WO2015124005A1 - 像素阵列的驱动方法和显示装置 - Google Patents

像素阵列的驱动方法和显示装置 Download PDF

Info

Publication number
WO2015124005A1
WO2015124005A1 PCT/CN2014/091788 CN2014091788W WO2015124005A1 WO 2015124005 A1 WO2015124005 A1 WO 2015124005A1 CN 2014091788 W CN2014091788 W CN 2014091788W WO 2015124005 A1 WO2015124005 A1 WO 2015124005A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
theoretical
actual
virtual
Prior art date
Application number
PCT/CN2014/091788
Other languages
English (en)
French (fr)
Inventor
郭仁炜
董学
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP14861143.7A priority Critical patent/EP2953121A4/en
Priority to US14/443,757 priority patent/US9824620B2/en
Publication of WO2015124005A1 publication Critical patent/WO2015124005A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0465Improved aperture ratio, e.g. by size reduction of the pixel circuit, e.g. for improving the pixel density or the maximum displayable luminance or brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0457Improvement of perceived resolution by subpixel rendering
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a driving method of a pixel array and a display device suitable for the driving method.
  • common pixels are designed to consist of three sub-pixels (including red, green, and blue sub-pixels, as shown in Figure 1) or four sub-pixels (red, green, and sub-pixels).
  • the blue sub-pixel and the white sub-pixel constitute a pixel for display, and the physical resolution is the visual resolution.
  • the pixel per inch (PPI) of the display panel is low, the user will notice the graininess that is apparent when viewing the display screen (ie, the displayed image edges are not smooth and jagged). As the user's desire to view the display screen increases, it is necessary to increase the PPI of the display panel. Increasing the PPI of the display panel can lead to an increase in the difficulty of manufacturing the display panel.
  • An object of the present invention is to provide a driving method of a pixel array and a display device suitable for the driving method, wherein driving the pixel array by the driving method can reduce the graininess of the display panel including the pixel array to the same level The display of the display panel with a higher resolution under the size.
  • a driving method of a pixel array including a plurality of actual pixel units, each of the actual pixel units including a plurality of actual sub-pixels of different colors, and the horizontal and vertical of each actual sub-pixel
  • the driving method includes the steps of dividing the image to be displayed into a plurality of theoretical pixel units, each of the theoretical pixel units including a plurality of theoretical sub-pixels having different colors, and calculating each theory.
  • Subpixel The theoretical brightness value; the actual brightness value of each actual sub-pixel is calculated; and the signals are input to the respective actual sub-pixels such that the brightness of each actual sub-pixel reaches the calculated actual brightness value.
  • Calculating the actual brightness value of each actual sub-pixel includes the steps of: finding a first theoretical sub-pixel in the image to be displayed, the position of the first theoretical sub-pixel in the image to be displayed and the actual sub-pixel to be calculated in the pixel Positions in the array are corresponding; at least one virtual sub-pixel having the same color as the first theoretical sub-pixel is inserted between the first theoretical sub-pixel and the at least one adjacent theoretical sub-pixel, and the adjacent theoretical sub-pixel is in the first theoretical sub-pixel a theoretical sub-pixel adjacent to the first theoretical sub-pixel among all theoretical sub-pixels having the same color as the first theoretical sub-pixel in the row in which the pixel is located; and a theoretical luminance value of the first theoretical sub-pixel and the actual sub-pixel to be calculated
  • the virtual luminance values of the virtual sub-pixels corresponding to the positions of the pixels are weighted and added, and the obtained result is the actual luminance value of the actual sub-pixel to be calculated, and the virtual luminance value of the virtual sub-pixel is the theoretical lumina
  • a dummy sub-pixel may be inserted between a first theoretical sub-pixel and an adjacent theoretical sub-pixel located on a side of the first theoretical sub-pixel.
  • a virtual sub-pixel may be inserted between the first theoretical sub-pixel and an adjacent theoretical sub-pixel located on both sides of the first theoretical sub-pixel.
  • the virtual luminance value of the virtual sub-pixel can be calculated according to the following formula:
  • V ni a i T 1 +b i T 2 ,
  • n may be from 1 to 5.
  • the length of the theoretical sub-pixel in the longitudinal direction may be equal to the length of the actual sub-pixel in the longitudinal direction, and the aspect ratio of each actual sub-pixel may be 1:2 or 1:1.
  • each actual pixel unit may include three actual sub-pixels whose colors are different from each other, and the aspect ratio of each actual sub-pixel may be 2:3.
  • the pixel array may include a plurality of pixel unit groups, each of the pixel unit groups may include two adjacent actual pixel units located in the same column, and the left side of the actual sub-pixel of the next row of actual pixel units The boundary may be aligned with the midpoint of the lower boundary of the actual sub-pixel of the actual row of pixels of the previous row.
  • the pixel array may include a plurality of pixel unit groups, each of the pixel unit groups may include two adjacent actual pixel units located in the same column, and the left side of the actual sub-pixel of the previous row of actual pixel units The boundary may be aligned with the midpoint of the upper boundary of the actual sub-pixel of the next row of actual pixel cells.
  • a display device comprising a display panel comprising a pixel array, the pixel array comprising a plurality of actual pixel units, each actual pixel unit comprising a plurality of different colors
  • the actual sub-pixels, each actual sub-pixel has an aspect ratio between 1:2 and 1:1.
  • the display device further includes a theoretical brightness calculation module, an actual brightness calculation module, and a display drive module.
  • the theoretical brightness calculation module is configured to divide the image to be displayed into a plurality of theoretical pixel units, each theoretical pixel unit includes a plurality of theoretical sub-pixels of different colors, and calculate a theoretical brightness value of each theoretical sub-pixel.
  • the actual brightness calculation module calculates the actual brightness value of each actual sub-pixel.
  • the display driving module inputs signals to the actual sub-pixels such that the brightness of each actual sub-pixel reaches the actual brightness value calculated by the actual brightness calculation module.
  • the actual brightness calculation module includes: a position corresponding sub-module, configured to find a first theoretical sub-pixel in the image to be displayed, where the position of the first theoretical sub-pixel in the image to be displayed and the actual sub-pixel to be calculated are in the pixel a position corresponding to the position in the array; a difference molecular module, configured to insert at least one virtual sub-pixel with the same color as the first theoretical sub-pixel between the first theoretical sub-pixel and the at least one adjacent theoretical sub-pixel, adjacent theoretical sub-pixel a theoretical sub-pixel adjacent to the first theoretical sub-pixel among all theoretical sub-pixels having the same color as the first theoretical sub-pixel in the row in which the first theoretical sub-pixel is located; and a summation sub-module for using the first theoretical sub-pixel Theoretical brightness value of a pixel
  • the driving method provided by the present invention is applicable to a pixel array having a relatively large width, and can reduce the graininess of the display panel including the pixel array to achieve a display effect of a display panel having a higher resolution in the same size.
  • FIG. 1 is a schematic diagram of a conventional pixel array, showing a division manner of a theoretical pixel unit
  • FIGS. 2a to 2d are schematic views of actual pixel units in a pixel array suitable for use in a driving method according to the present invention
  • 3a to 3c are schematic views of actual pixel units in a pixel array suitable for use in a driving method according to the present invention.
  • 4a to 4f are schematic views of actual pixel units in a pixel array suitable for use in a driving method according to the present invention.
  • 5a to 5f are schematic views of two actual pixel units adjacent to each other in a pixel array suitable for the driving method according to the present invention
  • Figure 6 shows a schematic diagram of a pixel array suitable for use in a driving method according to the present invention
  • Figure 7 illustrates an embodiment of calculating a virtual luminance value of a virtual sub-pixel
  • 11 to 13 respectively show the steps of calculating the actual luminance values of the actual sub-pixels of red, blue, and green when four dummy sub-pixels are inserted between two adjacent theoretical sub-pixels.
  • Figure 1 shows the division of the theoretical pixel unit.
  • Figure 6 shows a schematic diagram of a pixel array suitable for use in a driving method in accordance with the present invention.
  • three theoretical sub-pixels arranged in sequence in the same row are one theoretical pixel unit.
  • four rows and 24 columns of theoretical sub-pixels constitute four rows (G1 to G4) of eight columns (C1 to C8) of theoretical pixel units.
  • four rows (G1 to G4) of 12 columns (S1 to S12) of actual sub-pixels are included in the exemplary pixel array, and three actual sub-pixels sequentially arranged in the same row are one actual pixel. unit.
  • the area of the image to be displayed is equal to the area of the pixel array.
  • the pixel array can be divided into 4 rows and 8 columns of actual pixel blocks corresponding to the theoretical pixel unit shown in FIG. It is an object of the present invention to achieve a display effect of a theoretical pixel array including a theoretical pixel unit as shown in FIG. 1 using, for example, an actual pixel array including actual pixel units as shown in FIG. 6, that is, to achieve a higher resolution display. effect.
  • a driving method of a pixel array including a plurality of actual pixel units, each of the actual pixel units including a plurality of actual sub-pixels of different colors, and the horizontal and vertical of each actual sub-pixel
  • the driving method includes the steps of dividing the image to be displayed into a plurality of theoretical pixel units, each of the theoretical pixel units including a plurality of theoretical sub-pixels having different colors, and calculating each theory.
  • the theoretical luminance value of the sub-pixel; the actual luminance value of each actual sub-pixel is calculated; and the signals are input to the respective actual sub-pixels such that the luminance of each actual sub-pixel reaches the calculated actual luminance value.
  • Calculating the actual brightness value of each actual sub-pixel includes the steps of: finding a first theoretical sub-pixel in the image to be displayed, the position of the first theoretical sub-pixel in the image to be displayed and the actual sub-pixel to be calculated in the pixel Positions in the array are corresponding; at least one virtual sub-pixel having the same color as the first theoretical sub-pixel is inserted between the first theoretical sub-pixel and the at least one adjacent theoretical sub-pixel, and the adjacent theoretical sub-pixel is in the first theoretical sub-pixel
  • the row where the pixel is located a theoretical sub-pixel adjacent to the first theoretical sub-pixel among all theoretical sub-pixels having the same color as the first theoretical sub-pixel; and a theoretical luminance value of the first theoretical sub-pixel and a position of the actual sub-pixel to be calculated The virtual luminance values of the corresponding virtual sub-pixels are weighted and added, and the obtained result is the actual luminance value of the actual sub-pixel to be calculated, and the virtual luminance value of the virtual sub-pixel is the theoretical luminance value of the
  • the driving method according to the present invention is applicable to a pixel array having a large sub-pixel width.
  • the length of the theoretical sub-pixel in the longitudinal direction is equal to the length of the actual sub-pixel in the longitudinal direction. If each of the actual sub-pixels in the pixel array has a wider width, the difficulty in fabricating the pixel array, the aperture ratio, and the yield can be improved.
  • the theoretical luminance value of each theoretical sub-pixel is a luminance value of each sub-pixel when displayed by using the pixel array including the theoretical pixel unit shown in FIG. 1.
  • each of the virtual sub-pixels may be equally spaced between the first theoretical sub-pixel and the adjacent theoretical sub-pixel.
  • the position of the theoretical sub-pixel in the image to be displayed corresponds to the position of the actual sub-pixel to be calculated in the pixel array
  • the actual sub-pixel to be calculated is in the actual pixel array as shown in FIG.
  • the position coordinates in the same color and the theoretical sub-pixels of the same color are the same or close to the position coordinates of the image to be displayed (or in the theoretical pixel array as shown in FIG. 1).
  • the theoretical sub-pixel corresponding to the actual sub-pixel position of the G1 row and the S1th column is the theoretical sub-pixel of the G1th row and the A1th column in FIG.
  • the theoretical luminance of the theoretical sub-pixel of the G1 row and the adjacent theoretical sub-pixel of the A1 column is used. value.
  • adjacent theoretical sub-pixel means that in the row in which the first theoretical sub-pixel of the theoretical pixel array as shown in FIG. 1 is removed, after removing the theoretical sub-pixel different from the color of the first theoretical sub-pixel a theoretical sub-pixel whose position is adjacent to the first theoretical sub-pixel.
  • the adjacent theoretical sub-pixels of the theoretical sub-pixel of the G1 row and the A1th column are the theoretical sub-pixels of the G1 row and the A4th column.
  • a virtual sub-pixel corresponding to the position of the actual sub-pixel to be calculated means that its position overlaps with the position of the actual sub-pixel in the image to be displayed (or a portion) Overlapped virtual subpixels.
  • the "first theoretical sub-pixel” and the “virtual sub-pixel corresponding to the position of the actual sub-pixel to be calculated” may cover all of the “actual sub-pixels to be calculated” on the image to be displayed. region.
  • Driving the pixel array by the above method can reduce the graininess of the display panel including the pixel array to a display effect of a display panel having a higher resolution at the same size.
  • each theoretical sub-pixel has at least one adjacent theoretical sub-pixel.
  • the theoretical sub-pixels in the two columns of theoretical pixel units located at the edge have only one adjacent theoretical sub-pixel, and the theoretical sub-pixels located in other theoretical pixel units have two adjacent theoretical sub-pixels.
  • the virtual sub-pixel is disposed in the first theoretical sub-pixel and the adjacent theoretical sub-pixel Between pixels.
  • the phase may be on the first theoretical sub-pixel and on either side.
  • a dummy sub-pixel is inserted between adjacent sub-pixels, or a virtual sub-pixel may be inserted between the first theoretical sub-pixel and adjacent theoretical sub-pixels on both sides.
  • the virtual luminance value of the virtual sub-pixel can be calculated as follows:
  • V ni a i T 1 + b i T 2 , wherein
  • n is the number of dummy sub-pixels inserted between the first theoretical sub-pixel and one adjacent theoretical sub-pixel;
  • V ni is a virtual luminance value of the i-th virtual sub-pixel among the n virtual sub-pixels
  • T 1 is the theoretical luminance value of the theoretical sub-pixel on the left side of the virtual sub-pixel to be calculated
  • T 2 is the theoretical luminance value of the theoretical sub-pixel to the right of the virtual sub-pixel to be calculated.
  • the theoretical luminance value of the theoretical sub-pixel on the left side has a larger proportion in the virtual luminance value of the virtual sub-pixel ( That is, a i >b i ); conversely, when i>n/2, it indicates that the virtual sub-pixel is closer to the theoretical sub-pixel on the right side, so the theoretical luminance value of the theoretical sub-pixel on the right is virtual in the virtual sub-pixel.
  • the virtual luminance value of the virtual sub-pixel is used when calculating the virtual luminance value.
  • the first sub-pixel theoretical theoretical luminance value T 1 a
  • a sub-pixel adjacent theoretical theoretical luminance value T 2 b.
  • the virtual luminance values of the two virtual sub-pixels are:
  • the coefficient a 1 of the first virtual sub-pixel is 0.75, and b 1 is 0.25; the coefficient a 2 of the second sub-pixel is 0.25, and b 2 is 0.75.
  • the virtual luminance values of the three virtual sub-pixels are:
  • the coefficient a 1 of the first dummy sub-pixel is 0.875, and b 1 is 0.125; the coefficient a 2 of the second dummy sub-pixel is 0.5, and b 2 is 0.5; the coefficient a 3 of the third dummy sub-pixel is 0.125 , b 3 is 0.875.
  • the present invention does not limit the number of dummy sub-pixels inserted between the first theoretical sub-pixel and the adjacent theoretical sub-pixel.
  • the number of dummy sub-pixels inserted between the first theoretical sub-pixel and the adjacent theoretical sub-pixel is between 1 and 5, ie n is 1 to 5. In this way, a balance can be made between the amount of calculation and the display effect.
  • the aspect ratio of each actual sub-pixel may be 1:2.
  • the present invention does not define the manner in which the actual sub-pixels are arranged in the actual pixel unit, and Figures 3a through 3c exemplarily illustrate a number of different arrangements.
  • FIG. 4a through 4f exemplarily illustrate a number of different arrangements.
  • each actual pixel unit may include three actual sub-pixels having mutually different colors, and the aspect ratio of each actual sub-pixel may be 2:3.
  • Figures 5a through 5f exemplarily illustrate a number of different arrangements.
  • the actual pixel array may include a plurality of pixel unit groups, and each pixel unit group may include two adjacent actual pixel units located in the same column.
  • the left boundary of the actual sub-pixel of the next row of actual pixel cells may be aligned with the midpoint of the lower boundary of the actual sub-pixel of the previous row of actual pixel cells.
  • the left boundary of the actual sub-pixel of the previous row of actual pixel cells may be aligned with the midpoint of the upper boundary of the actual sub-pixel of the next row of actual pixel cells.
  • the actual sub-pixel to be calculated is the red actual sub-pixel of the G1th row and the S1th column shown in FIG. 6.
  • the actual sub-pixel corresponding to the S1th column of the G1th row corresponds to the theoretical sub-pixel, that is, the first theoretical sub-pixel.
  • the first theoretical sub-pixel is a map The red theoretical sub-pixel of column A1 of the G1 row shown in FIG.
  • the red column theory sub-pixel of the G1 row A4 is an adjacent theoretical sub-pixel.
  • the theoretical luminance value a of the theoretical sub-pixel of the A1th column of the G1 row and the theoretical luminance value b of the theoretical sub-pixel of the G1 row and the A4th column are known.
  • three red dummy sub-pixels R31, R32, R33 are inserted between the first theoretical sub-pixel and the adjacent sub-pixel.
  • the virtual sub-pixels corresponding to the positions of the actual sub-pixels of the G1th row and the S1th column to be calculated are the virtual sub-pixels R31 and R32.
  • the actual luminance value A of the actual sub-pixel to be displayed can be calculated by the following formula:
  • FIG. 9 shows a process of calculating the actual luminance value of the blue actual sub-pixel, which is similar to the calculation process described above in connection with FIG. 8, so that a detailed description thereof is omitted.
  • Figure 10 shows the process of calculating the actual luminance value of the green actual sub-pixel. Different from the process described in connection with FIG. 8, three dummy sub-pixels are inserted on both sides of the green theoretical sub-pixel (ie, the first theoretical sub-pixel) of the G1 row and the A5th column shown in FIG. Correspondingly, the theoretical sub-pixel of the G1 row A2 column and the theoretical sub-pixel of the G1 row A8 column are adjacent theoretical sub-pixels.
  • the theoretical luminance value of the theoretical sub-pixel (ie, the first theoretical sub-pixel) of the A5th column of the G1 row is b
  • the theoretical luminance value of the theoretical sub-pixel of the G1 row and the A2 column is a
  • the G1 row is A8.
  • the theoretical luminance value of the column theory subpixel is c. Inserting three green virtual sub-pixels G31 L , G32 L , G33 L between the first theoretical sub-pixel and the G1 row A2 column theoretical sub-pixel, in the first theoretical sub-pixel and the G1 row A8 column theory Three green virtual sub-pixels G31 r , G32 r , G33 r are inserted between the pixels.
  • the virtual luminance value V 31L of the virtual sub-pixel G31 L is (0.875a + 0125b), the virtual luminance value V 32L of the virtual sub-pixel G32 L is (0.5a + 0.5b), and the virtual luminance value V 33L of the virtual sub-pixel G33 L Is (0.125a + 0.875b).
  • the virtual luminance value V 31r of the virtual sub-pixel G31 r is (0.875b+0125c)
  • the virtual luminance value V 32r of the virtual sub-pixel G32 r is (0.5b+0.5c)
  • the virtual sub-pixels corresponding to the positions of the actual sub-pixels to be calculated are the virtual sub-pixel G33 L and the virtual sub-pixels G31 r and G32 r .
  • the actual luminance value A of the actual sub-pixel to be displayed can be calculated using the following formula:
  • a signal may be input to the actual sub-pixel of the G1 row and the S3th column shown in FIG. 6 such that the brightness of the actual sub-pixel reaches the calculated actual luminance value A.
  • the driving method according to the present invention is applicable to a pixel array including actual pixels of four colors in addition to a pixel array including actual sub-pixels of three colors.
  • a display device comprising a display panel comprising a pixel array, the pixel array comprising a plurality of actual pixel units, each actual pixel unit comprising a plurality of different colors
  • the actual sub-pixels, each actual sub-pixel has an aspect ratio between 1:2 and 1:1.
  • the display device further includes a theoretical brightness calculation module, an actual brightness calculation module, and a display drive module.
  • the theoretical brightness calculation module is configured to divide the image to be displayed into a plurality of theoretical pixel units, each theoretical pixel unit includes a plurality of theoretical sub-pixels of different colors, and calculate a theoretical brightness value of each theoretical sub-pixel.
  • the actual brightness calculation module calculates the actual brightness value of each actual sub-pixel.
  • the display driver module inputs signals to the actual sub-pixels so that the brightness of each actual sub-pixel reaches the actual brightness.
  • the actual brightness calculation module includes: a position corresponding sub-module, configured to find a first theoretical sub-pixel in the image to be displayed, where the position of the first theoretical sub-pixel in the image to be displayed and the actual sub-pixel to be calculated are in the pixel a position corresponding to the position in the array; a difference molecular module, configured to insert at least one virtual sub-pixel with the same color as the first theoretical sub-pixel between the first theoretical sub-pixel and the at least one adjacent theoretical sub-pixel, adjacent theoretical sub-pixel a theoretical sub-pixel adjacent to the first theoretical sub-pixel among all theoretical sub-pixels having the same color as the first theoretical sub-pixel in the row in which the first theoretical sub-pixel is located; and a summation sub-module for using the first theoretical sub-pixel
  • the theoretical luminance value of the pixel is weighted and added to
  • Each of the actual sub-pixels in the pixel array of the display device according to the present invention can have a relatively large width compared to the display device of the prior art, thus facilitating fabrication. Also, the pixel array of the display device according to the present invention has relatively few columns, so that the setting of the data lines can be reduced, further reducing the processing difficulty.
  • the display device according to the present invention is suitable for the above-described driving method, and therefore, the graininess of the display panel including the display device according to the present invention can be reduced, and the display effect of the display device having a higher resolution at the same size can be achieved.
  • the display device may be any product or component having a display function such as a liquid crystal panel, an electronic paper, an organic light emitting diode (OLED) panel, a liquid crystal television, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, or the like.
  • a display function such as a liquid crystal panel, an electronic paper, an organic light emitting diode (OLED) panel, a liquid crystal television, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, or the like.

Abstract

一种像素阵列的驱动方法和显示装置,驱动方法包括:将待显示图像划分为多个理论像素单元;计算每个实际子像素的实际亮度值,以及使各个实际子像素的亮度达到实际亮度值。计算每个实际子像素的实际亮度值包括:找出第一理论子像素;在第一理论子像素与至少一个相邻理论子像素之间插入多个与第一理论子像素同色的虚拟子像素;将第一理论子像素的理论亮度值的一部分与待计算的实际子像素相对应的虚拟子像素的虚拟亮度值的一部分相加获得待计算的实际子像素的实际亮度值。

Description

像素阵列的驱动方法和显示装置 技术领域
本发明涉及显示技术领域,具体地,涉及一种像素阵列的驱动方法和一种适用于所述驱动方法的显示装置。
背景技术
在目前的显示面板中,常见的像素设计为由三个子像素(包括红色子像素、绿色子像素和蓝色子像素,如图1所示)或四个子像素(红色子像素、绿色子像素、蓝色子像素和白色子像素)组成一个像素进行显示,物理分辨率就是视觉分辨率。
如果显示面板的每英寸像素数(pixel per inch,PPI)较低,则用户在观看显示屏幕时会明显感觉到的颗粒感(即,所显示的图像边缘不平滑,呈锯齿状)。随着用户对显示屏幕的观看感受要求的增加,需要增加显示面板的PPI。增加显示面板的PPI会导致制造显示面板的工艺难度增加。
在不增加制造工艺难度(即,不增加PPI)的情况下,如何使得显示面板的颗粒感降低,以达到同等尺寸下具有更高分辨率的显示面板的显示效果,成为本领域亟待解决的技术问题。
发明内容
本发明的目的在于提供一种像素阵列的驱动方法和一种适用于所述驱动方法的显示装置,利用所述驱动方法驱动像素阵列可以使得包括该像素阵列的显示面板的颗粒感降低,达到同等尺寸下具有更高分辨率的显示面板的显示效果。
根据本发明的一个方面,提供一种像素阵列的驱动方法,所述像素阵列包括多个实际像素单元,每个实际像素单元包括颜色不同的多个实际子像素,每个实际子像素的横纵比在1:2至1:1之间,所述驱动方法包括步骤:将待显示图像划分为多个理论像素单元,每个理论像素单元包括颜色不同的多个理论子像素,计算每个理论子像素的 理论亮度值;计算每个实际子像素的实际亮度值;以及向各个实际子像素输入信号,以使各个实际子像素的亮度达到计算得到的实际亮度值。计算每个实际子像素的实际亮度值包括步骤:在待显示图像中找出第一理论子像素,该第一理论子像素在待显示图像中的位置与待计算的实际子像素在所述像素阵列中的位置相对应;在第一理论子像素与至少一个相邻理论子像素之间插入与第一理论子像素颜色相同的至少一个虚拟子像素,相邻理论子像素为在第一理论子像素所在的行中,与第一理论子像素颜色相同的所有理论子像素当中与第一理论子像素邻近的理论子像素;以及将第一理论子像素的理论亮度值和与待计算的实际子像素的位置相对应的虚拟子像素的虚拟亮度值加权相加,所得的结果为待计算的实际子像素的实际亮度值,虚拟子像素的虚拟亮度值为第一理论子像素的理论亮度值和相应的相邻理论子像素的理论亮度值的加权相加的结果。
根据本发明的实施例,可以在第一理论子像素与位于第一理论子像素的一侧的相邻理论子像素之间插入虚拟子像素。当第一理论子像素具有两个相邻理论子像素时,可以在第一理论子像素与位于第一理论子像素的两侧的相邻理论子像素之间插入虚拟子像素。
根据本发明的实施例,可以按照如下公式计算虚拟子像素的虚拟亮度值:
Vni=aiT1+biT2
其中,i=1,……,n;n为第一理论子像素与一个相邻理论子像素之间插入的虚拟子像素的个数;Vni为n个虚拟子像素当中的第i个虚拟子像素的虚拟亮度值;ai+bi=1,ai、bi>0,当i<n/2时,ai>bi,当i>n/2时,ai<bi,当i=n/2时,ai=bi;T1为待计算的虚拟子像素左侧的理论子像素的理论亮度值;并且T2为待计算的虚拟子像素右侧的理论子像素的理论亮度值。
根据本发明的实施例,当n=1时:V11=1/2(T1+T2);并且当n>1时:Vn1=1/2(T1+V(n-1)1),Vni=1/2(V(n-1)(i-1)+V(n-1)i)(1<i<n),Vnn=1/2(T2+V(n-1)(n-1))。
根据本发明的实施例,n可以为1至5。
根据本发明的实施例,理论子像素沿纵向方向的长度与实际子像素沿纵向方向的长度可以相等,并且每个实际子像素的横纵比可以为1:2或者1:1。
根据本发明的实施例,每个实际像素单元可以包括颜色互不相同的三个实际子像素,并且每个实际子像素的横纵比可以为2:3。
根据本发明的实施例,所述像素阵列可以包括多个像素单元组,每个像素单元组可以包括位于同一列中的两个相邻实际像素单元,下一行实际像素单元的实际子像素的左边界可以与上一行实际像素单元的实际子像素的下边界的中点对齐。
根据本发明的实施例,所述像素阵列可以包括多个像素单元组,每个像素单元组可以包括位于同一列中的两个相邻实际像素单元,上一行实际像素单元的实际子像素的左边界可以与下一行实际像素单元的实际子像素的上边界的中点对齐。
根据本发明的另一个方面,提供一种显示装置,该显示装置包括显示面板,该显示面板包括像素阵列,所述像素阵列包括多个实际像素单元,每个实际像素单元包括颜色不同的多个实际子像素,每个实际子像素的横纵比在1:2至1:1之间。所述显示装置还包括理论亮度计算模块、实际亮度计算模块以及显示驱动模块。理论亮度计算模块用于将待显示图像划分为多个理论像素单元,每个理论像素单元包括颜色不同的多个理论子像素,计算每个理论子像素的理论亮度值。实际亮度计算模块计算每个实际子像素的实际亮度值。显示驱动模块向各个实际子像素输入信号,以使各个实际子像素的亮度达到实际亮度计算模块计算得到的实际亮度值。实际亮度计算模块包括:位置对应子模块,用于在待显示图像中找出第一理论子像素,该第一理论子像素在待显示图像中的位置与待计算的实际子像素在所述像素阵列中的位置相对应;差分子模块,用于在第一理论子像素与至少一个相邻理论子像素之间插入与第一理论子像素颜色相同的至少一个虚拟子像素,相邻理论子像素为在第一理论子像素所在的行中,与第一理论子像素颜色相同的所有理论子像素当中与第一理论子像素邻近的理论子像素;以及求和子模块,用于将第一理论子像素的理论亮度值 和与待计算的实际子像素的位置相对应的虚拟子像素的虚拟亮度值加权相加,所得的结果为待计算的实际子像素的实际亮度值,虚拟子像素的虚拟亮度值为第一理论子像素的理论亮度值和相应的相邻理论子像素的理论亮度值的加权相加的结果。
本发明所提供的驱动方法适用于宽度相对较大的像素阵列,可以使包括该像素阵列的显示面板的颗粒感降低,达到同等尺寸下具有更高分辨率的显示面板的显示效果。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是现有的像素阵列的示意图,同时示出了理论像素单元的划分方式;
图2a至图2d为适用于根据本发明的驱动方法的像素阵列中的实际像素单元的示意图;
图3a至图3c为适用于根据本发明的驱动方法的像素阵列中的实际像素单元的示意图;
图4a至图4f为适用于根据本发明所的驱动方法的像素阵列中的实际像素单元的示意图;
图5a至图5f为适用于根据本发明的驱动方法的像素阵列中上下相邻的两个实际像素单元的示意图;
图6示出了适用于根据本发明的驱动方法的像素阵列的示意图;
图7示出了计算虚拟子像素的虚拟亮度值的一种实施方式;
图8至图10分别示出了在两个相邻的理论子像素之间插入三个虚拟子像素时,计算红色、蓝色和绿色实际子像素的实际亮度值的步骤;以及
图11至图13分别示出了在两个相邻的理论子像素之间插入四个虚拟子像素时,计算红色、蓝色和绿色实际子像素的实际亮度值的步骤。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
应当理解的是,本文所述的“横向”是指各附图中的水平方向,“纵向”是指各附图中的竖直方向。
图1示出了理论像素单元的划分方式。图6示出了适用于根据本发明的驱动方法的像素阵列的示意图。如图1所示,同一行中依次排列的三个理论子像素为一个理论像素单元。在图1中,4行24列理论子像素组成了4行(G1至G4)8列(C1至C8)理论像素单元。相应地,如图6所示,在示例性像素阵列中包括4行(G1至G4)12列(S1至S12)实际子像素,并且同一行中依次排列的三个实际子像素为一个实际像素单元。待显示图像的面积与像素阵列的面积相等。可以将像素阵列划分成与图1所示的理论像素单元对应的4行8列实际像素块。本发明的目的在于,利用例如图6所示的包括实际像素单元的实际像素阵列来实现如图1所示的包括理论像素单元的理论像素阵列的显示效果,即,达到更高分辨率的显示效果。
根据本发明的一个方面,提供一种像素阵列的驱动方法,所述像素阵列包括多个实际像素单元,每个实际像素单元包括颜色不同的多个实际子像素,每个实际子像素的横纵比在1:2至1:1之间,所述驱动方法包括步骤:将待显示图像划分为多个理论像素单元,每个理论像素单元包括颜色不同的多个理论子像素,计算每个理论子像素的理论亮度值;计算每个实际子像素的实际亮度值;以及向各个实际子像素输入信号,以使各个实际子像素的亮度达到计算得到的实际亮度值。计算每个实际子像素的实际亮度值包括步骤:在待显示图像中找出第一理论子像素,该第一理论子像素在待显示图像中的位置与待计算的实际子像素在所述像素阵列中的位置相对应;在第一理论子像素与至少一个相邻理论子像素之间插入与第一理论子像素颜色相同的至少一个虚拟子像素,相邻理论子像素为在第一理论子像素所在的行 中,与第一理论子像素颜色相同的所有理论子像素当中与第一理论子像素邻近的理论子像素;以及将第一理论子像素的理论亮度值和与待计算的实际子像素的位置相对应的虚拟子像素的虚拟亮度值加权相加,所得的结果为待计算的实际子像素的实际亮度值,虚拟子像素的虚拟亮度值为第一理论子像素的理论亮度值和相应的相邻理论子像素的理论亮度值的加权相加的结果。
与现有技术相比,根据本发明的驱动方法适用于子像素宽度较大的像素阵列。通常,理论子像素沿纵向方向的长度与实际子像素沿纵向方向的长度相等。如果像素阵列中的每个实际子像素具有较宽的宽度,则可以降低制造该像素阵列的难度、提高开口率并提高良率。
各理论子像素的理论亮度值为利用图1所示的包括理论像素单元的像素阵列进行显示时各个子像素的亮度值。根据本发明的实施例,可以在第一理论子像素与相邻理论子像素之间等间距地设置各个虚拟子像素。
在本文中,“理论子像素在待显示图像中的位置与待计算的实际子像素在像素阵列中的位置相对应”是指,待计算的实际子像素在如图6所示的实际像素阵列中的位置坐标与同色的理论子像素在待显示图像中(或者在如图1所示的理论像素阵列中)的位置坐标相同或接近。例如,在图6中,与第G1行第S1列实际子像素位置对应的理论子像素为图1中第G1行第A1列理论子像素。因此,在计算图6所示的实际像素阵列中第G1行第S1列实际子像素的实际亮度值时,会用到第G1行第A1列理论子像素及其相邻理论子像素的理论亮度值。
在本文中,“相邻理论子像素”是指,在如图1所示的理论像素阵列的第一理论子像素所处的行中,去除与第一理论子像素颜色不同的理论子像素之后,其位置与第一理论子像素相邻的理论子像素。例如,在图1中,第G1行第A1列理论子像素的相邻理论子像素为第G1行第A4列理论子像素。
在本文中,“与待计算的实际子像素的位置相对应的虚拟子像素”是指,其位置在待显示图像中与实际子像素的位置重叠(或部分 重叠)的虚拟子像素。这样,“第一理论子像素”以及(一个或多个)“与待计算的实际子像素的位置相对应的虚拟子像素”可以在待显示图像上覆盖“待计算的实际子像素”的全部区域。
利用上述方法驱动像素阵列可以使得包括该像素阵列的显示面板的颗粒感降低,达到同等尺寸下具有更高分辨率的显示面板的显示效果。
如图1所示,在同一行中,每个理论子像素具有至少一个相邻理论子像素。位于边缘的两列理论像素单元中的理论子像素只有一个相邻理论子像素,位于其他理论像素单元中的理论子像素具有两个相邻理论子像素。
当第一理论子像素只有一个相邻理论子像素时(例如,第一理论子像素位于C1或C8列的理论像素单元中),虚拟子像素设置在第一理论子像素与该相邻理论子像素之间。
当第一理论子像素有两个相邻理论子像素时(例如,第一理论子像素位于C2至C7列之一的理论像素单元中),可以在第一理论子像素与任意一侧的相邻子像素之间插入虚拟子像素,或者可以在第一理论子像素与两侧的相邻理论子像素之间插入虚拟子像素。
可以按照如下公式计算虚拟子像素的虚拟亮度值:
Vni=aiT1+biT2,其中,
i=1,……,n;
n为第一理论子像素与一个相邻理论子像素之间插入的虚拟子像素的个数;
Vni为n个虚拟子像素当中的第i个虚拟子像素的虚拟亮度值;
ai+bi=1,ai、bi>0,当i<n/2时,ai>bi,当i>n/2时,ai<bi,当i=n/2时,ai=bi
T1为待计算的虚拟子像素左侧的理论子像素的理论亮度值;
T2为待计算的虚拟子像素右侧的理论子像素的理论亮度值。
当i<n/2时,表明虚拟子像素距离左侧的理论子像素较近,因此,左侧的理论子像素的理论亮度值在虚拟子像素的虚拟亮度值中所占的比重较大(即,ai>bi);相反,当i>n/2时,表明虚拟子像素 距离右侧的理论子像素较近,因此右侧的理论子像素的理论亮度值在虚拟子像素的虚拟亮度值中所占的比重较大(即,ai<bi);当i=n/2时,表明虚拟子像素距离左侧和右侧的理论子像素距离相等,因此,左侧和右侧的理论子像素的理论亮度值在虚拟子像素的虚拟亮度值中所占的比重相同(即,ai=bi=1/2)。下面具体介绍如何计算系数ai和bi
根据本发明的实施例,在第一理论子像素与一个相邻理论子像素之间插入有n个虚拟子像素,当n=1时:V11=1/2(T1+T2);并且当n>1时:Vn1=1/2(T1+V(n-1)1),Vni=1/2(V(n-1)(i-1)+V(n-1)i)(1<i<n),Vnn=1/2(T2+V(n-1)(n-1))。
也就是说,在第一理论子像素与一个相邻理论子像素之间插入有多个虚拟子像素(即,n>1)的情况下,在计算虚拟子像素的虚拟亮度值时,会用到在第一理论子像素与一个相邻理论子像素之间插入有n-1个虚拟子像素时的计算结果,如此一直递归地利用在第一理论子像素与一个相邻理论子像素之间插入有一个虚拟子像素(即,n=1)时的计算结果。
下面结合图7来具体介绍上述虚拟子像素的虚拟亮度值的计算过程。
如图7所示,第一理论子像素的理论亮度值T1=a,相邻理论子像素的理论亮度值T2=b。
当插入一个虚拟子像素(即,n=1)时,该虚拟子像素的虚拟亮度值V11=1/2(a+b),即a1=b1=1/2。
当插入两个虚拟子像素(即,n=2)时,两个虚拟子像素的虚拟亮度值分别为:
V21=1/2(a+V11)=1/2[a+1/2(a+b)]=0.75a+0.25b;以及
V22=1/2(b+V11)=1/2[b+1/2(a+b)]=0.25a+0.75b。
因此,第一个虚拟子像素的系数a1为0.75,b1为0.25;第二个子像素的系数a2为0.25,b2为0.75。
当插入三个虚拟子像素(即,n=3)时,三个虚拟子像素的虚拟亮度值分别为:
V31=1/2(a+V21)=0.875a+0.125b;
V32=1/2(V21+V22)=0.5a+0.5b;以及
V33=1/2(V22+b)=0.125a+0.875b。
因此,第一个虚拟子像素的系数a1为0.875,b1为0.125;第二个虚拟子像素的系数a2为0.5,b2为0.5;第三个虚拟子像素的系数a3为0.125,b3为0.875。
本发明没有对在第一理论子像素和相邻理论子像素之间插入的虚拟子像素的个数进行限定。根据本发明的实施例,在第一理论子像素与相邻理论子像素之间插入的虚拟子像素的个数在1个至5个之间,即n为1至5。这样,可以在计算量与显示效果之间取得平衡。
根据本发明的实施例,在实际像素阵列中,每个实际子像素的横纵比可以为1:2。本发明没有对实际子像素在实际像素单元中的排列方式进行限定,图3a至图3c示例地示出了多种不同的排列方式。
可替换地,在实际像素阵列中,每个实际子像素的横纵比可以为1:1。图4a至图4f示例地示出了多种不同的排列方式。
可替换地,在实际像素阵列中,每个实际像素单元可以包括颜色互不相同的三个实际子像素,并且每个实际子像素的横纵比可以为2:3。图5a至图5f示例地示出了多种不同的排列方式。
此外,如中5a至图5f所示,实际像素阵列可以包括多个像素单元组,每个像素单元组可以包括位于同一列中的两个相邻实际像素单元。如图5a至图5f所示,下一行实际像素单元的实际子像素的左边界可以与上一行实际像素单元的实际子像素的下边界的中点对齐。可替换地,上一行实际像素单元的实际子像素的左边界可以与下一行实际像素单元的实际子像素的上边界的中点对齐。
下面结合图8至图13说明如何利用根据本发明的驱动方法对如图6所示的实际像素阵列进行驱动。
如图8中所示,待计算的实际子像素为图6所示的第G1行第S1列的红色实际子像素。
在待显示图像中找出与第G1行第S1列实际子像素对应于理论子像素,即,第一理论子像素。根据本实施例,第一理论子像素为图 1所示的第G1行第A1列的红色理论子像素。相应地,第G1行第A4的红色列理论子像素为相邻理论子像素。
根据之前将待显示图像划分为多个理论像素单元的步骤可知第G1行第A1列理论子像素的理论亮度值a和第G1行第A4列理论子像素的理论亮度值b。根据本实施例,在第一理论子像素与相邻子像素之间插入三个红色虚拟子像素R31、R32、R33。利用图7所示的n=3时的各项系数可知,虚拟子像素R31的虚拟亮度值V31=(0.875a+0125b),虚拟子像素R32的虚拟亮度值V32=(0.5a+0.5b),虚拟子像素R33的虚拟亮度值V33=(0125a+0.875b)。与待计算的第G1行第S1列实际子像素的位置相对应的虚拟子像素为虚拟子像素R31和R32。
然后,可以利用如下公式计算待显示的实际子像素的实际亮度值A:
A=α(a+V31+V32)=α(2.375a+0.625b),其中,α为修正系数,且0<α≤1。根据本实施例,α=1/3。
随后,向图6所示的第G1行第S1列实际子像素输入信号,使得该实际子像素的亮度达到计算得到的实际亮度值A。
图9示出了计算蓝色实际子像素的实际亮度值的过程,其与上述结合图8所描述的计算过程类似,故省却其详细描述。
图10示出了计算绿色实际子像素的实际亮度值的过程。与结合图8所描述的过程不同的是,在图1所示的第G1行第A5列的绿色理论子像素(即,第一理论子像素)两侧各插入了三个虚拟子像素。相应地,第G1行第A2列理论子像素和第G1行第A8列理论子像素为相邻理论子像素。
具体而言,第G1行第A5列理论子像素(即,第一理论子像素)的理论亮度值为b,第G1行第A2列理论子像素的理论亮度值为a,第G1行第A8列理论子像素的理论亮度值为c。在第一理论子像素与第G1行第A2列理论子像素之间插入三个绿色的虚拟子像素G31L、G32L、G33L,在第一理论子像素与第G1行第A8列理论子像素之间插入三个绿色的虚拟子像素G31r、G32r、G33r。虚拟子像素G31L的虚拟 亮度值V31L为(0.875a+0125b),虚拟子像素G32L的虚拟亮度值V32L为(0.5a+0.5b),虚拟子像素G33L的虚拟亮度值V33L为(0.125a+0.875b)。虚拟子像素G31r的虚拟亮度值V31r为(0.875b+0125c),虚拟子像素G32r的虚拟亮度值V32r为(0.5b+0.5c),虚拟子像素G33r的虚拟亮度值V33r为(0125b+0.875c)。与待计算的实际子像素的位置相对应的虚拟子像素为虚拟子像素G33L和虚拟子像素G31r和G32r
随后,可以利用如下公式计算待显示的实际子像素的实际亮度值A:
A=α(a+V33L+V31r+V32r)=α(3.25b+0.125a+0.625c),其中,α为修正系数,且0<α≤1。根据本实施例,α可以为1/4。
随后,可以向图6所示的第G1行第S3列实际子像素输入信号,使得该实际子像素的亮度达到计算得到的实际亮度值A。
如图11至图13所示,在第一理论子像素和相邻子像素之间插入四个虚拟子像素。除此之外,与结合图8至图10所描述的计算过程相类似,故省却其详细描述。需要说明的是,可以根据结合图7所描述的计算方法得出用于计算各个虚拟子像素的虚拟亮度值的系数。
本领域技术人员应当理解的是,根据本发明的驱动方法除了适用于包括三种颜色的实际子像素的像素阵列之外,还适用于包括四种颜色的实际像素的像素阵列。
根据本发明的另一个方面,提供一种显示装置,该显示装置包括显示面板,该显示面板包括像素阵列,所述像素阵列包括多个实际像素单元,每个实际像素单元包括颜色不同的多个实际子像素,每个实际子像素的横纵比在1:2至1:1之间。所述显示装置还包括理论亮度计算模块、实际亮度计算模块以及显示驱动模块。理论亮度计算模块用于将待显示图像划分为多个理论像素单元,每个理论像素单元包括颜色不同的多个理论子像素,计算每个理论子像素的理论亮度值。实际亮度计算模块计算每个实际子像素的实际亮度值。显示驱动模块向各个实际子像素输入信号,以使各个实际子像素的亮度达到实际亮 度计算模块计算得到的实际亮度值。实际亮度计算模块包括:位置对应子模块,用于在待显示图像中找出第一理论子像素,该第一理论子像素在待显示图像中的位置与待计算的实际子像素在所述像素阵列中的位置相对应;差分子模块,用于在第一理论子像素与至少一个相邻理论子像素之间插入与第一理论子像素颜色相同的至少一个虚拟子像素,相邻理论子像素为在第一理论子像素所在的行中,与第一理论子像素颜色相同的所有理论子像素当中与第一理论子像素邻近的理论子像素;以及求和子模块,用于将第一理论子像素的理论亮度值和与待计算的实际子像素的位置相对应的虚拟子像素的虚拟亮度值加权相加,所得的结果为待计算的实际子像素的实际亮度值,虚拟子像素的虚拟亮度值为第一理论子像素的理论亮度值和相应的相邻理论子像素的理论亮度值的加权相加的结果。
与现有技术中的显示装置相比,根据本发明的显示装置的像素阵列中每个实际子像素可以具有相对较大的宽度,因而便于制造。并且,根据本发明的显示装置的像素阵列具有相对较少的列,从而可以减少数据线的设置,进一步降低了加工难度。
根据本发明的显示装置适用于上述驱动方法,因此,可以使得包括根据本发明的显示装置的显示面板的颗粒感降低,达到同等尺寸下具有更高分辨率的显示装置的显示效果。
根据本发明的显示装置可以为液晶面板、电子纸、有机发光二极管(OLED)面板、液晶电视、液晶显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (11)

  1. 一种像素阵列的驱动方法,所述像素阵列包括多个实际像素单元,每个实际像素单元包括颜色不同的多个实际子像素,每个实际子像素的横纵比在1:2至1:1之间,所述驱动方法包括步骤:
    将待显示图像划分为多个理论像素单元,每个理论像素单元包括颜色不同的多个理论子像素,计算每个理论子像素的理论亮度值;
    计算每个实际子像素的实际亮度值;以及
    向各个实际子像素输入信号,以使各个实际子像素的亮度达到计算得到的实际亮度值,
    其中,计算每个实际子像素的实际亮度值包括步骤:
    在待显示图像中找出第一理论子像素,该第一理论子像素在待显示图像中的位置与待计算的实际子像素在所述像素阵列中的位置相对应;
    在第一理论子像素与至少一个相邻理论子像素之间插入与第一理论子像素颜色相同的至少一个虚拟子像素,相邻理论子像素为在第一理论子像素所在的行中,与第一理论子像素颜色相同的所有理论子像素当中与第一理论子像素邻近的理论子像素;以及
    将第一理论子像素的理论亮度值和与待计算的实际子像素的位置相对应的虚拟子像素的虚拟亮度值加权相加,所得的结果为待计算的实际子像素的实际亮度值,虚拟子像素的虚拟亮度值为第一理论子像素的理论亮度值和相应的相邻理论子像素的理论亮度值的加权相加的结果。
  2. 根据权利要求1所述的驱动方法,其中,在第一理论子像素与位于第一理论子像素的一侧的相邻理论子像素之间插入虚拟子像素。
  3. 根据权利要求2所述的驱动方法,其中,当第一理论子像素具有两个相邻理论子像素时,在第一理论子像素与位于第一理论子像 素的两侧的相邻理论子像素之间插入虚拟子像素。
  4. 根据权利要求2或3所述的驱动方法,其中,按照如下公式计算虚拟子像素的虚拟亮度值:
    Vni=aiT1+biT2,其中,
    i=1,……,n;
    n为第一理论子像素与一个相邻理论子像素之间插入的虚拟子像素的个数;
    Vni为n个虚拟子像素当中的第i个虚拟子像素的虚拟亮度值;
    ai+bi=1,ai、bi>0,当i<n/2时,ai>bi,当i>n/2时,ai<bi,当i=n/2时,ai=bi
    T1为待计算的虚拟子像素左侧的理论子像素的理论亮度值;并且
    T2为待计算的虚拟子像素右侧的理论子像素的理论亮度值。
  5. 根据权利要求4所述的驱动方法,其中,
    当n=1时:V11=1/2(T1+T2);并且
    当n>1时:Vn1=1/2(T1+V(n-1)1),Vni=1/2(V(n-1)(i-1)+V(n-1)i)(1<i<n),Vnn=1/2(T2+V(n-1)(n-1))。
  6. 根据权利要求4所述的驱动方法,其中,n为1至5。
  7. 根据权利要求1至3中任意一项所述的驱动方法,其中,理论子像素沿纵向方向的长度与实际子像素沿纵向方向的长度相等,并且每个实际子像素的横纵比为1:2或者1:1。
  8. 根据权利要求1至3中任意一项所述的驱动方法,其中,每个实际像素单元包括颜色互不相同的三个实际子像素,并且每个实际子像素的横纵比为2:3。
  9. 根据权利要求8所述的驱动方法,其中,所述像素阵列包括多个像素单元组,每个像素单元组包括位于同一列中的两个相邻实际像素单元,下一行实际像素单元的实际子像素的左边界与上一行实际像素单元的实际子像素的下边界的中点对齐。
  10. 根据权利要求8所述的驱动方法,其中,所述像素阵列包括多个像素单元组,每个像素单元组包括位于同一列中的两个相邻实际像素单元,上一行实际像素单元的实际子像素的左边界与下一行实际像素单元的实际子像素的上边界的中点对齐。
  11. 一种显示装置,该显示装置包括显示面板,该显示面板包括像素阵列,所述像素阵列包括多个实际像素单元,每个实际像素单元包括颜色不同的多个实际子像素,每个实际子像素的横纵比在1:2至1:1之间,所述显示装置还包括理论亮度计算模块、实际亮度计算模块以及显示驱动模块,
    理论亮度计算模块用于将待显示图像划分为多个理论像素单元,每个理论像素单元包括颜色不同的多个理论子像素,计算每个理论子像素的理论亮度值,
    实际亮度计算模块计算每个实际子像素的实际亮度值,并且
    显示驱动模块向各个实际子像素输入信号,以使各个实际子像素的亮度达到实际亮度计算模块计算得到的实际亮度值,
    其中,实际亮度计算模块包括:
    位置对应子模块,用于在待显示图像中找出第一理论子像素,该第一理论子像素在待显示图像中的位置与待计算的实际子像素在所述像素阵列中的位置相对应;
    差分子模块,用于在第一理论子像素与至少一个相邻理论子像素之间插入与第一理论子像素颜色相同的至少一个虚拟子像素,相邻理论子像素为在第一理论子像素所在的行中,与第一理论子像素颜色相同的所有理论子像素当中与第一理论子像素邻近的理论子像素;以及
    求和子模块,用于将第一理论子像素的理论亮度值和与待计算的实际子像素的位置相对应的虚拟子像素的虚拟亮度值加权相加,所得的结果为待计算的实际子像素的实际亮度值,虚拟子像素的虚拟亮度值为第一理论子像素的理论亮度值和相应的相邻理论子像素的理论亮度值的加权相加的结果。
PCT/CN2014/091788 2014-02-21 2014-11-20 像素阵列的驱动方法和显示装置 WO2015124005A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14861143.7A EP2953121A4 (en) 2014-02-21 2014-11-20 PIXEL NETWORK CONTROL METHOD AND DISPLAY DEVICE
US14/443,757 US9824620B2 (en) 2014-02-21 2014-11-20 Driving method for pixel array and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410060449.7 2014-02-21
CN201410060449.7A CN103886825B (zh) 2014-02-21 2014-02-21 像素阵列的驱动方法和显示装置

Publications (1)

Publication Number Publication Date
WO2015124005A1 true WO2015124005A1 (zh) 2015-08-27

Family

ID=50955690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091788 WO2015124005A1 (zh) 2014-02-21 2014-11-20 像素阵列的驱动方法和显示装置

Country Status (4)

Country Link
US (1) US9824620B2 (zh)
EP (1) EP2953121A4 (zh)
CN (1) CN103886825B (zh)
WO (1) WO2015124005A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104036710B (zh) * 2014-02-21 2016-05-04 北京京东方光电科技有限公司 像素阵列及其驱动方法、显示面板和显示装置
CN103886825B (zh) * 2014-02-21 2016-02-17 北京京东方光电科技有限公司 像素阵列的驱动方法和显示装置
CN103915044B (zh) * 2014-03-25 2016-03-30 京东方科技集团股份有限公司 显示方法
CN103927946B (zh) * 2014-03-25 2016-06-08 京东方科技集团股份有限公司 显示方法
CN103903524B (zh) * 2014-03-25 2016-06-15 京东方科技集团股份有限公司 显示方法
CN104157231B (zh) * 2014-07-23 2016-08-17 京东方科技集团股份有限公司 一种图像的显示方法及显示装置
KR101934088B1 (ko) * 2014-07-31 2019-01-03 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN104155789B (zh) * 2014-08-05 2017-02-15 上海中航光电子有限公司 一种像素结构及其像素补偿方法
CN104240195B (zh) * 2014-08-20 2017-01-18 京东方科技集团股份有限公司 一种基于虚拟算法的模型建立方法和系统
CN104319283B (zh) * 2014-10-27 2016-03-02 京东方科技集团股份有限公司 一种有机电致发光显示器件、其驱动方法及显示装置
CN104299561B (zh) * 2014-10-31 2017-01-18 京东方科技集团股份有限公司 像素阵列的驱动方法
CN104537974B (zh) * 2015-01-04 2017-04-05 京东方科技集团股份有限公司 数据获取子模块及方法、数据处理单元、系统和显示装置
CN104505015B (zh) * 2015-01-13 2017-02-15 京东方科技集团股份有限公司 显示面板的显示方法、显示面板及显示装置
CA2879462A1 (en) * 2015-01-23 2016-07-23 Ignis Innovation Inc. Compensation for color variation in emissive devices
CN104599625B (zh) * 2015-03-02 2017-06-06 京东方科技集团股份有限公司 边界判定方法和装置、显示驱动方法和装置
CN104992688B (zh) * 2015-08-05 2018-01-09 京东方科技集团股份有限公司 像素阵列、显示装置及其驱动方法和驱动装置
CN105093656B (zh) * 2015-08-28 2019-04-23 厦门天马微电子有限公司 一种液晶显示面板及其驱动方法、液晶显示装置
CN106782315A (zh) * 2016-12-30 2017-05-31 上海天马有机发光显示技术有限公司 一种像素的渲染方法、装置及系统
CN106855672A (zh) * 2017-02-28 2017-06-16 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板和显示装置
CN107068035B (zh) * 2017-04-06 2020-12-18 京东方科技集团股份有限公司 一种显示方法、显示装置
CN106935224B (zh) 2017-05-12 2019-06-07 京东方科技集团股份有限公司 显示装置及其驱动方法和驱动电路
CN109388448B (zh) 2017-08-09 2020-08-04 京东方科技集团股份有限公司 图像显示方法、显示系统以及计算机可读存储介质
US20220138901A1 (en) * 2017-08-09 2022-05-05 Beijing Boe Optoelectronics Technology Co., Ltd. Image display method, image processing method, image processing device, display system and computer-readable storage medium
CN109427265B (zh) * 2017-08-31 2020-10-16 昆山国显光电有限公司 像素驱动方法
EP3678182A4 (en) 2017-08-31 2020-09-02 Kunshan Go-Visionox Opto-Electronics Co., Ltd. PIXEL STRUCTURE, OLED DISPLAY DEVICE AND CONTROL METHOD
JP7105098B2 (ja) * 2018-05-01 2022-07-22 Tianma Japan株式会社 表示装置
CN109147672B (zh) * 2018-08-28 2020-09-15 武汉天马微电子有限公司 一种显示面板的补偿控制方法及显示面板、显示装置
CN110992867B (zh) 2019-12-18 2023-02-28 京东方科技集团股份有限公司 图像处理方法和显示装置
CN113362760B (zh) * 2021-06-24 2022-12-16 康佳集团股份有限公司 一种像素复用的显示方法、装置、存储介质及终端设备
CN114822375A (zh) * 2022-03-18 2022-07-29 长春希达电子技术有限公司 一种显示面板虚拟像素复用结构、控制方法以及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101452668A (zh) * 2007-12-05 2009-06-10 三星移动显示器株式会社 有机发光显示器及其驱动方法
CN101582241A (zh) * 2009-06-11 2009-11-18 数能科技股份有限公司 大型发光二极管显示器的显示方法
US20100225567A1 (en) * 2009-03-03 2010-09-09 Time-O-Matic, Inc. Electronic display
US20120287168A1 (en) * 2011-05-13 2012-11-15 Anthony Botzas Apparatus for selecting backlight color values
KR20120128092A (ko) * 2011-05-13 2012-11-26 삼성디스플레이 주식회사 영상표시방법
CN103886825A (zh) * 2014-02-21 2014-06-25 北京京东方光电科技有限公司 像素阵列的驱动方法和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088062A (en) 1996-10-29 2000-07-11 Sony Corporation Picture signal processing apparatus
JP3476787B2 (ja) * 2001-04-20 2003-12-10 松下電器産業株式会社 表示装置及び表示方法
CN100353404C (zh) * 2002-10-16 2007-12-05 新知科技股份有限公司 发光二极管全彩显示板的高分辨率驱动方法
TW201037655A (en) * 2009-04-07 2010-10-16 Numen Technology Inc Displaying method of large scale LED display device
WO2012077564A1 (ja) * 2010-12-08 2012-06-14 シャープ株式会社 画像処理装置、それを備えた表示装置、画像処理方法、画像処理プログラム、およびそれを記録した記録媒体
US9417479B2 (en) * 2011-05-13 2016-08-16 Samsung Display Co., Ltd. Method for reducing simultaneous contrast error

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101452668A (zh) * 2007-12-05 2009-06-10 三星移动显示器株式会社 有机发光显示器及其驱动方法
US20100225567A1 (en) * 2009-03-03 2010-09-09 Time-O-Matic, Inc. Electronic display
CN101582241A (zh) * 2009-06-11 2009-11-18 数能科技股份有限公司 大型发光二极管显示器的显示方法
US20120287168A1 (en) * 2011-05-13 2012-11-15 Anthony Botzas Apparatus for selecting backlight color values
KR20120128092A (ko) * 2011-05-13 2012-11-26 삼성디스플레이 주식회사 영상표시방법
CN103886825A (zh) * 2014-02-21 2014-06-25 北京京东方光电科技有限公司 像素阵列的驱动方法和显示装置

Also Published As

Publication number Publication date
EP2953121A4 (en) 2016-08-10
CN103886825A (zh) 2014-06-25
EP2953121A1 (en) 2015-12-09
US20150371583A1 (en) 2015-12-24
CN103886825B (zh) 2016-02-17
US9824620B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2015124005A1 (zh) 像素阵列的驱动方法和显示装置
US11315469B2 (en) Display substrate, method for driving the same, display device, and high-precision metal mask
US10916186B2 (en) Display apparatus, electroluminescent display panel and method of acquiring and displaying image by display apparatus
US10290250B2 (en) Pixel array and driving method thereof, display panel and display device
US10249259B2 (en) Method for driving a pixel array
US9697760B2 (en) Pixel structure and display method thereof, and display device
US10241342B2 (en) Stereoscopic display device and method for manufacturing the same
US9799252B2 (en) Pixel array and driving method thereof, display panel and display device
US20160027359A1 (en) Display method and display device
US9773445B2 (en) Pixel array, driving method thereof, display panel and display device
JP2006285238A (ja) 表示装置を用いる表示方法および表示装置
WO2016188024A1 (zh) 阵列基板、显示面板、显示装置及驱动方法
WO2014173063A1 (zh) 显示基板及显示装置
US9613564B2 (en) Image displaying method and image display apparatus
CN103714751A (zh) 像素阵列及其驱动方法、显示面板和显示装置
US20150235617A1 (en) Display substrate and driving method thereof and display device
WO2017016169A1 (zh) 像素阵列、显示装置及其显示方法
US10475394B2 (en) Driving method and driving device for liquid crystal display, and liquid crystal display
KR20170102906A (ko) 디스플레이 스크린 및 이의 구동 방법
WO2022253215A1 (zh) 显示面板和显示设备
TW200821635A (en) Color filter structure and displaying panel using the same and displaying method thereof
US9361839B2 (en) Double-vision display device and method for driving the same
CN204926686U (zh) 一种显示装置
CN107703684A (zh) Rgbx显示面板及液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14443757

Country of ref document: US

Ref document number: 2014861143

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE