WO2015120776A1 - Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells - Google Patents

Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells Download PDF

Info

Publication number
WO2015120776A1
WO2015120776A1 PCT/CN2015/072232 CN2015072232W WO2015120776A1 WO 2015120776 A1 WO2015120776 A1 WO 2015120776A1 CN 2015072232 W CN2015072232 W CN 2015072232W WO 2015120776 A1 WO2015120776 A1 WO 2015120776A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
hepatocyte
iheps
cell
expression
Prior art date
Application number
PCT/CN2015/072232
Other languages
French (fr)
Inventor
Hongkui Deng
Yuanyuan DU
Yan Shi
Jun JIA
Jinlin Wang
Chengang XIANG
Nan SONG
Jun Xu
Ming Yin
Original Assignee
Peking University
Beijing Vitalstar Biotechnology Co., Ltd.
Stem Cell And Regenerative Medicine Translational Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Beijing Vitalstar Biotechnology Co., Ltd., Stem Cell And Regenerative Medicine Translational Research Institute filed Critical Peking University
Priority to EP15748953.5A priority Critical patent/EP3105315B1/en
Priority to KR1020167025386A priority patent/KR101897001B1/en
Priority to JP2016568991A priority patent/JP6535028B2/en
Priority to CA2939525A priority patent/CA2939525C/en
Priority to US15/118,359 priority patent/US11613735B2/en
Priority to AU2015218082A priority patent/AU2015218082B2/en
Publication of WO2015120776A1 publication Critical patent/WO2015120776A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/407Liver; Hepatocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention generally relates to use of hepatocyte fate conversion and maturation factors for reprograming eukaryotic cells into hepatocyte cells.
  • Functional human cell types are in high demand in the field of regenerative medicine and drug development. They show great potential for repairing or replacing diseased and damaged tissues and can be valuable tools for pharmaceutical applications.
  • the application of functional human cell types in these areas is limited due to a shortage of donors (Castell et al., Expert Opin. Drug Metab. Toxicol. 2: 183–212 (2006) ) .
  • novel strategies for generating functionally mature cells are in high demand.
  • lineage reprogramming has emerged as an effective method for changing the fate of somatic cells (Vierbuchen and Wernig, Mol. Cell, 47: 827–838 (2012) ) .
  • one cell type can be converted directly to the final mature state of another cell type and can bypass its intermediate states during lineage reprogramming. Consequently, functionally mature cells may be obtained using this strategy and may potentially provide a promising source of functional human cells.
  • human hepatocytes are the most significant in vitro model for evaluating drug metabolism and are potentially widely applicable in pharmaceutical development. Because unacceptable metabolic and toxicity effects on the liver are largely responsible for the failure of new chemical entities in drug discovery (Baranczewski et al., Pharmacol. Rep., 58: 453–472 (2006) ) , it is essential to use human hepatocytes, which serve as the closest in vitro model of human liver in assays of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) , to identify compounds that display favorable pharmacokinetics (Sahi et al., Curr. Drug Discov. Technol., 7: 188–198 (2010) ) .
  • Human hepatocytes have been derived from human pluripotent stem cells by directed differentiation (Cai et al., Hepatology, 45: 1229–1239 (2007) ; Ogawa et al., Development, 140: 3285–3296 (2013) ; Takebe et al., Nature, 499: 481–484 (2013) ; Zhao et al., Cell Res., 23: 157–161 (2013) ) .
  • This strategy has progressed quickly in recent years, although the immature phenotype of the cells derived from pluripotent stem cells remains a technological obstacle.
  • mouse hepatocytes have been transdifferentiated from fibroblasts (Huang et al., Nature, 475: 386-389 2011; Sekiya and Suzuki, Nature, 475: 390-393 (2011) )
  • these cells still express several hepatoblast markers such as ⁇ -fetoprotein (AFP) and lack the expression of several key cytochrome P450 enzymes (CYPs) that are responsible for drug metabolism, suggesting a functionally immature phenotype for these cells (Willenbring, Cell Stem Cell, 9: 89–91 (2011) ) .
  • AFP ⁇ -fetoprotein
  • CYPs cytochrome P450 enzymes
  • kits for reprograming a non-hepatocyte into an iHep It is further an object of the present invention to provide kits for reprograming a non-hepatocyte into an iHep.
  • a method for inducing reprograming of a cell of a first type which is not a hepatocyte (i.e., non-hepatocyte cells) , into a hepatocyte-like cell, as indicated by functional hepatic drug metabolizing and transporting capabilities, is disclosed. These cells are denoted herein as induced hepatocytes (iHeps) .
  • iHeps induced hepatocytes
  • the non-hepatocyte is treated to upregulate hepatic fate conversion and maturation factors ( “collectively, “Hepatocyte inducing factors” ) , cultured in somatic cell culture medium (transformation phase) , expanded in hepatocyte cell culture medium (expansion phase) and further cultured in hepatocyte maturation medium (maturation phase) for a sufficient period of time to convert the cell into a cell with hepatocyte-like properties.
  • Hepatocyte inducing factors somatic cell culture medium
  • expansion phase expanded in hepatocyte cell culture medium
  • maturation phase hepatocyte maturation medium
  • the non-hepatocyte cell is transformed to overexpress at least one of the following Hepatocyte inducing factors: Hepatocyte nuclear factor 1-alpha (HNF1A) , Hepatocyte nuclear factor 4-alpha (HNF4A) , and Hepatocyte nuclear factor 6-alpha (HNF6) , Activating transcription factor 5 (ATF5) , Prospero homeobox protein 1 (PROX1) , and CCAAT/enhancer-binding protein alpha (CEBPA) .
  • HNF1A Hepatocyte nuclear factor 1-alpha
  • HNF4A Hepatocyte nuclear factor 4-alpha
  • HNF6 Hepatocyte nuclear factor 6-alpha
  • Activating transcription factor 5 ATF5
  • PROX1 Prospero homeobox protein 1
  • CEBPA CCAAT/enhancer-binding protein alpha
  • the method further includes upregulating MYC, and/or downregulating p53 gene expression and/or protein activity.
  • Non- hepatocytes (treated to upregulate hepatocyte inducing factors, and optionally upregulate MYC and optionally, downregulate p53) are then expanded in vitro to obtain iHeps.
  • transfected cells are cultured in somatic cell culture medium, for example, DMEM, for a period of at least 7 days, until about 80%confluence.
  • HCM hepatocyte cell culture medium
  • iHeps Induced hepatocytes
  • the cells are identified as iheps, based on known structural and functional properties of hepatocytes.
  • iHeps functional induced hepatocytes
  • the induced hepatocytes are human induced hepatocytes (hiHeps) .
  • iHeps express at least one hepatocyte marker selected from the group consisting of albumin, Cytochrome P450 (Cyp) 3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19.
  • iHeps express at least two, three or four or five or six of CYPB6, CYP3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19.
  • Transplanted hiHeps repopulate up to 30%of the livers of Tet-uPA/Rag2 -/- ⁇ c -/- mice and secrete more than 300 mg/ml human albumin in vivo.
  • human hepatocytes with drug metabolic function can be generated by lineage reprogramming, thus providing a cell resource for in vitro drug development and in vivo applications within the context of liver disease/failure.
  • Kits for inducing reprograming of non-hepatocytes cells into iHeps are also disclosed.
  • the kit includes factors which upregulate the Hepatocyte inducing factors disclosed herein, and optionally, factors which upregulate MYC and downregulate p53 gene expression and/or protein levels.
  • Fig. 1D is a bar graph showing a quantitative analysis of the abundance of hepatic transcription factors in four individual F-HEPs.
  • Fig. 1E is a schematic view of the hiHep reprogramming diagram.
  • Fig. 1 F shows determination of the proliferation rate of the induced cells at different stages.
  • Upper panel MTT assay.
  • Day 0 is set as the day when the induced cells were transferred to HCM (before p53 siRNA-GFP silence) or modified WEM (after p53 siRNA-GFP silence) .
  • Lower panel Calculation of doubling time of the induced cells at the expansion stage (before p53 siRNA-GFP silence) .
  • Td doubling time.
  • Fig. 1G is a bar graph showing a quantitative analysis of ALBUMIN expression among hiHeps, HEFs, and F-HEPs. Figs.
  • FIG. 1H and 1I show reprogramming efficiency measured by flow cytometry analysis marked by ALB and AAT.
  • n 3.
  • APC allophycocyanin.
  • FIG. 1J is a bar graph showing a quantitative analysis of Albumin secretion among hiHeps, HEFs, and F-HEPs by ELISA.
  • n 3.
  • Fig. 2A shows endogenous gene expression analysis of hepatic transcription factors and fibroblast markers in hiHeps by RT-PCR.
  • Fig. 2B shows the silence of exogenous genes detected by RT-PCR.
  • Fig. 2C shows relative expression of MYC during the hepatic conversion process measured by qRT-PCR. Day 7 and day 14, 7 and 14 days post infection.
  • n 2.
  • Figs. 3A-3C show a quantitative analysis of the expression of drug metabolic phase I (Fig. 3A) and phase II enzymes (Fig. 3B) and phase III transporters (Fig. 3C) in HEFs, HepG2 cells, ES-Heps, hiHeps, and F-HEPs.
  • the relative expression of each gene was normalized to HEFs; if not detected, it was normalized to HepG2 cells.
  • Fig. 3A-3C show a quantitative analysis of the expression of drug metabolic phase I (Fig. 3A) and phase II enzymes (Fig. 3B) and phase III transporters (Fig. 3C) in HEFs, HepG2 cells, ES-Heps, hiHeps, and F-HEPs.
  • the relative expression of each gene was normalized to HEFs; if not detected
  • Fig. 3E is a bar graph showing quantitative comparison of phase I, phase II, phase III mRNA in hiHeps and HEFs to F-HEPs.
  • Fig. 3F is a bar graph showing quantitative comparison of nuclear receptors mRNA in hiHeps to F-HEPs.
  • Fig. 4A shows the metabolic activities of CYP3A4 (3A4-T, testosterone; 3A4-M, midazolam) , CYP1A2 (phenacetin) , CYP2B6 (bupropion) , CYP2C9 (diclofenac) , and CYP2C19 [ (S) -mephenytoin] in hiHeps, ES-Heps, F-HEPs1, F-HEPs2, HepG2 cells, and HEFs as determined by HPLC-MS.
  • n 3.
  • Two batches of freshly isolated primary human hepatocytes F-HEPs1 and F-HEPs2) were applied as the positive control. The results are presented as pmol/min per million cells.
  • Fig. 4D is a bar graph showing gene expression analysis of hepatic genes after hiHeps formation by qRT-PCR. The relative expression was normalized to that of day 0. Data are presented as mean +/-s. d.
  • Fig. 5A is a line graph showing the level of human albumin in in mouse serum was monitored by ELISA.
  • Fig. 5C shows flow cytometry analysis of the engraftment efficiencies of hiHeps.
  • Mouse 1 and mouse 2 secreted human ALB at 267 and 313 ug/ml, respectively.
  • HN human nuclei
  • PE phycoerythrin.
  • a "culture” means a population of cells grown in a medium and optionally passaged.
  • a cell culture may be a primary culture (e.g., a culture that has not been passaged) or may be a secondary or subsequent culture (e.g., a population of cells which have been subcultured or passaged one or more times) .
  • downstreamregulation refers to the process by which a cell decreases the quantity and/or activity of a cellular component, for example, DNA, RNA or protein, in response to an external variable.
  • ESC embryonic stem cell
  • ES-Heps induced hepatocytes derived according to the methods disclosed in Zhao, et al., Cell Res., 23 (1) : 157-161 (2013) .
  • iHeps functional induced hepatocytes
  • iHeps refers to induced hepatocytes which show the activity of at least one of CYP3A4, CYP2C9, or CYP2C19, at levels 50%higher than the activity of the same enzyme in ES-Heps obtained from the same organism.
  • the activity of the enzyme can be 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%or more, higher than the activity in ES-Heps.
  • the term “host cell” refers to non-hepatocytes eukaryotic cells into which a recombinant nucleotide, such as a vector, can be introduced.
  • iHeps induced hepatocytes
  • isolated or “purified” when referring to hiHEPS means chemically induced pluripotent stem cells at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%free of contaminating cell types such as non-hepatocyte cells.
  • the isolated iheps may also be substantially free of soluble, naturally occurring molecules.
  • oligonucleotide and “polynucleotide” generally refer to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • polynucleotides as used herein refers to, among others, single-and double- stranded DNA, DNA that is a mixture of single-and double-stranded regions, single-and double-stranded RNA, and RNA that is mixture of single-and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single-and double-stranded regions.
  • nucleic acid or “nucleic acid sequence” also encompasses a polynucleotide as defined above.
  • polynucleotide as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • the strands in such regions may be from the same molecule or from different molecules.
  • the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
  • One of the molecules of a triple-helical region often is an oligonucleotide.
  • polynucleotide includes DNAs or RNAs as described above that contain one or more modified bases.
  • DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein.
  • DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples are polynucleotides as the term is used herein.
  • percent (%) sequence identity is defined as the percentage of nucleotides or amino acids in a candidate sequence that are identical with the nucleotides or amino acids in a reference nucleic acid sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared can be determined by known methods.
  • %sequence identity of a given nucleotides or amino acids sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given sequence C that has or comprises a certain %sequence identity to, with, or against a given sequence D) is calculated as follows:
  • transformed and transfected encompass the introduction of a nucleic acid (e.g. a vector) into a cell by a number of techniques known in the art.
  • a “vector” is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
  • the vectors described herein can be expression vectors.
  • an “expression vector” is a vector that includes one or more expression control sequences.
  • Reprogramming refers to the conversion of a one specific cell type to another. For example, a cell that is not a hepatocyte cab be reprogrammed into a cell that is morphologically and functionally like a hepatocyte.
  • treating a cell/cells refers to contacting the cell (s) with factors such as the nucleic acids disclosed herein to downregulate or upregulate the quantity and/or activity of a cellular component, for example, DNA, RNA or protein. This phrase also encompasses contacting the cell (s) with any factors including proteins and small molecules that can downregulate or upregulate the gene/protein of interest.
  • upregulate expression of means to affect expression of, for example to induce expression or activity, or induce increased/greater expression or activity relative to an untreated cell.
  • upregulation refers to the process by which a cell increases the quantity and/or activity of a cellular component, for example, DNA, RNA or protein, in response to an external variable.
  • Variant refers to a polypeptide or polynucleotide that differs from a reference polypeptide or polynucleotide, but retains essential properties.
  • a typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical.
  • a variant and reference polypeptide may differ in amino acid sequence by one or more modifications (e.g., substitutions, additions, and/or deletions) .
  • a substituted or inserted amino acid residue may or may not be one encoded by the genetic code.
  • a variant of a polypeptide may be naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally.
  • hepatocytes can be generated from fibroblasts by upregulating at least one factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1, and CEBPA, as well as MYC genes mRNA or protein levels. All known functional variants and isoforms of the hepatocyte inducing factors disclosed herein are contemplated. These known sequences are readily available in the National Center for Biotechnology Information Genebak database.
  • p53 activity is additionally, downregulated as indicated by a downregulation of the p53 gene, mRNA and/or protein levels.
  • HNF1A (also known as TCF1) is a tumor suppressor gene involved in liver tumorigenesis. It is located on the long arm of chromosome 12, encoded by 10 exons, spanning 23 kilobases, and is expressed in various tissues, including liver, kidney, pancreas, and digestive tract. It encodes a transcription factor HNF1, which, in the liver, is implicated in hepatocyte differentiation and is required for expression of certain liver-specific genes, including albumin, ⁇ -fibrinogen, and ⁇ 1-antitrypsin. Courtois, et al., Science, 30 (4827: 688-692 (1987) . The HNF1A gene is conserved in chimpanzee, Rhesus monkey, dog, cow, mouse, rat, chicken, zebrafish, and frog.
  • a nucleotide encoding HNF1A is represented below by SEQ ID NO: 1.
  • a nucleic acid encoding HNF1A can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 1 or a functional fragment or variant of SEQ ID NO: 1.
  • HNF1A A number of naturally occurring variants of nucleic acids encoding HNF1A and their activities are known in the art, and include, but are not limited to, the transcript variant for HNF1A as represented by GenBank Accession No: XM_005253931.1.
  • HNF6 was originally characterized as a transcriptional activator of the liver promoter of the 6-phosphofructo-2-kinase (pfk-2) gene, is expressed in liver, brain, spleen, pancreas, and testis. Lannoy, et al., J. Biol. Chem., 273: 13552-13562 (1998) . Alternative splicing results in multiple transcript variants.
  • HNF6 is represented by SEQ ID NO: 2.
  • a nucleic acid encoding HNF6 can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 2 or a functional fragment or variant of SEQ ID NO: 2.
  • HNF6 hepatocyte nuclear factor 6
  • Hepatocyte nuclear factor 4 alpha (HNF4alpha, NR2A1, gene symbol HNF4A) is a highly conserved member of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors (Sladeck, et al., Genes Dev., 4 (12B) : 2353-65 (1990) .
  • HNF4A1 is expressed in liver (hepatocytes) , kidney, small intestine, etc.
  • HNF4A2 is the most predominant isoform in the liver.
  • HNF4A regulates most if not all of the apolipoprotein genes in the liver and regulates the expression of many cytochrome P450 genes (e.g., CYP3A4, CYP2D6) and Phase II enzymes and hence may play a role in drug metabolism (Gonzalez, et al., Drug Metab. Pharmacokinet., 23 (1) : 2-7 (2008) .
  • HNF4 is represented by SEQ ID NO: 3.
  • a nucleic acid encoding HNF4 can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO:3 or a functional fragment or variant of SEQ ID NO: 3.
  • a number of naturally occurring variants of nucleic acids encoding HNF4 and their activities are known in the art.
  • a human hepatocyte nuclear factor 4 gene is described under NCBI GenBank Accession No. BC137539.1.
  • ATF5 encodes activating transcription factor 5.
  • ATF5 transcripts and protein are expressed in a wide variety of tissues, in particular, high expression of transcripts in liver.
  • ATF5 is represented by SEQ ID NO: 4.
  • a nucleic acid encoding ATF5 can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 4 or a functional fragment or variant of SEQ ID NO: 4.
  • a number of naturally occurring variants of nucleic acids encoding ATF5 and their activities are known in the art.
  • a human ATF5 transcript variant 3 (mRNA) is described under Genbank Accession No. NM_001290746.1 (Abe, et al., J. Biol. Chem., 289(7) : 3888-3900 (2014) ) .
  • PROX1 is represented by SEQ ID NO: 5.
  • a nucleic acid encoding PROX1 can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 5 or a functional fragment or variant of SEQ ID NO: 5.
  • a number of naturally occurring variants of nucleic acids encoding PROX1 and their activities are known in the art.
  • CEBPA encodes a basic leucine zipper (bZIP) transcription factor which can bind as a homodimer to certain promoters and enhancers.
  • bZIP basic leucine zipper
  • CEBPA is represented by SEQ ID NO: 6.
  • a nucleic acid encoding CEBPA can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 6 or a functional fragment or variant of SEQ ID NO: 6.
  • a number of naturally occurring variants of nucleic acids encoding CEBPA and their activities are known in the art.
  • Myc (c-Myc) is a regulator gene that codes for a transcription factor, which is multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis and cellular transformation.
  • MYC is represented by SEQ ID NO: 7.
  • the Hepatocyte inducing factors are introduced into a host cell using suitable transformation vectors.
  • Nucleic acids such as those described above, can be inserted into vectors for expression in cells.
  • a “vector” is a replicon, such as a plasmid, phage, virus or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
  • Vectors can be expression vectors.
  • An “expression vector” is a vector that includes one or more expression control sequences, and an “expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
  • Nucleic acids in vectors can be operably linked to one or more expression control sequences.
  • the control sequence can be incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest.
  • expression control sequences include promoters, enhancers, and transcription terminating regions.
  • a promoter is an expression control sequence composed of a region of a DNA molecule, typically within 100 nucleotides upstream of the point at which transcription starts (generally near the initiation site for RNA polymerase II) . To bring a coding sequence under the control of a promoter, it is necessary to position the translation initiation site of the translational reading frame of the polypeptide between one and about fifty nucleotides downstream of the promoter.
  • Enhancers provide expression specificity in terms of time, location, and level. Unlike promoters, enhancers can function when located at various distances from the transcription site. An enhancer also can be located downstream from the transcription initiation site.
  • a coding sequence is “operably linked” and “under the control” of expression control sequences in a cell when RNA polymerase is able to transcribe the coding sequence into mRNA, which then can be translated into the protein encoded by the coding sequence.
  • Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalo virus, retroviruses, vaccinia viruses, adenoviruses, lentiviruses and adeno-associated viruses.
  • Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, WI) , Clontech (Palo Alto, CA) , Stratagene (La Jolla, CA) , and Invitrogen Life Technologies (Carlsbad, CA) .
  • Cells that can be reprogrammed include embryonic stem cells (ESC) , induced pluripotent stem cells (iPSC) , fibroblast cells, adipose-derived stem cells (ADSC) , neural derived stem cells, blood cells, keratinocytes, intestinal epithelial cells and other non-hepatocyte somatic cells.
  • the non-hepatocyte cell is a fibroblast cell, for example an embryonic fibroblasts (HEFs) or foreskin fibroblasts.
  • the cells are preferably obtained from a mammal, for example, rat, mice, monkeys, dogs, cats, cows, rabbits, horses, pigs.
  • the cells are obtained from a human subject.
  • iHeps are disclosed, which are obtained for example, by a method which includes treating non-hepatocyte cells to overexpress the hepatic fate conversion factors HNF1A, HNF4A, and HNF6 along with the maturation factors ATF5, PROX1, and CEBPA.
  • the non-hepatocyte is treated to overexpress at least one hepatocyte inducing factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1, and CEBPA.
  • the non-hepatocyte is treated to overexpress or transformed to express at least 2, at least 3, at least 4 or at least 5 of the hepatocyte inducing factors.
  • the cell is transformed to overexpress all 6 Hepatocyte inducing factors.
  • iHeps show typical and functional characteristics of hepatocytes in the organisms from which the cell induced was obtained. For example, iHeps show the typical morphology for primary human hepatocytes. iHeps express at least one hepatic marker selected from the group consisting of albumin, Cytochrome P450 (Cyp) 3A4 and CypB6. Like primary human hepatocytes, hiHeps express an additional spectrum of phase I and II drug-metabolizing enzymes and phase III drug transporters and albumin. The metabolic activities of at least one of CYP3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19 are comparable between hiHeps and freshly isolated primary human hepatocytes.
  • the iHeps are functional as determined by the metabolic activity of these enzymes being at least 50%higher than the activity of the same enzyme in ES-Heps obtained from the same organism.
  • the activity of the enzyme can be 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%or more, higher than the activity in ES-Heps.
  • the activities of all these CYP enzymes in hiHeps are at least 100-fold higher than that of ES-Heps.
  • MYC expression levels in iHeps are lower than the levels found in normal hepatocytes in the corresponding organism as measured for example, by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) , i.e., if the donor organism for the non-hepatocyte cell to be induced is a human subject, the levels are compared to normal hepatocytes found in humans.
  • RT-qPCR quantitative reverse transcriptase polymerase chain reaction
  • Functional hiHeps may also express at least one drug metabolic phase II enzyme or phase II transporter selected from the group consisting of UDP glucuronosyltransferase (UGT) 1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, GSTA1, UGT2B7, UGT2515, Microsomal glutathione-S-transferase 1 (MGST1) , nicotinamide N-methyltransferase (NNMT) , NTCP, organic anion-transporting polypeptide 1B3 (OATP1B3) , Multidrug resistance protein (MRP) 6, MRP2, Flavin-containing monooxygenase 5 (FMO5) , Monoamine oxidase (MAO) A, MAOB, and epoxide hydrolase 1 (EPHX1) .
  • UDP glucuronosyltransferase UDP glucuronosyltransferase
  • hiHeps additionally express at least one epithelial cell marker, for example, E-cadherin, and where the cell being induced is a fibroblast, the hiHeps obtained following induction of fibroblasts using the methods disclosed herein, do not express the fibroblast marker genes such as COL1A1, PDGFRB, THY1 and ⁇ -fetoprotein as measured for example by RT-PCR.
  • hiHeps possess at least one characteristic selected from the group consisting of: albumin secretion, LDL uptake, indocyanine green (ICG) incorporation from cell culture medium and exclusion of the absorbed ICG after withdrawal, glycogen synthesis and storage, and fatty droplet accumulation.
  • albumin secretion LDL uptake
  • ICG indocyanine green
  • Huang, et al., Nature, 475: 386-389 (2011) disclose the direct induction of hepatocyte-like cells from mouse tail-tip fibroblasts by transduction of Gata4, Hnf1 ⁇ and Foxa3, and inactivation of p19 (Arf) . Induced cells show typical epithelial morphology. Sekiya and Suzuki, Nature, 475: 390-393 (2011) ) , identified three specific combinations of two transcription factors, Hnf4 ⁇ plus Foxa1, Foxa2 or Foxa3, that can convert mouse embryonic and adult fibroblasts into cells that resemble hepatocytes in vitro.
  • hESCs human embryonic stem cells
  • hESCs human embryonic stem cells
  • Human ESCs were first differentiated into definitive endoderm cells by 3 days of Activin A treatment.
  • fibroblast growth factor-4 and bone morphogenetic protein-2 in the culture medium for 5 days induced efficient hepatic differentiation from definitive endoderm cells, followed by 10 days of further in vitro maturation.
  • Zhao, et al., Cell Res., 23 (1) : 157-161 (2013) disclose a method of promoting the maturation of hESCs into cells with hepatocyte-like properties by inducing expression of PROX1 and HNF6.
  • the non-hepatocyte is reprogrammed into an iHep by upregulating Hepatocyte inducing factors in the cell, optionally in combination with upregulating MYC and downregulating p53 and culturing the cells for a sufficient period of time as disclosed herein to convert the cell into a cell with hepatocyte-like properties.
  • the non-hepatocyte cells to be induced are obtained from the donor animal using methods known in the art.
  • the cells are placed in culture and cultured using methods that are known in the art.
  • the reprograming method includes the following steps: (a) treat the cells to upregulate hepatocyte inducing factors and culture the cells in cell culture medium (transformation phase) ; (b) replate and culture the cells in HCM (expansion phase) , and (c) a maturation phase, where cells are cultured in a hepatocyte maturation medium.
  • a schematic for the disclosed method is shown in Fig. 1E.
  • the cells are treated to upregulate at least one hepatocyte inducing factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1, and CEBPA.
  • the cells are additionally treated to upregulate MYC and/or downregulate p53.
  • the treated cells are cultured for a sufficient length of time in conventional cell culture medium, for example, Dulbecco's Modified Eagle's medium (DMEM) .
  • DMEM Dulbecco's Modified Eagle's medium
  • the cells are cultured for at least 7 days in this first step, to about 80%confluence.
  • the cells then replated and expanded in HCM for a period of about 15 to 30 days, preferably for about 18-30 days, and more preferably, for about 18 days (expansion phase) , and then transferred to modified William’s E medium for a period of about 5 days (maturation phase) , following which induced hepatocytes are harvested.
  • p53 siRNA is downregulated at the end of the expansion phase, for example at about day 20-30 post infection, preferably, at about day 25 post infection, before the cells are transferred into the modified William’s E medium (Fig. 1E) .
  • the silence is mainly caused by the introduction of hepatic transcription factors.
  • HNF4A and CEBPA can substantially decrease proliferative rate of iHeps.
  • the self-establishment of endogenous hepatic maturation signaling network also attenuate the reliability of exogenous expression of other transcription factors (Fig2) .
  • the method includes a step confirming that the non-hepatocytes have acquired hepatocyte-like properties, using morphological and functional characteristics as well as gene expression.
  • Morphological confirmation methods include the confirmation of morphological characteristics specific for hepatocytes such as cells having a plurality of nuclei observed by a phase microscope and granules rich in cytoplasm observed by an electron microscope, in particular, the presence of glycogen granules.
  • Treated cells can also be identified as induced hepatocytes using one or more of the following characteristics: their ability to express ALB at a level comparable to that of primary human hepatocytes; expression of one or more of the five major cytochrome P450 enzymes, CYP3A4, CYP1A2, CYP2C9, and CYP2C19; expression of phase II enzyme or phase II transporter selected from the group consisting of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, GSTA1, UGT2B7, UGT2515, MGST1, NNMT, NTCP, OATP1B3, MRP6, MRP2, FMO5, MAOA, MAOB, and EPHX1.
  • phase II enzyme or phase II transporter selected from the group consisting of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, GSTA1, UGT2B7, UGT2515, MGST1, NNMT, NTCP,
  • Successful induction can be confirmed by the presence of an epithelial marker and the absence of a marker for the cell which is being induced.
  • a marker for the cell which is being induced for example, a fibroblast
  • additional indication that the cells has been induced into a hepatocyte-like cell can be expression of at least one epithelial cell marker, for example, E-cadherin, and absence of expression of the fibroblast marker genes such as COL1A1, PDGFRB, THY1 and ⁇ -fetoprotein as measured for example by RT-PCR.
  • Hepatocyte inducing factors and MYC are upregulated by contacting the non-hepatocyte with factors which upregulate gene expression and or protein levels/activity of the Hepatocyte inducing Factors and MYC. These factors include, but are not limited to nucleic acids, proteins and small molecules.
  • upregulation may be accomplished by exogenously introducing the nucleic acids encoding the hepatocyte inducing Factor (s) and optionally, MYC, into the non-hepatocyte (host cell) .
  • the nucleic acid may be homologous or heterologous.
  • the nucleic acid molecule can be DNA or RNA, preferably, mRNA.
  • the nucleic acid molecule is introduced into the non-hepatocyte cell by lentiviral expression.
  • the host cell is transformed to overexpress at least one hepatocyte inducing factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1, and CEBPA.
  • the cell is additionally transformed overexpress the proliferation factor MYC.
  • the cell is transformed to express at least 2, at least 3, at least 4 or at least 5 of the hepatocyte inducing factors.
  • the cell is transformed to overexpress all 6 Hepatocyte inducing factors.
  • Vectors containing nucleic acids to be expressed can be transferred into host cells.
  • Nucleic acids can be transfected into mammalian cells by techniques including, for example, calcium phosphate co-precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation, or microinjection.
  • the Ex vivo methods disclosed herein can include, for example, the steps of harvesting cells from a subject/donor, culturing the cells, transducing them with an expression vector, and maintaining the cells under conditions suitable for expression of the encoded polypeptides. These methods are known in the art of molecular biology.
  • Upregulation may also be accomplished by treating the cells with factors known to increase expression of genes encoding the Hepatocyte inducing factors/MYC and/or factors known to increase the corresponding protein levels.
  • factors known to increase expression of genes encoding the Hepatocyte inducing factors/MYC and/or factors known to increase the corresponding protein levels For example, Zhao, et al., Cell Res., 23 (1) : 157-161 (2013) , disclose a method for promoting the emergence of PROX1 and HNF6-expressing cells from hESCs using the induction factors FGF7, BMP2 and BMP4.
  • Known factors including small molecules and/or proteins which upregulate Hepatocyte inducing factors gene expression or protein levels can also be use.
  • p53 can be downregulated by treating cells to downregulate p53 gene expression, mRNA levels or protein levels. This step includes contacting the cells with any molecule that is known to downregulate p53 gene expression, mRNA or protein levels, including but not limited to nucleic acid molecules, small molecules and protein.
  • p53 gene expression can be inhibited using a functional nucleic acid, or vector encoding the same, selected from the group consisting of antisense oligonucleotides, siRNA, shRNA, miRNA, EGSs, ribozymes, and aptamers.
  • a functional nucleic acid selected from the group consisting of antisense oligonucleotides, siRNA, shRNA, miRNA, EGSs, ribozymes, and aptamers.
  • p53 gene expression is inhibited using siRNA, shRNA, or miRNA.
  • RNA interference RNA interference
  • dsRNA double stranded RNA
  • dsRNA double stranded small interfering RNAs 21-23 nucleotides in length that contains 2 nucleotide overhangs on the 3’ ends
  • siRNA double stranded small interfering RNAs
  • RISC RNAi induced silencing complex
  • Short Interfering RNA is a double-stranded RNA that can induce sequence-specific post-transcriptional gene silencing, thereby decreasing or even inhibiting gene expression.
  • a siRNA triggers the specific degradation of homologous RNA molecules, such as mRNAs, within the region of sequence identity between both the siRNA and the target RNA.
  • WO 02/44321 discloses siRNAs capable of sequence-specific degradation of target mRNAs when base-paired with 3' overhanging ends, herein incorporated by reference for the method of making these siRNAs.
  • siRNA can be chemically or in vitro-synthesized or can be the result of short double-stranded hairpin-like RNAs (shRNAs) that are processed into siRNAs inside the cell.
  • shRNAs short double-stranded hairpin-like RNAs
  • siRNA can also be synthesized in vitro using kits such as Ambion’s siRNA Construction Kit.
  • siRNA from a vector is more commonly done through the transcription of a short hairpin RNAse (shRNAs) .
  • Kits for the production of vectors comprising shRNA are available, such as, for example, Imgenex’s GENESUPPRESSOR TM Construction Kits and Invitrogen’s BLOCK-IT TM inducible RNAi plasmid and lentivirus vectors.
  • Antisense molecules are designed to interact with a target nucleic acid molecule through either canonical or non-canonical base pairing. The interaction of the antisense molecule and the target molecule is designed to promote the destruction of the target molecule through, for example, RNAse H mediated RNA-DNA hybrid degradation. Alternatively the antisense molecule is designed to interrupt a processing function that normally would take place on the target molecule, such as transcription or replication. Antisense molecules can be designed based on the sequence of the target molecule. There are numerous methods for optimization of antisense efficiency by finding the most accessible regions of the target molecule. Exemplary methods include in vitro selection experiments and DNA modification studies using DMS and DEPC. It is preferred that antisense molecules bind the target molecule with a dissociation constant (K d ) less than or equal to 10 -6 , 10 -8 , 10 -10 , or 10 -12 .
  • K d dissociation constant
  • an “antisense” nucleic acid sequence can include a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to the p53 encoding mRNA.
  • Antisense nucleic acid sequences and delivery methods are well known in the art (Goodchild , Curr. Opin. Mol. Ther., 6 (2) : 120-128 (2004) ; Clawson, et al., Gene Ther., 11 (17) : 1331-1341 (2004) ) .
  • the antisense nucleic acid can be complementary to an entire coding strand of a target sequence, or to only a portion thereof.
  • An antisense oligonucleotide can be, for example, about 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or more nucleotides in length.
  • An antisense nucleic acid sequence can be designed such that it is complementary to the entire p53 mRNA sequence, but can also be an oligonucleotide that is antisense to only a portion of the p53 mRNA.
  • An antisense nucleic acid can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
  • an antisense nucleic acid e.g., an antisense oligonucleotide
  • an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
  • the antisense nucleic acid also can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection) .
  • an antisense orientation i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection
  • antisense oligonucleotides include an alpha-anomeric nucleic acid.
  • An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual beta-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids. Res. 15: 6625-6641 (1987) ) .
  • the antisense nucleic acid molecule can also comprise a 2' -o-methylribonucleotide (Inoue et al. Nucleic Acids Res. 15: 6131-6148 (1987) ) or a chimeric RNA-DNA analogue (Inoue et al. FEBS Lett., 215: 327-330 (1987) ) .
  • the inhibitory molecule is an Aptamer.
  • Aptamers are molecules that interact with a target molecule, preferably in a specific way. Aptamers can bind the target molecule with a very high degree of specificity. For example, aptamers have been isolated that have greater than a 10,000 fold difference in binding affinities between the target molecule and another molecule that differ at only a single position on the molecule. Because of their tight binding properties, and because the surface features of aptamer targets frequently correspond to functionally relevant parts of the protein target, aptamers can be potent biological antagonists.
  • aptamers are small nucleic acids ranging from 15-50 bases in length that fold into defined secondary and tertiary structures, such as stem-loops or G-quartets.
  • Aptamers can bind small molecules, such as ATP and theophiline, as well as large molecules, such as reverse transcriptase and thrombin.
  • Aptamers can bind very tightly with Kd’s from the target molecule of less than 10 -12 M. It is preferred that the aptamers bind the target molecule with a K d less than10 -6 , 10 -8 , 10 -10 , or 10 -12 .
  • the aptamer have a K d with the target molecule at least 10, 100, 1000, 10,000, or 100,000 fold lower than the K d with a background binding molecule. It is preferred when doing the comparison for a molecule such as a polypeptide, that the background molecule be a different polypeptide.
  • Ribozymes are nucleic acid molecules that are capable of catalyzing a chemical reaction, either intramolecularly or intermolecularly. It is preferred that the ribozymes catalyze intermolecular reactions.
  • ribozymes There are a number of different types of ribozymes that catalyze nuclease or nucleic acid polymerase type reactions which are based on ribozymes found in natural systems, such as hammerhead ribozymes. There are also a number of ribozymes that are not found in natural systems, but which have been engineered to catalyze specific reactions de novo.
  • ribozymes cleave RNA or DNA substrates, and more preferably cleave RNA substrates. Ribozymes typically cleave nucleic acid substrates through recognition and binding of the target substrate with subsequent cleavage. This recognition is often based mostly on canonical or non-canonical base pair interactions. This property makes ribozymes particularly good candidates for target specific cleavage of nucleic acids because recognition of the target substrate is based on the target substrates sequence.
  • triplex forming functional nucleic acid molecules are molecules that can interact with either double-stranded or single-stranded nucleic acid.
  • triplex molecules When triplex molecules interact with a target region, a structure called a triplex is formed in which there are three strands of DNA forming a complex dependent on both Watson-Crick and Hoogsteen base-pairing.
  • Triplex molecules are preferred because they can bind target regions with high affinity and specificity. It is preferred that the triplex forming molecules bind the target molecule with a K d less than 10 -6 , 10 -8 , 10 -10 , or 10 -12 .
  • EGSs External guide sequences
  • RNAse P aids in processing transfer RNA (tRNA) within a cell.
  • Bacterial RNAse P can be recruited to cleave virtually any RNA sequence by using an EGS that causes the target RNA: EGS complex to mimic the natural tRNA substrate.
  • EGS/RNAse P-directed cleavage of RNA can be utilized to cleave desired targets within eukaryotic cells. Representative examples of how to make and use EGS molecules to facilitate cleavage of a variety of different target molecules are known in the art.
  • shRNAs small hairpin RNAs
  • polymerase III polymerase III
  • shRNAs are thought to fold into a stem-loop structure with 3’ UU-overhangs; subsequently, the ends of these shRNAs are processed, converting the shRNAs into siRNA-like molecules of about 21 nucleotides (Brummelkamp et al., Science 296: 550-553 (2002) ; Lee et al., Nature Biotechnol.
  • nucleic acids such as antisense oligonucleotides, siRNA, shRNA, miRNA, EGSs, ribozymes, and aptamers are known in the art.
  • the delivery vehicle can be a viral vector, for example a commercially available preparation, such as an adenovirus vector (Quantum Biotechnologies, Inc. (Laval, Quebec, Canada) .
  • the viral vector delivery can be via a viral system, such as a retroviral vector system which can package a recombinant retroviral genome.
  • the recombinant retrovirus can then be used to infect and thereby deliver to the infected cells nucleic acid encoding the hepatocyte inducing factor (s) .
  • the exact method of introducing the altered nucleic acid into the host cell is, of course, not limited to the use of retroviral vectors.
  • adenoviral vectors adeno-associated viral (AAV) vectors
  • lentiviral vectors lentiviral vectors
  • pseudotyped retroviral vectors and others described in (Soofiyani, et al., Advanced Pharmaceutical Bulletin, 3 (2) : 249-255 (2013) .
  • Viruses can be modified to enhance safety, increase specific uptake, and improve efficiency (see, for example, Zhang, et al., Chinese J Cancer Res., 30 (3) : 182-8 (2011) , Miller, et al., FASEB J, 9 (2) : 190-9 (1995) , Verma, et al., Annu Rev Biochem., 74: 711-38 (2005) ) .
  • Liposome delivery and receptor-mediated and other endocytosis mechanisms see, for example, Schwartzenberger et al., Blood, 87: 472-478 (1996) ) .
  • Commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO-BRL, Inc., Gaithersburg, Md. ) , SUPERFECT (Qiagen, Inc. Hilden, Germany) and TRANSFECTAM (Promega Biotec, Inc., Madison, Wis. ) , as well as other liposomes developed according to procedures standard in the art are well known.
  • nucleic acid or vectors encoding the hepatocyte inducing factors can be delivered in vivo by electroporation as well as by means of a sonoporation.
  • electroporation electric pulses are applied across the cell membrane to create a transmembrane potential difference, allowing transient membrane permeation and transfection of nucleic acids through the destabilized membrane (Soofiyani, et al., Advanced Pharmaceutical Bulletin, 3 (2) : 249-255 (2013) ) .
  • Sonoporation combines the local application of ultrasound waves and the intravascular or intratissue administration of gas microbubbles to transiently increase the permeability of vessels and tissues (Escoffre, et al., Curr Gene Ther., 13 (1) : 2-14 (2013) ) .
  • Electroporation and ultrasound based techniques are targeted transfection methods because the electric pulse or ultrasound waves can be focused on a target tissue or organ and hence gene delivery and expression should be limited to thereto.
  • Expression or overexpression of the disclosed hepatocyte inducing factors accomplished with any of these or other commonly used gene transfer methods, including, but not limited to hydrodynamic injection, use of a gene gun.
  • ADME absorption, distribution, metabolism, excretion
  • An essential part of drug discovery research is to the metabolic and toxicological effects of the candidate drug on liver cells, human liver parenchymal cells with full participation of drug metabolism.
  • the main hepatocytes used for in vitro drug development are human adult primary hepatocytes. Due to their limited sources, and the difficulty of maintaining primary hepatocyte function in vitro is difficult to maintain, their application in drug development is quite limited.
  • hiHeps disclosed herein which express phase I, II and III drug-metabolizing enzymes can be used in vitro drug metabolism studies.
  • hiHeps can be used to construct humanized mouse models for study of infectious diseases, for example, hepatitis B and C infections. These animal models can provide a reliable in vivo platform for use in the development of vaccines and drugs for treating infectious diseases, particularly diseases that infect the liver.
  • liver failure and loss of function is one of the most severe consequences of liver disease. Because of its rapid onset, rapid progression, liver transplantation is the primary means of treatment of these diseases. However, donor scarcity presents a serious problem and many patients die while waiting for liver transplantation.
  • hiHeps can be used in the treatment of liver failure and loss of function diseases, for example.
  • Transplanting isolated iHeps by percutaneous or transjugular infusion into the portal vein, or injecting into the splenic pulp or the peritoneal cavity is a less invasive procedure compared with liver transplantation.
  • the iHeps are preferably obtained from the same animal being treated. As the host liver is not removed or resected, the loss of graft function should not worsen liver function.
  • isolated iHeps could be, potentially, cryopreserved for ready access.
  • the iHeps can be used as a vehicle for ex vivo gene therapy for example, for rescuing patients from radiation-induced liver damage resulting from radiotherapy for liver tumors.
  • iHeps can be transplanted into a recipient organism using a carrier such as a matrix known for transplantation of hepatocytes.
  • a carrier such as a matrix known for transplantation of hepatocytes.
  • DLM decellularized liver matrix
  • Schwartz, et al., Int. J. Gastroentrol., 10 (1) discloses isolating liver and pancreas cells from tissue samples, seeding onto a poly-L-lactic acid matrix and re-implanting into the mesentery of the same patient.
  • hiHeps can also be used in the bio-artificial liver support systems.
  • Bioartificial liver support system based on the disclosed cells are constructed to temporarily replace the main function of liver failure (remove hazardous substances, provide the liver synthetic biologically active substances) , to stabilize and improve the patient's internal environment, until a suitable donor source for transplantation is available.
  • Methods for making bioartifical liver are disclosed for example in U. S. Publication No. 2008/0206733.
  • Kits for inducing in vitro reprograming of non-hepatocytes into induced heptocytes with functional hepatocyte metabolic properties are disclosed.
  • the kit includes factors which up-regulate hepatocyte inducing factors HNF1A, HNF6, HNF4A, ATF5, PROX1, CEPBA , and/or MYC and factors which downregulate p53 gene expression and/or protein activity.
  • the kit includes any DNA sequence of HNF1A, HNF6, HNF4A, ATF5, PROX1, CEPBA , and/or MYC and DNA sequence to downregulate p53 gene expression.
  • the kit includes lentiviruses which overexpress HNF1A, HNF6, HNF4A, ATF5, PROX1, CEPBA , and/or MYC gene and nucleic acid which inhibits p53 gene expression.
  • Fresh human embryonic skin tissue (HEF) and ex vivo human adult foreskin tissue (HFF) were sterilized with 75%aqueous ethanol and washed with phosphate buffered saline (PBS) .
  • PBS phosphate buffered saline
  • the tissue was carefully separated from subcutaneous tissue with ophthalmic scissors.
  • the tissue was washed several times with PBS, small tissue blocks were seeded in a petri dish, and placed in an incubator at 37 °C, 5%CO2. Two hours later, the following were added: DMEM high glucose medium (purchased from Hyclone company, product catalog No.
  • Human primary hepatocytes were isolated from human donor livers not used for liver transplantation, following informed consent (Seglen, 13: 29-83 (1976) ) and cultured with HCM (LONZA) .
  • Human fibroblasts were infected overnight and cultured in DMEM plus 10%fetal bovine serum for 1 week before transfer into hepatocyte culture medium (HCM) (Lonza) for expansion.
  • HCM hepatocyte culture medium
  • lentivirus expression vectors expressing HNF1A, HNF6, HNF4A, ATF5, PROX1, CEBPA and MYC, respectively and a lentivirus expressing a DNA (s) for inhibiting the expression of p53, 10 ⁇ l for HNF1A, 10 ⁇ l for HNF6, 6 ⁇ l for HNF4A, 10 ⁇ l for ATF5, 3 ⁇ l for PROX1, 3 ⁇ l for CEBPA, 10 ⁇ l for MYC and 10 ⁇ l for p53 (lentivirus for inhibiting the expression of p53) .
  • the medium was changed after 20 hours, after which the medium was changed every day. Cells were cultured for 7 days in DMEM and then transferred into H
  • HCM was replaced by modified William’s E medium (Beijing Vitalstar Biotechnology) .
  • Cells were passaged every 4 days, and human hepatocyte-like cells were harvested after 30 days.
  • a schematic for hiHep reprogramming is shown in Fig. 1E.
  • the induced cells of expansion stage and maturation stage were plated into 96-well plate (1000 cells per well) and cultured in HCM (before p53 siRNA-GFP silence) or modified WEM (after p53 siRNA-GFP silence) separately for 7 days. MTT assay was done at each day according to the manufacturer’s instructions ( MTT Cell Proliferation Assay Kit, Invitrogen) . To calculate the doubling time of the induced cells in the expansion stage, the induced cells in the expansion stage (before p53 siRNA-GFP silence) were plated at the density of 30000 cells per well, and cultured in 12-well plate coated with matrigel.
  • hESCs Human embryonic stem cells (hESCs, ES cell line H1, WiCell research institute) were maintained on irradiated mouse embryonic fibroblasts in hESCs medium (Thomson et al., Science 282: 1145-1147 (1998) ) . hESCs were differentiated into hepatocytes as previously reported (Zhao et al., Cell Res 23: 157-161 (2013) ) .
  • Complementary DNAs of transcriptional factors are amplified from the human full-length TrueClones TM (Origene) and inserted into pCDH-EF1-MCS-T2A-Puro (System Biosciences) according to user’s manual (for each of lentivirus expression vectors of HNF1A, HNF6, HNF4A, ATF5, PROX1, and CEBPA, SEQ ID NOs: 1-6 are inserted into restriction enzyme sites of pCDH-EF1-MCS-T2A-Puro, respectively) .
  • Lentivirus expression vector of MYC is constructed by inserting SEQ ID NO: 7 into restriction enzyme sites (Xho I and EcoR I ) of expression vector pLL-IRES-Puro (Zhao Y et al., Cell Stem Cell. 2008 Nov 6; 3 (5) : 475-9; available from Beijing Vitalstar Biotechnology, Ltd. or Peking University. For full sequence information, see http: //www. sciencegateway. org/protocols/lentivirus/pllmap. html) .
  • Lentivirus for inhibiting the expression of p53 is constructed as follows: DNA molecule for interfering with the expression of p53 is inserted into restriction enzyme sites (Hpa I and Xho I) of expression vector pll3.7 (Rubinson and Dillon et al., Nature Genetics, 2003; available from Beijing Vitalstar Biotechnology, Ltd. or Peking University) .
  • the DNA molecule for interfering with the expression of p53 is obtained by annealing with a sense chain (5' -TGACTCCAGTGGTAATCTACTTCAAGAGAGTAGATTACCACTGGA GTCTTTTTTC-3' ) and a antisense chain (5' -TC GAGAAAAAAGACTCCAGTGGTAATCTACTCTCTTG AAGTAGATTACCACTGGAGT CA-3' ) .
  • Virus package is conducted as described previously (Zhao et al., Cell Stem Cell, 3: 475-479 (2008) ) .
  • Human fibroblasts are infected in DMEM (Hyclone) with 10%fetal bovine serum, containing 10 ⁇ g/ml polybrene for 12 hours.
  • the fibroblasts were replated seven days post infection and cultured in HCM (LONZA) . At about 25 days post infection when p53 siRNA was silenced as indicated by a GFP reporter, hiHeps were cultured in modified William's E Medium (Vitalstar Biotechnology) .
  • Human Albumin was measured using the Human Albumin ELISA Quantitation kit (Bethyl Laboratory) .
  • the PAS staining system was purchased from Sigma-Aldrich. Cultures were fixed with 4%paraformaldehyde (DingGuo) and stained according to the manufacturer’s instructions. ICG uptake and release was performed as previously described (Cai et al., Hepatology 45: 1229-1239 (2007) ) .
  • DiI-Ac-LDL Invitrogen
  • the tubes were put in an orbital shaker in the incubator and the shaker speed was adjusted to 210 rpm. After a 15–240 min incubation at 37 oC, the tubes were centrifuged at room temperature to collect the supernatant. The reactions were stopped by addition of sample aliquots to tubes containing triple the volume of quenching solvent (methanol) and frozen at -80°C. Isotope-labeled reference metabolites were used as internal standards.
  • quenching solvent methanol
  • Standard metabolites were 6b-hydroxytestosterone, 10-hydroxymidazolam, hydroxybupropion, 40-hydroxydiclofenac, ( ⁇ ) -40-hydroxymephenytoin, and acetaminophen.
  • the metabolites were quantified by Pharmaron using validated traditional LC-MS methods. The results are expressed as picomoles of metabolite formed per minute and per million cells.
  • Chemicals were purchased from Sigma including b-naphthoflavone, rifampicin, testosterone, midazolam, diclofenac, and phenacetin.
  • Standard metabolites and internal reference metabolites were purchased from BD Biosciences. Phenobarbital was a kind gift from Jinning Lou.
  • qRT-PCR was performed using Power Green PCR Master Mix (Applied Biosystems) on MX3000P Sequence Detection System (Stratagene) . Primers used are shown in Table 3.
  • Primer for 18s rRNA was purchased from QIAGEN. Quantified values were normalized against the input determined by two housekeeping genes (GAPDH or RRN18S) .
  • GPDH or RRN18S housekeeping genes
  • the primary antibodies used for immuno-fluorescence are as follows: rabbit anti CYP3A4, rabbit anti CYP2C9, rabbit anti YP1A2, rabbit anti CYP2E1, rabbit anti CYP2D6 (all from AbD Serotec) , Goat anti ALB (Bethyl Laboratories, INC) , Rabbit anti NR5A2 /LRH1 (Abcam) , Rabbit anti COL1A1 (Abcam) , Mouse anti E-CAD (Abcam) , Mouse anti human nuclei (Millipore) .
  • the secondary antibodies used for immunofluorescence are as follows: 550 Donkey anti rabbit and 550 Donkey anti goat (from Abcam) , DyLight 488 donkey anti goat Dylight 549 donkey anti goat, DyLight 488 donkey anti mouse, Dylight 549 donkey anti mouse, DyLight 488 donkey anti rabbit, Dylight 549 donkey anti rabbit (all from Jackson ImmunoResearch Laboratories) .
  • Flow cytometric assays were conducted as reported previously (Zhao et al., Cell Res., 23: 157-161 (2013) ) .
  • RNA sequencing libraries were prepared with the Illumina TruSeq RNA Sample Preparation Kit. The fragmented and randomly primed 200-bp paired-end libraries were sequenced on Illumina HiSeq 2000 sequencing system.
  • Tet-uPA/Rag2 -/- / ⁇ c -/- mice on a BALB/c background were purchased from Beijing Vitalstar Biotechnology.
  • hiHeps, ES-Heps, and primary human hepatocytes (2 x 10 6 cells/animal) were injected into the spleens of the mice.
  • Blood samples were collected and human ALBUMIN was quantified using the Human Albumin ELISA Quantitation kit (Bethyl Laboratories) . Livers of recipient mice were embedded in OCT compound (Sakura) and then frozen in liquid nitrogen. Cryostat sections (10 mm) were stained.
  • RNA-sequencing data have been deposited in the NCBI Gene Expression Omnibus database under accession number GSE54066.
  • HEFs human embryonic fibroblasts
  • Table 4 a pool of transcription factors that were previously shown to be expressed in human hepatocytes and are crucial to the determination of hepatic cell fate was selected (Nagaoka and Duncan, Prog. Mol. Biol Transl Sci.., 97: 79-101 (2010) ; Zaret, Nat. Rev. Genet., 9: 329–340 (2008)) .
  • HNF1A and HNF4A are preferentially considered because of their critical role in both embryonic and adult liver among the 17 transcription factors. Then additional factors were screened using a “2+1” strategy by the addition of one candidate factor at a time to the combination of HNF1A and HNF4A.
  • HNF6 cooperating with HNF4A and HNF1A
  • ALB Albumin
  • hepatocyte-like cells To identify the factors capable of inducing the functional maturation of hepatocyte-like cells, a global gene expression analysis was performed on 3H cells, freshly isolated primary human hepatocytes (F-HEPs) , and fetal liver cells. Differential expression of several hepatic transcription factors, including CEBPA, ATF5, and PROX1, was observed among the three samples (data not shown) . These three genes were expressed at relatively low levels in the 3H cells and in fetal hepatocytes compared to the levels in adult hepatocytes. This difference was further confirmed by quantitative PCR (Figs. 1B and 1C) .
  • PROX1 was shown in a recent study to be a key transcription factor that is critical in the metabolic maturation of hepatocytes (Zhao et al., Cell Res., 23: 157–161 (2013) ) .
  • CEBPA and ATF5 are highly abundant liver-enriched transcription factors, indicating the importance of transcriptional regulation in hepatic function.
  • a gene expression study showed that these three genes were highly expressed in F-HEPs ( Figure 1D) . Collectively, these data showed that overexpressing these factors can lead to the functional maturation of 3H cells.
  • fibroblasts To generate mature human hepatocytes from fibroblasts, the three factors with CEBPA, PROX1, and ATF5, were combined, and overexpressed in HEFs following the scheme shown in Fig. 1E. A dramatic morphological change of fibroblasts into epithelial cells was observed in 1 week. These cells proliferated rapidly in hepatocyte culture medium (HCM) , with the doubling time ranging from 9 to 11 hr (Fig. 1F) . At 2 weeks post infection, the replated cells showed the typical morphology of primary human hepatocytes (data not shown) .
  • HCM hepatocyte culture medium
  • hiHeps was evaluated for functional characteristics of human hepatocytes.
  • hiHeps were competent for LDL uptake (data not shown) .
  • hiHeps could incorporate indocyanine green (ICG) from the medium and exclude the absorbed ICG after withdrawal (data not shown) .
  • Oil red O staining in hiHeps showed an accumulation of fatty droplets, and Periodic Acid-Schiff (PAS) staining indicated glycogen synthesis (data not shown) .
  • PAS Periodic Acid-Schiff
  • hiHeps were AFP negative (data not shown) .
  • G banding analysis revealed that hiHeps had a normal karyotype after 7 weeks of culture (data not shown) .
  • HEFs similar results were obtained when adult foreskin fibroblasts were converted as described herein using the same factors (data not shown) . Collectively, these results indicate that hiHeps exhibit typical hepatic functional features.
  • hiHeps and F-HEPs were compared by RNA sequencing.
  • Principle component analysis and hierarchical clustering analysis revealed that hiHeps established from different donors were clustered with human hepatocytes and separated from human fibroblasts, HepG2 cells, and human embryonic stem cell (ESC) -derived hepatocytes (ES-Heps) (data not shown) .
  • ESC human embryonic stem cell
  • ES-Heps human embryonic stem cell
  • hepatic transcription factors were upregulated (As it is depicted in Fig2A, these factors are FOXA1, FOXA2, FOXA3, CEBPA, HNF1A, HNF4A, PROX1 and LRH1) and the expression of fibroblast signature genes (As it is depicted in Fig.
  • hiHeps displayed the gene expression patterns of hepatocytes in a set of genes involved in lipoprotein, cholesterol, fat, glucose, and drug metabolism (data not shown) . Altogether, these results indicate that hiHeps show a similar expression profile to primary human hepatocytes.
  • hiHeps expressed key enzymes in drug metabolism the expression in hiHeps of five key CYP enzymes, CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 in hiHeps was quantitatively confirmed.
  • the five key CYPs are major phase I enzymes that account for 60%of human drug oxidation (Zhou et al., Drug Metab. Rev., 41: 89–295 (2009) ) .
  • pooled F-HEPs from five individual donors were used.
  • Zhao, et al. disclose that ES-Heps express CYP3A4 with activities at levels that are lower than those seen in 25-week-old fetal hepatocytes and human adult primary hepatocytes (Zhao, et al., Cell Res., 23: 157–161 (2013) ) . Furthermore, the metabolic activities of CYP1A2 and CYP2B6 in hiHeps were found to be comparable to that of F-HEPs ( Figure 4A) . The activities of CYP2C9 and CYP2C19 in hiHeps were approximately 30%of F-HEPs ( Figure 4A) .
  • hiHeps exhibit comparable metabolic activities of the key CYP enzymes to those of freshly isolated primary human hepatocytes.
  • hiHeps showed a level of sensitivity comparable to that of primary human hepatocytes when incubated with a series of model hepatotoxins ( Figure 4C) , showing the potential of using hiHeps for testing drug toxicity.
  • Tet-uPA urokinase-type plasminogen activator
  • Rag2-/-/ ⁇ c-/-mice were injected intrasplenically with hiHeps (Song et al., Am. J. Pathol., 175: 1975-1983 (2009) ) .
  • the secretion of human Albumin in mouse serum increased gradually and the highest level reached was 313 mg/ml at 7 weeks after hiHep transplantation ( Figures 5A–5C) , which was 1, 000-fold higher than ES-Heps and comparable to primary human hepatocytes ( Figure 5B) .
  • hepatocytes were isolated from whole liver of two mice and measured by flow cytometry analysis. The repopulation efficiency was about 30%in the mouse that secreted 313 mg/ml human Albumin (Figure 4C) . No tumorigenesis was observed 2 months after hiHep transplantation. Grafts of hiHeps were also analyzed. Six weeks after transplantation, clusters of cells expressing human ALB were observed in the recipient mice (data not shown) . To confirm the metabolic function of hiHeps in vivo, CYP expression was analyzed.
  • hiHeps are readily and reproducibly generated from HEFs using a combination of hepatic fate conversion factors HNF1A, HNF4A, and HNF6 together with the maturation factors ATF5, PROX1, and CEBPA. Similar to primary human hepatocytes, hiHeps exhibit many typical hepatic features, including their epithelial morphology, expression of hepatocyte specific markers, basic functional properties of hepatocytes, and global gene expression patterns. Importantly, an integral spectrum of phase I and phase II drug-metabolizing enzymes and phase III drug transporters is well established in hiHeps.
  • transplanted hiHeps can repopulate up to 30%of the livers of Tet-uPA/Rag2 -/- / ⁇ c -/- mice and secrete more than 300 mg/ml human albumin in vivo.
  • lineage reprogramming One key question in lineage reprogramming is how to obtain fully functional cells.
  • mouse induced hepatocyte-like cells were generated with several important hepatic characteristics, through the expression of hepatic fate determination factors in fibroblasts (Huang et al., 2011; Sekiya and Suzuki, Nature, 475: 390-393 (2011) ) .
  • human hepatocytes The drug metabolic capacity of human hepatocytes is one of the most important functions that distinguish hepatocytes from other lineages and has broad applications in drug development. Efforts to differentiate human pluripotent stem cells into hepatocytes have resulted in cells that were functionally immature. A recent study showed that human ES-Heps express CYP1A2 and CYP3A4 (Zhao et al., Cell Res., 23: 157–161 (2013) ) . However, the activities of these two CYP enzymes were significantly lower than that of primary hepatocytes.
  • differentiated hepatocytes exhibited CYP3A4 and CYP1A2 activities only comparable to that of cultured primary hepatocytes (Ogawa et al., Development, 140: 3285–3296 2013) .
  • CYP3A4 and CYP1A2 activities were progressively lost with time in cultured primary hepatocytes (Elaut et al., Curr. Drug Metab. 7: 629–660 (2006) ) .
  • the gold standard, freshly isolated primary human hepatocytes was used as the positive control.
  • the hiHeps disclosed herein express the key phase I (CYP3A4, CYP2C9, CYP2C19, CYP2B6, and CYP1A2) and phase II drug-metabolizing enzymes and phase III drug transporters at a level comparable to that of freshly isolated primary human hepatocytes.
  • phase I CYP3A4, CYP2C9, CYP2C19, CYP2B6, and CYP1A2
  • phase II drug-metabolizing enzymes and phase III drug transporters at a level comparable to that of freshly isolated primary human hepatocytes.
  • the metabolic activities of the five CYP enzymes in hiHeps were comparable to those in freshly isolated primary human hepatocytes, indicating the potential application of hiHeps in evaluating drugs metabolized by these CYP enzymes (Figure 4A) .
  • the expression of endogenous nuclear receptors related to xenobiotic metabolizing systems was also detected in these cells (Nakata et al., Drug
  • hepatocytes Another key characteristic of human hepatocytes in drug development is their sensitivity to drug toxicity.
  • Human hepatocytes derived from human pluripotent stem cells have a relatively low sensitivity to drug toxicity (Zhao et al., Cell Res., 23: 157–161 (2013) ) .
  • the sensitivity of hiHeps disclosed herein to multiple model hepatotoxins is comparable to that of primary human hepatocytes ( Figure 4C) .
  • hiHeps can be a valuable alternative cell resource in hepatotoxicity assays for new drug discovery.
  • our results demonstrate that the induced cells could be expanded at a large scale at an early stage (Fig.
  • Hepatocyte transplantation is a promising alternative to orthotopic liver transplantation (Dhawan et al., Nat Rev Gastroenterol Hepatol, 7: 288–298 (2010) ) .
  • the limited supply of donor organs that can provide good-quality cells remains a major challenge.
  • hiHeps were able to repopulate mouse liver robustly and secreted up to 313 mg/ml human ALBUMIN, which is two orders of magnitude higher than recent studies using human hepatocytes derived from human embryonic stem cells ( Figures 5A and 5B) (Takebe et al., Nature, 499: 481–484 (2013) ; Woo et al., Gastroenterology, 142: 602–611 (2012) ) . Furthermore, transplanted hiHeps expressed major CYP enzymes (data not shown) , indicating that hiHeps retained drug metabolic capabilities in vivo. Collectively, hiHeps can serve as a potential cell source for the establishment of a humanized mouse model and hepatocyte transplantation.
  • human hepatocytes were generated with drug metabolizing functions using the combined expression of cell fate determination factors and cell maturation factors.
  • the generation of functional human hepatocytes with lineage reprogramming provides a way to obtain well-characterized, reproducible, and functional human hepatocytes for pharmaceutical applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

A method for inducing reprograming of a cell of a first type which is not a non-hepatocyte (non-hepatocyte cell), into a cell with functional hepatic drug metabolizing and transporting capabilities, is disclosed. The non-hepatocyte is induced to express or overexpress hepatic fate conversion and maturation factors, cultured in somatic cell culture medium, hepatocyte cell culture medium and hepatocyte maturation medium for a sufficient period of time to convert the non-hepatocyte cell into a cell with hepatocyte-like properties. The iHeps induced according to the methods disclosed herein are functional induced hepatocytes (iHeps) in that they express I and II drug-metabolizing enzymes and phase III drug transporters and show superior drug metabolizing activity compared to iHeps obtained by prior art methods. The iHeps thus provide a cell resource for pharmaceutical applications.

Description

KITS AND METHODS FOR REPROGRAMING NON-HEPATOCYTE CELLS INTO HEPATOCYTE CELLS FIELD OF THE INVENTION
The present invention generally relates to use of hepatocyte fate conversion and maturation factors for reprograming eukaryotic cells into hepatocyte cells.
BACKGROUND OF THE INVENTION
Functional human cell types are in high demand in the field of regenerative medicine and drug development. They show great potential for repairing or replacing diseased and damaged tissues and can be valuable tools for pharmaceutical applications. However, the application of functional human cell types in these areas is limited due to a shortage of donors (Castell et al., Expert Opin. Drug Metab. Toxicol. 2: 183–212 (2006) ) . To solve this dilemma, novel strategies for generating functionally mature cells are in high demand. Recently, lineage reprogramming has emerged as an effective method for changing the fate of somatic cells (Vierbuchen and Wernig, Mol. Cell, 47: 827–838 (2012) ) . In principle, one cell type can be converted directly to the final mature state of another cell type and can bypass its intermediate states during lineage reprogramming. Consequently, functionally mature cells may be obtained using this strategy and may potentially provide a promising source of functional human cells.
Functional human hepatocytes are the most significant in vitro model for evaluating drug metabolism and are potentially widely applicable in pharmaceutical development. Because unacceptable metabolic and toxicity effects on the liver are largely responsible for the failure of new chemical entities in drug discovery (Baranczewski et al., Pharmacol. Rep., 58: 453–472 (2006) ) , it is essential to use human hepatocytes, which serve as the closest in vitro model of human liver in assays of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) , to identify compounds that display favorable pharmacokinetics (Sahi et al., Curr. Drug Discov.  Technol., 7: 188–198 (2010) ) . Currently, primary human hepatocytes that are derived from individuals with different genetic backgrounds are frequently used in drug development, but the resulting diversity of genetic backgrounds hinders the reproducibility of the results obtained from pharmaceutical studies using these cells. Additionally, the scarcity of human liver donors greatly limits the use of primary human hepatocytes (Castell et al., Expert Opin. Drug Metab. Toxicol. 2: 183–212 (2006) ) and, as a result, alternative resources for human hepatocytes with a high reproducibility are urgently required for use in drug discovery.
Different strategies to generate functional hepatocytes have been studied. Human hepatocytes have been derived from human pluripotent stem cells by directed differentiation (Cai et al., Hepatology, 45: 1229–1239 (2007) ; Ogawa et al., Development, 140: 3285–3296 (2013) ; Takebe et al., Nature, 499: 481–484 (2013) ; Zhao et al., Cell Res., 23: 157–161 (2013) ) . This strategy has progressed quickly in recent years, although the immature phenotype of the cells derived from pluripotent stem cells remains a technological obstacle. In principle, fully functional hepatocytes are relatively difficult to obtain using this method, as the whole process involves multiple key steps that affect the final stage of hepatocyte formation. In contrast, lineage reprogramming allows the lineage conversion of a somatic cell without passing through an intermediate state. Although mouse hepatocytes have been transdifferentiated from fibroblasts (Huang et al., Nature, 475: 386-389 2011; Sekiya and Suzuki, Nature, 475: 390-393 (2011) ) , these cells still express several hepatoblast markers such as α-fetoprotein (AFP) and lack the expression of several key cytochrome P450 enzymes (CYPs) that are responsible for drug metabolism, suggesting a functionally immature phenotype for these cells (Willenbring, Cell Stem Cell, 9: 89–91 (2011) ) .
There is therefore a need for a method inducing non-hepatocyte cells into functional induced hepatocytes that show improved hepatocyte functional activity, when compared to known induced hepatocytes.
It is therefore an object of the present invention to provide a method of inducing conversion of a non-hepatocyte cell, into an induced hepatocyte cell (iHep) with metabolic function.
It is also an object of the present invention to provide induced hepatic cells with metabolic function.
It is still an object of the present invention to provide a method using induced hepatocytes for drug development, bioartificial liver system and in vivo and in-vitro hepatic applications.
It is further an object of the present invention to provide kits for reprograming a non-hepatocyte into an iHep.
SUMMARY OF THE INVENTION
A method for inducing reprograming of a cell of a first type which is not a hepatocyte (i.e., non-hepatocyte cells) , into a hepatocyte-like cell, as indicated by functional hepatic drug metabolizing and transporting capabilities, is disclosed. These cells are denoted herein as induced hepatocytes (iHeps) . The non-hepatocyte is treated to upregulate hepatic fate conversion and maturation factors ( “collectively, “Hepatocyte inducing factors” ) , cultured in somatic cell culture medium (transformation phase) , expanded in hepatocyte cell culture medium (expansion phase) and further cultured in hepatocyte maturation medium (maturation phase) for a sufficient period of time to convert the cell into a cell with hepatocyte-like properties.
In a preferred embodiment, the non-hepatocyte cell is transformed to overexpress at least one of the following Hepatocyte inducing factors: Hepatocyte nuclear factor 1-alpha (HNF1A) , Hepatocyte nuclear factor 4-alpha (HNF4A) , and Hepatocyte nuclear factor 6-alpha (HNF6) , Activating transcription factor 5 (ATF5) , Prospero homeobox protein 1 (PROX1) , and CCAAT/enhancer-binding protein alpha (CEBPA) . In some embodiments the cell is transformed to express at least 2, at least 3, at least 4 or at least 5 of the hepatocyte inducing factors. In a preferred embodiment, the cell is transformed to overexpress all 6 Hepatocyte inducing factors. In some embodiments, the method further includes upregulating MYC, and/or downregulating p53 gene expression and/or protein activity. Non- hepatocytes (treated to upregulate hepatocyte inducing factors, and optionally upregulate MYC and optionally, downregulate p53) are then expanded in vitro to obtain iHeps. In one embodiment, transfected cells are cultured in somatic cell culture medium, for example, DMEM, for a period of at least 7 days, until about 80%confluence. The cells are then replated and expanded in hepatocyte cell culture medium (HCM) for about 15 to 30 days, preferably for about 18-30 days, and more preferably, for about 18 days, following which the cells are transferred into a hepatocyte maturation medium for about 5 days. Induced hepatocytes (iHeps) are obtained following this cell culture scheme.
The cells are identified as iheps, based on known structural and functional properties of hepatocytes.
Also disclosed are functional induced hepatocytes (iHeps) . In a preferred embodiment, the induced hepatocytes are human induced hepatocytes (hiHeps) . iHeps express at least one hepatocyte marker selected from the group consisting of albumin, Cytochrome P450 (Cyp) 3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19. In a preferred embodiment, iHeps express at least two, three or four or five or six of CYPB6, CYP3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19.
Transplanted hiHeps repopulate up to 30%of the livers of Tet-uPA/Rag2-/-γc-/-mice and secrete more than 300 mg/ml human albumin in vivo. Thus human hepatocytes with drug metabolic function can be generated by lineage reprogramming, thus providing a cell resource for in vitro drug development and in vivo applications within the context of liver disease/failure.
Kits for inducing reprograming of non-hepatocytes cells into iHeps are also disclosed. The kit includes factors which upregulate the Hepatocyte inducing factors disclosed herein, and optionally, factors which upregulate MYC and downregulate p53 gene expression and/or protein levels.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1A is a bar graph showing gene expression analysis of ALB in F-HEPs, HEFs and 3H cells. n=2. Fig. 1B is a bar graph showing a  quantitative comparison of the expression of hepatic transcription factors in 3H cells, fetal liver cells (FLCs) , and F-HEPs. n = 2. *p < 0.05; **p < 0.01; ***p < 0.001. Fig. 1C is a bar graph showing gene expression analysis of liver-enriched transcription factors in 3H cells, FLCs and F-HEPs by qRT-PCR. n=2. Fig. 1D is a bar graph showing a quantitative analysis of the abundance of hepatic transcription factors in four individual F-HEPs. n = 2. Fig. 1E is a schematic view of the hiHep reprogramming diagram. Fig. 1 F shows determination of the proliferation rate of the induced cells at different stages. Upper panel: MTT assay. Day 0 is set as the day when the induced cells were transferred to HCM (before p53 siRNA-GFP silence) or modified WEM (after p53 siRNA-GFP silence) . Lower panel: Calculation of doubling time of the induced cells at the expansion stage (before p53 siRNA-GFP silence) . Td, doubling time. Fig. 1G is a bar graph showing a quantitative analysis of ALBUMIN expression among hiHeps, HEFs, and F-HEPs. Figs. 1H and 1I show reprogramming efficiency measured by flow cytometry analysis marked by ALB and AAT. n = 3. APC, allophycocyanin. Fig. 1J is a bar graph showing a quantitative analysis of Albumin secretion among hiHeps, HEFs, and F-HEPs by ELISA. n = 3. Fig. 1K shows the effect on the expression of hepatic functional genes after removal of individual factors detected by qRT-PCR. n = 2. Data are presented as mean +/-s. d.
Fig. 2A shows endogenous gene expression analysis of hepatic transcription factors and fibroblast markers in hiHeps by RT-PCR. Fig. 2B shows the silence of exogenous genes detected by RT- PCR. Day  7, 7 days post infection. Fig. 2C shows relative expression of MYC during the hepatic conversion process measured by qRT-PCR. Day 7 and  day  14, 7 and 14 days post infection. n = 2.
Figs. 3A-3C show a quantitative analysis of the expression of drug metabolic phase I (Fig. 3A) and phase II enzymes (Fig. 3B) and phase III transporters (Fig. 3C) in HEFs, HepG2 cells, ES-Heps, hiHeps, and F-HEPs. The relative expression of each gene was normalized to HEFs; if not detected, it was normalized to HepG2 cells. n = 2.1 = HEFs; 2=HepG2 cells; 3 = ES-Heps; 4 = hiHeps; 5 = F-Heps. Fig. 3D is a bar graph showing quantitative analysis of the expression of drug metabolic Phase II enzymes and Phase III  transporters in HEFs, HepG2 cells, ES-Heps, hiHeps and F-HEPs. The relative expression for each gene was normalized to HEFs; if not detected, normalized to HepG2 cells. n=2. Fig. 3E is a bar graph showing quantitative comparison of phase I, phase II, phase III mRNA in hiHeps and HEFs to F-HEPs. Fig. 3F is a bar graph showing quantitative comparison of nuclear receptors mRNA in hiHeps to F-HEPs.
Fig. 4A shows the metabolic activities of CYP3A4 (3A4-T, testosterone; 3A4-M, midazolam) , CYP1A2 (phenacetin) , CYP2B6 (bupropion) , CYP2C9 (diclofenac) , and CYP2C19 [ (S) -mephenytoin] in hiHeps, ES-Heps, F-HEPs1, F-HEPs2, HepG2 cells, and HEFs as determined by HPLC-MS. n = 3. Two batches of freshly isolated primary human hepatocytes (F-HEPs1 and F-HEPs2) were applied as the positive control. The results are presented as pmol/min per million cells. Data are presented as mean ± SD. Fig. 4B is a bar graph showing quantitative analysis of the fold-induction of the CYP3A4, CYP1A2 and CYP2B6 in hiHeps treated with different inducers. n=2. Rif, Rifampin; PB, Phenobarbital; ETOH, Ethanol; ΒNF, β-Naphthoflavone. Fig. 4C is a bar graph showing an analysis of the sensitivity of hiHeps to multiple model hepatotoxins. F-HEPs were used as the positive control. Data are presented as mean. n=3. Fig. 4D is a bar graph showing gene expression analysis of hepatic genes after hiHeps formation by qRT-PCR. The relative expression was normalized to that of day 0. Data are presented as mean +/-s. d.
Fig. 5A is a line graph showing the level of human albumin in in mouse serum was monitored by ELISA.
Fig. 5 B is a bar graph comparing human ALB secretion in mouse serum among ES-Heps (n = 16) , hiHeps (n = 5) , and F-HEPs (n = 6) .
Fig. 5C shows flow cytometry analysis of the engraftment efficiencies of hiHeps. Mouse 1 and mouse 2 secreted human ALB at 267 and 313 ug/ml, respectively. HN, human nuclei; PE, phycoerythrin.
DETAILED DESCRIPTION OF THE INVENTION
I.DEFINITIONS
As used herein a "culture" means a population of cells grown in a medium and optionally passaged. A cell culture may be a primary culture (e.g., a culture that has not been passaged) or may be a secondary or subsequent culture (e.g., a population of cells which have been subcultured or passaged one or more times) .
As used herein, “downregulation” or “downregulate” refers to the process by which a cell decreases the quantity and/or activity of a cellular component, for example, DNA, RNA or protein, in response to an external variable.
As used herein, “embryonic stem cell (ESC) -derived hepatocytes (ES-Heps) ” refer to induced hepatocytes derived according to the methods disclosed in Zhao, et al., Cell Res., 23 (1) : 157-161 (2013) .
As used herein, “functional induced hepatocytes (iHeps) ” refers to induced hepatocytes which show the activity of at least one of CYP3A4, CYP2C9, or CYP2C19, at levels 50%higher than the activity of the same enzyme in ES-Heps obtained from the same organism. The activity of the enzyme can be 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%or more, higher than the activity in ES-Heps.
As used herein, the term “host cell” refers to non-hepatocytes eukaryotic cells into which a recombinant nucleotide, such as a vector, can be introduced.
The term “induced hepatocytes” (iHeps) as used herein refers to cells which are not naturally occurring hepatocytes, and which are artificially derived from non-hepatocyte cells.
The term "isolated" or "purified" when referring to hiHEPS means chemically induced pluripotent stem cells at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%free of contaminating cell types such as non-hepatocyte cells. The isolated iheps may also be substantially free of soluble, naturally occurring molecules.
The terms “oligonucleotide” and “polynucleotide” generally refer to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as used herein refers to, among others, single-and double- stranded DNA, DNA that is a mixture of single-and double-stranded regions, single-and double-stranded RNA, and RNA that is mixture of single-and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single-and double-stranded regions. The term “nucleic acid” or “nucleic acid sequence” also encompasses a polynucleotide as defined above.
In addition, polynucleotide as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide.
As used herein, the term polynucleotide includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein.
The term “percent (%) sequence identity” is defined as the percentage of nucleotides or amino acids in a candidate sequence that are identical with the nucleotides or amino acids in a reference nucleic acid sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared can be determined by known methods.
For purposes herein, the %sequence identity of a given nucleotides or amino acids sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given sequence C that has or  comprises a certain %sequence identity to, with, or against a given sequence D) is calculated as follows:
100 times the fraction W/Z, where W is the number of nucleotides or amino acids scored as identical matches by the sequence alignment program in that program’s alignment of C and D, and where Z is the total number of nucleotides or amino acids in D. It will be appreciated that where the length of sequence C is not equal to the length of sequence D, the %sequence identity of C to D will not equal the %sequence identity of D to C
As used herein, “transformed” and “transfected” encompass the introduction of a nucleic acid (e.g. a vector) into a cell by a number of techniques known in the art.
As used herein, a “vector” is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. The vectors described herein can be expression vectors.
As used herein, an “expression vector” is a vector that includes one or more expression control sequences.
“Reprogramming” as used herein refers to the conversion of a one specific cell type to another. For example, a cell that is not a hepatocyte cab be reprogrammed into a cell that is morphologically and functionally like a hepatocyte.
As used herein “treating a cell/cells” refers to contacting the cell (s) with factors such as the nucleic acids disclosed herein to downregulate or upregulate the quantity and/or activity of a cellular component, for example, DNA, RNA or protein. This phrase also encompasses contacting the cell (s) with any factors including proteins and small molecules that can downregulate or upregulate the gene/protein of interest.
The term “upregulate expression of” means to affect expression of, for example to induce expression or activity, or induce increased/greater expression or activity relative to an untreated cell.
As used herein, “upregulation” or “upregulate” refers to the process by which a cell increases the quantity and/or activity of a cellular component, for example, DNA, RNA or protein, in response to an external variable.
“Variant” refers to a polypeptide or polynucleotide that differs from a reference polypeptide or polynucleotide, but retains essential properties. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more modifications (e.g., substitutions, additions, and/or deletions) . A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polypeptide may be naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally.
II. COMPOSITIONS
A.Factors Inducing Non-hepatocyte cells into hepatocyte-like properties
Obtaining fully functional cell types is a major challenge for drug discovery, bioartificial liver and regenerative medicine. Currently, a fundamental solution to this key problem is still lacking. Functional human induced hepatocytes (hiHeps) can be generated from fibroblasts by upregulating at least one factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1, and CEBPA, as well as MYC genes mRNA or protein levels. All known functional variants and isoforms of the hepatocyte inducing factors disclosed herein are contemplated. These known sequences are readily available in the National Center for Biotechnology Information Genebak database.
Preferably, p53 activity is additionally, downregulated as indicated by a downregulation of the p53 gene, mRNA and/or protein levels.
1. Nucleic acids encoding Hepatocyte Inducing factors
i. HNF1A
HNF1A (also known as TCF1) is a tumor suppressor gene involved in liver tumorigenesis. It is located on the long arm of chromosome 12,  encoded by 10 exons, spanning 23 kilobases, and is expressed in various tissues, including liver, kidney, pancreas, and digestive tract. It encodes a transcription factor HNF1, which, in the liver, is implicated in hepatocyte differentiation and is required for expression of certain liver-specific genes, including albumin, β-fibrinogen, and α1-antitrypsin. Courtois, et al., Science, 30 (4827: 688-692 (1987) . The HNF1A gene is conserved in chimpanzee, Rhesus monkey, dog, cow, mouse, rat, chicken, zebrafish, and frog.
In a preferred embodiment, a nucleotide encoding HNF1A is represented below by SEQ ID NO: 1.
Figure PCTCN2015072232-appb-000001
(SEQ ID NO: 1)
A nucleic acid encoding HNF1A can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 1 or a functional fragment or variant of SEQ ID NO: 1.
A number of naturally occurring variants of nucleic acids encoding HNF1A and their activities are known in the art, and include, but are not limited to, the transcript variant for HNF1A as represented by GenBank Accession No: XM_005253931.1.
ii. HNF6
HNF6 was originally characterized as a transcriptional activator of the liver promoter of the 6-phosphofructo-2-kinase (pfk-2) gene, is expressed in liver, brain, spleen, pancreas, and testis. Lannoy, et al., J. Biol. Chem., 273: 13552-13562 (1998) . Alternative splicing results in multiple transcript variants.
In one embodiment, HNF6 is represented by SEQ ID NO: 2.
Figure PCTCN2015072232-appb-000002
(SEQ ID NO: 2)
A nucleic acid encoding HNF6 can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 2 or a functional fragment or variant of SEQ ID NO: 2.
A number of naturally occurring variants of nucleic acids encoding HNF6 and their activities are known in the art. A human hepatocyte nuclear factor 6 (HNF6) gene is described under NCBI GenBank Accession No. AF035581. A Homo sapiens transcript variant mRNA is disclosed under Genbank Accession No. NM_004498.2 .
iii. HNF4A
Hepatocyte nuclear factor 4 alpha (HNF4alpha, NR2A1, gene symbol HNF4A) is a highly conserved member of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors (Sladeck, et al., Genes Dev., 4 (12B) : 2353-65 (1990) . HNF4A1 is expressed in liver (hepatocytes) , kidney, small intestine, etc. HNF4A2 is the most predominant isoform in the  liver. HNF4A regulates most if not all of the apolipoprotein genes in the liver and regulates the expression of many cytochrome P450 genes (e.g., CYP3A4, CYP2D6) and Phase II enzymes and hence may play a role in drug metabolism (Gonzalez, et al., Drug Metab. Pharmacokinet., 23 (1) : 2-7 (2008) .
In one embodiment, HNF4 is represented by SEQ ID NO: 3.
Figure PCTCN2015072232-appb-000003
(SEQ ID NO: 3) 
A nucleic acid encoding HNF4 can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO:3 or a functional fragment or variant of SEQ ID NO: 3.
A number of naturally occurring variants of nucleic acids encoding HNF4 and their activities are known in the art. A human hepatocyte nuclear factor 4 gene is described under NCBI GenBank Accession No. BC137539.1.
iv. ATF5
ATF5 encodes activating transcription factor 5. ATF5 transcripts and protein are expressed in a wide variety of tissues, in particular, high expression of transcripts in liver.
In one embodiment, ATF5 is represented by SEQ ID NO: 4.
Figure PCTCN2015072232-appb-000004
Figure PCTCN2015072232-appb-000005
(SEQ ID NO: 4)
A nucleic acid encoding ATF5 can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 4 or a functional fragment or variant of SEQ ID NO: 4. A number of naturally occurring variants of nucleic acids encoding ATF5 and their activities are known in the art. A human ATF5 transcript variant 3 (mRNA) is described under Genbank Accession No. NM_001290746.1 (Abe, et al., J. Biol. Chem., 289(7) : 3888-3900 (2014) ) .
v. PROX1
In one embodiment, PROX1 is represented by SEQ ID NO: 5.
Figure PCTCN2015072232-appb-000006
(SEQ ID NO: 5)
A nucleic acid encoding PROX1 can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID  NO: 5 or a functional fragment or variant of SEQ ID NO: 5. A number of naturally occurring variants of nucleic acids encoding PROX1 and their activities are known in the art.
vi. CEBPA
CEBPA encodes a basic leucine zipper (bZIP) transcription factor which can bind as a homodimer to certain promoters and enhancers.
In one embodiment, CEBPA is represented by SEQ ID NO: 6.
Figure PCTCN2015072232-appb-000007
(SEQ ID NO: 6)
A nucleic acid encoding CEBPA can include a sequence having at least 80%, 85%, 90%, 95%, 99%, or 100%sequence identity to SEQ ID NO: 6 or a functional fragment or variant of SEQ ID NO: 6. A number of naturally occurring variants of nucleic acids encoding CEBPA and their activities are known in the art.
vii. MYC
Myc (c-Myc) is a regulator gene that codes for a transcription factor, which is multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis and cellular transformation.
In one embodiment, MYC is represented by SEQ ID NO: 7.
Figure PCTCN2015072232-appb-000008
Figure PCTCN2015072232-appb-000009
(SEQ ID NO: 7)
2. Vectors encoding Hepatocyte Inducing Factors
The Hepatocyte inducing factors are introduced into a host cell using suitable transformation vectors. Nucleic acids, such as those described above, can be inserted into vectors for expression in cells. As used herein, a “vector” is a replicon, such as a plasmid, phage, virus or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. Vectors can be expression vectors. An “expression vector” is a vector that includes one or more expression control sequences, and an “expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
Nucleic acids in vectors can be operably linked to one or more expression control sequences. For example, the control sequence can be incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest. Examples of expression control sequences include promoters, enhancers, and transcription terminating regions. A promoter is an expression control sequence composed of a region of a DNA molecule, typically within 100 nucleotides upstream of the point at which transcription starts (generally near the initiation site for RNA polymerase II) . To bring a coding sequence under the control of a promoter, it is necessary to position the translation initiation site of the translational reading frame of the polypeptide between one and about fifty nucleotides downstream of the promoter. Enhancers provide expression specificity in terms of time, location, and level. Unlike promoters, enhancers can function when located at various distances from the transcription site. An enhancer also can be located downstream from the transcription initiation site. A coding sequence is “operably linked” and “under the control” of expression control sequences in a cell when RNA polymerase is able to  transcribe the coding sequence into mRNA, which then can be translated into the protein encoded by the coding sequence.
Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalo virus, retroviruses, vaccinia viruses, adenoviruses, lentiviruses and adeno-associated viruses. Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, WI) , Clontech (Palo Alto, CA) , Stratagene (La Jolla, CA) , and Invitrogen Life Technologies (Carlsbad, CA) .
B. Cells to be induced
Cells that can be reprogrammed include embryonic stem cells (ESC) , induced pluripotent stem cells (iPSC) , fibroblast cells, adipose-derived stem cells (ADSC) , neural derived stem cells, blood cells, keratinocytes, intestinal epithelial cells and other non-hepatocyte somatic cells. In a preferred embodiment, the non-hepatocyte cell is a fibroblast cell, for example an embryonic fibroblasts (HEFs) or foreskin fibroblasts. The cells are preferably obtained from a mammal, for example, rat, mice, monkeys, dogs, cats, cows, rabbits, horses, pigs. Preferably, the cells are obtained from a human subject.
C. induced Hepatocyte Cells
iHeps are disclosed, which are obtained for example, by a method which includes treating non-hepatocyte cells to overexpress the hepatic fate conversion factors HNF1A, HNF4A, and HNF6 along with the maturation factors ATF5, PROX1, and CEBPA. The non-hepatocyte is treated to overexpress at least one hepatocyte inducing factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1, and CEBPA. In some embodiments the non-hepatocyte is treated to overexpress or transformed to express at least 2, at least 3, at least 4 or at least 5 of the hepatocyte inducing factors. In a preferred embodiment, the cell is transformed to overexpress all 6 Hepatocyte inducing factors.
iHeps show typical and functional characteristics of hepatocytes in the organisms from which the cell induced was obtained. For example, iHeps show the typical morphology for primary human hepatocytes. iHeps  express at least one hepatic marker selected from the group consisting of albumin, Cytochrome P450 (Cyp) 3A4 and CypB6. Like primary human hepatocytes, hiHeps express an additional spectrum of phase I and II drug-metabolizing enzymes and phase III drug transporters and albumin. The metabolic activities of at least one of CYP3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19 are comparable between hiHeps and freshly isolated primary human hepatocytes. Preferably, the iHeps are functional as determined by the metabolic activity of these enzymes being at least 50%higher than the activity of the same enzyme in ES-Heps obtained from the same organism. The activity of the enzyme can be 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%or more, higher than the activity in ES-Heps. Most preferably, the activities of all these CYP enzymes in hiHeps are at least 100-fold higher than that of ES-Heps.
In some embodiments, MYC expression levels in iHeps are lower than the levels found in normal hepatocytes in the corresponding organism as measured for example, by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) , i.e., if the donor organism for the non-hepatocyte cell to be induced is a human subject, the levels are compared to normal hepatocytes found in humans.
Functional hiHeps may also express at least one drug metabolic phase II enzyme or phase II transporter selected from the group consisting of UDP glucuronosyltransferase (UGT) 1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, GSTA1, UGT2B7, UGT2515, Microsomal glutathione-S-transferase 1 (MGST1) , nicotinamide N-methyltransferase (NNMT) , NTCP, organic anion-transporting polypeptide 1B3 (OATP1B3) , Multidrug resistance protein (MRP) 6, MRP2, Flavin-containing monooxygenase 5 (FMO5) , Monoamine oxidase (MAO) A, MAOB, and epoxide hydrolase 1 (EPHX1) . Preferably, endogenous expression of Forkhead box (FOX) A1, FOXA2, FOXA3 and Liver receptor homolog 1 (LRH1) is activated in hiHeps.
In some embodiment where the cell being induced is not an epithelial cell, hiHeps additionally express at least one epithelial cell marker, for example, E-cadherin, and where the cell being induced is a fibroblast, the hiHeps obtained following induction of fibroblasts using the methods  disclosed herein, do not express the fibroblast marker genes such as COL1A1, PDGFRB, THY1 and α-fetoprotein as measured for example by RT-PCR.
With respect to functional characteristics associated with mature hepatocytes, hiHeps possess at least one characteristic selected from the group consisting of: albumin secretion, LDL uptake, indocyanine green (ICG) incorporation from cell culture medium and exclusion of the absorbed ICG after withdrawal, glycogen synthesis and storage, and fatty droplet accumulation.
III. METHOD OF MAKING
Huang, et al., Nature, 475: 386-389 (2011) disclose the direct induction of hepatocyte-like cells from mouse tail-tip fibroblasts by transduction of Gata4, Hnf1α and Foxa3, and inactivation of p19 (Arf) . Induced cells show typical epithelial morphology. Sekiya and Suzuki, Nature, 475: 390-393 (2011) ) , identified three specific combinations of two transcription factors, Hnf4α plus Foxa1, Foxa2 or Foxa3, that can convert mouse embryonic and adult fibroblasts into cells that resemble hepatocytes in vitro. Cai, et al., Hepatology, 45 (5) : 1229-39 (2007) disclose a three-stage method to direct the differentiation of human embryonic stem cells (hESCs) into hepatic cells in serum-free medium. Human ESCs were first differentiated into definitive endoderm cells by 3 days of Activin A treatment. Next, the presence of fibroblast growth factor-4 and bone morphogenetic protein-2 in the culture medium for 5 days induced efficient hepatic differentiation from definitive endoderm cells, followed by 10 days of further in vitro maturation. Zhao, et al., Cell Res., 23 (1) : 157-161 (2013) disclose a method of promoting the maturation of hESCs into cells with hepatocyte-like properties by inducing expression of PROX1 and HNF6.
In the methods disclosed herein, the non-hepatocyte is reprogrammed into an iHep by upregulating Hepatocyte inducing factors in the cell, optionally in combination with upregulating MYC and downregulating p53 and culturing the cells for a sufficient period of time as disclosed herein to convert the cell into a cell with hepatocyte-like properties. The non-hepatocyte cells to be induced are obtained from the donor animal  using methods known in the art. The cells are placed in culture and cultured using methods that are known in the art.
The reprograming method includes the following steps: (a) treat the cells to upregulate hepatocyte inducing factors and culture the cells in cell culture medium (transformation phase) ; (b) replate and culture the cells in HCM (expansion phase) , and (c) a maturation phase, where cells are cultured in a hepatocyte maturation medium. A schematic for the disclosed method is shown in Fig. 1E. At the transformation phase, the cells are treated to upregulate at least one hepatocyte inducing factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1, and CEBPA. Preferably, the cells are additionally treated to upregulate MYC and/or downregulate p53.
In the transformation phase, the treated cells are cultured for a sufficient length of time in conventional cell culture medium, for example, Dulbecco's Modified Eagle's medium (DMEM) . Preferably, the cells are cultured for at least 7 days in this first step, to about 80%confluence. The cells then replated and expanded in HCM for a period of about 15 to 30 days, preferably for about 18-30 days, and more preferably, for about 18 days (expansion phase) , and then transferred to modified William’s E medium for a period of about 5 days (maturation phase) , following which induced hepatocytes are harvested. Preferably, p53 siRNA is downregulated at the end of the expansion phase, for example at about day 20-30 post infection, preferably, at about day 25 post infection, before the cells are transferred into the modified William’s E medium (Fig. 1E) . We observe silence of p53 siRNA around 25 days post infection. The silence is mainly caused by the introduction of hepatic transcription factors. For example, HNF4A and CEBPA can substantially decrease proliferative rate of iHeps. Furthermore, the self-establishment of endogenous hepatic maturation signaling network also attenuate the reliability of exogenous expression of other transcription factors (Fig2) .
The method includes a step confirming that the non-hepatocytes have acquired hepatocyte-like properties, using morphological and functional characteristics as well as gene expression.
Morphological confirmation methods include the confirmation of morphological characteristics specific for hepatocytes such as cells having a plurality of nuclei observed by a phase microscope and granules rich in cytoplasm observed by an electron microscope, in particular, the presence of glycogen granules.
Treated cells can also be identified as induced hepatocytes using one or more of the following characteristics: their ability to express ALB at a level comparable to that of primary human hepatocytes; expression of one or more of the five major cytochrome P450 enzymes, CYP3A4, CYP1A2, CYP2C9, and CYP2C19; expression of phase II enzyme or phase II transporter selected from the group consisting of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, GSTA1, UGT2B7, UGT2515, MGST1, NNMT, NTCP, OATP1B3, MRP6, MRP2, FMO5, MAOA, MAOB, and EPHX1. Successful induction can be confirmed by the presence of an epithelial marker and the absence of a marker for the cell which is being induced. For example, where the cell being induced is a fibroblast, additional indication that the cells has been induced into a hepatocyte-like cell can be expression of at least one epithelial cell marker, for example, E-cadherin, and absence of expression of the fibroblast marker genes such as COL1A1, PDGFRB, THY1 and α-fetoprotein as measured for example by RT-PCR.
A. Upregulating Hepatocyte inducing Factors and MYC
Hepatocyte inducing factors and MYC are upregulated by contacting the non-hepatocyte with factors which upregulate gene expression and or protein levels/activity of the Hepatocyte inducing Factors and MYC. These factors include, but are not limited to nucleic acids, proteins and small molecules.
For example, upregulation may be accomplished by exogenously introducing the nucleic acids encoding the hepatocyte inducing Factor (s) and optionally, MYC, into the non-hepatocyte (host cell) . The nucleic acid may be homologous or heterologous. The nucleic acid molecule can be DNA or RNA, preferably, mRNA. Preferably, the nucleic acid molecule is introduced into the non-hepatocyte cell by lentiviral expression.
The host cell is transformed to overexpress at least one hepatocyte inducing factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1, and CEBPA. Preferably, the cell is additionally transformed overexpress the proliferation factor MYC. In some embodiments the cell is transformed to express at least 2, at least 3, at least 4 or at least 5 of the hepatocyte inducing factors. In a preferred embodiment, the cell is transformed to overexpress all 6 Hepatocyte inducing factors.
Vectors containing nucleic acids to be expressed can be transferred into host cells. Nucleic acids can be transfected into mammalian cells by techniques including, for example, calcium phosphate co-precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation, or microinjection. The Ex vivo methods disclosed herein can include, for example, the steps of harvesting cells from a subject/donor, culturing the cells, transducing them with an expression vector, and maintaining the cells under conditions suitable for expression of the encoded polypeptides. These methods are known in the art of molecular biology.
Upregulation may also be accomplished by treating the cells with factors known to increase expression of genes encoding the Hepatocyte inducing factors/MYC and/or factors known to increase the corresponding protein levels. For example, Zhao, et al., Cell Res., 23 (1) : 157-161 (2013) , disclose a method for promoting the emergence of PROX1 and HNF6-expressing cells from hESCs using the induction factors FGF7, BMP2 and BMP4. Known factors, including small molecules and/or proteins which upregulate Hepatocyte inducing factors gene expression or protein levels can also be use.
B. Downregulating p53
p53 can be downregulated by treating cells to downregulate p53 gene expression, mRNA levels or protein levels. This step includes contacting the cells with any molecule that is known to downregulate p53 gene expression, mRNA or protein levels, including but not limited to nucleic acid molecules, small molecules and protein.
p53 gene expression can be inhibited using a functional nucleic acid, or vector encoding the same, selected from the group consisting of antisense  oligonucleotides, siRNA, shRNA, miRNA, EGSs, ribozymes, and aptamers. Preferably, p53 gene expression is inhibited using siRNA, shRNA, or miRNA.
1. RNA Interference
In some embodiments, P53 gene expression is inhibited through RNA interference. Gene expression can also be effectively silenced in a highly specific manner through RNA interference (RNAi) . This silencing was originally observed with the addition of double stranded RNA (dsRNA) (Fire, et al. (1998) Nature, 391: 806-11; Napoli, et al. (1990) Plant Cell 2: 279-89; Hannon, (2002) Nature, 418: 244-51) . Once dsRNA enters a cell, it is cleaved by an RNase III –like enzyme, Dicer, into double stranded small interfering RNAs (siRNA) 21-23 nucleotides in length that contains 2 nucleotide overhangs on the 3’ ends (Elbashir, et al. (2001) Genes Dev., 15: 188-200; Bernstein, et al. (2001) Nature, 409: 363-6; Hammond, et al. (2000) Nature, 404: 293-6) . In an ATP dependent step, the siRNAs become integrated into a multi-subunit protein complex, commonly known as the RNAi induced silencing complex (RISC) , which guides the siRNAs to the target RNA sequence (Nykanen, et al. (2001) Cell, 107: 309-21) . At some point the siRNA duplex unwinds, and it appears that the antisense strand remains bound to RISC and directs degradation of the complementary mRNA sequence by a combination of endo and exonucleases (Martinez, et al. (2002) Cell, 110: 563-74) . However, the effect of iRNA or siRNA or their use is not limited to any type of mechanism.
Short Interfering RNA (siRNA) is a double-stranded RNA that can induce sequence-specific post-transcriptional gene silencing, thereby decreasing or even inhibiting gene expression. In one example, a siRNA triggers the specific degradation of homologous RNA molecules, such as mRNAs, within the region of sequence identity between both the siRNA and the target RNA. For example, WO 02/44321 discloses siRNAs capable of sequence-specific degradation of target mRNAs when base-paired with 3' overhanging ends, herein incorporated by reference for the method of making these siRNAs.
Sequence specific gene silencing can be achieved in mammalian cells using synthetic, short double-stranded RNAs that mimic the siRNAs produced by the enzyme dicer (Elbashir, et al. (2001) Nature, 411: 494 498) (Ui-Tei, et al. (2000) FEBS Lett 479: 79-82) . siRNA can be chemically or in vitro-synthesized or can be the result of short double-stranded hairpin-like RNAs (shRNAs) that are processed into siRNAs inside the cell. Synthetic siRNAs are generally designed using algorithms and a conventional DNA/RNA synthesizer. Suppliers include Ambion (Austin, Texas) , ChemGenes (Ashland, Massachusetts) , Dharmacon (Lafayette, Colorado) , Glen Research (Sterling, Virginia) , MWB Biotech (Esbersberg, Germany) , Proligo (Boulder, Colorado) , and Qiagen (Vento, The Netherlands) . siRNA can also be synthesized in vitro using kits such as Ambion’s 
Figure PCTCN2015072232-appb-000010
siRNA Construction Kit.
The production of siRNA from a vector is more commonly done through the transcription of a short hairpin RNAse (shRNAs) . Kits for the production of vectors comprising shRNA are available, such as, for example, Imgenex’s GENESUPPRESSORTM Construction Kits and Invitrogen’s BLOCK-ITTM inducible RNAi plasmid and lentivirus vectors.
2. Antisense
p53 gene expression can be inhibited by antisense molecules. Antisense molecules are designed to interact with a target nucleic acid molecule through either canonical or non-canonical base pairing. The interaction of the antisense molecule and the target molecule is designed to promote the destruction of the target molecule through, for example, RNAse H mediated RNA-DNA hybrid degradation. Alternatively the antisense molecule is designed to interrupt a processing function that normally would take place on the target molecule, such as transcription or replication. Antisense molecules can be designed based on the sequence of the target molecule. There are numerous methods for optimization of antisense efficiency by finding the most accessible regions of the target molecule. Exemplary methods include in vitro selection experiments and DNA modification studies using DMS and DEPC. It is preferred that antisense  molecules bind the target molecule with a dissociation constant (Kd) less than or equal to 10-6, 10-8, 10-10, or 10-12.
An “antisense” nucleic acid sequence (antisense oligonucleotide) can include a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to the p53 encoding mRNA. Antisense nucleic acid sequences and delivery methods are well known in the art (Goodchild , Curr. Opin. Mol. Ther., 6 (2) : 120-128 (2004) ; Clawson, et al., Gene Ther., 11 (17) : 1331-1341 (2004) ) . The antisense nucleic acid can be complementary to an entire coding strand of a target sequence, or to only a portion thereof.. An antisense oligonucleotide can be, for example, about 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or more nucleotides in length.
An antisense nucleic acid sequence can be designed such that it is complementary to the entire p53 mRNA sequence, but can also be an oligonucleotide that is antisense to only a portion of the p53 mRNA. An antisense nucleic acid can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. The antisense nucleic acid also can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection) .
Other examples of useful antisense oligonucleotides include an alpha-anomeric nucleic acid. An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual beta-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids. Res. 15: 6625-6641 (1987) ) . The antisense  nucleic acid molecule can also comprise a 2' -o-methylribonucleotide (Inoue et al. Nucleic Acids Res. 15: 6131-6148 (1987) ) or a chimeric RNA-DNA analogue (Inoue et al. FEBS Lett., 215: 327-330 (1987) ) .
3. Aptamers
In some embodiments, the inhibitory molecule is an Aptamer. Aptamers are molecules that interact with a target molecule, preferably in a specific way. Aptamers can bind the target molecule with a very high degree of specificity. For example, aptamers have been isolated that have greater than a 10,000 fold difference in binding affinities between the target molecule and another molecule that differ at only a single position on the molecule. Because of their tight binding properties, and because the surface features of aptamer targets frequently correspond to functionally relevant parts of the protein target, aptamers can be potent biological antagonists. Typically aptamers are small nucleic acids ranging from 15-50 bases in length that fold into defined secondary and tertiary structures, such as stem-loops or G-quartets. Aptamers can bind small molecules, such as ATP and theophiline, as well as large molecules, such as reverse transcriptase and thrombin. Aptamers can bind very tightly with Kd’s from the target molecule of less than 10-12 M. It is preferred that the aptamers bind the target molecule with a Kd less than10-6, 10-8, 10-10, or 10-12. It is preferred that the aptamer have a Kd with the target molecule at least 10, 100, 1000, 10,000, or 100,000 fold lower than the Kd with a background binding molecule. It is preferred when doing the comparison for a molecule such as a polypeptide, that the background molecule be a different polypeptide.
4. Ribozymes
p53 gene expression can be inhibited using ribozymes. Ribozymes are nucleic acid molecules that are capable of catalyzing a chemical reaction, either intramolecularly or intermolecularly. It is preferred that the ribozymes catalyze intermolecular reactions. There are a number of different types of ribozymes that catalyze nuclease or nucleic acid polymerase type reactions which are based on ribozymes found in natural systems, such as hammerhead ribozymes. There are also a number of ribozymes that are not found in natural systems, but which have been engineered to catalyze specific  reactions de novo. Preferred ribozymes cleave RNA or DNA substrates, and more preferably cleave RNA substrates. Ribozymes typically cleave nucleic acid substrates through recognition and binding of the target substrate with subsequent cleavage. This recognition is often based mostly on canonical or non-canonical base pair interactions. This property makes ribozymes particularly good candidates for target specific cleavage of nucleic acids because recognition of the target substrate is based on the target substrates sequence.
5. Triplex Forming Oligonucleotides
p53 gene expression can be inhibited using triplex forming molecules. Triplex forming functional nucleic acid molecules are molecules that can interact with either double-stranded or single-stranded nucleic acid. When triplex molecules interact with a target region, a structure called a triplex is formed in which there are three strands of DNA forming a complex dependent on both Watson-Crick and Hoogsteen base-pairing. Triplex molecules are preferred because they can bind target regions with high affinity and specificity. It is preferred that the triplex forming molecules bind the target molecule with a Kd less than 10-6, 10-8, 10-10, or 10-12.
6. External Guide Sequences
p53 expression can be inhibited using external guide sequences. External guide sequences (EGSs) are molecules that bind a target nucleic acid molecule forming a complex, which is recognized by RNase P, which then cleaves the target molecule. EGSs can be designed to specifically target a RNA molecule of choice. RNAse P aids in processing transfer RNA (tRNA) within a cell. Bacterial RNAse P can be recruited to cleave virtually any RNA sequence by using an EGS that causes the target RNA: EGS complex to mimic the natural tRNA substrate. Similarly, eukaryotic EGS/RNAse P-directed cleavage of RNA can be utilized to cleave desired targets within eukaryotic cells. Representative examples of how to make and use EGS molecules to facilitate cleavage of a variety of different target molecules are known in the art.
7. ShRNA
p53 expression can be inhibited using small hairpin RNAs (shRNAs) , and expression constructs engineered to express shRNAs. Transcription of shRNAs is initiated at a polymerase III (pol III) promoter, and is thought to be terminated at position 2 of a 4-5-thymine transcription termination site. Upon expression, shRNAs are thought to fold into a stem-loop structure with 3’ UU-overhangs; subsequently, the ends of these shRNAs are processed, converting the shRNAs into siRNA-like molecules of about 21 nucleotides (Brummelkamp et al., Science 296: 550-553 (2002) ; Lee et al., Nature Biotechnol. 20: 500-505 (2002) ; Miyagishi and Taira, Nature Biotechnol. 20: 497-500 (2002) ; Paddison et al., Genes Dev. 16: 948-958 (2002) ; Paul et al., Nature Biotechnol. 20: 505-508 (2002) ; Sui (2002) supra; Yu et al., Proc. Natl. Acad. Sci. USA 99 (9) : 6047-6052 (2002) .
C. Delivery Vehicles
Methods of making and using vectors for in vivo expression of functional nucleic acids such as antisense oligonucleotides, siRNA, shRNA, miRNA, EGSs, ribozymes, and aptamers are known in the art.
For example, the delivery vehicle can be a viral vector, for example a commercially available preparation, such as an adenovirus vector (Quantum Biotechnologies, Inc. (Laval, Quebec, Canada) . The viral vector delivery can be via a viral system, such as a retroviral vector system which can package a recombinant retroviral genome. The recombinant retrovirus can then be used to infect and thereby deliver to the infected cells nucleic acid encoding the hepatocyte inducing factor (s) . The exact method of introducing the altered nucleic acid into the host cell is, of course, not limited to the use of retroviral vectors. Other techniques are widely available for this procedure including the use of adenoviral vectors, adeno-associated viral (AAV) vectors, lentiviral vectors, pseudotyped retroviral vectors, and others described in (Soofiyani, et al., Advanced Pharmaceutical Bulletin, 3 (2) : 249-255 (2013) . Viruses can be modified to enhance safety, increase specific uptake, and improve efficiency (see, for example, Zhang, et al., Chinese J Cancer Res., 30 (3) : 182-8 (2011) , Miller, et al., FASEB J, 9 (2) : 190-9 (1995) , Verma, et al., Annu Rev Biochem., 74: 711-38 (2005) ) .
Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other endocytosis mechanisms (see, for example, Schwartzenberger et al., Blood, 87: 472-478 (1996) ) . Commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO-BRL, Inc., Gaithersburg, Md. ) , SUPERFECT (Qiagen, Inc. Hilden, Germany) and TRANSFECTAM (Promega Biotec, Inc., Madison, Wis. ) , as well as other liposomes developed according to procedures standard in the art are well known. In addition, nucleic acid or vectors encoding the hepatocyte inducing factors can be delivered in vivo by electroporation as well as by means of a sonoporation. During electroporation electric pulses are applied across the cell membrane to create a transmembrane potential difference, allowing transient membrane permeation and transfection of nucleic acids through the destabilized membrane (Soofiyani, et al., Advanced Pharmaceutical Bulletin, 3 (2) : 249-255 (2013) ) . Sonoporation combines the local application of ultrasound waves and the intravascular or intratissue administration of gas microbubbles to transiently increase the permeability of vessels and tissues (Escoffre, et al., Curr Gene Ther., 13 (1) : 2-14 (2013) ) . Electroporation and ultrasound based techniques are targeted transfection methods because the electric pulse or ultrasound waves can be focused on a target tissue or organ and hence gene delivery and expression should be limited to thereto. Expression or overexpression of the disclosed hepatocyte inducing factors accomplished with any of these or other commonly used gene transfer methods, including, but not limited to hydrodynamic injection, use of a gene gun.
IV. METHOD OF USING
The studies disclosed herein show that human hepatocytes with drug metabolic function can be generated by lineage reprogramming, thus providing a cell resource for pharmaceutical applications.
A. In vitro and Research Applications
(i) Drug Testing
Liver parenchymal cells play a key role in drug development because the liver plays a central role in the metabolic activity of the drug. At present,  the main cause of failure of a drug candidate is its ADME (absorption, distribution, metabolism, excretion) is not ideal. An essential part of drug discovery research is to the metabolic and toxicological effects of the candidate drug on liver cells, human liver parenchymal cells with full participation of drug metabolism. Currently the main hepatocytes used for in vitro drug development are human adult primary hepatocytes. Due to their limited sources, and the difficulty of maintaining primary hepatocyte function in vitro is difficult to maintain, their application in drug development is quite limited.
hiHeps disclosed herein which express phase I, II and III drug-metabolizing enzymes can be used in vitro drug metabolism studies.
(ii) Research
The problem encountered in studies involving infectious diseases is the lack of adequate animal models. hiHeps can be used to construct humanized mouse models for study of infectious diseases, for example, hepatitis B and C infections. These animal models can provide a reliable in vivo platform for use in the development of vaccines and drugs for treating infectious diseases, particularly diseases that infect the liver.
B. In vivo Applications
Liver failure and loss of function is one of the most severe consequences of liver disease. Because of its rapid onset, rapid progression, liver transplantation is the primary means of treatment of these diseases. However, donor scarcity presents a serious problem and many patients die while waiting for liver transplantation.
The studies disclosed herein show that transplanted hiHeps repopulate up to 30%of the livers of Tet-uPA/Rag2-/-γc-/-mice and secrete more than 300 mg/ml human albumin in vivo. Thus, hiHeps can be used in the treatment of liver failure and loss of function diseases, for example.
Transplanting isolated iHeps by percutaneous or transjugular infusion into the portal vein, or injecting into the splenic pulp or the peritoneal cavity, is a less invasive procedure compared with liver transplantation. The iHeps are preferably obtained from the same animal being treated. As the host liver is not removed or resected, the loss of graft function should not worsen liver  function. Furthermore, isolated iHeps could be, potentially, cryopreserved for ready access. The iHeps can be used as a vehicle for ex vivo gene therapy for example, for rescuing patients from radiation-induced liver damage resulting from radiotherapy for liver tumors. iHeps can be transplanted into a recipient organism using a carrier such as a matrix known for transplantation of hepatocytes. For example, Zhou, et al., Liver Transpl., 17 (4) : 418-27 (2011) discloses the use of decellularized liver matrix (DLM) as a carrier for hepatocyte transplantation. Schwartz, et al., Int. J. Gastroentrol., 10 (1) : discloses isolating liver and pancreas cells from tissue samples, seeding onto a poly-L-lactic acid matrix and re-implanting into the mesentery of the same patient.
hiHeps can also be used in the bio-artificial liver support systems. Bioartificial liver support system based on the disclosed cells are constructed to temporarily replace the main function of liver failure (remove hazardous substances, provide the liver synthetic biologically active substances) , to stabilize and improve the patient's internal environment, until a suitable donor source for transplantation is available. Methods for making bioartifical liver are disclosed for example in U. S. Publication No. 2008/0206733.
V. KITS
Kits for inducing in vitro reprograming of non-hepatocytes into induced heptocytes with functional hepatocyte metabolic properties are disclosed. The kit includes factors which up-regulate hepatocyte inducing factors HNF1A, HNF6, HNF4A, ATF5, PROX1, CEPBA , and/or MYC and factors which downregulate p53 gene expression and/or protein activity. In one embodiment, the kit includes any DNA sequence of HNF1A, HNF6, HNF4A, ATF5, PROX1, CEPBA , and/or MYC and DNA sequence to downregulate p53 gene expression. In a preferred embodiment, the kit includes lentiviruses which overexpress HNF1A, HNF6, HNF4A, ATF5, PROX1, CEPBA , and/or MYC gene and nucleic acid which inhibits p53 gene expression.
Examples
Materials and Methods
Human primary cell isolation and culture
The present study was approved by the Clinical Research Ethics Committee of China-Japan Friendship Hospital (Ethical approval No: 2009-50) , Stem Cell Research Oversight of Peking University (SCRO201103-03) and conducted according to the principles of the Declaration of Helsinki.
Human embryonic skins and fetal liver tissues at 14 gestational weeks were obtained from abortion with informed patient consent. Fetal liver cells were obtained as previously described (Lilja et al., 64: 1240-1248 (1997) ) . The fetal liver tissue was cut into 1-3 mm3 fragments for digestion in 10 ml medium (RPMI 1640) supplemented with 1mg/ml collagenase IV (Gibco) . Digestion was performed at 37℃ for 15 –20 min and erythrocytes were eliminated by slow-speed centrifugation. Cells were washed with RPMI 1640 medium for 3 times. Trypan blue exclusion estimated that cell viability was 90%.
Fresh human embryonic skin tissue (HEF) and ex vivo human adult foreskin tissue (HFF) were sterilized with 75%aqueous ethanol and washed with phosphate buffered saline (PBS) . The tissue was carefully separated from subcutaneous tissue with ophthalmic scissors. The tissue was washed several times with PBS, small tissue blocks were seeded in a petri dish, and placed in an incubator at 37 ℃, 5%CO2. Two hours later, the following were added: DMEM high glucose medium (purchased from Hyclone company, product catalog No. SH30022.01B) , 15%fetal bovine serum (FBS) , 0.1 mM β-mercaptoethanol, 1%non-essential amino acids, and 1 mM Glutamate, 8 units /ml gentamicin) . Cells were digested with 0.25%trypsin and 0.02%EDTA at room temperature for 5 minutes. Cells were seeded at 1:3 in the above-described DMEM high glucose medium in a new Petri dish. Medium was changed every two days, and cells were passaged 1:3 every 4 days to obtain human fibroblasts (derived from fetal skin) and human fibroblasts (derived from adult foreskin) . Human skin fibroblasts get to about 80%confluence following cell culture for about 5-7 days.
Human primary hepatocytes were isolated from human donor livers not used for liver transplantation, following informed consent (Seglen, 13: 29-83 (1976) ) and cultured with HCM (LONZA) .
Generation of hiHeps
This study was approved by the Clinical Research Ethics Committee of the China-Japan Friendship Hospital (ethical approval 2009-50) and Stem Cell Research Oversight of Peking University (SCRO201103-03) , and conducted according to the principles of the Declaration of Helsinki.
Human fibroblasts were infected overnight and cultured in DMEM plus 10%fetal bovine serum for 1 week before transfer into hepatocyte culture medium (HCM) (Lonza) for expansion.
One day before viral infection, human fibroblasts were seeded at 20,000 cells /well into 12-well cell culture plates containing mammalian somatic cell culture medium, and cultured at 37 ° C and 5%carbon dioxide culture for 12 hours; then thereto was added the following lentivirus expression vectors: lentivirus expression vectors expressing HNF1A, HNF6, HNF4A, ATF5, PROX1, CEBPA and MYC, respectively and a lentivirus expressing a DNA (s) for inhibiting the expression of p53, 10 μl for HNF1A, 10 μl for HNF6, 6 μl for HNF4A, 10 μl for ATF5, 3 μl for PROX1, 3 μl for CEBPA, 10 μl for MYC and 10 μl for p53 (lentivirus for inhibiting the expression of p53) . The medium was changed after 20 hours, after which the medium was changed every day. Cells were cultured for 7 days in DMEM and then transferred into HCM.
After 3 weeks of culture, HCM was replaced by modified William’s E medium (Beijing Vitalstar Biotechnology) . Cells were passaged every 4 days, and human hepatocyte-like cells were harvested after 30 days. A schematic for hiHep reprogramming is shown in Fig. 1E.
Growth curve and doubling times
For MTT assays, the induced cells of expansion stage and maturation stage were plated into 96-well plate (1000 cells per well) and cultured in HCM (before p53 siRNA-GFP silence) or modified WEM (after p53 siRNA-GFP silence) separately for 7 days. MTT assay was done at each day according to the manufacturer’s instructions (
Figure PCTCN2015072232-appb-000011
MTT Cell  Proliferation Assay Kit, Invitrogen) . To calculate the doubling time of the induced cells in the expansion stage, the induced cells in the expansion stage (before p53 siRNA-GFP silence) were plated at the density of 30000 cells per well, and cultured in 12-well plate coated with matrigel. The growth rate was determined by counting the number of cells using a hemacytometer as a function of time. Data from the exponential phase of growth (data points at 12, 24, 36 and 48h) were used to obtain an exponential growth curve. Doubling time (Td) was then obtained using the formula: Td= t*ln2/ln (Nt/N0) where Nt is the cell number at time t; N0 is the cell number at the initial time.
Hepatic differentiation
Human embryonic stem cells (hESCs, ES cell line H1, WiCell research institute) were maintained on irradiated mouse embryonic fibroblasts in hESCs medium (Thomson et al., Science 282: 1145-1147 (1998) ) . hESCs were differentiated into hepatocytes as previously reported (Zhao et al., Cell Res 23: 157-161 (2013) ) .
Molecular cloning, lentivirus production and transduction
Complementary DNAs of transcriptional factors are amplified from the human full-length TrueClonesTM (Origene) and inserted into pCDH-EF1-MCS-T2A-Puro (System Biosciences) according to user’s manual (for each of lentivirus expression vectors of HNF1A, HNF6, HNF4A, ATF5, PROX1, and CEBPA, SEQ ID NOs: 1-6 are inserted into restriction enzyme sites of pCDH-EF1-MCS-T2A-Puro, respectively) . Lentivirus expression vector of MYC is constructed by inserting SEQ ID NO: 7 into restriction enzyme sites (Xho I and EcoR I ) of expression vector pLL-IRES-Puro (Zhao Y et al., Cell Stem Cell. 2008 Nov 6; 3 (5) : 475-9; available from Beijing Vitalstar Biotechnology, Ltd. or Peking University. For full sequence information, see http: //www. sciencegateway. org/protocols/lentivirus/pllmap. html) . Lentivirus for inhibiting the expression of p53 is constructed as follows: DNA molecule for interfering with the expression of p53 is inserted into restriction enzyme sites (Hpa I and Xho I) of expression vector pll3.7 (Rubinson and Dillon et al., Nature Genetics, 2003; available from Beijing Vitalstar Biotechnology, Ltd. or Peking University) . The DNA molecule for interfering with the expression of p53 is obtained by annealing with a sense  chain (5' -TGACTCCAGTGGTAATCTACTTCAAGAGAGTAGATTACCACTGGA GTCTTTTTTC-3' ) and a antisense chain (5' -TC GAGAAAAAAGACTCCAGTGGTAATCTACTCTCTTG AAGTAGATTACCACTGGAGT CA-3' ) . Virus package is conducted as described previously (Zhao et al., Cell Stem Cell, 3: 475-479 (2008) ) . Human fibroblasts are infected in DMEM (Hyclone) with 10%fetal bovine serum, containing 10μg/ml polybrene for 12 hours. The fibroblasts were replated seven days post infection and cultured in HCM (LONZA) . At about 25 days post infection when p53 siRNA was silenced as indicated by a GFP reporter, hiHeps were cultured in modified William's E Medium (Vitalstar Biotechnology) .
Albumin ELISA, Periodic Acid-Schiff (PAS) Staining, Indocyanine Green (ICG) uptake and release, Low-Density Lipoprotein (LDL) uptake and Oil red staining
Human Albumin was measured using the Human Albumin ELISA Quantitation kit (Bethyl Laboratory) . The PAS staining system was purchased from Sigma-Aldrich. Cultures were fixed with 4%paraformaldehyde (DingGuo) and stained according to the manufacturer’s instructions. ICG uptake and release was performed as previously described (Cai et al., Hepatology 45: 1229-1239 (2007) ) . For LDL uptake assay, 10 μg/ml DiI-Ac-LDL (Invitrogen) was incubated with hiHeps for 4 h at 37 ℃and observed by fluorescence microscopy. For lipid detection, cultures were fixed with 4% paraformaldehyde and treated with 60%isopropanol for 5 min. Then the isopropanol was removed and Oil Red O working solution was added and incubated for 15 min at room temperature. Then the Oil Red O was removed and cultures rinsed with until clear.
CYP Metabolism Assay
Drug metabolic activity was evaluated using the traditional suspension method as previously described (Gebhardt et al., Drug Metab. Rev. 35: 145–213 (2003) ) . hiHeps were cultured in the medium with 50 mM rifampicin, 50 mMb-naphthoflavone, and 1m Mphenobarbital for 72 hr and refreshed every 24 hr. Cell viability of dissociated hiHeps, HepG2 cells, ES- Heps, fibroblasts, and freshly isolated primary human hepatocytes was measured by trypan blue. One milliliter of prewarmed incubation medium (William’s E medium, 10 mM HEPES [pH 7.4] , 2 mM GlutaMAX) was added per 1 3 106 total cells (cell suspension) . The substrate solutions were prepared with the same incubation medium [400 mMtestosterone, 10 mMmidazolam, 200 mMphenacetin, 1mM bupropion, 500 mM (S) -mephenytoin, 50 mM diclofenac] . The reactions were started by mixing 250 ml of the substrate solution with 250 ml of cell suspension in a 5 ml polystyrene round-bottom tube (BD Falcon) . The tubes were put in an orbital shaker in the incubator and the shaker speed was adjusted to 210 rpm. After a 15–240 min incubation at 37 oC, the tubes were centrifuged at room temperature to collect the supernatant. The reactions were stopped by addition of sample aliquots to tubes containing triple the volume of quenching solvent (methanol) and frozen at -80℃. Isotope-labeled reference metabolites were used as internal standards. Internal reference metabolites for testosterone, midazolam, (S) -mephenytoin, diclofenac, bupropion, and phenacetin are 6b-hydroxytestosterone-[D7] , hydroxymidazolam- [13C3] , 40-hydroxymephenytoin- [D3] , 40-hydroxydiclofenac- [13C6] , hydroxybupropion- [D6] , and acetomidophenol-[13C2, 15N] , respectively. The metabolites were used to make standard curves for the metabolite analyses. Standard metabolites were 6b-hydroxytestosterone, 10-hydroxymidazolam, hydroxybupropion, 40-hydroxydiclofenac, (±) -40-hydroxymephenytoin, and acetaminophen. The metabolites were quantified by Pharmaron using validated traditional LC-MS methods. The results are expressed as picomoles of metabolite formed per minute and per million cells. Chemicals were purchased from Sigma including b-naphthoflavone, rifampicin, testosterone, midazolam, diclofenac, and phenacetin. Standard metabolites and internal reference metabolites were purchased from BD Biosciences. Phenobarbital was a kind gift from Jinning Lou.
qRT-PCR and RT-PCR
Total RNA was isolated by RNeasy Micro Kit (Qiagen) and then reverse-transcribed with
Figure PCTCN2015072232-appb-000012
III First-Strand Synthesis (Invitrogen) .  RT-PCR was performed with 2×EasyTaq PCR SuperMix (TransGen) following the manufacturer’s instructions. Primers used for specific detection of endogenous gene expression are shown in Tables 1 and 2.
Table 1: Primers used for specific detection of endogenous genes in Figure 2A
Figure PCTCN2015072232-appb-000013
Table 2. Primers used for specific detection of exogenous genes in Figure 2B
Figure PCTCN2015072232-appb-000014
qRT-PCR was performed using Power
Figure PCTCN2015072232-appb-000015
Green PCR Master Mix (Applied Biosystems) on MX3000P Sequence Detection System (Stratagene) . Primers used are shown in Table 3.
Table 3. Primers used for qRT-PCR, Related to Figure 3
Gene Forward Primer (5’ →3’ ) Reverse Primer (5’ →3’ )
Figure PCTCN2015072232-appb-000016
Table 3 Cont’ d
Figure PCTCN2015072232-appb-000017
Table 3 Cont’ d
Figure PCTCN2015072232-appb-000018
Primer for 18s rRNA was purchased from QIAGEN. Quantified values were normalized against the input determined by two housekeeping genes (GAPDH or RRN18S) . For the positive control in qRT-PCR, five different batches of fresh isolated primary human hepatocytes were collected in RNAprotect (Qiagen) and stored at -20℃. Total RNA was isolated and then reverse-transcribed to cDNA as described above. Equal volumes of cDNA obtained from five different batches of freshly isolated primary human hepatocytes were mixed to be taken as the positive control.
Immunofluorescence and Flow cytometric analysis
Cells or tissue sections were fixed in 4%paraformaldehyde (Dingguo) at room temperature for 15 minutes and blocked with PBS containing 0.25%Triton X-100 and 5%normal donkey serum (Jackson ImmunoResearch Laboratories, Inc) at room temperature for 1 hour or at 4℃ overnight. Samples were incubated with primary antibodies at 4℃ overnight, washed three times with PBS and then incubated with appropriate secondary antibodies for 1 hour at room temperature in the dark. Nuclei were stained with DAPI (Roche) . Experiments were repeated for three times and typical  results were shown. The primary antibodies used for immuno-fluorescence are as follows: rabbit anti CYP3A4, rabbit anti CYP2C9, rabbit anti YP1A2, rabbit anti CYP2E1, rabbit anti CYP2D6 (all from AbD Serotec) , Goat anti ALB (Bethyl Laboratories, INC) , Rabbit anti NR5A2 /LRH1 (Abcam) , Rabbit anti COL1A1 (Abcam) , Mouse anti E-CAD (Abcam) , Mouse anti human nuclei (Millipore) . The secondary antibodies used for immunofluorescence are as follows:
Figure PCTCN2015072232-appb-000019
550 Donkey anti rabbit and 
Figure PCTCN2015072232-appb-000020
550 Donkey anti goat (from Abcam) , DyLight 488 donkey anti goat Dylight 549 donkey anti goat, DyLight 488 donkey anti mouse, Dylight 549 donkey anti mouse, DyLight 488 donkey anti rabbit, Dylight 549 donkey anti rabbit (all from Jackson ImmunoResearch Laboratories) . Flow cytometric assays were conducted as reported previously (Zhao et al., Cell Res., 23: 157-161 (2013) ) .
RNA-Sequence analysis
Total RNA was isolated from HEFs, HepG2 cells, ES-Heps, hiHeps and freshly isolated primary human hepatocytes. RNA sequencing libraries were prepared with the Illumina TruSeq RNA Sample Preparation Kit. The fragmented and randomly primed 200-bp paired-end libraries were sequenced on Illumina HiSeq 2000 sequencing system.
Toxicity assays.
hiHeps were incubated with various concentrations of compounds dissolved in culture medium for 24 h. Cell viability was measured by MTT assay (Invitrogen) following the manufacturer’s instructions and as described previously (Khetani and Bhatia, Nat Biotechnol 26, 120-126 (2008) ) .
Animals and Transplantation
Tet-uPA/Rag2-/-/γc-/-mice on a BALB/c background were purchased from Beijing Vitalstar Biotechnology. hiHeps, ES-Heps, and primary human hepatocytes (2 x 106 cells/animal) were injected into the spleens of the mice. Blood samples were collected and human ALBUMIN was quantified using the Human Albumin ELISA Quantitation kit (Bethyl Laboratories) . Livers of recipient mice were embedded in OCT compound (Sakura) and then frozen in liquid nitrogen. Cryostat sections (10 mm) were stained.
Statistical Analysis
For statistical analysis, a two-tailed unpaired t test was used. Results are expressed as mean ± SD. p values are as follows: *p < 0.05; **p < 0.01; ***p < 0.001.
ACCESSION NUMBERS
RNA-sequencing data have been deposited in the NCBI Gene Expression Omnibus database under accession number GSE54066.
Results
Identification of Factors that Induce Hepatic Fate
To identify the combination of transcription factors that induce human embryonic fibroblasts (HEFs) into hepatocytes, a pool of transcription factors (Table 4) that were previously shown to be expressed in human hepatocytes and are crucial to the determination of hepatic cell fate was selected (Nagaoka and Duncan, Prog. Mol. Biol Transl Sci.., 97: 79-101 (2010) ; Zaret, Nat. Rev. Genet., 9: 329–340 (2008)) .
Table 4. Transcription Factors Analyzed in Freshly Isolated Primary Human Hepatocyte
Figure PCTCN2015072232-appb-000021
Previous studies also showed that proliferation arrest and cell death are general barriers to cell reprogramming (Huang et al., Nature, 475: 386-389 (2011) ; Zhao et al., Cell Stem Cell, 3: 475-479 (2008) ) . Thus, MYC was  employed in the reprogramming process, as well as p53 small interfering RNA (siRNA) was employed in the reprogramming process. Briefly, HNF1A and HNF4A are preferentially considered because of their critical role in both embryonic and adult liver among the 17 transcription factors. Then additional factors were screened using a “2+1” strategy by the addition of one candidate factor at a time to the combination of HNF1A and HNF4A.
The data showed that HNF6, cooperating with HNF4A and HNF1A, can result in a high percentage of Albumin (ALB) -positive cells within 20 days (data not shown) . These three factor induced hepatocyte-like cells (3H cells) exhibited some hepatic properties, including glycogen synthesis and low-density lipoprotein (LDL) uptake (data not shown) . However, the expression level of ALB in these cells was extremely low (Fig. 1A) . Moreover, the expression of the major cytochrome P450 enzymes in hepatocytes was not detected in these cells (data not shown) . Therefore, the 3H cells appear to be functionally immature, implying that additional factors are required for their full maturation.
Identification of Factors that Generate Mature Hepatocytes
To identify the factors capable of inducing the functional maturation of hepatocyte-like cells, a global gene expression analysis was performed on 3H cells, freshly isolated primary human hepatocytes (F-HEPs) , and fetal liver cells. Differential expression of several hepatic transcription factors, including CEBPA, ATF5, and PROX1, was observed among the three samples (data not shown) . These three genes were expressed at relatively low levels in the 3H cells and in fetal hepatocytes compared to the levels in adult hepatocytes. This difference was further confirmed by quantitative PCR (Figs. 1B and 1C) . Among these genes, PROX1 was shown in a recent study to be a key transcription factor that is critical in the metabolic maturation of hepatocytes (Zhao et al., Cell Res., 23: 157–161 (2013) ) . CEBPA and ATF5 are highly abundant liver-enriched transcription factors, indicating the importance of transcriptional regulation in hepatic function. Furthermore, a gene expression study showed that these three genes were highly expressed  in F-HEPs (Figure 1D) . Collectively, these data showed that overexpressing these factors can lead to the functional maturation of 3H cells.
To generate mature human hepatocytes from fibroblasts, the three factors with CEBPA, PROX1, and ATF5, were combined, and overexpressed in HEFs following the scheme shown in Fig. 1E. A dramatic morphological change of fibroblasts into epithelial cells was observed in 1 week. These cells proliferated rapidly in hepatocyte culture medium (HCM) , with the doubling time ranging from 9 to 11 hr (Fig. 1F) . At 2 weeks post infection, the replated cells showed the typical morphology of primary human hepatocytes (data not shown) . At about 25 days postinfection, p53 siRNA was silenced, as indicated by a GFP reporter (data not shown) , and the induced cells were transferred to a modified William’s E medium (Figures 1E and 1F) . Quantitative PCR results showed that the induced hepatocyte-like cells expressed ALB at a level that was comparable to that of primary human hepatocytes (Figure 1G) , which was significantly higher than that of 3H cells (Figure 1A) . The reprogramming efficiency was further analyzed and found that 90%of the induced cells were ALB positive and nearly 100%were α-1 antitrypsin (AAT) positive (Figures 1H and 1I) . The secretion of ALB was dramatically enhanced and was comparable to that of primary human hepatocytes (Figure 1J) . Furthermore, the four major cytochrome P450 enzymes, CYP3A4, CYP1A2, CYP2C9, and CYP2C19, were also expressed in the induced cells as detected by immunostaining (data not shown) . Removal of any of these six factors would lead to a substantial decrease in the expression of drug metabolic enzymes and transporters (Figure 1K) . These results indicate that functional hepatic properties were obtained in these induced hepatocyte-like cells, which were termed hiHeps. hiHeps Possess the Typical Characteristics of Human Hepatocytes
To evaluate hepatic fate conversion, typical hepatic features were first analyzed. Immunofluorescence microscopy showed that the epithelial marker E-cadherin (ECAD) was coexpressed with ALB in hiHeps (data not shown) . In addition, the fibroblast marker COL1A1 was not detected (data not shown) . These results indicate a successful mesenchymal-epithelial  transition in hiHeps. Next, endogenous hepatic transcription network activation in hiHeps was further examined using RT-PCT.
The RT-PCR results showed that the endogenous expression of FOXA1, FOXA2, and FOXA3 (Zaret et al., Nat. Rev. Genet., 9: 329–340 (2008) ) was activated in iHeps (Figure 2A) . LRH1, another core transcription factor involved in the hepatic cross-regulatory network (Nagaoka and Duncan, Prog. Mol. Biol Transl Sci., 97: 79-101 (2010)) , was also endogenously expressed in hiHeps (Figure 2A) .
The expression of FOXA2 and LRH1 was confirmed using immunofluorescence (data not shown) . Additionally, fibroblast marker genes, including COL1A1, PDGFRB, and THY1, were not detected in hiHeps (Figure 2A) . In accordance with p53 siRNA silencing exogenous expression of HNF1A, HNF6, HNF4A, ATF5, PROX1, and CEBPA was silenced in hiHeps (Figure 2B) . The primers used in Fig. 2A can specifically identify endogenous transcripts of HNF1A, HNF4A, PROX1 and CEBPA. These primers are designed to bind to the unique 5’ UTR or 3’ UTR of endogenous transcripts rather than coding sequences. In addition, MYC was decreased in iHeps to a level lower than that of freshly isolated primary human hepatocytes, as revealed by quantitative RT-PCR (qRT-PCR) (Figure 2C) . Collectively, these data indicate that hiHeps gain a hepatic transcription network.
Next, hiHeps was evaluated for functional characteristics of human hepatocytes. hiHeps were competent for LDL uptake (data not shown) . In addition, hiHeps could incorporate indocyanine green (ICG) from the medium and exclude the absorbed ICG after withdrawal (data not shown) . Oil red O staining in hiHeps showed an accumulation of fatty droplets, and Periodic Acid-Schiff (PAS) staining indicated glycogen synthesis (data not shown) . Similar to human adult hepatocytes, hiHeps were AFP negative (data not shown) . G banding analysis revealed that hiHeps had a normal karyotype after 7 weeks of culture (data not shown) . Besides HEFs, similar results were obtained when adult foreskin fibroblasts were converted as described herein using the same factors (data not shown) . Collectively, these results indicate that hiHeps exhibit typical hepatic functional features.
The global gene expression patterns in hiHeps and F-HEPs were compared by RNA sequencing. Principle component analysis and hierarchical clustering analysis revealed that hiHeps established from different donors were clustered with human hepatocytes and separated from human fibroblasts, HepG2 cells, and human embryonic stem cell (ESC) -derived hepatocytes (ES-Heps) (data not shown) . Indeed, hepatic transcription factors were upregulated (As it is depicted in Fig2A, these factors are FOXA1, FOXA2, FOXA3, CEBPA, HNF1A, HNF4A, PROX1 and LRH1) and the expression of fibroblast signature genes (As it is depicted in Fig. 2A, these factors are PDGFB1, THY1 and COL1A1) was downregulated in hiHeps (data not shown) . Additionally, hiHeps displayed the gene expression patterns of hepatocytes in a set of genes involved in lipoprotein, cholesterol, fat, glucose, and drug metabolism (data not shown) . Altogether, these results indicate that hiHeps show a similar expression profile to primary human hepatocytes.
Establishment of the Central Network of Drug Metabolism in hiHeps
To evaluate whether hiHeps expressed key enzymes in drug metabolism, the expression in hiHeps of five key CYP enzymes, CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 in hiHeps was quantitatively confirmed. The five key CYPs are major phase I enzymes that account for 60%of human drug oxidation (Zhou et al., Drug Metab. Rev., 41: 89–295 (2009) ) . As the positive control, pooled F-HEPs from five individual donors were used. Notably, comparable mRNA levels of these major CYPs could be detected in hiHeps and F-HEPs, in contrast to their expression in hepatocytes derived from human ESCs and HepG2 cells (Figure 3A) . Next, hiHeps were analyzed for the presence of phase II enzymes and phase III transporters, which are important for the excretion of xenobiotic drugs. The expression levels of these genes were similar to those in F-HEPs (Figures 3B–3D) . Additionally, hiHeps expressed a broad spectrum of phase I and phase II metabolic enzymes and phase III transporters (Figure 3E) . Collectively, these findings show that the central network of drug metabolism was successfully established in hiHeps and resembled that of pooled freshly isolated primary human hepatocytes.
Level of Key Drug Metabolic Activities in hiHeps Is Comparable to that in Freshly Isolated Primary human Hepatocytes
To evaluate the drug metabolic activities of hiHeps, the studies first focused on CYP3A4. Using ultraperformance liquid chromatography-tandem mass spectrometry technology, the drug metabolic activity of CYP3A4 in hiHeps was detected by using two structurally different substrates, testosterone and midazolam. Because of the remarkable interindividual variability in drug clearance, two batches of freshly isolated primary human hepatocytes were used as the positive control. In contrast to the HepG2 cell line, ES-Heps, and HEFs, hiHeps were able to metabolize the two CYP3A4-selective substrates efficiently and the metabolism efficiency is comparable to the metabolism seen with freshly isolated hepatocytes (F-HEPs) (Figure 4A) . Zhao, et al. disclose that ES-Heps express CYP3A4 with activities at levels that are lower than those seen in 25-week-old fetal hepatocytes and human adult primary hepatocytes (Zhao, et al., Cell Res., 23: 157–161 (2013) ) . Furthermore, the metabolic activities of CYP1A2 and CYP2B6 in hiHeps were found to be comparable to that of F-HEPs (Figure 4A) . The activities of CYP2C9 and CYP2C19 in hiHeps were approximately 30%of F-HEPs (Figure 4A) . The metabolic activities of all these CYP enzymes in hiHeps were at least 100-fold higher than that of ES-Heps. These data indicate that hiHeps exhibit comparable metabolic activities of the key CYP enzymes to those of freshly isolated primary human hepatocytes.
To further evaluate the functional central network of drug metabolism in hiHeps, the expression of nuclear receptors between hiHeps and F-HEPs, which are critical in regulating the expression of metabolizing enzymes, was compared. Nuclear receptors that are responsible for the xenobiotic metabolizing system were expressed in hiHeps (Figure 3F) . Moreover, hiHeps responded to the standard inducers of CYP3A4, CYP1A2, and CYP2B6 at the mRNA level (Figure 4B) . Taken together, these data show a functional establishment of the nuclear receptor network in hiHeps.
To assess the potential application of hiHeps in studying hepatotoxicity, acute toxicity of model hepatotoxins were quantified. As hepatotoxicity is the most common adverse event resulting in drug failure  (Sahi et al., Curr. Drug Discov. Technol., 7: 188–198 2010) , the sensitivity of drug toxicity is a key index for the potential application of human hepatocytes in drug discovery. hiHeps showed a level of sensitivity comparable to that of primary human hepatocytes when incubated with a series of model hepatotoxins (Figure 4C) , showing the potential of using hiHeps for testing drug toxicity.
Repopulation of Tet-uPA/Rag2-/-/γc-/-Mouse Liver with hiHeps
To investigate the capacity of hiHeps to repopulate mouse liver, Tet-uPA (urokinase-type plasminogen activator) /Rag2-/-/γc-/-mice were injected intrasplenically with hiHeps (Song et al., Am. J. Pathol., 175: 1975-1983 (2009) ) . The secretion of human Albumin in mouse serum increased gradually and the highest level reached was 313 mg/ml at 7 weeks after hiHep transplantation (Figures 5A–5C) , which was 1, 000-fold higher than ES-Heps and comparable to primary human hepatocytes (Figure 5B) . To analyze the engraftment efficiency, hepatocytes were isolated from whole liver of two mice and measured by flow cytometry analysis. The repopulation efficiency was about 30%in the mouse that secreted 313 mg/ml human Albumin (Figure 4C) . No tumorigenesis was observed 2 months after hiHep transplantation. Grafts of hiHeps were also analyzed. Six weeks after transplantation, clusters of cells expressing human ALB were observed in the recipient mice (data not shown) . To confirm the metabolic function of hiHeps in vivo, CYP expression was analyzed. The expression of major CYPs including CYP3A4, CYP2C9, CYP1A2, CYP2E1, CYP2C19, and CYP2D6 (data not shown) indicated that hiHeps can be functional in vivo. Collectively, these results show that hiHeps can robustly repopulate the liver of Tet-uPA/Rag2-/-/γc-/-mice and were functional in vivo.
DISCUSSION
These studies show that human hiHeps are readily and reproducibly generated from HEFs using a combination of hepatic fate conversion factors HNF1A, HNF4A, and HNF6 together with the maturation factors ATF5, PROX1, and CEBPA. Similar to primary human hepatocytes, hiHeps exhibit many typical hepatic features, including their epithelial morphology, expression of hepatocyte specific markers, basic functional properties of  hepatocytes, and global gene expression patterns. Importantly, an integral spectrum of phase I and phase II drug-metabolizing enzymes and phase III drug transporters is well established in hiHeps. Furthermore, transplanted hiHeps can repopulate up to 30%of the livers of Tet-uPA/Rag2-/-/γc-/-mice and secrete more than 300 mg/ml human albumin in vivo. This data shows that human hepatocytes with drug-metabolizing functions can be generated from fibroblasts using lineage reprogramming. One key question in lineage reprogramming is how to obtain fully functional cells. In hepatic transdifferentiation, mouse induced hepatocyte-like cells were generated with several important hepatic characteristics, through the expression of hepatic fate determination factors in fibroblasts (Huang et al., 2011; Sekiya and Suzuki, Nature, 475: 390-393 (2011) ) . However, incomplete hepatocyte differentiation and expression of certain hepatoblast markers by hiHeps are compatible with an immature or progenitor-like state (Willenbring, Cell Stem Cell, 9: 89–91 (2011) ) . These studies also show that that certain hepatic fate determination factors could reprogram HEFs into hepatocyte-like cells. However, these cells are not functional until the addition of three additional factors (Figures 1G–1J) . The additional three factors promote further metabolic maturation of hiHeps (data not shown) . Thus, hepatic fate determination and hepatic functional maturation may be governed by different master genes and are somewhat independent of each other. To obtain fully functional cells, the ectopic expression of cell fate determination factors may not be sufficient, and additional functional maturation factors are required to promote this process.
The drug metabolic capacity of human hepatocytes is one of the most important functions that distinguish hepatocytes from other lineages and has broad applications in drug development. Efforts to differentiate human pluripotent stem cells into hepatocytes have resulted in cells that were functionally immature. A recent study showed that human ES-Heps express CYP1A2 and CYP3A4 (Zhao et al., Cell Res., 23: 157–161 (2013) ) . However, the activities of these two CYP enzymes were significantly lower than that of primary hepatocytes. In another study, differentiated hepatocytes exhibited CYP3A4 and CYP1A2 activities only comparable to that of cultured primary  hepatocytes (Ogawa et al., Development, 140: 3285–3296 2013) . However, a number of liver-essential functions were progressively lost with time in cultured primary hepatocytes (Elaut et al., Curr. Drug Metab. 7: 629–660 (2006) ) . In the studies disclosed herein, the gold standard, freshly isolated primary human hepatocytes, was used as the positive control. The hiHeps disclosed herein express the key phase I (CYP3A4, CYP2C9, CYP2C19, CYP2B6, and CYP1A2) and phase II drug-metabolizing enzymes and phase III drug transporters at a level comparable to that of freshly isolated primary human hepatocytes. Importantly, the metabolic activities of the five CYP enzymes in hiHeps were comparable to those in freshly isolated primary human hepatocytes, indicating the potential application of hiHeps in evaluating drugs metabolized by these CYP enzymes (Figure 4A) . The expression of endogenous nuclear receptors related to xenobiotic metabolizing systems was also detected in these cells (Nakata et al., Drug Metab. Pharmacokinet., 21: 437–457 (2006) ) (Figure 3F) . Moreover, the expression of CYP3A4, CYP1A2, and CYP2B6 was increased by the standard inducers (Figure 4B) . In addition, because integrated metabolism pathways (phase I and phase II enzymes and phase III drug transporters) in hepatocytes are of vital importance for drug discovery (Castell et al., Expert Opin. Drug Metab. Toxicol. 2: 183–212 (2006) ) , the drug metabolic network of hiHeps was closely analyzed. The expression pattern of genes encoding the drug metabolizing markers was similar to that in primary human hepatocytes, implying an upregulation of the drug metabolic network in hiHeps (Figures 3A–3F) . Collectively, these results indicate the integral establishment of the central network of functional drug metabolism in hiHeps, making these cells a potential alternative for preclinical screening assays.
Another key characteristic of human hepatocytes in drug development is their sensitivity to drug toxicity. Human hepatocytes derived from human pluripotent stem cells have a relatively low sensitivity to drug toxicity (Zhao et al., Cell Res., 23: 157–161 (2013) ) . By contrast, the sensitivity of hiHeps disclosed herein to multiple model hepatotoxins is comparable to that of primary human hepatocytes (Figure 4C) . Thus, hiHeps  can be a valuable alternative cell resource in hepatotoxicity assays for new drug discovery. Importantly, our results demonstrate that the induced cells could be expanded at a large scale at an early stage (Fig. 1F) , and the function of hiHeps could be maintained for 16 days (Figure 4D) . Considering the reprogramming efficiency (Figures 1H and 1I) , more than 1011 functional hi-Heps can be obtained starting from 104 of fibroblasts (data not shown) . These results show that hiHeps could be used in a practical manner for pharmaceutical development.
Hepatocyte transplantation is a promising alternative to orthotopic liver transplantation (Dhawan et al., Nat Rev Gastroenterol Hepatol, 7: 288–298 (2010) ) . However, the limited supply of donor organs that can provide good-quality cells remains a major challenge. In the studies described herein, hiHeps were able to repopulate mouse liver robustly and secreted up to 313 mg/ml human ALBUMIN, which is two orders of magnitude higher than recent studies using human hepatocytes derived from human embryonic stem cells (Figures 5A and 5B) (Takebe et al., Nature, 499: 481–484 (2013) ; Woo et al., Gastroenterology, 142: 602–611 (2012) ) . Furthermore, transplanted hiHeps expressed major CYP enzymes (data not shown) , indicating that hiHeps retained drug metabolic capabilities in vivo. Collectively, hiHeps can serve as a potential cell source for the establishment of a humanized mouse model and hepatocyte transplantation.
In conclusion, human hepatocytes were generated with drug metabolizing functions using the combined expression of cell fate determination factors and cell maturation factors. The generation of functional human hepatocytes with lineage reprogramming provides a way to obtain well-characterized, reproducible, and functional human hepatocytes for pharmaceutical applications.

Claims (24)

  1. A method for inducing non-hepatocyte cells into hepatocytes-like cells (iHeps) , comprising the steps of:
    (a) treating the non-hepatocyte cells to upregulate at least one Hepatocyte inducing factor selected from the group consisting of Hepatocyte nuclear factor 1-alpha (HNF1A) , Hepatocyte nuclear factor 4-alpha (HNF4A) , and Hepatocyte nuclear factor 6-alpha (HNF6) , and/or the maturation factors Activating transcription factor 5 (ATF5) , Prospero homeobox protein 1 (PROX1) , and CCAAT/enhancer-binding protein alpha (CEBPA) ;
    (b) culturing the non-hepatocyte cells from the step (a) in a somatic cell medium;
    (c) expanding the cells from the step (b) in a hepatocyte cell culture medium; and
    (d) culturing the cells from the step (c) in a hepatocyte maturation medium.
  2. The method of claim 1, wherein the step (a) further comprises treating the cells to upregulate MYC and downregulate p53.
  3. The method of claim 2, wherein the step (a) comprises transfecting the cells with a vector expressing p53 siRNA.
  4. The method of any of claims 1 to 3, wherein in the step (a) the cells are transformed with nucleic acids as set forth by SEQ ID NOs: 1-7,respectively.
  5. The method of claim 1, wherein in the step (b) the cells are cultured in the somatic cell culture medium for a period of at least 7 days.
  6. The method of claim 1 wherein in the step (c) the cells are cultured in the hepatocyte cell culture medium for a period of about 15 to 30 days, preferably, 18-30 days, more preferably about 18 days.
  7. The method of claim 1 wherein in the step (d) the cells are cultured in the hepatocyte maturation medium for a period of at least 5 days.
  8. The method of claim 3 further comprising inhibiting the expression of p53 siRNA at the end of the step (c) .
  9. The method of claim 1, wherein the non-hepatocyte cells are selected from the group consisting of embryonic stem cells (ESC) , induced pluripotent stem cells (iPSC) , fibroblast cells, adipose-derived stem cells (ADSC) , neural derived stem cells, blood cells, keratinocytes and intestinal epithelial cells.
  10. The method of claim 1, wherein the non-hepatocyte cells are derived from a mammal.
  11. The method of claim 10, wherein the mammal is selected from the group consisting of human, rat, mouse, monkey, dog, cat, cattle, rabbit, horse and pig.
  12. The method of claim 11, wherein the mammal is human.
  13. The method of claim 1, further comprising identifying iHeps by detecting the expression of at least one hepatic marker selected from the group consisting of albumin, Cytochrome P450 (CYP) 3A4 and CYPB6, glycogen synthesis and storage, and/or fatty droplet accumulation.
  14. iHeps obtainable according to the method of any of claims 1 to 13.
  15. The iHeps of claim 14, wherein the iHeps expresses at least one drug metabolizing enzyme selected from the group consisting of CYP3A4, CYPB6, CYP1A2, CYP2C9, CYP2C19, or combinations thereof.
  16. The iHeps of claim 14 or 15, wherein MYC expression level in the iHeps is lower than the MYC expression level found in hepatocytes obtained from the corresponding organism.
  17. The iHeps of claim 14, wherein the non-hepatocyte cells are fibroblast cells, and the iHep expresses E-cadherin and does not express the fibroblast marker genes such as COL1A1, PDGFRB, THY1 and α-fetoprotein.
  18. The iHeps of claim 14, expressing at least one drug metabolic phase II enzyme or phase II transporter selected from the group consisting of CYP1A2, CYP2C9, CYP2C19, UDP glucuronosyltransferase (UGT) 1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, GSTA1, UGT2B7, UGT2515, Microsomal glutathione-S-transferase 1 (MGST1) , nicotinamide N-methyltransferase (NNMT) , NTCP, organic anion-transporting polypeptide 1B3 (OATP1B3) , Multidrug resistance protein (MRP) 6, MRP2, Flavin-containing monooxygenase 5 (FMO5) , Monoamine oxidase (MAO) A, MAOB, and epoxide hydrolase 1 (EPHX1) .
  19. The iHeps of claim 14, wherein the metabolic activity of at least one of CYP3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19 is at least 50%higher than the activity of the same enzyme in ES-Heps obtained from the same organism.
  20. The iHeps of claim 19, wherein the metabolic activity of at least one of CYP3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19 is 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%or more, higher than the activity in ES-Heps.
  21. The iHep of claim 19, wherein the metabolic activity of at least one of CYP3A4, CYPB6, CYP1A2, CYP2C9, and CYP2C19 is at least 100-fold higher than that of ES-Heps.
  22. A bioartificial liver comprising iHEPs, wherein the iHeps express a hepatocyte marker selected from the group consisting of albumin, Cytochrome P450 (Cyp) 3A4, CYPB6, CYP1A2, CYP2C9, CYP2C19, or combinations thereof.
  23. A kit for reprograming a non-hepatocyte cell into an iHep comprising factors for upregulating at least one Hepatocyte inducing factor selected from the group consisting of HNF1A, HNF4A, HNF6, ATF5, PROX1 and CEBPA, factors for upregulating MYC and factors for downregulating p53.
  24. The kit of claim 23, comprising lentiviruses or other methods which overexpress HNF1A, HNF4A, HNF6, ATF5, PROX1, CEBPA, and/or Myc and inhibit p53 gene expression, either alone or in combination.
PCT/CN2015/072232 2014-02-12 2015-02-04 Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells WO2015120776A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15748953.5A EP3105315B1 (en) 2014-02-12 2015-02-04 Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells
KR1020167025386A KR101897001B1 (en) 2014-02-12 2015-02-04 Kits and methods for reprogramming non-hepatocyte cells into hepatocyte cells
JP2016568991A JP6535028B2 (en) 2014-02-12 2015-02-04 Kits and methods for reprogramming non-hepatic cells to hepatocytes
CA2939525A CA2939525C (en) 2014-02-12 2015-02-04 Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells
US15/118,359 US11613735B2 (en) 2014-02-12 2015-02-04 Methods for reprograming non-hepatocyte cells into hepatocyte cells
AU2015218082A AU2015218082B2 (en) 2014-02-12 2015-02-04 Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410048337.X 2014-02-12
CN201410048337.XA CN104830906B (en) 2014-02-12 2014-02-12 Method for obtaining functional human liver parenchymal cells by reprogramming

Publications (1)

Publication Number Publication Date
WO2015120776A1 true WO2015120776A1 (en) 2015-08-20

Family

ID=53799588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072232 WO2015120776A1 (en) 2014-02-12 2015-02-04 Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells

Country Status (8)

Country Link
US (1) US11613735B2 (en)
EP (1) EP3105315B1 (en)
JP (1) JP6535028B2 (en)
KR (1) KR101897001B1 (en)
CN (1) CN104830906B (en)
AU (1) AU2015218082B2 (en)
CA (1) CA2939525C (en)
WO (1) WO2015120776A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3224362A4 (en) * 2014-11-26 2018-06-06 The Regents of The University of California Therapeutic compositions comprising transcription factors and methods of making and using the same
WO2020172796A1 (en) * 2019-02-26 2020-09-03 Peking University Compositions and methods for reprograming non-hepatocyte cells into hepatocyte cells
CN114075573A (en) * 2020-08-18 2022-02-22 中国科学院上海营养与健康研究所 Engineered hepatocytes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086077A (en) * 2016-07-05 2016-11-09 北京普瑞金科技有限公司 The slow virus carrier prepared for CAR T and construction method thereof and application
CN108330099A (en) * 2017-03-22 2018-07-27 上海赛立维生物科技有限公司 The culture of personalized liver cell and amplification method and its application
CN109504650A (en) * 2017-09-15 2019-03-22 海门雨霖细胞科技有限责任公司 Small molecule induction human fibroblasts directly reprogram the method for liver cell
EP3702449A4 (en) * 2017-10-23 2021-07-28 Kyushu University, National University Corporation Method for producing liver stem cells or liver progenitor cells by direct reprogramming
CN109749981B (en) * 2017-11-06 2023-10-10 博品(上海)生物医药科技有限公司 Hepatocyte-like cells derived from human adipose-derived stem cells, and preparation method and application thereof
JP6968347B2 (en) * 2018-01-30 2021-11-17 株式会社片岡製作所 Hepatocyte manufacturing method
US20210254012A1 (en) * 2018-06-09 2021-08-19 Arizona Board Of Regents On Behalf Of Arizona State University Next generation designer liver organoids and their methods of preparation and use
WO2020138208A1 (en) * 2018-12-26 2020-07-02 国立大学法人京都大学 Method for producing hepatocytes
EP3946469A4 (en) * 2019-03-26 2022-12-28 The Penn State Research Foundation Methods and materials for treating cancer
JP2023516484A (en) 2020-03-11 2023-04-19 ビット バイオ リミテッド Hepatocyte production method
KR102678740B1 (en) * 2020-06-25 2024-06-26 한국과학기술원 Pharmaceutical composition for retinal neurodegenerative disease comprising inhibitor of Prox1 as an active ingredient
CN116930498B (en) * 2023-08-29 2023-12-12 中国人民解放军军事科学院军事医学研究院 Kit for predicting recurrence risk after primary hepatocellular carcinoma removal operation and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130402A2 (en) * 2010-04-13 2011-10-20 Cellular Dynamics International, Inc. Hepatocyte production by forward programming
CN102465115A (en) * 2010-11-04 2012-05-23 中国科学院上海生命科学研究院 Novel hepatocyte preparation method
CN102625837A (en) * 2009-08-07 2012-08-01 国立大学法人京都大学 Method of efficiently establishing induced pluripotent stem cells
US20120231490A1 (en) * 2009-10-28 2012-09-13 Japan Health Sciences Foundation Method Of Differentiation From Stem Cells To Hepatocytes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2013114A (en) * 1935-04-22 1935-09-03 Smith Aaron Toy
CZ308053B6 (en) 2000-12-01 2019-11-27 Max Planck Gesellschaft Isolated double-stranded RNA molecule, process for producing it and its use
WO2010014949A2 (en) * 2008-07-31 2010-02-04 The General Hospital Corporation Compositions comprising hepatocyte-like cells and uses thereof
CN101962629B (en) * 2009-07-24 2014-09-10 北京大学 Liver precursor cell, preparation method and application thereof
WO2011102532A1 (en) * 2010-02-16 2011-08-25 国立大学法人九州大学 Induced hepatocytes
US20120231430A1 (en) * 2011-03-11 2012-09-13 Irina Castillo Ballet Training Method
JP6150108B2 (en) * 2012-03-30 2017-06-21 国立大学法人 千葉大学 Method for inducing differentiation of human pluripotent stem cells into hepatic progenitor cells
CN103374546B (en) * 2012-04-12 2018-05-18 北京大学 Hepatic parenchymal cells and its preparation, identification and application process
JP5970245B2 (en) 2012-06-06 2016-08-17 公益財団法人ヒューマンサイエンス振興財団 Differentiation induction method from stem cells to hepatocytes
CA2883714A1 (en) * 2012-09-07 2014-03-13 Genentech, Inc. Methods and compositions for producing induced hepatocytes
WO2014130770A1 (en) * 2013-02-22 2014-08-28 Cellular Dynamics International, Inc. Hepatocyte production via forward programming by combined genetic and chemical engineering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625837A (en) * 2009-08-07 2012-08-01 国立大学法人京都大学 Method of efficiently establishing induced pluripotent stem cells
US20120231490A1 (en) * 2009-10-28 2012-09-13 Japan Health Sciences Foundation Method Of Differentiation From Stem Cells To Hepatocytes
WO2011130402A2 (en) * 2010-04-13 2011-10-20 Cellular Dynamics International, Inc. Hepatocyte production by forward programming
CN102465115A (en) * 2010-11-04 2012-05-23 中国科学院上海生命科学研究院 Novel hepatocyte preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3105315A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3224362A4 (en) * 2014-11-26 2018-06-06 The Regents of The University of California Therapeutic compositions comprising transcription factors and methods of making and using the same
WO2020172796A1 (en) * 2019-02-26 2020-09-03 Peking University Compositions and methods for reprograming non-hepatocyte cells into hepatocyte cells
CN113423817A (en) * 2019-02-26 2021-09-21 北京大学 Compositions and methods for reprogramming non-hepatocytes to hepatocytes
CN113423817B (en) * 2019-02-26 2023-05-26 北京大学 Compositions and methods for reprogramming non-hepatocytes to hepatocytes
CN114075573A (en) * 2020-08-18 2022-02-22 中国科学院上海营养与健康研究所 Engineered hepatocytes

Also Published As

Publication number Publication date
KR101897001B1 (en) 2018-09-10
EP3105315A1 (en) 2016-12-21
US11613735B2 (en) 2023-03-28
CA2939525A1 (en) 2015-08-20
EP3105315B1 (en) 2020-11-11
AU2015218082B2 (en) 2020-11-12
US20170218333A1 (en) 2017-08-03
AU2015218082A1 (en) 2016-09-29
CN104830906B (en) 2018-09-04
CN104830906A (en) 2015-08-12
AU2015218082A8 (en) 2016-10-13
JP6535028B2 (en) 2019-06-26
EP3105315A4 (en) 2017-07-12
KR20160143651A (en) 2016-12-14
CA2939525C (en) 2021-09-21
JP2017511150A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
AU2015218082B2 (en) Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells
Barroso-delJesus et al. The Nodal inhibitor Lefty is negatively modulated by the microRNA miR‐302 in human embryonic stem cells
Nagalakshmi et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney
Loebel et al. Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm
KR20150052228A (en) Methods and compositions for producing induced hepatocytes
Zhu et al. JMJD5 regulates cell cycle and pluripotency in human embryonic stem cells
US20090186414A1 (en) Methods of Generating Cardiomyocytes and Cardiac Progenitors and Compositions
Mayshar et al. Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal
US20150017134A1 (en) Emt-inducing transcription factors cooperate with sox9
Davoodian et al. Let-7f microRNA negatively regulates hepatic differentiation of human adipose tissue-derived stem cells
Romer-Seibert et al. The RNA-binding protein LIN28 controls progenitor and neuronal cell fate during postnatal neurogenesis
JP7365720B2 (en) Compositions and methods for reprogramming non-hepatocytes into hepatocytes
Zhao et al. The roles of ERAS during cell lineage specification of mouse early embryonic development
CA2983845C (en) Generation of glucose-responsive beta cells
Wang et al. ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells
WO2023166111A1 (en) Method for the generation of outer radial glial (org) cells
WO2018225751A1 (en) Method for maintaining and amplifying colon cancer stem cells and method for inducing colon cancer organoid
EP3123169B1 (en) Flattop (fltp) is a novel biomarker for beta cell maturation
EP3500276A1 (en) Methods of differentiating stem cells into endoderm
D'Agostino Identification of a Novel Transcription Factor Required for Osteogenic Differentiation of Mesenchymal Stem Cells
Rosado-Olivieri In vitro modeling of human β cell differentiation, regeneration and function
赵振奥 et al. The Roles of ERAS During Cell Lineage Specification of Mouse Early Embryonic Development
Tanigawa et al. and Alan O. Perantoni

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15118359

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2939525

Country of ref document: CA

Ref document number: 2016568991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015748953

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015748953

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167025386

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015218082

Country of ref document: AU

Date of ref document: 20150204

Kind code of ref document: A