WO2015121891A1 - Amplifier - Google Patents

Amplifier Download PDF

Info

Publication number
WO2015121891A1
WO2015121891A1 PCT/JP2014/000731 JP2014000731W WO2015121891A1 WO 2015121891 A1 WO2015121891 A1 WO 2015121891A1 JP 2014000731 W JP2014000731 W JP 2014000731W WO 2015121891 A1 WO2015121891 A1 WO 2015121891A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
circuit
amplifier
bias
Prior art date
Application number
PCT/JP2014/000731
Other languages
French (fr)
Japanese (ja)
Inventor
新庄 真太郎
高橋 貴紀
檜枝 護重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/000731 priority Critical patent/WO2015121891A1/en
Publication of WO2015121891A1 publication Critical patent/WO2015121891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/18Indexing scheme relating to amplifiers the bias of the gate of a FET being controlled by a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/207A hybrid coupler being used as power measuring circuit at the output of an amplifier circuit

Definitions

  • the present invention relates to an amplifier such as a high output width device used for terrestrial microwave communication, mobile communication and the like.
  • output power is controlled according to the distance to the base station and environmental conditions.
  • the output power feedback configuration is one of the configurations for realizing the output power control.
  • FIG. 6 simply shows a circuit block diagram of a high-power amplifier module described in Non-Patent Document 1 as a conventional example, and is an example of an output power feedback type configuration that performs output power control.
  • 101 is a high frequency input terminal
  • 102 is a high frequency amplifier
  • 103 is a distributor
  • 104 is a high frequency output terminal
  • 105 is a logarithmic amplifier
  • 106 is a control circuit
  • 107 is a control power supply.
  • a high frequency signal is input from a high frequency input terminal 101, amplified by a high frequency amplifier 102, and then output from a high frequency output terminal 104 via a distributor 103.
  • a part of the high-frequency signal amplified by the high-frequency amplifier 102 is input from the distributor 103 to the logarithmic amplifier 105, converted into a voltage here, and then input to the control circuit 106.
  • the control circuit 106 When the voltage of the control power source 107 is changed, the output voltage of the control circuit 106 is changed.
  • the output voltage of the control circuit 106 is the base bias voltage of the high frequency amplifier 102. For this reason, the control power supply 107 can control the base voltage. That is, it is possible to obtain desired output power by detecting the output power and controlling the control power source 107 in conjunction with the detected voltage.
  • FIG. 7 shows the relationship between the control voltage 107 and the output voltage in the high frequency amplifier module shown in FIG.
  • a distributor is used as means for detecting the output power, and therefore there is a problem that the module size is increased. Further, since the distributor is connected to the output section of the high-frequency amplifier, there is a problem that the output power of the high-frequency amplifier is reduced and the efficiency is reduced due to the passage loss of the distributor.
  • the present invention has been made to solve the above-described problems.
  • the output power of the high-frequency amplifier can be reduced in size and with a small output loss.
  • the purpose is to realize control.
  • An amplifier includes: A high frequency amplifier; A control circuit for generating a current or voltage according to the control voltage; A bias control circuit for controlling a base bias current or a gate bias voltage of the high-frequency amplifier; A detection circuit for detecting the current or voltage of the bias control circuit and converting the level of the detected current or voltage; A comparison circuit that controls the current or voltage of the bias control circuit so that the difference between the current or voltage generated from the control circuit and the current or voltage generated from the detection circuit is zero; It is characterized by comprising.
  • FIG. 1 is a configuration diagram showing an amplifier according to a first embodiment of the present invention.
  • FIG. 1 is a diagram showing a first embodiment of the present invention, and is a configuration diagram of an amplifier showing an example of an output power feedback type configuration for performing output power control.
  • 1 is a high frequency input terminal
  • 2 is a high frequency amplifier
  • 3 is a high frequency output terminal
  • 4 is a bias control circuit for controlling the bias of the high frequency amplifier 2
  • 5 is a detection circuit
  • 6 is a comparison circuit
  • 7 is a control circuit
  • Reference numeral 8 denotes a control power source.
  • the current output from the detection circuit is Idetect (mA)
  • the current output from the control circuit is Icont (mA).
  • a high frequency signal is input from a high frequency input terminal 1, amplified by a high frequency amplifier 2, and then output from a high frequency output terminal 3.
  • the power of the high frequency signal input from the high frequency input terminal 1 is Pin (dBm), and the power of the high frequency signal output from the high frequency output terminal 3 is Pout (dBm).
  • the voltage supplied from the control power supply 8 is Vcont (V).
  • the amplifying element of the high-frequency amplifier 2 is a bipolar transistor
  • the base electrode of the high frequency amplifier 2 is connected to the bias control circuit 4, and a bias current is supplied from the base bias circuit constituting the bias control circuit 4. A part of the supplied base bias current is input to the detection circuit 5.
  • the bias control circuit 4 is configured such that the base bias current supplied from the bias control circuit 4 to the high frequency amplifier 2 and the current supplied from the bias control circuit 4 to the detection circuit 5 are in a proportional relationship.
  • the detection circuit 5 outputs the current supplied from the bias control circuit 4 to the comparison circuit 6 as a detection current Idetect after adjusting the level of the current value.
  • the control circuit 7 outputs a control current Iton according to the voltage Vcont of the control power supply 8.
  • C 1 and C 2 are arbitrary constants.
  • Such a circuit can be easily realized by using a transistor or the like.
  • the comparison circuit 6 compares the detection current Idetect output from the detection circuit 5 with the control current Iton output from the control circuit 7, and outputs a control signal for changing the base bias current according to the difference between the detection current Idetect and the control current Iton. It gives to the base bias circuit which comprises.
  • the bias control circuit 4 may be controlled using a voltage value or a current value. In this way, the detection circuit 5 feeds back information on the difference between the detection current Idetect and the control current Iton to the bias control circuit 4.
  • the detection circuit 5 and the comparison circuit 6 feedback is continued so that the difference current in the comparison circuit 6 becomes zero, and the feedback state converges when the difference current becomes zero. To do.
  • FIG. 2 shows the relationship between the output power Pout (dBm) and the detection current Idetect (mA) in the amplifier shown in FIG. Since the detection current Idetect is proportional to the base current Ib (mA) of the bipolar transistor, the base current Ib also increases when the output power Pout increases. At this time, depending on the characteristics of the transistor, the output power Pout displayed in dBm has a relationship of a logarithmic value (log value) of the base current Ib and a linear function. Therefore, as shown in FIG. 2, the output power Pout also has a linear function relationship with the logarithmic value (log value) log (Idetect) of the detection current Idetect.
  • FIG. 3 shows the relationship between the control power supply Vcont and the control current Iton in the amplifier shown in FIG.
  • formula (1) is modified, the following formula is obtained.
  • log (Icont) C 2 ⁇ Vcont + log (C 1 ) (2) That is, the log value log (Icont) of the control current Icont and the control power source Vcont have a linear function relationship.
  • the control circuit 7 is configured so that the control power supply Vcont and the log value log (Icont) of the control current Iton have a linear function relationship, as shown in FIG. 3 and Expression (2).
  • FIG. 4 shows the relationship between the control power supply Vcont and the output power Pout in the amplifier shown in FIG. From the relationship between FIGS. 2 and 3, Pout and log (Idetect) are linear functions, and log (Icont) and Vcont are also linear functions. Therefore, by further controlling the difference between the feedback current Idetect and the control current Iton to be zero by the feedback circuit composed of the bias control circuit 4, the detection circuit 5, and the comparison circuit 6, the control voltage is as shown in FIG. Vcont and output power Pout also have a linear function relationship. As a result, the output power Pout can be controlled by the control voltage Vcont as shown in FIG.
  • the current of the base bias circuit configuring the bias control circuit 4 is detected, and the feedback circuit including the base bias circuit, the detection circuit 5 and the comparison circuit 6 is provided.
  • the output power it is not necessary to connect a component such as a distributor to the output portion of the high-frequency amplifier 2, and the output power of the amplifier can be controlled, so that the output loss of the amplifier can be reduced.
  • the base bias circuit, the detection circuit 5, the comparison circuit 6 and the control circuit 7 constituting the bias control circuit 4 can be realized with a small configuration and can be easily integrated into an IC (integrated circuit), so that the amplifier can be downsized. Further, for example, the size of the high frequency amplifier module on which the amplifier is mounted can be reduced.
  • the output power control is performed based on the base bias current flowing through the base bias circuit that constitutes the bias control circuit, the operating conditions such as the environmental temperature and element variations are changed. Is easy to control.
  • the base current changes directly according to temperature and element variations, it is possible to perform control while taking temperature and element variations into account by performing control based on the base bias current.
  • FIG. 1 shown in the first embodiment of the present invention is a single-stage amplifier
  • the present invention is not limited to this. The same effect can be obtained by controlling at least one of the multistage amplifiers in the same manner.
  • the present invention is not limited to this.
  • the same effect can be obtained when an FET (field effect transistor) is used as an amplifying element, or when a bipolar transistor or FET is used in any combination in each stage of a multistage amplifier.
  • the bias control circuit 4 may be configured by a gate bias circuit, and the gate voltage Vg (V) may be supplied to the high-frequency amplifier 2. At this time, the bias control circuit 4 can also provide the detection circuit 5 with a current value proportional to the gate voltage value supplied to the high-frequency amplifier 2. Alternatively, the bias control circuit 4 may supply a voltage value proportional to the gate voltage value supplied to the high-frequency amplifier 2 to the detection circuit 5, and the detection circuit 5 may output a current value proportional to the voltage value as Idetect. .
  • the comparison circuit 6 may not compare current values but may compare voltage values.
  • the detection circuit 5 is configured to output a detection voltage Vdetect (V) proportional to the base current value or the gate voltage value instead of the detection current Idetect.
  • the control circuit 7 is configured to output a control voltage V′cont (V) that changes exponentially with respect to a change in the control voltage Vcont instead of the control current Itont.
  • the comparison circuit 6 may be configured to compare the control voltage Vcont and the control voltage V′cont and output a signal for feedback control to the bias control circuit 4 so that the difference between them is zero.
  • the output power of the amplifier can be controlled based on the base current or gate voltage of the transistors constituting the high frequency amplifier 2, a distributor or the like is not required, and the output loss of the amplifier can be reduced. The efficiency can be increased and the amplifier can be miniaturized.
  • FIG. FIG. 5 is a diagram showing a second embodiment of the present invention, and is a configuration diagram of an amplifier showing an example of an output power feedback configuration for performing output power control.
  • reference numerals 1 to 8 are the same as those in FIG. 1, and 9 is a voltage supply circuit that supplies a voltage to the collector electrode of the high-frequency amplifier 2.
  • the output current of the detection circuit 5 is Idetect (mA)
  • the output current of the control circuit 7 is Icont (mA).
  • a high frequency signal is input from a high frequency input terminal 1, amplified by a high frequency amplifier 2, and then output from a high frequency output terminal 3.
  • the power of the high frequency signal input from the high frequency input terminal 1 is Pin (dBm), and the power of the high frequency signal output from the high frequency output terminal 3 is Pout (dBm).
  • the voltage supplied from the control power supply 8 is Vcont (V).
  • the collector electrode of the high-frequency amplifier 2 having a bipolar transistor as an amplifying element is connected to the voltage supply circuit 9 and supplied with a voltage. Part of the collector current Ic (mA) flowing through the voltage supply circuit 9 is input to the detection circuit 5. In the detection circuit 5, after the level of the input current value is adjusted, a detection current Idetect proportional to the value of the collector current Ic is output. On the other hand, the control circuit 7 outputs a control current Iton according to the control power supply Vcont. This operation is the same as that described in the first embodiment.
  • the detection current Idetect output from the detection circuit 5 is compared with the control current Iton output from the control circuit 7, and a control signal corresponding to the difference is fed back to the base bias circuit constituting the bias control circuit 4.
  • the difference between the detection current Idetect and the control current Iton is 0. The feedback control is continued so that the feedback state converges when the difference becomes zero.
  • the output power Pout (dBm) has a relationship between the logarithmic value (log value) of the detection current Idetect (mA) and a linear function as in the first embodiment of the present invention.
  • the control circuit 7 is configured such that the log values of the control power supply Vcont (V) and the control current Itont (mA) have a linear function relationship.
  • the difference between the feedback current Idetect and the control current Iton is 0 by the feedback circuit composed of the collector bias circuit constituting the voltage supply circuit 9, the detection circuit 5, the comparison circuit 6 and the base bias circuit constituting the bias control circuit 4. Control is applied so that As a result, the control voltage Vcont and the output power Pout also have a linear function relationship, and the output power Pout can be controlled by the control voltage Vcont.
  • the current Ic flowing through the collector bias circuit constituting the voltage supply circuit 9 is detected, and the collector bias circuit, the detection circuit 5 and the comparison circuit constituting the voltage supply circuit 9 are compared.
  • a feedback circuit composed of a base bias circuit constituting the circuit 6 and the bias control circuit 4 it is not necessary to connect a component such as a distributor to the output section of the high frequency amplifier 2, and the amplifier The output loss can be reduced.
  • each circuit can be realized with a small configuration and can be easily integrated into an IC, for example, the size of a high-frequency amplifier module on which an amplifier is mounted can be reduced.
  • the output power control is performed based on the collector bias current. Therefore, the control is performed based on the base bias current even if the operating conditions such as environmental temperature and element variation change. Control is as easy as
  • the output power control is performed based on the collector bias current Ic that is larger than the base bias current Ib, the current value to be compared by the comparison circuit 6 becomes large. For this reason, there is an advantage that errors in current comparison are reduced and high-precision control is possible.
  • FIG. 5 shown in the second embodiment of the present invention is a one-stage amplifier
  • the present invention is not limited to this. The same effect can be obtained by configuring the amplifier with a multistage amplifier and controlling any one of the multistage amplifiers in the same manner.
  • the bias control circuit 4 may be configured by a gate bias circuit so that the gate voltage Vg (V) is supplied to the high-frequency amplifier 2.
  • the voltage supply circuit 9 may be constituted by a drain bias circuit, and the drain voltage Vd (V) may be supplied to the high frequency amplifier 2.
  • the output power of the amplifier can be controlled based on the collector current or drain current of the transistors constituting the high frequency amplifier 2, a distributor or the like is not required, and the output loss of the amplifier can be reduced. The efficiency can be increased and the amplifier can be miniaturized.
  • the amplifier according to the present invention can be applied to various amplifiers that are used in communication devices and the like to amplify high-frequency signals, and is particularly suitable for amplifiers that require high output and control of output power.

Abstract

In order to obtain an amplifier capable of performing output power control of a high frequency amplifier with a configuration having a small size and a small output loss, this amplifier is provided with: a high frequency amplifier; a control circuit that generates a current or a voltage corresponding to a control voltage; a bias control circuit that controls a base bias current or a gate bias voltage of the high frequency amplifier; a detection circuit, which detects the current or the voltage of the bias control circuit, and which converts the level of the current or the voltage thus detected; and a comparison circuit that controls the current or the voltage of the bias control circuit such that a difference between the current or the voltage generated from the control circuit, and the current or the voltage generated from the detection circuit is zero.

Description

増幅器amplifier
 本発明は、地上マイクロ波通信、移動体通信等に使用される高出力幅器等の増幅器に関するものである。 The present invention relates to an amplifier such as a high output width device used for terrestrial microwave communication, mobile communication and the like.
 例えば携帯電話端末用高出力増幅器においては、基地局までの距離や環境条件に応じて出力電力の制御を行う。出力電力の制御方法は使用する携帯電話システムによって異なるが、出力電力帰還形構成は出力電力制御を実現する構成の一つである。 For example, in a high-power amplifier for mobile phone terminals, output power is controlled according to the distance to the base station and environmental conditions. Although the output power control method differs depending on the mobile phone system to be used, the output power feedback configuration is one of the configurations for realizing the output power control.
 図6は例えば従来例として非特許文献1に記載されている高出力増幅器モジュールの回路ブロック図を簡易的に示したものであり、出力電力制御を行う出力電力帰還形構成の一例である。ここで101は高周波入力端子、102は高周波増幅器、103は分配器、104は高周波出力端子、105は対数増幅器、106は制御回路、107は制御電源である。 FIG. 6 simply shows a circuit block diagram of a high-power amplifier module described in Non-Patent Document 1 as a conventional example, and is an example of an output power feedback type configuration that performs output power control. Here, 101 is a high frequency input terminal, 102 is a high frequency amplifier, 103 is a distributor, 104 is a high frequency output terminal, 105 is a logarithmic amplifier, 106 is a control circuit, and 107 is a control power supply.
 次に動作について説明する。図6において、高周波信号は高周波入力端子101から入力し、高周波増幅器102で増幅されたのち、分配器103を介し高周波出力端子104から出力される。高周波増幅器102で増幅された高周波信号の一部は分配器103から対数増幅器105に入力され、ここで電圧変換された後、制御回路106に入力される。制御電源107の電圧を変化させると制御回路106の出力電圧は変化する。制御回路106の出力電圧は高周波増幅器102のベースバイアス電圧となっている。このため、制御電源107によりベース電圧を制御することができる。つまり、出力電力を検波し、検波電圧と連動して制御電源107を制御することにより、所望の出力電力を得ることが可能となる。 Next, the operation will be described. In FIG. 6, a high frequency signal is input from a high frequency input terminal 101, amplified by a high frequency amplifier 102, and then output from a high frequency output terminal 104 via a distributor 103. A part of the high-frequency signal amplified by the high-frequency amplifier 102 is input from the distributor 103 to the logarithmic amplifier 105, converted into a voltage here, and then input to the control circuit 106. When the voltage of the control power source 107 is changed, the output voltage of the control circuit 106 is changed. The output voltage of the control circuit 106 is the base bias voltage of the high frequency amplifier 102. For this reason, the control power supply 107 can control the base voltage. That is, it is possible to obtain desired output power by detecting the output power and controlling the control power source 107 in conjunction with the detected voltage.
 図7は、図6で示す高周波増幅器モジュールにおける制御電圧107と出力電圧の関係を示したものである。検波電圧と連動して制御電源107を制御することにより、制御電圧に対して線形に変化する出力電力特性を得ることができる。 FIG. 7 shows the relationship between the control voltage 107 and the output voltage in the high frequency amplifier module shown in FIG. By controlling the control power supply 107 in conjunction with the detection voltage, output power characteristics that change linearly with respect to the control voltage can be obtained.
 上述の従来例の高周波増幅器モジュールにおいては、出力電力を検波する手段として分配器を用いているため、モジュールサイズが大形化してしまう問題がある。また、分配器は高周波増幅器の出力部に接続されるため、分配器の通過損失による高周波増幅器の出力電力低下、および効率の低下が生じてしまう問題がある。 In the conventional high-frequency amplifier module described above, a distributor is used as means for detecting the output power, and therefore there is a problem that the module size is increased. Further, since the distributor is connected to the output section of the high-frequency amplifier, there is a problem that the output power of the high-frequency amplifier is reduced and the efficiency is reduced due to the passage loss of the distributor.
 本発明は上記のような問題点を解決するためになされたものであり、高周波増幅器の動作バイアスを検波しバイアス制御回路に帰還させることにより、小形で出力損失の小さい構成で高周波増幅器の出力電力制御を実現することを目的とする。 The present invention has been made to solve the above-described problems. By detecting the operation bias of the high-frequency amplifier and feeding it back to the bias control circuit, the output power of the high-frequency amplifier can be reduced in size and with a small output loss. The purpose is to realize control.
 この発明に係る増幅器は、
 高周波増幅器と、
 制御電圧に応じた電流または電圧を発生する制御回路と、
 上記高周波増幅器のベースバイアス電流またはゲートバイアス電圧を制御するバイアス制御回路と、
 上記バイアス制御回路の電流または電圧を検波し、検波した電流または電圧をレベル変換する検出回路と、
 上記制御回路から発生する電流または電圧と上記検出回路から発生する電流または電圧との差分が0となるように上記バイアス制御回路の電流または電圧を制御する比較回路と、
 を備えたことを特徴とするものである。
An amplifier according to the present invention includes:
A high frequency amplifier;
A control circuit for generating a current or voltage according to the control voltage;
A bias control circuit for controlling a base bias current or a gate bias voltage of the high-frequency amplifier;
A detection circuit for detecting the current or voltage of the bias control circuit and converting the level of the detected current or voltage;
A comparison circuit that controls the current or voltage of the bias control circuit so that the difference between the current or voltage generated from the control circuit and the current or voltage generated from the detection circuit is zero;
It is characterized by comprising.
 この発明によれば、小形で出力損失の小さい構成で高周波増幅器の出力電力制御を実現できるという効果がある。 According to the present invention, there is an effect that the output power control of the high frequency amplifier can be realized with a small configuration and a small output loss.
この発明の実施の形態1による増幅器を示す構成図1 is a configuration diagram showing an amplifier according to a first embodiment of the present invention. この発明の実施の形態1による増幅器の動作を説明する図The figure explaining operation | movement of the amplifier by Embodiment 1 of this invention. この発明の実施の形態1による増幅器の動作を説明する図The figure explaining operation | movement of the amplifier by Embodiment 1 of this invention. この発明の実施の形態1による増幅器の動作を説明する図The figure explaining operation | movement of the amplifier by Embodiment 1 of this invention. この発明の実施の形態2による増幅器を示す構成図Configuration diagram showing an amplifier according to a second embodiment of the present invention. 従来の高出力増幅器を示す構成図Configuration diagram showing a conventional high-power amplifier 従来の高出力増幅器の動作を説明する図The figure explaining operation of the conventional high output amplifier
実施の形態1.
 図1は本発明の実施の形態1を示した図であり、出力電力制御を行う出力電力帰還形構成の一実施例を示す増幅器の構成図である。図1において、1は高周波入力端子、2は高周波増幅器、3は高周波出力端子、4は高周波増幅器2のバイアスを制御するバイアス制御回路、5は検出回路、6は比較回路、7は制御回路、8は制御電源である。また検出回路から出力される電流をIdetect(mA)、制御回路から出力される電流をIcont(mA)とする。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a first embodiment of the present invention, and is a configuration diagram of an amplifier showing an example of an output power feedback type configuration for performing output power control. In FIG. 1, 1 is a high frequency input terminal, 2 is a high frequency amplifier, 3 is a high frequency output terminal, 4 is a bias control circuit for controlling the bias of the high frequency amplifier 2, 5 is a detection circuit, 6 is a comparison circuit, 7 is a control circuit, Reference numeral 8 denotes a control power source. The current output from the detection circuit is Idetect (mA), and the current output from the control circuit is Icont (mA).
 次に動作について説明する。図1において、高周波信号は高周波入力端子1から入力し、高周波増幅器2により増幅された後、高周波出力端子3から出力される。高周波入力端子1から入力する高周波信号の電力はPin(dBm)であり、高周波出力端子3から出力する高周波信号の電力はPout(dBm)である。また、制御電源8から供給する電圧はVcont(V)である。 Next, the operation will be described. In FIG. 1, a high frequency signal is input from a high frequency input terminal 1, amplified by a high frequency amplifier 2, and then output from a high frequency output terminal 3. The power of the high frequency signal input from the high frequency input terminal 1 is Pin (dBm), and the power of the high frequency signal output from the high frequency output terminal 3 is Pout (dBm). The voltage supplied from the control power supply 8 is Vcont (V).
 以下、例えば高周波増幅器2の増幅素子をバイポーラトランジスタとする場合について説明する。高周波増幅器2のベース電極はバイアス制御回路4と接続し、バイアス制御回路4を構成するベースバイアス回路からバイアス電流が供給されている。また供給されるベースバイアス電流の一部は検出回路5に入力される。このとき、バイアス制御回路4から高周波増幅器2に供給されるベースバイアス電流とバイアス制御回路4から検出回路5に供給される電流とは比例関係となるように、バイアス制御回路4は構成されている。検出回路5では、バイアス制御回路4から供給された電流を、その電流値の大きさをレベル調整した後、検波電流Idetectとして比較回路6に出力する。 Hereinafter, for example, a case where the amplifying element of the high-frequency amplifier 2 is a bipolar transistor will be described. The base electrode of the high frequency amplifier 2 is connected to the bias control circuit 4, and a bias current is supplied from the base bias circuit constituting the bias control circuit 4. A part of the supplied base bias current is input to the detection circuit 5. At this time, the bias control circuit 4 is configured such that the base bias current supplied from the bias control circuit 4 to the high frequency amplifier 2 and the current supplied from the bias control circuit 4 to the detection circuit 5 are in a proportional relationship. . The detection circuit 5 outputs the current supplied from the bias control circuit 4 to the comparison circuit 6 as a detection current Idetect after adjusting the level of the current value.
 一方、制御回路7は制御電源8の電圧Vcontに応じた制御電流Icontを出力する。このとき、制御回路7は電圧Vcontの変化に対して制御電流Icontが指数関数的に変化する回路を用いている。すなわち、
   Icont = C・exp(C・Vcont)                (1)
とする。ここで、C、Cは任意の定数である。このような回路は、トランジスタ等を使って容易に実現することができる。
On the other hand, the control circuit 7 outputs a control current Iton according to the voltage Vcont of the control power supply 8. At this time, the control circuit 7 uses a circuit in which the control current Iton changes exponentially with respect to the change of the voltage Vcont. That is,
Icont = C 1 · exp (C 2 · Vcont) (1)
And Here, C 1 and C 2 are arbitrary constants. Such a circuit can be easily realized by using a transistor or the like.
 比較回路6では、検出回路5から出力された検波電流Idetectと制御回路7から出力された制御電流Icontとを比較し、その差分に応じてベースバイアス電流を変化させる制御信号をバイアス制御回路4を構成するベースバイアス回路に与える。この制御信号としては電圧の値あるいは電流の値を用いてバイアス制御回路4の制御を行うものであってもよい。
 このように、検出回路5は、検波電流Idetectと制御電流Icontの差分の情報をバイアス制御回路4に帰還する。バイアス制御回路4、検出回路5および比較回路6から構成される帰還回路では、比較回路6での差分電流が0となるように帰還を続け、差分電流が0となったところで帰還の状態が収束する。
The comparison circuit 6 compares the detection current Idetect output from the detection circuit 5 with the control current Iton output from the control circuit 7, and outputs a control signal for changing the base bias current according to the difference between the detection current Idetect and the control current Iton. It gives to the base bias circuit which comprises. As this control signal, the bias control circuit 4 may be controlled using a voltage value or a current value.
In this way, the detection circuit 5 feeds back information on the difference between the detection current Idetect and the control current Iton to the bias control circuit 4. In the feedback circuit composed of the bias control circuit 4, the detection circuit 5, and the comparison circuit 6, feedback is continued so that the difference current in the comparison circuit 6 becomes zero, and the feedback state converges when the difference current becomes zero. To do.
 図2は、図1で示す増幅器における出力電力Pout(dBm)と検波電流Idetect(mA)の関係を示したものである。検波電流Idetectはバイポーラトランジスタのベース電流Ib(mA)に比例しているので、出力電力Poutが増加するとベース電流Ibもまた増加する。このときトランジスタの特性によって、dBm表示された出力電力Poutはベース電流Ibの対数値(ログ値)と1次関数の関係になる。従って図2の通り、出力電力Poutは検波電流Idetectの対数値(ログ値)log(Idetect)とも1次関数の関係になる。 FIG. 2 shows the relationship between the output power Pout (dBm) and the detection current Idetect (mA) in the amplifier shown in FIG. Since the detection current Idetect is proportional to the base current Ib (mA) of the bipolar transistor, the base current Ib also increases when the output power Pout increases. At this time, depending on the characteristics of the transistor, the output power Pout displayed in dBm has a relationship of a logarithmic value (log value) of the base current Ib and a linear function. Therefore, as shown in FIG. 2, the output power Pout also has a linear function relationship with the logarithmic value (log value) log (Idetect) of the detection current Idetect.
 図3は、図1で示す増幅器における制御電源Vcontと制御電流Icontの関係を示したものである。式(1)を変形すると次式となる。
   log(Icont) = C・Vcont + log(C)            (2)
すなわち、制御電流Icontのログ値log(Icont)と御電源Vcontとは1次関数の関係となる。このように、制御回路7は、図3および式(2)に示す通り、制御電源Vcontと制御電流Icontのログ値log(Icont)が1次関数の関係となるように構成する。
FIG. 3 shows the relationship between the control power supply Vcont and the control current Iton in the amplifier shown in FIG. When formula (1) is modified, the following formula is obtained.
log (Icont) = C 2 · Vcont + log (C 1 ) (2)
That is, the log value log (Icont) of the control current Icont and the control power source Vcont have a linear function relationship. In this way, the control circuit 7 is configured so that the control power supply Vcont and the log value log (Icont) of the control current Iton have a linear function relationship, as shown in FIG. 3 and Expression (2).
 図4は、図1で示す増幅器における制御電源Vcontと出力電力Poutの関係を示したものである。図2と図3の関係から、Poutとlog(Idetect)とが1次関数の関係であり、log(Icont)とVcontも1次関数の関係である。したがって、さらに、バイアス制御回路4、検出回路5および比較回路6から構成される帰還回路により帰還電流Idetectと制御電流Icontの差分が0となるように制御することにより、図4に示す通り制御電圧Vcontと出力電力Poutも1次関数の関係となる。この結果、図4のように制御電圧Vcontにより出力電力Poutを制御することが可能となる。 FIG. 4 shows the relationship between the control power supply Vcont and the output power Pout in the amplifier shown in FIG. From the relationship between FIGS. 2 and 3, Pout and log (Idetect) are linear functions, and log (Icont) and Vcont are also linear functions. Therefore, by further controlling the difference between the feedback current Idetect and the control current Iton to be zero by the feedback circuit composed of the bias control circuit 4, the detection circuit 5, and the comparison circuit 6, the control voltage is as shown in FIG. Vcont and output power Pout also have a linear function relationship. As a result, the output power Pout can be controlled by the control voltage Vcont as shown in FIG.
 以上のように、本発明の実施の形態1によれば、バイアス制御回路4を構成するベースバイアス回路の電流を検波し、ベースバイアス回路、検出回路5および比較回路6から構成される帰還回路を用いて出力電力を制御することにより、高周波増幅器2の出力部に分配器などの部品を接続する必要がなく、増幅器の出力電力を制御できるため、増幅器の出力損失を低減することができる。 As described above, according to the first embodiment of the present invention, the current of the base bias circuit configuring the bias control circuit 4 is detected, and the feedback circuit including the base bias circuit, the detection circuit 5 and the comparison circuit 6 is provided. By using and controlling the output power, it is not necessary to connect a component such as a distributor to the output portion of the high-frequency amplifier 2, and the output power of the amplifier can be controlled, so that the output loss of the amplifier can be reduced.
 さらにバイアス制御回路4を構成するベースバイアス回路、検出回路5、比較回路6および制御回路7は小形な構成で実現でき、IC(集積回路)化も容易であるため、増幅器を小型にできる。また、例えば増幅器を搭載する高周波増幅器モジュールのサイズを小さくできる。 Further, the base bias circuit, the detection circuit 5, the comparison circuit 6 and the control circuit 7 constituting the bias control circuit 4 can be realized with a small configuration and can be easily integrated into an IC (integrated circuit), so that the amplifier can be downsized. Further, for example, the size of the high frequency amplifier module on which the amplifier is mounted can be reduced.
 さらに、本発明の実施の形態1によれば、バイアス制御回路を構成するベースバイアス回路を流れるベースバイアス電流を基に出力電力制御を行っているため、環境温度や素子ばらつきなど動作条件が変わっても制御が容易である。すなわち、ベース電流は温度や素子ばらつきによって直接的に変化するので、ベースバイアス電流を基に制御を行うことによって、温度や素子ばらつきを考慮しながらの制御が可能になる。 Furthermore, according to the first embodiment of the present invention, since the output power control is performed based on the base bias current flowing through the base bias circuit that constitutes the bias control circuit, the operating conditions such as the environmental temperature and element variations are changed. Is easy to control. In other words, since the base current changes directly according to temperature and element variations, it is possible to perform control while taking temperature and element variations into account by performing control based on the base bias current.
 なお本発明の実施の形態1で示した図1は1段増幅器であるが、本発明はこれに限らない。多段増幅器の各段増幅器の少なくとも1つ以上を同様に制御しても同様の効果が得られる。 Although FIG. 1 shown in the first embodiment of the present invention is a single-stage amplifier, the present invention is not limited to this. The same effect can be obtained by controlling at least one of the multistage amplifiers in the same manner.
 また本発明の実施の形態1では高周波増幅器2の増幅素子としてバイポーラトランジスタを用いた場合を示したがこれに限らない。FET(電界効果トランジスタ)を増幅素子として用いた場合、また多段増幅器の各段にバイポーラトランジスタまたはFETを任意の組み合わせで用いた場合においても同様の効果が得られる。 In the first embodiment of the present invention, the case where a bipolar transistor is used as the amplifying element of the high-frequency amplifier 2 is shown, but the present invention is not limited to this. The same effect can be obtained when an FET (field effect transistor) is used as an amplifying element, or when a bipolar transistor or FET is used in any combination in each stage of a multistage amplifier.
 高周波増幅器2にFETを用いる場合、バイアス制御回路4をゲートバイアス回路で構成し、高周波増幅器2にゲート電圧Vg(V)を供給するようにすれば良い。このとき、バイアス制御回路4は、高周波増幅器2に供給するゲート電圧値に比例する電流値を検出回路5に与えるようにすることもできる。もしくは、バイアス制御回路4は、高周波増幅器2に供給するゲート電圧値と比例する電圧値を検出回路5に与え、検出回路5は、この電圧値に比例する電流値をIdetectとして出力しても良い。 When an FET is used for the high-frequency amplifier 2, the bias control circuit 4 may be configured by a gate bias circuit, and the gate voltage Vg (V) may be supplied to the high-frequency amplifier 2. At this time, the bias control circuit 4 can also provide the detection circuit 5 with a current value proportional to the gate voltage value supplied to the high-frequency amplifier 2. Alternatively, the bias control circuit 4 may supply a voltage value proportional to the gate voltage value supplied to the high-frequency amplifier 2 to the detection circuit 5, and the detection circuit 5 may output a current value proportional to the voltage value as Idetect. .
 さらに、比較回路6は、電流値同士を比較するものではなく、電圧値同士を比較するものであっても良い。この場合、検出回路5を、検波電流Idetectに代えて、ベース電流値もしくはゲート電圧値に比例する検波電圧Vdetect(V)を出力する構成とする。また、制御回路7を、制御電流Icontに代えて、制御電圧Vcontの変化に対して指数関数的に変化する制御電圧V'cont(V)を出力する構成とする。そして比較回路6において、これら制御電圧Vcontと制御電圧V'contとを比較し、これらの差分が0となるようにバイアス制御回路4に帰還制御をかける信号を出力する構成とすれば良い。 Furthermore, the comparison circuit 6 may not compare current values but may compare voltage values. In this case, the detection circuit 5 is configured to output a detection voltage Vdetect (V) proportional to the base current value or the gate voltage value instead of the detection current Idetect. Further, the control circuit 7 is configured to output a control voltage V′cont (V) that changes exponentially with respect to a change in the control voltage Vcont instead of the control current Itont. Then, the comparison circuit 6 may be configured to compare the control voltage Vcont and the control voltage V′cont and output a signal for feedback control to the bias control circuit 4 so that the difference between them is zero.
 以上のように、本実施の形態では、高周波増幅器2を構成するトランジスタのベース電流またはゲート電圧に基づいて増幅器の出力電力を制御できるため、分配器などが不要となり、増幅器の出力損失を低減でき効率を高められるとともに、増幅器の小型化を図ることができる。 As described above, in this embodiment, since the output power of the amplifier can be controlled based on the base current or gate voltage of the transistors constituting the high frequency amplifier 2, a distributor or the like is not required, and the output loss of the amplifier can be reduced. The efficiency can be increased and the amplifier can be miniaturized.
実施の形態2.
 図5は本発明の実施の形態2を示した図であり、出力電力制御を行う出力電力帰還形構成の一実施例を示す増幅器の構成図である。図5において、1から8の符号は図1と同様のものであり、9は高周波増幅器2のコレクタ電極に電圧を供給する電圧供給回路である。また検出回路5の出力電流をIdetect(mA)、制御回路7の出力電流をIcont(mA)とする。
Embodiment 2. FIG.
FIG. 5 is a diagram showing a second embodiment of the present invention, and is a configuration diagram of an amplifier showing an example of an output power feedback configuration for performing output power control. In FIG. 5, reference numerals 1 to 8 are the same as those in FIG. 1, and 9 is a voltage supply circuit that supplies a voltage to the collector electrode of the high-frequency amplifier 2. The output current of the detection circuit 5 is Idetect (mA), and the output current of the control circuit 7 is Icont (mA).
 次に動作について説明する。図5において、高周波信号は高周波入力端子1から入力し、高周波増幅器2により増幅された後、高周波出力端子3から出力される。高周波入力端子1から入力する高周波信号の電力はPin(dBm)であり、高周波出力端子3から出力する高周波信号の電力はPout(dBm)である。また、制御電源8から供給する電圧はVcont(V)である。 Next, the operation will be described. In FIG. 5, a high frequency signal is input from a high frequency input terminal 1, amplified by a high frequency amplifier 2, and then output from a high frequency output terminal 3. The power of the high frequency signal input from the high frequency input terminal 1 is Pin (dBm), and the power of the high frequency signal output from the high frequency output terminal 3 is Pout (dBm). The voltage supplied from the control power supply 8 is Vcont (V).
 バイポーラトランジスタを増幅素子とする高周波増幅器2のコレクタ電極は電圧供給回路9と接続し、電圧が供給されている。電圧供給回路9を流れるコレクタ電流Ic(mA)の一部は、検出回路5に入力される。検出回路5では、入力される電流値のレベル調整がされた後、コレクタ電流Icの値に比例する検波電流Idetectが出力される。一方、制御回路7は制御電源Vcontに応じた制御電流Icontを出力する。この動作は実施の形態1に記載したものと同様である。 The collector electrode of the high-frequency amplifier 2 having a bipolar transistor as an amplifying element is connected to the voltage supply circuit 9 and supplied with a voltage. Part of the collector current Ic (mA) flowing through the voltage supply circuit 9 is input to the detection circuit 5. In the detection circuit 5, after the level of the input current value is adjusted, a detection current Idetect proportional to the value of the collector current Ic is output. On the other hand, the control circuit 7 outputs a control current Iton according to the control power supply Vcont. This operation is the same as that described in the first embodiment.
 比較回路6では、検出回路5から出力された検波電流Idetectと制御回路7から出力された制御電流Icontを比較し、その差分に応じた制御信号をバイアス制御回路4を構成するベースバイアス回路に帰還する。電圧供給回路9を構成するコレクタバイアス回路、検出回路5、比較回路6およびバイアス制御回路4を構成するベースバイアス回路から構成される帰還回路では、検波電流Idetectと制御電流Icontとの差分が0となるように帰還制御を続け、差分が0となったところで帰還の状態が収束する。 In the comparison circuit 6, the detection current Idetect output from the detection circuit 5 is compared with the control current Iton output from the control circuit 7, and a control signal corresponding to the difference is fed back to the base bias circuit constituting the bias control circuit 4. To do. In the feedback circuit composed of the collector bias circuit constituting the voltage supply circuit 9, the detection circuit 5, the comparison circuit 6 and the base bias circuit constituting the bias control circuit 4, the difference between the detection current Idetect and the control current Iton is 0. The feedback control is continued so that the feedback state converges when the difference becomes zero.
 図5で示す増幅器においては、本発明の実施の形態1と同様に出力電力Pout(dBm)は検波電流Idetect(mA)の対数値(ログ値)と1次関数の関係になる。また制御回路7も実施の形態1と同様に、制御電源Vcont(V)と制御電流Icont(mA)のログ値が1次関数の関係となるように構成する。さらに、電圧供給回路9を構成するコレクタバイアス回路、検出回路5、比較回路6およびバイアス制御回路4を構成するベースバイアス回路から構成される帰還回路により、帰還電流Idetectと制御電流Icontの差分が0となるように制御がかけられる。この結果、制御電圧Vcontと出力電力Poutも1次関数の関係になり、制御電圧Vcontにより、出力電力Poutを制御することが可能となる。 In the amplifier shown in FIG. 5, the output power Pout (dBm) has a relationship between the logarithmic value (log value) of the detection current Idetect (mA) and a linear function as in the first embodiment of the present invention. Similarly to the first embodiment, the control circuit 7 is configured such that the log values of the control power supply Vcont (V) and the control current Itont (mA) have a linear function relationship. Further, the difference between the feedback current Idetect and the control current Iton is 0 by the feedback circuit composed of the collector bias circuit constituting the voltage supply circuit 9, the detection circuit 5, the comparison circuit 6 and the base bias circuit constituting the bias control circuit 4. Control is applied so that As a result, the control voltage Vcont and the output power Pout also have a linear function relationship, and the output power Pout can be controlled by the control voltage Vcont.
 以上のように、本発明の実施の形態2によれば、電圧供給回路9を構成するコレクタバイアス回路を流れる電流Icを検波し、電圧供給回路9を構成するコレクタバイアス回路、検出回路5、比較回路6およびバイアス制御回路4を構成するベースバイアス回路から構成される帰還回路を用いて出力電力を制御することにより、高周波増幅器2の出力部に分配器などの部品を接続する必要がなくなり、増幅器の出力損失を低減することができる。さらに各回路は小形な構成で実現できIC化も容易であるため、例えば増幅器を搭載する高周波増幅器モジュールのサイズも小さくできる。 As described above, according to the second embodiment of the present invention, the current Ic flowing through the collector bias circuit constituting the voltage supply circuit 9 is detected, and the collector bias circuit, the detection circuit 5 and the comparison circuit constituting the voltage supply circuit 9 are compared. By controlling the output power using a feedback circuit composed of a base bias circuit constituting the circuit 6 and the bias control circuit 4, it is not necessary to connect a component such as a distributor to the output section of the high frequency amplifier 2, and the amplifier The output loss can be reduced. Furthermore, since each circuit can be realized with a small configuration and can be easily integrated into an IC, for example, the size of a high-frequency amplifier module on which an amplifier is mounted can be reduced.
 さらに、本発明の実施の形態2によれば、コレクタバイアス電流を基に出力電力制御を行っているため、環境温度や素子ばらつきなど動作条件が変わっても、ベースバイアス電流を基に制御を行うのと同様に制御が容易である。 Furthermore, according to the second embodiment of the present invention, the output power control is performed based on the collector bias current. Therefore, the control is performed based on the base bias current even if the operating conditions such as environmental temperature and element variation change. Control is as easy as
 さらに、本発明の実施の形態2によれば、ベースバイアス電流Ibより大電流であるコレクタバイアス電流Icを基に出力電力制御を行っているため、比較回路6で比較する電流値が大きくなる。このため、電流比較において誤差が少なくなり、高精度な制御が可能となるという利点を有する。 Furthermore, according to the second embodiment of the present invention, since the output power control is performed based on the collector bias current Ic that is larger than the base bias current Ib, the current value to be compared by the comparison circuit 6 becomes large. For this reason, there is an advantage that errors in current comparison are reduced and high-precision control is possible.
 なお本発明の実施の形態2で示した図5は1段増幅器であるが、本発明はこれに限らない。増幅器を多段増幅器で構成し、多段増幅器の各段増幅器のいずれかを同様に制御しても同様の効果が得られる。 Although FIG. 5 shown in the second embodiment of the present invention is a one-stage amplifier, the present invention is not limited to this. The same effect can be obtained by configuring the amplifier with a multistage amplifier and controlling any one of the multistage amplifiers in the same manner.
 また本発明の実施の形態2では増幅素子としてバイポーラトランジスタを用いた場合を示したがこれに限らない。FETを増幅素子として用いた場合、また多段増幅器の各段にバイポーラトランジスタとFETを任意の組み合わせで用いた場合においても同様の効果が得られる。高周波増幅器2にFETを用いた場合、バイアス制御回路4をゲートバイアス回路で構成し、高周波増幅器2にゲート電圧Vg(V)を供給するようにすれば良い。また、電圧供給回路9をドレインバイアス回路で構成し、高周波増幅器2にドレイン電圧Vd(V)を供給するようにすれば良い。 In the second embodiment of the present invention, the case where a bipolar transistor is used as an amplifying element is shown, but the present invention is not limited to this. Similar effects can be obtained when an FET is used as an amplifying element or when a bipolar transistor and FET are used in any combination in each stage of a multistage amplifier. When an FET is used for the high-frequency amplifier 2, the bias control circuit 4 may be configured by a gate bias circuit so that the gate voltage Vg (V) is supplied to the high-frequency amplifier 2. Further, the voltage supply circuit 9 may be constituted by a drain bias circuit, and the drain voltage Vd (V) may be supplied to the high frequency amplifier 2.
 さらに本発明の実施の形態2においても、本発明の実施の形態1に示したような各種の変更、変形を行うことができ、この場合でも同様の効果が得られる。 Furthermore, in the second embodiment of the present invention, various changes and modifications as shown in the first embodiment of the present invention can be performed, and the same effect can be obtained even in this case.
 以上のように、本実施の形態では、高周波増幅器2を構成するトランジスタのコレクタ電流またはドレイン電流に基づいて増幅器の出力電力を制御できるため、分配器などが不要となり、増幅器の出力損失を低減でき効率を高められるとともに、増幅器の小型化を図ることができる。 As described above, in this embodiment, since the output power of the amplifier can be controlled based on the collector current or drain current of the transistors constituting the high frequency amplifier 2, a distributor or the like is not required, and the output loss of the amplifier can be reduced. The efficiency can be increased and the amplifier can be miniaturized.
 以上のように、本発明にかかる増幅器は、通信装置等で用いられ高周波信号を増幅する各種の増幅器に適用でき、特に高出力で出力電力の制御が必要な増幅器に適している。 As described above, the amplifier according to the present invention can be applied to various amplifiers that are used in communication devices and the like to amplify high-frequency signals, and is particularly suitable for amplifiers that require high output and control of output power.
1 高周波入力端子、2 高周波増幅器、3 高周波出力端子、4 バイアス制御回路、5 検出回路、6 比較回路、7 制御回路、8 制御電源、9 電圧供給回路、101 高周波入力端子、102 高周波増幅器、103 分配器、104 高周波出力端子、105 対数増幅器、106 制御回路、107 制御電源 1 high frequency input terminal, 2 high frequency amplifier, 3 high frequency output terminal, 4 bias control circuit, 5 detection circuit, 6 comparison circuit, 7 control circuit, 8 control power supply, 9 voltage supply circuit, 101 high frequency input terminal, 102 high frequency amplifier, 103 Distributor, 104 High frequency output terminal, 105 logarithmic amplifier, 106 control circuit, 107 control power supply

Claims (6)

  1.  高周波増幅器と、
     制御電圧に応じた電流または電圧を発生する制御回路と、
     上記高周波増幅器のベースバイアス電流またはゲートバイアス電圧を制御するバイアス制御回路と、
     上記バイアス制御回路の電流または電圧を検波し、検波した電流または電圧をレベル変換する検出回路と、
     上記制御回路から発生する電流または電圧と上記検出回路から発生する電流または電圧との差分が0となるように上記バイアス制御回路の電流または電圧を制御する比較回路と、
     を備えたことを特徴とする増幅器。
    A high frequency amplifier;
    A control circuit for generating a current or voltage according to the control voltage;
    A bias control circuit for controlling a base bias current or a gate bias voltage of the high-frequency amplifier;
    A detection circuit for detecting the current or voltage of the bias control circuit and converting the level of the detected current or voltage;
    A comparison circuit that controls the current or voltage of the bias control circuit so that the difference between the current or voltage generated from the control circuit and the current or voltage generated from the detection circuit is zero;
    An amplifier comprising:
  2.  上記高周波増幅器にバイポーラトランジスタを有し、上記バイアス制御回路は上記高周波増幅器のベースバイアス電流を制御することを特徴とする請求項1に記載の増幅器。 The amplifier according to claim 1, wherein the high-frequency amplifier includes a bipolar transistor, and the bias control circuit controls a base bias current of the high-frequency amplifier.
  3.  上記高周波増幅器に電界効果トランジスタを有し、上記バイアス制御回路は上記高周波増幅器のゲートバイアス電圧を制御することを特徴とする請求項1に記載の増幅器。 The amplifier according to claim 1, wherein the high-frequency amplifier includes a field effect transistor, and the bias control circuit controls a gate bias voltage of the high-frequency amplifier.
  4.  高周波増幅器と、
     制御電圧に応じた電流または電圧を発生する制御回路と、
     上記高周波増幅器のベースバイアス電流またはゲートバイアス電圧を制御するバイアス制御回路と、
     上記高周波増幅器のコレクタまたはドレインに電圧を供給する電圧供給回路と、
     上記電圧供給回路から流れるコレクタ電流またはドレイン電流を検波し、検波した電流を電流または電圧にレベル変換する検出回路と、
     上記制御回路から発生する電流または電圧と上記検出回路から発生する電流または電圧との差分が0となるように上記バイアス制御回路の電流または電圧を制御する比較回路と、
     を備えたことを特徴とする増幅器。
    A high frequency amplifier;
    A control circuit for generating a current or voltage according to the control voltage;
    A bias control circuit for controlling a base bias current or a gate bias voltage of the high-frequency amplifier;
    A voltage supply circuit for supplying a voltage to the collector or drain of the high-frequency amplifier;
    A detection circuit for detecting a collector current or a drain current flowing from the voltage supply circuit, and level-converting the detected current into a current or a voltage;
    A comparison circuit that controls the current or voltage of the bias control circuit so that the difference between the current or voltage generated from the control circuit and the current or voltage generated from the detection circuit is zero;
    An amplifier comprising:
  5.  上記高周波増幅器にバイポーラトランジスタを有し、上記バイアス制御回路は上記高周波増幅器のベースバイアス電流を制御し、上記電圧供給回路は上記高周波増幅器のコレクタに電圧を供給するとともに、上記検出回路は上記電圧供給回路から流れるコレクタ電流を検波することを特徴とする請求項4に記載の増幅器。 The high frequency amplifier includes a bipolar transistor, the bias control circuit controls a base bias current of the high frequency amplifier, the voltage supply circuit supplies a voltage to the collector of the high frequency amplifier, and the detection circuit supplies the voltage supply The amplifier according to claim 4, wherein the collector current flowing from the circuit is detected.
  6.  上記高周波増幅器に電界効果トランジスタを有し、上記バイアス制御回路は上記高周波増幅器のゲートバイアス電圧を制御し、上記電圧供給回路は上記高周波増幅器のドレインに電圧を供給するとともに、上記検出回路は上記電圧供給回路から流れるドレイン電流を検波することを特徴とする請求項4に記載の増幅器。 The high frequency amplifier includes a field effect transistor, the bias control circuit controls a gate bias voltage of the high frequency amplifier, the voltage supply circuit supplies a voltage to a drain of the high frequency amplifier, and the detection circuit includes the voltage The amplifier according to claim 4, wherein the drain current flowing from the supply circuit is detected.
PCT/JP2014/000731 2014-02-13 2014-02-13 Amplifier WO2015121891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/000731 WO2015121891A1 (en) 2014-02-13 2014-02-13 Amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/000731 WO2015121891A1 (en) 2014-02-13 2014-02-13 Amplifier

Publications (1)

Publication Number Publication Date
WO2015121891A1 true WO2015121891A1 (en) 2015-08-20

Family

ID=53799666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000731 WO2015121891A1 (en) 2014-02-13 2014-02-13 Amplifier

Country Status (1)

Country Link
WO (1) WO2015121891A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107921A (en) * 2018-12-25 2020-07-09 パナソニック株式会社 High-frequency power amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149108A (en) * 1988-11-30 1990-06-07 Nec Corp Gate voltage control circuit
JPH08501197A (en) * 1993-03-26 1996-02-06 クァルコム・インコーポレーテッド Power amplifier bias control circuit and method
JP2006295551A (en) * 2005-04-11 2006-10-26 Mitsubishi Electric Corp High-output amplifier and multistage high-output amplifier
WO2008136124A1 (en) * 2007-04-26 2008-11-13 Panasonic Corporation Amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149108A (en) * 1988-11-30 1990-06-07 Nec Corp Gate voltage control circuit
JPH08501197A (en) * 1993-03-26 1996-02-06 クァルコム・インコーポレーテッド Power amplifier bias control circuit and method
JP2006295551A (en) * 2005-04-11 2006-10-26 Mitsubishi Electric Corp High-output amplifier and multistage high-output amplifier
WO2008136124A1 (en) * 2007-04-26 2008-11-13 Panasonic Corporation Amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107921A (en) * 2018-12-25 2020-07-09 パナソニック株式会社 High-frequency power amplifier
JP7325956B2 (en) 2018-12-25 2023-08-15 ヌヴォトンテクノロジージャパン株式会社 RF power amplifier

Similar Documents

Publication Publication Date Title
KR100937308B1 (en) Power control circuit for accurate control of power amplifier output power
JP4330549B2 (en) High frequency power amplifier
TWI424303B (en) Circuit and method for generating a reference voltage and portable transceiver having a circuit for the same
US9685911B2 (en) Power amplifier module
US10396717B2 (en) Power control method, device and communication terminal for radio frequency power amplifier
JP2014207651A (en) Radio frequency amplifier circuit and power amplifier module
JP6187444B2 (en) Power amplification module
US20180287572A1 (en) Power source circuit
CN108900167B (en) Impedance compensation circuit and power amplification compensation circuit
WO2018161678A1 (en) Power control circuit and power amplifier circuit
JP2007067820A (en) High frequency power amplifier
US20140306761A1 (en) Power amplifier
US7782133B2 (en) Power amplifier with output power control
US8816774B2 (en) Power amplifier system
US9072044B2 (en) Push-pull amplifier with quiescent current adjuster
WO2015121891A1 (en) Amplifier
KR101376898B1 (en) Bias controlling apparatus
CN113994590B (en) Power amplifying device
US9197176B2 (en) Amplification device and transmitter
JP2016116022A (en) High output amplifier
WO2018139399A1 (en) Power amplifier module, method for controlling power amplifier module, and high-frequency front end circuit
KR100824773B1 (en) Method for linear power amplification
JP6494908B2 (en) High frequency amplifier
JP2005217558A (en) High frequency power amplifier circuit
JP2006311038A (en) Amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP