 해당 P-SRS전송이 유효하다 (Valid)고 판단할수 있다. 그러나, i) 내지 vii)의 위치와 상이한 지점에서 P-SRS가 전송된다면, 해당 P-SRS 전송이 유효하지 않다 (Invalid)고 판단할수 있다.
[170]
[171] 상술한 본 발명의 제안 방법 및 이에 대한 실시예 /규칙 /설정들은 반송파 집성 기법 (CA)이 적용된 상황하에서, i)적어도 특정 하나의 셀의 무선 자원 용 도가 부하 상태에 따라 동적으로 변경될 경우, ii)적어도 특정 하나의 셀의 전 송 모드 (TM)가사전에 정의된 전송모드로 지정될 경우, iii)적어도특정 하나 의 샐 <예, TDD elMTA Cell)의 상향링크-하향링크 설정 (UL-'DL Configuration)이 특정 값으로 (재)설정된 경우 증 적어도 하나의 경우에만 한정적으로 적용되도 록 설정될 수 가 있다.
[172] 나아가, 상술한 본 발명의 제안 방법 /실시예 /규칙 /설정들 또한 본 발명 의 구현 방법들 중 '하나로 포함될 수 있으므로, 일종의 실시예들로 간주될 수 있음은 명백한 사실이다. 또한, 상술한 제안 방법 /실시예 /규칙 /설정들은 각각 독립적으로 구현될 수 도 있지만, 일부 제안 방법 /실시예 /규칙 /설정들의 조합 혹은 병합 형태로 구현될 수 도 있다.
[173] 나아가, 상술한 제안 방법 /실시예 /규칙 /설정들에 대한 정보 혹은 해당 제안 방법 /실시예 /규칙 /설정들의 적용 여부에 대한 정보등은, 기지국이 단말에 게 사전에 정의된 시그널 (예, 물리 계층흑은 상위 계층 시그널)을통해서 알려 즐수 가 있다.
[174] 나아가, 상술한 실시예들은 TDD Cell 과 FDD Cell 이 반송파 집성 기법 (CA)으로 이용되는 경우 (예, TDD (eIMTA/Non-eIMTA) PCell 과 FDD SCell 혹은 FDD PCell 과 TDD (eIMTA/Non-eIMTA) SCell)에만 한정적으로 적용되도록 설정될 수도 있다.
[175] 또한, 상술한 제안 방법 /실시예 /규칙 /설정들은 반송파 집성 기법 (CA)이 적용된 상황 하에서, (해당 샐들 (Aggregated Cells) 상에서 동시 송 /수신 (Simultaneous TX and RX) 동작을 수행하지 못하는 단말 (예, Half Duplex UE) 의 관점에서) Primary Cell (PCell) 상의 서브프레임 사용이 Secondary CelKSCell)의 것들 보다우선 (Prioritization) 되는 경우에만 한정적으로 적용 되도록 설정될 수 도 있다.
[176] 추가적으로 상술한 제안 방법 /실시예 /규칙 /설정들은 반송파 집성 기법 (CA)이 적용된 샐들 (Aggregated Cells) 상에서 동시 송 /수신 (Simultaneous TX and RX) 동작올 수행하지 못하는 단말 (그리고 /혹은 Half Duplex 단말)에게만 한정적으로 적용되도록 설정될 수가 있다.
[177] 또한, 상술한 제안 방법 /실시예 /규칙 /설정들은 서로 다른 (Different) TDD 상향링크-하향링크 설정 (예, SIB1 상향링크-하향링크 설정 (PCell), Radi oResour ceConf i gCommonSCe 11 IE (SCell))을 가지는 셀들이 반송파 집성 기 법 (CA)으로 이용되고, 이 중에 적어도 하나의 샐의 무선 자원 용도가부하상태 에 따라 동적으로 변경될 경우에도 확장 적용이 가능하다. [178] 도 12 는 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 예시 한다.
[179] 무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기 지국과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대 체될 수 있다.
[180] 도 12 를 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)을 포함한다. 기지국 (110)은 프로세서 (112), 메모리 ( 114) 및 무선 주파수 (Radio Frequency, RF) 유닛 ( 116)을포함한다. 프로세서 (112)는본 발명에서 제 안한 절차 및 /또는 방법들을 구현하도록구성될 수 있다. 메모리 ( 114)는 프로세 서 ( 112)와 연결되고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다. RF유닛 (116)은 프로세서 (112)와 연결되고 무선 신호를송신 및 /또는 수신한다. 단말 (120)은 프로세서 (122), 메모리 ( 124) 및 RF 유닛 ( 126)을 포함한다. 프로세 서 ( 122)는본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있 다. 메모리 (124)는 프로세서 ( 122)와 연결되고 프로세서 ( 122)의 동작과 관련한 다양한 정보를 저장한다. F 유닛 ( 126)은 프로세서 (122)와 연결되고 무선 신호 를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 ( 120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
[181] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형 태로 결합된 것들이다. 각구성요소또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실 시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구 성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구 성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
[1823 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라 서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국또는 기지국 이외의 다른 네트워 크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국 ( f ixed stat ion) , Node B, eNodeB(eNB) , 억세스 포인트 (access point ) 등의 용어에 의해 대체될 수 있다.
[183] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (f irmware) , 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨 어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(appl icat ion speci f ic integrated circui ts) , DSPs(digi tal signal processors) , DSPDsCdigital signal processing devices) , PLDs( rogrammable logi c devices) , FPGAs(f ield programmable gate arrays) , 프로세서, 콘트를러, 마이크로콘트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[184] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상 에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현 될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동 될 수 있다.
[185] 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공 지된 다양한수단에 의해 상기 프로세서와 데이터를주고 받을수 있다.
[186] 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태 로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모 든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발 명의 등가적 범위 내에서의 모든 변경은본 발명의 범위에 포함된다.
[187] 【산업상이용가능성】 ,
[188] 상술한 바와 같은 무선 자원의 용도 변경을 지원하는 무선 통신 시스템 에서 신호의 유효성을 판단하는 방법 및 이를 위한 장치는, 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims

ί청구의범위】
ί청구항 1】
반송파 집성 (Carrier aggregat ion) 및 무선 자원의 용도 변경을 지원하 는 무선 통신 시스템에서, 집성된 셀들 (aggregated cel ls)의 동시 송수신 (Simul taneous Recept ion and Transmi ssion)올지원하지 않는단말의 신호 수신 방법에 있어서,
프라이머리 샐 (primary cel l )의 스페셜 서브프레임 및 세컨더리 셀 (secondary cel l )의 하향링크 서브프레임에 대웅되는 특정 무선 자원 상에서, 상기 세컨더리 셀에 대한하향링크 제어 정보를 수신하는 단계; 및
상기 프라이머리 셀의 상향링크-하향링크 설정에 따라 상기 하향링크 제어 정보의 유효성을 판단하는 단계를 포함하며,
상기 하향링크 제어 정보는,
상기 프라이머리 셀이 논 -폴백 모드 (non-fal lback mode)인 경우 유효하 지 않다고 판단되며, 상기 프라이머리 샐이 폴백 모드 (fal lback mode)에 따른 TDDCTime Divi sion Duplex) 상향링크-하향링크 설정이고 상기 세컨더리 샐이 상 기 프라이머리 샐에 따라 크로스-캐리어 스케줄링되는 경우 유효하다고 판단되 ,
신호수신 방법 .
【청구항 2]
제 1항에 있어서,
상기 하향링크 제어 정보가 유효하다고 판단되는 경우, 상기 특정 무선 자원상에서 하향링크 데이터 채널 (Physi cal Downl ink Shared CHannel , PDSCH)을 수신하는 단계를 더 포함하는,
신호수신 방법ᅳ
【청구항 3】
제 1 항에 있어서,
상기 유효성을 판단하는 단계는,
상기 단말에 대하여 상기 스페셜 서브프레임과 동일한 시간 구간 상의 하향링크서브프레임에 대하여 하향링크 데이터 채널 (PDSCH)를 수신하지 않도특 설정된 경우에만수행되는 것을 특징으로 하는, 신호 수신 방법 .
【청구항 4】
반송파 집성 (Carrier aggregation) 및 무선 자원의 용도 변경을 지원하 는 무선 통신 시스템에서, 집성된 샐들 (aggregated cells)의 동시 송수신 (Simultaneous Reception and Transmission)을 지원하지 않는 단말에 있어서, 무선 주파수 유닛 ; 및
프로세서를포함하며,
상기 프로세서는, 프라이머리 셀 (primary cell)의 스페셜 서브프레임 및 세컨더리 셀 (secondary cell)의 하향링크 서브프레임에 대웅되는 특정 무선 자원 상에서, 상기 세컨더리 셀에 대한하향링크 제어 정보를수신하고,
상기 프라이머리 샐의 상향링크-하향링크 설정에 따라 상기 하향링크 제어 정보의 유효성을 판단하도록 구성되며,
상기 하향링크 제어 정보는,
상기 프라이머리 셀이 논 -풀백 모드 (non-fallback mode)인 경우 유효하 지 않다고 판단되며, 상기 프라이머리 셀이 폴백 모드 (fallback mode)에 따른 TDDCTime Division Duplex) 상향링크-하향링크 설정이고 상기 세컨더리 샐이 상 기 프라이머리 셀에 따라 크로스—캐리어 스케즐링되는 경우 유효하다고 판단되 느 _ 단말.
【청구항 5】
반송파 집성 (Carrier aggregation) 및 무선 자원의 용도 변경을 지원하 는 무선 통신 시스템에서, 집성된 셀들 (aggregated cells)의 동시 송수신 (Simultaneous Reception and Transmission)을 지원하지 않는 단말의 신호 송신 방법에 있어서,
프라이머리 셀 (primary cell)의 스페셜 서브프레임 및 세컨더리 셀
(secondary cell)의 하향링크 서브프레임에 대웅되는 특정 무선 자원 상의 상기 세컨더리 셀에 대한상향링크 제어 정보를 수신하는 단계; 및
상기 프라이머리 셀의 상향링크-하향링크 설정에 따라 상기 상향링크 제어 정보의 유호성을 판단하는 단계를 포함하며,
상기 상향링크 제어 정보는, 상기 프라이머리 셀이 논 -폴백 모드 (non-fa U back mode)인 경우 유효하 지 않다고 판단되며, 상기 프라이머리 셀이 폴백 모드 ( fal lbad mode)에 따른 TDD(Time Division Du lex) 상향링크-하향링크 설정이고 상기 특정 무선 자원이 무선 자원의 용도가고정된 경우 유효하다고 판단되는,
신호 송신 방법 .
【청구항 6】
제 5항에 있어서,
상기 무선 자원의 용도가고정된 경우는,
하향링크 HARQ 참조 설정, 상향링크 HARQ 참조 설정, SIB 기반 상향링 크-하향링크 설정, 상향링크 참조 HARQ타임라인, 혹은 하향링크 -HARQ타임라인 중 적어도하나의 상향링크서브프레임에 대웅되는 경우인,
신호 송신 방법 .
【청구항 7】
제 5 항에 있어서,
상기 상향링크 제어 정보가 유효하다고 판단되는 경우, 상기 특정 무선 자원상에서 상향링크 데이터 채널 (Physical Upl ink Shared CHannel , PUSCH)을 송신하는 단계를 더 포함하는,
신호 송신 방법 .
【청구항 8】
반송파 집성 (Carr i er aggregat ion) 및 무선 자원의 용도 변경을 지원하 는 무선 통신 시스템에서, 집성된 샐들 (aggregated cel l s)의 동시 송수신 (Simul taneous Recept ion and Transmi ssion)을 지원하지 않는 단말의 신호 송신 방법에 있어서,
프라이머리 셀 (primary cel l )의 스페셜 서브프레임 및 세컨더리 샐 (secondary cel l )의 하향링크 서브프레임에 대응되는 특정 무선 자원 상의 상기 세컨더리 셀에 대한 SRS(Sounding Reference Signal ) 트리거링 메시지를수신하 는 단계; 및
상기 프라이머리 샐의 상향링크-하향링크 설정에 따라 상기 SRS 트리거 링 메시지의 유효성을 판단하는 단계를 포함하며,
상기 SRS트리거링 메시지는, 상기 프라이머리 샐이 논 -풀백 모드 (non-fal lback mode)인 경우 유효하 지 않다고 판단되며, 상기 프라이머리 셀이 폴백 모드 (fal lback mode)에 따른 TDD(Time Division Duplex) 상향링크-하향링크 설정이고 상기 특정 무선 자원이 상향링크용도로 고정된 경우유효하다고 판단되는,
신호송신 방법 .
【청구항 9]
제 8항에 있어서,
상기 SRS트리거링 메시지는,
상기 특정 무선 자원 상에서 상향링크 데이터 채널 (PUSCH)와 상기 SRS 가동시에 스케즐링된 경우유효하다고 판단되는
신호 송신 방법 .
PCT/KR2015/002296 2014-03-10 2015-03-10 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 신호의 유효성 판단 방법 및 이를 위한 장치 WO2015137698A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016570754A JP6360202B2 (ja) 2014-03-10 2015-03-10 無線リソースの用途変更を支援する無線通信システムにおける信号の有効性判断方法及びそのための装置
EP15762192.1A EP3119027A4 (en) 2014-03-10 2015-03-10 Method for determining validity of signal in wireless communication system supporting usage change of radio resource, and apparatus therefor
CN201580013023.9A CN106105083B (zh) 2014-03-10 2015-03-10 在支持无线电资源的使用变化的无线通信系统中确定信号有效性的方法及用于其的装置
US15/122,803 US10097335B2 (en) 2014-03-10 2015-03-10 Method for determining validity signal in wireless communication system supporting usage change of radio resource, and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461950811P 2014-03-10 2014-03-10
US61/950,811 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015137698A1 true WO2015137698A1 (ko) 2015-09-17

Family

ID=54072069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002296 WO2015137698A1 (ko) 2014-03-10 2015-03-10 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 신호의 유효성 판단 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (1) US10097335B2 (ko)
EP (1) EP3119027A4 (ko)
JP (1) JP6360202B2 (ko)
CN (1) CN106105083B (ko)
WO (1) WO2015137698A1 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9854568B2 (en) * 2014-10-03 2017-12-26 Qualcomm Incorporated Techniques for transmitting a control channel and a data channel over multiple component carriers
WO2016086415A1 (zh) 2014-12-05 2016-06-09 华为技术有限公司 一种tdd上下行不同配置的定位方法和装置
US10257807B2 (en) * 2014-12-05 2019-04-09 Lg Electronics Inc. Method and apparatus for supporting variable transport block size without associated downlink control information in wireless communication system
US9820264B2 (en) 2015-03-09 2017-11-14 Ofinno Technologies, Llc Data and multicast signals in a wireless device and wireless network
US9820298B2 (en) 2015-03-09 2017-11-14 Ofinno Technologies, Llc Scheduling request in a wireless device and wireless network
US10182406B2 (en) 2015-03-09 2019-01-15 Comcast Cable Communications, Llc Power headroom report for a wireless device and a base station
US10700845B2 (en) 2015-03-09 2020-06-30 Comcast Cable Communications, Llc Secondary cell deactivation in a wireless device and a base station
US10327236B2 (en) 2015-03-09 2019-06-18 Comcast Cable Communications, Llc Secondary cell in a wireless device and wireless network
US11641255B2 (en) 2015-04-05 2023-05-02 Comcast Cable Communications, Llc Uplink control information transmission in a wireless network
US9877334B2 (en) * 2015-04-05 2018-01-23 Ofinno Technologies, Llc Cell configuration in a wireless device and wireless network
US10200177B2 (en) 2015-06-12 2019-02-05 Comcast Cable Communications, Llc Scheduling request on a secondary cell of a wireless device
US9894681B2 (en) 2015-06-12 2018-02-13 Ofinno Technologies, Llc Uplink scheduling in a wireless device and wireless network
US9948487B2 (en) 2015-06-15 2018-04-17 Ofinno Technologies, Llc Uplink resource allocation in a wireless network
US10547426B2 (en) * 2016-03-14 2020-01-28 Samsung Electronics Co., Ltd. Transmission of sounding reference signals in communication systems with carrier aggregation
US10756868B2 (en) * 2016-07-01 2020-08-25 Qualcomm Incorporated Techniques for transmitting a physical uplink shared channel in an uplink pilot time slot
US10686628B2 (en) * 2016-11-14 2020-06-16 Intel IP Corporation Access point (AP), station (STA) and methods of channel sounding in accordance with contention based access
KR20190104376A (ko) * 2017-02-17 2019-09-09 엘지전자 주식회사 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
US20180343132A1 (en) * 2017-05-25 2018-11-29 Qualcomm Inc. Enhanced resource sharing for prs measurements
US11160050B2 (en) * 2018-03-28 2021-10-26 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
JP6938770B2 (ja) 2018-04-04 2021-09-22 株式会社ソニー・インタラクティブエンタテインメント 通信装置、生成データサイズ制御方法及びプログラム
US11245890B2 (en) * 2018-04-04 2022-02-08 Sony Interactive Entertainment Inc. Communication apparatus, generated data size control method, communication method, and program
BR112022012318A2 (pt) 2019-12-31 2022-11-22 Qualcomm Inc Gerenciamento de programação de portador cruzado de célula primária

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165160A1 (ko) * 2012-04-30 2013-11-07 엘지전자 주식회사 무선 통신 시스템에서 무선 자원의 동적 할당 방법 및 이를 위한 장치
US20130301564A1 (en) * 2012-05-10 2013-11-14 Qualcomm Incorporated Interaction of sounding reference signals with uplink channels for coordinated multi-point operations

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254329A1 (en) * 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
US8780860B2 (en) * 2010-05-01 2014-07-15 Pantech Co., Ltd. Apparatus and method for transmitting sounding reference signal in wireless communication system supporting multiple component carriers
WO2012049804A1 (ja) 2010-10-12 2012-04-19 パナソニック株式会社 通信装置及び通信方法
US9277398B2 (en) * 2011-08-22 2016-03-01 Sharp Kabushiki Kaisha User equipment capability signaling
KR20130054896A (ko) 2011-11-17 2013-05-27 삼성전자주식회사 시분할 이중화 통신 시스템에서 물리채널 송수신의 제어 방법 및 장치
CN107529228B (zh) 2012-02-29 2021-12-03 三星电子株式会社 用于收发与支持半双工传输的终端相关的信道的方法和装置
WO2013176531A1 (ko) 2012-05-25 2013-11-28 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
US9497747B2 (en) 2012-06-22 2016-11-15 Qualcomm Incorporated Data transmission in carrier aggregation with different carrier configurations
US10003452B2 (en) * 2012-11-09 2018-06-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for operation with carrier aggregation of time division duplex cells
US9306725B2 (en) * 2013-03-13 2016-04-05 Samsung Electronics Co., Ltd. Channel state information for adaptively configured TDD communication systems
US9853779B2 (en) * 2014-01-10 2017-12-26 Sharp Kabushiki Kaisha Systems and methods for carrier aggregation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165160A1 (ko) * 2012-04-30 2013-11-07 엘지전자 주식회사 무선 통신 시스템에서 무선 자원의 동적 할당 방법 및 이를 위한 장치
US20130301564A1 (en) * 2012-05-10 2013-11-14 Qualcomm Incorporated Interaction of sounding reference signals with uplink channels for coordinated multi-point operations

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "PDSCH timing with TDD as PCell for FDD-TDD CA", R1-134095, 3GPP TSG RAN WG1 MEETING #74BIS, 28 September 2013 (2013-09-28), Guangzhou, China, XP050717287 *
CATT: "PUSCH timing with TDD as PCell for FDD-TDD CA", R1-134096, 3GPP TSG RAN WG1 MEETING #74BIS, 28 September 2013 (2013-09-28), Guangzhou, China, XP050717288 *
See also references of EP3119027A4 *
SHARP: "Support of non simultaneous Rx/Tx capable UEs for TDD-FDD carrier aggregation", RL-140644, 3GPP TSG RAN WG1 MEETING #76, 1 February 2014 (2014-02-01), Prague, Czech Republic, XP050736169 *

Also Published As

Publication number Publication date
EP3119027A4 (en) 2017-11-08
CN106105083A (zh) 2016-11-09
CN106105083B (zh) 2019-08-16
US10097335B2 (en) 2018-10-09
JP6360202B2 (ja) 2018-07-18
JP2017512448A (ja) 2017-05-18
US20170111159A1 (en) 2017-04-20
EP3119027A1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6360202B2 (ja) 無線リソースの用途変更を支援する無線通信システムにおける信号の有効性判断方法及びそのための装置
KR101857667B1 (ko) 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 상향링크 제어 채널 송신 방법 및 이를 위한 장치
JP6396494B2 (ja) 無線リソースの用途変更を支援する無線通信システムにおいて上りリンク制御情報送信方法及びそのための装置
EP2943030B1 (en) Method for transceiving signal based on dynamic change of wireless resource in wireless communications system and appratus therefor
KR102031094B1 (ko) 무선 통신 시스템에서 무선 자원의 동적 할당 방법 및 이를 위한 장치
WO2014119880A1 (ko) 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치
WO2014148796A1 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2014129848A1 (ko) 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 이를 위한 장치
US9918306B2 (en) Method for receiving downlink control channel by means of terminal in wireless communication system and apparatus for same
JP6325134B2 (ja) 無線リソースの用途変更を支援する無線通信システムにおけるフォールバック(fallback)モードの上りリンク信号送信方法及びそのための装置
KR20160078344A (ko) 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 제어 정보 송수신 방법 및 이를 위한 장치
KR102284363B1 (ko) 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치
JP6445142B2 (ja) 搬送波集成を支援する無線通信システムにおける信号送受信方法及びそのための装置
KR102300037B1 (ko) 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치
KR20150090054A (ko) 무선 통신 시스템에서 하향링크 제어 채널을 모니터링하는 방법 및 이를 위한 장치
KR20170040192A (ko) 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2014119954A1 (ko) 반송파 집성(carrier aggregation)을 이용한 통신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570754

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122803

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015762192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015762192

Country of ref document: EP