WO2015135680A1 - Spark plasma sintering having improved strength of the fusion zone - Google Patents

Spark plasma sintering having improved strength of the fusion zone Download PDF

Info

Publication number
WO2015135680A1
WO2015135680A1 PCT/EP2015/051659 EP2015051659W WO2015135680A1 WO 2015135680 A1 WO2015135680 A1 WO 2015135680A1 EP 2015051659 W EP2015051659 W EP 2015051659W WO 2015135680 A1 WO2015135680 A1 WO 2015135680A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
laser
plasma sintering
spark plasma
joining surface
Prior art date
Application number
PCT/EP2015/051659
Other languages
German (de)
French (fr)
Inventor
Bernd Burbaum
Michael Ott
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015135680A1 publication Critical patent/WO2015135680A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/234Laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/605Crystalline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/606Directionally-solidified crystalline structures

Definitions

  • the invention relates to a joining method and a gas turbine component produced by the joining method.
  • Sintering method with which a component made of a powdery starting material can be finished.
  • this starting material is placed in a mold, placed under high pressure and a continuous or pulsed current
  • the spark plasma sintering method (omitting a form) can also be used for joining macroscopic components.
  • the aim is to achieve the strongest possible connection of the components joined in this way.
  • the invention therefore sets itself the task of specifying an improved joining method for joining two components.
  • the invention therefore introduces a method for connecting a first component to a second component.
  • the method has at least the following steps:
  • the laser remelting is a method in which the surface-surface of a workpiece with a laser irradiated and melted on ⁇ .
  • the laser is moved over the surface, so that the surface is melted successively.
  • the laser working point leaves a respective point, it solidifies again, wherein the solidifying melt pool has properties deviating from the unprocessed parts of the workpiece.
  • an additional step of laser remelting of the joining surface of the second component is carried out prior to placement.
  • the area around the joining surface of the second component as described above is advantageous bear ⁇ beitet before the spark plasma sintering method is used to join the two components.
  • Crystal orientation of the first component is particularly preferred by the laser remelting aligned with a crystal of ⁇ direction of the second component, so that after the step of placing the first and second components have Wenig ⁇ least approximately the same crystal orientations.
  • the fact observed during test procedures by the inventors is exploited that an epitaxial growth can be observed in the region of the joining zone, ie a crystal orientation of one of the components in the joining zone and the joining partner is adopted.
  • a large-area disturbance of the internal structure of the component joined in this way along the joining surfaces can be avoided.
  • the undisturbed continuation of the crystal alignments on both sides of the joining zone causes a particularly strong connection of the two output components.
  • the crystals grow in the direction of the largest temperature gradient, usually from the surface heated by the laser, to the interior of the workpiece.
  • the method according to the invention is particularly suitable for components made of difficult-to-weld metals (for example
  • At least one of the first and second members preferably includes a nickel-base superalloy or is made of the nickel-base superalloy.
  • a dendritic crystal structure can be generated.
  • the dendrites are usually arranged perpendicular or approximately perpendicular to the laser-melted joining surface.
  • the joining surface is preferably laser remelted to a depth of at least 50 micrometers in order to allow a sufficiently wide joining zone.
  • the depth amounts to be ⁇ vorzugt less than one millimeter, since a greater remelt depth is difficult to achieve and would bring no further advantages that would justify the increased processing time.
  • the first component can be applied at a pressure of 1 to 40 megapascals during the Spark Plasma Sintering process second component to be pressed. Also, the first and the second component during the spark plasma sintering procedural ⁇ proceedings to a temperature of 1000 to 1200 degrees Celsius can he get too hot ⁇ . Suitable heating and cooling rates may be in the range of 20 to 200 Kelvin per minute. During the spark plasma sintering process, a GE ⁇ Pulster or a continuous stream through the first and the second component can be guided.
  • a second aspect of the invention relates to a gas turbine component made according to the method of the invention.
  • An example of such a gas turbine component is a gas turbine blade .
  • the procedural ⁇ ren invention can be nenkomponenten for the production of other machines and use workpieces however.
  • FIGURE shows a cross-section through a workpiece 1, which consists of a nickel-base superalloy and whose upper surface 2 lying in the image above and extending into the depth of the image has been remelted by a laser remelting process.
  • the laser-remelted zone 3 is delimited by a curved dashed line from the unchanged part 4 of the workpiece.
  • the laser was directed from a direction of incidence ⁇ 5 on the surface 2 of the workpiece 1.
  • a laser power of, for example, 75 to 100 watts can be used when the laser is at a speed of 40 to 60 milli-seconds. meter per minute over the surface of the workpiece. This results in a melt pool depth of about 200 to 300 microns. In the present case, work was carried out over a width of a few millimeters.
  • parameters deviating from these specifications for laser remelting can be determined by the person skilled in the art.

Abstract

The invention relates to a method for connecting a first component (1) to a second component. The method comprises at least the following steps: laser remelting a joining area (2) of the first component (1); placing the laser-remelted joining area (2) of the first component (1) onto a joining area of the second component; and connecting the first component (1) placed onto the second component to the second component by means of a spark plasma sintering procedure. The invention further relates to a gas turbine component produced according to the method of the invention.

Description

Spark Plasma Sintering mit verbesserter Festigkeit der  Spark plasma sintering with improved strength of
Fügezone  joint zone
Technisches Gebiet Technical area
Die Erfindung betrifft ein Fügeverfahren und eine mit dem Fügeverfahren gefertigte Gasturbinenkomponente. The invention relates to a joining method and a gas turbine component produced by the joining method.
Technischer Hintergrund Technical background
Bauteile von Maschinen wie Gasturbinen, die unter hohen mechanischen, chemischen und thermischen Belastungen betrieben werden, werden häufig aus nickalbasierten Superlegierungen hergestellt. Dabei ist jedoch nachteilig, dass solche Nickel¬ basissuperlegierungen sich wegen des hohen Anteils an intermetallischer Phase schwierig schweißen oder zusammenfügen lassen . Aus der Familie der Sinterverfahren ist das Spark PlasmaComponents of machines such as gas turbines, which are operated under high mechanical, chemical and thermal loads, are often made of nickel-based superalloys. However, it is disadvantageous that such nickel base superalloys ¬ be welded difficult because of the high proportion of intermetallic phase or can be joined together. From the family of sintering processes is the Spark Plasma
Sintering Verfahren bekannt, mit dem ein Bauteil aus einem pulverförmigen Ausgangsstoff fertigen lässt. Dazu wird dieser Ausgangsstoff in eine Form gegeben, unter hohen Druck gesetzt und ein kontinuierlicher oder gepulster Strom Sintering method is known, with which a component made of a powdery starting material can be finished. For this purpose, this starting material is placed in a mold, placed under high pressure and a continuous or pulsed current
hindurchgeleitet. Nach jüngeren Erkenntnissen der Erfinder lässt sich das Spark Plasma Sintering Verfahren (unter Weglassen einer Form) jedoch auch zum Zusammenfügen makroskopischer Bauteile verwenden. Ziel ist es dabei, eine möglichst feste Verbindung der derart zusammengefügten Bauteile zu er- reichen. passed. According to recent findings of the inventors, however, the spark plasma sintering method (omitting a form) can also be used for joining macroscopic components. The aim is to achieve the strongest possible connection of the components joined in this way.
Die Erfindung macht es sich daher zur Aufgabe, ein verbessertes Fügeverfahren zum Verbinden zweier Bauteile anzugeben. Zusammenfassung der Erfindung The invention therefore sets itself the task of specifying an improved joining method for joining two components. Summary of the invention
Die Erfindung führt daher ein Verfahren zum Verbinden eines ersten Bauteils mit einem zweiten Bauteil ein. Das Verfahren weist wenigstens folgende Schritte auf: The invention therefore introduces a method for connecting a first component to a second component. The method has at least the following steps:
- Laserumschmelzen einer Fügefläche des ersten Bauteils; - Laser remelting a joining surface of the first component;
- Aufsetzen der laserumgeschmolzenen Fügefläche des ersten Bauteils auf eine Fügefläche des zweiten Bauteils; und  - placing the laser-remelted joining surface of the first component onto a joining surface of the second component; and
- Verbinden des auf das zweite Bauteil aufgesetzten ersten Bauteils mit dem zweiten Bauteil durch ein Spark Plasma - Connecting the first component mounted on the second component with the second component by a spark plasma
Sintering Verfahren. Sintering procedure.
Das Laserumschmelzen ist ein Verfahren, bei dem die Oberflä- che eines Werkstücks mit einem Laser bestrahlt und auf¬ geschmolzen wird. Der Laser wird dabei über die Oberfläche verfahren, so dass die Oberfläche sukzessive aufgeschmolzen wird. Sobald der Laserarbeitspunkt eine jeweilige Stelle ver- lässt, erstarrt diese wieder, wobei der erstarrende Schmelz- pool von dem unbearbeiteten Teilen des Werkstücks abweichende Eigenschaften aufweist. So wird durch das Laserumschmelzen der Fügefläche des ersten Bauteils dessen Porosität im Be¬ reich der Fügefläche reduziert oder entfernt, so dass sich nach Anwendung des Spark Plasma Sintering Verfahrens eine festere Fügezone ergibt. The laser remelting is a method in which the surface-surface of a workpiece with a laser irradiated and melted on ¬. The laser is moved over the surface, so that the surface is melted successively. As soon as the laser working point leaves a respective point, it solidifies again, wherein the solidifying melt pool has properties deviating from the unprocessed parts of the workpiece. Thus, reducing its porosity Be ¬ area of the joining surface by the laser remelting of the joint surface of the first component or removed so that a firmer joining zone results in the application of the spark plasma sintering method.
Vorzugsweise wird vor dem Aufsetzen ein zusätzlicher Schritt des Laserumschmelzens der Fügefläche des zweiten Bauteils durchgeführt. Dadurch wird auch der Bereich um die Fügefläche des zweiten Bauteils wie oben beschrieben vorteilhaft bear¬ beitet, bevor das Spark Plasma Sintering Verfahren verwendet wird, um die beiden Bauteile zusammenzufügen. Preferably, an additional step of laser remelting of the joining surface of the second component is carried out prior to placement. A result, the area around the joining surface of the second component as described above is advantageous bear ¬ beitet before the spark plasma sintering method is used to join the two components.
Besonders bevorzugt wird durch das Laserumschmelzen eine Kristallausrichtung des ersten Bauteils an eine Kristallaus¬ richtung des zweiten Bauteils angeglichen, so dass nach dem Schritt des Aufsetzens das erste und zweite Bauteil wenigs¬ tens näherungsweise gleiche Kristallausrichtungen aufweisen. Hierbei wird die bei Testdurchführungen durch die Erfinder beobachtete Tatsache ausgenutzt, dass sich im Bereich der Fügezone ein epitaktisches Aufwachsen beobachtet werden kann, also eine Kristallorientierung eines der Bauteile in die Fügezone und den Fügepartner übernommen wird. Indem die Kristallausrichtungen der beiden Fügepartner durch das Laserum- schmelzen gezielt angeglichen werden, kann eine entlang der Fügeflächen verlaufende großflächige Störung des inneren Ge- füges des derart zusammengefügten Bauteils vermieden werden. Die ungestörte Fortführung der Kristallausrichtungen beiderseits der Fügezone bewirkt eine besonders fest Verbindung der beiden Ausgangsbauteile. Beim Laserumschmelzen wachsen die Kristalle in der Richtung des größten Temperaturgradienten, der üblicherweise von der durch den Laser erhitzten Oberflä- che ins Innere des Werkstücks zeigt. Crystal orientation of the first component is particularly preferred by the laser remelting aligned with a crystal of ¬ direction of the second component, so that after the step of placing the first and second components have Wenig ¬ least approximately the same crystal orientations. In this case, the fact observed during test procedures by the inventors is exploited that an epitaxial growth can be observed in the region of the joining zone, ie a crystal orientation of one of the components in the joining zone and the joining partner is adopted. By specifically aligning the crystal orientations of the two joining partners by laser remelting, a large-area disturbance of the internal structure of the component joined in this way along the joining surfaces can be avoided. The undisturbed continuation of the crystal alignments on both sides of the joining zone causes a particularly strong connection of the two output components. In laser remelting, the crystals grow in the direction of the largest temperature gradient, usually from the surface heated by the laser, to the interior of the workpiece.
Das erfindungsgemäße Verfahren ist besonders geeignet, Bau¬ teile aus schwierig schweißbaren Metallen (etwa The method according to the invention is particularly suitable for components made of difficult-to-weld metals (for example
Refraktärmetallen) und Legierungen miteinander zu verbinden. Daher enthält vorzugsweise wenigstens eines von erstem und zweitem Bauteil eine Nickelbasissuperlegierung oder besteht aus der Nickelbasissuperlegierung. Refractory metals) and alloys. Therefore, at least one of the first and second members preferably includes a nickel-base superalloy or is made of the nickel-base superalloy.
Bei dem Laserumschmelzen kann eine dendritische Kristall- struktur erzeugt werden. Die Dendriten sind dabei gewöhnlich senkrecht oder näherungsweise senkrecht zu der laserumge- schmolzenen Fügefläche angeordnet. During the laser remelting, a dendritic crystal structure can be generated. The dendrites are usually arranged perpendicular or approximately perpendicular to the laser-melted joining surface.
Vorzugsweise wird die Fügefläche bis in eine Tiefe von we- nigstens 50 Mikrometern laserumgeschmolzen, um eine genügend breite Fügezone zu ermöglichen. Die Tiefe beträgt dabei be¬ vorzugt weniger als einen Millimeter, da eine größere Um- schmelztiefe schwierig zu erreichen ist und keine weiteren Vorteile brächte, die die erhöhte Prozessdauer rechtfertigen würden. The joining surface is preferably laser remelted to a depth of at least 50 micrometers in order to allow a sufficiently wide joining zone. The depth amounts to be ¬ vorzugt less than one millimeter, since a greater remelt depth is difficult to achieve and would bring no further advantages that would justify the increased processing time.
Das erste Bauteil kann während des Spark Plasma Sintering Verfahrens mit einem Druck von 1 bis 40 Megapascal auf das zweite Bauteil gepresst werden. Außerdem können das erste und das zweite Bauteil während des Spark Plasma Sintering Verfah¬ rens auf eine Temperatur von 1000 bis 1200 Grad Celsius er¬ hitzt werden. Geeignete Erwärmungs- und Abkühlraten können in dem Bereich zwischen 20 bis 200 Kelvin pro Minute liegen. Während des Spark Plasma Sintering Verfahrens kann ein ge¬ pulster oder ein kontinuierlicher Strom durch das erste und das zweite Bauteil geleitet werden. Für das Verbinden der beiden Bauteile durch das Spark Plasma Sintering Verfahren kann eine Zeit von 3 bis 60 Minuten aufgewendet werden, wobei sich durch das Erwärmen und Abkühlen eine Gesamtdauer für die Durchführung des Spark Plasma Sintering Verfahrens eine Dauer von etwa 2 bis 3 Stunden ergeben kann. Ein zweiter Aspekt der Erfindung betrifft eine Gasturbinenkomponente, die gemäß dem erfindungsgemäßen Verfahren gefertigt wurde. Ein Beispiel für eine solche Gasturbinenkomponen¬ te ist eine Gasturbinenschaufel. Das erfindungsgemäße Verfah¬ ren lässt sich jedoch auch für die Fertigung anderer Maschi- nenkomponenten und Werkstücke verwenden. The first component can be applied at a pressure of 1 to 40 megapascals during the Spark Plasma Sintering process second component to be pressed. Also, the first and the second component during the spark plasma sintering procedural ¬ proceedings to a temperature of 1000 to 1200 degrees Celsius can he get too hot ¬. Suitable heating and cooling rates may be in the range of 20 to 200 Kelvin per minute. During the spark plasma sintering process, a GE ¬ Pulster or a continuous stream through the first and the second component can be guided. For the connection of the two components by the spark plasma sintering method, a time of 3 to 60 minutes can be spent, whereby the heating and cooling a total time for performing the spark plasma sintering process can result in a duration of about 2 to 3 hours , A second aspect of the invention relates to a gas turbine component made according to the method of the invention. An example of such a gas turbine component is a gas turbine blade . The procedural ¬ ren invention can be nenkomponenten for the production of other machines and use workpieces however.
Ausführungsbeispiel Die Erfindung wird nachfolgend anhand einer Abbildung eines Ausführungsbeispiels näher beschrieben. Die einzige Figur zeigt einen Querschnitt durch ein Werkstück 1, das aus einer Nickelbasissuperlegierung besteht und dessen im Bild oben liegende und in die Tiefe der Abbildung verlaufende Oberflä- che 2 durch ein Laserumschmelzverfahren umgeschmolzen wurde. Die laserumgeschmolzene Zone 3 ist dabei durch eine gebogene gestrichelte Linie von dem unveränderten Teil 4 des Werkstücks abgegrenzt. Der Laser wurde dabei aus einer Einfall¬ richtung 5 auf die Oberfläche 2 des Werkstücks 1 gerichtet. EXEMPLARY EMBODIMENT The invention will be described in more detail below with reference to an illustration of an embodiment The single FIGURE shows a cross-section through a workpiece 1, which consists of a nickel-base superalloy and whose upper surface 2 lying in the image above and extending into the depth of the image has been remelted by a laser remelting process. The laser-remelted zone 3 is delimited by a curved dashed line from the unchanged part 4 of the workpiece. The laser was directed from a direction of incidence ¬ 5 on the surface 2 of the workpiece 1.
Für die Bearbeitung des gezeigten Werkstücks kann eine Laserleistung von beispielsweise 75 bis 100 Watt verwendet werden, wenn der Laser mit einer Geschwindigkeit von 40 bis 60 Milli- meter pro Minute über die Oberfläche des Werkstücks verfahren wird. Dadurch ergibt sich eine Schmelzpooltiefe von etwa 200 bis 300 Mikrometern. Vorliegend wurde über eine Breite von einigen Millimetern gearbeitet. Es können selbstredend vom Fachmann von diesen Angaben abweichende Parameter für das Laserumschmelzen bestimmt werden. For processing the workpiece shown, a laser power of, for example, 75 to 100 watts can be used when the laser is at a speed of 40 to 60 milli-seconds. meter per minute over the surface of the workpiece. This results in a melt pool depth of about 200 to 300 microns. In the present case, work was carried out over a width of a few millimeters. Of course, parameters deviating from these specifications for laser remelting can be determined by the person skilled in the art.
In der Abbildung sind die senkrecht zur Oberfläche 2 stehen¬ den dendritischen Kristallstrukturen deutlich zu erkennen. Wenn diese Kristallausrichtung mit der eines auf die Oberflä¬ che 2 aufgebrachten weiteren Werkstücks übereinstimmt, bei¬ spielsweise weil die entsprechende Oberfläche des weiteren Werkstücks ebenfalls durch Laserumschmelzen behandelt wurde, ergibt sich nach Anwendung des Spark Plasma Sintering Verfah- ren eine besonders fest Fügestelle, die zu einem resultieren¬ den Bauteil mit besonderer Haltbarkeit führt. Auf diese Weise können beispielsweise Gasturbinenbauteile aus mehreren Ein¬ zelteilen zusammengefügt werden. Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, ist die Erfindung nicht durch die offenbarten Beispiele einge¬ schränkt. Variationen hiervon können vom Fachmann abgeleitet werden, ohne den Schutzumfang der Erfindung, wie er durch die nachfolgenden Patentansprüche definiert wird, zu verlassen. In the picture are perpendicular to the surface 2 ¬ clearly seen the dendritic crystal structures. When this crystal orientation coincides with the one on the Oberflä ¬ che 2 applied further workpiece in ¬ game example because the corresponding surface of the other workpiece has also been treated by laser remelting, obtained after application of the spark plasma sintering procedural ren a particularly tight joint, the leads to a result ¬ the component with special durability. In this way, for example, gas turbine components can be assembled from several A ¬ individual parts. Although the invention has been illustrated and described in detail by the preferred embodiment, the invention is not limited by the disclosed examples ¬ limits. Variations thereof may be derived by those skilled in the art without departing from the scope of the invention as defined by the appended claims.

Claims

Patentansprüche claims
1. Ein Verfahren zum Verbinden eines ersten Bauteils (1) mit einem zweiten Bauteil, wobei das Verfahren wenigstens folgen- de Schritte aufweist: 1. A method for connecting a first component (1) to a second component, the method having at least the following steps:
- Laserumschmelzen einer Fügefläche (2) des ersten Bauteils (1) ; - Laser remelting a joint surface (2) of the first component (1);
- Aufsetzen der laserumgeschmolzenen Fügefläche (2) des ers- ten Bauteils auf eine Fügefläche des zweiten Bauteils; und - placing the laser-remelted joining surface (2) of the first component on a joining surface of the second component; and
- Verbinden des auf das zweite Bauteil aufgesetzten ersten Bauteils (1) mit dem zweiten Bauteil durch ein Spark Plasma Sintering Verfahren. - Connecting the second component placed on the second component (1) with the second component by a spark plasma sintering method.
2. Das Verfahren des vorhergehenden Anspruchs, 2. The method of the preceding claim,
bei dem vor dem Aufsetzen ein zusätzlicher Schritt des Laser- umschmelzens der Fügefläche des zweiten Bauteils durchgeführt wird . in which an additional step of laser remelting of the joining surface of the second component is carried out prior to placement.
3. Das Verfahren eines der vorhergehenden Ansprüche, 3. The method of one of the preceding claims,
bei dem durch das Laserumschmelzen eine Kristallausrichtung des ersten Bauteils (1) an eine Kristallausrichtung des zweiten Bauteils angeglichen wird, so dass nach dem Schritt des Aufsetzens das erste und zweite Bauteil wenigstens näherungs- weise gleiche Kristallausrichtungen aufweisen. in which, by the laser remelting, a crystal orientation of the first component (1) is matched to a crystal orientation of the second component, such that after the placement step, the first and second components have at least approximately the same crystal orientations.
4. Das Verfahren eines der vorhergehenden Ansprüche, 4. The method of one of the preceding claims,
bei denen wenigstens eines von erstem und zweitem Bauteil ei¬ ne Nickelbasissuperlegierung enthält oder aus der Nickelba- sissuperlegierung besteht. in which at least one of the first and second component includes egg ¬ ne nickel-base superalloy or consists of the nickel-base superalloy.
5. Das Verfahren eines der vorhergehenden Ansprüche, 5. The method of any preceding claim,
bei dem beim Laserumschmelzen eine dendritische Kristall¬ struktur erzeugt wird. in which a dendritic structure is generated in the crystal ¬ laser remelting.
6. Das Verfahren eines der vorhergehenden Ansprüche, 6. The method of one of the preceding claims,
bei dem die Fügefläche (2) bis in eine Tiefe von wenigstens 50 Mikrometern laserumgeschmolzen wird. wherein the joining surface (2) is laser remelted to a depth of at least 50 microns.
7. Das Verfahren des vorhergehenden Anspruchs, 7. The method of the preceding claim,
bei dem die Tiefe weniger als einen Millimeter beträgt. where the depth is less than a millimeter.
8. Das Verfahren eines der vorhergehenden Ansprüche, 8. The method of one of the preceding claims,
bei dem das erste Bauteil (1) während des Spark Plasma in which the first component (1) during the spark plasma
Sintering Verfahrens mit einem Druck von 1 bis 40 Megapascal auf das zweite Bauteil gepresst wird. Sintering process with a pressure of 1 to 40 megapascals is pressed onto the second component.
9. Das Verfahren eines der vorhergehenden Ansprüche, 9. The method of one of the preceding claims,
bei dem das erste und das zweite Bauteil während des Spark Plasma Sintering Verfahrens auf eine Temperatur von 1000 bis 1200 Grad Celsius erhitzt werden. in which the first and the second component are heated to a temperature of 1000 to 1200 degrees Celsius during the spark plasma sintering process.
10. Eine Gasturbinenkomponente, die gemäß dem Verfahren eines der vorhergehenden Ansprüche gefertigt wurde. A gas turbine component made in accordance with the method of any one of the preceding claims.
PCT/EP2015/051659 2014-03-10 2015-01-28 Spark plasma sintering having improved strength of the fusion zone WO2015135680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014204347.6A DE102014204347A1 (en) 2014-03-10 2014-03-10 Spark plasma sintering with improved joining zone strength
DE102014204347.6 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015135680A1 true WO2015135680A1 (en) 2015-09-17

Family

ID=52462906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/051659 WO2015135680A1 (en) 2014-03-10 2015-01-28 Spark plasma sintering having improved strength of the fusion zone

Country Status (2)

Country Link
DE (1) DE102014204347A1 (en)
WO (1) WO2015135680A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299583A (en) * 2020-04-09 2020-06-19 暨南大学 Method for manufacturing gradient structure titanium alloy integral component by laser additive manufacturing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575016A1 (en) * 2018-06-01 2019-12-04 Siemens Aktiengesellschaft Improvements relating to the manufacture of superalloy components
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method
JP7285067B2 (en) * 2018-10-30 2023-06-01 浜松ホトニクス株式会社 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384365B1 (en) * 2000-04-14 2002-05-07 Siemens Westinghouse Power Corporation Repair and fabrication of combustion turbine components by spark plasma sintering
EP1340583A1 (en) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120183802A1 (en) * 2011-01-13 2012-07-19 Bruck Gerald J Resistance weld additive manufacturing
DE102012107570B4 (en) * 2012-08-17 2017-08-03 Rogers Germany Gmbh Process for the production of hollow bodies, in particular of coolers, hollow bodies and coolers containing electrical or electronic assemblies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384365B1 (en) * 2000-04-14 2002-05-07 Siemens Westinghouse Power Corporation Repair and fabrication of combustion turbine components by spark plasma sintering
EP1340583A1 (en) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299583A (en) * 2020-04-09 2020-06-19 暨南大学 Method for manufacturing gradient structure titanium alloy integral component by laser additive manufacturing

Also Published As

Publication number Publication date
DE102014204347A1 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
DE60220930T2 (en) Process for the preparation, modification or repair of monocrystalline or directionally solidified bodies
EP2913124A2 (en) Production of residual compressive stresses in generative production
EP1711298B1 (en) Process of brazing repairing of a part having a base material with oriented microstructure
EP2789413B1 (en) Temperature control for a device for the generative production of components and a corresponding manufacturing method
EP0123702B1 (en) Method of joining metallic work pieces
DE102014206827A1 (en) Method of joining and gas turbine component
WO2015135680A1 (en) Spark plasma sintering having improved strength of the fusion zone
DE3619536A1 (en) METHOD FOR REPAIRING A METAL OBJECT, IN PARTICULAR A LABYRINE GASKET
DE102007027327A1 (en) Induction coil, method and device for inductive heating of metallic components
DE102016213917A1 (en) Method for producing a component and component produced by the method
DE102016119662B4 (en) METHOD OF WELDING CLAD OVER OPENINGS
EP1654089B1 (en) Method for producing integrated blade rotors for a gas turbine mounted by capacitor discharge welding
WO2016096417A1 (en) Method for connecting workpieces which are produced from a raw material using an additive manufacturing process
WO2012022297A2 (en) Method for connecting a turbine blade or vane to a turbine disc or to a turbine ring
DE102019008167A1 (en) ALIGNED FIRED OBJECT, TURBINE BLADE, AND PROCEDURE FOR REPAIR OF ALIGNED FIRED OBJECT
DE19924905C2 (en) Method for producing a weld surface in laser beam welding, which is suitable for the corrosion-resistant application of a surface protection system
DE602004001369T2 (en) Method for improved penetration of weld by formation of an oxide layer and product resulting therefrom.
WO2007110036A1 (en) Process for connecting metallic structural elements and components produced thereby
DE102005021642B4 (en) Process for producing a monocrystalline molding
EP1428897A1 (en) Process for producing an alloy component with improved weldability and/or mechanical workability
DE102015118277A1 (en) Hybrid soldering tapes and hybrid soldering tape methods
DE10359564A1 (en) Bonding components of materials with different melting points, e.g. contacts for automotive sensors and actuators, involves melting a projection with lower melting point at least partially within a recess in the other component
WO2010028617A2 (en) Device and method for the inductive heating of metallic structural elements
DE102005021641A1 (en) Mold, for rapid prototyping/manufacturing, is composed of assembled and bonded mold elements with milled contours to give the final contour
DE102015207212B4 (en) Repair of monocrystalline flow channel segments by means of monocrystalline remelting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15703251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15703251

Country of ref document: EP

Kind code of ref document: A1