WO2015133548A1 - トランス-1,3,3,3-テトラフルオロプロペンを含む混合冷媒の充填方法 - Google Patents

トランス-1,3,3,3-テトラフルオロプロペンを含む混合冷媒の充填方法 Download PDF

Info

Publication number
WO2015133548A1
WO2015133548A1 PCT/JP2015/056427 JP2015056427W WO2015133548A1 WO 2015133548 A1 WO2015133548 A1 WO 2015133548A1 JP 2015056427 W JP2015056427 W JP 2015056427W WO 2015133548 A1 WO2015133548 A1 WO 2015133548A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
hfc
upper limit
filling
target
Prior art date
Application number
PCT/JP2015/056427
Other languages
English (en)
French (fr)
Inventor
眸 黒木
山田 康夫
土屋 立美
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201580011938.6A priority Critical patent/CN106104176B/zh
Priority to EP15757913.7A priority patent/EP3128265A4/en
Priority to US15/123,470 priority patent/US10072193B2/en
Publication of WO2015133548A1 publication Critical patent/WO2015133548A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234

Definitions

  • the present invention relates to a method for charging a mixed refrigerant containing trans-1,3,3,3-tetrafluoropropene.
  • R-410A (GWP 2088), R-404A (GWP 3922), R-407C (GWP 1770) and 1,1,1,2-tetrafluoroethane (present) are also used in stationary refrigeration and air-conditioning equipment.
  • GWP-134a may be described in the specification
  • GWP 1430 etc. are high in GWP, and not only from the viewpoint of CO 2 reduction in developed countries, but also from the viewpoint of reduction of HFC (Hydrofluorocarbon). It is being regulated and the development of alternative refrigerants is urgent. And in selecting a refrigerant, it is necessary to consider from various viewpoints such as environmental performance, safety, performance, and economic efficiency among various refrigerants in consideration of usage and operating conditions.
  • HFO-1234ze (E) refrigerant is attracting attention outside the large-scale refrigeration and air-conditioning field due to its low GWP and low toxicity.
  • HFO refrigerants have a lower vapor pressure for use in stationary refrigerating and air-conditioning equipment, etc., and there are concerns about insufficient capacity or performance degradation compared to conventional refrigerants. It is also known to have slight flammability.
  • Patent Documents 1 to 3 non-azeotropic refrigerant mixtures in which various refrigerants are mixed have been proposed in order to improve the capacity and make them nonflammable.
  • HFC-32 difluoromethane
  • HFO-1234ze E
  • the boiling point difference with HFO-1234ze (E) is nearly 30K.
  • the compositional change that occurs when transferring and filling from a supply-side container such as a cylinder or tank lorry to a refrigeration air conditioner or another cylinder is at a level that cannot be ignored in terms of performance. Further, not only in terms of performance but also in terms of quality assurance of the mixed refrigerant, it is important to keep the composition change within the set tolerance of the mixed refrigerant.
  • the maximum composition of the target composition is 3 Deviation in composition of ⁇ 4% by weight occurs.
  • the composition variation rate is about ⁇ 4% by weight, and the refrigeration capacity and the refrigerant capacity such as COP that are expected from the target composition cannot be guaranteed. Therefore, it is important to keep the composition variation rate as small as possible.
  • composition variation varies greatly depending on the type and composition ratio of the non-azeotropic refrigerant, and it is difficult to predict the composition variation range in advance without any actual measurement.
  • JP 2010-47754 A Special table 2011-525204 Special table 2011-522947 Japanese Patent Laid-Open No. 10-197108 Japanese Patent No. 3186605
  • the main object of the present invention is to provide a mixed refrigerant charging method capable of keeping the composition change at the time of transfer and filling of a non-azeotropic mixed refrigerant composed of HFO-1234ze (E) and HFC-32 within the allowable range of the refrigerant performance. Is to provide.
  • the present inventors solve the problem of composition change that occurs when a non-azeotropic mixture composed of two liquefied gases having different boiling points stored in such a closed container is transferred from the liquid side to another container. Therefore, intensive investigations were made on the method of filling liquefied gas.
  • the present invention provides a non-azeotropic refrigerant filling method comprising the following HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant charging method of the present invention supplies HFC-32 / HFO-1234ze (E) mixed refrigerant which is a non-azeotropic refrigerant, whose composition is HFC-32 in the liquid phase: 10 to 90% by weight.
  • E HFC-32 / HFO-1234ze
  • the liquid phase mixing ratio of the HFC-32 in the supply container before the transfer and filling is set to a specific range.
  • the filling amount of 100% by weight indicates the maximum filling amount that can be filled in a container, as defined by international laws relating to transportation and Japanese high-pressure gas safety law.
  • the filling constant C at this time is determined in Japan as 1.05 divided by the specific gravity of the gas at 48 ° C.
  • this packing constant C is calculated by international law when exporting, and is calculated by dividing 1.05 by the specific gravity of the gas at 65 ° C when passing through the tropics, and 1.05 only in other regions than the tropics. It is defined as the value divided by the specific gravity of the gas at 45 ° C.
  • a value obtained by dividing 1.05 by the specific gravity of the gas at 45 ° C. is adopted as a filling constant, and the calculated value is defined as a filling amount of 100%.
  • the present invention mainly includes the following inventions.
  • Item 1 A mixed refrigerant containing HFC-32 and HFO-1234ze (E), wherein HFC-32 is present in an amount of 10 to 90% by weight in the liquid phase with respect to 100% by weight of HFC-32 and HFO-1234ze (E) in total.
  • E mixed refrigerant containing HFC-32 and HFO-1234ze
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the end of transfer filling is changed from the target upper limit composition (x) to the target upper limit composition (x) -4.0% by weight.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y 1 (minimum value) to x% (target upper limit composition). And a method for charging a mixed refrigerant.
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (10 ⁇ x ⁇ 90, except for the range where y 1 > 0).
  • y 1 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (1).
  • Item 2 A mixed refrigerant containing HFC-32 and HFO-1234ze (E), wherein HFC-32 is present in an amount of 10 to 90% by weight in the liquid phase with respect to 100% by weight of HFC-32 and HFO-1234ze (E) in total.
  • E A mixed refrigerant containing HFC-32 and HFO-1234ze
  • HFC-32 is present in an amount of 10 to 90% by weight in the liquid phase with respect to 100% by weight of HFC-32 and HFO-1234ze (E) in total.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y 2 (minimum value) to x% (target upper limit composition). And a method for charging a mixed refrigerant.
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (10 ⁇ x ⁇ 90, except for the range where y 2 > 0).
  • y 2 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (7).
  • Item 3 A mixed refrigerant containing HFC-32 and HFO-1234ze (E), wherein HFC-32 is present in an amount of 10 to 90% by weight in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • E A mixed refrigerant containing HFC-32 and HFO-1234ze
  • HFC-32 is present in an amount of 10 to 90% by weight in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the end of transfer filling is changed from the target upper limit composition (x) to the target upper limit composition (x) -2.0% by weight.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y 3 (minimum value) to x% (target upper limit composition). And a method for charging a mixed refrigerant.
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (10 ⁇ x ⁇ 18.0 wt% or 76.0 ⁇ x ⁇ 90, except for the range where y 3 > 0).
  • y 3 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (13).
  • the liquid phase mixing ratio of HFC-32 in the refrigerant mixture in the container for HFC-32 within the range of the target upper limit composition (x) to the target upper limit composition (x)-4.0 wt% (target lower limit composition) The mixing ratio of the mixed refrigerant in the supply container before the transfer and filling will be described.
  • target upper limit composition (x) is the composition of HFC-32 in the total composition (liquid phase + gas phase) of the HFC-32 / HFO-1234ze (E) mixed refrigerant required in the container / equipment of the supplier Is the maximum value allowed to be within this range.
  • X (% by weight) is a numerical value within the range of 10 ⁇ x ⁇ 90.
  • Target lower limit composition: (x) ⁇ 4 wt% is the total composition (liquid phase + gas phase) of the HFC-32 / HFO-1234ze (E) mixed refrigerant required in the container / equipment of the supplier.
  • the composition of HFC-32 is the minimum value allowed to be within this range.
  • the mixed refrigerant charging method of the present invention is A mixed refrigerant containing HFC-32 and HFO-1234ze (E), wherein HFC-32 is present in an amount of 10 to 90% by weight in the liquid phase with respect to 100% by weight of HFC-32 and HFO-1234ze (E) in total.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling when transferring and filling with liquid from the supply container to the supply destination container and equipment.
  • the mixed refrigerant in the supply container immediately before the transfer filling is performed.
  • the liquid phase mixing ratio (initial composition) of HFC-32 is set to x + y 1 (minimum value) to x% (target upper limit composition).
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (% by weight, 10 ⁇ x ⁇ 90, except for the range where y 1 > 0).
  • y 1 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (1).
  • the mixed refrigerant charging method of the present invention even if the supply amount of the mixed refrigerant in the supply container is 100% by weight of the maximum charge amount, the HFC-32 in the supply container before transfer filling is performed.
  • the target upper limit composition (x)-4.0 wt% target lower limit composition
  • HFC-32 The boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill the HFC-32 more than the target composition in the supply container before transfer filling.
  • the value of a is normally set in the range of 60 ⁇ a ⁇ 100.
  • the handling temperature at the time of transfer filling is 40 ° C.
  • the Japanese high-pressure gas safety law prohibits the handling of containers above 40 ° C, so the handling temperature during transfer filling in Japan is 0 to 40 ° C.
  • the higher the temperature at the time of transfer filling (at the time of handling) the larger the composition change due to the transfer filling from the start of the transfer filling to the completion when transferring the liquid from the supply container to the container and equipment of the supply destination. Become. Therefore, by applying the conditions for transfer and filling at the handling temperature of 40 ° C., the handling temperature of 0 to 40 ° C. can be applied.
  • the filling amount in the supply container the smaller the initial filling amount, the more the composition by transfer filling from the start of transfer filling to completion when transferring the liquid from the supply container to the supply destination container and equipment.
  • the range of change is reduced. Therefore, the mathematical formula satisfying the filling method in which the initial filling amount is a wt% is also satisfied in the filling method in which the initial filling amount is a wt% or less.
  • a mathematical formula satisfying a filling method with an initial filling amount of 100% by weight is satisfied even in a filling method with an initial filling amount of 100 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 90% by weight is satisfied even in the filling method with the initial filling amount of 90 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 80% by weight is satisfied even in the filling method with the initial filling amount of 80 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 70% by weight is satisfied even in the filling method with the initial filling amount of 70 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 60% by weight is satisfied even in the filling method with the initial filling amount of 60 to 0% by weight.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container falls within the range of the target upper limit composition (x) from the target upper limit composition (x) -4.0 wt% (target lower limit composition) of HFC-32. Therefore, the liquid phase mixing ratio (initial composition) of the HFC-32 mixed refrigerant in the supply container immediately before transfer and filling may be set to x + y 1 (minimum value) to x% (target upper limit composition). It is a feature.
  • x represents a target upper limit composition
  • y 1 represents a deviation from the target upper limit composition (x) in the initial composition.
  • x + y 1 indicates the minimum value of the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container.
  • Tolerances The difference between the target upper limit composition and the target lower limit composition is called tolerance (Tolerances). Tolerance is determined when the composition of the mixed refrigerant is registered in ASHRAE Standard 2013 (Designation and Safety Classification of Refrigerants).
  • the mixed refrigerant containing HFC-32 and HFO-1234ze (E) the case where the mixing ratio of HFC-32 and HFO-1234ze (E) is, for example, 50:50 (% by weight) will be described.
  • the tolerance is set to +2.0, -2.0 / + 2.0, -2.0
  • the target upper limit composition of HFC-32 is 52.0% by weight
  • the target lower limit composition of HFC-32 is 48.0% by weight.
  • the difference between the target upper limit composition and the target lower limit composition is a mixed refrigerant of 4% by weight.
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the end of transfer filling is targeted from the target upper limit composition (x) -4.0% by weight (target lower limit composition) of HFC-32.
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y 1 (minimum value) to x % (Target upper limit composition).
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 90 is satisfied).
  • y P1 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following equation (2).
  • the present invention from the above formula (2), before carrying out the transfer filling, when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred from the supply container to the supply destination container and equipment.
  • the composition change in the container and equipment of the supply destination is completed until transfer and filling are completed.
  • the target upper limit composition (x) -4.0% by weight (target lower limit composition) can fall within the range of the target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -4.0% by weight (target lower limit composition) until transfer and filling are completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -2.5% by weight relative to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range from the target upper limit composition (x) -4.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • (1-3) Filling method when the amount of the mixed refrigerant filling the container is 90% by weight of the maximum filling amount
  • the amount of the mixed refrigerant filling the container is 90% by weight of the maximum filling amount
  • the inside of the supply container Will be described when the liquid phase mixing ratio of HFC-32 in the mixed refrigerant is within the range of the target upper limit composition (x) -4.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the end of transfer filling is targeted from the target upper limit composition (x) -4.0% by weight (target lower limit composition) of HFC-32.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y P2 to x wt%. It is preferable.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 90 is satisfied).
  • y P2 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (3).
  • the present invention from the above formula (3), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the supply container By setting the liquid phase mixing ratio of HFC-32 to about x-2.8% by weight to x% by weight, change the composition in the container and equipment at the supply destination until the transfer filling is completed. It can fall within the range of (x) -4.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -4.0% by weight (target lower limit composition) until transfer and filling are completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -2.6% by weight with respect to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range from the target upper limit composition (x) -4.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the end of transfer filling is targeted from the target upper limit composition (x) -4.0% by weight (target lower limit composition) of HFC-32.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y P3 to x wt%. It is preferable.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 90 is satisfied).
  • y P3 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (4).
  • the present invention from the above formula (4), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the supply container By setting the liquid phase mixing ratio of HFC-32 to about x-2.8% by weight to x% by weight, change the composition in the container and equipment at the supply destination until the transfer filling is completed. It can fall within the range of (x) -4.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -4.0% by weight (target lower limit composition) until transfer and filling are completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -2.6% by weight with respect to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range from the target upper limit composition (x) -4.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • (1-5) Filling method when the filling amount of the mixed refrigerant into the container is 70% by weight of the maximum filling amount
  • the filling amount of the mixed refrigerant into the container is 70% by weight of the maximum filling amount, and the inside of the supply container
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant is within the range of the target upper limit composition (x) -4.0 wt% (target lower limit composition) to the target upper limit composition (x) will be described.
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the end of transfer filling is targeted from the target upper limit composition (x) -4.0% by weight (target lower limit composition) of HFC-32.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y P4 to x wt%. It is preferable.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 90 is satisfied).
  • y P4 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (5).
  • the present invention from the above formula (5), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer filling is completed. It can fall within the range of (x) -4.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -4.0% by weight (target lower limit composition) until transfer and filling are completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -2.7% by weight with respect to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range from the target upper limit composition (x) -4.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the end of transfer filling is targeted from the target upper limit composition (x) -4.0% by weight (target lower limit composition) of HFC-32.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y P5 to x wt%. It is preferable.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 90 is satisfied).
  • y P5 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (6).
  • the present invention from the above formula (6), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer filling is completed. It can fall within the range of (x) -4.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -4.0% by weight (target lower limit composition) until transfer and filling are completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -2.8% by weight relative to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range from the target upper limit composition (x) -4.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • the above equation (1) can be derived from the above equations (2) to (6). Based on the value of each coefficient in the above formulas (2) to (6), L 1 to P 1 in formula (1) is derived from the target upper limit composition (x) with respect to the initial filling amount (a weight%). Can do.
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the HFC in the mixed refrigerant in the supply container from the start to the completion of transfer when the mixed refrigerant present in the amount of% by weight is transferred from the supply container to the supply destination container and equipment with liquid.
  • the liquid phase mixing ratio (initial composition) of HFC-32 in the mixed refrigerant is x + y 1 (minimum value) to x (maximum value) weight%.
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (% by weight, 10 ⁇ x ⁇ 90, except for the range where y 1 > 0).
  • y 1 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (1).
  • target upper limit composition: (x) is the composition of HFC-32 in the total composition (liquid phase + gas phase) of the HFC-32 / HFO-1234ze (E) mixed refrigerant required in the container / equipment of the supplier Is the maximum value allowed to be within this range.
  • X (% by weight) is a numerical value within the range of 10 ⁇ x ⁇ 90.
  • target lower limit composition: (x) ⁇ 3 wt% is the HFC in the total composition (liquid phase + gas phase) of the HFC-32 / HFO-1234ze (E) mixed refrigerant required in the container / equipment of the supplier.
  • the -32 composition is the minimum value allowed to be within this range.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer filling when transferring the liquid from the supply container to the supply destination container and equipment.
  • HFC-32 of the mixed refrigerant in the supply container just before the transfer filling so as to be within the range of the target upper limit composition (x) -3.0 wt% (target lower limit composition) to the target upper limit composition (x) of HFC-32.
  • the liquid phase mixing ratio (initial composition) is set to x + y 2 (minimum value) to x wt% (maximum value).
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (% by weight, 10 ⁇ x ⁇ 90, except for the range where y 2 > 0).
  • y 2 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (7).
  • HFC-32 The boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the value of a in the previous period is normally set in the range of 60 ⁇ a ⁇ 100.
  • the transfer-filling method shows an example when the handling temperature at the time of transfer-filling is 40 ° C.
  • the Japanese high-pressure gas safety law prohibits the handling of containers at 40 ° C or higher, so the handling temperature at the time of transfer and filling in Japan is 0 to 40 ° C.
  • the higher the temperature at the time of transfer filling (at the time of handling) the larger the composition change due to the transfer filling from the start of the transfer filling to the completion when transferring the liquid from the supply container to the container and equipment of the supply destination. Become. Therefore, the handling temperature of 0 to 40 ° C. can be applied by applying the transfer and filling conditions at the handling temperature of 40 ° C.
  • the filling amount in the supply container the smaller the initial filling amount, the more the composition by transfer filling from the start of transfer filling to completion when transferring the liquid from the supply container to the supply destination container and equipment.
  • the range of change is reduced. Therefore, the mathematical formula satisfying the filling method in which the initial filling amount is a wt% is also satisfied in the filling method in which the initial filling amount is a wt% or less.
  • a mathematical formula satisfying a filling method with an initial filling amount of 100% by weight is satisfied even in a filling method with an initial filling amount of 100 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 90% by weight is satisfied even in the filling method with the initial filling amount of 90 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 80% by weight is satisfied even in the filling method with the initial filling amount of 80 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 70% by weight is satisfied even in the filling method with the initial filling amount of 70 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 60% by weight is satisfied even in the filling method with the initial filling amount of 60 to 0% by weight.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container falls within the range of the target upper limit composition (x) from the target upper limit composition (x) -3.0 wt% (target lower limit composition) of HFC-32.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y 2 (minimum value) to x% (target upper limit composition). It is.
  • x is the target upper limit composition
  • y 2 represents a deviation from the target upper limit composition (x) in the initial composition.
  • x + y 2 indicates the minimum value of the liquid phase mixture ratio of HFC-32 of mixed refrigerant supply vessel (initial composition).
  • the difference between the target upper limit composition and the target lower limit composition is called tolerance (Tolerances).
  • the tolerance is determined when the composition of the mixed refrigerant is registered in the ASHRAE Standard 2013.
  • the mixed refrigerant containing HFC-32 and HFO-1234ze (E) the case where the mixing ratio of HFC-32 and HFO-1234ze (E) is, for example, 50:50 (% by weight) will be described.
  • this mixed refrigerant (HFC-32 / HFO-1234ze (E)) if the tolerance is set to +1.5, -1.5 / + 1.5, -1.5, the target upper limit composition of HFC-32 is 51.5 wt%, The target lower limit composition of HFC-32 is 48.5% by weight.
  • the difference between the target upper limit composition and the target lower limit composition is a mixed refrigerant of 3% by weight.
  • (2-2) Filling method when filling amount of mixed refrigerant into container is 100% by weight of maximum filling amount
  • the filling amount of the mixed refrigerant into the container is 100% by weight of the maximum filling amount
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container is set to the target upper limit composition (x) -3.0% by weight. The case where it falls within the range of (target lower limit composition) to target upper limit composition (x) will be described.
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 25.5 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in an amount of 6% by weight or 66.5 to 90% by weight is supplied from the supply container filled in the supply container to an amount of 100% by weight or less of the maximum filling amount.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -3.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y Q1 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 25.5 or 66.5 ⁇ x ⁇ 90 is satisfied).
  • y Q1 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (8).
  • the present invention from the above formula (8), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer and filling of the composition change in the container and equipment at the supply destination is completed. It can fall within the range of (x) -3.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -3.0% by weight (target lower limit composition) until transfer and filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -1.6% by weight relative to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can fall within the range of the target upper limit composition (x) -3.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • (2-3) Filling method when the amount of the mixed refrigerant filling the container is 90% by weight of the maximum filling amount
  • the amount of the mixed refrigerant filling the container is 90% by weight of the maximum filling amount, and the inside of the supply container
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant is within the target upper limit composition (x) -3.0 wt% (target lower limit composition) to the target upper limit composition (x)
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 27.5 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in an amount of 6% by weight or 64.5 to 90% by weight is supplied from the supply container filled in the supply container to an amount of 90% by weight or less of the maximum filling amount.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -3.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y Q2 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 27.5 or 64.5 ⁇ x ⁇ 90 is satisfied).
  • y Q2 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (9).
  • the present invention from the above formula (9), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer and filling of the composition change in the container and equipment at the supply destination is completed. It can fall within the range of (x) -3.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -3.0% by weight (target lower limit composition) until transfer and filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -1.7% by weight with respect to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can fall within the range of the target upper limit composition (x) -3.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 30.0% in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in the amount of 6% to 90% by weight is supplied from the supply container filled in the supply container in an amount of 80% by weight or less of the maximum filling amount to the supply destination container and equipment.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -3.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y Q3 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 30.0 or 61.5 ⁇ x ⁇ 90 is satisfied).
  • y Q3 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (10).
  • the present invention from the above formula (10), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred from the supply container to the supply destination container and equipment, the supply container before transfer charging
  • the target upper limit composition can be changed until transfer and filling of the composition change in the container and equipment at the supply destination is completed. It can fall within the range of (x) -3.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -3.0% by weight (target lower limit composition) until transfer and filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -1.7% by weight with respect to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can fall within the range of the target upper limit composition (x) -3.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 32.0 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in an amount of 5% by weight or 56.0 to 90% by weight is supplied as liquid from the supply container filled in the supply container to an amount of 70% by weight or less of the maximum filling amount.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -3.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y Q4 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 32.0 or 56.0 ⁇ x ⁇ 90 is satisfied).
  • y Q4 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (11).
  • the present invention from the above formula (11), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer filling is completed. It can fall within the range of (x) -3.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -3.0% by weight (target lower limit composition) until transfer and filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -1.8% by weight relative to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can fall within the range of the target upper limit composition (x) -3.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • (2-6) Filling method when the amount of mixed refrigerant filling the container is 60% by weight of the maximum filling amount
  • the amount of mixed refrigerant filling the container is 60% by weight of the maximum filling amount, and the inside of the supply container
  • the case where the liquid phase mixing ratio of HFC-32 in the mixed refrigerant is within the target upper limit composition (x) -3.0 wt% (target lower limit composition) to the target upper limit composition (x) will be described.
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the end of transfer filling is set from the target upper limit composition (x) -3.0 wt% (target lower limit composition) of HFC-32.
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is set to x + y Q5 to x wt%. It is preferable.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 90 is satisfied).
  • y Q5 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (12).
  • the present invention from the above formula (12), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer filling is completed. It can fall within the range of (x) -3.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -3.0% by weight (target lower limit composition) until transfer and filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -1.8% by weight relative to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can fall within the range of the target upper limit composition (x) -3.0 wt% (target lower limit composition) to the target upper limit composition (x).
  • the above equation (7) can be derived from the above equations (8) to (12). Based on the value of each coefficient in the above formulas (8) to (12), L 2 to P 2 in formula (7) is derived from the target upper limit composition (x) with respect to the initial filling amount (a weight%). Can do.
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • HFC-32 is 10 to 90 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the HFC in the mixed refrigerant in the supply container from the start to the completion of transfer when the mixed refrigerant present in the amount of% by weight is transferred from the supply container to the supply destination container and equipment with liquid.
  • liquid phase mixing ratio within the range of HFC-32 target upper limit composition (x)-3.0 wt% (target lower limit composition) to target upper limit composition (x)
  • the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant is x + y 2 (minimum value) to x (maximum value) weight%.
  • the supply container is filled with an amount of 100% by weight or less of the maximum filling amount.
  • y Q1 > 0 when 25.5 ⁇ x ⁇ 66.5, the range of x is 10 to 25.5 wt% or 66.5 to 90 wt%.
  • y Q2 > 0 at 30.0 ⁇ x ⁇ 61.5, so the range of x is 10 to 30.0% by weight or 61.5 to 90% % By weight.
  • y Q2 > 0 at 32.0 ⁇ x ⁇ 56.0, so the range of x is 10 to 32.0% by weight or 56.0 to 90 % By weight.
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (% by weight, 10 ⁇ x ⁇ 90, except for the range where y 2 > 0).
  • y 2 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (7).
  • target upper limit composition: (x) is the composition of HFC-32 in the total composition (liquid phase + gas phase) of the HFC-32 / HFO-1234ze (E) mixed refrigerant required in the container / equipment of the supplier Is the maximum value allowed to be within this range.
  • X (% by weight) is a numerical value within the range of 10 ⁇ x ⁇ 90.
  • target lower limit composition: (x) -2 wt%” is the HFC in the overall composition (liquid phase + gas phase) of the HFC-32 / HFO-1234ze (E) mixed refrigerant required in the container / equipment of the supplier.
  • the -32 composition is the minimum value allowed to be within this range.
  • the liquid phase mixing ratio (initial composition) of the mixed refrigerant HFC-32 is set to x + y 3 (minimum value) to x weight% (maximum value).
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (% by weight, 10 ⁇ x ⁇ 18.0 or 76.0 ⁇ x ⁇ 90, except for the range of y 3 > 0).
  • y 3 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (13).
  • HFC-32 The boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the value of a in the previous period is normally set in the range of 60 ⁇ a ⁇ 100.
  • the transfer-filling method shows an example when the handling temperature at the time of transfer-filling is 40 ° C.
  • the Japanese high-pressure gas safety law prohibits the handling of containers at 40 ° C or higher, so the handling temperature at the time of transfer and filling in Japan is 0 to 40 ° C.
  • the higher the temperature at the time of transfer filling (at the time of handling) the larger the composition change due to the transfer filling from the start of the transfer filling to the completion when transferring the liquid from the supply container to the container and equipment of the supply destination. Become. Therefore, the handling temperature of 0 to 40 ° C. can be applied by applying the transfer and filling conditions at the handling temperature of 40 ° C.
  • the filling amount in the supply container the smaller the initial filling amount, the more the composition by transfer filling from the start of transfer filling to completion when transferring the liquid from the supply container to the supply destination container and equipment.
  • the range of change is reduced. Therefore, the mathematical formula satisfying the filling method in which the initial filling amount is a wt% is also satisfied in the filling method in which the initial filling amount is a wt% or less.
  • a mathematical formula satisfying a filling method with an initial filling amount of 100% by weight is satisfied even in a filling method with an initial filling amount of 100 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 90% by weight is satisfied even in the filling method with the initial filling amount of 90 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 80% by weight is satisfied even in the filling method with the initial filling amount of 80 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 70% by weight is satisfied even in the filling method with the initial filling amount of 70 to 0% by weight.
  • the mathematical formula satisfying the filling method with the initial filling amount of 60% by weight is satisfied even in the filling method with the initial filling amount of 60 to 0% by weight.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container falls within the target upper limit composition (x) from the target upper limit composition (x) -2.0 wt% (target lower limit composition) of HFC-32.
  • the liquid phase mixing ratio (initial composition) of the HFC-32 mixed refrigerant in the supply container immediately before transfer filling is set to x + y 3 (minimum value) to x% (target upper limit composition). It is.
  • x is the target upper limit composition
  • y 3 represents a deviation from the target upper limit composition (x) in the initial composition
  • x + y 3 represents the minimum value of the liquid phase mixing ratio (initial composition) of HFC-32 of the mixed refrigerant in the supply container.
  • the difference between the target upper limit composition and the target lower limit composition is called tolerance (Tolerances).
  • the tolerance is determined when the composition of the mixed refrigerant is registered in the ASHRAE Standard 2013.
  • the mixed refrigerant containing HFC-32 and HFO-1234ze (E) the case where the mixing ratio of HFC-32 and HFO-1234ze (E) is, for example, 50:50 (% by weight) will be described.
  • this mixed refrigerant (HFC-32 / HFO-1234ze (E)) if the tolerance is set to +1.0, -1.0 / + 1.0, -1.0, the target upper limit composition of HFC-32 is 51.0% by weight, The target lower limit composition of HFC-32 is 49.0% by weight.
  • the difference between the target upper limit composition and the target lower limit composition is a mixed refrigerant of 2% by weight.
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 14.0 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in the amount of 8% by weight or 81.0 to 90% by weight is supplied from the supply container filled in the supply container to an amount of 100% by weight or less of the maximum filling amount as a liquid to the supply destination container and equipment.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -2.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y R1 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 14.0 or 81.0 ⁇ x ⁇ 90 is satisfied).
  • yR1 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (14).
  • the present invention from the above formula (14), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred from the supply container to the supply destination container and equipment, the supply container before transfer charging
  • the liquid phase mixing ratio of HFC-32 to about x-0.8% by weight to x% by weight
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -2.0% by weight (target lower limit composition) until transfer filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -0.7% by weight with respect to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range of the target upper limit composition (x) to 2.0% by weight (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 14.5 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in an amount of 8% by weight or 80.5 to 90% by weight is supplied from the supply container filled in the supply container to an amount of 90% by weight or less of the maximum filling amount.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -2.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y R2 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 14.5 or 80.5 ⁇ x ⁇ 90 is satisfied).
  • yR2 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (15).
  • the present invention from the above formula (15), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer filling is completed for the composition change in the container and equipment of the supply destination. It can fall within the range of (x) -2.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -2.0% by weight (target lower limit composition) until transfer filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -0.8% by weight with respect to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range of the target upper limit composition (x) to 2.0% by weight (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 15.5 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in an amount of 7% by weight or 79.5 to 90% by weight is supplied from the supply container filled in the supply container to an amount of 80% by weight or less of the maximum filling amount.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -2.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y R3 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 15.5 or 79.5 ⁇ x ⁇ 90 is satisfied).
  • yR3 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (16).
  • the present invention from the above formula (16), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer filling is completed for the composition change in the container and equipment of the supply destination. It can fall within the range of (x) -2.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -2.0% by weight (target lower limit composition) until transfer filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -0.8% by weight with respect to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range of the target upper limit composition (x) to 2.0% by weight (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 16.0 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in an amount of 7% by weight or 78.0 to 90% by weight is supplied as a liquid from the supply container filled in the supply container in an amount of 70% by weight or less of the maximum filling amount to the supply destination container and equipment.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -2.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before transfer filling is expressed as x + y R4 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 16.0 or 78.0 ⁇ x ⁇ 90 is satisfied).
  • yR4 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (17).
  • the present invention from the above formula (17), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred and filled from the supply container to the supply destination container and equipment, the supply container before transfer and filling
  • the target upper limit composition can be changed until transfer filling is completed for the composition change in the container and equipment of the supply destination. It can fall within the range of (x) -2.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -2.0% by weight (target lower limit composition) until transfer filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -0.9% by weight relative to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range of the target upper limit composition (x) to 2.0% by weight (target lower limit composition) to the target upper limit composition (x).
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 18.0 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant present in the amount of 7% by weight or 76.0 to 90% by weight is supplied as a liquid from the supply container in which the supply container is filled in an amount of 60% by weight or less of the maximum filling amount to the supply destination container and equipment.
  • the liquid phase mixing ratio of HFC-32 in the mixed refrigerant in the supply container from the start to the completion of transfer and filling is set to the target upper limit composition (x) -2.0 wt% of HFC-32 (
  • the liquid phase mixing ratio (initial composition) of the HFC-32 of the mixed refrigerant in the supply container immediately before the transfer filling is expressed as x + y R5 It is preferable to make it x wt%.
  • X is a target upper limit composition (provided that 10 ⁇ x ⁇ 18.0 or 76.0 ⁇ x ⁇ 90 is satisfied).
  • yR5 is a lower limit value of deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (18).
  • the present invention from the above formula (18), when the HFC-32 / HFO-1234ze (E) mixed refrigerant is transferred from the supply container to the supply destination container and equipment, the supply container before transfer charging
  • the target upper limit composition can be changed until transfer filling is completed. It can fall within the range of (x) -2.0 wt% (target lower limit composition) to target upper limit composition (x).
  • the boiling point of HFC-32 is lower than that of HFO-1234ze (E), and during transfer and filling, the space created by extracting the refrigerant is refilled by evaporation from the liquid phase side. Since the HFC-32 concentration in the liquid phase is lowered because a large amount of vapor is evaporated, it is preferable to fill HFC-32 in a supply container before transfer filling in a larger amount than the target composition.
  • the composition change of the HFC-32 / HFO-1234ze (E) mixed refrigerant in the container and equipment of the supply destination is the target upper limit composition (x) -2.0% by weight (target lower limit composition) until transfer filling is completed.
  • target upper limit composition (x) the upper limit value of the liquid phase mixture ratio of HFC-32 in the HFC-32 / HFO-1234ze (E) mixed refrigerant is the target value of HFC-32.
  • the upper limit composition is the target value of HFC-32.
  • the composition change is small, so even if the initial composition of HFC-32 is about -0.9% by weight relative to the target upper limit composition, transfer filling is completed. Until then, the liquid phase mixing ratio of HFC-32 can be kept within the range of the target upper limit composition (x) to 2.0% by weight (target lower limit composition) to the target upper limit composition (x).
  • the above equation (13) can be derived from the above equations (14) to (18). Based on the value of each coefficient in the above formulas (14) to (18), L 3 to P 3 in formula (13) is derived from the target upper limit composition (x) with respect to the initial filling amount (a weight%). Can do.
  • the mixed refrigerant charging method of the present invention includes HFC-32 and HFO-1234ze (E), and HFC-32 is 10 to 18 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • HFC-32 is 10 to 18 in the liquid phase with respect to a total of 100% by weight of HFC-32 and HFO-1234ze (E).
  • the mixed refrigerant existing in an amount of wt% or 76 to 90 wt% is transferred and filled from the supply container to the supply destination container and equipment with the liquid.
  • the HFC-32 liquid phase mixing ratio (initial composition) of the mixed refrigerant in the supply container is x + y 3 (minimum value) to x (maximum value) weight%.
  • the supply container is filled with an amount of 100% by weight or less of the maximum filling amount.
  • y R1 > 0 when 14.0 ⁇ x ⁇ 81.0, the range of x is 10.0 to 14.0% by weight or 81.0 to 90.0% by weight.
  • y R4 > 0 at 16.0 ⁇ x ⁇ 78.0, so the range of x is 10-16.0% by weight or 78.0-90 % By weight.
  • y R5 > 0 at 18.0 ⁇ x ⁇ 76.0, so the range of x is 10-18.0% by weight or 76.0-90 % By weight.
  • a Initial filling amount in supply container (wt%)
  • x Target upper limit composition (% by weight, 10 ⁇ x ⁇ 18.0% by weight or 76.0 ⁇ x ⁇ 90, except for the range where y 3 > 0).
  • y 3 is a lower limit value of the deviation from the target upper limit composition in the initial composition, and is a value represented by the following formula (13).
  • the present invention is particularly directed to a mixed composition comprising 10 to 90% by weight of HFC-32: HFC-32 / HFO-1234ze (E) mixed refrigerant.
  • 32 / HFO-1234ze (E) HFC-32 / HFO is used to improve the compatibility with refrigeration oil, suppress combustibility, reduce GWP, improve refrigeration capacity, etc.
  • -1234ze (E) may be added for the purpose of improving the characteristics of the mixed refrigerant, and the addition is preferably about 1 to 10% by weight.
  • the non-azeotropic compound is not particularly limited, but HFC such as HFC-125, HFC-152a, HFC-143a, HFO such as HFO-1234yf, HFO-1243zf, HFO-1225ye, isobutane, butane, propane CO2 etc. are mentioned as examples, and one or more of the compounds may be mixed.
  • HFC such as HFC-125, HFC-152a, HFC-143a
  • HFO such as HFO-1234yf, HFO-1243zf, HFO-1225ye, isobutane, butane, propane CO2 etc.
  • the supply-side container of the present invention is not particularly limited as long as it is a sealed container that can store a refrigerant mixture, and examples thereof include a cylinder, a lorry, and a storage tank.
  • examples thereof include a cylinder, a lorry, and a storage tank.
  • the transfer filling may be performed several times until the transfer filling is completed, and the entire liquid phase is transferred and filled. Even if the transfer-filling is interrupted in the middle without doing so, it is valid.
  • the equipment to which the refrigerant mixture is transferred and filled may be an apparatus using a vapor compression refrigeration cycle, and the apparatus is not particularly limited, and examples thereof include a refrigeration air-conditioning apparatus, a refrigerator, and a hot water supply apparatus. .
  • the vapor compression refrigeration apparatus manufactured by the method of the present invention includes a refrigerant and a refrigeration apparatus main body, and the refrigeration apparatus main body is not particularly limited, and a known refrigeration apparatus main body is used as it is.
  • the means for transfer and filling may be in accordance with a conventional method, for example, one using a pressure difference or one using a pump or the like.
  • the Japanese high-pressure gas safety law prohibits the handling of containers above 40 ° C, so the handling temperature at the time of transfer and filling is basically 0 to 40 ° C. Also, international laws and the like require that handling at high temperatures be avoided. And, the higher the temperature at the time of transfer filling (at the time of handling), the larger the composition change due to the transfer filling. By applying the conditions of transfer filling at the handling temperature of 40 ° C, the handling temperature of 0-40 ° C is also applicable. Is possible.
  • Reference example 1 In a 10 L sealed container, trans 1,3,3,3-tetrafluoropropene (HFO-1234ze (E)) and difluoromethane (HFC-32) are mixed at 40 ° C. with a certain composition.
  • the maximum filling amount that can be filled with the composition immediately before transfer filling was filled and kept at 40 ° C. This maximum fillable amount is defined by law and is calculated as follows.
  • ⁇ G V / C ⁇ G: Mass of fluorocarbon (kg) ⁇
  • V Container volume (L)
  • ⁇ C Constant depending on the type of fluorocarbon
  • the filling constant C at this time is determined to be 1.05 divided by the specific gravity of the gas at 48 ° C in Japan.
  • this packing constant C is calculated by international law when exporting, and is calculated by dividing 1.05 by the specific gravity of the gas at 65 ° C when passing through the tropics, and 1.05 only in other regions than the tropics. It is defined as the value divided by the specific gravity of the gas at 45 ° C.
  • 40 ° C was selected as the temperature at the time of transfer and filling because the Japanese high-pressure gas safety law prohibits the handling of containers exceeding 40 ° C. This is because the data at 40 ° C. is assumed to be the worst case because the composition change increases as the temperature increases.
  • Table 1 shows the result of composition change in Reference Example 1 at the time of transfer and filling when the amount obtained by dividing 1.05 by the specific gravity of the gas at 45 ° C. is filled as a filling constant.
  • Example 1 The initial filling amount in the supply container is 100% by weight of the maximum filling amount The maximum filling amount that can be filled with the composition before transfer and filling so that the liquid phase of HFO-1234ze (E) and HFC-32 has a certain composition at 40 ° C in a 10 L sealed container (filling amount: 100 wt% ) And held at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Reference Example 1, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. Table 2 shows the results of the composition change at the time of transfer and filling when the target upper limit composition is prepared.
  • the target upper limit composition is -4.0% by weight (target lower limit composition). It can be kept within the range of the target upper limit composition.
  • Table 3 shows the lower limit (y P1 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is -2.5 of the target composition. Even if it is wt%, it can be kept within the range of the target upper limit composition from the target upper limit composition-4.0 wt% (target lower limit composition) until transfer filling is completed before transfer.
  • the lower limit (y P1 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target composition (x).
  • the upper limit composition can be kept within the range of 4.0 wt% (target lower limit composition) to the target upper limit composition.
  • Example 2 The initial filling amount in the supply container is 90% by weight of the maximum filling amount Fill 10L airtight container with 90% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Example 1, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. Table 4 shows the results of the composition change at the time of transfer and filling when the target upper limit composition is prepared.
  • the target upper limit composition is -4.0% by weight (target lower limit composition). It can be kept within the range of the target upper limit composition.
  • Table 5 shows the lower limit (y P2 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -2.6% by weight, it can be kept within the range from the target upper limit composition -4.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit (y P2 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the composition from the start of transfer filling to the completion of transfer filling is kept within the target lower limit to the upper limit composition for any target upper limit composition. I can do it.
  • the target by setting the initial composition of HFC-32 in the liquid-phase mixed refrigerant of HFC-32 / HFO-1234ze (E) to y P2 to the target upper limit composition, the target until the transfer filling is completed from before the transfer filling is completed.
  • the upper limit composition can be kept within the range of 4.0 wt% (target lower limit composition) to the target upper limit composition.
  • Example 3 The initial filling amount in the supply container is 80% by weight of the maximum filling amount Fill 10L airtight container with 80% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Example 1, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. Table 6 shows the result of the composition change at the time of transfer and filling when the target upper limit composition is prepared.
  • the target upper limit composition is -4.0% by weight (target lower limit composition). It can be kept within the range of the target upper limit composition.
  • Table 7 shows the lower limit (y P3 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -2.6% by weight, it can be kept within the range from the target upper limit composition -4.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit value (y P3 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the composition from the start of transfer filling to the completion of transfer filling is all within the target lower limit to the upper limit composition for any target upper limit composition. I can do it.
  • the target by setting the initial composition of HFC-32 in the liquid-phase mixed refrigerant of HFC-32 / HFO-1234ze (E) to y P3 to the target upper limit composition, the target until the transfer filling is completed from before the transfer filling is completed.
  • the upper limit composition can be kept within the range of 4.0 wt% (target lower limit composition) to the target upper limit composition.
  • Example 4 The initial filling amount in the supply container is 70% by weight of the maximum filling amount Fill a 10L sealed container with 70% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Example 1, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. Table 8 shows the result of the composition change at the time of transfer and filling when the target upper limit composition is prepared.
  • the target upper limit composition is -4.0% by weight (target lower limit composition). It can be kept within the range of the target upper limit composition.
  • Table 9 shows the lower limit (y P4 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -2.7% by weight, it can be kept within the range from the target upper limit composition -4.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit value (y P4 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the upper limit composition can be kept within the range of 4.0 wt% (target lower limit composition) to the target upper limit composition.
  • Example 5 The initial filling amount in the supply container is 60% by weight of the maximum filling amount Fill a 10L sealed container with 60% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Example 1, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. In Table 10, the result of the composition change at the time of transfer filling at the time of preparing to a target upper limit composition is shown.
  • the target upper limit composition As shown in Table 10, by setting the initial composition before transfer filling to the target upper limit composition, the composition from the beginning of filling (before transfer filling) until the liquid runs out (until transfer filling is completed). If the HFC-32 composition is in the range of 10 to 90% by weight in the HFC-32 / HFO-1234ze (E) liquid-phase mixed refrigerant, the target upper limit composition is -4.0% by weight (target lower limit composition). It can be kept within the range of the target upper limit composition.
  • Table 11 shows the lower limit (y P5 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -2.8% by weight, it can be kept within the range from the target upper limit composition -4.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit value (y P5 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the composition from the start of transfer filling to the completion of transfer filling is all within the target lower limit to the upper limit composition for any target upper limit composition. I can do it.
  • the target by setting the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) to y P5 to the target upper limit composition, the target until the transfer filling is completed from before the transfer filling is completed.
  • the upper limit composition can be kept within the range of 4.0 wt% (target lower limit composition) to the target upper limit composition.
  • Example 6 The initial filling amount in the supply container is 100% by weight of the maximum filling amount The maximum filling amount that can be filled with the composition before transfer and filling so that the liquid phase of HFO-1234ze (E) and HFC-32 has a certain composition at 40 ° C in a 10 L sealed container (filling amount: 100 wt% ) And held at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Reference Example 1, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. Table 12 shows the result of composition change at the time of transfer and filling when the target upper limit composition is prepared.
  • the target upper limit composition is -3.0 wt% It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 13 shows the lower limit (y Q1 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -1.6 wt%, it can be kept within the range of the target upper limit composition -3.0 wt% (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit (y Q1 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the composition from the start of transfer filling to the completion of transfer filling is kept within the target lower limit to the upper limit composition for any target upper limit composition. I can do it.
  • the upper limit composition can be within the range of 3.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 7 The initial filling amount in the supply container is 90% by weight of the maximum filling amount Fill 10L airtight container with 90% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Example 6, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. In Table 14, the result of the composition change at the time of transfer filling at the time of preparing to a target upper limit composition is shown.
  • the target upper limit composition As shown in Table 14, by setting the initial composition before transfer filling to the target upper limit composition, the composition from the beginning of filling (before transfer filling) until the liquid runs out (until transfer filling is completed). If the HFC-32 composition is in the range of 10-27.5 wt% or 64.5-90 wt% in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E), the target upper limit composition is -3.0 wt% It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 15 shows the lower limit (y Q2 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -1.7% by weight, it can be kept within the range from the target upper limit composition -3.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit (y Q2 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the composition from the start of transfer filling to the completion of transfer filling is all within the target lower limit to the upper limit composition for any target upper limit composition. I can do it.
  • the upper limit composition can be within the range of 3.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 8 The initial filling amount in the supply container is 80% by weight of the maximum filling amount Fill 10L airtight container with 80% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Example 6, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. In Table 16, the result of the composition change at the time of transfer filling at the time of preparing to a target upper limit composition is shown.
  • the target upper limit composition As shown in Table 16, by setting the initial composition before transfer filling to the target upper limit composition, the composition from the beginning of filling (before transfer filling) until the liquid runs out (until transfer filling is completed). If the HFC-32 composition is in the range of 10 to 30.0% by weight or 61.5 to 90% by weight in the HFC-32 / HFO-1234ze (E) liquid phase mixed refrigerant, the target upper limit composition is -3.0% by weight. It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 17 shows the lower limit (y Q3 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -1.7% by weight, it can be kept within the range from the target upper limit composition -3.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit value (y Q3 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the upper limit composition can be within the range of 3.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 9 The initial filling amount in the supply container is 70% by weight of the maximum filling amount Fill a 10L sealed container with 70% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Example 6, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. Table 18 shows the results of the composition change at the time of transfer and filling when the target upper limit composition is prepared.
  • the target upper limit composition As shown in Table 18, by setting the initial composition before transfer filling to the target upper limit composition, the composition from the beginning of filling (before transfer filling) until the liquid runs out (until transfer filling is completed). If the HFC-32 composition is in the range of 10 to 33.5 wt% or 57.5 to 90 wt% in the HFC-32 / HFO-1234ze (E) liquid-phase mixed refrigerant, the target upper limit composition is -3.0 wt% It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 19 shows the lower limit (y Q4 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -1.8% by weight, it can be kept within the range from the target upper limit composition -3.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit value (y Q4 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the composition from the start of transfer filling to the completion of transfer filling is all within the target lower limit to the upper limit composition for any target upper limit composition. I can do it.
  • the upper limit composition can be within the range of 3.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 10 The initial filling amount in the supply container is 60% by weight of the maximum filling amount Fill a 10L sealed container with 60% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Example 6, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. Table 20 shows the results of the composition change at the time of transfer and filling when the target upper limit composition is prepared.
  • the target upper limit composition is -3.0% by weight (target lower limit composition). It can be kept within the range of the target upper limit composition.
  • Table 21 shows the lower limit (y Q5 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -1.8% by weight, it can be kept within the range from the target upper limit composition -3.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit value (y Q5 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the upper limit composition can be within the range of 3.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 11 The initial filling amount in the supply container is 100% by weight of the maximum filling amount The maximum filling amount that can be filled with the composition before transfer and filling so that the liquid phase of HFO-1234ze (E) and HFC-32 has a certain composition at 40 ° C in a 10 L sealed container (filling amount: 100 wt% ) And held at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, as in Reference Example 1, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. In Table 22, the result of the composition change at the time of transfer filling at the time of preparing to a target upper limit composition is shown.
  • the target upper limit composition As shown in Table 22, by setting the initial composition before transfer filling to the target upper limit composition, the composition from the beginning of filling (before transfer filling) until the liquid runs out (until transfer filling is completed). If the HFC-32 composition is in the range of 10 to 14.0 wt% or 81.0 to 90 wt% in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E), the target upper limit composition is -2.0 wt% It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 23 shows the lower limit value (y R1 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -0.7% by weight, it can be kept within the range from the target upper limit composition -2.0% by weight (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit value (y R1 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the upper limit composition can be within the range of 2.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 12 The initial filling amount in the supply container is 90% by weight of the maximum filling amount Fill 10L airtight container with 90% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, in the same manner as in Example 11, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. In Table 24, the result of the composition change at the time of transfer filling at the time of preparing to a target upper limit composition is shown.
  • the target upper limit composition As shown in Table 24, by setting the initial composition before transfer filling to the target upper limit composition, the composition from the beginning of filling (before transfer filling) until the liquid runs out (until transfer filling is completed). If the HFC-32 composition is in the range of 10 to 14.5 wt% or 80.5 to 90 wt% in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E), the target upper limit composition-2.0 wt% It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 25 shows the lower limit (y R2 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition.
  • the target upper limit composition can be kept within the range of -2.0 wt% (target lower limit composition) to the target upper limit composition before transfer filling is completed.
  • the lower limit value (y R2 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following equation using the target upper limit composition (x).
  • the upper limit composition can be within the range of 2.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 13 The initial filling amount in the supply container is 80% by weight of the maximum filling amount Fill 10L airtight container with 80% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, in the same manner as in Example 11, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. In Table 26, the result of the composition change at the time of transfer filling at the time of adjusting to a target upper limit composition is shown.
  • the target upper limit composition As shown in Table 26, by setting the initial composition before transfer filling to the target upper limit composition, the composition from the beginning of filling (before transfer filling) until the liquid runs out (until transfer filling is completed). If the HFC-32 composition is in the range of 10 to 15.5 wt% or 79.5 to 90 wt% in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E), the target upper limit composition is -2.0 wt% It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 27 shows the lower limit (y R3 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -0.9% by weight, the target upper limit composition can be kept within the range of -2.0% by weight (target lower limit composition) to the target upper limit composition until transfer filling is completed before transfer filling.
  • the lower limit value (y R3 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following formula using the target upper limit composition (x).
  • the composition from the start of transfer filling to the completion of transfer filling is all within the target lower limit to the upper limit composition for any target upper limit composition. I can do it.
  • the upper limit composition can be within the range of 2.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 14 The initial filling amount in the supply container is 70% by weight of the maximum filling amount Fill a 10L sealed container with 70% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, in the same manner as in Example 11, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. In Table 28, the result of the composition change at the time of transfer filling at the time of adjusting to a target upper limit composition is shown.
  • the target upper limit composition As shown in Table 28, by setting the initial composition before transfer filling to the target upper limit composition, the composition from the beginning of filling (before transfer filling) until the liquid runs out (until transfer filling is completed). If the HFC-32 composition is in the range of 10 to 16.0 wt% or 78.0 to 90 wt% in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E), the target upper limit composition is -2.0 wt% It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 29 shows the lower limit (y R4 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -0.9% by weight, the target upper limit composition can be kept within the range of -2.0% by weight (target lower limit composition) to the target upper limit composition until transfer filling is completed before transfer filling.
  • the lower limit value (y R4 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following formula using the target upper limit composition (x).
  • the upper limit composition can be within the range of 2.0% by weight (target lower limit composition) to the target upper limit composition.
  • Example 15 The initial filling amount in the supply container is 60% by weight of the maximum filling amount Fill a 10L sealed container with 60% by weight of the maximum filling amount that can be filled with HFO-1234ze (E) and HFC-32 at 40 ° C so that the liquid phase has a certain composition. And kept at 40 ° C. At this time, the initial composition in the liquid phase of HFC-32 before transfer filling was adjusted so as to be the target upper limit composition. Next, in the same manner as in Example 11, the mixture was gradually transferred from the liquid side to another empty container using a pump, and the component composition was analyzed. In Table 30, the result of the composition change at the time of transfer filling at the time of preparing to a target upper limit composition is shown.
  • the target upper limit composition is -2.0 wt% It can fall within the range of (target lower limit composition) to target upper limit composition.
  • Table 31 shows the lower limit (y R5 ) of the deviation from the target upper limit composition in the initial composition at this time.
  • the composition fluctuation is the smallest at the target upper limit composition of 90% by weight of HFC-32, and the initial composition of HFC-32 in the liquid phase mixed refrigerant of HFC-32 / HFO-1234ze (E) is the target upper limit composition. Even if it is -0.9% by weight, the target upper limit composition can be kept within the range of -2.0% by weight (target lower limit composition) to the target upper limit composition until transfer filling is completed before transfer filling.
  • the lower limit value (y R5 ) of the deviation from the target upper limit composition in the initial composition can be expressed by the following formula using the target upper limit composition (x).
  • the composition from the start of transfer filling to the completion of transfer filling is kept within the target lower limit to the upper limit composition at any target upper limit composition. I can do it.
  • the upper limit composition can be within the range of 2.0% by weight (target lower limit composition) to the target upper limit composition.
  • the compositional change that occurs during the transfer and filling of the non-azeotropic HFO-1234ze (E) / HFC-32 mixed refrigerant that is used as the working medium for the vapor compression refrigeration cycle can interfere with the refrigerant capacity. It is meaningful that it can be kept within the range that does not cause damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

HFO-1234ze(E)及びHFC-32からなる非共沸混合冷媒の移充填時の組成変化を、冷媒性能の許容範囲内に収めることの出来る混合冷媒の充填方法を提供することを目的とする。 HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)から目標上限組成(x)-4.0重量%(目標下限組成)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+y1(最小値)~x%(目標上限組成)にすることを特徴とする、混合冷媒の充填方法。

Description

トランス-1,3,3,3-テトラフルオロプロペンを含む混合冷媒の充填方法
 本発明は、トランス-1,3,3,3-テトラフルオロプロペンを含む混合冷媒の充填方法に関する。
 近年、地球温暖化防止の観点から、冷凍空調分野において冷媒の見直しが進められている。カーエアコン分野においては、欧州のF-gas規制によりGWP 150(GWP:Global warming potential:地球温暖化係数)以上の冷媒が規制されることとなり、GWP 4の2,3,3,3-テトラフルオロプロペン(本明細書においてHFO-1234yfと表記することがある)が採用となった。また、大型冷凍空調分野では、上記HFO-1234yfの他、トランス-1,3,3,3-テトラフルオロプロペン(本明細書においてHFO-1234ze(E)と表記することがある)も代替候補として挙げられている。
 定置型冷凍空調機器においても、現在使用されているR-410A(GWP 2088)やR-404A(GWP 3922)、R-407C(GWP 1770)及び1,1,1,2-テトラフルオロエタン(本明細書においてHFC-134aと表記することがある)(GWP 1430)等はGWPが高く、先進国においてはCO2削減の観点だけでなく、HFC(Hydrofluorocarbon、フッ素化炭化水素)削減の観点からも規制されつつあり、その代替冷媒の開発は急務である。そして、冷媒選定においては、用途・運転条件などを考慮し、様々な冷媒の中から環境性、安全性、性能及び経済性等多角的な観点から検討しなければならない。そこで、現在、フルオロカーボンや自然冷媒ともに様々な冷媒種が提案されているが、現状、燃焼性、効率及びGWP値等を全て満足するような冷媒は存在せず、用途や運転条件などに応じて適材適所で選定する必要がある。
 さて、冷媒の中でも、HFO-1234ze(E)冷媒はその低いGWPや毒性の低さから大型冷凍空調分野以外にも注目されている。しかしながら、R-410A等の冷媒の代替として、定置型冷凍空調機器等で使用するにはHFO冷媒は単体では蒸気圧が低く、従来冷媒に比べて能力不足あるいは性能低下が危惧されており、また微燃性を有することも分かっている。
 そこで、最近では能力向上及び不燃化を図るため、各種冷媒を混合した非共沸混合冷媒の提案がなされている(特許文献1~3)。
 しかしながら、HFCとHFO-1234ze(E)との混合物の多くは、非共沸混合物であるがゆえに、蒸発・凝縮のように相変化する場合は組成変動が生じる。これは、低沸点の成分が蒸発し易く、高沸点の成分が凝縮し易いためである。この傾向は蒸発、即ち液から蒸気への相変化の場合に大きく、特に混合物の構成成分の沸点差が大きいほど著しい。従って、このような非共沸混合物を容器から別の容器に移す場合には、相変化を伴わないように液側から抜き出すのが普通である。
 ところが、液側から抜き出す場合でも混合物の構成成分の沸点差が大きいと、数重量%の組成変化を生じてしまう。これは、抜き出しによる圧力減少や気相部空間の増加により、液相中の低沸点成分の蒸発を生じるからである。この数重量%の組成変化は、冷媒性能に大きな変化を生じ能力や効率の低下を及ぼすだけでなく、燃焼性などの冷媒の安全性にも大きな影響を与える(特許文献4、5)。
 特に、HFO-1234ze(E)との混合冷媒として使用する可能性の高いHFC-32(ジフルオロメタン)は非常に冷凍能力が高いものの、HFO-1234ze(E)との沸点差は約30K近くもあり、ボンベやタンクローリー等供給側容器から冷凍空調機器や他のボンベへ移充填する際に生じる組成変化は性能上無視できないレベルにある。また、性能面だけでなく混合冷媒の品質保証という点においても、その混合冷媒の設定公差内に組成変化を収めることは重要である。
 例えば、何の対策もせずにHFO-1234ze(E)及びHFC-32からなる混合冷媒を40℃で移充填した場合、移充填元の全ての液が消失した時点で狙いの組成から最大で3~4重量%の組成のずれが生じる。この場合、狙いの組成から見るとその組成変動率は約±4重量%となり、狙いの組成で見込んでいた冷凍能力及びCOP等の冷媒能力が保証できなくなってしまう。そのため、この組成変動率を出来るだけ小さく収める事が重要となってくる。
 また、この組成変動は非共沸冷媒の種類や組成比によって大きく異なり、全くの実測無しにその組成変動幅をあらかじめ予想することは困難である。
特開2010-47754号公報 特表2011-525204号公報 特表2011-522947号公報 特開平10-197108号公報 特許第3186065号
 本発明の主な目的は、HFO-1234ze(E)及びHFC-32からなる非共沸混合冷媒の移充填時の組成変化を、冷媒性能の許容範囲内に収めることの出来る混合冷媒の充填方法を提供することである。
 本発明者らは、この様な密閉容器に貯蔵された2種の沸点の異なる液化ガスよりなる非共沸混合物を液側から別の容器に移充填する際に生じる組成変化の問題を解決するために液化ガスの充填方法について鋭意検討を加えた。
 即ち、本発明は、下記のHFC-32及びHFO-1234ze(E)からなる非共沸混合冷媒の充填方法を提供するものである。
 本発明の混合冷媒の充填方法は、非共沸冷媒であるHFC-32/HFO-1234ze(E)混合冷媒において、その組成が液相においてHFC-32:10~90重量%のものを、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の、供給用容器内のHFC-32の液相混合比を特定の範囲に設定することを特徴とする。
 容器への混合冷媒の充填を最大(充填量100重量%)とする場合の、供給用容器より、供給先の容器及び機器へ混合冷媒の移充填を実施する際に、移充填を実施する前の供給用容器内における混合冷媒の混合比について説明する。
 前記充填量100重量%とは、輸送に関する国際法や日本の高圧ガス保安法で定められている、容器に充填できる最大の充填量のことを示す。日本の高圧ガス保安法では以下の様に算出する。
・G = V/C
・G:フルオロカーボンの質量(kg)
・V:容器の内容積(L)
・C:フルオロカーボンの種類による定数
 この際の充填定数Cは日本国内では、1.05を48℃における当該ガスの比重で除した値と定められている。また、この充填定数Cは、輸出を伴う際は国際法により、熱帯地方を通過する際は、1.05を65℃における当該ガスの比重で除した値、熱帯以外のその他の地方のみでは、1.05を45℃における当該ガスの比重で除した値と定められている。
 HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、供給用容器の初期充填量が少ない方が、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比の組成変化は小さくなる。
 以下、1.05を45℃における当該ガスの比重で除した値、を充填定数として採用し、算出した値を充填量100%としている。
 本発明は、主として以下の発明を含む。
 項1.HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、
 移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)から目標上限組成(x)-4.0重量%(目標下限組成)の範囲に収めるため、
 移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+y1(最小値)~x%(目標上限組成)にすることを特徴とする、混合冷媒の充填方法。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(10≦x≦90、ただしy1>0となる範囲を除く)。  y1:初期組成における目標上限組成とのずれの下限値で、次の式(1)で表される値である。
 1000y1 = L1x3+ M1x2 + N1x + P1       (1)   
     L1 = 0.0006 a + 0.0033
   M1 = 0.0147 a + 1.3904
   N1 = 0.9026 a + 112.55
   P1 = 1.1469 a + 4464
項2. HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、
 移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)から目標上限組成(x)-3.0重量%(目標下限組成)の範囲に収めるため、
 移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+y2(最小値)~x%(目標上限組成)にすることを特徴とする、混合冷媒の充填方法。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(10≦x≦90、ただしy2>0となる範囲を除く)。  y2:初期組成における目標上限組成とのずれの下限値で、次の式(7)で表される値である。
 1000y2 = L2x3+ M2x2 + N2x + P2       (7)  
     L2 = 0.0006 a + 0.0033
    M2 = 0.0149 a + 1.3265
    N2 = 0.9005 a + 106.38
   P2 = 0.8193 a + 3287.8
項3. HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、
 移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)から目標上限組成(x)-2.0重量%(目標下限組成)の範囲に収めるため、
 移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+y3(最小値)~x%(目標上限組成)にすることを特徴とする、混合冷媒の充填方法。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(10≦x≦18.0重量%又は76.0≦x≦90、ただしy3>0となる範囲を除く)。
  y3:初期組成における目標上限組成とのずれの下限値で、次の式(13)で表される値である。
 1000y3 = L3x3+ M3x2 + N3x + P3       (13)  
     L3 = 0.0006 a + 0.0033
    M3 = 0.0137 a + 1.3646
    N3 = 0.8276 a + 105.68
    P3 = -0.5186 a + 2205.2
 (1)目標上限組成と目標下限組成の差が4重量%である場合の充填方法
 供給用容器より供給先の容器及び機器へ混合冷媒を移充填する時に、移充填開始から完了までの、供給用容器内における混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)から目標上限組成(x)-4.0重量%(目標下限組成)の範囲に収めるための、移充填を実施する前の供給用容器内における混合冷媒の混合比について説明する。
 前記「目標上限組成:(x)」は、供給先の容器・機器において求められる、HFC-32/HFO-1234ze(E)混合冷媒の全体組成(液相+気相)におけるHFC-32の組成が、この範囲内にあることを許容される、最大値である。X(重量%)は、10≦x≦90の範囲内の数値である。前記「目標下限組成:(x)-4重量%」とは、供給先の容器・機器において求められる、HFC-32/HFO-1234ze(E)混合冷媒の全体組成(液相+気相)におけるHFC-32の組成が、この範囲内にあることを許容される最小値である。
 (1-1)目標上限組成と目標下限組成の差が4重量%である場合の充填方法
 容器への混合冷媒の充填量が適宜調節される場合の、本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器より、供給先の容器及び機器へ液で移充填を実施する際に、移充填開始から完了までの前記供給用容器内における前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填を実施する直前の前記供給用容器内における前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+y1(最小値)~x%(目標上限組成)にすることを特徴とする。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(重量%、10≦x≦90、ただしy1>0となる範囲を除く)。
  y1:初期組成における目標上限組成とのずれの下限値で、次の式(1)で表される値である。
 1000y1 = L1x3+ M1x2 + N1x + P1       (1)  
     L1 = 0.0006 a + 0.0033
    M1 = 0.0147 a + 1.3904
    N1 = 0.9026 a + 112.55
    P1 = 1.1469 a + 4464
 本発明の混合冷媒の充填方法によれば、供給用容器の混合冷媒の充填量が最大充填量の100重量%であっても、移充填を実施する前の、供給用容器内におけるHFC-32の液相混合比を特定の範囲に設定することで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標とする組成より多く充填することが好ましい。
 また、前記aの値は、通常60≦a≦100の範囲に設定される。
 以下、移充填方法の一例として移充填時の取扱い温度が40℃のときを示す。例えば日本の高圧ガス保安法においては、40℃以上での容器の取り扱いを禁じていることから、日本における移充填時の取扱い温度は0~40℃である。そして、移充填時(取扱い時)の温度が高いほど、供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、移充填による組成変化が大きくなる。よって、取扱い温度40℃時における移充填の条件を応用することで、取扱い温度0~40℃についても適用可能である。
 また、供給用容器における充填量に関しても、初期充填量が少ないほど、供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、移充填による組成変化の幅が小さくなる。よって、初期充填量がa重量%である充填方法を満たす数式は、初期充填量がa重量%以下である充填方法においても満たされる。例えば、初期充填量が100重量%である充填方法を満たす数式は、初期充填量が100~0重量%である充填方法においても満たされる。初期充填量が90重量%である充填方法を満たす数式は、初期充填量が90~0重量%である充填方法においても満たされる。初期充填量が80重量%である充填方法を満たす数式は、初期充填量が80~0重量%である充填方法においても満たされる。初期充填量が70重量%である充填方法を満たす数式は、初期充填量が70~0重量%である充填方法においても満たされる。初期充填量が60重量%である充填方法を満たす数式は、初期充填量が60~0重量%である充填方法においても満たされる。
 供給用容器内の混合冷媒中のHFC-32の液相混合比
 本発明は、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、供給用容器内における混合冷媒のHFC-32の液相混合比(初期組成)を、x+y1(最小値)~x%(目標上限組成)にすることが特徴である。
 xは目標上限組成であり、y1は初期組成における目標上限組成(x)とのずれを示す。x+y1は、供給用容器内の混合冷媒のHFC-32の液相混合比(初期組成)の最小値を示す。
 前記目標上限組成と目標下限組成との差は公差(Composition Tolerances)と呼ばれる。公差は、混合冷媒の組成がASHRAE規格2013(Designation and Safety Classification of Refrigerants)等に登録された際に決まるものである。
 HFC-32及びHFO-1234ze(E)を含む混合冷媒において、HFC-32とHFO-1234ze(E)との混合比が、例えば50:50(重量%)である場合を説明する。この混合冷媒(HFC-32/HFO-1234ze(E))において、公差が例えば+2.0、-2.0/+2.0、-2.0と設定された場合、HFC-32の目標上限組成は52.0重量%となり、HFC-32の目標下限組成は48.0重量%となる。目標上限組成と目標下限組成との差が4重量%という混合冷媒になる。
 (1-2)容器への混合冷媒の充填量が最大充填量の100重量%の場合の充填方法 容器への混合冷媒の充填量が最大充填量の100重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の100重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内における前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+y1(最小値)~x%(目標上限組成)にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦90を満たす)。
 yP1は、初期組成における目標上限組成とのずれの下限値で、次の式(2)で表される値である。
 1000yP1 = 0.009x3- 2.8565x2+ 202.202x- 4579.154       (2)
 本発明は、上記式(2)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填を実施する際に、移充填を実施する前の供給用容器内のHFC-32の液相混合比を、x-2.7重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-2.5重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (1-3)容器への混合冷媒の充填量が最大充填量の90重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の90重量%であって、供給用容器内における前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E) を含み、HFC-32及びHFO-1234ze(E) の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の90重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yP2~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦90を満たす)。
 yP2は、初期組成における目標上限組成とのずれの下限値で、次の式(3)で表される値である。
 1000yP2 = 0.0089x3- 2.714x2+ 194.2292x- 4574.474        (3)
 本発明は、上記式(3)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-2.8重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-2.6重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (1-4)容器への混合冷媒の充填量が最大充填量の80重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の80重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E) の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の80重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yP3~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦90を満たす)。
 yP3は、初期組成における目標上限組成とのずれの下限値で、次の式(4)で表される値である。
 1000yP3 = 0.0084x3- 2.5913x2+ 185.8744x- 4552.951        (4)
 本発明は、上記式(4)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-2.8重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-2.6重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (1-5)容器への混合冷媒の充填量が最大充填量の70重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の70重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の70重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yP4~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦90を満たす)。
 yP4は、初期組成における目標上限組成とのずれの下限値で、次の式(5)で表される値である。
 1000yP4 = 0.0075x3- 2.3976x2+ 174.6504x- 4526.37        (5)
 本発明は、上記式(5)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-2.9重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-2.7重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (1-6)容器への混合冷媒の充填量が最大充填量の60重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の60重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の60重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yP5~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦90を満たす)。
 yP5は、初期組成における目標上限組成とのずれの下限値で、次の式(6)で表される値である。
 1000yP5 = 0.0071x3- 2.2789x2+ 166.8604x- 4545.862       (6)
 本発明は、上記式(6)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-2.9重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-2.8重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (1-7)HFC-32及びHFO-1234ze(E)を含む非共沸混合冷媒の充填方法 
 HFC-32及びHFO-1234ze(E)からなる非共沸混合冷媒の、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める充填方法について説明する。
 上記式(1)は、上記式(2)~(6)から導き出すことができる。上記式(2)~(6)の各係数の値を基に、目標上限組成(x)から、初期充填量(a重量%)に対して式(1)のL1~P1を導き出すことができる。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-4.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+ y1 (最小値)~x (最大値)重量%にすることを特徴とする。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(重量%、10≦x≦90、ただしy1>0となる範囲を除く)。
  y1:初期組成における目標上限組成とのずれの下限値で、次の式(1)で表される値である。
 1000y1 = L1x3+ M1x2 + N1x + P1       (1)   
   L1 = 0.0006 a + 0.0033
   M1 = 0.0147 a + 1.3904
   N1 = 0.9026 a + 112.55
   P1 = 1.1469 a + 4464
 (2)目標上限組成と目標下限組成の差が3重量%である場合の充填方法
 供給用容器より供給先の容器及び機器へ混合冷媒を移充填する時に、移充填開始から完了までの、供給用容器内の混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるための、移充填する前の供給用容器内の混合冷媒の混合比について説明する。
 前記「目標上限組成:(x)」は、供給先の容器・機器において求められる、HFC-32/HFO-1234ze(E)混合冷媒の全体組成(液相+気相)におけるHFC-32の組成が、この範囲内にあることを許容される、最大値である。X(重量%)は、10≦x≦90の範囲内の数値である。前記「目標下限組成:(x)-3重量%」は、供給先の容器・機器において求められる、HFC-32/HFO-1234ze(E)混合冷媒の全体組成(液相+気相)におけるHFC-32の組成が、この範囲内にあることを許容される、最小値である。
 (2-1)目標上限組成と目標下限組成の差が3重量%である場合の充填方法
 容器への混合冷媒の充填量が適宜調節される場合の、本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+y2(最小値)~x重量%(最大値)にすることを特徴とする。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(重量%、10≦x≦90、ただしy2>0となる範囲を除く)。
  y2:初期組成における目標上限組成とのずれの下限値で、次の式(7)で表される値である。
 1000y2 = L2x3+ M2x2 + N2x + P2      (7)   
   L2 = 0.0006 a + 0.0033
    M2 = 0.0149 a + 1.3265
    N2 = 0.9005 a + 106.38
    P2 = 0.8193 a + 3287.8
 本発明の混合冷媒の充填方法によれば、供給用容器の混合冷媒の充填量が最大充填量の100重量%であっても、移充填する前の、供給用容器内のHFC-32の液相混合比を特定の範囲に設定することで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。
 また、前期aの値は、通常60≦a≦100の範囲に設定される。
 以下、移充填方法は、一例として移充填時の取扱い温度が40℃のときを示す。例えば日本の高圧ガス保安法においては、40℃以上での容器の取り扱いを禁じていることから、特に日本における移充填時の取扱い温度は0~40℃である。そして、移充填時(取扱い時)の温度が高いほど、供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、移充填による組成変化が大きくなる。よって、取扱い温度40℃時のときの移充填の条件を応用することで、取扱い温度0~40℃についても適用可能である。
 また、供給用容器における充填量に関しても、初期充填量が少ないほど、供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、移充填による組成変化の幅が小さくなる。よって、初期充填量がa重量%である充填方法を満たす数式は、初期充填量がa重量%以下である充填方法においても満たされる。例えば、初期充填量が100重量%である充填方法を満たす数式は、初期充填量が100~0重量%である充填方法においても満たされる。初期充填量が90重量%である充填方法を満たす数式は、初期充填量が90~0重量%である充填方法においても満たされる。初期充填量が80重量%である充填方法を満たす数式は、初期充填量が80~0重量%である充填方法においても満たされる。初期充填量が70重量%である充填方法を満たす数式は、初期充填量が70~0重量%である充填方法においても満たされる。初期充填量が60重量%である充填方法を満たす数式は、初期充填量が60~0重量%である充填方法においても満たされる。
 供給用容器内の混合冷媒中のHFC-32の液相混合比
 本発明は、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、供給用容器内の混合冷媒のHFC-32の液相混合比(初期組成)を、x+ y2(最小値)~x%(目標上限組成)にすることが特徴である。
 xは目標上限組成であり、y2は初期組成における目標上限組成(x)とのずれを示す。x+ y2は、供給用容器内の混合冷媒のHFC-32の液相混合比(初期組成)の最小値を示す。
 前記目標上限組成と目標下限組成との差は公差(Composition Tolerances)と呼ばれる。公差は、混合冷媒の組成がASHRAE規格2013に登録された際に決まるものである。
 HFC-32及びHFO-1234ze(E)を含む混合冷媒において、HFC-32とHFO-1234ze(E)との混合比が、例えば50:50(重量%)である場合を説明する。この混合冷媒(HFC-32/HFO-1234ze(E))において、公差が例えば+1.5、-1.5/+1.5、-1.5と設定された場合、HFC-32の目標上限組成は51.5重量%となり、HFC-32の目標下限組成は48.5重量%となる。目標上限組成と目標下限組成との差が3重量%という混合冷媒になる。
 (2-2)容器への混合冷媒の充填量が最大充填量の100重量%の場合の充填方法 
 容器への混合冷媒の充填量が最大充填量の100重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E) を含み、HFC-32及びHFO-1234ze(E) の合計100重量%に対し液相においてHFC-32が10~25.5重量%又は66.5~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の100重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yQ1~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦25.5又は66.5≦x≦90を満たす)。
 yQ1は、初期組成における目標上限組成とのずれの下限値で、次の式(8)で表される値である。
 1000yQ1 = 0.0093x3- 2.79655x2+ 194.9369x- 3361.644        (8)
 本発明は、上記式(8)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-1.8重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-1.6重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (2-3)容器への混合冷媒の充填量が最大充填量の90重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の90重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E) を含み、HFC-32及びHFO-1234ze(E) の合計100重量%に対し液相においてHFC-32が10~27.5重量%又は64.5~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の90重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yQ2~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦27.5又は64.5≦x≦90を満たす)。
 yQ2は、初期組成における目標上限組成とのずれの下限値で、次の式(9)で表される値である。
 1000yQ2 = 0.0089x3- 2.69275x2+ 188.6282x- 3367.314       (9)
 本発明は、上記式(9)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-1.8重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-1.7重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (2-4)容器への混合冷媒の充填量が最大充填量の80重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の80重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E) の合計100重量%に対し液相においてHFC-32が10~30.0重量%又は61.5~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の80重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yQ3~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦30.0又は61.5≦x≦90を満たす)。
 yQ3は、初期組成における目標上限組成とのずれの下限値で、次の式(10)で表される値である。
 1000yQ3 = 0.0083x3- 2.54425x2+ 180.1067x- 3371.564        (10)
 本発明は、上記式(10)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-1.8重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-1.7重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (2-5)容器への混合冷媒の充填量が最大充填量の70重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の70重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~32.0重量%又は56.0~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の70重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yQ4~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦32.0又は56.0≦x≦90を満たす)。
 yQ4は、初期組成における目標上限組成とのずれの下限値で、次の式(11)で表される値である。
 1000yQ4 = 0.0074x3- 2.3485x2+ 168.4156x- 3324.164        (11)
 本発明は、上記式(11)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-1.9重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-1.8重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (2-6)容器への混合冷媒の充填量が最大充填量の60重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の60重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の60重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yQ5~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦90を満たす)。
 yQ5は、初期組成における目標上限組成とのずれの下限値で、次の式(12)で表される値である。
 1000yQ5 = 0.0070x3- 2.2222x2+ 160.0194x- 3342.253        (12)
 本発明は、上記式(12)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-1.9重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-1.8重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (2-7)HFC-32及びHFO-1234ze(E)を含む非共沸混合冷媒の充填方法 
 HFC-32及びHFO-1234ze(E)からなる非共沸混合冷媒の、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める充填方法について説明する。
 上記式(7)は、上記式(8)~(12)から導き出すことができる。上記式(8)~(12)の各係数の値を基に、目標上限組成(x)から、初期充填量(a重量%)に対して式(7)のL2~P2を導き出すことができる。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-3.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+ y2 (最小値)~x (最大値)重量%にすることを特徴とする。
 ここで、前記本発明の概念の通り、目標上限組成(x)と目標下限組成の差が-3.0重量%の場合、供給用容器に最大充填量の100重量%以下の量で充填されている場合、25.5<x<66.5ではyQ1>0となってしまうため、xの範囲は10~25.5重量%又は66.5~90重量%となる。
 供給用容器に最大充填量の90重量%以下の量で充填されている場合、27.5<x<64.5ではyQ2>0となってしまうため、xの範囲は10~27.5重量%又は64.5~90重量%となる。
 供給用容器に最大充填量の80重量%以下の量で充填されている場合、30.0<x<61.5ではyQ2>0となってしまうため、xの範囲は10~30.0重量%又は61.5~90重量%となる。
 供給用容器に最大充填量の70重量%以下の量で充填されている場合、32.0<x<56.0ではyQ2>0となってしまうため、xの範囲は10~32.0重量%又は56.0~90重量%となる。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(重量%、10≦x≦90、ただしy2>0となる範囲を除く)。
  y2:初期組成における目標上限組成とのずれの下限値で、次の式(7)で表される値である。
 1000y2 = L2x3+ M2x2 + N2x + P2       (7)   
   L2 = 0.0006 a + 0.0033
    M2 = 0.0149 a + 1.3265
    N2 = 0.9005 a + 106.38
    P2 = 0.8193 a + 3287.8
(3)目標上限組成と目標下限組成の差が2重量%である場合の充填方法
 供給用容器より供給先の容器及び機器へ混合冷媒を移充填する時に、移充填開始から完了までの、供給用容器内の混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるための、移充填する前の供給用容器内の混合冷媒の混合比について説明する。
 前記「目標上限組成:(x)」は、供給先の容器・機器において求められる、HFC-32/HFO-1234ze(E)混合冷媒の全体組成(液相+気相)におけるHFC-32の組成が、この範囲内にあることを許容される、最大値である。X(重量%)は、10≦x≦90の範囲内の数値である。前記「目標下限組成:(x)-2重量%」は、供給先の容器・機器において求められる、HFC-32/HFO-1234ze(E)混合冷媒の全体組成(液相+気相)におけるHFC-32の組成が、この範囲内にあることを許容される、最小値である。
 (3-1)目標上限組成と目標下限組成の差が2重量%である場合の充填方法
 容器への混合冷媒の充填量が適宜調節される場合の、本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~18.0重量%又は76.0~90重量%の量で存在する混合冷媒を、供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+y3(最小値)~x重量%(最大値)にすることを特徴とする。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(重量%、10≦x≦18.0又は76.0≦x≦90、ただしy3>0なる範囲を除く)。
  y3:初期組成における目標上限組成とのずれの下限値で、次の式(13)で表される値である。
 1000y3 = L3x3+ M3x2 + N3x + P3       (13)   
     L3 = 0.0006 a + 0.0033
    M3 = 0.0137 a + 1.3646
    N3 = 0.8276 a + 105.68
    P3 = -0.5186 a + 2205.2
 本発明の混合冷媒の充填方法によれば、供給用容器の混合冷媒の充填量が最大充填量の100重量%であっても、移充填する前の、供給用容器内のHFC-32の液相混合比を特定の範囲に設定することで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。
 また、前期aの値は、通常60≦a≦100の範囲に設定される。
 以下、移充填方法は、一例として移充填時の取扱い温度が40℃のときを示す。例えば日本の高圧ガス保安法においては、40℃以上での容器の取り扱いを禁じていることから、特に日本における移充填時の取扱い温度は0~40℃である。そして、移充填時(取扱い時)の温度が高いほど、供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、移充填による組成変化が大きくなる。よって、取扱い温度40℃時のときの移充填の条件を応用することで、取扱い温度0~40℃についても適用可能である。
 また、供給用容器における充填量に関しても、初期充填量が少ないほど、供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、移充填による組成変化の幅が小さくなる。よって、初期充填量がa重量%である充填方法を満たす数式は、初期充填量がa重量%以下である充填方法においても満たされる。例えば、初期充填量が100重量%である充填方法を満たす数式は、初期充填量が100~0重量%である充填方法においても満たされる。初期充填量が90重量%である充填方法を満たす数式は、初期充填量が90~0重量%である充填方法においても満たされる。初期充填量が80重量%である充填方法を満たす数式は、初期充填量が80~0重量%である充填方法においても満たされる。初期充填量が70重量%である充填方法を満たす数式は、初期充填量が70~0重量%である充填方法においても満たされる。初期充填量が60重量%である充填方法を満たす数式は、初期充填量が60~0重量%である充填方法においても満たされる。
 供給用容器内の混合冷媒中のHFC-32の液相混合比
 本発明は、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、供給用容器内の混合冷媒のHFC-32の液相混合比(初期組成)を、x+ y3(最小値)~x%(目標上限組成)にすることが特徴である。
 xは目標上限組成であり、y3は初期組成における目標上限組成(x)とのずれを示す。x+ y3は、供給用容器内の混合冷媒のHFC-32の液相混合比(初期組成)の最小値を示す。
 前記目標上限組成と目標下限組成との差は公差(Composition Tolerances)と呼ばれる。公差は、混合冷媒の組成がASHRAE規格2013に登録された際に決まるものである。
 HFC-32及びHFO-1234ze(E)を含む混合冷媒において、HFC-32とHFO-1234ze(E)との混合比が、例えば50:50(重量%)である場合を説明する。この混合冷媒(HFC-32/HFO-1234ze(E))において、公差が例えば+1.0、-1.0/+1.0、-1.0と設定された場合、HFC-32の目標上限組成は51.0重量%となり、HFC-32の目標下限組成は49.0重量%となる。目標上限組成と目標下限組成との差が2重量%という混合冷媒になる。
 (3-2)容器への混合冷媒の充填量が最大充填量の100重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の100重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E) を含み、HFC-32及びHFO-1234ze(E) の合計100重量%に対し液相においてHFC-32が10~14.0重量%又は81.0~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の100重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yR1~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦14.0又は81.0≦x≦90を満たす)。
 yR1は、初期組成における目標上限組成とのずれの下限値で、次の式(14)で表される値である。
 1000yR1 = 0.0088x3- 2.6875x2+ 186.3886x- 2144.11        (14)
 本発明は、上記式(14)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-0.8重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-0.7重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (3-3)容器への混合冷媒の充填量が最大充填量の90重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の90重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E) を含み、HFC-32及びHFO-1234ze(E) の合計100重量%に対し液相においてHFC-32が10~14.5重量%又は80.5~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の90重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yR2~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦14.5又は80.5≦x≦90を満たす)。
 yR2は、初期組成における目標上限組成とのずれの下限値で、次の式(15)で表される値である。
 1000yR2 = 0.0085x3- 2.6087x2+ 181.1319x- 2166.072        (15)
 本発明は、上記式(15)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-0.9重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-0.8重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (3-4)容器への混合冷媒の充填量が最大充填量の80重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の80重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E) の合計100重量%に対し液相においてHFC-32が10~15.5重量%又は79.5~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の80重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yR3~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦15.5又は79.5≦x≦90を満たす)。
 yR3は、初期組成における目標上限組成とのずれの下限値で、次の式(16)で表される値である。
 1000yR3 = 0.0082x3- 2.5108x2+ 174.097x- 2167.464        (16)
 本発明は、上記式(16)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-0.9重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-0.8重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (3-5)容器への混合冷媒の充填量が最大充填量の70重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の70重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~16.0重量%又は78.0~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の70重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yR4~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦16.0又は78.0≦x≦90を満たす)。
 yR4は、初期組成における目標上限組成とのずれの下限値で、次の式(17)で表される値である。
 1000yR4 = 0.0074x3- 2.3367x2+ 164.5012x- 2176.172       (17)
 本発明は、上記式(17)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-0.9重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-0.9重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (3-6)容器への混合冷媒の充填量が最大充填量の60重量%の場合の充填方法
 容器への混合冷媒の充填量が最大充填量の60重量%であって、供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるときを説明する。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~18.0重量%又は76.0~90重量%の量で存在する混合冷媒を、供給用容器に最大充填量の60重量%以下の量で充填されている供給用容器より、供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+yR5~x重量%にすることが好ましい。
 前記xは、目標上限組成である(但し、10≦x≦18.0又は76.0≦x≦90を満たす)。
 yR5は、初期組成における目標上限組成とのずれの下限値で、次の式(18)で表される値である。
 1000yR5 = 0.0065x3- 2.1408x2+ 153.3221x- 2164.988        (18)
 本発明は、上記式(18)から、HFC-32/HFO-1234ze(E)混合冷媒を、供給用容器より供給先の容器及び機器へ移充填する際に、移充填する前の供給用容器内のHFC-32の液相混合比を、x-1.0重量%程度~x重量%にすることで、供給先の容器及び機器内での組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める事ができる。
 HFC-32の沸点がHFO-1234ze(E)に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することから、HFC-32を移充填前の供給用容器において目標組成より多く充填することが好ましい。そして、供給先の容器及び機器内でのHFC-32/HFO-1234ze(E)混合冷媒の組成変化を、移充填が完了するまで、目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める混合冷媒の充填方法では、HFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の液相混合比の上限値は、HFC-32の目標上限組成である。
 また、HFC-32が90重量%含まれる場合、組成変化が小さいことから、HFC-32の初期組成が、目標上限組成に対して、-0.9重量%程度であったとしても、移充填が完了するまで、HFC-32の液相混合比を目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めることができる。
 (3-7)HFC-32及びHFO-1234ze(E)を含む非共沸混合冷媒の充填方法 
 HFC-32及びHFO-1234ze(E)からなる非共沸混合冷媒の、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収める充填方法について説明する。
 上記式(13)は、上記式(14)~(18)から導き出すことができる。上記式(14)~(18)の各係数の値を基に、目標上限組成(x)から、初期充填量(a重量%)に対して式(13)のL3~P3を導き出すことができる。
 本発明の混合冷媒の充填方法は、HFC-32及びHFO-1234ze(E)を含み、HFC-32及びHFO-1234ze(E)の合計100重量%に対し液相においてHFC-32が10~18重量%又は76~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のHFC-32の液相混合比を、HFC-32の目標上限組成(x)-2.0重量%(目標下限組成)から目標上限組成(x)の範囲に収めるため、移充填直前の、前記供給用容器内の前記混合冷媒のHFC-32の液相混合比(初期組成)を、x+ y3 (最小値)~x (最大値)重量%にすることを特徴とする。
 ここで、前記本発明の概念の通り、目標上限組成(x)と目標下限組成の差が-2.0重量%の場合、供給用容器に最大充填量の100重量%以下の量で充填されている場合、14.0<x<81.0ではyR1>0となってしまうため、xの範囲は10.0~14.0重量%又は81.0~90.0重量%となる。
 供給用容器に最大充填量の90重量%以下の量で充填されている場合、14.5<x<80.5ではyR2>0となってしまうため、xの範囲は10~14.5重量%又は80.5~90重量%となる。
 供給用容器に最大充填量の80重量%以下の量で充填されている場合、15.5<x<79.5ではyR3>0となってしまうため、xの範囲は10~15.5重量%又は79.5~90重量%となる。
 供給用容器に最大充填量の70重量%以下の量で充填されている場合、16.0<x<78.0ではyR4>0となってしまうため、xの範囲は10~16.0重量%又は78.0~90重量%となる。
 供給用容器に最大充填量の60重量%以下の量で充填されている場合、18.0<x<76.0ではyR5>0となってしまうため、xの範囲は10~18.0重量%又は76.0~90重量%となる。
  a:供給用容器における初期充填量(重量%)
  x:目標上限組成である(重量%、10≦x≦18.0重量%又は76.0≦x≦90、ただしy3>0となる範囲を除く)。
  y3:初期組成における目標上限組成とのずれの下限値で、次の式(13)で表される値である。
 1000y3 = L3x3+ M3x2 + N3x + P3       (13)  
   L3 = 0.0006 a + 0.0033
     M3 = 0.0137 a + 1.3646
    N3 = 0.8276 a + 105.68
    P3 = -0.5186 a + 2205.2
(4)第3成分の添加について
 本発明は、特にHFC-32/HFO-1234ze(E)混合冷媒のうちHFC-32:10~90重量%からなる混合組成物を対象としているが、HFC-32/HFO-1234ze(E)混合冷媒の組成変動挙動を大きく損なわない範囲において非共沸化合物を、冷凍機油との相溶性向上、燃焼性抑制、GWP低減、冷凍能力向上などHFC-32/HFO-1234ze(E)混合冷媒の特性改良の目的でそれらを添加しても良く、添加良としては1~10重量%程度が望ましい。非共沸化合物としては特に限定されるものではないが、HFC-125、HFC-152a、HFC-143a等のHFC、HFO-1234yf、HFO-1243zf、HFO-1225ye等のHFO、イソブタン、ブタン、プロパン、CO2等が例として挙げられ、その化合物の1種又は2種以上を混合しても良い。
 本発明の供給側容器は、冷媒混合物を貯蔵できる密閉容器であれば特に制限はなく、例えばボンベやローリー、貯槽などが挙げられる。供給側容器の容量が小さく1回の抜き出し量が大きい場合は組成変動の影響を受け易い。
 またこの方法は、供給側容器の初期充填量が最大充填量の60~100重量%であれば、移充填完了まで何回に分けて移充填を行っても良く、また液相を全て移充填せずに途中で移充填を中断したとしても成り立つ。
 また、冷媒混合物が移充填される機器としては、蒸気圧縮式冷凍サイクルを利用した装置であればよく、該装置としては、特に制限はなく、例えば冷凍空調機器、冷蔵庫及び給湯機器等が挙げられる。
 本発明の方法により製造される蒸気圧縮式冷凍装置は、冷媒と冷凍装置本体からなり、冷凍装置本体については特に制限はなく、公知の冷凍装置本体がそのまま用いられる。
 移充填の手段は常法に従えば良く、例えば、圧力差を利用するもの、ポンプ等を用いるものがある。
 また、例えば日本の高圧ガス保安法においては、40℃以上での容器の取り扱いを禁じていることから、移充填時の取扱い温度は基本的に0~40℃である。また、国際法等でも高温での取扱いを避けることが求められている。そして、移充填時(取扱い時)の温度が高いほど、移充填による組成変化が大きくなるので、取扱い温度40℃時における移充填の条件を応用することで、取扱い温度0~40℃についても適用可能である。
 本発明の充填方法により充填を行った場合には、HFO-1234ze(E)及びHFC-32からなる非共沸混合冷媒の移充填に伴う組成変化を、許容範囲内に収めることが可能である。
 本発明を実施例に従って説明するが、本発明の要旨を逸脱しない限り、この実施例のみに限定されるものではない。
 (1)参考例1
 10Lの密閉容器に、トランス1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))及びジフルオロメタン(HFC-32)を40℃で液相がある一定の組成になるように、移充填する直前の組成で充填できる最大充填量を充填し、40℃に保持した。この、最大充填可能量は法で定められており、以下のように算出する。
・G = V/C
・G:フルオロカーボンの質量(kg)
・V:容器の内容積(L)
・C:フルオロカーボンの種類による定数
 この際の充填定数Cは日本国内では、1.05を48℃における当該ガスの比重で除した値と定められている。
 また、この充填定数Cは、輸出を伴う際は国際法により、熱帯地方を通過する際は、1.05を65℃における当該ガスの比重で除した値、熱帯以外のその他の地方のみでは、1.05を45℃における当該ガスの比重で除した値と定められている。
 今回は、1.05を45℃又は65℃における当該ガスの比重で除した値、を充填定数として採用した。
 また、移充填時の温度として40℃を選択したのは、日本の高圧ガス保安法において、40℃を超えての容器の取り扱いを禁じていることと、また、国際法等でも高温での取扱いを避けることが求められていること、高温になるほど組成変化が大きくなることから、40℃でのデータが最も条件の悪いケースとして想定されるからである。
 次に、ポンプを使用して液側より徐々に別の空容器に移充填した。液側の抜き出し配管の途中に設けたサンプリングバルブよりガスを一部採取し、成分組成をガスクロマトグラフィーにより分析した。
 表1に、1.05を45℃における当該ガスの比重で除した値を充填定数として算出した充填量に充填した場合の、移充填時における参考例1の組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、移充填完了時のHFC-32/HFO-1234ze(E)混合冷媒中のHFC-32の濃度は、移充填開始時よりも低いことが分かった。これは、HFC-32の沸点がHFO-1234ze(E)の沸点に比べて低く、移充填時、冷媒が抜き出されて出来た空間に、液相側から蒸発して補充される際に、HFC-32の方が多く蒸発するため、液相のHFC-32濃度が低下することが理由である。そのため、HFC-32の移充填を実施する前の供給用容器において目標組成より多く充填することが好ましいことがわかった。
 表1から、ある目標組成があり、それを含む上下の組成幅を2~4に設定した際、何の措置も取らずその組成幅内のある組成を初期組成として、移充填を始めた場合、移充填完了時(液消失時)の組成が、目標下限組成以下になってしまう可能性がある。そのため、目標組成で見込んでいた冷凍能力、COP等の冷媒能力が、移充開始時から移充完了時までの間で保証できない。
 そこで、ある目標組成とそれを含む目標上限組成と目標下限を設定した際、どの組成範囲に初期組成を設定すれば、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来るかを明らかにした。
 (2)目標上限組成と目標下限組成の差が4重量%である場合の充填方法
 (2-1)実施例1:供給用容器における初期充填量が最大充填量の100重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量(充填量100重量%)を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、参考例1と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表2に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~90重量%の範囲であれば、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yP1)を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 この結果より、HFC-32が90重量%の目標組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標組成の-2.5重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yP1)は、目標組成(x)を用いて以下の式で表すことができる。
 1000yP1 = 0.009x3- 2.8565x2+ 202.202x- 4579.154       (2)
 上記表1より、目標組成を目標下限~上限のどこに設定すればよいか、提起した。上記表3を基に、下限値(yP1)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyP1~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (2-2)実施例2:供給用容器における初期充填量が最大充填量の90重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の90重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例1と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表4に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~90重量%の範囲であれば、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yP2)を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-2.6重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yP2)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yP2 = 0.0089x3- 2.714x2+ 194.2292x- 4574.474        (3)
 上記表5を基に、下限値(yP2)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyP2~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (2-3)実施例3:供給用容器における初期充填量が最大充填量の80重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の80重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例1と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表6に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000006
 表6で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~90重量%の範囲であれば、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yP3)を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-2.6重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yP3)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yP3 = 0.0084x3- 2.5913x2+ 185.8744x- 4552.951        (4)
 上記表7を基に、下限値(yP3)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyP3~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (2-4)実施例4:供給用容器における初期充填量が最大充填量の70重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の70重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例1と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表8に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000008
 表8で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~90重量%の範囲であれば、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yP4)を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-2.7重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yP4)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yP4 = 0.0075x3- 2.3976x2+ 174.6504x- 4526.37        (5)
 上記表9を基に、下限値(yP4)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyP4~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (2-5)実施例5:供給用容器における初期充填量が最大充填量の60重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の60重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例1と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表10に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000010
 表10で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~90重量%の範囲であれば、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yP5)を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-2.8重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yP5)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yP5 = 0.0071x3- 2.2789x2+ 166.8604x- 4545.862       (6)
 上記表11を基に、下限値(yP5)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyP5~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-4.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (3)目標上限組成と目標下限組成の差が3重量%である場合の充填方法
 (3-1)実施例6:供給用容器における初期充填量が最大充填量の100重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量(充填量100重量%)を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、参考例1と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表12に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000012
 表12で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~25.5重量%又は66.5~90重量%の範囲であれば、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yQ1)を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-1.6重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yQ1)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yQ1 = 0.0093x3- 2.79655x2+ 194.9369x- 3361.644        (8)
 上記表13を基に、下限値(yQ1)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyQ1~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (3-2)実施例7:供給用容器における初期充填量が最大充填量の90重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の90重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例6と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表14に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000014
 表14で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~27.5重量%又は64.5~90重量%の範囲であれば、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yQ2)を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-1.7重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yQ2)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yQ2 = 0.0089x3- 2.69275x2+ 188.6282x- 3367.314       (9)
 上記表15を基に、下限値(yQ2)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyQ2~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (3-3)実施例8:供給用容器における初期充填量が最大充填量の80重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の80重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例6と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表16に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000016
 表16で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~30.0重量%又は61.5~90重量%の範囲であれば、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yQ3)を表17に示す。
Figure JPOXMLDOC01-appb-T000017
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-1.7重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yQ3)は、目標上限組成(x)を用いて以下の式で表すことができる。
   1000yQ3 = 0.0083x3- 2.54425x2+ 180.1067x- 3371.564        (10)
 上記表17を基に、下限値(yQ3)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyQ3~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (3-4)実施例9:供給用容器における初期充填量が最大充填量の70重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の70重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例6と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表18に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000018
 表18で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~33.5重量%又は57.5~90重量%の範囲であれば、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yQ4)を表19に示す。
Figure JPOXMLDOC01-appb-T000019
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-1.8重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yQ4)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yQ4 = 0.0074x3- 2.3485x2+ 168.4156x- 3324.164        (11)
 上記表19を基に、下限値(yQ4)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyQ4~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (3-5)実施例10:供給用容器における初期充填量が最大充填量の60重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の60重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例6と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表20に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000020
 表20で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~90重量%の範囲であれば、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yQ5)を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-1.8重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yQ5)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yQ5 = 0.0070x3- 2.2222x2+ 160.0194x- 3342.253        (12)
 上記表21を基に、下限値(yQ5)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyQ5~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-3.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (4)目標上限組成と目標下限組成の差が2重量%である場合の充填方法
 (4-1)実施例11:供給用容器における初期充填量が最大充填量の100重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量(充填量100重量%)を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、参考例1と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表22に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000022
 表22で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~14.0重量%又は81.0~90重量%の範囲であれば、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yR1)を表23に示す。
Figure JPOXMLDOC01-appb-T000023
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-0.7重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yR1)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yR1 = 0.0088x3- 2.6875x2+ 186.3886x- 2144.11        (14)
 上記表23を基に、下限値(yR1)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyR1~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (4-2)実施例12:供給用容器における初期充填量が最大充填量の90重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の90重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例11と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表24に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000024
 表24で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~14.5重量%又は80.5~90重量%の範囲であれば、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yR2)を表25に示す。
Figure JPOXMLDOC01-appb-T000025
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-0.8量%であっても、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yR2)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yR2 = 0.0085x3- 2.6087x2+ 181.1319x- 2166.072        (15)
 上記表25を基に、下限値(yR2)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyR2~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (4-3)実施例13:供給用容器における初期充填量が最大充填量の80重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の80重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例11と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表26に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000026
 表26で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~15.5重量%又は79.5~90重量%の範囲であれば、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yR3)を表27に示す。
Figure JPOXMLDOC01-appb-T000027
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-0.9重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yR3)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yR3 = 0.0082x3- 2.5108x2+ 174.097x- 2167.464        (16)
 上記表27を基に、下限値(yR3)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyR3~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (4-4)実施例14:供給用容器における初期充填量が最大充填量の70重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の70重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例11と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表28に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000028
 表28で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~16.0重量%又は78.0~90重量%の範囲であれば、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yR4)を表29に示す。
Figure JPOXMLDOC01-appb-T000029
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-0.9重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yR4)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yR4 = 0.0074x3- 2.3367x2+ 164.5012x- 2176.172       (17)
 上記表29を基に、下限値(yR4)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyR4~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (4-5)実施例15:供給用容器における初期充填量が最大充填量の60重量%である 
 10Lの密閉容器に、HFO-1234ze(E)及びHFC-32を40℃で液相がある一定の組成になるように、移充填する前の組成で充填できる最大充填量の60重量%を充填し、40℃に保持した。この際、移充填前のHFC-32の液相における初期組成を、目標上限組成になるように調整した。次に、実施例11と同様に、ポンプを使用して液側より徐々に別の空容器に移充填し、成分組成を分析した。表30に、目標上限組成に調製した場合の移充填時における組成変化の結果を示す。
Figure JPOXMLDOC01-appb-T000030
 表30で示す様に、移充填前の初期組成を、目標上限組成になるようにすることで、充填初め(移充填する前)から、液がなくなるまで(移充填が完了するまで)の組成のうち、そのHFC-32組成がHFC-32/HFO-1234ze(E)の液相混合冷媒中に10~18.0重量%又は76.0~90重量%の範囲であれば、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、移充填が完了した時点でのHFC-32組成が、目標下限組成になるような、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の移充填前組成を求めた。この時の初期組成における目標上限組成とのずれの下限値(yR5)を表31に示す。
Figure JPOXMLDOC01-appb-T000031
 この結果より、HFC-32が90重量%の目標上限組成において最も組成変動が小さく、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成を目標上限組成の-0.9重量%であっても、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 また、この結果より初期組成における目標上限組成とのずれの下限値(yR5)は、目標上限組成(x)を用いて以下の式で表すことができる。
 1000yR5 = 0.0065x3- 2.1408x2+ 153.3221x- 2164.988        (18)
 上記表31を基に、下限値(yR5)を設定することにより、いずれの目標上限組成であっても、移充填開始から移充填完了時までの組成を全て目標下限~上限組成内に収めることが出来る。
 よって、HFC-32/HFO-1234ze(E)の液相混合冷媒中のHFC-32の初期組成をyR5~目標上限組成にすることで、移充填する前から移充填が完了するまで、目標上限組成-2.0重量%(目標下限組成)から目標上限組成の範囲に収める事が出来る。
 (5)考察
 上記実施例の結果から明らかなように、本発明の方法により、移充填に伴う組成変化を何の対策も行わずに移充填した場合と比べ、移充填する前から、移充填が完了するまで、狙う組成に対してある一定の範囲内に収める事ができ、液相の全量使用を可能とする、非共沸混合冷媒の新しい充填方法を見出した。
 本発明方法を実施することにより、蒸気圧縮式冷凍サイクル用作動媒体として使用される非共沸性のHFO-1234ze(E)/HFC-32混合冷媒の移充填時に生じる組成変化を冷媒能力に支障をきたさない範囲内に収めることができ有意義である。

Claims (3)

  1.  ジフルオロメタン及びトランス-1,3,3,3-テトラフルオロプロペンを含み、ジフルオロメタン及びトランス-1,3,3,3-テトラフルオロプロペンの合計100重量%に対し液相においてジフルオロメタンが10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、
     移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のジフルオロメタンの液相混合比を、ジフルオロメタンの目標上限組成(x)から目標上限組成(x)-4.0重量%(目標下限組成)の範囲に収めるため、
     移充填直前の、前記供給用容器内の前記混合冷媒のジフルオロメタンの液相混合比(初期組成)を、x+y1(最小値)~x%(目標上限組成)にすることを特徴とする、混合冷媒の充填方法。
      a:供給用容器における初期充填量(重量%)
      x:目標上限組成である(10≦x≦90、ただしy1>0となる範囲を除く)。  
      y1:初期組成における目標上限組成とのずれの下限値で、次の式(1)で表される値である。
     1000y1 = L1x3+ M1x2 + N1x + P1    (1)  
       L1 = 0.0006 a + 0.0033
       M1 = 0.0147 a + 1.3904
       N1 = 0.9026 a + 112.55
       P1 = 1.1469 a + 4464
  2.  ジフルオロメタン及びトランス-1,3,3,3-テトラフルオロプロペンを含み、ジフルオロメタン及びトランス1,3,3,3-テトラフルオロプロペンの合計100重量%に対し液相においてジフルオロメタンが10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、
     移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のジフルオロメタンの液相混合比を、ジフルオロメタンの目標上限組成(x)から目標上限組成(x)-3.0重量%(目標下限組成)の範囲に収めるため、
     移充填直前の、前記供給用容器内の前記混合冷媒のジフルオロメタンの液相混合比(初期組成)を、x+y2(最小値)~x%(目標上限組成)にすることを特徴とする、混合冷媒の充填方法。
      a:供給用容器における初期充填量(重量%)
      x:目標上限組成である(10≦x≦90、ただしy2>0となる範囲を除く)。  
      y2:初期組成における目標上限組成とのずれの下限値で、次の式(7)で表される値である。
     1000y2 = L2x3+ M2x2 + N2x + P2    (7)  
       L2 = 0.0006 a + 0.0033
        M2 = 0.0149 a + 1.3265
        N2 = 0.9005 a + 106.38
        P2 = 0.8193 a + 3287.8
  3.  ジフルオロメタン及びトランス-1,3,3,3-テトラフルオロプロペンを含み、ジフルオロメタン及びトランス-1,3,3,3-テトラフルオロプロペンの合計100重量%に対し液相においてジフルオロメタンが10~90重量%の量で存在する混合冷媒を、供給用容器より供給先の容器及び機器へ液で移充填する際に、
     移充填開始から完了までの、前記供給用容器内の前記混合冷媒中のジフルオロメタンの液相混合比を、ジフルオロメタンの目標上限組成(x)から目標上限組成(x)-2.0重量%(目標下限組成)の範囲に収めるため、
     移充填直前の、前記供給用容器内の前記混合冷媒のジフルオロメタンの液相混合比(初期組成)を、x+y3(最小値)~x%(目標上限組成)にすることを特徴とする、混合冷媒の充填方法。
      a:供給用容器における初期充填量(重量%)
      x:目標上限組成である(10≦x≦18.0重量%又は76.0≦x≦90、ただしy3>0となる範囲を除く)。
      y3:初期組成における目標上限組成とのずれの下限値で、次の式(13)で表される値である。
     1000y3 = L3x3+ M3x2 + N3x + P3  (13) 
         L3 = 0.0006 a + 0.0033
       M3 = 0.0137 a + 1.3646
       N3 = 0.8276 a + 105.68
       P3 = -0.5186 a + 2205.2
PCT/JP2015/056427 2014-03-04 2015-03-04 トランス-1,3,3,3-テトラフルオロプロペンを含む混合冷媒の充填方法 WO2015133548A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580011938.6A CN106104176B (zh) 2014-03-04 2015-03-04 含有反式-1,3,3,3-四氟丙烯的混合致冷剂的填充方法
EP15757913.7A EP3128265A4 (en) 2014-03-04 2015-03-04 Filling method using mixed refrigerant including trans-1, 3, 3, 3-tetrafluoropropene
US15/123,470 US10072193B2 (en) 2014-03-04 2015-03-04 Filling method using mixed refrigerant including trans-1, 3, 3, 3-tetrafluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014042163A JP5861727B2 (ja) 2014-03-04 2014-03-04 トランス−1,3,3,3−テトラフルオロプロペンを含む混合冷媒の充填方法
JP2014-042163 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015133548A1 true WO2015133548A1 (ja) 2015-09-11

Family

ID=54055351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056427 WO2015133548A1 (ja) 2014-03-04 2015-03-04 トランス-1,3,3,3-テトラフルオロプロペンを含む混合冷媒の充填方法

Country Status (5)

Country Link
US (1) US10072193B2 (ja)
EP (1) EP3128265A4 (ja)
JP (1) JP5861727B2 (ja)
CN (1) CN106104176B (ja)
WO (1) WO2015133548A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126446A1 (ja) * 2016-01-18 2017-07-27 旭硝子株式会社 トリフルオロエチレンを含む混合冷媒の充填方法
WO2017126447A1 (ja) * 2016-01-18 2017-07-27 旭硝子株式会社 トリフルオロエチレンを含む混合冷媒の充填方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115252A1 (ja) 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP7513944B1 (ja) 2023-03-28 2024-07-10 ダイキン工業株式会社 HFO-1132(E)、及びHFO-1234yfを含む混合冷媒の充填方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197108A (ja) * 1997-01-13 1998-07-31 Daikin Ind Ltd 混合冷媒の充填方法
JP2012509390A (ja) * 2008-11-19 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー テトラフルオロプロペン組成物およびその使用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381808B1 (ko) 1995-04-18 2003-07-22 다이킨 고교 가부시키가이샤 혼합냉매의충전방법
JPH10160296A (ja) * 1996-11-28 1998-06-19 Daikin Ind Ltd 混合冷媒の充填方法
JPH10259898A (ja) * 1997-01-14 1998-09-29 Daikin Ind Ltd 液化ガスの移充填方法
JPH10267474A (ja) * 1997-03-28 1998-10-09 Daikin Ind Ltd 冷媒供給容器
JP2002213845A (ja) * 2001-01-22 2002-07-31 Daikin Ind Ltd 冷媒液貯槽監視システム、その被監視側システム、その監視側システム、冷媒液貯槽の監視方法、及び冷媒液シミュレーション用プログラム、並びにそのプログラムを記録したコンピュータ読み取り可能な記録媒体
FR2932492B1 (fr) 2008-06-11 2010-07-30 Arkema France Compositions a base d'hydrofluoroolefines
WO2010002014A1 (en) 2008-07-01 2010-01-07 Daikin Industries, Ltd. REFRIGERANT COMPOSITION COMPRISING DIFLUOROMETHANE (HFC32), PENTAFLUOROETHANE (HFC125) AND 2,3,3,3-TETRAFLUOROPROPENE (HFO1234yf)
KR20100013288A (ko) 2008-07-30 2010-02-09 허니웰 인터내셔널 인코포레이티드 디플루오로메탄 및 플루오르 치환된 올레핀을 함유하는 조성물
US20100122545A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
TW201410856A (zh) * 2012-08-23 2014-03-16 Du Pont 含四氟丙烯及二氟甲烷的冷媒混合物及其運用
PL2894209T3 (pl) * 2012-09-04 2022-05-02 Daikin Industries, Ltd. Sposób napełniania mieszaniną czynnika chłodniczego zawierającą 2,3,3,3-tetrafluoropropen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197108A (ja) * 1997-01-13 1998-07-31 Daikin Ind Ltd 混合冷媒の充填方法
JP2012509390A (ja) * 2008-11-19 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー テトラフルオロプロペン組成物およびその使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128265A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126446A1 (ja) * 2016-01-18 2017-07-27 旭硝子株式会社 トリフルオロエチレンを含む混合冷媒の充填方法
WO2017126447A1 (ja) * 2016-01-18 2017-07-27 旭硝子株式会社 トリフルオロエチレンを含む混合冷媒の充填方法
US20180320042A1 (en) * 2016-01-18 2018-11-08 AGC Inc. Filling method for mixed refrigerant including trifluoroethylene
US20180320043A1 (en) * 2016-01-18 2018-11-08 AGC Inc. Filling method for mixed refrigerant including trifluoroethylene
JPWO2017126446A1 (ja) * 2016-01-18 2018-12-06 Agc株式会社 トリフルオロエチレンを含む混合冷媒の充填方法
JPWO2017126447A1 (ja) * 2016-01-18 2018-12-06 Agc株式会社 トリフルオロエチレンを含む混合冷媒の充填方法

Also Published As

Publication number Publication date
US20170081575A1 (en) 2017-03-23
US10072193B2 (en) 2018-09-11
EP3128265A4 (en) 2017-12-27
EP3128265A1 (en) 2017-02-08
JP2015168696A (ja) 2015-09-28
CN106104176B (zh) 2018-09-28
CN106104176A (zh) 2016-11-09
JP5861727B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6633610B2 (ja) テトラフルオロプロペン、ジフルオロメタン、ペンタフルオロエタン、及びテトラフルオロエタンを含む冷媒混合物、並びにその使用
JPWO2017126447A1 (ja) トリフルオロエチレンを含む混合冷媒の充填方法
JP5861727B2 (ja) トランス−1,3,3,3−テトラフルオロプロペンを含む混合冷媒の充填方法
JP6107828B2 (ja) 2,3,3,3−テトラフルオロプロペンを含む混合冷媒の充填方法
EP4019604A1 (en) Heat transfer compositions and methods
AU2013277496A1 (en) Refrigerant mixtures comprising tetrafluoropropenes, difluoromethane, pentafluoroethane, and tetrafluoroethane and uses thereof
TW201410856A (zh) 含四氟丙烯及二氟甲烷的冷媒混合物及其運用
US20160312095A1 (en) Refrigerant compositions
EP3521397B1 (en) Method for transfer-filling refrigerant composition
TW201412965A (zh) 含四氟丙烯、二氟甲烷、及可選擇地含二氟乙烷的冷媒混合物及其運用
JPWO2017126446A1 (ja) トリフルオロエチレンを含む混合冷媒の充填方法
JP7513944B1 (ja) HFO-1132(E)、及びHFO-1234yfを含む混合冷媒の充填方法
CN107810247B (zh) 改善制冷剂混合物和/或共沸混合物中的滑移,r123制冷剂的替代品及其制冷剂组合物、方法和系统
EP4198101A1 (en) R-22 replacement refrigerant composition
EP3969535A1 (en) Refrigerant composition
KR20240125932A (ko) R-22 대체 냉매 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015757913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015757913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15123470

Country of ref document: US