WO2015131435A1 - 由芴制备9-芴酮的方法 - Google Patents

由芴制备9-芴酮的方法 Download PDF

Info

Publication number
WO2015131435A1
WO2015131435A1 PCT/CN2014/076189 CN2014076189W WO2015131435A1 WO 2015131435 A1 WO2015131435 A1 WO 2015131435A1 CN 2014076189 W CN2014076189 W CN 2014076189W WO 2015131435 A1 WO2015131435 A1 WO 2015131435A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorenone
fluorene
reaction
preparing
added
Prior art date
Application number
PCT/CN2014/076189
Other languages
English (en)
French (fr)
Inventor
高占先
于丽梅
闫俊
李汇丰
何永超
史正茂
Original Assignee
宝舜科技股份有限公司
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝舜科技股份有限公司, 大连理工大学 filed Critical 宝舜科技股份有限公司
Priority to JP2016517134A priority Critical patent/JP6052949B2/ja
Publication of WO2015131435A1 publication Critical patent/WO2015131435A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention provides a process for converting hydrazine to 9-fluorenone by phase transfer catalytic oxidation using the product 9-fluorenone and water as a solvent.
  • the invention belongs to the field of organic synthesis. Background technique
  • Niobium is one of the important components of coal tar, accounting for 1-2% of the quality of coal tar.
  • the yield of niobium separated from coal tar is large.
  • the use of hydrazine is limited and its derivatives are of high value. Therefore, it is imperative to develop high value-added downstream products from the tar of tar.
  • Anthrone is a very good tar deep processing product and an important chemical raw material.
  • Most of the lanthanide derivatives are synthesized via anthrone. Therefore, the demand for fluorenone is large in the market, and the development prospects of its related industries are broad.
  • the reaction for synthesizing anthrone from hydrazine is a process of oxidizing a fluorene methylene group to a carbonyl group.
  • the methods for synthesizing hydrazine oxime are mainly divided into three categories: air vapor phase oxidation, air liquid phase oxidation, and other oxidant oxidation methods.
  • Air gas phase oxidation is a gas-solid reaction. Gas phase oxidation is reported in US 5,902,907 (1999) and CN101385990A (2009).
  • the ruthenium reacts with the air through a solid catalyst bed above 380 ° C in a gaseous form, and the reactant is dehydrated and refined to obtain an anthrone.
  • This method is solvent free.
  • due to the high reaction temperature it is difficult to maintain a high conversion rate of the catalyst and a high selectivity to anthrone, and there is a disadvantage that deep oxidation occurs in the crucible.
  • the liquid liquid oxidation method mostly uses pyridine (US4218400), dimethyl sulfoxide [US3875237, Shanxi Chemical Industry (1989, 2 issues), fuel and chemical industry (1999, 3, 66 pages) and Shanghai Chemical Industry (2005 7 7) Page) ]
  • a polar aprotic solvent is used as the reaction solvent, an alkali metal hydroxide is used as a catalyst, and some phase transfer agents are also added.
  • the ketone yield is more than 90%, which is suitable for industrial production, but the consumption of the solvent is large and the process is complicated, and in particular, the recycling of the solvent needs to be considered.
  • CN102020543A (Application No. 200910187363.X) Report: Toluene is prepared from hydrazine by using toluene as a solvent, quaternary ammonium salt as a catalyst, and no alkali. In this study, only a quaternary ammonium salt was used as a catalyst in a toluene solvent, and the conversion of anthrone was very low.
  • CN102391087A (Application No. 201110337560.2) Report: Industrial hydrazine as raw material, benzene-based organic matter (Toluene, xylene) is a solvent, sodium hydroxide is used as a catalyst, air is an oxidant, and a quaternary ammonium salt is a phase transfer catalyst to prepare an anthrone.
  • benzene-based organic matter Toluene, xylene
  • sodium hydroxide is used as a catalyst
  • air is an oxidant
  • a quaternary ammonium salt is a phase transfer catalyst to prepare an anthrone.
  • no water is added, and the quaternary ammonium salt is difficult to function as a phase transfer catalyst, and the reaction temperature is high.
  • the phase transfer catalyzed oxidation of ruthenium to 9-fluorenone in the presence of an organic solvent can be industrialized, but the presence of an organic solvent complicates the process and has low production efficiency.
  • the present invention provides a method for efficiently converting hydrazine to 9-fluorenone by phase transfer catalytic oxidation using the product 9-fluorenone as a solvent, thereby improving reactor utilization and eliminating solvent.
  • the separation and recovery process realizes the coupling of the reaction liquid separation and the 9-fluorenone refining step, which greatly simplifies the process.
  • the method for preparing 9-fluorenone using industrial hydrazine as raw material, 9-fluorenone and water as solvent, alkali as catalyst, quaternary ammonium salt as phase transfer agent, oxygen-containing gas as oxidant, reaction temperature
  • the 9-fluorenone is synthesized at 70 to 83 ° C, and the raw material is added in one portion or continuously with the reaction.
  • the amount of ruthenium and 9-fluorenone in the reaction system form a solution in an initial charge amount or an amount of hydrazine added each time. More preferably, the initial charge amount or the amount of hydrazine added each time makes the molar ratio of hydrazine to 9-fluorenone in the reaction system from 1 to 2:1. The ratio of hydrazine to 9-fluorenone varies with the reaction temperature.
  • the formation of a solution of hydrazine and 9-fluorenone and preferably a molar ratio of hydrazine to 9-fluorenone of 1 to 2:1 is beneficial to both the phase transfer catalyzed reaction and the reaction rate, thereby achieving a small addition.
  • 9-fluorenone initiated a large amount of hydrazine rapid conversion and the reactor utilization reached a maximum.
  • the method for preparing 9-fluorenone from hydrazine according to the present invention further comprises the process of recovering the recrystallization coupling operation of the quaternary ammonium salt-containing lye and the 9-fluorenone from the reaction liquid: after the reaction is completed, the reaction liquid is heated and The recrystallization solvent is mixed, and the lye containing the quaternary ammonium salt is separated, recycled, and the organic layer is cooled, crystallized, and filtered to obtain purified 9-fluorenone.
  • the recrystallization solvent is cyclohexane.
  • the reaction liquid is introduced into the recrystallization solvent, or the recrystallization solvent is introduced into the hot reaction liquid, and the recrystallization solvent can be warmed in advance to ensure that the temperature of the recrystallization solvent and the reaction liquid are mixed.
  • the recrystallization solvent can be warmed in advance to ensure that the temperature of the recrystallization solvent and the reaction liquid are mixed.
  • the lye layer containing quaternary ammonium salt is separated by heat for the next reaction, and the alkali, quaternary ammonium salt and by-product water are recycled; the organic solution layer is cooled, crystallized, filtered, and dried to obtain a 9-fluorenone product.
  • the method for preparing 9-fluorenone from hydrazine according to the invention has the following steps: mixing hydrazine with 9-fluorenone to raise the temperature to the reaction temperature to form an oil phase, 20 to 55 wt% of the alkali solution is an aqueous phase, according to the oil phase and The volume ratio of the aqueous phase is 5:1 ⁇ 6, and the molar ratio of strontium to quaternary ammonium salt is 50 ⁇ 300:1.
  • the quaternary ammonium salt is added, and the oxygen-containing gas is introduced, and the reaction can be repeated several times. The reaction was terminated until the conversion of hydrazine was 98.5%.
  • the base and the quaternary ammonium salt may be added to the reaction system in one portion or in multiple portions.
  • the concentration of the alkali solution during the reaction is maintained at 20 to 55 wt%, preferably 30 to 40 wt%.
  • the quaternary ammonium salt is added in portions to avoid excessive decomposition of the quaternary ammonium salt, and the molar ratio of cerium to quaternary ammonium salt is preferably 80 to 200:1.
  • the volume ratio of the oil phase to the aqueous phase is preferably 5:1 to 3.
  • the preparation method of the invention has the following reaction formula:
  • Rr is hydrogen or an inert substituent group, a substituted alkyl group selected from inert C ⁇ CK) is, (do alkoxy, C 6 ⁇ C 1 () is, C 6 ⁇ C 1 () aralkyl and (do ac;
  • the alkyl group of C ⁇ CK is selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, isopropyl, isobutyl, isova. a group, a cyclopentyl group, a cyclohexyl group, a methylcyclopentyl group, a dimethylcyclopentyl group, and a dimethylcyclohexyl group;
  • the C?CK) alkoxy group is selected from the group consisting of methoxy, ethoxy, propoxy, isobutoxy, tert-butoxy, cyclopentyloxy, cyclohexyloxy and phenoxy;
  • the C 6 -C 1Q alkaryl and aralkyl are selected from the group consisting of phenyl, benzyl and tolyl;
  • the acyl group of C ⁇ CK is selected from the group consisting of formyl, acetyl, octanoyl and isovaleryl;
  • the Rr is the same or different.
  • the oxygen-containing gas is first wetted by warm water, and then passed through a gas disperser and then introduced into the reactor to participate in the reaction.
  • the oxygen-containing gas is selected from one of clean air, oxygen-enriched air, and pure oxygen.
  • the oxygen-enriched air refers to air having a volume fraction of oxygen greater than an average oxygen volume fraction in the air.
  • the oxygen-containing gas is wetted by the warm water and then enters the reaction system in order to maintain the concentration of the alkali in the reactor.
  • the gas is passed through a gas disperser to uniformly disperse the gas into the reaction liquid.
  • the method of the invention can adopt different operating conditions by using different oxygen sources.
  • the reactor when pure oxygen is used as the oxygen source, the reactor can be closed to maximize the utilization of oxygen; if the air is used as the oxygen source, the pressure can be under normal pressure. Cool the reflux reaction to minimize the entrainment of organic matter in the reaction tail gas.
  • the stirring rate is preferably 200 to 400 r/min, and the gas inlet rate is preferably 300 to 600 mI 7 min.
  • the catalyst base is preferably at least from an oxide or hydroxide of an alkali metal or alkaline earth metal.
  • an oxide or hydroxide of an alkali metal or alkaline earth metal is at least one of potassium hydroxide, sodium hydroxide, and lithium hydroxide.
  • the phase transfer agent of the present invention is a phase transfer catalyst.
  • the quaternary ammonium salt has a structure of the formula ⁇ 4 ,
  • -R 4 is selected from the group consisting of c r c 12 straight or branched alkyl, c 5 -c 6 cycloalkyl, c 6 -c 1() aralkyl or c 6 -c 10 alkaryl; RR 2 , R 3 , R 4 are the same or different;
  • Y is selected from the group consisting of chlorine, bromine, iodine anion or hydrogen sulfate;
  • ammonium chloride quaternary ammonium salt is selected from the group consisting of lauryl trimethyl ammonium chloride, bisoctyl dimethyl ammonium chloride, dinonyl dimethyl ammonium chloride, and didecyl dimethyl chloride.
  • ammonium bromide quaternary ammonium salt is selected from the group consisting of dodecyltrimethylammonium bromide, bisoctylalkyldimethylammonium bromide, bis-decylalkyldimethylammonium bromide, and didecyldimethyl bromide Alkyl ammonium, trioctylmethylammonium bromide, trimethylmethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide and tetraoctyl ammonium bromide One type;
  • ammonium iodide quaternary ammonium salt is selected from the group consisting of tetraethylammonium iodide, tetrapropylammonium iodide, tetrabutylammonium iodide, and dodecyltrimethylammonium iodide;
  • Ammonium hydrogen sulfate quaternary ammonium salt is selected from the group consisting of tetramethylammonium hydrogen sulfate, tetraethylammonium hydrogen sulfate, tetrapropylammonium hydrogen sulfate, tetrabutylammonium hydrogen sulfate, lauryl trimethylammonium hydrogen sulfate, hydrogen sulfate Dioctylalkyldimethylammonium, didecylalkyldimethylammonium hydrogen sulfate, didecyldimethylammonium hydrogen sulfate, trioctylmethylammonium hydrogen sulfate, tripropylmethylammonium hydrogen sulfate, sulfuric acid One of tributylmethylammonium hydrogenhydride and tridecylmethylammonium hydrogen sulfate.
  • the conversion of the hydrazine is 98.5%, and the reaction is easily achieved, and the conversion of hydrazine is easily 100%.
  • the conversion rate is 98.5%, it provides convenient and reasonable conditions for the subsequent purification of 9-fluorenone.
  • the beneficial effects of the invention are:
  • the preparation method of the invention replaces the solvent with the product 9-fluorenone, and uses a small amount of 9-fluorenone as a solvent to initiate rapid conversion of a large amount of hydrazine, which not only maintains the advantages of phase transfer catalysis but also saves the process compared with the conventional process.
  • the process of solvent separation and recovery is eliminated, and the separation of the reaction liquid and the coupling operation of the fluorenone purification are realized, which greatly simplifies the synthesis process of the anthrone and achieves the maximum utilization of the reactor.
  • the recovered alkali, quaternary ammonium salt and by-product water can be directly recycled without treatment. 3.
  • the conversion of hydrazine can easily reach 100%, and the purification method of fluorenone is simplified.
  • the preparation method of the present invention is a green synthesis method, which is an environment-friendly process, and the synthesis operation of the present invention can realize continuous operation. detailed description
  • Example 3 In a 250 mL three-necked flask, 61.86 g of industrial hydrazine, 30 g of 9-fluorenone, and 1.20 g of tetrabutylammonium bromide were successively added, and the same as in Example 1. After 8 hours of reaction, the starting point disappeared and the reaction was continued for half an hour to stop the reaction. The crude product 92.86 go was chromatographed to have a 9-fluorenone content of 96.87%, and the starting material was completely converted.
  • Example 3 Example 3
  • Example 4 In a 250 mL three-necked flask, 61.45 g of industrial hydrazine, 45.44 g of 9-fluorenone, and 1.20 g of tetrabutylammonium hydrogen sulfate were successively added, and the same as in Example 1. After the reaction for 7.5 hours, the starting point disappeared, and the reaction was continued for half an hour to stop the reaction, and yellow crystals of 113.19 g were obtained. Chromatographic analysis 9-fluorenone content 96.51%, the raw material ⁇ was completely converted.
  • Example 4 Example 4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

由芴制备9-芴酮的方法,以工业芴为原料,以9-芴酮和水为溶剂,以碱为催化剂,以季铵盐为相转移剂,通入含氧气体为氧化剂,在反应温度为70∼83℃的条件下合成 9-芴酮,原料芴一次性加入或随反应进行不断补加。本发明以产物9-芴酮为溶剂,省掉了溶剂分离、回收等过程,反应液分离和9-芴酮精制耦合操作,大幅度简化了9-芴酮合成工艺;碱、季铵盐和副产物水均回收利用;补加芴的加料方式,提高了反应器的利用效率。

Description

说 明 书
由芴制备 9-芴酮的方法 技术领域
本发明提供一种以产物 9-芴酮和水为溶剂,通过相转移催化氧化反应将芴转化成 9-芴酮的方法。 本发明属于有机合成领域。 背景技术
近年来煤焦油及其相关产业发展迅速。 芴是煤焦油的重要组分之一, 占煤焦油质 量的 1-2%, 从煤焦油中分离出来的芴产量很大。 芴的用途有限, 其衍生物价值高。 因 此, 自焦油的芴为起始原料开发高附加值的芴下游产品, 势在必行。 芴酮是一种很好 的焦油芴深加工产品, 是一种重要化工原料。芴系衍生物多数是经由芴酮合成。 因此, 芴酮在市场上需求量大, 与其相关工业的发展前景广阔。 早在上世纪 30-50年代, 对 芴酮的合成及其应用的研究已经开展, 但是大规模生产芴酮的厂家却不多见报道。 如 果能工业芴转换成芴酮, 这必将促进煤化工产品的研究与开发, 为相关企业带来较好 的效益。
由芴氧化合成芴酮的反应是将芴亚甲基氧化为羰基的过程。 有关以芴为原料合成 芴酮的方法较多。 根据使用的氧化剂和反应相的不同, 概括芴氧化合成芴酮的方法主 要分为三大类: 空气气相氧化法、 空气液相氧化法、 其它氧化剂氧化法。 空气气相氧 化法, 属于气固反应。 US5902907 ( 1999) 和 CN101385990A (2009) 报道了气相氧 化法。 芴以气态形式同空气一道通过高于 380°C的固态催化剂床层发生反应, 反应物 经凝华、 精制得到芴酮。 此方法无溶剂是个优点。 但由于反应温度高, 催化剂难保持 芴高转化率和对芴酮的高选择性, 存在芴发生深度氧化的缺点。
空气液相氧化法大多以吡啶 (US4218400)、二甲亚砜 [US3875237、山西化工(1989,2 期 Π页)、 燃料与化工 (1999年 3期 66页)和上海化工 (2005年 7期 17页) ] 等极 性非质子溶剂作为反应溶剂, 碱金属氢氧化物作为催化剂, 有的还加入相转移剂。 芴 酮产率大于 90%, 适合于工业生产, 但溶剂的消耗量大, 过程复杂, 尤其需要考虑溶 剂的回收利用问题。
CN102020543A (申请号 200910187363.X) 报道: 以甲苯为溶剂, 季铵盐为催化 剂, 不加碱, 由芴制备芴酮。 此研究在甲苯溶剂中只使用季铵盐为催化剂, 芴酮转化 率很低。
CN102391087A (申请号 201110337560.2)报道: 以工业芴为原料, 以苯系有机物 (甲苯、 二甲苯) 为溶剂, 氢氧化钠为催化剂, 空气为氧化剂, 季铵盐为相转移催化 剂, 制备芴酮。 此研究不加水, 季铵盐难发挥相转移催化剂作用, 且反应温度高, 在
90°C以上, 溶剂损失大; 该文件没有公开季铵盐的种类等问题。 发明内容
在现有技术中, 有机溶剂存在的相转移催化氧化芴成 9-芴酮的方法尽管可以实现 工业化, 但有机溶剂存在使过程复杂化, 生产效益较低。 为解决此问题, 本发明提供 一种以产物 9-芴酮为溶剂, 通过相转移催化氧化, 有效地将芴转化成 9-芴酮的方法, 提高了反应器利用率, 省去了溶剂的分离、 回收过程, 实现反应液分离与 9-芴酮精制 步骤耦合操作, 大幅度简化了工艺过程。
本发明的技术方案如下:
由芴制备 9-芴酮的方法, 以工业芴为原料, 以 9-芴酮和水为溶剂, 以碱为催化剂, 以季铵盐为相转移剂, 以含氧气体为氧化剂, 在反应温度为 70~83°C的条件下合成 9- 芴酮, 原料芴一次性加入或随反应进行不断补加。
本发明所述由芴制备 9-芴酮的方法, 作为优选, 初始投料量或每次补加芴的量使 反应体系中芴与 9-芴酮形成溶液。 更为优选地, 初始投料量或每次补加芴的量使反应 体系中芴与 9-芴酮的摩尔比为 1~2: 1。 芴与 9-芴酮的比值随反应温度变化。 在反应温 度下, 芴和 9-芴酮形成溶液并且优选芴与 9-芴酮摩尔比为 1~2: 1时, 既有利于相转移 催化反应实施又有利于提高反应速率, 从而实现加少量 9-芴酮引发大量芴快速转化, 反应器利用率达到最大值。
本发明所述由芴制备 9-芴酮的方法, 还包括从反应液中回收含季铵盐的碱液和 9- 芴酮的重结晶耦合操作的过程: 反应完毕, 将反应液趁热与重结晶溶剂混合, 分出包 含季铵盐的碱液, 回收循环利用, 有机层冷却、 结晶、 过滤得到精制的 9-芴酮。
进一步地, 所述重结晶溶剂为环己烷。
具体步骤为: 反应结束后, 将反应液趁热导入重结晶溶剂中, 或将重结晶溶剂导 入热的反应液中, 重结晶溶剂可预先温热, 保证重结晶溶剂与反应液混合后温度在 70 °C左右。 趁热分出含季铵盐的碱液层, 用于下次反应, 实现碱、 季铵盐、 副产物水循 环利用; 有机溶液层冷却, 结晶, 过滤, 干燥得合格 9-芴酮产品。
本发明所述由芴制备 9-芴酮的方法, 具体操作步骤为: 将芴与 9-芴酮混合升温至 反应温度成油相, 20~55wt%的碱溶液为水相, 按油相与水相体积比为 5: 1~6加入反应 器中, 再按芴与季铵盐摩尔比 50~300: 1加入季铵盐, 通入含氧气体, 随反应进行可多 次补加芴, 反应至芴的转化率 98.5%结束反应。 进一步地, 所述碱和季铵盐可一次性加入或分批多次加入反应体系中。 保持反应 过程中碱溶液的浓度为 20~55wt%, 优选为 30~40wt%。 季铵盐分批加入可避免季铵盐 的过快分解, 芴与季铵盐摩尔比优选为 80~200: 1。 油相与水相体积比优选为 5: 1~3。
本发明所述的制备方法反应通式为:
Figure imgf000004_0001
所述通式中 Rr 为氢或惰性取代基, 所述的惰性取代基选自 C^CK)的烷基、 ( do的烷氧基、 C6~C1()的烷芳基、 C6~C1()的芳烷基和( do的酰基;
所述 C^CK)的烷基选自甲基、 乙基、 丙基、 丁基、 戊基、 己基、 庚基、 辛基、 壬 基、 癸基、 异丙基、 异丁基、 异戊基、 环戊基、 环己基、 甲基环戊基、 二甲基环戊基 和二甲基环己基;
所述 C^CK)的烷氧基选自甲氧基、 乙氧基、 丙氧基、 异丁氧基、 叔丁氧基、 环戊 基氧基、 环己基氧基和苯氧基;
所述 C6~C1Q的烷芳基和芳烷基选自苯基、 苯甲基和甲苯基;
所述 C^CK)的酰基选自甲酰基、 乙酰基、 辛酰基和异戊酰基;
所述 Rr 是相同的或不相同的。
进一步地, 所述含氧气体先通过温热的水润湿后, 经过气体分散器再通入反应器 中参与反应。 所述的含氧气体选自清洁的空气、 富氧的空气和纯氧气中的一种。 所述 富氧的空气指氧气的体积分数大于空气中的平均氧气体积分数的空气。 含氧气体通过温热 的水润湿后再进入反应体系, 是为了保持反应器内碱的浓度。 经过气体分散器进入反 应液, 为使气体均匀分散到反应液中。
本发明所述的方法, 使用不同的氧源可采取不同的操作条件, 如使用纯氧气为氧 源时可以封闭反应器, 最大限度的利用氧; 如使用空气为氧源时可以在常压力下冷却 回流反应, 尽量减少反应尾气夹带有机物。
由芴制备 9-芴酮的反应是多相反应, 搅拌和通气速率很重要, 不同的反应器需要 不同的搅拌器、 搅拌速率和通气速率。 搅拌速率优选为 200~400r/min, 气体通入速率 优选 300~600mI7min。
进一步地, 所述催化剂碱优选自碱金属或碱土金属的氧化物或氢氧化物中的至少 一种。 更优选自氢氧化钾、 氢氧化钠和氢氧化锂中的至少一种。
本发明所述相转移剂为相转移催化剂。
进一步地, 所述季铵盐具有通式为 Ι^Κ 4ΝΥ的结构,
其中 -R4选自 crc12直链或支链烷基、 c5-c6的环烷基、 c6-c1()的芳烷基或 c6-c10 的烷芳基; R R2、 R3、 R4是相同的或不同的;
其中 Y选自氯、 溴、 碘负离子或硫酸氢根;
氯化铵类季铵盐选自氯化十二烷基三甲基铵、 氯化双辛烷基二甲基铵、 氯化双壬 烷基二甲基铵、 氯化双十烷基二甲基铵、 氯化三丙基甲基铵、 氯化三辛基甲基铵、 氯 化三丁基甲基铵、 氯化三壬基甲基铵、 氯化四乙基铵、 氯化四丙基铵、 氯化四丁基铵、 氯化四辛基铵、 氯化苄基三甲基铵、 氯化苄基三乙基铵、 氯化苄基三丙基铵和氯化苄 基三丁基铵中的一种;
溴化铵类季铵盐选自溴化十二烷基三甲基铵、 溴化双辛烷基二甲基铵、 溴化双壬 烷基二甲基铵、 溴化双十烷基二甲基铵、 溴化三辛基甲基铵、 溴化三壬基甲基铵、 溴 化四乙基铵、 溴化四丙基铵、 溴化四丁基铵和溴化四辛基铵中的一种;
碘化铵类季铵盐选自碘化四乙基铵、 碘化四丙基铵、 碘化四丁基铵和碘化十二烷 基三甲基铵中的一种;
硫酸氢铵类季铵盐选自硫酸氢四甲基铵、 硫酸氢四乙基铵、 硫酸氢四丙基铵、 硫 酸氢四丁基铵、 硫酸氢十二烷基三甲基铵、 硫酸氢双辛烷基二甲基铵、 硫酸氢双壬烷 基二甲基铵、硫酸氢双十烷基二甲基铵、硫酸氢三辛基甲基铵、硫酸氢三丙基甲基铵、 硫酸氢三丁基甲基铵和硫酸氢三壬基甲基铵中的一种。
本发明所述的方法, 所述芴的转化率 98.5%结束反应, 本反应很容易达到芴的 转化率 100%。 当转化率 98.5%时, 为后续 9-芴酮的精制提供方便合理的条件。
本发明所述制备方法采用薄层色谱监控反应进程, 薄层色谱以硅胶 G254涂板为固 定相, 以乙酸乙酯:石油醚 =1:20 的混合溶液为展开剂, 通过取样检测直至原料芴完全 反应。 本发明的有益效果是:
①本发明所述的制备方法, 以产物 9-芴酮替代溶剂, 用少量 9-芴酮作溶剂, 引 发大量芴快速转化, 相比传统的工艺, 既保持了相转移催化的优点, 又省掉了溶剂分 离、 回收等过程, 而且实现反应液分离和芴酮精制耦合操作, 大幅度简化了芴酮合成 工艺, 实现反应器利用率达到最大值。
②本发明所述的制备方法, 回收的碱、 季铵盐及副产物水等不需要处理可以直接 循环使用。 ③本发明所述的制备方法, 芴的转化率很容易达到 100%, 使芴酮的精制方法简 化。
④本发明所述的制备方法是绿色合成方法, 是环境友好的工艺, 本发明的合成操 作可实现连续操作。 具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明, 但不以 任何方式限制本发明。
以下实施例中所用工业芴纯度 95%。 实施例 1
在 250mL三口烧瓶中, 依次加入 60.42g工业芴, 62.87g 9-芴酮, l.OOg氯化四丁 基铵, 6gNaOH和 9mL水,在 80°C水浴中加热三口烧瓶,控制机械搅拌速率 300r/min, 300X 2mL/min 的空气鼓泡通过 80°C水后进入反应烧瓶, 开始反应。 反应过程中用薄 层色谱法监测芴的转化, 反应 10.5h后原料点消失, 继续反应半小时停止反应。 将反 应液趁热转移至温水中冷却, 充分搅拌, 冷却, 过滤, 得黄色固体, 放在空气中自然 干燥, 得 9-芴酮 124.46g。 色谱分析 9-芴酮含量 97.01%, 原料芴完全转化。 实施例 2
在 250mL三口烧瓶中, 依次加入 61.86g工业芴, 30g 9-芴酮, 1.20g溴化四丁基 铵, 其它同实施例 1。 反应 8h后原料点消失, 继续反应半小时停止反应。 得粗产物 92.86g o 色谱分析 9-芴酮含量 96.87%, 原料芴完全转化。 实施例 3
在 250mL三口烧瓶中, 依次加入 61.45g工业芴, 45.44g 9-芴酮, 1.20g硫酸氢四 丁基铵, 其它同实施例 1。 反应 7.5h后原料点消失, 继续反应半小时停止反应, 得黄 色晶体 113.19g。 色谱分析 9-芴酮含量 96.51%, 原料芴完全转化。 实施例 4
在 250mL三口烧瓶中, 依次加入 15.31g工业芴, 15.24g 9-芴酮, 0.30g硫酸氢四 丁基铵, 2gNaOH、 3mL水,在 80°C水浴中加热三口烧瓶,控制机械搅拌速率 200r/min, 200X 2mLJmin的空气鼓泡通过 80°C水后进入反应烧瓶, 开始反应, 反应 3h后加入 15.01g芴, 0.3g硫酸氢四丁基铵, 2gNaOH, 3mL水, 反应 3.5h原料点完全消失, 继 续反应 0.5h后反应停止。 将反应液趁热转移至温水中冷却, 充分搅拌冷却, 过滤得黄 色固体, 放在空气中自然干燥, 得黄色晶体 43.28g。 色谱分析 9-芴酮含量 94.88%, 原 料芴 1.63%。 实施例 5
在 250mL三口烧瓶中, 依次加入 15.31g工业芴, 15.24g 9-芴酮, 2.0g硫酸氢四丁 基铵, 6gNaOH、 9mL水, 在 70°C水浴中加热三口烧瓶, 控制机械搅拌速率 200r/min, 200 X 2mL/min的空气鼓泡通过 70°C水后进入反应烧瓶。 反应 4h后加入 30g芴, 反应 4.5h后再加入 40.11g芴, 反应 5h后原料点完全消失, 继续反应 0.5h后停止反应。 将 反应液趁热转移至温水中冷却, 充分搅拌冷却, 过滤得黄色固体, 放在空气中自然干 燥, 得到 100.53g 9-芴酮。 色谱分析 9-芴酮含量 96.87%, 原料芴完全转化。 实施例 6
在 250mL三口烧瓶中, 依次加入 10.09g工业芴, 10.43g 9-芴酮, 3.0g硫酸氢四丁 基铵, 6gNaOH、 9mL水, 在 70°C水浴中加热三口烧瓶, 控制机械搅拌速率 200r/min, 200 X 2mL/min的空气鼓泡通过 70°C水后进入反应烧瓶。 反应 2h后薄层色谱显示原料 芴斑点完全消失, 加入 20g芴, 反应 4h后加入 40g芴, 反应 5.5h后加入 30.08g芴, 反应 5h原料点完全消失, 继续反应 0.5h后停止反应。 得到 9-芴酮 108.79g, 色谱分析 9-芴酮含量 96.47%, 原料芴完全转化。 实施例 7
在 250mL三口烧瓶中, 依次加入 40.26g工业芴, 40.18g 9-芴酮, 3.0g溴化四丁基 铵, 6gNaOH和 9mL水, 在 75°C水浴中加热三口烧瓶, 控制机械搅拌速率 300r/min, 300 X 2mLJmin 的空气鼓泡通过 75°C水后进入反应烧瓶, 开始反应。 反应过程中用薄 层色谱法监测芴的转化情况, 反应 5.5h后补加 40.02g芴继续反应 6.5h后停止反应。 将反应液趁热转移至 360ml环己烷中, 保持 65°C, 9-芴酮完全溶解于环己烷中。 趁热 分出 12mL含溴化四丁基铵的碱水层, 有机层冷却至 35°C, 9-芴酮结晶, 减压抽滤, 干燥, 得精制 9-芴酮 94.80g, 色谱分析 9-芴酮含量为 99.74%。 回收碱水层循环使用。

Claims

权 利 要 求 书
1、 由芴制备 9-芴酮的方法, 其特征在于: 以工业芴为原料, 以 9-芴酮和水为溶 剂, 以碱为催化剂, 以季铵盐为相转移剂, 以含氧气体为氧化剂, 在反应温度为 70~83 °C的条件下合成 9-芴酮, 原料芴一次性加入或随反应进行不断补加。
2、 根据权利要求 1所述的由芴制备 9-芴酮的方法, 其特征在于: 所述原料芴一 次性加入或随反应进行不断补加, 初始投料量或每次补加芴的量使反应体系中芴与 9- 芴酮形成溶液。
3、 根据权利要求 2所述的由芴制备 9-芴酮的方法, 其特征在于: 所述原料芴一 次性加入或随反应进行不断补加芴, 初始投料量或每次补加芴的量使反应体系中芴与 9-芴酮的摩尔比为 1~2: 1。
4、 根据权利要求 1所述的由芴制备 9-芴酮的方法, 其特征在于: 还包括从反应 液中回收含季铵盐的碱液和 9-芴酮的重结晶耦合操作的过程: 反应完毕后将反应液趁 热与重结晶溶剂混合, 分出包含季铵盐的碱液, 回收循环利用, 有机层冷却、 结晶、 过滤得到精制的 9-芴酮。
5、 根据权利要求 4所述的由芴制备 9-芴酮的方法, 其特征在于: 所述重结晶溶 剂为环己烷。
6、 根据权利要求 1所述的由芴制备 9-芴酮的方法, 其特征在于: 具体操作步骤 为: 将芴与 9-芴酮混合升温至反应温度成油相, 20~55wt%的碱溶液为水相, 按油相与 水相体积比为 5: 1~6混合, 再按芴与季铵盐摩尔比 50~300:1加入季铵盐, 通入含氧气 体, 随反应进行可多次补加芴, 反应至芴的转化率 98.5%结束反应。
7、 根据权利要求 1~6任意一项所述的由芴制备 9-芴酮的方法, 其特征在于所述 含氧气体先通过水润湿后, 经过气体分散器通入反应液中参与反应。
8、 根据权利要求 1~6任意一项所述的由芴制备 9-芴酮的方法, 其特征在于所述 的含氧气体选自清洁的空气、 富氧的空气和纯氧气中的一种。
9、 根据权利要求 1~6任意一项所述的由芴制备 9-芴酮的方法, 其特征在于所述 催化剂碱选自碱金属或碱土金属的氧化物或氢氧化物中的至少一种。
10、 根据权利要求 1~6任意一项所述的由芴制备 9-芴酮的方法, 其特征在于所述 碱和季铵盐的加入方式为一次性加入或分批多次加入。
PCT/CN2014/076189 2014-03-03 2014-04-25 由芴制备9-芴酮的方法 WO2015131435A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016517134A JP6052949B2 (ja) 2014-03-03 2014-04-25 フルオレンからの9−フルオレノンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410074024.1 2014-03-03
CN201410074024.1A CN103787858B (zh) 2014-03-03 2014-03-03 由芴制备9-芴酮的方法

Publications (1)

Publication Number Publication Date
WO2015131435A1 true WO2015131435A1 (zh) 2015-09-11

Family

ID=50663975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076189 WO2015131435A1 (zh) 2014-03-03 2014-04-25 由芴制备9-芴酮的方法

Country Status (3)

Country Link
JP (1) JP6052949B2 (zh)
CN (1) CN103787858B (zh)
WO (1) WO2015131435A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801389A (zh) * 2016-04-14 2016-07-27 宝舜科技股份有限公司 一种由芴制备9-芴酮的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211729A (ja) * 1993-01-21 1994-08-02 Osaka City フルオレノンの製造方法
JPH0782206A (ja) * 1993-09-14 1995-03-28 Sumikin Chem Co Ltd フルオレノンの製造方法
CN102924255A (zh) * 2012-11-07 2013-02-13 天津大学 一种液相氧化制备9-芴酮的方法
CN103435463A (zh) * 2013-08-15 2013-12-11 宝舜科技股份有限公司 一种四相相转移催化制备9-芴酮的方法
CN103435456A (zh) * 2013-08-15 2013-12-11 宝舜科技股份有限公司 一种9-芴酮的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020543B (zh) * 2009-09-15 2013-12-11 鞍钢股份有限公司 一种生产9-芴酮的方法
JP2011256150A (ja) * 2010-06-11 2011-12-22 Taoka Chem Co Ltd 9−フルオレノン類の製造方法
CN103467264B (zh) * 2013-08-15 2016-01-27 宝舜科技股份有限公司 一种由工业芴制备9-芴酮的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211729A (ja) * 1993-01-21 1994-08-02 Osaka City フルオレノンの製造方法
JPH0782206A (ja) * 1993-09-14 1995-03-28 Sumikin Chem Co Ltd フルオレノンの製造方法
CN102924255A (zh) * 2012-11-07 2013-02-13 天津大学 一种液相氧化制备9-芴酮的方法
CN103435463A (zh) * 2013-08-15 2013-12-11 宝舜科技股份有限公司 一种四相相转移催化制备9-芴酮的方法
CN103435456A (zh) * 2013-08-15 2013-12-11 宝舜科技股份有限公司 一种9-芴酮的制备方法

Also Published As

Publication number Publication date
CN103787858B (zh) 2015-07-01
JP6052949B2 (ja) 2016-12-27
CN103787858A (zh) 2014-05-14
JP2016523227A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
CN111646922B (zh) 一种2-(4-溴-2-氰基-6-氟苯基)乙酸的合成方法
CN104876995A (zh) 鹅去氧胆酸衍生物的制备方法
CN101717368A (zh) 一种微波条件下制备咪唑类离子液体的方法及其工艺
CN101891621A (zh) 3-乙氧基-4-乙氧羰基苯乙酸的合成方法
CN115233243A (zh) 一种电催化下2,4,5-三取代噁唑衍生物的制备方法
CN108191674A (zh) 一种联苯胺化合物的合成方法
CN103787963A (zh) 高效制备4-二甲氨基吡啶
CN108863754A (zh) 一种乙酰丙酮钴(ii)的制备方法
WO2015131435A1 (zh) 由芴制备9-芴酮的方法
CN117142954A (zh) 4,4,4-三氟乙酰乙酸乙酯的制备方法
CN106866425B (zh) 一种溴代芳香胺和α-溴代芳香酮的绿色合成方法
CN107641080A (zh) 一种含螺环结构的二氢萘酮类衍生物及其制备方法
CN108383754B (zh) 一类芳基肟脂化合物的制备方法和应用
CN110862421B (zh) 含氮杂环二茂铁衍生物的合成方法
CN107619386A (zh) 一种芳环并[c]咔唑类衍生物及其合成方法
CN108047033B (zh) 一种制备扁桃酸类化合物的反应装置及其方法
CN112609202A (zh) 一种电催化合成天然产物Xanthoisoxazoline B的方法及其产品
CN101293856B (zh) 一种抗氧抗铜剂的制备方法
CN112694427A (zh) 一种制备2,3-二甲基苯甲硫醚的方法
CN111138350A (zh) 一种右氯苯那敏和右溴苯那敏的不对称合成方法
CN108752260B (zh) 一种米格列奈钙中间体的制备方法
CN112745205B (zh) 辛波莫德中间体的制备方法
CN110713442A (zh) 一种邻硝基苯甲醛的制备方法
CN115073364B (zh) 一种6-硝基吡啶-3-醇的制备方法
CN114853756B (zh) 化合物Tomivosertib的制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884972

Country of ref document: EP

Kind code of ref document: A1