WO2015123877A1 - 一种发现资源时频跳转方法及终端 - Google Patents

一种发现资源时频跳转方法及终端 Download PDF

Info

Publication number
WO2015123877A1
WO2015123877A1 PCT/CN2014/072415 CN2014072415W WO2015123877A1 WO 2015123877 A1 WO2015123877 A1 WO 2015123877A1 CN 2014072415 W CN2014072415 W CN 2014072415W WO 2015123877 A1 WO2015123877 A1 WO 2015123877A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
discovery resource
resource pool
frequency
real
Prior art date
Application number
PCT/CN2014/072415
Other languages
English (en)
French (fr)
Inventor
张祺智
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480000365.2A priority Critical patent/CN105009644B/zh
Priority to EP14883396.5A priority patent/EP3101953B1/en
Priority to PCT/CN2014/072415 priority patent/WO2015123877A1/zh
Publication of WO2015123877A1 publication Critical patent/WO2015123877A1/zh
Priority to US15/243,238 priority patent/US10334424B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/692Hybrid techniques using combinations of two or more spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present invention relates to the field of computer application technologies, and in particular, to a method and terminal for discovering a resource time-frequency jump. Background technique
  • D2D (Device-to-Device) communication refers to allowing devices to communicate directly through the real discovery resource pool under the control of the base station.
  • the base station obtains mxn real discovery resources by frequency division multiplexing and time division multiplexing, and further controls the UE (User Equipment, User Terminal) to send a discovery signal through the corresponding real discovery resource, where the UE and the real discovery are
  • the corresponding relationship between the real discovery resources in the resource pool is time-frequency-hopped by a certain rule, and the time-frequency jump scheme of the real discovery resource pool may include a deterministic time-frequency hopping scheme and a non-deterministic time-frequency hopping scheme.
  • i(t) i(0)
  • the time-frequency position of the discovery signal in the two-dimensional array mxn is only uniquely determined with the time-frequency position of the discovery signal transmitted by the UE in the 0th frame in the two-dimensional array mxn and the frame identification code t of the current frame, if the transmitting end and the receiving end
  • the real discovery resources of the discovery signal are the same.
  • the discovery signals sent by the sender and the receiver are still in the same real discovery resource, and the sender discovers the resources through the target.
  • the discovery signal is sent, and the discovery signal sent by the receiving end is received by the target real discovery resource.
  • the strength of the discovery signal sent by the transmitting end is much higher than the strength of the received discovery signal, so that the transmitting end can only send the discovery signal, but cannot Receiving the discovery signal sent by the receiving end, in the same way, for the receiving end that sends the discovery signal through the target discovery resource, the receiving end can only send the discovery signal, but cannot receive the discovery signal sent by the transmitting end.
  • the receiving end cannot determine the time-frequency position of the discovery signal transmitted by the transmitting end in different frames in the matrix mxn, and thus cannot receive the transmitting end in different frames.
  • the discovered discovery signals are combined to obtain a signal with the largest signal to noise ratio, wherein the signal with the highest signal to noise ratio is the discovery signal sent by the transmitting end.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method and terminal for discovering resource time-frequency hopping, which can maintain the combining advantage and reduce the probability that multiple terminals use the same real discovery resource to send a discovery signal indefinitely.
  • a first aspect of the present invention provides a terminal, including:
  • a resource determining unit configured to determine a real discovery resource in the real discovery resource pool
  • a frequency domain expansion unit configured to perform frequency domain virtual expansion on the real discovery resource pool according to a preset frequency or frequency reuse factor value broadcasted by the base station, and determine a virtual virtual resource pool corresponding to the real discovery resource pool Discover resources;
  • a time-frequency hopping unit configured to correspond to the virtual discovery resource in the virtual discovery resource pool determined by the frequency domain expansion unit according to a preset or base station-based virtual discovery resource pool-based time-frequency hopping scheme The relationship performs a virtual time-frequency jump; the real discovery resource corresponding to the current resource sends a discovery signal.
  • the frequency domain expansion unit is further configured to set the frequency division multiplexing factor value to X
  • the real discovery resource pool includes N sub-bands
  • the real discovery resource pool includes N sub-bands
  • the real discovery resource pool obtained after performing the frequency domain virtual expansion includes NXX virtual sub-bands, wherein each sub-band is virtually expanded to obtain X virtual sub-bands, and is determined in the corresponding sub-channels of the expanded X virtual sub-bands. Virtual discovery resources.
  • the frequency domain expansion unit is further configured to: after the virtual expansion of the mth subband in the real discovery resource pool
  • the obtained virtual discovery resource pool includes the mth, the (N+m)th, the (Nx2+m)th (Nx (X-1)+m) virtual sub-bands, and thus
  • the N x X virtual sub-bands obtained after the virtual expansion include X expanded replicas, wherein each N consecutive virtual sub-bands in the virtual discovery resource pool is an expanded replica.
  • a second aspect of the present invention provides a terminal, where the terminal includes a network interface, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory, to perform the following operations. :
  • the real discovery resource corresponding to the virtual discovery resource occupied after the jump sends a discovery signal.
  • a third aspect of the present invention provides a terminal, including:
  • a resource determining unit configured to determine a real discovery resource in the real discovery resource pool
  • a time-frequency hopping unit configured to perform time-frequency hopping on a correspondence between the resource determining unit and the real discovery resource in the real discovery resource pool according to the corresponding preset or base station broadcast time-frequency hopping scheme
  • the real discovery resource in the source pool sends a discovery signal.
  • the time-frequency hopping scheme in the real discovery resource pool includes at least two time-frequency hopping schemes.
  • a fourth aspect of the present invention provides a terminal, where the terminal includes a network interface, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory, to perform the following operations. :
  • a fifth aspect of the present invention provides a method for discovering a time-frequency jump of a resource, including:
  • the real discovery resource corresponding to the virtual discovery resource occupied after the jump sends a discovery signal.
  • the virtual discovery resource pool is subjected to frequency domain virtual expansion according to a preset frequency offset reuse factor value broadcasted by the base station, and the virtual discovery corresponding to the real discovery resource pool is determined.
  • Virtual discovery resources in the resource pool include;
  • the virtual discovery resource pool obtained by virtual expansion of the real discovery resource pool includes ⁇ ⁇ ⁇ virtual sub-bands, where the real-time discovery resource pool includes N sub-bands, where Each sub-band is virtually expanded to obtain X virtual sub-bands, and virtual discovery resources are determined in corresponding sub-channels of the expanded X virtual sub-bands.
  • the virtual discovery resource pool obtained after the virtual discovery resource pool is virtual expanded includes: ⁇ ⁇ virtual sub-bands, where each The sub-bands are virtually expanded to obtain X virtual sub-bands;
  • the virtual discovery resource pool obtained after the virtual expansion of the mth sub-band in the real discovery resource pool includes the mth, the (N+m)th, the (Nx2+m)th ... (Nx ( X - 1 ) + m ) virtual sub-bands, such that the NXX virtual sub-bands obtained after the virtual expansion include X expanded replicas, wherein each of the N consecutive virtual sub-bands in the virtual discovery resource pool For an expanded copy.
  • the determining, according to a preset or base station broadcast based on a virtual discovery resource pool, a time-frequency hopping scheme Performing a virtual time-frequency hopping on the correspondence between the virtual discovery resources in the virtual discovery resource pool includes: using the same time-frequency as the corresponding relationship between the determined virtual discovery resources in the same expanded copy of the virtual discovery resource pool
  • the jump scheme performs a virtual time-frequency jump.
  • a sixth aspect of the present invention provides a computer storage medium, wherein the computer storage medium stores a program, and the program includes all or part of the steps of the discovery resource time-frequency hopping method provided by the fifth aspect of the embodiments of the present invention. .
  • a seventh aspect of the present invention provides a time-frequency hopping method for discovering resources, including:
  • the discovery signal is sent by using the real discovery resource in the real discovery resource pool occupied by the time-frequency jump.
  • the time-frequency hopping scheme in the real discovery resource pool includes at least two time-frequency hopping schemes.
  • the eighth aspect of the present invention provides a computer storage medium, where the computer storage medium stores a program, and the program includes all or part of the steps of the discovery resource time-frequency jump method provided by the seventh aspect of the embodiments of the present invention. .
  • the terminal in the embodiment of the present invention determines the real discovery resource in the real discovery resource pool, performs frequency domain virtual expansion on the real discovery resource pool according to the preset frequency band reuse factor value broadcasted by the base station, and determines and discovers the real resource.
  • the virtual discovery resource in the virtual discovery resource pool corresponding to the resource pool, and then the virtual discovery in the virtual discovery resource pool and the virtual discovery resource pool based on a preset time-frequency hopping scheme based on the virtual discovery resource pool The virtual resource time-hopping is performed on the corresponding relationship of the resources, and the discovery signal is sent by using the real discovery resource corresponding to the virtual discovery resource occupied by the virtual time-frequency jump, which can maintain the merge advantage and reduce the unlimited use of the same real discovery resource by multiple terminals.
  • FIG. 1 is a schematic structural diagram of a terminal according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a real discovery resource pool after frequency domain virtual expansion according to an embodiment of the present invention. Schematic diagram of the virtual discovery resource pool;
  • FIG. 3 is a schematic structural diagram of a virtual discovery resource pool after a virtual time-frequency jump according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a real discovery resource pool corresponding to a virtual discovery resource pool of a virtual time-frequency jump according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a terminal according to a second embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for discovering a resource time-frequency hopping according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart of a method for discovering a resource time-frequency hopping according to another embodiment of the present invention.
  • the present invention provides a method and terminal for discovering resource time-frequency hopping, which can maintain the advantages of combining, and reduce the probability that multiple terminals use the same real discovery resource to send discovery signals indefinitely.
  • the following is a detailed description.
  • FIG. 1 is a schematic structural diagram of a terminal according to a first embodiment of the present invention.
  • the terminal may include at least a resource determining unit 101, a frequency domain expanding unit 102, a time-frequency jumping unit 103, and a signal sending unit. 104, where:
  • the resource determining unit 101 is configured to determine a real discovery resource in the real discovery resource pool.
  • the real discovery resource pool obtains 3 ⁇ 3 real discovery resources through frequency division multiplexing and time division multiplexing, wherein the real discovery resource pool includes three sub-resources.
  • Band and three subchannels, in the real discovery resource pool shown in Figure 2 each row represents a subband, and each column represents a subchannel, which can be represented by a two-dimensional array A[3][3]
  • the terminal may determine the real discovery resource in the real discovery resource pool.
  • the real discovery resource determined by the terminal a in the real discovery resource pool is the real discovery resource located in A[0][0], when the discovery is sent.
  • the number of terminals of the signal is greater than the number of real discovery resources, then at least two terminals use the same real discovery resource to send the discovery signal.
  • the frequency domain expansion unit 102 is configured to perform frequency domain virtual expansion on the real discovery resource pool according to a preset frequency offset multiplexing factor value broadcasted by the base station, and determine a virtual discovery resource pool corresponding to the real discovery resource pool. Virtual discovery resources.
  • the frequency domain expansion unit 102 may perform frequency domain virtual expansion on the real discovery resource pool according to the frequency division multiplexing factor value broadcasted by the preset or the base station, and do not change any time domain, and the frequency domain virtuality shown in FIG.
  • the frequency division multiplexing factor value is 2, and the frequency domain expansion unit 102 can frequency the real discovery resource pool according to the frequency division multiplexing factor value.
  • the virtual discovery resource pool in the frequency domain virtual expansion is doubled in the frequency domain, and no change is made to the time domain. Further, the frequency domain expansion unit 102 determines the virtual discovery resource in the virtual discovery resource pool, for example, the terminal.
  • a virtual discovery resource determined in the virtual discovery resource pool is a virtual discovery resource located in B[0][0], and the terminal b that sends the discovery signal using the same real discovery resource before the virtual expansion is determined in the virtual discovery resource pool.
  • the virtual discovery resource is a virtual discovery resource located in B[3][0], which can reduce the probability that multiple terminals use the same discovery resource indefinitely.
  • the frequency domain expansion unit 102 performs frequency domain virtual expansion on the real discovery resource pool.
  • the obtained virtual discovery resource pool includes NXX virtual sub-bands, wherein each sub-band is virtually expanded to obtain X virtual sub-bands, and the terminal may determine virtual discovery resources in corresponding sub-channels of the expanded X virtual sub-bands. .
  • the virtual discovery resource pool obtained after the virtual expansion of the mth subband in the real discovery resource pool in the frequency domain expansion unit 102 includes the mth, the (N+m)th, the ( Nx2+m) ... (Nx (X - 1) + m) virtual sub-bands, such that the virtual sub-bands obtained after the virtual expansion of the frequency domain include X expanded copies,
  • the N consecutive virtual sub-bands in the virtual discovery resource pool are an expanded copy.
  • the two-dimensional array A[3][3] can be used to represent the real discovery resource pool, which can be used.
  • Dimension array B[6][3] represents frequency domain virtual
  • the virtual discovery resource pool obtained after the virtual expansion is found the virtual discovery resource pool obtained after the virtual expansion of the first row in the real resource pool may include the first row and the fourth row, wherein the first row to the virtual discovery resource pool The third act is the first expanded copy, and the fourth row to the sixth in the virtual discovery resource pool behave as the second expanded copy.
  • the time-frequency hopping unit 103 is configured to: determine the virtual discovery resource in the virtual discovery resource pool determined by the frequency domain expansion unit 102 according to a virtual resource pool-based time-frequency hopping scheme broadcasted by a preset or a base station. The corresponding relationship is a virtual time-frequency jump.
  • the time-frequency hopping unit 103 may be preset according to or a time-frequency hopping scheme based on the virtual discovery resource pool broadcasted by the base station, performing virtual time-frequency hopping on the determined correspondence relationship with the virtual discovery resource in the virtual discovery resource pool, thereby obtaining each time-frequency hopping Correspondence between the terminal and the virtual discovery resource in the virtual discovery resource pool.
  • the virtual discovery resource determined by the terminal a in the virtual expanded virtual discovery resource pool is a virtual discovery located at B[0][0].
  • the time-frequency hopping unit 103 performs a virtual time-frequency hopping on the corresponding relationship with the virtual discovery resource in the virtual discovery resource pool according to the time-frequency hopping scheme based on the virtual discovery resource pool broadcasted by the preset or the base station.
  • the virtual discovery resource after the virtual time-frequency jump determined by the terminal a is a virtual discovery resource located at B[0][0].
  • the time-frequency hopping unit 103 is further configured to use the same time-frequency hopping scheme that the frequency domain expansion unit 102 determines the correspondence between the virtual discovery resources in the same extended copy of the virtual discovery resource pool. Perform a virtual time-frequency jump.
  • the time-frequency hopping unit 103 may determine the virtual discovery resource in the virtual discovery resource pool according to the time-frequency hopping scheme, and the time-frequency position of the terminal a in the 0th frame may be ⁇ [0][0] as shown in FIG.
  • the correspondence between the terminal and the virtual discovery resource in the virtual discovery resource pool after the virtual domain expansion may use the same time-frequency jump.
  • the scheme performs a virtual time-frequency jump.
  • the real discovery resource corresponding to the virtual discovery resource sends a discovery signal.
  • the time-frequency hopping unit 103 performs time-frequency hopping on the corresponding relationship with the virtual discovery resource in the virtual discovery resource pool, and obtains a correspondence between each terminal after the time-frequency hopping and the virtual discovery resource in the virtual discovery resource pool, and the signal
  • the sending unit 104 may send the discovery signal by using the real discovery resource corresponding to the virtual discovery resource occupied by the time-frequency jump. Specifically, taking the schematic diagram of the real discovery resource pool corresponding to the virtual discovery resource pool of the virtual time-frequency jump shown in FIG.
  • the virtual discovery determined by the terminal a after the time-frequency jump based on the virtual discovery resource pool The virtual discovery resource in the resource pool is a virtual discovery resource located in B[0][0], and the signal sending unit 104 may send a discovery signal by using the real discovery resource corresponding to the virtual discovery resource, where the virtual discovery resource occupied by the terminal a
  • the corresponding real discovery resource is the real discovery resource located in A[0][0].
  • the resource determining unit 101 determines the real discovery resource in the real discovery resource pool, and the frequency domain expansion unit 102 performs frequency on the real discovery resource pool according to the frequency division multiplexing factor value preset or broadcasted by the base station.
  • the domain virtual expansion, and the virtual discovery resource in the virtual discovery resource pool corresponding to the real discovery resource pool is determined, and the time-frequency hopping unit 103 according to the preset or base station-based virtual discovery resource pool-based time-frequency hopping scheme
  • the virtual time-frequency hopping is performed on the determined correspondence relationship with the virtual discovery resource in the virtual discovery resource pool, and the signal sending unit 104 sends the discovery using the real discovery resource corresponding to the virtual discovery resource occupied by the virtual time-frequency hopping.
  • FIG. 5 is a schematic structural diagram of a terminal according to a second embodiment of the present invention, which is used to perform a time-frequency jump method for discovering resources provided by an embodiment of the present invention.
  • the terminal includes: at least one processor 501, such as a CPU, at least one network interface 503, a memory 504, and at least one communication bus 502. Communication bus 502 is used to implement connection communication between these components.
  • the memory 504 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • the memory 504 can optionally include at least one bit
  • the storage device is remote from the aforementioned processor 501.
  • a set of program codes is stored in the memory 504, and the processor 501 calls the program code stored in the memory 504 for performing the following operations:
  • the discovery signal is sent by using the real discovery resource corresponding to the virtual discovery resource occupied by the virtual time-frequency jump.
  • the processor 501 calls the program code stored in the memory 504 to perform frequency domain virtual expansion on the real discovery resource pool according to a preset frequency offset reuse factor value broadcasted by the base station, and determines and discovers the real frequency.
  • the virtual discovery resource in the virtual discovery resource pool corresponding to the resource pool is specifically: the frequency reuse multiplexing factor is X, and the real discovery resource pool includes N subbands, and the real discovery resource pool is virtual expanded.
  • the obtained virtual discovery resource pool includes ⁇ ⁇ virtual sub-bands, wherein each sub-band is virtually expanded to obtain X virtual sub-bands, and the terminal may determine virtual discovery in corresponding sub-channels of the expanded X virtual sub-bands Resources.
  • the real discovery resource pool includes three sub-bands, and the frequency division multiplexing factor value is 2, then processing
  • the virtual discovery resource pool obtained by performing the frequency domain virtual expansion on the real discovery resource pool includes six virtual sub-bands, wherein each sub-band is virtual expanded to obtain virtual discovery resources in the two virtual sub-frequency sub-channels, for example
  • the two-dimensional array ⁇ [3][3] can be used to represent the real discovery resource pool.
  • the two-dimensional array ⁇ [6][3] can be used to represent the virtual discovery resource pool obtained after the virtual domain virtual expansion, and the terminal a discovers the resource in real life.
  • the real discovery resource determined in the pool is the real discovery resource located in A[0][0].
  • terminal a can determine a virtual in B[0][0] or B[3][0]. Discovering resources can reduce the probability that multiple terminals will use the same discovery resource indefinitely.
  • the virtual discovery resource pool obtained after the virtual discovery resource pool performs virtual domain expansion includes ⁇ ⁇ X virtual sub-bands, wherein each sub-band is virtual expanded to obtain X virtual numbers.
  • the pseudo subband is specifically:
  • the virtual discovery resource pool obtained after the virtual expansion of the mth subband in the real discovery resource pool includes the mth, the (N+m)th, and the (Nx2+m)th certainly . (Nx ( X - 1 )
  • the resource pool includes a first virtual sub-band and a fourth virtual sub-band, such that the six virtual sub-bands obtained after the virtual expansion of the frequency domain include two expanded copies, wherein the first one of the virtual discovery resource pools The three virtual sub-bands are the first expanded copy, and the fourth to sixth virtual sub-bands in the virtual discovery resource pool are the second expanded copy.
  • the processor 401 invokes the program code stored in the memory 404 to determine the virtual discovery resource pool according to a virtual resource pool-based time-frequency hopping scheme broadcasted by a preset or a base station.
  • the virtual time-frequency jump of the corresponding relationship of the virtual discovery resources is specifically as follows:
  • the determined correspondence between the virtual discovery resources in the same extended copy of the virtual discovery resource pool is performed using the same time-frequency hopping scheme for the virtual time-frequency hopping.
  • the two-dimensional array ⁇ [3][3] can be used to represent the real discovery resource pool, and a two-dimensional array can be used[6] [3] represents a virtual discovery resource pool after virtual domain expansion in the frequency domain.
  • FIG. 6 is a schematic structural diagram of a terminal according to a third embodiment of the present invention.
  • the terminal may include at least a resource determining unit 601, a time-frequency hopping unit 602, and a signal sending unit 603, where:
  • the resource determining unit 601 is configured to determine a real discovery resource in the real discovery resource pool. Taking the real discovery resource pool shown in FIG. 2 as an example, the real discovery resource pool obtains 3 ⁇ 3 real discovery resources through frequency division multiplexing and time division multiplexing, wherein the real discovery resource pool includes three subbands and three. Sub-channels, in the real discovery resource pool shown in FIG.
  • each row represents a sub-band
  • each column represents a sub-channel
  • the real-estimation resource pool can be represented by a two-dimensional array A[3][3]
  • the resource determining unit 601 Determining a real discovery resource for transmitting a discovery signal among the 3 ⁇ 3 real discovery resources, for example, the real discovery resources determined by the terminal a and the terminal b are real discovery resources located at A[0][0].
  • the time-frequency hopping unit 602 is configured to perform a time-frequency corresponding to the real discovery resource in the real discovery resource pool determined by the resource determining unit 601 according to the corresponding preset or base station broadcast time-frequency hopping scheme. Jump.
  • the time-frequency hopping scheme run by the time-frequency hopping unit 602 in the real discovery resource pool includes at least two time-frequency hopping schemes.
  • the real-time discovery of the corresponding relationship between the real discovery resources in the resource pool is time-frequency hopping, and the correspondence between the multiple terminals occupying the same real discovery resource and the real discovery resources in
  • the signal sending unit 603 is configured to use the true time occupied by the time-frequency jump unit 602 after the time-frequency jump The real discovery resource in the resource pool is found to send a discovery signal.
  • the resource determining unit 601 determines a real discovery resource in the real discovery resource pool
  • the time-frequency hopping unit 602 determines the determining according to a corresponding preset or base station broadcast time-frequency hopping scheme.
  • the time-frequency jump is performed on the corresponding relationship between the real discovery resources in the real discovery resource pool
  • the signal sending unit 603 sends the discovery signal by using the real discovery resource in the real discovery resource pool occupied by the time-frequency jump, and can maintain the merge.
  • the terminal includes: at least one processor 701, such as a CPU, at least one network interface 703, a memory 704, and at least one communication bus 702. Communication bus 702 is used to implement connection communication between these components.
  • the memory 704 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the memory 704 can optionally include at least one storage device located remotely from the aforementioned processor 701.
  • the processor 701 can be combined with the terminal described in FIG. 6.
  • the memory 704 stores a set of program codes, and the processor 701 calls the program code stored in the memory 704 to perform the following operations:
  • the discovery signal is sent by using the real discovery resource in the real discovery resource pool occupied by the time-frequency jump.
  • the real discovery resource pool shown in FIG. 2 includes 3 x 3 real discovery resources, where the real discovery resource pool includes three sub-bands and three sub-channels, as shown in FIG. 2
  • each row represents a sub-band
  • each column represents a sub-channel
  • a two-dimensional array A[3] [3] can be used to represent the real discovery resource pool
  • the processor 701 is in the 3 x 3 real discovery resources.
  • the real discovery resource for transmitting the discovery signal is determined.
  • the real discovery resources determined by the terminal a and the terminal b are real discovery resources located at A[0][0].
  • the time-frequency hopping scheme in the real discovery resource pool includes at least two time-frequency hopping schemes.
  • the terminal a may be based on a preset time-frequency jump scheme corresponding to the terminal or the base station broadcast.
  • i(t) i(0)
  • j(t) (j(0)+i(0)*t)%n
  • j( t) (j(0) + i(0)*t -l)%n
  • performing a time-frequency jump on the determined correspondence relationship with the real discovery resource in the real discovery resource pool occupying the same true discovery
  • a plurality of terminals of the resource perform a time-frequency jump according to a corresponding time-frequency hopping scheme and a real-time discovery resource in the real discovery resource pool
  • FIG. 8 is a schematic flowchart of a method for discovering a time-frequency jump of a resource according to an embodiment of the present invention, where the method includes:
  • the terminal can determine the real discovery resource in the real discovery resource pool.
  • the schematic diagram of the real discovery resource pool shown in FIG. 2 is obtained by frequency division multiplexing and time division multiplexing to obtain 3 x 3 real Discovering resources, wherein the real discovery resource pool includes three sub-bands and three sub-channels.
  • each row represents one sub-band
  • each column represents one sub-channel
  • a two-dimensional array can be used.
  • A[3][3] represents a real discovery resource pool
  • the terminal may determine a real discovery resource in the real discovery resource pool.
  • the real discovery resource determined by the terminal a in the real discovery resource pool is located at A[0][0
  • the real discovery resource when the number of terminals transmitting the discovery signal is greater than the number of real discovery resources, then at least two terminals use the same real discovery resource to send the discovery signal.
  • the terminal may perform virtual domain frequency expansion on the real discovery resource pool according to the frequency division multiplexing factor value broadcasted by the preset or the base station, and perform no change for the time domain, and use the real discovery resource shown in FIG. 2
  • the frequency domain multiplexing expansion diagram may have a frequency division multiplexing factor value of 2.
  • the terminal may perform frequency domain virtual expansion on the real discovery resource pool according to the frequency division multiplexing factor value, and frequency domain virtual expansion.
  • the post-expansion virtual discovery resource pool is doubled in the frequency domain, and the virtual discovery resource pool can be represented by a two-dimensional array B[6][3].
  • the terminal may further determine a virtual discovery resource in the virtual discovery resource pool corresponding to the real discovery resource pool, for example, a schematic structure of the virtual discovery resource pool corresponding to the real-discovery resource pool in the frequency domain virtual expansion shown in FIG.
  • the virtual discovery resource determined by the terminal a in the virtual discovery resource pool is a virtual discovery resource located at B[0][0], and the terminal b that sends the discovery signal by using the same real discovery resource before the virtual expansion is virtual discovery resource.
  • the virtual discovery resource determined in the pool is a virtual discovery resource located at B[3][0], which can reduce the probability that multiple terminals use the same discovery resource indefinitely.
  • the frequency division multiplexing factor value is X
  • the real discovery resource pool includes N sub-bands
  • the virtual discovery resource obtained by the terminal performing frequency domain virtual expansion on the real discovery resource pool The pool includes NXX virtual sub-bands, wherein each sub-band is virtually expanded to obtain X virtual sub-bands, and the terminal may determine virtual discovery resources in corresponding sub-channels of the X virtual sub-bands after the virtual expansion of the frequency domain.
  • the virtual discovery resource pool obtained after the virtual expansion of the mth subband in the real discovery resource pool in the frequency domain of the frequency domain expansion unit 120 includes the mth, (N+m)th, a (Nx2+m)-th (Nx (X-1)+m) virtual sub-band, such that the NXX virtual sub-bands obtained after the virtual expansion in the frequency domain include X expanded copies,
  • the N consecutive virtual sub-bands in the virtual discovery resource pool are an expanded copy.
  • the two-dimensional array A[3][3] can be used to represent the real discovery resource pool, which can be used.
  • the dimension array B[6][3] represents the virtual discovery resource pool obtained after the virtual domain virtual expansion, and the virtual discovery resource pool obtained by the virtual expansion of the first row in the real resource pool may include the first row and the fourth row.
  • the first row to the third in the virtual discovery resource pool behave as the first expanded copy, and the fourth to sixth in the virtual discovery resource pool behave as the second expanded copy.
  • S803 Perform a virtual time-frequency jump on the determined correspondence relationship with the virtual discovery resource in the virtual discovery resource pool according to a preset time-frequency jump scheme broadcasted by the base station.
  • the terminal may perform a virtual time-frequency hopping according to a virtual time-frequency hopping scheme in the virtual discovery resource pool according to a preset or a time-frequency hopping scheme based on the virtual discovery resource pool broadcasted by the base station, thereby obtaining a virtual time-frequency hopping.
  • Correspondence between each terminal and the virtual discovery resource in the virtual discovery resource pool The relationship, for example, in the schematic diagram of the virtual discovery resource pool of the virtual time-frequency jump shown in FIG.
  • the virtual discovery resource determined by the terminal a in the virtual discovery resource pool after the virtual domain virtual expansion is located at B[0]
  • the virtual discovery resource of [0] the terminal a may perform a virtual time-frequency corresponding to the virtual discovery resource in the virtual discovery resource pool according to a time-frequency hopping scheme based on the virtual discovery resource pool broadcasted by the preset or the base station.
  • the virtual discovery resource after the virtual time-frequency jump determined by the terminal a is the virtual discovery resource located at B[0][0].
  • the virtual time-frequency hopping is performed by using the same time-frequency hopping scheme for the corresponding relationship between the virtual discovery resource and the terminal in the same expanded copy of the virtual discovery resource pool.
  • the position is B[0][0].
  • the time-frequency position of terminal b in frame 0 of the two extended replicas is B[0][0] as shown in Fig.
  • the correspondence between the virtual discovery resources in the virtual discovery resource pool after virtual domain expansion in the frequency domain may use the same time-frequency jump scheme. Perform a virtual time-frequency jump.
  • S804 Send a discovery signal by using a real discovery resource corresponding to the virtual discovery resource occupied by the virtual time-frequency hopping.
  • the terminal may send the discovery signal by using the real discovery resource corresponding to the virtual discovery resource.
  • the virtual discovery determined by the terminal a after the time-frequency jump based on the virtual discovery resource pool The virtual discovery resource in the resource pool is a virtual discovery resource located in B[0][0], and the terminal may use the real discovery resource corresponding to the virtual discovery resource to send a discovery signal, where the virtual discovery resource occupied by the terminal a corresponds to the real
  • the discovery resource is a real discovery resource located at A[0][0].
  • the terminal determines the real discovery resource in the real discovery resource pool, and performs frequency on the real discovery resource pool according to a preset frequency band reuse factor value broadcasted by the base station.
  • the virtual time-frequency hopping is performed on the corresponding relationship of the virtual discovery resources in the virtual discovery resource pool, and the discovery signal is sent by using the real discovery resource corresponding to the virtual discovery resource occupied by the virtual time-frequency hopping, thereby maintaining the merge advantage and reducing The probability that multiple terminals use the same real discovery resource to send discovery signals indefinitely.
  • FIG. 9 is a schematic flowchart of a method for discovering a time-frequency jump of a resource according to another embodiment of the present invention, where the method specifically includes:
  • the terminal can determine the real discovery resource in the real discovery resource pool.
  • the real discovery resource pool obtains 3 x 3 real discovery resources through frequency division multiplexing and time division multiplexing.
  • the real discovery resource pool includes three sub-bands and three sub-channels.
  • each row represents one sub-band
  • each column represents one sub-channel
  • a two-dimensional array A[3] can be used.
  • [3] indicates a real discovery resource pool, and the terminal may determine a real discovery resource in the real discovery resource pool.
  • the real discovery resource determined by the terminal a in the real discovery resource pool is a real discovery located at A[0][0]. Resources, when the number of terminals transmitting the discovery signal is greater than the number of real discovery resources, then at least two terminals use the same real discovery resource to send the discovery signal.
  • S902 Perform a time-frequency jump on the determined correspondence relationship with the real discovery resources in the real discovery resource pool according to the corresponding preset or base time broadcast time-frequency hopping scheme.
  • the terminal may perform a time-frequency jump according to a preset time-frequency jump plan corresponding to the terminal or a time-frequency hopping scheme broadcasted by the base station, where the determined relationship with the real discovery resource in the real discovery resource pool is performed.
  • the time-frequency hopping scheme running in the discovery resource pool includes at least two time-frequency hopping schemes.
  • the time-frequency jump is performed on the corresponding relationship between the real discovery resources in the real discovery resource pool, and the multiple terminals occupying the same real discovery resource will correspond to the real discovery resources in the real discovery resource pool according to different time-frequency hopping schemes.
  • the relationship is time-frequency hopping, and multiple terminals after time-frequency hopping can occupy different real discovery resources, which reduces the probability that multiple terminals use the same real discovery resource to send discovery signals indefinitely.
  • S903 Send a discovery signal by using a real discovery resource in a real discovery resource pool occupied by the time-frequency jump.
  • the terminal may send a discovery signal by using the real discovery resource in the real discovery resource pool occupied by the time-frequency jump.
  • the terminal determines the real discovery resource in the real discovery resource pool, and determines the true and true according to the corresponding preset or base station broadcast time-frequency hopping scheme.
  • the time-frequency jump is performed on the corresponding relationship between the real discovery resources in the resource pool, and the discovery signal is sent by using the real discovery resource in the real discovery resource pool occupied by the time-frequency jump, thereby maintaining the merge advantage and reducing the number of terminals.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a program, and the program execution includes some or all of the discovery resource time-frequency jump method described in the embodiment of the present invention and FIG. A step of.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种发现资源时频跳转方法及终端,其中所述终端包括:资源确定单元,用于确定真实发现资源池中的真实发现资源;频域扩张单元,用于根据预设或基站广播的频分复用因子值,对真实发现资源池进行频域虚拟扩张,并确定与真实发现资源池对应的虚拟发现资源池中的虚拟发现资源;时频跳转单元,用于根据预设或基站广播的基于虚拟发现资源池的时频跳转方案,将确定的与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转;信号发送单元,用于使用虚拟时频跳转后占用的虚拟发现资源对应的真实发现资源发送发现信号。采用本发明,可保持合并优势,并降低多个终端无限使用相同真实发现资源发送发现信号的概率。

Description

一种发现资源时频跳转方法及终端 技术领域
本发明涉及计算机应用技术领域,尤其涉及一种发现资源时频跳转方法及 终端。 背景技术
D2D ( Device-to-Device, 设备到设备)通信是指在基站的控制下, 允许设 备之间通过复用真实发现资源池直接进行通信。基站对真实发现资源池通过频 分复用和时分复用得到 m x n 个真实发现资源, 进一步的控制 UE ( User Equipment, 用户终端)通过对应的真实发现资源发送发现信号, 其中所述 UE 与真实发现资源池中的真实发现资源的对应关系以一定的规则进行时频跳转, 真实发现资源池的时频跳转方案可以包括确定性时频跳转方案和非确定性时 频跳转方案。
对于确定性时频跳转方案, 例如 i(t) = i(0), j(t)= (j(0)+i(0)*t)%n , 即 UE在第 t个帧发送的发现信号在二维数组 m x n中的时频位置只与 UE在第 0个帧发 送的发现信号在二维数组 m x n中的时频位置以及当前帧的帧识别码 t唯一确 定, 若发送端和接收端发送发现信号的真实发现资源相同,基于确定性时频跳 转方案进行时频跳转后,发送端和接收端发送的发现信号仍然在相同真实发现 资源中, 则发送端通过目标真实发现资源发送发现信号, 同时通过所述目标真 实发现资源接收接收端发送的发现信号,此时发送端发送的发现信号强度远远 高于接收的发现信号强度,导致发送端只能发送发现信号, 而无法接收接收端 发送的发现信号, 同理, 针对通过目标发现资源发送发现信号的接收端, 所述 接收端也只能发送发现信号, 而无法接收发送端发送的发现信号。
对于非确定性时频跳转方案, 例如随机时频跳转方案,接收端无法确定发 送端在不同帧发送的发现信号在矩阵 m x n中的时频位置, 也就不能对发送端 在不同帧接收到的发现信号进行合并, 进而获取信噪比最大的信号, 其中所述 信噪比最大的信号即所述发送端发送的发现信号。 发明内容
本发明实施例所要解决的技术问题在于,提供一种发现资源时频跳转方法 及终端, 可保持合并优势, 并降低多个终端无限使用相同真实发现资源发送发 现信号的概率。
本发明第一方面提供了一种终端, 包括:
资源确定单元, 用于确定真实发现资源池中的真实发现资源;
频域扩张单元, 用于根据预设或基站广播的频分复用因子值,对所述真实 发现资源池进行频域虚拟扩张,并确定与真实发现资源池对应的虚拟发现资源 池中的虚拟发现资源;
时频跳转单元,用于根据预设或基站广播的基于虚拟发现资源池的时频跳 转方案,将所述频域扩张单元确定的与所述虚拟发现资源池中的虚拟发现资源 的对应关系进行虚拟时频跳转; 现资源对应的真实发现资源发送发现信号。
在第一种可能的实施方式中, 所述频域扩张单元,还用于设所述频分复用 因子值为 X, 所述真实发现资源池包括 N个子频带, 则所述真实发现资源池 进行频域虚拟扩张后得到的虚拟发现资源池包括 N X X个虚拟子频带,其中每 个子频带被虚拟扩张得到 X个虚拟子频带, 在所述扩张后的 X个虚拟子频带 的对应子信道中确定虚拟发现资源。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述频域扩张单元, 还用于在所述真实发现资源池中的第 m个子频带在虚拟扩 张后得到的虚拟发现资源池包括第 m个、 第(N+m )个、 第(Nx2+m )个 ... ... 第 (Nx ( X - 1 ) +m )个虚拟子频带, 从而所述虚拟扩张后得到的 N x X个虚 拟子频带包括 X个扩张副本, 其中所述虚拟发现资源池中每 N个连续的虚拟 子频带为一个扩张副本。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 同一扩张副本中的虚拟发现资源的对应关系使用同一时频跳转方案进行虚拟 时频跳转。
本发明第二方面提供了一种终端, 所述终端包括网络接口、存储器以及处 理器, 其中, 存储器中存储一组程序代码, 且处理器用于调用存储器中存储的 程序代码, 用于执行以下操作:
确定真实发现资源池中的真实发现资源;
根据预设或基站广播的频分复用因子值,对所述真实发现资源池进行频域 虚拟扩张, 并确定与真实发现资源池对应的虚拟发现资源池中的虚拟发现资 源;
根据预设或基站广播的基于虚拟发现资源池的时频跳转方案,将所述确定 的与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转; 使用虚拟时频跳转后占用的虚拟发现资源对应的真实发现资源发送发现 信号。
本发明第三方面提供了一种终端, 包括:
资源确定单元, 用于确定真实发现资源池中的真实发现资源;
时频跳转单元, 用于根据对应的预设的或基站广播的时频跳转方案,将所 述资源确定单元确定的与真实发现资源池中的真实发现资源的对应关系进行 时频跳转; 源池中的真实发现资源发送发现信号。
在第一种可能的实施方式中,所述真实发现资源池中的时频跳转方案至少 包括两种时频跳转方案。
本发明第四方面提供了一种终端, 所述终端包括网络接口、存储器以及处 理器, 其中, 存储器中存储一组程序代码, 且处理器用于调用存储器中存储的 程序代码, 用于执行以下操作:
确定真实发现资源池中的真实发现资源;
根据对应的预设的或基站广播的时频跳转方案,将所述确定的与真实发现 资源池中的真实发现资源的对应关系进行时频跳转;
使用时频跳转后占用的真实发现资源池中的真实发现资源发送发现信号。 本发明第五方面提供了一种发现资源时频跳转方法, 包括:
确定真实发现资源池中的真实发现资源;
根据预设或基站广播的频分复用因子值,对所述真实发现资源池进行频域 虚拟扩张, 并确定与真实发现资源池对应的虚拟发现资源池中的虚拟发现资 源;
根据预设或基站广播的基于虚拟发现资源池的时频跳转方案,将所述确定 的与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转; 使用虚拟时频跳转后占用的虚拟发现资源对应的真实发现资源发送发现 信号。
在第一种可能的实施方式中, 所述根据预设或基站广播的频分复用因子 值,对所述真实发现资源池进行频域虚拟扩张, 并确定与真实发现资源池对应 的虚拟发现资源池中的虚拟发现资源包括;
设所述频分复用因子值为 X, 所述真实发现资源池包括 N个子频带, 则 所述真实发现资源池进行虚拟扩张后得到的虚拟发现资源池包括 Ν χ Χ 个虚 拟子频带, 其中每个子频带被虚拟扩张得到 X个虚拟子频带, 在所述扩张后 的 X个虚拟子频带的对应子信道中确定虚拟发现资源。
结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述真实发现资源池进行虚拟扩张后得到的虚拟发现资源池包括 Ν χ Χ 个虚拟 子频带, 其中每个子频带被虚拟扩张得到 X个虚拟子频带包括;
在所述真实发现资源池中的第 m个子频带在虚拟扩张后得到的虚拟发现 资源池包括第 m个、 第(N+m )个、 第(Nx2+m )个 ... ...第( Nx ( X - 1 ) +m ) 个虚拟子频带, 从而所述虚拟扩张后得到的 N X X个虚拟子频带包括 X个扩 张副本, 其中所述虚拟发现资源池中每 N个连续的虚拟子频带为一个扩张副 本。
结合第五方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 述根据预设或基站广播的基于虚拟发现资源池的时频跳转方案,将所述确定的 与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转包括; 将所述确定的与所述虚拟发现资源池的同一扩张副本中的虚拟发现资源 的对应关系使用同一时频跳转方案进行虚拟时频跳转。 本发明第六方面提供了一种计算机存储介质,所述计算机存储介质存储有 程序,所述程序执行时包括本发明实施例第五方面提供的发现资源时频跳转方 法中全部或部分的步骤。
本发明第七方面提供了一种发现资源时频跳转方法, 包括:
确定真实发现资源池中的真实发现资源;
根据对应的预设的或基站广播的时频跳转方案,将所述确定的与真实发现 资源池中的真实发现资源的对应关系进行时频跳转;
使用时频跳转后占用的真实发现资源池中的真实发现资源发送发现信号。 在第一种可能的实现方式中,所述真实发现资源池中的时频跳转方案至少 包括两种时频跳转方案。
本发明第八方面提供了一种计算机存储介质,所述计算机存储介质存储有 程序,所述程序执行时包括本发明实施例第七方面提供的发现资源时频跳转方 法中全部或部分的步骤。
本发明实施例中的终端确定真实发现资源池中的真实发现资源,根据预设 或基站广播的频分复用因子值,对所述真实发现资源池进行频域虚拟扩张, 并 确定与真实发现资源池对应的虚拟发现资源池中的虚拟发现资源,进而根据预 设或基站广播的基于虚拟发现资源池的时频跳转方案,将所述确定的与所述虚 拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转,并使用虚拟时 频跳转后占用的虚拟发现资源所对应的真实发现资源发送发现信号,可保持合 并优势, 并降低多个终端无限使用相同真实发现资源发送发现信号的概率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明第一实施例提供的一种终端的结构示意图;
图 2 为本发明实施例提供的一种经过频域虚拟扩张的真实发现资源池对 应的虚拟发现资源池的结构示意图;
图 3 为本发明实施例提供的一种经过虚拟时频跳转的虚拟发现资源池的 结构示意图;
图 4 为本发明实施例提供的一种经过虚拟时频跳转的虚拟发现资源池对 应的真实发现资源池的结构示意图;
图 5为本发明第二实施例提供的一种终端的结构示意图;
图 6为本发明第三实施例提供的一种终端的结构示意图;
图 7为本发明第四实施例提供的一种终端的结构示意图;
图 8为本发明实施例提供的一种发现资源时频跳转方法的流程示意图; 图 9 为本发明另一实施例提供的一种发现资源时频跳转方法的流程示意 图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明提供了一种发现资源时频跳转方法及终端, 可保持合并优势, 并降 低多个终端无限使用相同真实发现资源发送发现信号的概率。以下分别进行详 细说明。
请参见图 1 , 图 1为本发明第一实施例提供的一种终端的结构示意图, 所 述终端至少可以包括资源确定单元 101、频域扩张单元 102、时频跳转单元 103 以及信号发送单元 104, 其中:
资源确定单元 101 , 用于确定真实发现资源池中的真实发现资源。
以图 2所示的真实发现资源池的结构示意图为例,所述真实发现资源池经 过频分复用和时分复用得到 3 x 3个真实发现资源, 其中所述真实发现资源池 包括三个子频带和三个子信道, 图 2所示的真实发现资源池中,每一行表示一 个子频带, 每一列表示一个子信道, 可以用二维数组 A[3][3]表示所述真实发 现资源池, 终端可以在所述真实发现资源池中确定真实发现资源, 例如终端 a 在真实发现资源池中确定的真实发现资源为位于 A[0][0]的真实发现资源, 当 发送发现信号的终端的个数大于真实发现资源的个数时,则存在至少两个终端 使用相同真实发现资源发送发现信号。
频域扩张单元 102, 用于根据预设或基站广播的频分复用因子值, 对所述 真实发现资源池进行频域虚拟扩张,并确定与真实发现资源池对应的虚拟发现 资源池中的虚拟发现资源。
频域扩张单元 102可以根据预设或基站广播的频分复用因子值,对真实发 现资源池进行频域虚拟扩张, 并且针对时域不做任何改变, 以图 2所示的经过 频域虚拟扩张的真实发现资源池对应的虚拟发现资源池的结构示意图为例,频 分复用因子值为 2, 则频域扩张单元 102可以根据所述频分复用因子值对真实 发现资源池进行频域虚拟扩张,频域虚拟扩张后的虚拟发现资源池在频域上扩 大一倍, 针对时域不作任何改变, 进一步的, 频域扩张单元 102在虚拟发现资 源池中确定虚拟发现资源,例如终端 a在虚拟发现资源池中确定的虚拟发现资 源为位于 B[0][0]的虚拟发现资源, 虚拟扩张前与终端 a使用相同真实发现资 源发送发现信号的终端 b 在虚拟发现资源池中确定的虚拟发现资源为位于 B[3][0]的虚拟发现资源, 可降低多个终端无限使用相同发现资源的概率。
作为一种可选的实施方式, 设所述频分复用因子值为 X, 所述真实发现资 源池包括 N个子频带, 则所述频域扩张单元 102对真实发现资源池进行频域 虚拟扩张后得到的虚拟发现资源池包括 N X X个虚拟子频带,其中每个子频带 被虚拟扩张得到 X个虚拟子频带, 终端可以在所述扩张后的 X个虚拟子频带 的对应子信道中确定虚拟发现资源。
进一步可选的, 在所述真实发现资源池中的第 m个子频带在所述频域扩 张单元 102虚拟扩张后得到的虚拟发现资源池包括第 m个、 第 (N+m )个、 第 ( Nx2+m )个 ... ...第 ( Nx ( X - 1 ) +m )个虚拟子频带, 从而所述频域虚拟 扩张后得到的 Ν χ X个虚拟子频带包括 X个扩张副本, 其中所述虚拟发现资 源池中每 N个连续的虚拟子频带为一个扩张副本。 例如, 在图 2所示的经过 频域虚拟扩张的真实发现资源池对应的虚拟发现资源池的结构示意图中,可以 用二维数组 A[3][3]表示真实发现资源池, 可以用二维数组 B[6][3]表示频域虚 拟扩张后得到的虚拟发现资源池,真实发现资源池中的第一行虚拟扩张后得到 的虚拟发现资源池可以包括第一行和第四行,其中虚拟发现资源池中的第一行 至第三行为第一个扩张副本,虚拟发现资源池中的第四行至第六行为第二个扩 张副本。
时频跳转单元 103, 用于根据预设或基站广播的基于虚拟发现资源池的时 频跳转方案,将所述频域扩张单元 102确定的与所述虚拟发现资源池中的虚拟 发现资源的对应关系进行虚拟时频跳转。
在频域扩张单元 102对所述真实发现资源池进行频域虚拟扩张,并确定与 真实发现资源池对应的虚拟发现资源池中的虚拟发现资源后, 时频跳转单元 103可以根据预设或基站广播的基于虚拟发现资源池的时频跳转方案, 将所述 确定的与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳 转,从而得到时频跳转后各个终端与虚拟发现资源池中的虚拟发现资源的对应 关系, 例如在图 2中, 终端 a在虚拟扩张后的虚拟发现资源池中确定的虚拟发 现资源为位于 B[0][0]的虚拟发现资源, 时频跳转单元 103根据预设或基站广 播的基于虚拟发现资源池的时频跳转方案,将与所述虚拟发现资源池中的虚拟 发现资源的对应关系进行虚拟时频跳转,终端 a确定的虚拟时频跳转后的虚拟 发现资源为位于 B[0][0]的虚拟发现资源。
其中, 所述时频跳转单元 103, 还用于将所述频域扩张单元 102确定的与 所述虚拟发现资源池的同一扩张副本中的虚拟发现资源的对应关系使用同一 时频跳转方案进行虚拟时频跳转。例如,针对第一个扩张副本的时频跳转方案 可以是 )= 0> j(t)=(j(0)+i(0)*t)%n, 其中 n=3, t=l, 时频跳转单元 103可以根 据所述时频跳转方案确定虚拟发现资源池中的虚拟发现资源,终端 a在第 0帧 的 时频位置可以 如 图 3 所示 为 Β[0][0] , 即 i(0)=0, j(0)=0 ,则 i(l) = i(0)=0, j(l) = (j(0)+i(0))%3 = 0, 即终端 a时频跳转后在第一帧的时频位置为 B[0][0] 。 针对 第 二 个 扩 张 副 本 的 时 频 跳 转 方 案 可 以 是 i(t) = (i(0)+t)%n, j(t) = (j(0)+i(0)*t-l)%n , 其中 n=3, t=l, 时频跳转单元 103可以 根据所述时频跳转方案确定虚拟发现资源池中的虚拟发现资源,在第二个扩张 副本中终端 b在第 0帧的时频位置可以如图 3所示为 B [0] [0] ,即 i(0) = 0, j(0) = 0 , 贝 (1)=( 0)+1)%3 = 1, j(l)=(j(0)+i(0)-l)%3 = 0, 即在第二个扩张副本中终端 b时频 跳转后在第一帧的时频位置为 B[1][0]。 可选的, 当所述真实发现资源的子频 带个数与子信道个数不一致时,终端与频域虚拟扩张后的虚拟发现资源池中的 虚拟发现资源的对应关系可以使用同一时频跳转方案进行虚拟时频跳转。 的虚拟发现资源对应的真实发现资源发送发现信号。时频跳转单元 103将与虚 拟发现资源池中的虚拟发现资源的对应关系进行时频跳转并得到时频跳转后 的各个终端与虚拟发现资源池中的虚拟发现资源的对应关系, 信号发送单元 104 可以使用时频跳转后占用的虚拟发现资源对应的真实发现资源发送发现 信号。具体的, 以图 4所示的经过虚拟时频跳转的虚拟发现资源池对应的真实 发现资源池的结构示意图为例,终端 a在基于虚拟发现资源池的时频跳转后确 定的虚拟发现资源池中的虚拟发现资源为位于 B[0][0]的虚拟发现资源, 则信 号发送单元 104 可以使用所述虚拟发现资源对应的真实发现资源发送发现信 号, 其中终端 a占用的虚拟发现资源对应的真实发现资源为位于 A[0][0]的真 实发现资源。
在图 1所示的终端中,资源确定单元 101确定真实发现资源池中的真实发 现资源, 频域扩张单元 102根据预设或基站广播的频分复用因子值,对真实发 现资源池进行频域虚拟扩张,并确定与真实发现资源池对应的虚拟发现资源池 中的虚拟发现资源,时频跳转单元 103根据预设或基站广播的基于虚拟发现资 源池的时频跳转方案,将所述确定的与所述虚拟发现资源池中的虚拟发现资源 的对应关系进行虚拟时频跳转,信号发送单元 104使用所述虚拟时频跳转后占 用的虚拟发现资源对应的真实发现资源发送发现信号,可保持合并优势, 并降 低多个终端无限使用相同真实发现资源发送发现信号的概率。 请参见图 5 , 图 5为本发明第二实施例提供的一种终端的结构示意图, 用于 执行本发明实施例提供的发现资源时频跳转方法。 如图 5所示, 该终端包括: 至少一个处理器 501 , 例如 CPU, 至少一个网络接口 503 , 存储器 504, 至少一 个通信总线 502。 通信总线 502用于实现这些组件之间的连接通信。 其中, 存储 器 504可能包含高速 RAM存储器,也可能还包括非不稳定的存储器( non-volatile memory ) , 例如至少一个磁盘存储器。 存储器 504可选的可以包含至少一个位 于远离前述处理器 501的存储装置。存储器 504中存储一组程序代码,且处理器 501调用存储器 504中存储的程序代码, 用于执行以下操作:
确定真实发现资源池中的真实发现资源;
根据预设或基站广播的频分复用因子值,对所述真实发现资源池进行频域 虚拟扩张, 并确定与真实发现资源池对应的虚拟发现资源池中的虚拟发现资 源;
根据预设或基站广播的基于虚拟发现资源池的时频跳转方案,将所述确定 的与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转; 通过网络接口 503 使用虚拟时频跳转后占用的虚拟发现资源对应的真实 发现资源发送发现信号。
在可选实施例中,处理器 501调用存储器 504中存储的程序代码根据预设 或基站广播的频分复用因子值,对所述真实发现资源池进行频域虚拟扩张, 并 确定与真实发现资源池对应的虚拟发现资源池中的虚拟发现资源具体为: 设所述频分复用因子值为 X, 所述真实发现资源池包括 N个子频带, 则 所述真实发现资源池进行虚拟扩张后得到的虚拟发现资源池包括 Ν χ Χ 个虚 拟子频带, 其中每个子频带被虚拟扩张得到 X个虚拟子频带, 终端可以在所 述扩张后的 X个虚拟子频带的对应子信道中确定虚拟发现资源。
以图 2 所示的经过频域虚拟扩张的真实发现资源池对应的虚拟发现资源 池的结构示意图为例,真实发现资源池包括三个子频带, 所述频分复用因子值 为 2, 则处理器 401对所述真实发现资源池进行频域虚拟扩张后得到的虚拟发 现资源池包括六个虚拟子频带,其中每个子频带被虚拟扩张得到两个虚拟子频 子信道中确定虚拟发现资源, 例如, 可以用二维数组 Α[3][3]表示真实发现资 源池, 可以用二维数组 Β[6][3]表示频域虚拟扩张后得到的虚拟发现资源池, 终端 a在真实发现资源池中确定的真实发现资源为位于 A[0][0]的真实发现资 源, 频域虚拟扩张后, 终端 a可以在 B[0][0]或 B[3][0]中确定一个虚拟发现资 源, 可降低多个终端无限使用相同发现资源的概率。
在可选实施例中,所述真实发现资源池进行频域虚拟扩张后得到的虚拟发 现资源池包括 Ν χ X个虚拟子频带, 其中每个子频带被虚拟扩张得到 X个虚 拟子频带具体为:
在所述真实发现资源池中的第 m个子频带在频域虚拟扩张后得到的虚拟 发现资源池包括第 m个、 第(N+m)个、 第(Nx2+m)个 ......第( Nx ( X - 1 )
+m) 个虚拟子频带, 从而所述频域虚拟扩张后得到的 NxX个虚拟子频带包 括 X个扩张副本, 其中所述虚拟发现资源池中每 Ν个连续的虚拟子频带为一 个扩张副本。以图 2所示的经过频域虚拟扩张的真实发现资源池对应的虚拟发 现资源池的结构示意图为例,在真实发现资源池中的第一个子频带在频域虚拟 扩张后得到的虚拟发现资源池包括第一个虚拟子频带和第四个虚拟子频带,从 而所述频域虚拟扩张后得到的六个虚拟子频带包括两个扩张副本,其中虚拟发 现资源池中的第一个至第三个虚拟子频带为第一个扩张副本,虚拟发现资源池 中的第四个至第六个虚拟子频带为第二个扩张副本。
在可选的实施例中,处理器 401调用存储器 404中存储的程序代码根据预 设或基站广播的基于虚拟发现资源池的时频跳转方案,将所述确定的与所述虚 拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转具体为:
将所述确定的与所述虚拟发现资源池的同一扩张副本中的虚拟发现资源 的对应关系使用同一时频跳转方案进行虚拟时频跳转。
以图 3所示的经过虚拟时频跳转的虚拟发现资源池的结构示意图为例,可 以用二维数组 Α[3][3]表示真实发现资源池, 可以用二维数组 Β[6][3]表示频域 虚拟扩张后的虚拟发现资源池, 针对第一个扩张副本的时频跳转方案可以是 i(t) = i(0> j(t)=(j(0)+i(0)*t)%n, 其中 n=3, t=l, 时频跳转单元 130可以根据所述 时频跳转方案确定虚拟发现资源池中的虚拟发现资源,终端 a在第 0帧的时频 位 置 可 以 如 图 3 所 示 为 Β[0][0] , 即 i(0) = 0, j(0)=0 , 则 i(l) = i(0)=0, j(l) = (j(0)+i(0))%3 = 0, 即终端 a时频跳转后在第一帧的时频位置为 B[0][0]。 在第二个扩张副本中终端 b 的时频跳转方案可以是 i(t) = (i(0)+t)%n, j(t) = (j(0)+i(0)*t-l)%n , 其中 n=3, t=l, 时频跳转单元 130可以 根据所述时频跳转方案确定虚拟发现资源池中的虚拟发现资源,在第二个扩张 副本中终端 b在第 0帧的时频位置如图 3所示为 B[0][0], 即 i(0)=0, j(0) = 0, 贝 (1)=( 0)+1)%3 = 1, j(l)=(j(0)+i(0)-l)%3 = 0, 即在第二个扩张副本中终端 b时频 跳转后在第一帧的时频位置为 B[1][0]。 可选的, 当所述真实发现资源的子频 带个数与子信道个数不一致时,与频域虚拟扩张后的虚拟发现资源池中的虚拟 发现资源的对应关系可以使用同一时频跳转方案进行虚拟时频跳转。 发现资源时频跳转方法实施例中的部分或全部流程。 请参见图 6, 图 6为本发明第三实施例提供的一种终端的结构示意图, 所 述终端至少可以包括资源确定单元 601、 时频跳转单元 602以及信号发送单元 603 , 其中:
资源确定单元 601 , 用于确定真实发现资源池中的真实发现资源。 以图 2 所示的真实发现资源池为例,所述真实发现资源池经过频分复用和时分复用得 到 3 x 3个真实发现资源, 其中所述真实发现资源池包括三个子频带和三个子 信道, 图 2所示的真实发现资源池中, 每一行表示一个子频带, 每一列表示一 个子信道, 可以用二维数组 A[3][3]表示真实发现资源池, 资源确定单元 601 在所述 3 X 3个真实发现资源中确定用于发送发现信号的真实发现资源,例如, 终端 a和终端 b确定的真实发现资源都为位于 A[0][0]的真实发现资源。
时频跳转单元 602, 用于根据对应的预设的或基站广播的时频跳转方案, 将所述资源确定单元 601 确定的与真实发现资源池中的真实发现资源的对应 关系进行时频跳转。
其中,所述时频跳转单元 602在真实发现资源池中运行的时频跳转方案至 少包括两种时频跳转方案。 例如, 终端 a可以根据所述终端对应的预设的或基 站广播的时频跳转方案, 例如 i(t) = i(0> j(t) = (j(0) + i(0)*t)%n , 将所述确定的与真 实发现资源池中的真实发现资源的对应关系进行时频跳转,终端 b可以根据所 述终端对应的预设的或基站广播的另一种时频跳转方案, 例如 i(t) = (i(0)+ t)%n, j(t) = (j(0)+ i(0)*t - l)%n , 将所述确定的与真实发现资源池中的真 实发现资源的对应关系进行时频跳转,则占用相同真实发现资源的多个终端根 据不同的时频跳转方案将与真实发现资源池中的真实发现资源的对应关系进 行时频跳转, 时频跳转后的多个终端可以占用不同的真实发现资源, 降低了多 个终端无限使用相同真实发现资源发送发现信号的概率。
信号发送单元 603 , 用于使用所述时频跳转单元 602时频跳转后占用的真 实发现资源池中的真实发现资源发送发现信号。
在图 6所示的终端中,资源确定单元 601确定真实发现资源池中的真实发 现资源, 时频跳转单元 602根据对应的预设的或基站广播的时频跳转方案,将 所述确定的与真实发现资源池中的真实发现资源的对应关系进行时频跳转,信 号发送单元 603 使用所述时频跳转后占用的真实发现资源池中的真实发现资 源发送发现信号,可保持合并优势, 并降低多个终端无限使用相同真实发现资 源发送发现信号的概率。 请参见图 7, 图 7为本发明第四实施例提供的一种终端的结构示意图, 用 于执行本发明实施例提供的发现资源时频跳转方法。如图 7所示,该终端包括: 至少一个处理器 701 , 例如 CPU, 至少一个网络接口 703 , 存储器 704, 至少 一个通信总线 702。 通信总线 702用于实现这些组件之间的连接通信。 其中, 存储器 704 可能包含高速 RAM 存储器, 也可能还包括非不稳定的存储器 ( non- volatile memory ), 例如至少一个磁盘存储器。 存储器 704可选的可以包 含至少一个位于远离前述处理器 701的存储装置。其中处理器 701可以结合图 6所描述的终端, 存储器 704中存储一组程序代码, 且处理器 701调用存储器 704中存储的程序代码, 用于执行以下操作:
确定真实发现资源池中的真实发现资源;
根据对应的预设的或基站广播的时频跳转方案,将所述确定的与真实发现 资源池中的真实发现资源的对应关系进行时频跳转;
使用时频跳转后占用的真实发现资源池中的真实发现资源发送发现信号。 以图 2所示的真实发现资源池为例, 所述真实发现资源池包括 3 x 3个真 实发现资源, 其中所述真实发现资源池包括三个子频带和三个子信道, 图 2 所示的真实发现资源池中, 每一行表示一个子频带, 每一列表示一个子信道, 可以用二维数组 A[3] [3]表示真实发现资源池, 处理器 701在所述 3 x 3个真实 发现资源中确定用于发送发现信号的真实发现资源, 例如, 终端 a和终端 b确 定的真实发现资源都为位于 A[0][0]的真实发现资源。
其中, 所述真实发现资源池中的时频跳转方案至少包括两种时频跳转方 案。例如,终端 a可以根据所述终端对应的预设的或基站广播的时频跳转方案, 例如 i(t) = i(0), j(t)= (j(0)+i(0)*t)%n ,将所述确定的与真实发现资源池中的真实发 现资源的对应关系进行时频跳转,终端 b可以根据所述终端对应的预设的或基 站广播的另一种时频跳转方案, 例如 i(t)= (i(0)+t)%n, j(t) = (j(0) + i(0)*t -l)%n , 将 所述确定的与真实发现资源池中的真实发现资源的对应关系进行时频跳转,则 占用相同真实发现资源的多个终端根据不同的时频跳转方案将与真实发现资 源池中的真实发现资源的对应关系进行时频跳转,时频跳转后的多个终端可以 占用不同的真实发现资源,降低了多个终端无限使用相同真实发现资源发送发 现信号的概率。 发现资源时频跳转方法实施例中的部分或全部流程。 请参见图 8 , 图 8为本发明实施例提供的一种发现资源时频跳转方法的流 程示意图, 所述方法包括:
5801 , 确定真实发现资源池中的真实发现资源。
终端可以在真实发现资源池中确定真实发现资源,以图 2所示的真实发现 资源池的结构示意图为例,所述真实发现资源池经过频分复用和时分复用得到 3 x 3 个真实发现资源, 其中所述真实发现资源池包括三个子频带和三个子信 道, 在图 2所示的真实发现资源池中, 每一行表示一个子频带, 每一列表示一 个子信道, 可以用二维数组 A[3][3]表示真实发现资源池, 终端可以在所述真 实发现资源池中确定真实发现资源,例如终端 a在真实发现资源池中确定的真 实发现资源为位于 A[0][0]的真实发现资源, 当发送发现信号的终端的个数大 于真实发现资源的个数时,则存在至少两个终端使用相同真实发现资源发送发 现信号。
5802, 根据频分复用因子值, 对真实发现资源池进行频域虚拟扩张, 并确 定虚拟发现资源池中的虚拟发现资源。
具体实现中, 终端可以根据预设或基站广播的频分复用因子值,对真实发 现资源池进行频域虚拟扩张, 并且针对时域不做任何改变, 以图 2所示的针对 真实发现资源的频域虚拟扩张示意图为例, 频分复用因子值可以为 2, 终端可 以根据所述频分复用因子值对真实发现资源池进行频域虚拟扩张,频域虚拟扩 张后的虚拟发现资源池在频域上扩大一倍,所述虚拟发现资源池可以用二维数 组 B[6][3]表示。 进一步的, 终端还可以确定与真实发现资源池对应的虚拟发 现资源池中的虚拟发现资源,例如在图 2所示的经过频域虚拟扩张的真实发现 资源池对应的虚拟发现资源池的结构示意图中,终端 a在虚拟发现资源池中确 定的虚拟发现资源为位于 B[0][0]的虚拟发现资源, 虚拟扩张前与终端 a使用 相同真实发现资源发送发现信号的终端 b 在虚拟发现资源池中确定的虚拟发 现资源为位于 B[3][0]的虚拟发现资源, 可降低多个终端无限使用相同发现资 源的概率。
作为一种可选的实施方式, 设所述频分复用因子值为 X, 所述真实发现资 源池包括 N个子频带, 则终端对真实发现资源池进行频域虚拟扩张后得到的 虚拟发现资源池包括 N X X个虚拟子频带,其中每个子频带被虚拟扩张得到 X 个虚拟子频带, 终端可以在所述频域虚拟扩张后的 X个虚拟子频带的对应子 信道中确定虚拟发现资源。
进一步可选的, 在所述真实发现资源池中的第 m个子频带在所述频域扩 张单元 120频域虚拟扩张后得到的虚拟发现资源池包括第 m个、 第 (N+m ) 个、 第 (Nx2+m )个 ... ...第 (Nx ( X - 1 ) +m )个虚拟子频带, 从而所述频域 虚拟扩张后得到的 N X X个虚拟子频带包括 X个扩张副本, 其中所述虚拟发 现资源池中每 N个连续的虚拟子频带为一个扩张副本。 例如, 在图 2所示的 经过频域虚拟扩张的真实发现资源池对应的虚拟发现资源池的结构示意图中, 可以用二维数组 A[3][3]表示真实发现资源池, 可以用二维数组 B[6][3]表示频 域虚拟扩张后得到的虚拟发现资源池,真实发现资源池中的第一行虚拟扩张后 得到的虚拟发现资源池可以包括第一行和第四行,其中虚拟发现资源池中的第 一行至第三行为第一个扩张副本,虚拟发现资源池中的第四行至第六行为第二 个扩张副本。
S803,根据预设或基站广播的时频跳转方案,将确定的与虚拟发现资源池 中的虚拟发现资源的对应关系进行虚拟时频跳转。
终端可以根据预设或基站广播的基于虚拟发现资源池的时频跳转方案,将 确定的与虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转,从 而得到虚拟时频跳转后各个终端与虚拟发现资源池中的虚拟发现资源的对应 关系, 例如在图 3 所示的经过虚拟时频跳转的虚拟发现资源池的结构示意图 中,终端 a在频域虚拟扩张后的虚拟发现资源池中确定的虚拟发现资源为位于 B[0][0]的虚拟发现资源,终端 a可以根据预设或基站广播的基于虚拟发现资源 池的时频跳转方案,将与所述虚拟发现资源池中的虚拟发现资源的对应关系进 行虚拟时频跳转,终端 a确定的虚拟时频跳转后的虚拟发现资源为位于 B[0][0] 的虚拟发现资源。
其中针对虚拟发现资源池的同一扩张副本中的虚拟发现资源与各个终端 的对应关系使用同一时频跳转方案进行虚拟时频跳转,例如,针对第一个扩张 副本的时频跳转方案可以是 i(t) = i(0> j(t)= (j(0)+i(0)*t)%n , 其中 n=3, t=l , 终端 可以根据所述时频跳转方案确定虚拟发现资源池中的虚拟发现资源,终端 a在 第 0 帧的时频位置可以如图 3 所示为 B[0][0] , 即 i(0)= 0, j(0)= 0 ,则 i(l) = i(0)= 0, j(l) = (j(0)+i(0))%3 = 0 , 即终端 a时频跳转后在第一帧的时频位置为 B[0][0] 。 针对 第 二 个 扩 张 副 本 的 时 频 跳 转 方 案 可 以 是 i(t) = (i(0)+t)%n, j(t) = (j(0)+i(0)*t -l)%n , 其中 n=3, t=l , 时频跳转单元 130可以 根据所述时频跳转方案确定虚拟发现资源池中的虚拟发现资源,在第二个扩张 副本中终端 b在第 0帧的时频位置如图 3所示为 B[0][0] , 即 i(0)= 0, j(0) = 0 , 贝 (1)= ( 0)+1)%3 = 1, j(l)= (j(0)+i(0)-l)%3 = 0 , 即在第二个扩张副本中终端 b时频 跳转后在第一帧的时频位置为 B[1][0]。 可选的, 当所述真实发现资源的子频 带个数与子信道个数不一致时,与频域虚拟扩张后的虚拟发现资源池中的虚拟 发现资源的对应关系可以使用同一时频跳转方案进行虚拟时频跳转。
S804,使用虚拟时频跳转后占用的虚拟发现资源对应的真实发现资源发送 发现信号。
终端确定经过虚拟时频跳转占用的虚拟发现资源后,可以使用所述虚拟发 现资源对应的真实发现资源发送发现信号。具体的, 以图 4所示的经过虚拟时 频跳转的虚拟发现资源池对应的真实发现资源池的结构示意图为例,终端 a在 基于虚拟发现资源池的时频跳转后确定的虚拟发现资源池中的虚拟发现资源 为位于 B[0][0]的虚拟发现资源, 则终端可以使用所述虚拟发现资源对应的真 实发现资源发送发现信号,其中终端 a占用的虚拟发现资源对应的真实发现资 源为位于 A[0][0]的真实发现资源。 在图 8所示的发现资源时频跳转方法中,终端确定真实发现资源池中的真 实发现资源,根据预设或基站广播的频分复用因子值,对所述真实发现资源池 进行频域虚拟扩张,并确定与真实发现资源池对应的虚拟发现资源池中的虚拟 发现资源, 进而根据预设或基站广播的基于虚拟发现资源池的时频跳转方案, 将所述确定的与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟 时频跳转,并使用虚拟时频跳转后占用的虚拟发现资源所对应的真实发现资源 发送发现信号, 可保持合并优势, 并降低多个终端无限使用相同真实发现资源 发送发现信号的概率。 本发明实施例还提出了一种计算机存储介质,所述计算机存储介质存储有 程序,所述程序执行时包括本发明实施例结合图 8所描述的发现资源时频跳转 方法中的部分或全部的步骤。 请参见图 9, 图 9为本发明另一实施例提供的一种发现资源时频跳转方法 的流程示意图, 所述方法具体包括:
S901 , 确定真实发现资源池中的真实发现资源。
终端可以在真实发现资源池中确定真实发现资源,以图 2所示的真实发现 资源池为例, 所述真实发现资源池经过频分复用和时分复用得到 3 x 3个真实 发现资源, 其中所述真实发现资源池包括三个子频带和三个子信道, 图 2所示 的真实发现资源池中, 每一行表示一个子频带, 每一列表示一个子信道, 可以 用二维数组 A[3][3]表示真实发现资源池, 终端可以在所述真实发现资源池中 确定真实发现资源,例如终端 a在真实发现资源池中确定的真实发现资源为位 于 A[0][0]的真实发现资源, 当发送发现信号的终端的个数大于真实发现资源 的个数时, 则存在至少两个终端使用相同真实发现资源发送发现信号。
S902,根据对应的预设的或基站广播的时频跳转方案,将确定的与真实发 现资源池中的真实发现资源的对应关系进行时频跳转。
具体实现中,终端可以根据所述终端对应的预设的或基站广播的时频跳转 方案, 将确定的与真实发现资源池中的真实发现资源的对应关系进行时频跳 转,其中,真实发现资源池中运行的时频跳转方案至少包括两种时频跳转方案。 例如, 终端 a可以根据所述终端对应的预设的或基站广播的时频跳转方案, 例 如 i(t) = i(0), j(t) = (j(0)+ i(0)* t)%n ,将所述确定的与真实发现资源池中的真实发现 资源的对应关系进行时频跳转,终端 b可以根据所述终端对应的预设的或基站 广播的另一种时频跳转方案, 例如 i(t) = (i(0)+ t)%n, j(t) = (j(0)+ i(0)*t - l)%n , 将所 述确定的与真实发现资源池中的真实发现资源的对应关系进行时频跳转,则占 用相同真实发现资源的多个终端根据不同的时频跳转方案将与真实发现资源 池中的真实发现资源的对应关系进行时频跳转,时频跳转后的多个终端可以占 用不同的真实发现资源,降低了多个终端无限使用相同真实发现资源发送发现 信号的概率。
S903 ,使用时频跳转后占用的真实发现资源池中的真实发现资源发送发现 信号。
终端可以使用时频跳转后占用的真实发现资源池中的真实发现资源发送 发现信号。
在图 9所示的发现资源时频跳转方法中,终端确定真实发现资源池中的真 实发现资源,根据对应的预设的或基站广播的时频跳转方案,将所述确定的与 真实发现资源池中的真实发现资源的对应关系进行时频跳转,并使用时频跳转 后占用的真实发现资源池中的真实发现资源发送发现信号, 可保持合并优势, 并降低多个终端无限使用相同真实发现资源发送发现信号的概率。 本发明实施例还提出了一种计算机存储介质,所述计算机存储介质存储有 程序,所述程序执行时包括本发明实施例结合图 9所描述的发现资源时频跳转 方法中的部分或全部的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
需要说明的是, 在上述实施例中, 对各个实施例的描述都各有侧重, 某个 实施例中没有详细描述的部分, 可以参见其他实施例的相关描述。 其次, 本领 域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例, 所涉及 的动作和单元并不一定是本发明所必须的。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种终端, 其特征在于, 所述终端包括:
资源确定单元, 用于确定真实发现资源池中的真实发现资源;
频域扩张单元, 用于根据预设或基站广播的频分复用因子值,对所述真实 发现资源池进行频域虚拟扩张,并确定与真实发现资源池对应的虚拟发现资源 池中的虚拟发现资源;
时频跳转单元,用于根据预设或基站广播的基于虚拟发现资源池的时频跳 转方案,将所述频域扩张单元确定的与所述虚拟发现资源池中的虚拟发现资源 的对应关系进行虚拟时频跳转; 现资源对应的真实发现资源发送发现信号。
2、 如权利要求 1所述的终端, 其特征在于, 所述频域扩张单元还用于: 设所述频分复用因子值为 X, 所述真实发现资源池包括 N个子频带, 则 所述真实发现资源池进行频域虚拟扩张后得到的虚拟发现资源池包括 N X X 个虚拟子频带, 其中每个子频带被虚拟扩张得到 X个虚拟子频带, 在所述扩 张后的 X个虚拟子频带的对应子信道中确定虚拟发现资源。
3、 如权利要求 2所述的终端, 其特征在于, 所述频域扩张单元还用于: 在所述真实发现资源池中的第 m个子频带在虚拟扩张后得到的虚拟发现 资源池包括第 m个、 第(N+m )个、 第(Nx2+m )个 ... ...第( Nx ( X - 1 ) +m ) 个虚拟子频带, 从而所述虚拟扩张后得到的 N X X个虚拟子频带包括 X个扩 张副本, 其中所述虚拟发现资源池中每 N个连续的虚拟子频带为一个扩张副 本。
4、 如权利要求 3所述的终端, 其特征在于, 所述时频跳转单元还用于: 将所述频域扩张单元确定的与所述虚拟发现资源池的同一扩张副本中的 虚拟发现资源的对应关系使用同一时频跳转方案进行虚拟时频跳转。
5、 一种终端, 其特征在于, 所述终端包括网络接口、 存储器以及处理器, 其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代 码, 用于执行以下操作:
确定真实发现资源池中的真实发现资源;
根据预设或基站广播的频分复用因子值,对所述真实发现资源池进行频域 虚拟扩张, 并确定与真实发现资源池对应的虚拟发现资源池中的虚拟发现资 源;
根据预设或基站广播的基于虚拟发现资源池的时频跳转方案,将所述确定 的与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转; 使用虚拟时频跳转后占用的虚拟发现资源对应的真实发现资源发送发现 信号。
6、 一种终端, 其特征在于, 所述终端包括:
资源确定单元, 用于确定真实发现资源池中的真实发现资源;
时频跳转单元, 用于根据对应的预设的或基站广播的时频跳转方案,将所 述资源确定单元确定的与真实发现资源池中的真实发现资源的对应关系进行 时频跳转; 源池中的真实发现资源发送发现信号。
7、 如权利要求 6所述的终端, 其特征在于, 所述真实发现资源池中的时 频跳转方案至少包括两种时频跳转方案。
8、 一种终端, 其特征在于, 所述终端包括网络接口、 存储器以及处理器, 其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代 码, 用于执行以下操作:
确定真实发现资源池中的真实发现资源; 根据对应的预设的或基站广播的时频跳转方案,将所述确定的与真实发现 资源池中的真实发现资源的对应关系进行时频跳转;
使用时频跳转后占用的真实发现资源池中的真实发现资源发送发现信号。
9、 一种发现资源时频跳转方法, 其特征在于, 所述方法包括:
确定真实发现资源池中的真实发现资源;
根据预设或基站广播的频分复用因子值,对所述真实发现资源池进行频域 虚拟扩张, 并确定与真实发现资源池对应的虚拟发现资源池中的虚拟发现资 源;
根据预设或基站广播的基于虚拟发现资源池的时频跳转方案,将所述确定 的与所述虚拟发现资源池中的虚拟发现资源的对应关系进行虚拟时频跳转; 使用虚拟时频跳转后占用的虚拟发现资源对应的真实发现资源发送发现 信号。
10、 如权利要求 9所述的方法, 其特征在于, 所述根据预设或基站广播的 频分复用因子值,对所述真实发现资源池进行频域虚拟扩张, 并确定与真实发 现资源池对应的虚拟发现资源池中的虚拟发现资源包括:
设所述频分复用因子值为 X, 所述真实发现资源池包括 N个子频带, 则 所述真实发现资源池进行虚拟扩张后得到的虚拟发现资源池包括 Ν χ Χ 个虚 拟子频带, 其中每个子频带被虚拟扩张得到 X个虚拟子频带, 在所述扩张后 的 X个虚拟子频带的对应子信道中确定虚拟发现资源。
11、 如权利要求 10所述的方法, 其特征在于, 所述真实发现资源池进行 虚拟扩张后得到的虚拟发现资源池包括 Ν X X个虚拟子频带,其中每个子频带 被虚拟扩张得到 X个虚拟子频带包括:
在所述真实发现资源池中的第 m个子频带在虚拟扩张后得到的虚拟发现 资源池包括第 m个、 第(N+m )个、 第(Nx2+m )个 ... ...第( Nx ( X - 1 ) +m ) 个虚拟子频带, 从而所述虚拟扩张后得到的 N X X个虚拟子频带包括 X个扩 张副本, 其中所述虚拟发现资源池中每 N个连续的虚拟子频带为一个扩张副 本。
12、 如权利要求 11所述的方法, 其特征在于, 所述根据预设或基站广播 的基于虚拟发现资源池的时频跳转方案,将所述确定的与所述虚拟发现资源池 中的虚拟发现资源的对应关系进行虚拟时频跳转包括:
将所述确定的与所述虚拟发现资源池的同一扩张副本中的虚拟发现资源 的对应关系使用同一时频跳转方案进行虚拟时频跳转。
13、一种计算机存储介质,其特征在于,所述计算机存储介质存储有程序, 所述程序执行时包括权利要求 9~12任一项所述的步骤。
14、 一种发现资源时频跳转方法, 其特征在于, 所述方法包括:
确定真实发现资源池中的真实发现资源;
根据对应的预设的或基站广播的时频跳转方案,将所述确定的与真实发现 资源池中的真实发现资源的对应关系进行时频跳转;
使用时频跳转后占用的真实发现资源池中的真实发现资源发送发现信号。
15、 如权利要求 14所述的方法, 其特征在于, 所述真实发现资源池中的 时频跳转方案至少包括两种时频跳转方案。
16、一种计算机存储介质,其特征在于,所述计算机存储介质存储有程序, 所述程序执行时包括权利要求 14或 15任一项所述的步骤。
PCT/CN2014/072415 2014-02-22 2014-02-22 一种发现资源时频跳转方法及终端 WO2015123877A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480000365.2A CN105009644B (zh) 2014-02-22 2014-02-22 一种发现资源时频跳转方法及终端
EP14883396.5A EP3101953B1 (en) 2014-02-22 2014-02-22 Discovery resource time-frequency jumping method and terminal
PCT/CN2014/072415 WO2015123877A1 (zh) 2014-02-22 2014-02-22 一种发现资源时频跳转方法及终端
US15/243,238 US10334424B2 (en) 2014-02-22 2016-08-22 Discovery resource time-frequency hopping method and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072415 WO2015123877A1 (zh) 2014-02-22 2014-02-22 一种发现资源时频跳转方法及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/243,238 Continuation US10334424B2 (en) 2014-02-22 2016-08-22 Discovery resource time-frequency hopping method and terminal

Publications (1)

Publication Number Publication Date
WO2015123877A1 true WO2015123877A1 (zh) 2015-08-27

Family

ID=53877561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072415 WO2015123877A1 (zh) 2014-02-22 2014-02-22 一种发现资源时频跳转方法及终端

Country Status (4)

Country Link
US (1) US10334424B2 (zh)
EP (1) EP3101953B1 (zh)
CN (1) CN105009644B (zh)
WO (1) WO2015123877A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113125B (zh) * 2014-12-22 2020-02-14 华为技术有限公司 一种广播消息的传输方法及装置
CN108605026B (zh) * 2016-02-24 2020-07-24 华为技术有限公司 一种信号传输方法、装置及终端设备
US20210321449A1 (en) * 2018-10-17 2021-10-14 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus for contending for a time-frequency resource for sidelink communication, and terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260244A (zh) * 2013-04-15 2013-08-21 西安交通大学 一种蜂窝系统中d2d上行资源复用模式切换方法
CN103338497A (zh) * 2013-06-14 2013-10-02 北京交通大学 一种d2d通信系统中自主设备发现方法
CN103428817A (zh) * 2012-05-23 2013-12-04 华为技术有限公司 基于lte蜂窝通信系统的d2d设备发现方法及装置
CN103442442A (zh) * 2013-08-13 2013-12-11 北京交通大学 一种基站辅助的d2d通信系统中设备发现的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706311B2 (en) * 2005-12-09 2010-04-27 Alcatel-Lucent Usa Inc. Expanding cell radius in a wireless communication system
US8121097B2 (en) * 2008-11-04 2012-02-21 Qualcomm Incorporated Transmission with hopping for peer-peer communication
US20130148557A1 (en) * 2011-06-13 2013-06-13 Qualcomm Incorporated Method and apparatus for enhanced discovery in peer-to-peer networks by synchronized discovery wake up
US8520650B2 (en) * 2011-07-06 2013-08-27 Qualcomm Incorporated Methods and apparatus for OFDM peer discovery
CN102843162B (zh) * 2012-09-12 2014-11-05 西安交通大学 一种蜂窝网络中采用d2d技术的扩频通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428817A (zh) * 2012-05-23 2013-12-04 华为技术有限公司 基于lte蜂窝通信系统的d2d设备发现方法及装置
CN103260244A (zh) * 2013-04-15 2013-08-21 西安交通大学 一种蜂窝系统中d2d上行资源复用模式切换方法
CN103338497A (zh) * 2013-06-14 2013-10-02 北京交通大学 一种d2d通信系统中自主设备发现方法
CN103442442A (zh) * 2013-08-13 2013-12-11 北京交通大学 一种基站辅助的d2d通信系统中设备发现的方法

Also Published As

Publication number Publication date
CN105009644A (zh) 2015-10-28
EP3101953B1 (en) 2020-04-29
US10334424B2 (en) 2019-06-25
CN105009644B (zh) 2019-06-21
EP3101953A1 (en) 2016-12-07
US20160360396A1 (en) 2016-12-08
EP3101953A4 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
TWI554051B (zh) A method, system and apparatus for transmitting and receiving data
US9942884B2 (en) Efficient uplink data indication techniques for MIMO-OFDMA transmission in WLAN
WO2018127223A1 (zh) 一种数据传输方法、装置及系统
TWM354286U (en) Apparatus for handling random access channel responses
JP2018512755A5 (zh)
RU2011119595A (ru) Выделение ресурсов
KR20130053650A (ko) 디바이스간 직접 통신 서비스 시스템에서 데이터 송신 방법 및 장치
US9155115B2 (en) Method and apparatus for generating connection identifier for device-to-device communication
JP2017504242A (ja) D2dディスカバリー信号を送信する方法及び装置並びに通信システム
CN113301512B (zh) 数据通信方法、装置、系统、电子设备和存储介质
WO2018050058A1 (zh) 一种数据传输方法及无线链路机
WO2015123877A1 (zh) 一种发现资源时频跳转方法及终端
JP6744332B2 (ja) データ送信方法および装置
WO2020206682A1 (zh) 加扰处理方法、解扰处理方法及装置
JP6643465B2 (ja) 無線リソース割当の方法及び装置
WO2019095916A1 (zh) 一种非授权频段上同步信号的发送方法、网络设备及终端设备
WO2015196998A1 (zh) 一种信号发送和检测的方法及装置
WO2015131493A1 (zh) 一种d2d通信的设备发现方法及装置
JPWO2020255395A5 (ja) 端末、無線通信方法及びシステム
US20170006035A1 (en) Method and apparatus to distribute an access credential to multiple devices using ultrasonic communication
JP6497711B2 (ja) リソースブロードキャスト方法およびリソースブロードキャスト装置
JP2018525923A5 (zh)
JPWO2020188831A5 (ja) 端末、通信方法、及び無線通信システム
TWI640213B (zh) 一種資料傳輸方法和設備
CN106535358B (zh) 一种适用于时间异步认知节点的勤务信道建立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014883396

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014883396

Country of ref document: EP