WO2015118891A1 - Granular body feeding device and granular body spraying device - Google Patents

Granular body feeding device and granular body spraying device Download PDF

Info

Publication number
WO2015118891A1
WO2015118891A1 PCT/JP2015/000614 JP2015000614W WO2015118891A1 WO 2015118891 A1 WO2015118891 A1 WO 2015118891A1 JP 2015000614 W JP2015000614 W JP 2015000614W WO 2015118891 A1 WO2015118891 A1 WO 2015118891A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
feeding
fertilizer
drive
granular material
Prior art date
Application number
PCT/JP2015/000614
Other languages
French (fr)
Japanese (ja)
Inventor
竹田 裕一
大前 健介
致治 潮
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014023859A external-priority patent/JP2015149913A/en
Priority claimed from JP2014072055A external-priority patent/JP6239428B2/en
Priority claimed from JP2014074485A external-priority patent/JP2015195747A/en
Priority claimed from JP2014074487A external-priority patent/JP6328470B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201580007904.XA priority Critical patent/CN105979766B/en
Priority to KR1020167015033A priority patent/KR101869622B1/en
Publication of WO2015118891A1 publication Critical patent/WO2015118891A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • A01C7/18Machines for depositing quantities of seed at intervals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • A01C7/08Broadcast seeders; Seeders depositing seeds in rows
    • A01C7/12Seeders with feeding wheels
    • A01C7/127Cell rollers, wheels, discs or belts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries

Definitions

  • the present invention mainly relates to a gear support structure for transmitting a driving force to a feeding portion in a granular material feeding device.
  • a direct sowing device that feeds seeds (granular solids) little by little and sprays them on the field.
  • the direct sowing device includes a hopper that accommodates seeds, and a seed feeding device (granule feeding device).
  • the seed feeding device includes a feeding case arranged below the hopper. In the feeding case, a feeding roll having a feeding hole formed in the peripheral surface is provided. By rotating the feeding roll, the seeds in the hopper are taken into the feeding hole little by little and are fed out and discharged toward the ground of the field.
  • the feeding case supports a feeding shaft that is a rotating shaft of the feeding roll.
  • a driven gear is fixed to the feeding shaft.
  • Patent Document 1 a driving gear for inputting a driving force to a driven gear is provided. Power from the engine is input to the rotation shaft (seeding drive shaft) of the drive gear. With the configuration of Patent Document 1, each feeding roll can be driven by power from the engine.
  • Example 2 of Patent Document 2 a slide roll type feeding roll is described. That is, this type of feeding roll includes a main body roll and a fitting roll, and is configured to be able to slide the fitting roll with respect to the main body roll. Then, by adjusting the position of the fitting roll with respect to the main body roll, the feeding amount of the granular material can be adjusted by changing the width of the feeding hole (conveying hole).
  • Example 2 of Patent Document 2 an adjustment dial for adjusting the position of the fitting roll is provided. By rotating this adjustment dial, the fitting roll is slid to adjust the feed amount of the granular material.
  • a fertilizer applicator provided on the body of a rice transplanter is known as a kind of the above-mentioned granular material spraying device.
  • This fertilizer spreader applies solid granular fertilizer to the ground.
  • the fertilizer applicator includes a hopper that is a container for storing fertilizer. Such a fertilizer applicator is described in Patent Document 3, for example.
  • Patent Document 3 discloses a configuration in which an upper fertilizer provided with a hopper can be rotated upward.
  • the fertilizer disclosed in Patent Document 3 includes a first upper fertilizer and a second upper fertilizer, and the first upper fertilizer and the second upper fertilizer can be divided into left and right and rotated upward. It is configured to be able to. Since patent document 3 can discharge
  • Patent Document 3 the driving force from the engine is input to the first upper fertilizer through the clutch. Moreover, patent document 3 is provided with the connection mechanism for transmitting motive power from a 1st upper fertilizer to a 2nd upper fertilizer.
  • the rice transplanter includes a seedling placing table for placing a seedling to be planted in a farm field.
  • the seedling platform is disposed behind the driver seat.
  • the seedling supplied to the seedling mount is a mat seedling formed in a mat shape.
  • the operator places the mat seedlings to be supplied on a seedling board (also called seedling scooping board, seedling collecting board, etc.) so as not to break the shape of the mat seedlings. Carry it to the vicinity of the seedling stand while keeping in mind. Then, the operator slides the mat seedling on the seedling plate toward the seedling stage by tilting the seedling plate. Thereby, mat seedlings are supplied to the seedling stage.
  • a seedling board also called seedling scooping board, seedling collecting board, etc.
  • the rotation shaft (feeding shaft) of the driven gear is supported by the feeding case.
  • the rotation shaft of the drive gear (seeding drive shaft) is supported by the bracket.
  • a feeding case is fastened and attached to a first support member made of a square pipe member provided from the bracket by a bolt.
  • the main object of the present invention is to suppress the variation between the cores of the driven gear and the driving gear for driving the feeding roll in the granular material feeding device, and improve the meshing accuracy of the driven gear and the driving gear. To provide a configuration.
  • Patent Document 1 describes a sowing apparatus having four seed feeding mechanisms arranged side by side. Each seed feeding mechanism has a seed feeding roll. That is, the seeding device of Patent Document 1 includes four seed feeding rolls.
  • the engagement between the adjustment gear and the operation gear is necessary only when adjusting the feeding amount.
  • the engagement between the adjustment gear and the operation gear is It is unnecessary. Rather, from the viewpoint of preventing the adjustment gear and the operation gear from being worn or damaged, it is preferable that the engagement between the adjustment gear and the operation gear is released when the feed amount is not adjusted.
  • one of the objects of the present invention is to provide a configuration capable of easily adjusting the feeding amount and preventing wear and breakage of the gear for the adjustment.
  • Patent Document 3 since the configuration of Patent Document 3 requires a clutch and a coupling mechanism, the configuration of the fertilizer applicator becomes complicated, leading to an increase in cost.
  • patent document 3 is provided with the fertilizer conveyance part which guides the fertilizer paid
  • the fertilizer transfer section has a connecting pipe to which a transfer hose is connected.
  • the connecting pipe is a substantially cylindrical member arranged such that the longitudinal direction is the front-rear direction.
  • Patent Document 3 facilitates maintenance such as cleaning in the first upper fertilizer and the second upper fertilizer by rotating the first upper fertilizer and the second upper fertilizer upward.
  • the fertilizer transport section cannot be rotated upward.
  • maintenance such as cleaning of the inside of a connecting pipe, can be performed easily.
  • one of the objects of the present invention is to provide a granular material spraying device that can easily rotate a supply unit that supplies granular materials.
  • Another object of the present invention is to provide a configuration that can easily clean the inside of the connecting pipe provided in the transport section.
  • the rice transplanter described in Patent Document 4 has a configuration in which a hopper for a fertilizer is provided between a driver seat and a seedling stage.
  • the fertilizer hopper gets in the way during the operation of supplying the mat seedlings to the seedling stage, which makes the operation more difficult.
  • one of the objects of the present invention is to provide a rice transplanter that can easily supply mat seedlings to a seedling stage.
  • the granular material feeding device includes a feeding case that is disposed below a hopper that accommodates the granular material and is supplied with the granular material.
  • a feeding portion for feeding the granular material by a predetermined amount is provided.
  • the feeding case includes a driven gear support portion and a drive gear support portion.
  • the driven gear support portion supports a driven gear that rotates integrally with the feeding portion.
  • the drive gear support portion supports a drive gear that meshes with the driven gear.
  • the distance between the driven gear and the driving gear (the distance between the axes) is determined only by the accuracy of the feeding case. Thereby, the variation between the cores of the driven gear and the drive gear can be suppressed, and the gear meshing accuracy can be improved.
  • the driven gear support portion and the drive gear support portion are integrally formed.
  • the positions of the driven gear support portion and the drive gear support portion are determined only by the forming accuracy of the feeding case. Therefore, the center of the driven gear and the drive gear is not affected by the assembly accuracy. Thereby, the gear meshing accuracy can be further improved.
  • the granular material feeding device includes a plurality of the feeding cases.
  • Each feeding case is provided with a drive transmission shaft that is arranged with its axis aligned with the drive gear and transmits a driving force to the drive gear.
  • the drive transmission shaft is provided independently for each feeding case.
  • the granular material feeding apparatus is provided with the connection part which connects the said drive transmission shafts of an adjacent feeding case.
  • the drive transmission shaft is provided independently for each feeding case, the feeding case and the driving transmission shaft can be collectively handled as one unit. And a driving force can be transmitted to all the drive transmission shafts by connecting the drive transmission shafts of the adjacent feeding cases with the connecting portion.
  • each feeding case has a clutch mechanism between the drive transmission shaft and the driving gear.
  • the drive transmission shaft is individually provided for each feeding case, if a clutch mechanism is provided for each feeding case, the driving transmission shaft, the clutch mechanism, and the feeding case are collectively handled as one unit. be able to.
  • the feeding unit has an adjustment mechanism that can adjust the amount of the granular material to be fed.
  • the feeding case includes an adjustment gear and an operation gear support.
  • the adjustment gear is fixed to an adjustment shaft of the adjustment mechanism.
  • the operation gear support portion supports an operation gear that can mesh with the adjustment gear.
  • the distance between the operation gear and the adjustment gear is determined only by the accuracy of the feeding case. Therefore, the variation between the centers of the adjustment gear and the operation gear can be suppressed, and the meshing accuracy of the adjustment gear and the operation gear can be improved.
  • the adjustment gear and the operation gear are engaged with each other by moving the rotation shaft of the operation gear toward or away from the adjustment shaft. It is preferable that the state can be switched.
  • the engagement between the operation gear and the adjustment gear can be released by separating the rotation shaft of the operation gear from the rotation shaft (adjustment shaft) of the adjustment gear.
  • the operation gear and the adjustment gear can be separated from each other, so that the operation gear and the adjustment gear can be prevented from being worn or damaged.
  • a configuration in which the engagement with the adjustment gear is released by sliding the operation gear in the axial direction is also conceivable. In this case, it is necessary to form a chamfer on the end surfaces of the gear teeth of both gears so that the operation gear and the adjustment gear can be engaged again.
  • the following configuration is preferable. That is, a plurality of feeding cases are arranged in one direction, and the adjustment gear and the operation gear are provided corresponding to each of the plurality of feeding cases. The rotation shafts of the operation gears are connected to each other.
  • an operation gear support portion for supporting a rotation shaft of the operation gear is fixedly provided in the feeding case.
  • the operation gear can be accurately positioned with respect to the feeding case.
  • variation between the said operation gear and the cores of an adjustment gear can be suppressed, and the meshing precision of both gears can be improved.
  • the granular material feeding device includes a link member that can contact the rotation shaft of the operation gear.
  • the link member rotates around the link operation shaft, the rotation shaft of the operation gear is moved in a direction approaching or separating from the adjustment shaft.
  • the operation gear can be moved between the position where it is engaged with the adjustment gear and the position where the engagement is released.
  • the moving direction of the rotation shaft of the operation gear when approaching the adjustment shaft is directed to a position shifted from the axis center of the adjustment shaft.
  • a granular material spraying device having the following configuration. That is, the granular material spraying device includes the granular material feeding device, the hopper, a drive output gear, and a transport unit.
  • the drive output gear is rotationally driven by a drive force from a drive source.
  • the conveyance unit conveys the granular material fed from the granular material feeding device to the ground.
  • the supply unit for supplying the granular material includes the hopper and the granular material feeding device.
  • the supply unit includes the feeding unit and a drive input gear. A driving force for driving the feeding portion is input to the driving input gear.
  • the supply unit is configured to be movable between a work position at which the granular material can be supplied to the transport unit and an open position separated from the transport unit.
  • the drive output gear and the drive input gear mesh with each other.
  • the drive input gear is separated from the drive output gear by moving the supply unit from the work position toward the open position.
  • the transmission of the drive from the drive source to the feeding unit is realized by the meshing of the gears, and the gears are separated from each other when the supply unit is moved to the open position.
  • this granular material spraying apparatus includes a plurality of the supply units.
  • the drive input gear included in each supply unit can mesh with the drive output gear.
  • the drive input gear for receiving the drive force from the drive output gear is provided in each of the plurality of supply units, the drive force can be transmitted to each supply unit from one drive output gear. Therefore, a connection mechanism for transmitting driving force between the plurality of supply units is not necessary. In addition, the operation of releasing the connection mechanism is not required, and there is no possibility that the connection mechanism is forgotten to be broken and damaged.
  • the side view which shows the whole structure of the spreading work vehicle which concerns on 1st Embodiment of this invention.
  • the rear view of a fertilizer applicator. The top view of a fertilizer applicator.
  • the side view of a fertilizer applicator. Side surface sectional drawing of a fertilizer applicator.
  • the side view which shows a mode that a feeding part is spaced apart from a conveyance part.
  • Side surface sectional drawing which shows a mode that a feeding part is spaced apart from a conveyance part.
  • the side view which shows the whole structure of the rice transplanter which concerns on 3rd Embodiment of this invention The top view of a rice transplanter. Side view of a fertilizer hopper. The rear view of a manure hopper. Side surface sectional drawing which shows a mode that the cover part of the fertilizer hopper was opened. Side surface sectional drawing which shows a mode that the rain avoidance part was rotated. The side view which shows a mode that the seedling board was mounted on the fertilizer hopper. The side view which shows a mode that a seedling board is rotated. The side view which shows the fertilizer hopper which concerns on the modification of 3rd Embodiment. The rear view of the fertilizer hopper of a modification.
  • the side view which shows a mode that the seedling board was mounted on the fertilizer hopper of a modification.
  • the side view which shows a mode that the seedling board was mounted on the fertilizer hopper of 4th Embodiment.
  • the side view which shows the fertilizer hopper which concerns on the modification of 4th Embodiment.
  • the side view of the rice transplanter which concerns on 5th Embodiment of this invention.
  • the side view which shows a mode that the rear part seedling stand was flipped up.
  • FIG. 1 is a side view of an agricultural application work vehicle 1 according to the first embodiment of the present invention.
  • the spreading work vehicle 1 includes a vehicle body 2 and a direct seeding device (granular material spraying device) 8 disposed behind the vehicle body 2.
  • a direct seeding device granular material spraying device 8
  • the vehicle body 2 includes a pair of left and right front wheels 4 and a rear wheel 5 and an engine 10 which is a drive source for the front wheel 4 and the rear wheel 5.
  • a driver's seat 6 on which an operator rides is provided at a position between the front wheel 4 and the rear wheel 5 in the front-rear direction of the vehicle body 2.
  • a steering handle 7 for the operator to steer the vehicle body 2 is disposed.
  • the direct seeding device 8 is disposed behind the vehicle body 2.
  • the direct seeding device 8 is attached to the vehicle body 2 via an elevating link mechanism 12 that is a connecting mechanism.
  • the raising / lowering link mechanism 12 is comprised as a parallel link mechanism which can raise / lower the direct seeding apparatus 8. As shown in FIG. Thereby, the vertical position of the direct seeding apparatus 8 can be adjusted.
  • a PTO shaft 13 for outputting the driving force of the engine 10 to the direct seeding device 8 is disposed at the rear part of the vehicle body 2.
  • the vehicle body 2 of this embodiment has a so-called midship layout in which the engine 10 is disposed between the axles of the front wheels 4 and the rear wheels 5.
  • a fuel tank (not shown) is disposed in the vicinity of the engine 10.
  • the arrangement of the engine 10 and the fuel tank is not limited to this.
  • the engine 10 may be disposed in the hood at the front of the vehicle body or may be disposed at the rear of the vehicle body.
  • the fuel tank can be arranged at an arbitrary position such as in the hood at the front of the vehicle body or at the rear of the vehicle body.
  • the direct sowing device 8 is configured to spray seeds (seeds) on the ground little by little.
  • the spreading work vehicle 1 can run seeds on the ground at substantially constant intervals by running while driving the direct sowing device 8.
  • the vehicle body 2 of the present embodiment is configured as an agricultural multipurpose work vehicle, and other types of work machines can be attached instead of the direct seeding device 8. That is, the direct seeding device 8 of the present embodiment is detachable from the lifting link mechanism 12 of the vehicle body 2. And the working mechanism for agriculture other than the direct sowing apparatus 8 (for example, rice planting apparatuses, such as the planting part 3 shown in 2nd Embodiment mentioned later, a weeding apparatus, etc.) can be attached to the raising / lowering link mechanism 12.
  • the direct sowing device 8 includes a frame 29, a seed feeding device (granular material feeding device) 9, and a hopper 20.
  • the seed feeding device 9 includes a feeding case 21.
  • the frame 29 is connected to the lifting link mechanism 12 described above.
  • the frame 29 is, for example, a square pipe-like member, and is disposed along the left-right direction of the vehicle body 2 as indicated by a dotted line in FIG.
  • the case 29 is attached to the frame 29 at regular intervals in the left-right direction.
  • the attachment of the frame 29 to the feeding case 21 can be performed using appropriate means such as bolt fastening.
  • the feeding case 21 provided in the seed feeding device 9 is configured to feed seeds little by little and release them toward the ground.
  • the detailed configuration of the feeding case 21 will be described later.
  • the direct sowing device 8 of the present embodiment includes six seed feeding devices 9 (feeding cases 21) arranged side by side in the left-right direction so that six rows of seeds can be sprayed simultaneously.
  • the hopper 20 is a container for storing seeds (granular bodies) to be sown in the field.
  • the hopper 20 is open at the top, and seeds can be introduced into the inside from the open top.
  • the hopper 20 is provided with the cover part 22 for covering the open upper part.
  • the hopper 20 is fixed on the feeding case 21.
  • the lower portion of the hopper 20 is a passage portion 23 formed in a funnel shape so as to become thinner as approaching its lower end portion. Since the lower portion of the passage portion 23 is open, the seeds in the hopper 20 can be discharged to the seed feeding device 9 below the hopper 20 via the passage portion 23.
  • the hopper 20 of this embodiment is comprised so that the seed for two strips may be accommodated. For this reason, as shown in FIG. 2, the lower portion of each hopper 20 is divided into two forks, and two passage portions 23 are formed in one hopper 20. And the feeding case 21 is being fixed to the lower part of each channel
  • the feeding case 21 is made of resin and has a substantially box shape. As shown in FIG. 3, the upper part of the feeding case 21 is open and serves as an opening 21 a. The opening 21 a of the feeding case 21 communicates with the passage portion 23 of the hopper 20. Thereby, as shown in FIG. 5, the seeds in the hopper 20 are supplied into the feeding case 21 through the opening 21a.
  • a feeding roll (feeding portion) 28 is provided inside the feeding case 21 and below the opening 21a.
  • the feeding roll 28 is configured as a substantially cylindrical member.
  • the feeding roll 28 is arranged so that its axis 28 c is parallel to the left-right direction of the vehicle body 2. Further, the feeding roll 28 is configured to be rotatable around the axis 28c.
  • a feeding hole 28 a is formed in the peripheral surface of the feeding roll 28.
  • a plurality of feeding holes 28 a are formed at equal intervals in the circumferential direction of the feeding roll 28.
  • a driven gear 30 is provided outside the feeding case 21.
  • the driven gear 30 is disposed such that its axis coincides with the axis 28 c of the feeding roll 28.
  • the driven gear 30 is connected to the feeding roll 28 so as not to rotate relative to the feeding roll 28. Thereby, the driven gear 30 and the feeding roll 28 rotate integrally.
  • a driving gear 31 that meshes with the driven gear 30 and rotates is provided outside the feeding case 21.
  • a drive transmission shaft 32 is arranged in parallel with the left-right direction of the vehicle body.
  • the drive transmission shaft 32 is arranged such that its axis coincides with the axis of the drive gear 31.
  • the drive transmission shaft 32 and the drive gear 31 can be connected by a clutch mechanism 50 (details will be described later) shown in FIG. Accordingly, when the driving force is input to the drive transmission shaft 32 with the clutch mechanism 50 connected, the drive gear 31 is rotationally driven around the axis.
  • the direct seeding device 8 includes a drive output unit (not shown) that converts the rotational driving force of the engine 10 output from the PTO shaft 13 into an intermittent rotational motion and outputs it.
  • the intermittent rotational motion output from the drive output unit is input to the drive input gear 70 and transmitted to the drive transmission shaft 32 to drive the drive gear 31 to rotate.
  • the driven gear 30 meshing with the drive gear 31 rotates, and the feeding roll 28 in the feeding case 21 is rotated.
  • the feeding roll 28 in each feeding case 21 can be intermittently driven at a predetermined speed in one direction.
  • a configuration for transmitting the driving force output from the drive output unit to the drive gear 31 will be described later.
  • each feeding case 21 seeds supplied from the hopper 20 are taken into the feeding hole 28a by a predetermined amount (several grains) as shown in FIG.
  • the amount of seed taken into the feeding hole 28a may be referred to as “feeding amount”.
  • the feeding roll 28 is rotationally driven in one direction with the seed taken into the feeding hole 28a, the seed taken into the feeding hole 28a can be conveyed downward.
  • the seed taken into the feeding hole 28a is discharged downward from the feeding hole 28a when the feeding hole 28a faces downward.
  • the lower part of the feeding roll 28 is opened. Therefore, the seed discharged from the feeding hole 28a falls in the feeding case 21 as shown by the thick arrow in FIG.
  • a lower part of the feeding case 21 is a sowing guide 37.
  • the sowing guide 37 is configured in a substantially cylindrical shape, and seeds can pass up and down through the inside.
  • a lower end portion of the sowing guide 37 is a discharge port 38 opened downward.
  • the discharge port 38 is disposed close to the ground. Therefore, the seeds fed by the feeding roll 28 fall in the sowing guide 37 and fall to the ground via the discharge port 38.
  • the seeds in the hopper 20 can be fed by a predetermined feeding amount and sprayed on the ground.
  • the direct sowing apparatus 8 is comprised so that each feeding roll 28 of the six feeding cases 21 can be rotationally driven simultaneously. Therefore, the direct sowing apparatus 8 of the present embodiment can simultaneously spray the seeds for six strips.
  • the feeding case 21 of the present embodiment is provided with the driven gear 30 and the drive gear 31 that meshes with the driven gear 30 and rotates.
  • the driven gear 30 is supported on the side wall of the feeding case 21 (the left side wall 33 in this embodiment).
  • the support structure of the driven gear 30 is as follows. As shown in FIGS. 6 and 7, the driven gear 30 is fixedly provided with a cylindrical portion 45 that is formed in a cylindrical shape so that its axis coincides with the rotation axis of the driven gear 30. In the present embodiment, the cylindrical portion 45 is formed integrally with the driven gear 30.
  • an insertion hole 46 through which the cylindrical portion 45 can be inserted is formed in the left side wall 33 of the feeding case 21.
  • the insertion hole 46 is configured as a round hole, and the diameter thereof is configured to substantially match the outer diameter of the cylindrical portion 45. Further, in a state where the cylindrical portion 45 is inserted into the insertion hole 46, the cylindrical portion 45 can rotate around the axis.
  • the driven gear 30 is inserted into the insertion hole 46 formed in the left side wall 33 of the feeding case 21 so that the driven gear 30 is inserted into the left side wall 33 of the feeding case 21.
  • a bearing (for example, a sliding bearing) may be provided between the inner peripheral surface of the insertion hole 46 and the outer peripheral surface of the cylindrical portion 45.
  • the driven gear 30 is rotatably supported by the left side wall 33 of the feeding case 21, the left side wall 33 can also be referred to as a “driven gear support portion”.
  • the feeding case 21 is provided with a drive gear support 49 in a fixed manner.
  • the drive gear support 49 is a rib-shaped portion that protrudes forward from the front surface of the feeding case 21.
  • the drive gear support 49 is integrally formed with the left side wall 33 (driven gear support).
  • the drive gear 31 is supported by a drive gear support portion 49.
  • the drive gear 31 is fixedly provided with a cylindrical portion 47 formed in a cylindrical shape with the axis line coincident with the rotation axis of the drive gear 31.
  • the cylindrical portion 47 is formed integrally with the drive gear 31.
  • the drive gear support 49 is formed with an insertion hole (not shown) through which the cylindrical portion 47 can be inserted in the left-right direction.
  • This insertion hole is configured as a round hole, and the diameter thereof is configured to substantially match the outer diameter of the cylindrical portion 47. Further, in a state where the cylindrical portion 47 is inserted into the insertion hole, the cylindrical portion 47 can rotate about the axis.
  • a bearing (for example, a sliding bearing) may be provided between the inner peripheral surface of the insertion hole formed in the drive gear support portion 49 and the outer peripheral surface of the cylindrical portion 45.
  • the drive gear support 49 is provided in the feeding case 21. Therefore, it can also be said that the drive gear 31 is supported by the feeding case 21. Further, since the driven gear 30 is supported by the left side wall 33 of the feeding case 21, it can be said that the driven gear 30 is supported by the feeding case 21.
  • the direct seeding device 8 of the present embodiment supports both the drive gear 31 and the driven gear 30 by the feeding case 21. As a result, the meshing between the gears 30 and 31 is stabilized.
  • the driven gear is supported by the feeding case, and the drive gear is supported by the bracket.
  • the distance between the driven gear and the driving gear varies due to the influence of the mounting case mounting accuracy with respect to the bracket, and as a result, the engagement between the driven gear and the driving gear may be deteriorated.
  • the driven gear support portion (the left side wall of the feeding case 21) and the drive gear support portion 49 are integrally formed. Accordingly, the distance between the cores of the gears 30 and 31 is determined only by the molding accuracy of the feeding case 21 and is not affected by the assembly accuracy. As a result, the meshing between the drive gear 31 and the driven gear 30 is further stabilized.
  • the drive transmission shaft 32 is provided independently for each feeding case 21.
  • the direct seeding apparatus 8 of this embodiment is provided with six feeding cases 21, it is provided with six drive transmission shafts 32.
  • the direct seeding device 8 includes a connecting part that connects adjacent drive transmission shafts 32 to each other.
  • the connecting portion of this embodiment includes a connecting shaft 68 and a connecting member 69.
  • the end of the drive transmission shaft 32 and the end of the connecting shaft 68 are connected by a connecting member 69.
  • Notches (so-called D cuts) 71 and the like are appropriately formed at the ends of the drive transmission shaft 32 and the connecting shaft 68, respectively.
  • the connecting member 69 is configured to fit into the notch 71. Thereby, the drive transmission shaft 32 and the connecting shaft 68 can be connected by the connecting member 69 so as not to be relatively rotatable.
  • a connecting shaft 68 is disposed between the feeding cases 21.
  • the drive transmission shafts 32 of the adjacent feeding cases 21 are connected to each other by the connecting portion (the connecting shaft 68 and the connecting member 69) with the above configuration.
  • the connecting shaft 68 is connected to the end of the drive transmission shaft 32 through a connecting member 69.
  • a drive input gear 70 is fixed to any one of the five connecting shafts 68 included in the direct seeding device 8. As shown in FIG. 2, in the present embodiment, the drive input gear 70 is fixed to the central connecting shaft 68 among the five connecting shafts 68.
  • the driving force output from the driving output unit described above is input to the driving input gear 70.
  • the driving input gear 70 is rotationally driven.
  • the drive input gear 70 is rotationally driven, whereby the six drive transmission shafts 32 included in the direct seeding device 8 can be rotationally driven.
  • the drive transmission shafts 32 of the six feeding cases 21 can be rotationally driven all at once.
  • the clutch mechanism 50 switches connection / disconnection between the drive transmission shaft 32 and the drive gear 31.
  • the clutch mechanism 50 includes a clutch member 53.
  • the axial center portion of the drive transmission shaft 32 is a hexagonal shaft portion 52 having a hexagonal cross section.
  • the clutch member 53 is attached to the hexagonal shaft portion 52 so as not to be relatively rotatable.
  • the clutch member 53 is slidable in a direction parallel to the axis of the drive transmission shaft 32 (a direction indicated by a thick arrow in FIG. 9).
  • the both ends of the drive transmission shaft 32 are formed in a round bar shape with a circular cross section.
  • the drive gear 31 is attached to one end portion (round bar-like portion) of the drive transmission shaft 32.
  • the drive gear 31 is configured to be able to rotate relative to the drive transmission shaft 32 around the axis.
  • the clutch member 53 is formed with a clutch-side engagement portion 54 that protrudes toward the drive gear 31.
  • the cylindrical portion 47 formed integrally with the drive gear 31 has a gear side engaging portion 55 that engages with the clutch side engaging portion 54 on the surface facing the clutch member 53 side. Is formed.
  • the clutch member 53 is slidable in the axial direction of the drive transmission shaft 32.
  • the engagement of the clutch side engaging portion 54 and the gear side engaging portion 55 can be released.
  • the connection between the drive gear 31 and the drive transmission shaft 32 is released. Accordingly, the driving force is not transmitted from the drive transmission shaft 32 to the drive gear 31.
  • the state in which the drive gear 31 is connected to the drive transmission shaft 32 and the connection between the drive gear 31 and the drive transmission shaft 32 are released by sliding the clutch member 53.
  • the state can be switched. Since the drive transmission shaft 32 is rotationally driven as described above, the drive gear 31 can be rotationally driven by connecting the drive gear 31 to the drive transmission shaft 32.
  • the driven gear 30 (FIG. 4) meshing with the drive gear 31 is rotationally driven, so that the feeding roll 28 (FIG. 6) connected to the driven gear 30 so as not to be relatively rotatable. ) Is driven to rotate. Thereby, the feeding roll 28 in the feeding case 21 can be rotationally driven.
  • the drive transmission shafts 32 of the respective feeding cases 21 can be rotationally driven at the same time by connecting the drive transmission shafts 32 to each other by the connecting portions (the connecting shaft 68 and the connecting member 69). Therefore, by connecting the drive gear 31 and the drive transmission shaft 32 in the clutch mechanism 50 of each feeding case 21, the feeding rolls 28 of each feeding case 21 can be driven all at once. Therefore, seeds can be sprayed all at once by the six feeding cases 21 provided in the direct sowing apparatus 8.
  • the frame 29 provided in the direct seeding device 8 is provided with an operation member (not shown) that moves the clutch member 53 along the axial direction of the drive transmission shaft 32.
  • This operation member is provided corresponding to each feeding case 21.
  • This operation member can be arbitrarily operated by an operator on the driver's seat. Thereby, the operator can switch the presence / absence of driving of the feeding roll 28 for each feeding case 21.
  • the drive gear 31 is attached to one end portion (left end portion) of the drive transmission shaft 32. As described above, the drive gear 31 is supported by the feeding case 21. Accordingly, it can be said that the left end portion of the drive transmission shaft 32 is supported by the feeding case 21 via the drive gear 31.
  • the feeding case 21 is integrally provided with a transmission shaft support portion 48 for supporting the other end portion (right end portion) of the drive transmission shaft 32.
  • the transmission shaft support 48 supports the right end of the drive transmission shaft 32 via a bearing. As described above, both ends of the drive transmission shaft 32 are supported by the feeding case 21.
  • the clutch member 53 is attached to the drive transmission shaft 32. Accordingly, it can be said that the clutch member 53 is supported by the feeding case 21 via the drive transmission shaft 32. As described above, the clutch mechanism 50 of the present embodiment is supported by the feeding case 21.
  • the drive transmission shaft 32, the clutch mechanism 50, and the drive gear 31 are individually provided for each feeding case 21, and these configurations are supported by the feeding case 21.
  • the drive transmission shaft 32, the clutch mechanism 50, the drive gear 31, and the feeding case 21 can be collectively handled as one unit. Therefore, when assembling the direct seeding device 8 of the present embodiment, the drive transmission shaft 32, the clutch mechanism 50, the drive gear 31 and the like are assembled in advance in the feeding case 21, and then the feeding case 21 is attached to the frame 29. good. Thereby, the assembly of the direct seeding apparatus 8 becomes easy.
  • the feeding roll 28 of the present embodiment is configured as a slide roll type feeding roll capable of adjusting the capacity of the feeding hole 28a. That is, as shown in FIGS. 6 to 8, the feeding roll 28 is configured by combining the main body roll 57 and the fitting roll 58. The fitting roll 58 is slidable in the direction parallel to the axis 28 c with respect to the main body roll 57.
  • the main body roll 57 and the fitting roll 58 are each formed in a substantially cylindrical shape.
  • the aforementioned feeding hole 28a is formed on the peripheral surface of the main body roll 57.
  • the feed hole 28a is configured as a groove formed along a direction parallel to the axis 28c.
  • the fitting roll 58 is formed with a protruding portion 60 formed so as to protrude in a direction parallel to the axis 28c.
  • a plurality of the projecting portions 60 are formed corresponding to the feeding holes 28 a of the main body roll 57. And as shown in FIG.
  • the protrusion part 60 of the fitting roll 58 is comprised so that it can insert in the direction parallel to the axis line 28c inside the delivery hole 28a of the main body roll 57. As shown in FIG. A portion of the feeding hole 28 a where the protruding portion 60 is inserted is closed by the protruding portion 60. Therefore, the capacity of the feeding hole 28a can be changed by changing the amount of the protrusion 60 inserted into the feeding hole 28a.
  • the capacity of the feeding hole 28a can be changed by moving the fitting roll 58 in a direction parallel to the axis 28c with respect to the main body roll 57. Thereby, the amount (feeding amount) of seeds fed out by the feeding hole 28a can be adjusted.
  • the feeding roll 28 provided in the feeding case 21 is provided with a screw feeding mechanism (adjusting mechanism) 40 for adjusting the position of the fitting roll 58 in a direction parallel to the axis 28c.
  • a screw feeding mechanism (adjusting mechanism) 40 for adjusting the position of the fitting roll 58 in a direction parallel to the axis 28c.
  • the screw feed mechanism 40 has a screw shaft (adjustment shaft) 41 disposed in alignment with the axis 28c of the feeding roll 28. Accordingly, the screw shaft 41 is disposed in parallel with the left-right direction of the vehicle body. A male screw is formed on the outer periphery of the screw shaft 41. On the other hand, the fitting roll 58 is formed with a female screw that is screwed into the male screw. With this configuration, by rotating the screw shaft 41, the fitting roll 58 can be moved in a direction parallel to the axis 28c, and the capacity of the feeding hole 28a can be changed.
  • an adjustment gear 61 for operating the screw feeding mechanism 40 is provided outside the feeding case 21.
  • the adjustment gear 61 is configured as a flat gear, is arranged so that the screw shaft 41 and the axis line coincide with each other, and is fixed to the screw shaft 41.
  • an operation gear 62 that can mesh with the adjustment gear 61 is provided outside the feeding case 21.
  • the operation gear 62 is configured as a flat gear, and its axis is disposed along a direction (left-right direction) parallel to the screw shaft 41.
  • the operation gear 62 In a state where the operation gear 62 is engaged with the adjustment gear 61, the operation gear 62 is rotated to rotate the screw shaft 41 via the adjustment gear 61, and the screw feed mechanism 40 causes the fitting roll 58 to move. It is moved in a direction parallel to the axis 28c. Thereby, the capacity
  • a flange portion 42 is provided at the end of the screw shaft 41.
  • a detent mechanism 43 is provided between the flange portion 42 and the main body roll 57. This detent mechanism 43 is connected so that the main body roll 57 and the screw shaft 41 do not rotate relative to each other. Thereby, the fitting roll 58 and the screw shaft 41 are prevented from rotating relative to each other, and the position of the fitting roll 58 is prevented from moving freely in the direction of the axis 28c.
  • the detent mechanism 43 is configured to allow relative rotation between the main body roll 57 and the screw shaft 41 when a predetermined torque or more is applied. Therefore, by inputting a predetermined torque to the adjustment gear 61, the screw shaft 41 and the fitting roll 58 can be rotated relative to each other to operate the screw feed mechanism 40.
  • the operation gear 62 can be supported by a member (for example, the frame 29) different from the feeding case 21.
  • a member for example, the frame 29
  • the gap between the cores of the operation gear 62 and the adjustment gear 61 varies due to the influence of the mounting accuracy of the feeding case 21 with respect to the frame 29. For this reason, it is conceivable that the engagement between the operation gear 62 and the adjustment gear 61 is deteriorated.
  • the operation gear 62 is supported by the feeding case 21.
  • an operation gear support portion 73 protruding in a rib shape toward the front is provided on the front surface of the feeding case 21.
  • the operation gear support 73 is configured to rotatably support the operation gear 62.
  • the operation gear support portion 73 of this embodiment is formed integrally with the feeding case 21.
  • the distance between the operation gear 62 and the adjustment gear 61 is determined only by the accuracy of the feeding case 21. Therefore, since the meshing of the adjustment gear 61 and the operation gear 62 is stabilized, the adjustment of the seed feeding amount by the feeding hole 28a can be stably performed.
  • a mechanism for changing the capacity of the feeding hole 28a (the screw feeding mechanism 40, the adjustment gear 61, the operation gear 62, the detent mechanism 43, etc.) is provided in each of the six feeding cases 21 provided in the direct seeding device 8. ing. Therefore, the direct seeding device 8 of the present embodiment has six operation gears 62. As shown in FIG. 2, the operation gears 62 of the adjacent feeding cases 21 are connected by a connecting shaft 63 arranged along the left-right direction of the vehicle body.
  • the operation gear 62 is fixedly provided with a cylindrical rotating shaft portion 65 that is arranged so that the axis line coincides with the operation gear 62.
  • the operation gear 62 and the rotating shaft portion 65 are integrally formed.
  • the operation gear 62 and the rotating shaft portion 65 are configured so that the connecting shaft 63 can be inserted through the center of the shaft.
  • the rotating shaft 65 is fixed so as not to rotate relative to the connecting shaft 63.
  • the direct seeding device 8 of the present embodiment only one connecting shaft 63 is provided.
  • Six operation gears 62 are fixed to the connecting shaft 63. Accordingly, the six operation gears 62 included in the direct seeding device 8 are connected by the connecting shaft 63 so that the axes thereof coincide with each other so as not to be relatively rotatable. Accordingly, the six operation gears 62 can be rotated all at once.
  • an operation handle 64 is provided at the end of a connecting shaft 63 that connects the six operation gears 62 to each other.
  • the operator can simultaneously rotate the operation gears 62 of the six feeding cases 21 by rotating the operation handle 64.
  • the capacity of the feeding hole 28 a of the feeding roll 28 can be changed simultaneously by the six feeding cases 21. That is, the feeding amount for the six articles can be changed all at once. Thereby, the amount of feeding can be changed easily.
  • the detent mechanism 43 is provided between the main body roll 57 and the screw shaft 41. Thereby, the supply roll 28 and the screw shaft 41 are connected so as not to rotate relative to each other. For this reason, the screw shaft 41 (and the adjustment gear 61 fixed thereto) is rotationally driven with the rotational driving of the feeding roll 28. At this time, if the operation gear 62 is engaged with the adjustment gear 61, the operation gear 62 is also rotationally driven. When the adjustment gear 61 and the operation gear 62 are rotationally driven in a state where they are engaged with each other as described above, the operation gear 62 and the adjustment gear 61 may be worn and may be damaged.
  • the operation gear 62 and the adjustment gear 61 need to be engaged only when the capacity of the supply hole 28a is changed (adjustment of the supply amount). In other cases, the operation gear 62 and the adjustment gear 61 are engaged. You don't have to.
  • the presence / absence of engagement of the operation gear 62 and the adjustment gear 61 can be switched as necessary.
  • the feeding case 21 of the embodiment is fixedly provided with an operation gear support 73 that protrudes in a rib shape from the front of the feeding case 21 toward the front.
  • the operation gear support portion 73 of this embodiment is formed integrally with the feeding case 21.
  • the operation gear support 73 has a long hole 72 formed therein.
  • the elongated hole 72 is formed so as to penetrate the operation gear support portion 73 in the axial direction (left-right direction) of the operation gear 62.
  • the width of the elongated hole 72 is formed to be the same as or slightly larger than the diameter of the rotating shaft portion 65 of the operation gear 62. Therefore, the rotating shaft portion 65 can be inserted through the elongated hole 72 in the axial direction (left-right direction) (state shown in FIG. 3).
  • the operation gear support portion 73 can support the operation gear 62 by inserting the rotary shaft portion 65 of the operation gear 62 into the long hole 72.
  • the rotating shaft portion 65 can move in the longitudinal direction of the long hole 72 while being inserted into the long hole 72. As shown in FIG. 5, when viewed in the axial direction (left-right direction) of the screw shaft 41, one end portion 72a in the longitudinal direction of the long hole 72 is more threaded than the other end portion 72b. It is close to the position. Accordingly, by moving the rotary shaft portion 65 inserted through the long hole 72 between the end portions 72a and 72b, the rotary shaft portion 65 is moved closer to the rotary shaft (screw shaft 41) of the adjustment gear 61. Or it can be moved in the direction of separation.
  • the side close to the screw shaft 41 side is defined as an approach side end portion 72 a. That is, if the rotary shaft 65 is moved to the maximum extent toward the screw shaft 41 inside the long hole 72, the rotary shaft 65 comes into contact with the approaching side end 72a (state of FIG. 10). In this state, as shown in FIG. 10, the operation gear 62 and the adjustment gear 61 are configured to mesh with each other.
  • the end portion on the opposite side to the approach side end portion 72a is defined as a separation side end portion 72b. That is, if the rotary shaft portion 65 is moved to the maximum in the direction away from the screw shaft 41 inside the long hole 72, the rotary shaft portion 65 comes into contact with the separation-side end portion 72b (state of FIG. 11). In this state, as shown in FIG. 11, the engagement between the operation gear 62 and the adjustment gear 61 is released.
  • the rotation shaft portion 65 of the operation gear 62 is configured to move inside the long hole 72, and therefore the movement range of the rotation shaft portion 65 is in the longitudinal direction of the long hole 72. Regulated by the edge. That is, the rotating shaft portion 65 cannot further approach the screw shaft 41 from the state in which the rotating shaft portion 65 is in contact with the approaching end portion 72a of the long hole 72 (the state in FIG. 10). Further, the rotating shaft portion 65 cannot further move away from the screw shaft 41 from the state in which the rotating shaft portion 65 is in contact with the separation-side end portion 72b of the long hole 72 (state in FIG. 11).
  • the operation gear 62 since the moving range of the rotating shaft part 65 of the operation gear 62 can be regulated by the long hole 72, the operation gear 62 is prevented from being too close or too far from the adjustment gear 61. it can.
  • the operation gear support portion 73 in which the long hole 72 is formed is formed integrally with the feeding case 21. Accordingly, the accuracy of the position and shape of the long hole 72 is determined solely by the molding accuracy of the feeding case 21 and is not affected by the assembly accuracy. Thereby, the long hole 72 can be accurately arranged with respect to the feeding case 21.
  • the rotating shaft portion 65 can be accurately positioned with respect to the screw shaft 41 by bringing the rotating shaft portion 65 into contact with the approaching end portion 72a of the long hole 72 (state of FIG. 10). Thereby, variation in the distance (between the cores) between the rotation shaft (rotation shaft portion 65) of the operation gear 62 and the rotation shaft (screw shaft 41) of the adjustment gear 61 can be suppressed. Therefore, according to the configuration of the present embodiment, the operation gear 62 and the adjustment gear 61 can be meshed stably.
  • the rotary shaft portions 65 of the six operation gears 62 included in the direct seeding device 8 of the present embodiment are connected by the connecting shaft 63. Therefore, when the rotary shaft 65 is moved in a direction approaching or separating from the screw shaft 41, the six operation gears 62 included in the direct seeding device 8 are moved all at once. That is, according to the configuration of the present embodiment, the presence / absence of engagement between the operation gear 62 and the adjustment gear 61 can be switched simultaneously by the six feeding cases 21.
  • the operation gear 62 is moved by moving the rotation shaft portion 65 of the operation gear 62 in the direction of approaching or separating from the rotation shaft (screw shaft 41) of the adjustment gear 61. Therefore, the chamfer for meshing the operation gear 62 and the adjustment gear 61 is not necessary. Thereby, the operation gear 62 and the adjustment gear 61 can be configured at low cost, and the cost of the direct seeding device 8 as a whole can be reduced.
  • the operation gear 62 is moved by a link mechanism, so that the presence / absence of engagement between the operation gear 62 and the adjustment gear 61 is switched.
  • the link mechanism of this embodiment includes an inter-core change link (link member) 75 and a link operation shaft 76.
  • the link operation shaft 76 is a round bar-shaped member arranged along a direction (left-right direction) parallel to the screw shaft 41. As shown in FIG. 4 and the like, the feeding case 21 is formed with a round hole 77 into which the link operation shaft 76 can be inserted. The link operation shaft 76 is rotatably supported by the feeding case 21 by being inserted into the round hole 77. As shown in FIG. 2, the link operation shaft 76 is disposed across a plurality of (six in the case of this embodiment) feeding cases 21 included in the direct seeding device 8.
  • an operation lever 81 is fixedly provided at the end of the link operation shaft 76.
  • the operator can rotate the link operation shaft 76 by rotating the operation lever 81.
  • the link change shaft 75 is fixed to the link operation shaft 76.
  • the center-to-center change link 75 is a substantially plate-like member disposed substantially orthogonal to the link operation shaft 76.
  • the center-to-center change link 75 fixed to the link operation shaft 76 is made a plane orthogonal to the axial direction (left-right direction) of the screw shaft 41 (FIGS. 10 and 11). In the plane parallel to the paper surface).
  • the center-to-center change link 75 is provided corresponding to each feeding case 21.
  • projecting portions 79 and 80 projecting toward the side substantially opposite to the link operation shaft 76 are formed at the tip of the inter-center changing link 75.
  • the protrusions 79 and 80 are arranged so as to overlap the elongated hole 72 when viewed in the axial direction (left-right direction) of the screw shaft 41.
  • the longitudinal direction (protruding direction) of the projecting portions 79 and 80 is substantially the same as the longitudinal direction of the long hole 72. It arrange
  • the interval between the two protruding portions 79 and 80 is set to be approximately the same as the diameter of the rotating shaft portion 65 of the operation gear 62. Accordingly, as shown in FIGS. 10 and 11, the rotary shaft portion 65 inserted into the long hole 72 is configured to be fitted between the two projecting portions 79 and 80. Yes.
  • the two projecting portions 79 and 80 of the inter-center changing link 75 are configured to be able to contact the rotating shaft portion 65 inserted in the long hole 72. Then, by rotating the center-to-center change link 75 around the link operation shaft 76, the rotary shaft portion 65 can be moved along the longitudinal direction of the long hole 72 inside the long hole 72. it can.
  • the center-to-center change link 75 is in a state where the rotary shaft portion 65 is in contact with the approaching side end portion 72a of the long hole 72 (the state shown in FIG. It is comprised so that it can rotate between the made state (state of FIG. 11). Accordingly, by rotating the inter-center change link 75 around the link operation shaft 76, the operation gear 62 is engaged with the adjustment gear 61 (FIG. 10), the disengagement position (FIG. 11), It can be moved between.
  • the operation lever 81 is fixedly provided on the link operation shaft 76 to which the center change link 75 is fixed. Accordingly, the operator can rotate the inter-link changing link 75 around the link operation shaft 76 by rotating the operation lever 81.
  • the position of the operation lever 81 when the operation gear 62 and the adjustment gear 61 are engaged with each other is defined as a first position.
  • the position of the operation lever 81 in a state where the engagement between the operation gear 62 and the adjustment gear 61 is released is defined as a second position. That is, the operator can engage the operation gear 62 and the adjustment gear 61 by rotating the operation lever 81 to the first position. Further, the operator can release the engagement between the operation gear 62 and the adjustment gear 61 by rotating the operation lever 81 to the second position.
  • the long hole 72 when viewed in the axial direction of the screw shaft 41, the long hole 72 has its longitudinal direction along a virtual circle C ⁇ b> 1 centered on the axis of the link operation shaft 76. Are formed. Accordingly, the rotary shaft portion 65 inserted into the elongated hole 72 performs an arc motion around the link operation shaft 76 along the virtual circle C1 (indicated by a one-dot chain line in FIG. 12). .
  • the moving direction when the rotating shaft 65 moves in the direction approaching the screw shaft 41 is indicated by a white arrow A1 in FIG.
  • the arrow A ⁇ b> 1 is along the virtual circle C ⁇ b> 1 centered on the axis of the link operation shaft 76.
  • the arrow A1 is configured to face a direction shifted from the axial center P1 of the screw shaft 41. That is, when the rotary shaft 65 moves in the direction approaching the screw shaft 41, the rotary shaft portion 65 does not move straight toward the axis center P1 of the screw shaft 41 but moves toward a position shifted from the axis center P1. .
  • the gear teeth of the operation gear 62 approach the gear teeth of the adjustment gear 61 from an oblique direction.
  • the gear teeth of the adjustment gear 61 and the operation gear 62 come into contact with each other, the gear teeth of the adjustment gear 61 are pushed diagonally by the gear teeth of the operation gear 62. Can mesh. Therefore, the gears can be reliably engaged with each other.
  • the operation gear 62 and the adjustment gear are used.
  • 61 gear teeth may collide from the front. In this case, not only the gear teeth cannot be meshed but also the gear teeth can be damaged.
  • the gear teeth of the operation gear 62 and the adjustment gear 61 come in contact with each other from an oblique direction. Can be prevented.
  • a holding portion 82 for holding the position of the operation gear 62 is provided.
  • the holding portion 82 includes a first locking portion 83 and a second locking portion 84.
  • the first locking portion 83 and the second locking portion 84 are configured so that the operation lever 81 can be locked (hooked) and fixed.
  • the first locking portion 83 is configured so that the operation lever 81 can be fixed at the first position by locking (hooking) the operation lever 81 with the first locking portion 83. Has been.
  • the operator only needs to lock the operation lever 81 to the first locking portion 83 when adjusting the amount of seed fed by the feeding roll 28.
  • the operation gear 62 can be held at a position (FIG. 10) meshed with the adjustment gear 61. Accordingly, the operator can rotate the adjustment gear 61 via the operation gear 62 by rotating the operation handle 64 in this state. Therefore, the screw feeding mechanism 40 is operated to feed the feeding hole 28a of the feeding roll 28. You can change the capacity. Thereby, the feeding amount can be adjusted.
  • the second locking portion 84 can fix the operation lever 81 in the second position by locking (hooking) the operation lever 81 with the second locking portion 84. It is configured.
  • the operator may lock the operation lever 81 with the second locking portion 84.
  • the operation gear 62 can be held at a position where it does not mesh with the adjustment gear 61 (FIG. 11). In this way, the operation gear 62 and the adjustment gear 61 can be prevented from meshing except when necessary, so that the operation gear 62 and the adjustment gear 61 can be prevented from being worn or damaged.
  • the seed feeding device 9 included in the direct sowing device 8 of the present embodiment includes the feeding case 21 that is arranged below the hopper 20 that accommodates seeds and is supplied with the seeds.
  • a feeding roll 28 for feeding seeds by a predetermined amount is provided in the feeding case 21.
  • the feeding case 21 includes a driven gear support (a left side wall 33 of the feeding case 21) that supports a driven gear 30 that rotates integrally with the feeding roll 28, and a driving gear support that supports a driving gear 31 that meshes with the driven gear 30. Part 49.
  • the distance between the cores of the driven gear 30 and the driving gear 31 is determined only by the accuracy of the feeding case 21. Therefore, the dispersion
  • the driven gear support (the left side wall 33 of the feeding case 21) and the drive gear support 49 are integrally formed.
  • the positions of the driven gear support portion and the drive gear support portion 49 are determined only by the forming accuracy of the feeding case. Therefore, the center of the driven gear 30 and the drive gear 31 is not affected by the assembly accuracy. Thereby, the meshing accuracy of the gears 30 and 31 can be further improved.
  • the seed feeding device 9 of the present embodiment includes a plurality of feeding cases 21.
  • Each feeding case 21 includes a drive transmission shaft 32 that is arranged so that the axis line coincides with the drive gear 31 and transmits a driving force to the drive gear 31.
  • the drive transmission shaft 32 is provided independently for each feeding case 21.
  • Each feeding case 21 includes a transmission shaft support portion 48 that supports the drive transmission shaft 32.
  • the seed feeding device 9 includes a connecting shaft 68 that connects the drive transmission shafts 32 of the adjacent feeding cases 21.
  • the drive transmission shaft 32 is provided independently for each feeding case 21, the feeding case 21 and the drive transmission shaft 32 can be collectively handled as one unit. Then, the driving force can be transmitted to all the drive transmission shafts 32 by connecting the drive transmission shafts 32 of the adjacent feeding cases 21 by the connection shaft 68.
  • the seed feeding device 9 of the present embodiment includes the clutch mechanism 50 between the drive transmission shaft 32 and the drive gear 31 in each feeding case 21.
  • the drive transmission shaft 32 is individually provided for each feeding case 21. If the clutch mechanism 50 is provided for each feeding case 21 in addition to this, the driving transmission shaft 32 and the clutch mechanism 50 are provided.
  • the feeding case 21 can be collectively handled as one unit.
  • the feeding roll 28 has a screw feed mechanism 40 that can adjust the amount of seeds fed out.
  • the feeding case 21 includes an adjustment gear 61 fixed to the screw shaft 41 of the screw feeding mechanism 40 and an operation gear support portion 73 that supports an operation gear 62 that can mesh with the adjustment gear 61.
  • the distance between the operation gear 62 and the adjustment gear 61 is determined only by the accuracy of the feeding case 21. Thereby, the variation between the centers of the adjustment gear 61 and the operation gear 62 can be suppressed, and the meshing accuracy of the adjustment gear 61 and the operation gear 62 can be improved.
  • the adjustment gear 61 is moved by moving the rotary shaft portion 65 of the operation gear 62 in a direction approaching or separating from the screw shaft 41.
  • the operation gear 62 can be switched between a state where the operation gear 62 is engaged and a state where the operation gear 62 is not engaged.
  • the engagement between the operation gear 62 and the adjustment gear 61 can be released by separating the rotation shaft portion 65 of the operation gear 62 from the rotation shaft (screw shaft 41) of the adjustment gear 61.
  • the operation gear 62 and the adjustment gear 61 can be separated from each other, so that the operation gear 62 and the adjustment gear 61 can be prevented from being worn or damaged.
  • the gear shafts are configured to approach or separate from each other in this way, the gears can be engaged without a chamfer, so that an increase in cost can be prevented.
  • the direct seeding device 8 of the present embodiment includes a plurality of feeding cases 21 arranged in one direction, and an adjustment gear 61 and an operation gear 62 corresponding to each of the plurality of feeding cases 21. Is provided.
  • the rotation shaft portions 65 of the operation gears 62 are connected to each other.
  • the operation gear support portion 73 that supports the rotating shaft portion 65 of the operation gear 62 is fixedly provided on the feeding case 21.
  • the operation gear 62 can be accurately positioned with respect to the supply case 21. Thereby, the dispersion
  • the operation gear support portion 73 has a long hole 72 formed therein.
  • the rotating shaft portion 65 is inserted into the long hole 72 and is configured to be movable along the long hole 72.
  • the movement range of the rotation shaft portion 65 can be regulated.
  • the operation gear 62 and the adjustment gear 61 can be prevented from approaching more than necessary.
  • the direct seeding device 8 of the present embodiment includes the inter-center changing link 75 that can contact the rotating shaft portion 65 of the operation gear 62. Then, the center-to-center change link 75 rotates around the link operation shaft 76 to move the rotation shaft portion 65 in a direction approaching or separating from the screw shaft 41.
  • the operation gear 62 can be moved between the position where the adjustment gear 61 is engaged and the position where the engagement is released.
  • the moving direction (the direction indicated by the arrow A1 in FIG. 11) of the rotating shaft portion 65 when approaching the screw shaft 41 is the screw shaft. It faces the position shifted from the axis center P1 of 41.
  • the spreading work vehicle 1 of the present embodiment includes the seed feeding device 9 and a vehicle body 2 that can travel by mounting the seed feeding device 9.
  • the spreading work vehicle 1 can travel while driving the feeding roll 28 stably. Thereby, it can drive
  • the driven gear support (the left side wall of the feeding case 21) and the drive gear support 49 are integrally formed, but the present invention is not necessarily limited thereto.
  • the drive gear support 49 may be configured as a separate member from the feeding case 21 and the driving gear support 49 may be fixed to the feeding case 21.
  • the feeding roll 28 is a slide roll type that can change the capacity of the feeding hole 28a.
  • the present invention is not limited to this, and a feeding roll of a type that cannot change the capacity of the feeding hole 28a can also be adopted.
  • a notch (D cut) is formed at the ends of the drive transmission shaft 32 and the connection shaft 68, and the connection member 69 is fitted into this portion, whereby the drive transmission shaft 32 and the connection shaft 68 are connected. It is set as the structure connected so that relative rotation is impossible.
  • the connection structure of the drive transmission shaft 32 and the connection shaft 68 is not limited to this.
  • a keyway may be formed in the end portions of the drive transmission shaft 32 and the connecting shaft 68 instead of the notch, and the connecting member 69 may be fitted in this portion.
  • the drive transmission shaft 32 and the connecting shaft 68 may be connected by spline fitting (in this case, the connecting member 69 can be omitted).
  • the adjacent drive transmission shafts 32 can be directly connected by, for example, the connecting member 69.
  • the connecting shaft 68 can be omitted.
  • inter-center change link 75 is provided corresponding to each feeding case 21, but the number of inter-core change links 75 is not particularly limited, and one or more inter-core change links. 75 should just be provided.
  • the rotation shaft portions 65 of the operation gears 62 are connected by the connection shaft 63, whereby the plurality of operation gears 62 are rotated at the same time.
  • the present invention is not limited to this, and the operation gears 62 can be individually rotated.
  • the rotation shaft portion 65 and the link operation shaft 76 of the operation gear 62 are configured to be supported by the feeding case 21, but the present invention is not limited thereto, and either the rotation shaft portion 65 or the link operation shaft 76 is used. Or the structure which supports both by the member different from the feeding case 21 may be sufficient.
  • the operation gear 62 and the adjustment gear 61 do not need to be engaged except when adjusting the feed amount, but the configuration for changing the center between the adjustment gear 61 and the operation gear 62 is omitted.
  • the adjustment gear 61 and the operation gear 62 may be configured to always mesh with each other.
  • the direct sowing device 8 (granule spraying device) and the seed feeding device 9 are arranged behind the vehicle body 2.
  • the arrangement of the granular material spraying device is not necessarily limited thereto, and for example, the granular material spraying device may be disposed in the center of the vehicle body or in front of the vehicle body.
  • the configuration of the above embodiment is not limited to a seed feeding device and a direct sowing device, and can be widely used in a device for feeding a granular material (for example, granular fertilizer) or a device for spraying.
  • a granular material for example, granular fertilizer
  • FIG. 14 is a side view of a rice transplanter 1x as a work vehicle according to the second embodiment of the present invention.
  • the rice transplanter 1x includes a vehicle body 2, a planting part 3 disposed behind the vehicle body 2, and a fertilizer applicator (granular material spraying device) 8x.
  • the spare seedling stands 111 are provided on the left and right of the steering handle 7.
  • a seedling box containing spare mat seedlings can be mounted on the spare seedling stand 111.
  • the planting part 3 is connected to the rear of the vehicle body 2 via a lifting link mechanism 12. Further, a PTO shaft 13 for outputting the driving force of the engine 10 to the planting unit 3, a lifting cylinder 14 for driving the planting unit 3 up and down, and the like are disposed at the rear part of the vehicle body 2.
  • the elevating link mechanism 12 has a parallel link structure including a top link 18, a lower link 19, and the like. Further, the elevating cylinder 14 is connected to the lower link 19. By extending and retracting the elevating cylinder 14, the entire planting unit 3 can be moved up and down.
  • the planting unit 3 includes a seedling stage 17, a plurality of planting units 90, and a plurality of floats 16.
  • Each planting unit 90 is configured as a rotary planting device provided with two planting claws 92 on a rotating case 91.
  • the rotating case 91 is rotationally driven by the driving force input from the PTO shaft 13 so as to plant seedlings.
  • the rice transplanter of this embodiment is comprised as a 4-row planting rice transplanter, and is equipped with the planting unit 90 for 4 strips arranged in the left-right direction of the vehicle body.
  • the seedling stage 17 is disposed above the planting unit 90 and is configured to be able to place a mat seedling.
  • the seedling mounting stand 17 is comprised so that the mat seedlings for 4 strips can be mounted side by side in the left-right direction of a vehicle body.
  • the seedling mounting stand 17 includes a transport mechanism (a well-known vertical feed mechanism and horizontal feed mechanism) that supplies the mat seedlings to the planting units 90. Thereby, since a seedling can be sequentially supplied with respect to each planting unit 90, each planting unit 90 can plant a seedling.
  • a transport mechanism a well-known vertical feed mechanism and horizontal feed mechanism
  • the float (floating) 16 is provided in the lower part of the planting part 3, and is arrange
  • the fertilizer applicator (granular material spraying device) 8 is a device for spraying solid granular fertilizer (granular material) to the field.
  • the fertilizer applicator 8x includes a fertilizer hopper 27x, a fertilizer feeding device 9x, a transport unit 36, a blower 93, and an air supply pipe 94.
  • the fertilizer hopper 27x is disposed at a position between the driver's seat 6 and the seedling stage 17 in the longitudinal direction of the vehicle body.
  • the fertilizer hopper 27 x includes a hopper body 87 and a lid portion 88.
  • the hopper body 87 is configured as a container having an open top, and fertilizer is accommodated in the hopper body 87.
  • the lid portion 88 is disposed so as to cover the open portion at the top of the hopper body 87.
  • the lower portion of the hopper body 87 is a passage portion 89 formed in a funnel shape so as to become thinner as it goes downward.
  • the lower part of the passage part 89 is open. Accordingly, the fertilizer in the hopper body 87 flows downward through the passage portion 89.
  • the fertilizer feeding device 9x is disposed below the fertilizer hopper 27x.
  • the fertilizer feeding device 9x is configured to feed the fertilizer supplied from the fertilizer hopper 27x downward little by little.
  • the fertilizer feeding device 9x includes a feeding case 21x.
  • the feeding case 21x is configured as a hollow case.
  • the feeding case 21x is configured to be attached to the lower portion of the passage portion 89 of the hopper body 87.
  • the feeding case 21x has a fertilizer inflow space 25 therein.
  • the fertilizer inflow space 25 communicates with the passage portion 89. Accordingly, the fertilizer supplied from the fertilizer hopper 27 x flows into the fertilizer inflow space 25.
  • a feeding tray (feeding portion) 28x is disposed in the lower portion of the fertilizer inflow space 25 inside the feeding case 21x.
  • the feeding tray 28x is a member formed in a substantially disc shape.
  • a rotating shaft 45x is fixedly provided at the axis of the feeding tray 28x.
  • a driven-side bevel gear (driven gear) 34 is fixedly provided on the rotating shaft 45x of the feeding tray 28x. Further, the drive shaft 26 is rotatably supported by the feeding case 21x. As shown in FIG. 19, a drive-side bevel gear (drive gear) 35 is fixedly provided on the drive shaft 26. The driving side bevel gear 35 is arranged so as to mesh with the driven side bevel gear 34.
  • a support wall (driven gear support portion) that supports the driven side bevel gear 34 and a support wall (drive gear support portion) that supports the drive side bevel gear 35 are integrally formed in the feeding case 21x.
  • the driving force output from the electric motor 95 as a driving source is input to the driving shaft 26 (details will be described later).
  • the driving force is transmitted to the rotating shaft 45x via the bevel gears 34 and 35. Thereby, the feeding tray 28x is rotationally driven around the rotation shaft 45x.
  • the feeding tray 28x is formed with a plurality of feeding holes 28b penetrating the feeding tray 28x in the thickness direction.
  • the feeding hole 28b is formed in a size that can accommodate a predetermined amount (one to several grains) of fertilizer.
  • the fertilizer in the fertilizer inflow space 25 is taken into the feed hole 28b by a predetermined amount.
  • the feeding tray 28x is rotationally driven in a state where a predetermined amount of fertilizer is taken into the feeding hole 28b, so that the feeding hole 28b in the state in which the fertilizer is taken moves around the rotation shaft 45x.
  • the fertilizer taken in the delivery hole 28b is discharged downward.
  • the fertilizer in the fertilizer hopper 27x can be fed downward by a predetermined amount (about 1 to several grains).
  • the air supply pipe 94 is a substantially pipe-shaped member, and is disposed along the left-right direction of the vehicle body as shown in FIG. One end of the air supply pipe 94 (the right end in the present embodiment) is closed, and the blower 93 is connected to the other end (the left end in the present embodiment). Has been.
  • the air supply pipe 94 is fixedly provided so as not to move relative to the vehicle body 2.
  • the blower 93 is configured to send air into the air supply pipe 94.
  • the transport unit 36 includes an introduction unit 106, a connection path 107, a transport hose 108, and a spray port 109.
  • the introduction unit 106 is disposed below the feeding case 21x. As shown in FIG. 21 and the like, the upper portion of the introducing portion 106 is open and connected to the lower end portion of the feeding case 21x. Moreover, the introduction part 106 is formed in a funnel shape so that it gradually becomes thinner as it proceeds downward.
  • connection path 107 is disposed below the introduction unit 106. As shown in FIG. 19 and the like, the connection path 107 is formed in a circular tube shape, and is disposed substantially along the front-rear direction of the vehicle body 2. A lower end portion of the introduction portion 106 is connected to an intermediate portion in the front-rear direction of the connection path 107. Thereby, the internal space of the connection path 107 communicates with the introduction part 106. Therefore, the fertilizer fed by the fertilizer feeding device 9 x is introduced into the connection path 107 through the introduction unit 106. In the present embodiment, the introduction part 106 and the connection path 107 are integrally formed.
  • connection path 107 An air supply pipe 94 is connected to the front end of the connection path 107.
  • the air flow generated by the blower 93 is supplied into the connection path 107 via the air supply pipe 94.
  • the air flow flows backward in the connection path 107.
  • the fertilizer introduced in the connection path 107 can be conveyed toward the back on the said airflow.
  • the connection path 107 is fixedly arranged with respect to the vehicle body 2 so as not to move relative to the air supply pipe 94.
  • a transfer hose 108 is connected to the rear end of the connection path 107.
  • the conveyance hose 108 is a tube-like member having flexibility.
  • a spray port (discharge port) 109 is provided at the end of the transport hose 108 opposite to the connection path 107 (FIG. 14). As shown in FIG. 14, the spray port 109 is provided close to the ground. Therefore, the fertilizer is carried on the air flow generated by the blower 93, is transported through the transport hose 108 to the spray port 109, and is discharged from the spray port 109 toward the ground.
  • the fertilizer in the fertilizer hopper 27x can be fed by a predetermined amount by the fertilizer feeding device 9x and can be transported to the ground by the transport unit 36 and sprayed.
  • the fertilizer applicator 8x of this embodiment can disperse
  • the fertilizer hopper 27x of the present embodiment is configured to accommodate two strips of fertilizer. That is, as shown in FIG. 15, the lower part of the hopper main body 87 is divided into two forks to form two passage portions 89. A fertilizer feeding device 9 x is connected to each passage portion 89. Thereby, a fertilizer can be supplied with respect to the two fertilizer supply apparatuses 9x by one fertilizer hopper 27x. Therefore, the fertilizer applicator 8x of this embodiment has two fertilizer hoppers 27x arranged side by side in the left-right direction of the vehicle body so that four fertilizers can be accommodated.
  • the left manure hopper 27x may be referred to as a left hopper 27L
  • the right manure hopper 27x may be referred to as a right hopper 27R.
  • the fertilizer applicator 8x has the drive shaft 26 for rotationally driving the feeding tray 28x of the fertilizer feeding device 9x.
  • the two fertilizer feeding devices 9x are configured to be driven by a single drive shaft 26. Therefore, the fertilizer applicator 8x of the present embodiment has two drive shafts 26.
  • the fertilizer applicator 8x includes a left drive shaft 26L and a right drive shaft 26R. The left and right drive shafts 26L and 26R are independent of each other.
  • the left drive shaft 26L is disposed across the two fertilizer feeding devices 9x connected to the left hopper 27L.
  • the two fertilizer feeding devices 9x connected to the left hopper 27L can be driven simultaneously.
  • the right drive shaft 26R is disposed across the two fertilizer feeding devices 9x connected to the right hopper 27R.
  • the two fertilizer feeding devices 9x connected to the right hopper 27R can be driven simultaneously.
  • the fertilizer applicator 8x of this embodiment is configured to be able to rotate the fertilizer hopper 27x so that the fertilizer in the fertilizer hopper 27x can be discharged to the outside. That is, as shown in FIG. 17, with the lid 88 removed from the hopper body 87, the hopper body 87 is rotated so that the upper open portion faces downward (state of FIG. 17). The fertilizer in the main body 87 can be discharged. Further, since the hopper body 87 can be rotated as described above, maintenance such as cleaning the inside of the hopper body 87 can be easily performed.
  • the fertilizer applicator 8x of the present embodiment includes a rotation shaft 78, a rotation stay 85, and a support stay 86.
  • the fertilizer applicator 8x of the present embodiment has the two fertilizer hoppers 27x (the left hopper 27L and the right hopper 27R) arranged in the left-right direction of the vehicle body. Therefore, in the present embodiment, as shown in FIG. 15, the rotation shaft 78, the rotation stay 85, and the support stay 86 are provided on the left side and the right side of the fertilizer applicator 8x, respectively.
  • the structure on the left side is indicated when “L” is appended to the reference numeral
  • the structure on the right side is indicated when “R” is appended after the reference numeral.
  • the support stay 86 is fixed to the air supply pipe 94. That is, the support stay 86 is fixed to the vehicle body 2.
  • the left support stay 86L is disposed in the vicinity of the left end of the air supply pipe 94.
  • the right support stay 86 ⁇ / b> R is disposed in the vicinity of the right end of the air supply pipe 94.
  • a rotation shaft 78 is supported on the support stay 86.
  • the rotation shaft 78 is disposed in parallel with the front-rear direction of the vehicle body.
  • the left rotation shaft 78L is supported by the left support stay 86L
  • the right rotation shaft 78R is supported by the right support stay 86R.
  • the rotation stay 85 is disposed substantially along the vertical direction.
  • the lower end of the rotation stay 85 is supported by the support stay 86 via a rotation shaft 78.
  • the rotation stay 85 can be rotated around the rotation shaft 78 with respect to the support stay 86.
  • the left rotation stay 85L is supported by the left support stay 86L via the left rotation shaft 78L.
  • the right rotation stay 85R is supported by the right support stay 86R via the right rotation shaft 78R.
  • the upper end of the rotating stay 85 is fixed to the hopper body 87. Thereby, the fertilizer hopper 27x can be rotated around the rotation shaft 78.
  • the upper end of the left rotating stay 85L is fixed to the left side surface of the hopper body 87 of the left hopper 27L.
  • the left hopper 27L can be rotated around the left rotation shaft 78L in the upper left direction (see the thick arrow A in FIG. 17).
  • the upper end portion of the right rotating stay 85R is fixed to the right side surface of the hopper body 87 of the right hopper 27R. Thereby, the right hopper 27R can be rotated to the upper right around the right rotation shaft 78R (see the thick arrow B in FIG. 17).
  • the blower 93 can be retracted in a direction away from the left hopper 27L. This is because, as shown in FIG. 15, the blower 93 is arranged on the left side of the left hopper 27L, and therefore interferes with the position of the blower 93 when the left hopper 27L rotates. . Thus, as described above, by allowing the blower 93 to be retracted from the left hopper 27L, the left hopper 27L can be rotated upward without interfering with the blower 93.
  • a handle 98 is provided corresponding to each of the left and right fertilizer hoppers 27x.
  • the handle 98 is fixed to the fertilizer hopper 27x. Therefore, the operator can rotate the fertilizer hopper 27x upward around the rotation shaft 78 by grasping and lifting the handle 98 by hand.
  • the handle 98 of this embodiment is arrange
  • the fertilizer hopper 27x is configured to rotate integrally with the two fertilizer feeding devices 9x connected to the fertilizer hopper 27x when rotating around the rotation shaft 78. (See FIG. 17). Therefore, when rotating the fertilizer hopper 27x, an operation of separating the fertilizer hopper 27x from the fertilizer feeding device 9x is unnecessary.
  • the fertilizer feeding device 9x In addition, in order to allow the fertilizer hopper 27x and the fertilizer feeding device 9x to rotate integrally around the rotation shaft 78, the fertilizer feeding device 9x needs to be able to be separated from the transport unit 36. Therefore, as shown in FIG. 21, the fertilizer feeding device 9 x is configured to be separated upward from the introduction unit 106 of the transport unit 36.
  • the fertilizer hopper 27x rotates integrally with the driving shaft 26.
  • the left drive shaft 26L rotates integrally with the left hopper 27L around the left rotation shaft 78L.
  • the right drive shaft 26R rotates integrally with the right hopper 27R around the right rotation shaft 78R.
  • the fertilizer hopper 27x, the two fertilizer feeding devices 9x attached to the fertilizer hopper 27x, and the drive shaft disposed across the two fertilizer feeding devices 9x. 26 can rotate integrally around a rotation shaft 78.
  • the fertilizer hopper 27 x, the fertilizer feeding device 9 x, and the drive shaft 26 supply fertilizer to the transport unit 36. Therefore, in the following description, among the configurations included in the fertilizer applicator 8x, the configuration that rotates around the rotation shaft 78 is collectively referred to as a “supply unit”.
  • the left hopper 27L, the two fertilizer feeding devices 9x attached to the left hopper 27L, and the left drive shaft 26L can rotate integrally around the left rotation shaft 78L ( (See thick line arrow A in FIG. 17). Therefore, these are collectively referred to as the “left supply unit”.
  • the right hopper 27R, the two fertilizer feeding devices 9x attached to the right hopper 27R, and the right drive shaft 26R can rotate integrally around the right rotation shaft 78R (the thick line in FIG. 17). (See arrow B). Therefore, these are collectively referred to as the “right supply unit”.
  • the left and right supply units can rotate around the rotation shaft 78, respectively. Accordingly, the left and right supply units can move between the work position (FIGS. 15 and 16) and the open position (FIG. 17), respectively.
  • the “working position” of the supply unit refers to a position when the supply unit is in a state in which fertilizer can be supplied to the transport unit 36.
  • each of the two fertilizer feeding devices 9x included in the supply unit is connected to the upper end of the introduction unit 106 of the corresponding transport unit 36 (the state illustrated in FIGS. 15, 18, and 19). Is the “working position” of the supply section.
  • the feeding trays 28x of the two fertilizer feeding devices 9x provided in the supply unit are respectively driven to rotate, and a predetermined amount of fertilizer for two strips is provided.
  • the fertilizer can be fed out and supplied to the corresponding conveyance unit 36.
  • Rotating the supply unit at the “working position” upward around the rotation shaft 78 allows the supply unit to be separated from the transport unit 36 (for example, the state shown in FIG. 17).
  • the position of the supply unit in this state is referred to as “open position”.
  • the supply unit in this state cannot supply fertilizer to the conveyance unit 36.
  • the left drive shaft 26L is arranged so as to be substantially parallel to the left-right direction of the vehicle body.
  • the left supply section has a left drive input gear 56L fixedly provided on the left drive shaft 26L.
  • the left drive input gear 56L is disposed in the vicinity of the end portion on the side close to the right supply portion (the right end portion) of the both ends of the left drive shaft 26L.
  • the left drive input gear 56L is a spur gear (spur gear).
  • the right drive shaft 26R is arranged to be substantially parallel to the left-right direction of the vehicle body.
  • the right supply unit has a right drive input gear 56R fixedly provided on the right drive shaft 26R.
  • the right drive input gear 56R is disposed in the vicinity of the end portion on the side close to the left supply portion (the left end portion) of both ends of the right drive shaft 26R.
  • the right drive input gear 56R is a spur gear (spur gear).
  • the vehicle body 2 is provided with an electric motor 95 as a drive source of the fertilizer applicator 8x as shown in FIG.
  • the electric motor 95 is fixedly disposed so as not to move relative to the vehicle body 2.
  • the output shaft of the electric motor 95 is provided so as to be substantially parallel to the left-right direction of the vehicle body 2.
  • a drive output gear 51 is fixedly provided on the output shaft.
  • the drive output gear 51 is a spur gear (spur gear).
  • the left drive input gear 56L is arranged so as to mesh with the drive output gear 51 when the left supply unit is set to the “working position”.
  • the rotational driving force is transmitted to the left drive shaft 26L via the drive output gear 51 and the left drive input gear 56L.
  • the two fertilizer supply apparatuses 9x with which the left supply part is equipped can be driven.
  • the right drive input gear 56 ⁇ / b> R is arranged to mesh with the drive output gear 51 when the right supply unit is set to the “working position”.
  • the rotational driving force is transmitted to the right drive shaft 26R via the drive output gear 51 and the right drive input gear 56R.
  • the two fertilizer supply apparatuses 9x with which the right supply part is equipped can be driven.
  • the left and right drive input gears 56L and 56R are arranged so as to be able to mesh with one drive output gear 51 at the same time. With the above configuration, the driving force can be transmitted from the single drive output gear 51 to the left and right drive shafts 26L and 26R.
  • the axial center of the drive input gear 56 (right drive input gear 56 ⁇ / b> R in the case of FIG. 18) (right drive shaft 26 ⁇ / b> R in FIG. 18) is more than the axial center of the drive output gear 51. It is placed at a high position.
  • the drive input gear 56 (the right drive input gear 56R in the case of FIG. 18) is arranged to mesh with the drive output gear 51 from above.
  • the drive input gear 56 (the right drive input gear 56R in the case of FIG. 20) moves upward to release the engagement with the drive output gear 51, and It is possible to move away from the drive output gear 51 (see the bold arrow in FIG. 20).
  • the drive input gear 56 can be meshed with the drive output gear 51 by approaching the drive output gear 51 from above.
  • the left drive input gear 56 ⁇ / b> L is separated upward from the drive output gear 51 by moving the left supply unit from the “work position” to the “open position”. (See the thick arrow A in FIG. 17).
  • the connection between the output shaft of the electric motor 95 and the left drive shaft 26L is released.
  • the left drive input gear 56L and the drive output gear 51 can be engaged with each other by moving the left supply section from the “open position” to the “work position” (state of FIG. 15). .
  • the output shaft of the electric motor 95 and the left drive shaft 26L are connected.
  • the left supply unit is moved around the left rotation shaft 78L, thereby connecting the output shaft of the electric motor 95 and the left drive shaft 26L. Or it can be cut.
  • the connection and disconnection are realized by the left drive input gear 56L and the drive output gear 51 being separated or approached. Therefore, a clutch or the like for realizing the connection and disconnection is unnecessary. Therefore, in the present embodiment, no clutch is provided between the output shaft of the electric motor 95 and the left drive shaft 26L.
  • the right drive input gear 56R can be separated upward from the drive output gear 51 (FIG. 17). (See bold arrow B). As a result, the connection between the output shaft of the electric motor 95 and the right drive shaft 26R is released. Conversely, the right drive input gear 56R and the drive output gear 51 can be engaged with each other by moving the right supply section from the “open position” to the “work position” (state of FIG. 15). . As a result, the output shaft of the electric motor 95 and the right drive shaft 26R are connected.
  • the right supply unit is moved around the right rotation shaft 78R, thereby connecting the output shaft of the electric motor 95 and the right drive shaft 26R. Or it can be cut.
  • the connection and disconnection are realized by separating or approaching the right drive input gear 56R and the drive output gear 51. Therefore, a clutch or the like for realizing the connection and disconnection is unnecessary. Therefore, in this embodiment, no clutch is provided between the output shaft of the electric motor 95 and the right drive shaft 26R.
  • the fertilizer applicator 8x of the present embodiment does not have the clutch and the coupling mechanism as described above, there is no problem that the clutch and the coupling mechanism are damaged.
  • the supply unit since it is not necessary to operate the clutch or the coupling mechanism when the supply unit is moved around the rotation shaft 78, the supply unit can be moved around the rotation shaft 78 with a simple operation.
  • the clutch of patent document 3 controls connection / disconnection between an engine and a supply part (upper fertilizer).
  • a supply part upper fertilizer
  • an electric motor 95 is provided as a dedicated drive source for driving the supply unit. Since the electric motor 95 can be controlled independently of the engine 10, the electric motor 95 may be stopped to stop the supply unit. Thus, in the fertilizer applicator 8x of this embodiment, since the electric motor 95 is provided as a drive source dedicated to the supply unit, a clutch for separating and stopping the supply unit from the engine is unnecessary. As a result, the clutch can be omitted as described above.
  • the drive source of the supply unit is the engine 10
  • the electric motor 95 can be arranged on the vehicle body relatively freely, there is no particular difficulty in arranging the drive output gear 51 at the center in the left-right direction of the vehicle body 2.
  • the drive output gear 51 is disposed at the center in the left-right direction of the vehicle body 2, and therefore, the left and right drive input gears 56 ⁇ / b> L with respect to the drive output gear 51. 56R can mesh with each other.
  • Patent Document 3 describes an operation member for performing an operation for releasing the above-described coupling mechanism.
  • the operation member is disposed in the vicinity of the handle (second gripping portion). Therefore, the operator can release the connection of the connection mechanism by holding the operation member together with the handle (second holding portion).
  • the handle (second grip portion) needs to be disposed in the vicinity of the coupling mechanism.
  • the position of the handle is restricted.
  • the fertilizer applicator 8x of the present embodiment does not have the clutch and the coupling mechanism as described above, an operation member for operating the clutch or the coupling mechanism is not necessary. Therefore, there is no restriction that the handle 98 must be disposed in the vicinity of the operation member.
  • the handle 98 can be freely arranged. Therefore, the handle 98 can be arranged at a position where the operator can easily grip it, so that the operation of moving the supply unit by gripping the handle 98 can be easily performed.
  • the supply unit can be separated from the introduction unit 106 of the transport unit 36 by rotating the supply unit upward.
  • transducing part 106 can be exposed. Therefore, according to said structure, the effect that the inside of the introducing
  • the cleaning member 101 is provided inside the connection path 107 so that the inside of the connection path 107 can be easily cleaned.
  • the cleaning member 101 only needs to clean at least a portion through which the fertilizer passes in the longitudinal direction of the connection path 107. Therefore, as shown in FIG. 19 and the like, the cleaning member 101 of the present embodiment is connected to a downstream side (rear side) end of the connection path 107 from a location where the introduction part 106 is connected in the connection path 107. It is provided in the area between.
  • the cleaning member 101 is configured to be rotatable around the axis of the connection path 107 inside the connection path 107. As described above, by rotating the cleaning member 101 in the connection path 107, the deposits deposited on the inner peripheral wall surface of the connection path 107 can be scraped off. Thereby, clogging of fertilizer etc. can be prevented.
  • the cleaning member 101 may be composed of a brush, for example. However, if a brush or the like is disposed in the connection path 107, it will be an obstacle when the fertilizer passes through the connection path 107.
  • the cleaning member 101 is composed of a wire (wire). More specifically, the cleaning member 101 of the present embodiment is configured in a coil shape (a vine winding shape) having a diameter corresponding to the inner diameter of the connection path 107 by appropriately bending the wire.
  • the cleaning member 101 is composed of a wire rod, the space occupied by the cleaning member 101 in the connection path 107 is very small. Thereby, the bad influence which it has on the conveyance of the fertilizer in the connection path 107 can be suppressed to the minimum.
  • the cleaning member 101 since the cleaning member 101 is coiled, the fertilizer can pass through the axial center. Thereby, conveyance of the fertilizer in the connection path 107 is not prevented by the cleaning member 101.
  • an extending portion 102 extending from the cleaning member 101 toward the front is provided.
  • the extending portion 102 is a wire rod (wire) disposed so as to coincide with the axis of the connection path 107 and is formed integrally with the cleaning member 101.
  • the extending portion 102 is disposed so as to protrude from the front end portion of the connection path 107 and further pass through the inside of the air supply pipe 94.
  • a passage hole is formed in the peripheral wall of the air supply pipe 94 so that the extending portion 102 can be passed back and forth. Thereby, the extending
  • the operation part 103 is provided in the edge part of the front side of the extending
  • the operation unit 103 is fixed to the extending unit 102 and is configured in a lever shape so that the operator can operate it with a finger.
  • the operator can rotate the operation unit 103 around the longitudinal direction of the extending unit 102.
  • the operator can rotate the cleaning member 101 inside the connection path 107 around the axis of the connection path 107.
  • the inside of the connection path 107 can be cleaned.
  • the operation unit 103 is provided in front of the air supply pipe 94. That is, the operation unit 103 is disposed on the driver seat 6 side. Therefore, the operator can operate the operation unit 103 from the driver seat 6 side. Thereby, since operation of the operation part 103 can be performed easily, the cleaning in the connection path 107 by the cleaning member 101 can be performed easily.
  • the fertilizer applicator 8x of this embodiment includes the fertilizer feeding device 9x, the hopper 20, the drive output gear 51, and the transport unit 36.
  • the drive output gear 51 is rotationally driven by a driving force from an electric motor 95 that is a driving source.
  • the conveyance unit 36 conveys the fertilizer fed from the fertilizer feeding device 9x to the ground.
  • the supply part which supplies a fertilizer is comprised including the hopper 20 and the fertilizer supply apparatus 9x.
  • the supply unit includes a feeding tray 28 x and a drive input gear 56. A driving force for driving the feeding tray 28x is input to the drive input gear 56.
  • the supply unit is configured to be movable between a work position (FIG.
  • the transmission of the drive from the electric motor 95 as the drive source to the fertilizer feeding device 9x is realized by the meshing of the gears, and the gears are separated when the supply unit is moved to the open position. .
  • the operation of the clutch for canceling the connection between the supply part and the electric motor 95 becomes unnecessary. Further, since the clutch becomes unnecessary, there is no possibility that the clutch is forgotten to be broken and damaged.
  • the fertilizer applicator 8x of this embodiment is provided with two supply parts on the left and right.
  • the drive input gear 56 included in each supply unit can mesh with the drive output gear 51.
  • each of the two supply units is provided with the drive input gear 56 for receiving the drive force from the drive output gear 51, the drive force can be transmitted from one drive output gear 51 to each supply unit. Therefore, a connection mechanism for transmitting driving force between the plurality of supply units is not necessary. In addition, the operation of releasing the connection mechanism is not required, and there is no possibility that the connection mechanism is forgotten to be broken and damaged.
  • the drive source of the drive output gear 51 is the electric motor 95.
  • the fertilizer applicator 8x it is conceivable to drive the fertilizer applicator 8x with the driving force of the engine. In this case, however, it is necessary to provide a driving force transmission mechanism from the engine to the driving output gear 51. The degree of freedom is reduced.
  • the electric motor 95 as the drive source of the fertilizer applicator 8x as described above the drive source can be freely arranged as compared with the engine, so that the degree of freedom of arrangement of the drive output gear 51 is increased.
  • the fertilizer applicator 8x of the present embodiment is configured as follows. That is, the conveyance unit 36 includes a substantially funnel-shaped introduction unit 106, a connection path 107 configured in a substantially tubular shape, a conveyance hose 108, and a cleaning member 101. Fertilizer from the supply unit is supplied to the introduction unit 106.
  • the connection path 107 is connected to the lower end part of the introduction part 106.
  • the conveyance hose 108 is connected to the connection path 107 and conveys the fertilizer to the ground.
  • the cleaning member 101 is configured to be rotatable around the axis of the connection path 107 inside the connection path 107.
  • connection path 107 can be cleaned, so that deposits can be prevented from accumulating in the connection path 107.
  • the cleaning member 101 is made of a wire.
  • the cleaning member 101 is made of a wire, the space occupied by the cleaning member 101 in the connection path 107 is very small. Therefore, when the fertilizer is conveyed in the connection path 107, the cleaning member 101 does not get in the way.
  • connection path 107 is configured such that the cleaning member 101 can be reciprocated along the axial direction of the connection path 107.
  • the inside of the connection path 107 can be cleaned by reciprocating the cleaning member 101 in the connection path 107.
  • the operation unit 103 is configured to be slidable along the axial direction (front-rear direction) of the connection path 107. Therefore, the operator can reciprocate the cleaning member 101 in the connection path 107 along the axis of the connection path 107 by moving the operation unit 103 back and forth.
  • an urging member 104 configured as a compression coil spring is disposed between the operation unit 103 and the air supply pipe 94. Thereby, the operation part 103 is urged
  • connection path 107 is automatically rotated by the wind generated by the blower 93.
  • a wind receiving portion 105 is provided in the extending portion 102.
  • the wind receiving portion 105 is disposed inside the air supply pipe 94.
  • the wind receiving portion 105 has a shape capable of receiving air flowing in the air supply pipe 94 and is fixed to the extending portion 102. Since the air flow generated by the blower 93 is supplied to the air supply pipe 94, the air flow acts on the wind receiving portion 105, and the extending portion 102 can be rotated around the axis.
  • the cleaning member 101 can be rotated in the connection path 107 by the action of the air flow generated by the blower 93.
  • the cleaning member 101 continues to rotate while the blower 93 supplies airflow. That is, since the cleaning by the cleaning member 101 can be performed automatically and continuously, the inside of the connection path 107 can always be kept clean and deposits can be reliably prevented from accumulating in the connection path 107.
  • the wind of the blower 93 is used to rotate the cleaning member 101, it is not necessary to separately provide a drive source for rotating the cleaning member 101, and fertilization is performed.
  • the machine 8x can be configured simply.
  • the fertilizer feeding device 9x is provided with a plurality of feeding holes 28b penetrating in the thickness direction in the disc-shaped feeding tray 28x, and the feeding tray 28x is arranged around the rotation axis 45x disposed in a substantially vertical direction. It is the structure which is rotationally driven by.
  • the configuration of the fertilizer feeding device 9x is not limited to this, and any configuration can be used as long as the fertilizer can be fed out by a predetermined amount.
  • the fertilizer feeding device 9x may have a configuration in which a plurality of feeding holes are provided around a cylindrical feeding roll, and the feeding roll is rotationally driven around a rotation axis arranged in a substantially horizontal direction.
  • the left and right drive input gears 56L and 56R are arranged adjacent to each other in the axial direction. Not limited to this. In short, it is only necessary that the left and right drive input gears 56L and 56R can simultaneously mesh with one drive output gear 51, and the axes of the left and right drive input gears 56L and 56R do not necessarily have to coincide. .
  • the fertilizer applicator 8x of the above embodiment is configured to spray four pieces of fertilizer, and the left and right supply units are configured to supply two pieces of fertilizer, respectively, but are not limited thereto.
  • the left and right supply units can supply 3 pieces of fertilizer.
  • the supply parts on the left and right it is not necessary for the supply parts on the left and right to supply the same number of fertilizers.
  • the left supply unit can supply 4 pieces of fertilizer and the right supply unit can supply 2 pieces of fertilizer. .
  • the configuration of the present invention is not limited to a fertilizer applicator, and can be widely applied to a granular material spraying device that sprays granular material (a granular solid material) to the ground.
  • FIG. 23 is a side view of a rice transplanter 1x according to a third embodiment of the present invention.
  • the rice transplanter 1x includes a vehicle body 2 and a planting unit 3 disposed behind the vehicle body 2.
  • the rice transplanter 1x of this embodiment is configured as a four-row planting rice transplanter, as shown in FIG. 24, and has four rows of planting units 90 arranged in the left-right direction of the vehicle body. ing.
  • the seedling mounting table 17 has a mounting surface 17b on which a mat seedling can be mounted.
  • the placement surface 17b faces obliquely rearward and upward. Further, the upper end 17a of the seedling stage 17 is directed obliquely forward and upward.
  • the body 2 is provided with a fertilizer applicator 8x for spraying fertilizer on the field.
  • the fertilizer applicator 8x includes a fertilizer hopper 27x for storing solid granular fertilizer, a fertilizer feeding device 9x for feeding the fertilizer in the fertilizer hopper 27x by a predetermined amount, a transport hose 108 for transporting the fed fertilizer to the ground, It has mainly.
  • the fertilizer hopper 27x is disposed at a position between the driver seat 6 and the seedling stage 17 in the front-rear direction of the vehicle body.
  • the fertilizer hopper 27 x includes a hopper body 87 and a lid portion 88.
  • the hopper body 87 is configured as a container having an open top, and fertilizer is accommodated in the hopper body 87.
  • the lid portion 88 is disposed so as to cover the open portion at the top of the hopper body 87.
  • a cautionary note seal (not shown) describing, for example, a method for adjusting the fertilizer application amount by the fertilizer applicator 8x is affixed to the upper surface of the lid portion 88 and the central portion 88a in the longitudinal direction of the vehicle body.
  • the lid portion 88 is connected to the hopper body 87 via the hinge portion 115.
  • the lid part 88 is rotatable around the hinge part 115.
  • the hinge portion 115 is provided on the rear wall surface of the hopper body 87. By rotating the lid portion 88 around the hinge portion 115 toward the rear side, the open portion of the hopper body 87 can be opened (state shown in FIG. 27).
  • the lower portion of the hopper body 87 is a passage portion 89 formed in a funnel shape so as to become thinner as it goes downward. And the lower end part of the said channel
  • path part 89 is connected to the upper part of the fertilizer supply apparatus 9x.
  • two fertilizers are accommodated in one fertilizer hopper 27x.
  • the lower part of the hopper body 87 is divided into two forks to form two passage parts 89.
  • a fertilizer feeding device 9 x is connected to each passage portion 89. Thereby, a fertilizer can be supplied with respect to the two fertilizer supply apparatuses 9x by one fertilizer hopper 27x.
  • the fertilizer applicator 8x is provided with the four fertilizer supply apparatuses 9x so that the fertilizer for 4 rows can be sprayed. Therefore, as shown in FIG. 26, the fertilizer applicator 8x of the present embodiment includes two fertilizer hoppers 27x arranged in the left-right direction of the vehicle body.
  • the fertilizer feeding device 9x is configured to feed the fertilizer supplied from the fertilizer hopper 27x through the passage portion 89 little by little to the transport hose 108.
  • the transport hose 108 is a tube-like member having flexibility, and a spray port 109 is formed at the tip thereof. As shown in FIG. 23, the spray port 109 is provided close to the ground.
  • the fertilizer in the fertilizer hopper 27x is fed out by a predetermined amount by the fertilizer feeding device 9x, and then transported to the spraying port 109 by the transport hose 108 and released to the ground.
  • fertilizers are supplied to the market in the state of fertilizer bags. Therefore, conventionally, when fertilizer is put into the fertilizer hopper 27x, it has been performed as follows. That is, first, the operator opens a hole in the fertilizer bag containing the fertilizer. Subsequently, the operator lifts the fertilizer bag in a state where the hole is opened to a position higher than the opening of the fertilizer hopper 27x. Then, the operator tilts the fertilizer bag and inputs the fertilizer into the fertilizer hopper 27x through the aforementioned hole.
  • the fertilizer bag is heavy, the work of supplying the fertilizer to the fertilizer hopper 27x is a heavy labor and a heavy burden on the operator. Moreover, since the said fertilizer bag had to be lifted in the state which opened the fertilizer bag, the fertilizer might spill.
  • a fertilizer bag base 116 arranged substantially horizontally is provided inside the hopper body 87.
  • the fertilizer bag base 116 is configured in a lattice shape so that solid granular fertilizer can pass vertically. According to this configuration, when supplying fertilizer to the fertilizer hopper 27x, the operator can place the fertilizer bag 117 on the fertilizer bag base 116 (state of FIG. 27). This eliminates the need for the operator to support the fertilizer bag 117 when the fertilizer in the fertilizer bag 117 is put into the hopper body 87. Therefore, the burden on the operator in the work of supplying fertilizer can be reduced.
  • the fertilizer hopper 27x of the present embodiment is provided with a punching means for making a hole in the fertilizer bag 117 placed on the fertilizer bag base 116.
  • the hole punching means is a slit 118 provided on the wall surface of the hopper body 87.
  • the slit 118 is formed to face the vicinity of the lower part of the fertilizer bag placed on the fertilizer bag base 116.
  • a knife 110 or the like from the outside of the hopper through the slit 118 (FIG. 28)
  • a hole can be made in the fertilizer bag 117 placed on the fertilizer bag base 116. In this way, if the fertilizer bag 117 is placed inside the fertilizer hopper 27x (the state where the fertilizer bag is placed on the fertilizer bag base 116), the fertilizer bag 117 can be prevented from spilling if the hole is opened. .
  • the slit 118 is formed in a rubber seal member 119.
  • the slit 118 is closed by the elasticity of rubber. Thereby, it is possible to prevent the fertilizer in the fertilizer hopper 27x from leaking out through the slit 118.
  • the fertilizer hopper 27x of this embodiment includes a rain avoiding portion 145.
  • the rain avoiding portion 145 is a substantially flat plate-like member having a certain degree of rigidity, and is made of a material (such as synthetic resin) that does not allow rain water to pass through. As shown in FIG. 25, the rain avoiding portion 145 is connected to the end portion of the lid portion 88 opposite to the hinge portion 115.
  • the rain avoiding portion 145 is connected to the lid portion 88 at a substantially right angle when viewed in the left-right direction of the vehicle body. Therefore, in the state where the lid portion 88 is opened (the state where the lid portion 88 is substantially upright, the state shown in FIG. 27), the rain avoiding portion 145 is substantially horizontal and protrudes forward. Thereby, when the cover part 88 is opened, the rain avoiding part 145 is arranged to face the opening part of the hopper body 87.
  • the rain avoiding portion 145 covers the upper portion of the opening of the hopper body 87 when the lid 88 is opened (the state shown in FIG. 27). Accordingly, even if the lid 88 is opened during rainy weather, the rainwater can be received by the rain avoiding portion 145, so that the rainwater can be prevented from pouring into the hopper body 87. Therefore, the fertilizer can be supplied to the fertilizer hopper 27x even in rainy weather.
  • the rain avoiding portion 145 is in a state along the front surface of the hopper body 87 (state in FIG. 25). Therefore, if the cover part 88 is closed, the rain avoiding part 145 does not get in the way.
  • the rain avoiding portion 145 when it is not raining, when supplying fertilizer to the fertilizer hopper 27x, the rain avoiding portion 145 may get in the way. Therefore, it is preferable that the rain avoiding portion 145 can be removed or retracted. As shown in FIG. 27, the rain avoiding portion 145 of this embodiment is connected to the lid portion 88 via a hinge portion 147. Then, the rain avoiding portion 145 can be tilted backward by rotating the rain avoiding portion 145 around the hinge portion 147 with the lid portion 88 opened (see FIG. 28). Status). As described above, when it is not raining, the rain avoiding portion 145 can be retracted so as not to disturb the supply of fertilizer.
  • a seal member 148 that covers the gap between the lid 88 and the rain avoiding portion 145 is provided.
  • the seal member 148 is, for example, a flexible vinyl sheet member, and straddles the end portion on the hinge portion 147 side of the rain avoiding portion 145 and the end portion on the hinge portion 147 side of the lid portion 88.
  • the operator places the spare mat seedlings stored in the seedling box (not shown) mounted on the preliminary seedling table 111 on the seedling table 17. Supply. At this time, the operator needs to scoop up the spare mat seedling in the seedling box with the seedling collecting plate and carry it to the seedling placing stand 17. However, since the seedling collecting plate on which the mat seedling is placed is relatively heavy, the operation of carrying the seedling collecting plate to the seedling placing stand 17 is heavy for the operator.
  • the rice transplanter 1x temporarily places a seedling plate (temporary) at a position between the driver's seat 6 and the seedling platform 17 in the front-rear direction of the vehicle body 2 as shown in FIG. It is provided with a possible seedling supply auxiliary unit 121.
  • the operator By providing the seedling supply assist unit 121 in this way, the operator temporarily moves the seedling plate between the driver seat 6 and the seedling table 17 while the seedling plate is being transported to the seedling table 17. I can put it. Thereby, since the operator can take a rest in the middle of the operation
  • the seedling supply auxiliary unit 121 is configured by a lid portion 88 of the fertilizer hopper 27x and a protruding portion 122 (described later). And the seedling supply auxiliary
  • the fertilizer hopper 27x is located between the driver seat 6 and the seedling stage 17. Therefore, by making it possible to place the seedling plate 99 on the fertilizer hopper 27x as described above, the seedling plate 99 can be temporarily placed between the driver seat 6 and the seedling table 17.
  • the seedling supply assisting part 121 of the present embodiment is configured to place the seedling collecting plate 99 on the upper surface of the lid part 88 of the fertilizer hopper 27x, a stand for temporarily placing the seedling collecting plate 99 is provided. There is no need to provide a separate one. Thereby, the seedling supply auxiliary
  • the upper surface of the lid portion 88 of the fertilizer hopper 27x is not necessarily a flat surface but is curved. For this reason, it cannot be said that the upper surface of the lid portion 88 of the fertilizer hopper 27x is suitable as a place where the seedling collection plate 99 is placed.
  • the seedling supply assisting part 121 of the present embodiment has a protruding part 122 that protrudes upward at the upper part of the fertilizer hopper 27x.
  • the upper end of the protrusion 122 is formed to protrude above the upper surface of the lid 88 of the fertilizer hopper 27x.
  • the protruding portion 122 is integrally formed on the upper surface of the lid portion 88.
  • the protrusion part 122 is formed in the back position in the front-back direction of the fertilizer hopper 27x.
  • the tip (upper end) of the protrusion 122 has a rounded shape.
  • a common tangent line 123 between the upper surface of the projecting portion 122 and the upper surface of the lid portion 88 is in the front-rear direction of the upper surface of the lid portion 88. It is configured not to interfere with the central portion 88a.
  • the projecting portion 122 is formed elongated along the left-right direction of the vehicle body. Further, as shown in FIG. 26, the projecting portion 122 is formed over substantially the entire width of the lid 88 in the left-right direction of the vehicle body.
  • the protruding portion 122 is provided on the upper surface of the lid portion 88 of the fertilizer hopper 27x, when the seedling plate 99 is placed on the lid portion 88, the upper surface of the lid portion 88 and the protruding portion The upper surface of 122 is in contact with the lower surface of the seedling plate 99 (FIG. 29). As a result, the seedling plate 99 can be supported from below by the upper surface of the lid 88 and the upper surface of the protrusion 122. Therefore, it can be said that the cover part 88 and the protrusion part 122 are support parts.
  • the upper surface of the lid portion 88 of the present embodiment is curved so as to be convex upward when viewed from the left-right direction of the vehicle body. Therefore, the upper surface of the cover 88 and the lower surface of the seedling plate 99 can be contacted at only one place in the front-rear direction of the vehicle body. For this reason, if there is no protrusion 122, the seedling plate 99 placed on the upper surface of the lid 88 is supported only at one place in the front-rear direction, so it becomes very unstable and falls off the lid 88. There is a risk that.
  • the seedling collecting plate 99 is connected to the upper surface of the lid part 88 and the protruding part.
  • the upper surface of 122 can be supported at two places in the front-rear direction. More specifically, the front side of the seedling plate 99 is supported by the upper surface of the lid portion 88, and the rear side of the seedling plate 99 is supported by the upper surface of the protruding portion 122.
  • the seedling plate 99 can be stably supported at two places in the front-rear direction, the seedling plate 99 can be prevented from falling from the lid portion 88.
  • the seedling collection plate 99 is placed on the lid portion 88. 29, the lower surface of the seedling collection plate 99 is in a state of being lifted from the central portion 88a of the lid portion 88, as shown in FIG. Thereby, since the seedling plate 99 does not contact the caution sticker (not shown) attached to the central portion 88a on the upper surface of the lid portion 88, it is possible to prevent the caution sticker from being rubbed or peeled off.
  • the operator After temporarily placing the seedling plate 99 on the fertilizer hopper 27x, when supplying the mat seedling 112 to the seedling stage 17, the operator places the front end portion of the seedling plate 99 as shown in FIG. lift. Thereby, as shown by the arrow in FIG. 30, the seedling plate 99 rotates around the protruding portion 122.
  • the protrusion 122 can serve as a fulcrum when the seedling plate 99 is rotated. Therefore, it can also be said that the protrusion part 122 of this embodiment is a rotation fulcrum part.
  • the rotation fulcrum part (protrusion part 122) is disposed at a position rearward in the front-rear direction of the lid part 88 of the fertilizer hopper 27x.
  • the tip 99a of the seedling plate 99 wraps around the rear side (the seedling stage 17 side) of the fertilizer hopper 27x (see FIG. 30).
  • the seedling plate 99 can be moved so as to straddle the fertilizer hopper 27x. As a result, the operator can easily supply the mat seedling 112 to the seedling mount 17 from the driver seat 6 side through the fertilizer hopper 27x.
  • the operator can slide the seedling plate 99 along the front-rear direction of the vehicle body (the left-right direction in FIG. 30) simultaneously with rotating the seedling plate 99 as described above.
  • the seedling plate 99 is supported only by the upper surface of the protruding portion 122. Since the upper surface of the protrusion 122 has a rounded shape, the protrusion 122 and the seedling plate 99 are in contact with each other by a “line”, and the contact area between the two is small. For this reason, the frictional resistance when the seedling plate 99 is slid is small. Therefore, the operator can slide the seedling plate 99 smoothly in the front-rear direction of the vehicle body.
  • the operator rotates the seedling plate 99 around the protruding portion 122 and slides the seedling plate 99 back and forth, so that the tip 99a of the seedling plate 99 is positioned at the upper end 17a of the seedling stage 17.
  • the operator aligns the seedling collecting plate 99 and the seedling placing stand 17 while supporting the weight of the seedling collecting plate 99 by the protruding portion 122. It can be carried out. As a result, the operator can easily perform the alignment, and the burden on the operator can be reduced.
  • the operator places the mat seedling placed on the seedling plate 99 in a state where the tip 99a of the seedling plate 99 and the upper end 17a of the seedling platform 17 are appropriately aligned (for example, the state shown in FIG. 30).
  • 112 is supplied to the seedling stage 17.
  • the mat seedling 112 is supplied to the seedling mounting base 17 in a state where the seedling collecting plate 99 and the seedling mounting base 17 are aligned, the supply can be reliably performed.
  • the planting unit 3 can be driven up and down. Therefore, when the mat seedling 112 is supplied to the seedling stage 17, the planting part is arranged so that the upper end 17 a of the seedling stage 17 is lower than the upper end of the protruding part (support part) 52. It is preferable to adjust the vertical position of 3 in advance (state shown in FIG. 29). According to this, when the tip 99a of the seedling collection plate 99 and the upper end 17a of the seedling placing table 17 are aligned, the tip 99a of the seedling collection plate 99 is in a state of facing downward (shown in FIG. 30). Status). Therefore, from this state, the mat seedling 112 placed on the seedling collecting plate 99 can be slid down toward the seedling placing stand 17. Thereby, the mat seedling 112 can be easily supplied to the seedling mount 17.
  • the rice transplanter 1x of the present embodiment includes the vehicle body 2, the planting unit 3, and the seedling supply auxiliary unit 121.
  • the vehicle body 2 includes a driver seat 6.
  • the planting unit 3 includes a seedling stage 17 on which the mat seedling 112 is placed and is located behind the vehicle body 2.
  • the seedling supply assisting unit 121 can place a substantially plate-shaped seedling collecting plate 99 on which a mat seedling 112 is placed at a position between the driver's seat 6 and the seedling placing stand 17 in the front-rear direction of the vehicle body 2.
  • the seedling supply assist unit includes a protrusion 122.
  • the projecting portion 122 has a function as a support portion that supports the seedling collecting plate 99 placed from below.
  • the protrusion 122 also functions as a rotation fulcrum that becomes a fulcrum when the seedling plate 99 supported by the protrusion 122 is rotated.
  • the burden on the operator who supplies the mat seedling 112 can be reduced. Then, by rotating the seedling plate 99 in a state where it is supported by the projecting portion 122, the seedling plate 99 can be inclined toward the seedling table 17. The seedling 112 can be easily supplied.
  • the planting unit 3 is configured to be driven up and down. As a result, the upper end 17 a of the seedling stage 17 can be lowered to a position lower than the upper surface of the protruding portion 122.
  • the mat seedling 112 can be slid down toward the seedling stage 17 by lowering the seedling stage 17 to a position lower than the projecting portion 122. Thereby, the mat seedling 112 can be easily supplied to the seedling mount 17.
  • the seedling supply auxiliary unit 121 includes the protruding portion 122 that is convex upward. And the protrusion part 122 serves as the said support part and the said rotation fulcrum part.
  • the seedling plate 99 can be supported by the projecting portion 122 that protrudes upward, and the seedling plate 99 can be rotated with the tip of the projecting portion 122 as a fulcrum.
  • seedling supply auxiliary part 121 is realizable by simple composition.
  • the rice transplanter 1x of the present embodiment includes the fertilizer hopper 27x that accommodates the fertilizer between the driver seat 6 and the seedling stage 17.
  • the upper end of the protrusion part 122 is arrange
  • the common tangent line 123 between the upper surface of the protruding portion 122 and the upper surface of the lid portion 88 is configured not to interfere with the center portion 88a in the front-rear direction of the upper surface of the lid portion 88.
  • the seedling supply assisting unit 121 supports the seedling collecting plate 99 from below by the upper surface of the protruding portion 122 and the upper surface of the lid portion 88.
  • the seedling collection plate 99 can be stably supported in a state where the seedling plate 99 is floated from the central portion 88a on the upper surface of the lid 88.
  • the protruding portion 122 is located behind the center portion 88a of the lid portion 88 of the fertilizer hopper 27x in the front-rear direction of the vehicle body 2. Yes.
  • the rear end portion of the lid portion 88 of the fertilizer hopper 27x is rotatably connected to the hopper body 87 via the hinge portion 115.
  • a rain avoiding portion 145 that covers the front surface of the hopper main body 87 when the lid portion 88 is closed is provided at the front end portion of the lid portion 88.
  • the rain avoiding portion 145 By providing the rain avoiding portion 145 in this way, when the lid portion 88 is opened, the rain avoiding portion 145 covers the opening of the hopper body 87 from above. Thereby, even if it opens the cover part 88 at the time of rainy weather, it can prevent rain water falling in the hopper main body 87. FIG. Further, when the lid 88 is closed, the rain avoiding portion 145 covers the front surface of the hopper main body 87, so that the rain avoiding portion 145 does not get in the way.
  • the rain avoiding portion 145 is rotatable with respect to the lid portion 88.
  • the rain avoiding portion 145 By rotating the rain avoiding portion 145, the rain avoiding portion 145 can be retreated to a position where it does not get in the way. Thereby, the rain avoiding portion 145 does not get in the way during work when it is not raining.
  • the seedling supply assisting part 121 has a roller member 124 instead of the protruding part 122 of the third embodiment.
  • the roller member 124 is disposed on the upper surface of the lid 88 as shown in FIG.
  • the roller member 124 is configured to be rotatable about a rotation shaft 125 parallel to the left-right direction of the vehicle body.
  • the rotating shaft 125 is supported by the lid portion 88.
  • the rotating shaft 125 is formed at a rearward position in the front-rear direction of the fertilizer hopper 27x.
  • a common tangent line 123 between the upper surface of the roller member 124 and the upper surface of the lid 88 is the front-rear direction of the upper surface of the lid 88. It is configured not to interfere with the central portion 88a.
  • the roller member 124 is provided on the upper surface of the lid portion 88 of the fertilizer hopper 27x instead of the protruding portion 122.
  • the seedling collecting plate 99 can be placed on the fertilizer hopper 27x. This is shown in FIG. That is, as shown in FIG. 33, the seedling plate 99 can be supported from below by the peripheral surface of the roller member 124 and the upper surface of the lid portion 88. Therefore, in this modification, it can be said that the roller member 124 and the lid portion 88 are support portions.
  • FIG. 34 shows a state where the front end portion of the seedling collection plate 99 is lifted from the state of FIG. 34, the seedling plate 99 rotates around the rotation shaft 125 of the roller member 124 while being supported by the roller member 124 from below.
  • the roller member 124 since the roller member 124 is rotatable, the seedling plate 99 supported by the roller member 124 can be easily rotated around the rotation shaft 125. Therefore, in this embodiment, it can be said that the rotating shaft 125 of the roller member 124 is a rotation fulcrum part.
  • the seedling plate 99 is supported by the rotatable roller member 124, so that the seedling plate 99 is smoothly slid along the longitudinal direction of the vehicle body (the left-right direction in FIG. 34). be able to.
  • the seedling plate 99 can be rotated and slid while the seedling plate 99 is supported by the rotatable roller member 124. Thereby, alignment with the front-end
  • the seedling supply auxiliary unit 121 has a rotatable roller member 124.
  • the peripheral surface of the roller member 124 functions as a support portion.
  • the rotation shaft 125 of the roller member 124 functions as a rotation fulcrum portion.
  • the seedling plate 99 can be supported by the peripheral surface of the roller member 124.
  • the seedling plate 99 supported by the roller member 124 can be rotated about the rotation shaft 125. Further, since the roller member 124 can rotate, the seedling plate 99 supported by the roller member 124 can be easily slid.
  • a cover member 132 is provided on the fertilizer hopper 27x.
  • the cover member 132 is disposed so as to cover the upper surface of the lid portion 88.
  • the cover member 132 is a thin plate-like member having a certain degree of rigidity, and can be made of, for example, a sheet metal.
  • the cover member 132 is configured to be in close contact with the upper surface of the lid portion 88 so that there is no gap.
  • the upper surface of the lid portion 88 is curved so as to be convex upward. Therefore, as shown in FIG. 35, the cover member 132 is formed to be curved so as to protrude upward along the upper surface of the lid portion 88. Thereby, the cover member 132 can be brought into close contact with the upper surface of the lid portion 88.
  • the cover member 132 is attached to the hopper body 87 via a rotation shaft (cover member rotation shaft) 133.
  • the rotating shaft 133 is disposed on the back surface (surface facing rearward) of the hopper body 87.
  • the rotating shaft 133 is provided in parallel with the left-right direction of the vehicle body.
  • the cover member 132 is configured to be able to rotate around the rotation shaft 133. By rotating the cover member 132 rearward around the rotation shaft 133, the upper surface of the lid portion 88 can be exposed.
  • a caution sticker (not shown) is pasted on the upper surface of the lid portion 88 of the fertilizer hopper 27x.
  • this caution sticker may become dirty or peel off due to mud or the like. For this reason, when using the rice transplanter 1x, the notice sticker gradually became difficult to read.
  • the rice transplanter of the fourth embodiment is provided with the cover member 132 that covers the upper surface of the lid 88 as described above.
  • the cover member 132 that covers the upper surface of the lid 88 as described above.
  • the cover member 132 is formed so as to be in close contact with the upper surface of the lid portion 88. This makes it difficult for muddy water and dust to enter between the lid portion 88 and the cover member 132. Thereby, the upper surface of the cover part 88 becomes further difficult to get dirty.
  • the operator may rotate the cover member 132 later around the rotation shaft 133 to expose the cover 88, and then open the cover 88. Then, after the supply of fertilizer is finished, the lid 88 is closed and the cover member 132 is returned to the original position, thereby covering the lid 88 with the cover member 132. Further, when confirming the caution sticker (not shown) attached to the upper surface of the lid portion 88, the operator may rotate the cover member 132 rearward to expose the upper surface of the lid portion 88. Then, the operator who has confirmed the notice sticker returns the cover member 132 to the original position, thereby covering the lid portion 88 with the cover member 132.
  • the cover member 132 can be rotated around the rotation shaft 133, the cover member 132 can be rotated to easily expose the cover portion 88. As a result, the cover 88 can be exposed only when necessary, and the cover 88 can be covered with the cover member 132 at other times, so that the upper surface of the cover 88 can be reliably prevented from becoming dirty.
  • the seedling supply auxiliary part 131 of the fourth embodiment has the cover member 132 described above. And the seedling supply auxiliary
  • the cover member 132 of this embodiment is formed in a curved shape so as to protrude upward. For this reason, even if the seedling plate 99 is placed on the curved cover member 132 as it is, the seedling plate 99 cannot be stably supported. Therefore, in the seedling supply auxiliary unit 131 of the fourth embodiment, a protruding portion 134 that protrudes upward is provided on the upper surface of the cover member 132.
  • the protruding portion 134 is formed at a rearward position in the front-rear direction of the fertilizer hopper 27x, similarly to the protruding portion 122 of the third embodiment. As shown in FIG. 35, when viewed in the left-right direction of the vehicle body, the tip (upper end) of the protrusion 122 has a rounded shape. Moreover, the protrusion part 134 is elongate along the left-right direction of a vehicle body similarly to the protrusion part 122 of 3rd Embodiment (not shown). Moreover, the protrusion part 134 is formed over substantially the full width of the left-right direction of the cover member 132 (not shown). Note that the protruding portion 134 of the present embodiment is formed integrally with the cover member 132.
  • the seedling collection plate 99 is supported from below by the upper surface of the protruding part 134 and the upper surface of the cover member 132, as shown in FIG. be able to. Therefore, in this 4th Embodiment, it can be said that the protrusion part 134 and the cover member 132 are support parts.
  • the seedling plate 99 is rotated about the protruding portion 134 as a fulcrum. (Not shown). In this case, it can be said that the protrusion part 134 is a rotation fulcrum part.
  • the cover member 132 is configured to rotate about the rotation shaft 133, after the seedling plate 99 is placed on the cover member 132 (and the protruding portion 134), FIG. As shown, the seedling plate 99 can be rotated together with the cover member 132 (and the protruding portion 134). Thus, since the seedling plate 99 is rotated while being placed on the cover member 132, the seedling plate 99 can be rotated in a stable state. In this case, the seedling plate 99 rotates around the rotation shaft 133 of the cover member 132. Therefore, in this case, it can be said that the rotation shaft 133 of the cover member 132 is a rotation fulcrum portion.
  • the seedling plate 99 is placed on the cover member 132 that covers the lid portion 88 of the fertilizer hopper 27x. There is no direct contact with the upper surface of the lid 88. Therefore, the upper surface of the lid portion 88 does not rub against the seedling plate 99. Thereby, it can prevent reliably that the cautionary sticker stuck on the upper surface of the said cover part 88 gets dirty or peels.
  • the rice transplanter of this embodiment is configured as follows. That is, the rice transplanter includes a fertilizer hopper 27x that stores fertilizer between the driver seat 6 and the seedling stage 17.
  • the seedling supply assisting unit 131 includes a cover member 132 that is disposed so as to cover the upper surface of the lid portion 88 of the fertilizer hopper 27x and is rotatable about a rotation shaft 133 that is parallel to the left-right direction of the vehicle body. .
  • a projecting portion 134 as a support portion is provided on the upper surface of the cover member 132.
  • the rotating shaft 133 of the cover member 132 functions as a rotation fulcrum part.
  • the cover member 132 that covers the upper surface of the lid portion 88, the upper surface of the lid portion 88 can be reliably prevented from being damaged or dirty. Further, the seedling collection plate 99 can be supported by the protrusion 134 provided on the upper surface of the cover member 132. Then, by rotating the cover member 132 about the rotation shaft 133, the seedling collection plate 99 supported by the projecting portion 134 can be tilted toward the seedling mount 17. Thereby, it is possible to easily supply the mat seedling 112 to the seedling placing stand 17.
  • the roller member 135 is disposed on the upper surface of the cover member 132.
  • the roller member 135 is configured to be rotatable about a rotation shaft 136 parallel to the left-right direction of the vehicle body.
  • the rotation shaft 136 of the roller member 135 is formed at a rearward position in the front-rear direction of the fertilizer hopper 27x.
  • the rotating shaft 136 is supported by the cover member 132.
  • the roller member 135 can be provided on the upper surface of the cover member 132 instead of the protruding portion 134. According to this, the seedling plate 99 can be supported by the roller member 135 as in the modification of the third embodiment (FIGS. 31 to 34). Therefore, in this modification, it can be said that the roller member 135 is a support part. Since the roller member 135 is rotatable, the seedling plate 99 supported by the roller member 135 can be smoothly slid.
  • the seedling collecting plate 99 is placed on the lid part 88 of the fertilizer hopper 27x.
  • the placement of the seedling collecting plate 99 is not limited to the top of the cover portion 88 of the fertilizer hopper 27x.
  • the seedling supply assisting unit may have something like a table on which the seedling collecting plate 99 is placed.
  • a rear preliminary seedling table 113 is provided behind the driver seat 6 and in front of the seedling mounting table 17.
  • a seedling collecting plate 99 on which a spare mat seedling is placed can be placed on the rear spare seedling stand 113.
  • the upper surface of the rear spare seed bed 113 is substantially horizontal so that the seedling plate 99 can be placed stably.
  • the rear spare seedling table 113 has a width that allows the number of seedling collecting plates 99 corresponding to the number of strips of the rice transplanter 1x to be placed side by side in the left-right direction of the vehicle body. Since the rice transplanter of this embodiment is four-row planting, the rear preliminary seedling table 113 has a width that allows the four seedling collection plates 99 to be placed side by side in the left-right direction of the vehicle body 2.
  • the rice transplanter 1x of the present embodiment has the rear spare seedling table 113 on which the seedling collecting plate 99 can be placed, immediately in front of the seedling placing table 17. Therefore, the distance that the operator has to carry the seedling plate 99 to the seedling stage 17 is shorter than that in the third embodiment and the fourth embodiment. Thereby, labor for supplying the mat seedling 112 to the seedling stage 17 can be saved.
  • the rear spare seedling table 113 of the present embodiment can place the seedling collecting plate 99 between the driver seat 6 and the seedling mounting table 17, the rear preliminary seedling table 113 is a seedling supply assisting unit. be able to.
  • the rear preliminary seedling table 113 can support the seedling collection plate 99 from below by its upper surface. Therefore, it can be said that the upper surface of the rear preliminary seedling table 113 is a support portion.
  • the rear preliminary seedling table 113 is disposed above the fertilizer hopper 27x. Thereby, the seedling collection board 99 can be mounted using the space above the fertilizer hopper 27x effectively. However, if the rear spare seedling stand 113 is positioned above the fertilizer hopper 27x, the lid portion 88 of the fertilizer hopper 27x cannot be opened.
  • the rear preliminary seedling table 113 is configured to be able to rotate so as to spring up around a rotation shaft (preliminary seedling rotation shaft) 114 (FIG. 40).
  • the rotating shaft 114 is disposed in parallel with the left-right direction of the vehicle body and is provided in the vicinity of the rear end portion of the rear preliminary seedling table 113.
  • the upper part of the cover part 88 of the fertilizer hopper 27x can be opened by rotating the rear preliminary seedling stand 113 around the rotation shaft 114 so as to jump up. Thereby, it becomes possible to open the cover part 88 of the fertilizer hopper 27x (FIG. 40).
  • the rear spare seedling table 113 with the seedling plate 99 placed thereon is rotated so as to spring up around the rotation shaft 114.
  • the seedling plate 99 placed on the rear preliminary seedling table 113 can be tilted so that the tip 99a of the seedling plate 99 and the upper end 17a of the seedling table 17 can be aligned.
  • the mat seedling 112 placed on the seedling collecting plate 99 is slid down on the seedling placing stand 17 in such a state of alignment.
  • the rear spare seedling table 113 can be rotated together with the seedling collecting plate 99 in a state where the seedling collecting plate 99 is placed on the rear preliminary seedling stand 113.
  • the seedling plate 99 rotates around the rotation shaft 114 of the rear spare seedling table 113. Therefore, in this case, it can be said that the rotation shaft 114 of the rear preliminary seedling table 113 is a rotation fulcrum portion.
  • the seedling supply auxiliary unit is the rear preliminary seedling table 113 on which a plurality of seedling collecting plates 99 can be placed.
  • the rear preliminary seedling table 113 is configured to be rotatable around a rotation shaft 114 parallel to the left-right direction of the vehicle body. Accordingly, the rotation shaft 114 functions as a rotation fulcrum portion.
  • the seedling collecting plate 99 can be placed on the rear spare seedling stand 113. Then, by rotating the rear spare seedling stand 113, the seedling collecting plate 99 placed on the rear preliminary seedling stand 113 can be tilted toward the seedling placing stand 17. Thereby, it is possible to easily supply the mat seedling 112 to the seedling placing stand 17.
  • said structure can be changed as follows, for example.
  • the protrusion 122 (or the roller member 124) is provided on the upper surface of the lid portion 88 of the fertilizer hopper 27x.
  • the invention is not limited thereto, and the protruding portion 122 (or the roller member 124) may be provided separately from the lid portion 88. That is, the protrusion 122 (or the roller member 124) is only required to support the seedling plate 99 from below, and does not need to be provided on the lid 88 of the fertilizer hopper 27x.
  • the fertilizer applicator 8x may be omitted.
  • the upper surface of the rear preliminary seedling table 113 is substantially horizontal.
  • the present invention is not limited to this, and a protrusion or a roller member as shown in the third embodiment and the fourth embodiment can be arranged on the upper surface of the rear preliminary seedling table 113.
  • the seedling collecting plate 99 placed on the upper surface of the rear spare seedling 70 can be smoothly slid.
  • the “seedling member” includes a wide range of substantially plate-like members that can carry mat seedlings. Therefore, the seedling collecting member placed on the seedling supply assisting unit is not limited to the seedling collecting plate 99.
  • the seedling box 140 in which the mat seedling is accommodated has a bottom plate 142 on which the mat seedling is placed. Therefore, it can be considered that the seedling box 140 is also a kind of “seedling member”. Therefore, instead of the seedling collecting plate 99, the seedling box 140 may be placed on the seedling supply auxiliary unit. In this case, it is preferable to remove one of the four walls of the seedling box 140 as the seedling box 140 shown in FIG. In this way, the mat seedling (not shown) accommodated in the seedling box 140 can be slid down from the bottom plate 142 by tilting the seedling box 140 so that the open portion 140a faces downward. Thereby, the mat seedling can be directly supplied from the seedling box 140 to the seedling mounting stand 17.
  • the rain avoiding portion 145 is rotatable with respect to the lid portion 88.
  • the present invention is not limited to this.
  • the rain avoiding portion 145 and the lid portion 88 may be integrally formed. good.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Fertilizing (AREA)
  • Sowing (AREA)

Abstract

A seed feeding device (9) provided in a direct seeding device is provided with a feeding case (21). The feeding case (21) is disposed below a hopper that accommodates seeds, and seeds are supplied to the case. A feeding roll that feeds a prescribed amount of seeds at each time is provided inside the feeding case (21). The feeding case (21) has a driven gear support unit (left side wall (33)) and a drive gear support unit (49). The driven gear support unit (left side wall (33)) supports a driven gear (30) that rotates as a unit with the feeding roll. The drive gear support unit (49) supports a drive gear (31) that meshes with the driven gear (30).

Description

粒状体繰出装置及び粒状体散布装置Granular body feeding device and granular material spraying device
 本発明は、主として、粒状体繰出装置において、繰出部まで駆動力を伝達するためのギアの支持構造に関する。 The present invention mainly relates to a gear support structure for transmitting a driving force to a feeding portion in a granular material feeding device.
 種子(粒状の固形物)を少量ずつ繰り出して圃場に散布する直播装置(粒状体散布装置)が知られている。直播装置は、種子を収容するホッパと、種子繰出装置(粒状体繰出装置)と、を備える。種子繰出装置は、当該ホッパの下方に配置された繰出ケースを備える。繰出ケース内には、周面に繰出穴が形成された繰出ロールが設けられている。当該繰出ロールを回転駆動することにより、ホッパ内の種子を少量ずつ繰出穴に取り込んで繰り出し、圃場の地面に向けて放出する。 A direct sowing device (granular material spraying device) that feeds seeds (granular solids) little by little and sprays them on the field is known. The direct sowing device includes a hopper that accommodates seeds, and a seed feeding device (granule feeding device). The seed feeding device includes a feeding case arranged below the hopper. In the feeding case, a feeding roll having a feeding hole formed in the peripheral surface is provided. By rotating the feeding roll, the seeds in the hopper are taken into the feeding hole little by little and are fed out and discharged toward the ground of the field.
 この種の直播装置ないし種子繰出装置において、繰出ケースには、繰出ロールの回転軸である繰出軸が支持されている。そして、当該繰出軸には、従動ギアが固定されている。このような構成は、例えば特許文献1に記載されている。 In this type of direct seeding device or seed feeding device, the feeding case supports a feeding shaft that is a rotating shaft of the feeding roll. A driven gear is fixed to the feeding shaft. Such a configuration is described in Patent Document 1, for example.
 特許文献1において、従動ギアに対して駆動力を入力する駆動ギアが設けられている。この駆動ギアの回転軸(播種用駆動軸)に、エンジンからの動力が入力されている。この特許文献1の構成により、エンジンからの動力で各繰出ロールを駆動できる。 In Patent Document 1, a driving gear for inputting a driving force to a driven gear is provided. Power from the engine is input to the rotation shaft (seeding drive shaft) of the drive gear. With the configuration of Patent Document 1, each feeding roll can be driven by power from the engine.
 特許文献2の実施例2には、スライドロールタイプの繰出ロールが記載されている。即ち、この種の繰出ロールは、本体ロールと、嵌合ロールと、を備えており、本体ロールに対して嵌合ロールをスライドさせることができるように構成されている。そして、本体ロールに対する嵌合ロールの位置を調整することにより、繰出穴(搬送孔)の幅を変えて、粒状体の繰出量を調整することができる。 In Example 2 of Patent Document 2, a slide roll type feeding roll is described. That is, this type of feeding roll includes a main body roll and a fitting roll, and is configured to be able to slide the fitting roll with respect to the main body roll. Then, by adjusting the position of the fitting roll with respect to the main body roll, the feeding amount of the granular material can be adjusted by changing the width of the feeding hole (conveying hole).
 特許文献2の実施例2では、前記嵌合ロールの位置を調整するための調整ダイヤルが設けられている。この調整ダイヤルを回転操作することにより、嵌合ロールをスライドさせて、粒状体の繰出量を調整する。 In Example 2 of Patent Document 2, an adjustment dial for adjusting the position of the fitting roll is provided. By rotating this adjustment dial, the fitting roll is slid to adjust the feed amount of the granular material.
 また、上記の粒状体散布装置の一種として、田植機の車体に設ける施肥機が知られている。この施肥機は、固体粒状の肥料を地面に散布するものである。施肥機は、肥料を収容するための容器であるホッパを備える。このような施肥機は、例えば特許文献3に記載されている。 Moreover, a fertilizer applicator provided on the body of a rice transplanter is known as a kind of the above-mentioned granular material spraying device. This fertilizer spreader applies solid granular fertilizer to the ground. The fertilizer applicator includes a hopper that is a container for storing fertilizer. Such a fertilizer applicator is described in Patent Document 3, for example.
 特許文献3は、ホッパを備えた上部施肥機を、上方に回動できる構成を開示している。特許文献3が開示する施肥機は、第1上部施肥機と第2上部施肥機を有しており、第1上部施肥機と第2上部施肥機を左右に分けて上方に回動させることができるように構成されている。特許文献3は、これにより、第1上部施肥機及び第2上部施肥機内の肥料を容易に排出できるので、当該第1上部施肥機及び第2上部施肥機内の清掃等のメンテナンスを容易に行うことができるとする。 Patent Document 3 discloses a configuration in which an upper fertilizer provided with a hopper can be rotated upward. The fertilizer disclosed in Patent Document 3 includes a first upper fertilizer and a second upper fertilizer, and the first upper fertilizer and the second upper fertilizer can be divided into left and right and rotated upward. It is configured to be able to. Since patent document 3 can discharge | emit the fertilizer in a 1st upper fertilizer and a 2nd upper fertilizer easily by this, the maintenance, such as the cleaning in the said 1st upper fertilizer and a 2nd upper fertilizer, should be performed easily. Suppose you can.
 特許文献3の構成では、エンジンからの駆動力が、クラッチを介して第1上部施肥機に入力される。また、特許文献3は、第1上部施肥機から第2上部施肥機へと動力を伝達するための連結機構を備えている。 In the configuration of Patent Document 3, the driving force from the engine is input to the first upper fertilizer through the clutch. Moreover, patent document 3 is provided with the connection mechanism for transmitting motive power from a 1st upper fertilizer to a 2nd upper fertilizer.
 また、特許文献4に記載されているように、田植機は、圃場に植え付けるべき苗を載置する苗載台を備えている。一般的な乗用型田植機において、上記苗載台は、運転座席の後方に配置されている。 Moreover, as described in Patent Document 4, the rice transplanter includes a seedling placing table for placing a seedling to be planted in a farm field. In a general riding type rice transplanter, the seedling platform is disposed behind the driver seat.
 苗載台に載置された苗の残りが少なくなってきた場合、オペレータは、必要に応じて苗を補給する。一般的なマット苗方式の田植機において、苗載台に供給される苗は、マット状に形成されたマット苗である。苗載台にマット苗を供給する際、オペレータは、供給すべきマット苗を、苗取板(苗すくい板、苗取りボードなどとも呼ばれる)の上に載せ、当該マット苗の形を崩さないように留意しつつ、苗載台の近傍まで持ち運ぶ。そして、オペレータは、苗取板を傾けることにより、当該苗取板の上のマット苗を苗載台に向けて滑り落とす。これにより、苗載台にマット苗が供給される。 When the remaining seedlings placed on the seedling stand are low, the operator replenishes seedlings as necessary. In a general mat seedling type rice transplanter, the seedling supplied to the seedling mount is a mat seedling formed in a mat shape. When supplying mat seedlings to the seedling stand, the operator places the mat seedlings to be supplied on a seedling board (also called seedling scooping board, seedling collecting board, etc.) so as not to break the shape of the mat seedlings. Carry it to the vicinity of the seedling stand while keeping in mind. Then, the operator slides the mat seedling on the seedling plate toward the seedling stage by tilting the seedling plate. Thereby, mat seedlings are supplied to the seedling stage.
特開2013-132235号公報JP 2013-132235 A 特開2007-37495号公報JP 2007-37495 A 特開2010-130932号公報JP 2010-130932 A 特許第4764239号公報Japanese Patent No. 4764239
 特許文献1の構成では、従動ギアの回転軸(繰出軸)は繰出ケースに支持されている。一方、駆動ギアの回転軸(播種用駆動軸)は、ブラケットに支持されている。そして、このブラケットから設けられた角パイプ材からなる第1支持部材に対して、繰出ケースがボルトで締結されて取り付けられている。 In the configuration of Patent Document 1, the rotation shaft (feeding shaft) of the driven gear is supported by the feeding case. On the other hand, the rotation shaft of the drive gear (seeding drive shaft) is supported by the bracket. A feeding case is fastened and attached to a first support member made of a square pipe member provided from the bracket by a bolt.
 このような特許文献1の構成においては、第1支持部材に対する繰出ケースの取付精度、繰出ケースの成形精度、ブラケット及び第1支持部材の組立精度などの影響により、従動ギアの回転軸(繰出軸)と駆動ギアの回転軸(播種用駆動軸)との間隔(芯間)がバラつく。この結果、従動ギアと駆動ギアとの噛合いが悪くなる場合があった。 In such a configuration of Patent Document 1, due to the influence of the attachment accuracy of the supply case to the first support member, the forming accuracy of the supply case, the assembly accuracy of the bracket and the first support member, etc., the rotation shaft of the driven gear (the supply shaft) ) And the rotation shaft of the drive gear (seeding drive shaft). As a result, the meshing between the driven gear and the drive gear may be deteriorated.
 そこで、本願発明の主要な目的は、粒状体繰出装置において、繰出ロールを駆動するための従動ギアと駆動ギアの芯間のバラツキを抑え、当該従動ギアと駆動ギアの噛合い精度を向上させた構成を提供することにある。 Therefore, the main object of the present invention is to suppress the variation between the cores of the driven gear and the driving gear for driving the feeding roll in the granular material feeding device, and improve the meshing accuracy of the driven gear and the driving gear. To provide a configuration.
 ところで、特許文献1には、4基の種子繰出機構を並べて備えた播種装置が記載されている。各種子繰出機構は、種子繰出ロールを有している。即ち、特許文献1の播種装置は、4つの種子繰出ロールを備えている。 By the way, Patent Document 1 describes a sowing apparatus having four seed feeding mechanisms arranged side by side. Each seed feeding mechanism has a seed feeding roll. That is, the seeding device of Patent Document 1 includes four seed feeding rolls.
 例えば、特許文献2に記載のスライドロールタイプの繰出ロールを、特許文献1の播種装置に採用することも可能である。ただし、特許文献1の播種装置は4つの繰出ロールを備えているから、当該4つの繰出ロールのそれぞれについて、繰出量の調整を個別に行う必要がある。このため、繰出量を調整する作業に手間が掛かるという課題がある。 For example, it is also possible to employ the slide roll type feeding roll described in Patent Document 2 in the seeding apparatus of Patent Document 1. However, since the seeding device of Patent Document 1 includes four feeding rolls, it is necessary to individually adjust the feeding amount for each of the four feeding rolls. For this reason, there exists a subject that the operation | work which adjusts feeding amount takes time.
 そこで、複数の繰出ロールの繰出量を、一斉に調整できるようにした構成が考えられる。例えば、特許文献2の調整ダイヤルの代わりに、平ギアとして構成された調整ギアを設けるとともに、当該調整ギアに噛み合う操作ギアを設ける。そして、複数の操作ギアを軸方向に並べて、連結軸によって連結する。これによれば、連結軸を回転操作することにより、複数の操作ギアを一斉に回転させることができるので、複数の繰出ロールの調整を一斉に行うことができる。従って、複数の繰出ロールそれぞれについて繰出量の調整を個別に行う手間が省ける。 Therefore, a configuration is considered in which the feeding amounts of a plurality of feeding rolls can be adjusted simultaneously. For example, instead of the adjustment dial of Patent Document 2, an adjustment gear configured as a flat gear is provided, and an operation gear that meshes with the adjustment gear is provided. Then, a plurality of operation gears are arranged in the axial direction and connected by a connecting shaft. According to this, since a plurality of operation gears can be rotated all at once by rotating the connecting shaft, a plurality of feeding rolls can be adjusted all at once. Therefore, the trouble of individually adjusting the feeding amount for each of the plurality of feeding rolls can be saved.
 ところで、上記のような構成において、調整ギアと操作ギアとの噛合いが必要となるのは、繰出量を調整する際のみであり、それ以外のときは、調整ギアと操作ギアの噛合いは不要である。むしろ、調整ギア及び操作ギアの摩耗又は破損を防止するという観点からすると、繰出量の調整を行わないときには、調整ギアと操作ギアの噛合いが解除されていることが好ましい。 By the way, in the configuration as described above, the engagement between the adjustment gear and the operation gear is necessary only when adjusting the feeding amount. In other cases, the engagement between the adjustment gear and the operation gear is It is unnecessary. Rather, from the viewpoint of preventing the adjustment gear and the operation gear from being worn or damaged, it is preferable that the engagement between the adjustment gear and the operation gear is released when the feed amount is not adjusted.
 そこで、本願発明の目的の1つは、繰出量の調整を簡単に行うことができるとともに、当該調整のためのギアの摩耗及び破損を防止できる構成を提供することにある。 Therefore, one of the objects of the present invention is to provide a configuration capable of easily adjusting the feeding amount and preventing wear and breakage of the gear for the adjustment.
 また、特許文献3に開示される施肥機においては、第1上部施肥機又は第2上部施肥機を回動させる際に、前記連結機構による連結を解除するとしている。また、特許文献3の構成において、第1上部施肥機を回動させるためには、連結部材に加えて、クラッチの連結を解除する作業も必要と考えられる。 In the fertilizer disclosed in Patent Document 3, when the first upper fertilizer or the second upper fertilizer is rotated, the connection by the connection mechanism is released. Moreover, in the structure of patent document 3, in order to rotate a 1st upper fertilizer, in addition to a connection member, the operation | work which cancels | releases the connection of a clutch is also considered necessary.
 このため、特許文献3の構成において、第1上部施肥機を回動させるために必要な手順が複雑となり、当該第1上部施肥機を容易に回動させることができるとはいいがたい。また、第1上部施肥機を回動させる際に、クラッチや連結機構を切断し忘れたりした場合には、当該クラッチ又は連結機構を破損してしまう可能性がある。 For this reason, in the configuration of Patent Document 3, it is difficult to say that the procedure required for rotating the first upper fertilizer is complicated, and the first upper fertilizer can be easily rotated. In addition, when the first upper fertilizer applicator is rotated, if the clutch or the coupling mechanism is forgotten to be disconnected, the clutch or the coupling mechanism may be damaged.
 更に、特許文献3の構成では、クラッチ及び連結機構が必要となるため、施肥機の構成が複雑になりコストアップにつながる。 Furthermore, since the configuration of Patent Document 3 requires a clutch and a coupling mechanism, the configuration of the fertilizer applicator becomes complicated, leading to an increase in cost.
 また、特許文献3は、第1上部施肥機及び第2上部施肥機によって繰り出された肥料を案内する施肥搬送部を備えている。施肥搬送部は、搬送ホースが接続される接続管を有している。接続管は、長手方向が前後方向となるように配置された略筒状の部材である。 Moreover, patent document 3 is provided with the fertilizer conveyance part which guides the fertilizer paid | fed out by the 1st upper fertilizer and the 2nd upper fertilizer. The fertilizer transfer section has a connecting pipe to which a transfer hose is connected. The connecting pipe is a substantially cylindrical member arranged such that the longitudinal direction is the front-rear direction.
 このような構成の施肥搬送部においては、接続管の内部に付着物が堆積し、当該接続管に肥料が詰まってしまうことがある。そこで、接続管の内部の定期的な清掃などのメンテナンスが必要となる。 In the fertilizer transfer section having such a configuration, deposits may accumulate inside the connecting pipe, and the connecting pipe may be clogged with fertilizer. Therefore, maintenance such as periodic cleaning of the inside of the connecting pipe is required.
 この点、特許文献3は、第1上部施肥機及び第2上部施肥機を上方に回動させることにより、当該第1上部施肥機及び第2上部施肥機内の清掃等のメンテナンスを容易に行うことができるようにした構成であるが、肥料搬送部については上方に回動させることができない構成である。このため、特許文献3の構成では、接続管の内部の清掃等のメンテナンスを容易に行うことができるとはいいがたい。 In this regard, Patent Document 3 facilitates maintenance such as cleaning in the first upper fertilizer and the second upper fertilizer by rotating the first upper fertilizer and the second upper fertilizer upward. However, the fertilizer transport section cannot be rotated upward. For this reason, in the structure of patent document 3, it cannot be said that maintenance, such as cleaning of the inside of a connecting pipe, can be performed easily.
 そこで、本願発明の目的の1つは、粒状体を供給する供給部を簡単に回動させることができる粒状体散布装置を提供することにある。また、本願発明の別の目的は、搬送部が備える接続管の内部の清掃を容易に行うことができる構成を提供することにある。 Therefore, one of the objects of the present invention is to provide a granular material spraying device that can easily rotate a supply unit that supplies granular materials. Another object of the present invention is to provide a configuration that can easily clean the inside of the connecting pipe provided in the transport section.
 また、特許文献4に開示されるような田植機において、マット苗を乗せた苗取板はそれなりの重量があるので、当該マット苗を苗載台に供給する作業は重労働であり、オペレータにとって負担が大きい。 Further, in the rice transplanter disclosed in Patent Document 4, since the seedling collecting plate on which the mat seedling is placed has a certain weight, the work of supplying the mat seedling to the seedling stage is a heavy labor and is a burden on the operator. Is big.
 特に、特許文献4に記載の田植機は、運転座席と苗載台の間に、施肥装置のホッパを備えた構成である。このような構造の田植機においては、苗載台にマット苗を供給する作業の際に肥料ホッパが邪魔になり、当該作業が更に困難になる。 In particular, the rice transplanter described in Patent Document 4 has a configuration in which a hopper for a fertilizer is provided between a driver seat and a seedling stage. In the rice transplanter having such a structure, the fertilizer hopper gets in the way during the operation of supplying the mat seedlings to the seedling stage, which makes the operation more difficult.
 そこで、本願発明の目的の1つは、苗載台へのマット苗の供給を容易に行うことができる田植機を提供することにある。 Therefore, one of the objects of the present invention is to provide a rice transplanter that can easily supply mat seedlings to a seedling stage.
課題を解決するための手段及び効果Means and effects for solving the problems
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.
 本発明の第1の観点によれば、以下の構成の粒状体繰出装置が提供される。即ち、この粒状体繰出装置は、粒状体を収容するホッパの下方に配置され、前記粒状体が供給される繰出ケースを備える。前記繰出ケース内には、前記粒状体を所定量ずつ繰り出す繰出部が設けられる。前記繰出ケースは、従動ギア支持部と、駆動ギア支持部と、を有する。前記従動ギア支持部は、前記繰出部と一体的に回転する従動ギアを支持する。前記駆動ギア支持部は、前記従動ギアに噛み合う駆動ギアを支持する。 According to the first aspect of the present invention, a granular material feeding device having the following configuration is provided. That is, the granular material feeding device includes a feeding case that is disposed below a hopper that accommodates the granular material and is supplied with the granular material. In the feeding case, a feeding portion for feeding the granular material by a predetermined amount is provided. The feeding case includes a driven gear support portion and a drive gear support portion. The driven gear support portion supports a driven gear that rotates integrally with the feeding portion. The drive gear support portion supports a drive gear that meshes with the driven gear.
 これにより、従動ギアと駆動ギアの両方を繰出ケースに支持させたことにより、当該従動ギア及び駆動ギアの芯間(軸同士の間隔)が、繰出ケースの精度のみで決まる。これにより、従動ギアと駆動ギアの芯間のバラツキを抑え、ギアの噛合せ精度を向上させることができる。 Thus, by supporting both the driven gear and the driving gear on the feeding case, the distance between the driven gear and the driving gear (the distance between the axes) is determined only by the accuracy of the feeding case. Thereby, the variation between the cores of the driven gear and the drive gear can be suppressed, and the gear meshing accuracy can be improved.
 前記の粒状体繰出装置においては、前記従動ギア支持部と前記駆動ギア支持部が一体形成されていることが好ましい。 In the granular material feeding device, it is preferable that the driven gear support portion and the drive gear support portion are integrally formed.
 このように、従動ギア支持部と駆動ギア支持部を一体形成することで、当該従動ギア支持部と駆動ギア支持部の位置が、繰出ケースの成形精度のみによって定まる。従って、従動ギア及び駆動ギアの芯間が、組立精度の影響を受けない。これにより、ギアの噛合せ精度を更に向上させることができる。 Thus, by integrally forming the driven gear support portion and the drive gear support portion, the positions of the driven gear support portion and the drive gear support portion are determined only by the forming accuracy of the feeding case. Therefore, the center of the driven gear and the drive gear is not affected by the assembly accuracy. Thereby, the gear meshing accuracy can be further improved.
 前記の粒状体繰出装置においては、以下の構成とすることが好ましい。即ち、この粒状体繰出装置は、前記繰出ケースを複数備える。各繰出ケースは、前記駆動ギアに軸線を一致させて配置され、当該駆動ギアに対して駆動力を伝達する駆動伝達軸を備える。前記駆動伝達軸は、前記繰出ケースごとに独立して設けられている。そして、粒状体繰出装置は、隣接する繰出ケースの前記駆動伝達軸同士を連結する連結部を備えている。 In the granular material feeding device, the following configuration is preferable. That is, the granular material feeding device includes a plurality of the feeding cases. Each feeding case is provided with a drive transmission shaft that is arranged with its axis aligned with the drive gear and transmits a driving force to the drive gear. The drive transmission shaft is provided independently for each feeding case. And the granular material feeding apparatus is provided with the connection part which connects the said drive transmission shafts of an adjacent feeding case.
 このように、繰出ケースごとに独立して駆動伝達軸を設けたので、繰出ケースと駆動伝達軸をまとめて1つのユニットとして扱うことができる。そして、隣接する繰出ケースの駆動伝達軸同士を連結部によって連結することにより、全ての駆動伝達軸に駆動力を伝達できる。 As described above, since the drive transmission shaft is provided independently for each feeding case, the feeding case and the driving transmission shaft can be collectively handled as one unit. And a driving force can be transmitted to all the drive transmission shafts by connecting the drive transmission shafts of the adjacent feeding cases with the connecting portion.
 前記の粒状体繰出装置においては、各繰出ケースにおいて、前記駆動伝達軸と、前記駆動ギアと、の間にクラッチ機構を有することが好ましい。 In the granular material feeding device, it is preferable that each feeding case has a clutch mechanism between the drive transmission shaft and the driving gear.
 このように繰出ケースごとに個別に駆動伝達軸を設けているので、これに加えて繰出ケースごとにクラッチ機構を設ければ、駆動伝達軸、クラッチ機構、繰出ケースをまとめて1つのユニットとして扱うことができる。 As described above, since the drive transmission shaft is individually provided for each feeding case, if a clutch mechanism is provided for each feeding case, the driving transmission shaft, the clutch mechanism, and the feeding case are collectively handled as one unit. be able to.
 前記の粒状体繰出装置においては、以下の構成とすることが好ましい。即ち、前記繰出部は、前記粒状体を繰り出す量を調整可能な調整機構を有する。前記繰出ケースは、調整ギアと、操作ギア支持部と、を備える。前記調整ギアは、前記調整機構の調整軸に固定される。前記操作ギア支持部は、前記調整ギアに噛合い可能な操作ギアを支持する。 In the granular material feeding device, the following configuration is preferable. That is, the feeding unit has an adjustment mechanism that can adjust the amount of the granular material to be fed. The feeding case includes an adjustment gear and an operation gear support. The adjustment gear is fixed to an adjustment shaft of the adjustment mechanism. The operation gear support portion supports an operation gear that can mesh with the adjustment gear.
 このように、操作ギアを繰出ケースに支持させたことにより、当該操作ギアと調整ギアの芯間が、繰出ケースの精度のみで決まる。これにより、調整ギアと操作ギアの芯間のバラツキを抑え、当該調整ギア及び操作ギアの噛合せ精度を向上させることができる。 Thus, by supporting the operation gear on the feeding case, the distance between the operation gear and the adjustment gear is determined only by the accuracy of the feeding case. Thereby, the variation between the centers of the adjustment gear and the operation gear can be suppressed, and the meshing accuracy of the adjustment gear and the operation gear can be improved.
 前記の粒状体繰出装置においては、前記操作ギアの回転軸を、前記調整軸に対して接近又は離間する方向に移動させることにより、前記調整ギアと前記操作ギアが噛み合った状態と、噛み合っていない状態と、を切換可能に構成されていることが好ましい。 In the granular material feeding device, the adjustment gear and the operation gear are engaged with each other by moving the rotation shaft of the operation gear toward or away from the adjustment shaft. It is preferable that the state can be switched.
 このように操作ギアの回転軸を、調整ギアの回転軸(調整軸)から離間させることにより、操作ギアと調整ギアの噛合いを解除できる。これにより、繰出量の調整を行わないときには操作ギアと調整ギアを離間させておくことができるので、当該操作ギア及び調整ギアの摩耗又は破損を防止できる。なお、操作ギアと調整ギアの噛合いを解除するという点では、操作ギアを軸方向にスライドさせることにより、調整ギアとの噛合いを解除する構成も考えられる。この場合、操作ギアと調整ギアが再び噛合い可能とするためには、両ギアのギア歯の端面にチャンファを形成する必要がある。しかし、チャンファを形成したとしても、操作ギアと調整ギアの位相関係によっては、両ギアのギア歯同士が軸方向で衝突する場合があり、このような場合は当該ギア同士を噛み合わせることができない。特に、操作ギア及び調整ギアが複数設けられている場合、噛み合わない可能性が高くなる。また、ギアが樹脂製の場合はダレが生じ、ますます噛み合わなくなる。また、チャンファを形成するために、ギアの歯幅を広く作る必要があるので、ギアの材料費が掛かるだけでなく、装置全体の幅が大きくなるという問題がある。この点、上記のように、ギアの軸同を接近又は離間させる構成であれば、チャンファ無しで噛合い可能であるから、コストアップを防止できる。 The engagement between the operation gear and the adjustment gear can be released by separating the rotation shaft of the operation gear from the rotation shaft (adjustment shaft) of the adjustment gear. Thus, when the feed amount is not adjusted, the operation gear and the adjustment gear can be separated from each other, so that the operation gear and the adjustment gear can be prevented from being worn or damaged. In terms of releasing the engagement between the operation gear and the adjustment gear, a configuration in which the engagement with the adjustment gear is released by sliding the operation gear in the axial direction is also conceivable. In this case, it is necessary to form a chamfer on the end surfaces of the gear teeth of both gears so that the operation gear and the adjustment gear can be engaged again. However, even if a chamfer is formed, depending on the phase relationship between the operation gear and the adjustment gear, the gear teeth of both gears may collide in the axial direction. In such a case, the gears cannot be engaged with each other. . In particular, when a plurality of operation gears and adjustment gears are provided, there is a high possibility that they will not mesh. Also, if the gear is made of resin, sagging will occur and it will become increasingly unmeshing. Further, in order to form the chamfer, it is necessary to make the gear teeth wider, so there is a problem that not only the gear material cost is increased, but also the width of the entire apparatus is increased. In this regard, as described above, if the configuration is such that the same shaft of the gear approaches or separates, meshing can be performed without a chamfer, and thus an increase in cost can be prevented.
 前記の粒状体繰出装置においては、以下の構成とすることが好ましい。即ち、複数の繰出ケースを一方向に並べて備えるとともに、当該複数の繰出ケースそれぞれに対応して前記調整ギア及び前記操作ギアが設けられる。各操作ギアの回転軸は、互いに連結されている。 In the granular material feeding device, the following configuration is preferable. That is, a plurality of feeding cases are arranged in one direction, and the adjustment gear and the operation gear are provided corresponding to each of the plurality of feeding cases. The rotation shafts of the operation gears are connected to each other.
 このように、複数の操作ギアの回転軸を連結することにより、複数の操作ギアを一斉に回転操作できる。これにより、各繰出ケースの繰出部の繰出量を、一斉に調整できる。また、各操作ギアの回転軸が連結されているので、調整ギアとの噛合いの有無の切換を、複数の操作ギアで一斉に行うことができる。 Thus, by connecting the rotation shafts of a plurality of operation gears, a plurality of operation gears can be rotated simultaneously. Thereby, the feeding amount of the feeding part of each feeding case can be adjusted all at once. In addition, since the rotation shafts of the respective operation gears are connected, it is possible to simultaneously switch the presence / absence of engagement with the adjustment gear using a plurality of operation gears.
 前記の粒状体繰出装置においては、前記操作ギアの回転軸を支持する操作ギア支持部を、前記繰出ケースに固定的に設けることが好ましい。 In the granular material feeding device, it is preferable that an operation gear support portion for supporting a rotation shaft of the operation gear is fixedly provided in the feeding case.
 このように、ケースに固定的に設けられた操作ギア支持部によって、操作ギアの回転軸を支持するので、操作ギアを繰出ケースに対して精度良く位置決めできる。これにより、当該操作ギアと調整ギアの芯間のバラツキを抑え、両ギアの噛合せ精度を向上させることができる。 As described above, since the rotation shaft of the operation gear is supported by the operation gear support portion fixedly provided on the case, the operation gear can be accurately positioned with respect to the feeding case. Thereby, the dispersion | variation between the said operation gear and the cores of an adjustment gear can be suppressed, and the meshing precision of both gears can be improved.
 前記の粒状体繰出装置においては、以下の構成とすることが好ましい。即ち、この粒状体繰出装置は、前記操作ギアの回転軸に接触可能なリンク部材を備える。前記リンク部材がリンク操作軸まわりで回動することにより、前記操作ギアの回転軸を前記調整軸に対して接近又は離間する方向に移動させる。 In the granular material feeding device, the following configuration is preferable. That is, the granular material feeding device includes a link member that can contact the rotation shaft of the operation gear. When the link member rotates around the link operation shaft, the rotation shaft of the operation gear is moved in a direction approaching or separating from the adjustment shaft.
 これにより、リンク操作軸を回転操作することで、操作ギアを、調整ギアに噛み合う位置と、噛合いを解除した位置と、の間で移動させることができる。 Thus, by rotating the link operation shaft, the operation gear can be moved between the position where it is engaged with the adjustment gear and the position where the engagement is released.
 前記の粒状体繰出装置においては、前記調整軸に対して接近する際の前記操作ギアの回転軸の移動方向が、前記調整軸の軸中心からズレた位置を向いていることが好ましい。 In the granular material feeding device, it is preferable that the moving direction of the rotation shaft of the operation gear when approaching the adjustment shaft is directed to a position shifted from the axis center of the adjustment shaft.
 これにより、調整ギアに対して、操作ギアが斜め方向から接近することになるので、ギア歯同士が正面から衝突することがない。これにより、ギア歯同士を確実に噛み合わせることができるとともに、ギア歯同士が衝突して破損することを防止できる。 This makes the operation gear approach the adjustment gear from an oblique direction, so that the gear teeth do not collide from the front. Thereby, while being able to mesh | engage gear teeth reliably, it can prevent that gear teeth collide and are damaged.
 本発明の第2の観点によれば、以下の構成の粒状体散布装置が提供される。即ち、この粒状体散布装置は、前記の粒状体繰出装置と、前記ホッパと、駆動出力ギアと、搬送部と、を備える。前記駆動出力ギアは、駆動源からの駆動力によって回転駆動される。前記搬送部は、前記粒状体繰出装置から繰り出された前記粒状体を地面まで搬送する。前記粒状体を供給する供給部が、前記ホッパと、前記粒状体繰出装置と、を含んでいる。前記供給部は、前記繰出部と、駆動入力ギアと、を備える。前記駆動入力ギアには、前記繰出部を駆動するための駆動力が入力される。前記供給部は、前記搬送部に対して前記粒状体を供給できる作業位置と、前記搬送部から離間した開放位置と、の間で移動可能に構成されている。前記供給部が前記作業位置にあるときには、前記駆動出力ギアと前記駆動入力ギアが噛み合う。前記供給部を前記作業位置から前記開放位置に向けて移動させることで、前記駆動入力ギアが前記駆動出力ギアから離間する。 According to a second aspect of the present invention, a granular material spraying device having the following configuration is provided. That is, the granular material spraying device includes the granular material feeding device, the hopper, a drive output gear, and a transport unit. The drive output gear is rotationally driven by a drive force from a drive source. The conveyance unit conveys the granular material fed from the granular material feeding device to the ground. The supply unit for supplying the granular material includes the hopper and the granular material feeding device. The supply unit includes the feeding unit and a drive input gear. A driving force for driving the feeding portion is input to the driving input gear. The supply unit is configured to be movable between a work position at which the granular material can be supplied to the transport unit and an open position separated from the transport unit. When the supply unit is in the working position, the drive output gear and the drive input gear mesh with each other. The drive input gear is separated from the drive output gear by moving the supply unit from the work position toward the open position.
 このように、駆動源から繰出部への駆動の伝達をギアの噛合いによって実現するとともに、供給部を開放位置まで移動させる際にはギア同士が離間するようにした。これにより、供給部を開放位置まで移動させる際に、当該供給部と駆動源の間の連結を解除するためのクラッチの操作等が不要となる。また、当該クラッチが不要となるため、クラッチを切り忘れて破損するおそれもない。 As described above, the transmission of the drive from the drive source to the feeding unit is realized by the meshing of the gears, and the gears are separated from each other when the supply unit is moved to the open position. Thereby, when moving a supply part to an open position, the operation of the clutch for canceling the connection between the supply part and the drive source becomes unnecessary. Further, since the clutch becomes unnecessary, there is no possibility that the clutch is forgotten to be broken and damaged.
 前記の粒状体散布装置においては、以下の構成とすることが好ましい。即ち、この粒状体散布装置は、前記供給部を複数備える。各供給部が備える前記駆動入力ギアが、前記駆動出力ギアに噛合い可能である。 In the granular material spraying device, the following configuration is preferable. That is, this granular material spraying apparatus includes a plurality of the supply units. The drive input gear included in each supply unit can mesh with the drive output gear.
 このように、複数の供給部のそれぞれに、駆動出力ギアからの駆動力を受け取るための駆動入力ギアを設けたので、1つの駆動出力ギアから各供給部に対して駆動力を伝達できる。従って、複数の供給部の間で駆動力を伝達するための連結機構が不要となる。また、当該連結機構を解除する操作も不要となり、当該連結機構を解除し忘れて破損するおそれもない。 Thus, since the drive input gear for receiving the drive force from the drive output gear is provided in each of the plurality of supply units, the drive force can be transmitted to each supply unit from one drive output gear. Therefore, a connection mechanism for transmitting driving force between the plurality of supply units is not necessary. In addition, the operation of releasing the connection mechanism is not required, and there is no possibility that the connection mechanism is forgotten to be broken and damaged.
本発明の第1実施形態に係る散布作業車の全体的な構成を示す側面図。The side view which shows the whole structure of the spreading work vehicle which concerns on 1st Embodiment of this invention. 直播装置の正面図。The front view of a direct seeding apparatus. 繰出ケースの斜視図。The perspective view of a feeding case. ホッパ及び繰出ケースの側面図。The side view of a hopper and a feeding case. ホッパ及び繰出ケースの側面断面図。Side surface sectional drawing of a hopper and a feeding case. 繰出ケースの背面断面図。The rear sectional view of a feeding case. 繰出ロールの背面断面図。The back sectional view of a feeding roll. 繰出ロールの斜視図。The perspective view of a feeding roll. クラッチ機構の組立斜視図。The assembly perspective view of a clutch mechanism. 操作ギア及び調整ギアが噛み合った様子を示す側面図。The side view which shows a mode that the operation gear and the adjustment gear meshed | engaged. 操作ギア及び調整ギアの噛合いが解除された様子を示す側面図。The side view which shows a mode that engagement of the operation gear and the adjustment gear was cancelled | released. 操作ギアの回転軸部の移動方向を主に示す側面図。The side view which mainly shows the moving direction of the rotating shaft part of an operation gear. 第1実施形態の変形例に係る繰出ケースの斜視図。The perspective view of the feeding case which concerns on the modification of 1st Embodiment. 本発明の第2実施形態に係る田植機の全体的な構成を示す側面図。The side view which shows the whole structure of the rice transplanter which concerns on 2nd Embodiment of this invention. 施肥機の背面図。The rear view of a fertilizer applicator. 施肥機の平面図。The top view of a fertilizer applicator. 供給部を回動させた様子を示す背面図。The rear view which shows a mode that the supply part was rotated. 施肥機の側面図。The side view of a fertilizer applicator. 施肥機の側面断面図。Side surface sectional drawing of a fertilizer applicator. 搬送部から繰出部を離間させる様子を示す側面図。The side view which shows a mode that a feeding part is spaced apart from a conveyance part. 搬送部から繰出部を離間させる様子を示す側面断面図。Side surface sectional drawing which shows a mode that a feeding part is spaced apart from a conveyance part. 第2実施形態の変形例を示す側面断面図。Side surface sectional drawing which shows the modification of 2nd Embodiment. 本発明の第3実施形態に係る田植機の全体的な構成を示す側面図。The side view which shows the whole structure of the rice transplanter which concerns on 3rd Embodiment of this invention. 田植機の平面図。The top view of a rice transplanter. 肥料ホッパの側面図。Side view of a fertilizer hopper. 肥料ホッパの背面図。The rear view of a manure hopper. 肥料ホッパの蓋部を開いた様子を示す側面断面図。Side surface sectional drawing which shows a mode that the cover part of the fertilizer hopper was opened. 雨避け部を回転させた様子を示す側面断面図。Side surface sectional drawing which shows a mode that the rain avoidance part was rotated. 肥料ホッパの上に苗取板を載置した様子を示す側面図。The side view which shows a mode that the seedling board was mounted on the fertilizer hopper. 苗取板を回転させる様子を示す側面図。The side view which shows a mode that a seedling board is rotated. 第3実施形態の変形例に係る肥料ホッパを示す側面図。The side view which shows the fertilizer hopper which concerns on the modification of 3rd Embodiment. 変形例の肥料ホッパの背面図。The rear view of the fertilizer hopper of a modification. 変形例の肥料ホッパの上に苗取板を載置した様子を示す側面図。The side view which shows a mode that the seedling board was mounted on the fertilizer hopper of a modification. 変形例において苗取板を回転させる様子を示す側面図。The side view which shows a mode that a seedling board is rotated in a modification. 第4実施形態の肥料ホッパを示す側面図。The side view which shows the fertilizer hopper of 4th Embodiment. 第4実施形態の肥料ホッパの上に苗取板を載置した様子を示す側面図。The side view which shows a mode that the seedling board was mounted on the fertilizer hopper of 4th Embodiment. 第4実施形態において、カバー部材とともに苗取板を回転させる様子を示す側面図。The side view which shows a mode that a seedling plate is rotated with a cover member in 4th Embodiment. 第4実施形態の変形例に係る肥料ホッパを示す側面図。The side view which shows the fertilizer hopper which concerns on the modification of 4th Embodiment. 本発明の第5実施形態に係る田植機の側面図。The side view of the rice transplanter which concerns on 5th Embodiment of this invention. 後部予備苗台を跳ね上げた様子を示す側面図。The side view which shows a mode that the rear part seedling stand was flipped up. 第5実施形態において、後部予備苗台とともに苗取板を回転させる様子を示す図。The figure which shows a mode that a seedling plate is rotated with a rear part preliminary seedling base in 5th Embodiment. 変形例の苗取部材としての苗箱を示す斜視図。The perspective view which shows the seedling box as a seedling collection member of a modification.
 次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の第1実施形態に係る農業用の散布作業車1の側面図である。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view of an agricultural application work vehicle 1 according to the first embodiment of the present invention.
 散布作業車1は、車体2と、当該車体2の後方に配置された直播装置(粒状体散布装置)8と、から構成されている。 The spreading work vehicle 1 includes a vehicle body 2 and a direct seeding device (granular material spraying device) 8 disposed behind the vehicle body 2.
 車体2は、左右一対の前輪4及び後輪5と、当該前輪4及び後輪5の駆動源であるエンジン10と、を備えている。また、車体2の前後方向で前輪4と後輪5の間の位置には、オペレータが搭乗する運転座席6が設けられている。運転座席6の前方には、オペレータが車体2を操向操作するための操向ハンドル7が配置されている。 The vehicle body 2 includes a pair of left and right front wheels 4 and a rear wheel 5 and an engine 10 which is a drive source for the front wheel 4 and the rear wheel 5. In addition, a driver's seat 6 on which an operator rides is provided at a position between the front wheel 4 and the rear wheel 5 in the front-rear direction of the vehicle body 2. In front of the driver seat 6, a steering handle 7 for the operator to steer the vehicle body 2 is disposed.
 車体2の後方には、前記直播装置8が配置されている。直播装置8は、連結機構である昇降リンク機構12を介して車体2に取り付けられている。昇降リンク機構12は、直播装置8を昇降可能な平行リンク機構として構成されている。これにより、直播装置8の上下位置を調整できる。また、車体2の後部には、エンジン10の駆動力を直播装置8に出力するためのPTO軸13が配置されている。 The direct seeding device 8 is disposed behind the vehicle body 2. The direct seeding device 8 is attached to the vehicle body 2 via an elevating link mechanism 12 that is a connecting mechanism. The raising / lowering link mechanism 12 is comprised as a parallel link mechanism which can raise / lower the direct seeding apparatus 8. As shown in FIG. Thereby, the vertical position of the direct seeding apparatus 8 can be adjusted. A PTO shaft 13 for outputting the driving force of the engine 10 to the direct seeding device 8 is disposed at the rear part of the vehicle body 2.
 なお、本実施形態の車体2は、エンジン10を前輪4及び後輪5の車軸の間に配置した、いわゆるミッドシップレイアウトとなっている。また、エンジン10の近傍には図略の燃料タンクが配置されている。ただし、エンジン10及び燃料タンクの配置はこれに限定されない。例えば、エンジン10は、車体前部のボンネット内に配置しても良いし、車体後部に配置しても良い。燃料タンクも同様に、車体前部のボンネット内や車体後部等の任意の位置に配置することができる。 Note that the vehicle body 2 of this embodiment has a so-called midship layout in which the engine 10 is disposed between the axles of the front wheels 4 and the rear wheels 5. A fuel tank (not shown) is disposed in the vicinity of the engine 10. However, the arrangement of the engine 10 and the fuel tank is not limited to this. For example, the engine 10 may be disposed in the hood at the front of the vehicle body or may be disposed at the rear of the vehicle body. Similarly, the fuel tank can be arranged at an arbitrary position such as in the hood at the front of the vehicle body or at the rear of the vehicle body.
 直播装置8は、種子(種籾)を少量ずつ地面に散布するように構成されている。散布作業車1は、直播装置8を駆動しつつ走行することにより、地面に略一定の間隔で種子を播いていくことができる。 The direct sowing device 8 is configured to spray seeds (seeds) on the ground little by little. The spreading work vehicle 1 can run seeds on the ground at substantially constant intervals by running while driving the direct sowing device 8.
 なお、本実施形態の車体2は、農業用の多目的作業車として構成されており、直播装置8に代えて他の種類の作業機を取り付けることもできる。即ち、本実施形態の直播装置8は、車体2の昇降リンク機構12に対して着脱可能である。そして、昇降リンク機構12には、直播装置8以外の農業用作業機(例えば、後述の第2実施形態で示す植付部3等の田植装置、除草装置など)を取り付けることができる。 In addition, the vehicle body 2 of the present embodiment is configured as an agricultural multipurpose work vehicle, and other types of work machines can be attached instead of the direct seeding device 8. That is, the direct seeding device 8 of the present embodiment is detachable from the lifting link mechanism 12 of the vehicle body 2. And the working mechanism for agriculture other than the direct sowing apparatus 8 (for example, rice planting apparatuses, such as the planting part 3 shown in 2nd Embodiment mentioned later, a weeding apparatus, etc.) can be attached to the raising / lowering link mechanism 12. FIG.
 直播装置8は、フレーム29と、種子繰出装置(粒状体繰出装置)9と、ホッパ20と、を備える。種子繰出装置9は、繰出ケース21を備える。 The direct sowing device 8 includes a frame 29, a seed feeding device (granular material feeding device) 9, and a hopper 20. The seed feeding device 9 includes a feeding case 21.
 フレーム29は、前述の昇降リンク機構12に連結されている。フレーム29は、例えば角パイプ状の部材であり、図2に点線で示すように車体2の左右方向に沿って配設されている。フレーム29には、繰出ケース21が左右方向に並べて等間隔で取り付けられている。なお、繰出ケース21に対するフレーム29の取付けは、ボルト締めなどの適宜の手段を利用して行うことができる。 The frame 29 is connected to the lifting link mechanism 12 described above. The frame 29 is, for example, a square pipe-like member, and is disposed along the left-right direction of the vehicle body 2 as indicated by a dotted line in FIG. The case 29 is attached to the frame 29 at regular intervals in the left-right direction. The attachment of the frame 29 to the feeding case 21 can be performed using appropriate means such as bolt fastening.
 種子繰出装置9が備える繰出ケース21は、種子を少量ずつ繰り出して地面に向けて放出するように構成されている。なお、繰出ケース21の詳細な構成については後述する。本実施形態の直播装置8は、図2に示すように、6条分の種子を同時に散布できるように、6つの種子繰出装置9(繰出ケース21)を左右方向に並べて備えている。 </ RTI> The feeding case 21 provided in the seed feeding device 9 is configured to feed seeds little by little and release them toward the ground. The detailed configuration of the feeding case 21 will be described later. As shown in FIG. 2, the direct sowing device 8 of the present embodiment includes six seed feeding devices 9 (feeding cases 21) arranged side by side in the left-right direction so that six rows of seeds can be sprayed simultaneously.
 ホッパ20は、圃場に播く種子(粒状体)を入れておくための容器である。ホッパ20は上部が開放されており、その開放された上部から種子を内部に投入することができる。また、ホッパ20は、開放されている上部を覆うための蓋部22を備えている。ホッパ20は、繰出ケース21の上に固定されている。 The hopper 20 is a container for storing seeds (granular bodies) to be sown in the field. The hopper 20 is open at the top, and seeds can be introduced into the inside from the open top. Moreover, the hopper 20 is provided with the cover part 22 for covering the open upper part. The hopper 20 is fixed on the feeding case 21.
 ホッパ20の下部は、その下端部に近づくにつれて細くなるように漏斗状に形成された通路部23となっている。通路部23の下部は開放されているので、ホッパ20内の種子を、通路部23を経由してホッパ20の下方の種子繰出装置9へ流出させることができる。なお、本実施形態のホッパ20は、2条分の種子を収容するように構成されている。このため、図2に示すように、各ホッパ20の下部は二股に分かれており、1つのホッパ20に2つの通路部23が形成されている。そして、それぞれの通路部23の下部に、繰出ケース21が固定されている。図2に示すように、本実施形態の直播装置8は、6つの繰出ケース21を左右方向に並べて備えているので、これに対応して、3つのホッパ20を左右方向に並べて備えている。 The lower portion of the hopper 20 is a passage portion 23 formed in a funnel shape so as to become thinner as approaching its lower end portion. Since the lower portion of the passage portion 23 is open, the seeds in the hopper 20 can be discharged to the seed feeding device 9 below the hopper 20 via the passage portion 23. In addition, the hopper 20 of this embodiment is comprised so that the seed for two strips may be accommodated. For this reason, as shown in FIG. 2, the lower portion of each hopper 20 is divided into two forks, and two passage portions 23 are formed in one hopper 20. And the feeding case 21 is being fixed to the lower part of each channel | path part 23. FIG. As shown in FIG. 2, the direct sowing apparatus 8 of the present embodiment includes six feeding cases 21 arranged in the left-right direction, and accordingly, includes three hoppers 20 arranged in the left-right direction.
 続いて、繰出ケース21の構成について詳しく説明する。 Subsequently, the configuration of the feeding case 21 will be described in detail.
 繰出ケース21は、樹脂製であり、略箱状に構成されている。図3に示すように、繰出ケース21の上部は開放されており、開口部21aとなっている。繰出ケース21の開口部21aは、ホッパ20の通路部23に連通している。これにより、図5に示すように、ホッパ20内の種子が開口部21aを介して繰出ケース21内に供給される。 The feeding case 21 is made of resin and has a substantially box shape. As shown in FIG. 3, the upper part of the feeding case 21 is open and serves as an opening 21 a. The opening 21 a of the feeding case 21 communicates with the passage portion 23 of the hopper 20. Thereby, as shown in FIG. 5, the seeds in the hopper 20 are supplied into the feeding case 21 through the opening 21a.
 図5に示すように、繰出ケース21の内部であって、開口部21aの下方には、繰出ロール(繰出部)28が設けられている。図8に示すように、繰出ロール28は、略円柱状の部材として構成されている。図6に示すように、繰出ロール28は、その軸線28cが車体2の左右方向と平行となるように配置されている。また、繰出ロール28は、当該軸線28cまわりで回転可能に構成されている。図5から図8までに示すように、繰出ロール28の周面には繰出穴28aが形成されている。繰出穴28aは、繰出ロール28の周方向に等間隔で複数形成されている。 As shown in FIG. 5, a feeding roll (feeding portion) 28 is provided inside the feeding case 21 and below the opening 21a. As shown in FIG. 8, the feeding roll 28 is configured as a substantially cylindrical member. As shown in FIG. 6, the feeding roll 28 is arranged so that its axis 28 c is parallel to the left-right direction of the vehicle body 2. Further, the feeding roll 28 is configured to be rotatable around the axis 28c. As shown in FIGS. 5 to 8, a feeding hole 28 a is formed in the peripheral surface of the feeding roll 28. A plurality of feeding holes 28 a are formed at equal intervals in the circumferential direction of the feeding roll 28.
 図6に示すように、繰出ケース21の外側には従動ギア30が設けられている。従動ギア30は、その軸線が繰出ロール28の軸線28cに一致するように配置されている。従動ギア30は繰出ロール28に対して相対回転不能に連結されている。これにより、従動ギア30と繰出ロール28は一体的に回転する。また、図3及び図4に示すように、繰出ケース21の外側には、従動ギア30に噛み合って回転する駆動ギア31が設けられている。 As shown in FIG. 6, a driven gear 30 is provided outside the feeding case 21. The driven gear 30 is disposed such that its axis coincides with the axis 28 c of the feeding roll 28. The driven gear 30 is connected to the feeding roll 28 so as not to rotate relative to the feeding roll 28. Thereby, the driven gear 30 and the feeding roll 28 rotate integrally. Further, as shown in FIGS. 3 and 4, a driving gear 31 that meshes with the driven gear 30 and rotates is provided outside the feeding case 21.
 また、繰出ケース21には、駆動伝達軸32が、車体左右方向と平行に配置されている。この駆動伝達軸32は、その軸線が駆動ギア31の軸線に一致するように配置されている。駆動伝達軸32と駆動ギア31とは、図2に示すクラッチ機構50(詳細は後述)によって連結可能となっている。従って、クラッチ機構50が接続された状態で駆動伝達軸32に駆動力が入力されることにより、駆動ギア31が軸線まわりで回転駆動される。 Further, in the feeding case 21, a drive transmission shaft 32 is arranged in parallel with the left-right direction of the vehicle body. The drive transmission shaft 32 is arranged such that its axis coincides with the axis of the drive gear 31. The drive transmission shaft 32 and the drive gear 31 can be connected by a clutch mechanism 50 (details will be described later) shown in FIG. Accordingly, when the driving force is input to the drive transmission shaft 32 with the clutch mechanism 50 connected, the drive gear 31 is rotationally driven around the axis.
 直播装置8は、前記PTO軸13から出力されるエンジン10の回転駆動力を、間欠回転運動に変換して出力する駆動出力部(図略)を備えている。駆動出力部が出力する間欠回転運動は、駆動入力ギア70に入力されて前記駆動伝達軸32に伝達され、駆動ギア31を回転駆動させる。このように駆動ギア31が回転駆動されることで、当該駆動ギア31に噛み合っている従動ギア30が回転し、繰出ケース21内の繰出ロール28を回転させる。 The direct seeding device 8 includes a drive output unit (not shown) that converts the rotational driving force of the engine 10 output from the PTO shaft 13 into an intermittent rotational motion and outputs it. The intermittent rotational motion output from the drive output unit is input to the drive input gear 70 and transmitted to the drive transmission shaft 32 to drive the drive gear 31 to rotate. When the drive gear 31 is rotationally driven in this manner, the driven gear 30 meshing with the drive gear 31 rotates, and the feeding roll 28 in the feeding case 21 is rotated.
 以上の構成により、各繰出ケース21内の繰出ロール28を、一方向に所定速度で間欠回転駆動させることができる。なお、駆動出力部が出力した駆動力を駆動ギア31まで伝達する構成については後述する。 With the above configuration, the feeding roll 28 in each feeding case 21 can be intermittently driven at a predetermined speed in one direction. A configuration for transmitting the driving force output from the drive output unit to the drive gear 31 will be described later.
 各繰出ケース21において、ホッパ20から供給された種子は、図5に示すように、繰出穴28aの内部に所定量ずつ(数粒ずつ)取り入れられる。ここで、繰出穴28aに取り込まれる種子の量を、「繰出量」ということがある。繰出穴28a内に種子を取り込んだ状態で繰出ロール28が一方向に回転駆動されることにより、前記繰出穴28a内に取り込んだ種子を、下方に向けて搬送することができる。繰出穴28aに取り込まれた種子は、繰出穴28aが下を向いたときに、当該繰出穴28aから下に向けて放出される。 In each feeding case 21, seeds supplied from the hopper 20 are taken into the feeding hole 28a by a predetermined amount (several grains) as shown in FIG. Here, the amount of seed taken into the feeding hole 28a may be referred to as “feeding amount”. When the feeding roll 28 is rotationally driven in one direction with the seed taken into the feeding hole 28a, the seed taken into the feeding hole 28a can be conveyed downward. The seed taken into the feeding hole 28a is discharged downward from the feeding hole 28a when the feeding hole 28a faces downward.
 繰出ケース21において、繰出ロール28の下方は開放されている。従って、繰出穴28aから放出された種子は、図5の太線矢印で示すように繰出ケース21内を落下する。繰出ケース21の下部は、播種ガイド37となっている。播種ガイド37は略筒状に構成されており、その内部を種子が上下に通過できる。播種ガイド37の下端部は、下に向けて開放された放出口38となっている。放出口38は、地面に近接して配置されている。従って、繰出ロール28によって繰り出された種子は、播種ガイド37内を落下して、放出口38を介して地面に落下する。 In the feeding case 21, the lower part of the feeding roll 28 is opened. Therefore, the seed discharged from the feeding hole 28a falls in the feeding case 21 as shown by the thick arrow in FIG. A lower part of the feeding case 21 is a sowing guide 37. The sowing guide 37 is configured in a substantially cylindrical shape, and seeds can pass up and down through the inside. A lower end portion of the sowing guide 37 is a discharge port 38 opened downward. The discharge port 38 is disposed close to the ground. Therefore, the seeds fed by the feeding roll 28 fall in the sowing guide 37 and fall to the ground via the discharge port 38.
 以上のように構成された繰出ケース21により、ホッパ20内の種子を、所定の繰出量ずつ繰り出して地面に散布することができる。なお、前述のように、直播装置8は、6つの繰出ケース21のそれぞれの繰出ロール28を一斉に回転駆動できるように構成されている。従って、本実施形態の直播装置8は、6条分の種子を同時に散布することができる。 By the feeding case 21 configured as described above, the seeds in the hopper 20 can be fed by a predetermined feeding amount and sprayed on the ground. In addition, as mentioned above, the direct sowing apparatus 8 is comprised so that each feeding roll 28 of the six feeding cases 21 can be rotationally driven simultaneously. Therefore, the direct sowing apparatus 8 of the present embodiment can simultaneously spray the seeds for six strips.
 続いて、本実施形態の直播装置8の特徴的な構成について説明する。 Then, the characteristic structure of the direct seeding apparatus 8 of this embodiment is demonstrated.
 前述のように、本実施形態の繰出ケース21には、従動ギア30と、当該従動ギア30に噛み合って回転する駆動ギア31と、が設けられている。 As described above, the feeding case 21 of the present embodiment is provided with the driven gear 30 and the drive gear 31 that meshes with the driven gear 30 and rotates.
 従動ギア30は、繰出ケース21の側壁(本実施形態の場合は左側壁33)に支持されている。 The driven gear 30 is supported on the side wall of the feeding case 21 (the left side wall 33 in this embodiment).
 従動ギア30の支持構造についてより具体的に説明すると、以下のとおりである。図6及び図7に示すように、従動ギア30には、当該従動ギア30の回転軸に軸線を一致させて円柱状に形成された円柱部45が、固定的に設けられている。なお、本実施形態では、円柱部45は、従動ギア30と一体形成されている。 More specifically, the support structure of the driven gear 30 is as follows. As shown in FIGS. 6 and 7, the driven gear 30 is fixedly provided with a cylindrical portion 45 that is formed in a cylindrical shape so that its axis coincides with the rotation axis of the driven gear 30. In the present embodiment, the cylindrical portion 45 is formed integrally with the driven gear 30.
 図7に示すように、繰出ケース21の左側壁33には、前記円柱部45を挿通可能な挿通孔46が形成されている。挿通孔46は、丸孔として構成されており、その径が前記円柱部45の外径に略一致するように構成されている。また、前記挿通孔46に前記円柱部45が挿入された状態で、当該円柱部45が軸線まわりで回転可能となっている。 As shown in FIG. 7, an insertion hole 46 through which the cylindrical portion 45 can be inserted is formed in the left side wall 33 of the feeding case 21. The insertion hole 46 is configured as a round hole, and the diameter thereof is configured to substantially match the outer diameter of the cylindrical portion 45. Further, in a state where the cylindrical portion 45 is inserted into the insertion hole 46, the cylindrical portion 45 can rotate around the axis.
 以上の構成で、繰出ケース21の左側壁33に形成された挿通孔46に、従動ギア30と一体形成された円柱部45を挿入することにより、当該従動ギア30が繰出ケース21の左側壁33によって回転可能に支持されている。なお、挿通孔46の内周面と、円柱部45の外周面との間に、軸受(例えば滑り軸受)が設けられていても良い。 With the above configuration, the driven gear 30 is inserted into the insertion hole 46 formed in the left side wall 33 of the feeding case 21 so that the driven gear 30 is inserted into the left side wall 33 of the feeding case 21. Is supported rotatably. A bearing (for example, a sliding bearing) may be provided between the inner peripheral surface of the insertion hole 46 and the outer peripheral surface of the cylindrical portion 45.
 このように、繰出ケース21の左側壁33によって従動ギア30が回転可能に支持されるので、当該左側壁33を「従動ギア支持部」と呼ぶこともできる。 Thus, since the driven gear 30 is rotatably supported by the left side wall 33 of the feeding case 21, the left side wall 33 can also be referred to as a “driven gear support portion”.
 図3に示すように、繰出ケース21には、駆動ギア支持部49が固定的に設けられている。駆動ギア支持部49は、繰出ケース21の正面から前方に向けて突出するリブ状の部位である。なお、本実施形態において、駆動ギア支持部49は、左側壁33(従動ギア支持部)と一体形成されている。駆動ギア31は、駆動ギア支持部49に支持されている。 As shown in FIG. 3, the feeding case 21 is provided with a drive gear support 49 in a fixed manner. The drive gear support 49 is a rib-shaped portion that protrudes forward from the front surface of the feeding case 21. In the present embodiment, the drive gear support 49 is integrally formed with the left side wall 33 (driven gear support). The drive gear 31 is supported by a drive gear support portion 49.
 駆動ギア31の支持構造について具体的に説明すると、以下のとおりである。図9に示すように、駆動ギア31には、当該駆動ギア31の回転軸に軸線を一致させて円筒状に形成された円筒部47が固定的に設けられている。なお、本実施形態では、円筒部47は、駆動ギア31と一体形成されている。 A specific description of the support structure of the drive gear 31 is as follows. As shown in FIG. 9, the drive gear 31 is fixedly provided with a cylindrical portion 47 formed in a cylindrical shape with the axis line coincident with the rotation axis of the drive gear 31. In the present embodiment, the cylindrical portion 47 is formed integrally with the drive gear 31.
 駆動ギア支持部49には、前記円筒部47を左右方向に挿通可能な挿通孔(図略)が形成されている。この挿通孔は、丸孔として構成されており、その径は、前記円筒部47の外径に略一致するように構成されている。また、前記挿通孔に前記円筒部47が挿入された状態で、当該円筒部47が軸線まわりで回転可能となっている。 The drive gear support 49 is formed with an insertion hole (not shown) through which the cylindrical portion 47 can be inserted in the left-right direction. This insertion hole is configured as a round hole, and the diameter thereof is configured to substantially match the outer diameter of the cylindrical portion 47. Further, in a state where the cylindrical portion 47 is inserted into the insertion hole, the cylindrical portion 47 can rotate about the axis.
 以上の構成で、駆動ギア支持部49に形成された挿通孔に、駆動ギア31と一体形成された円柱部45を挿入することにより、当該駆動ギア31が駆動ギア支持部49によって回転可能に支持されている。なお、駆動ギア支持部49に形成された前記挿通孔の内周面と、円柱部45の外周面との間に、軸受(例えば滑り軸受)が設けられていても良い。 With the above configuration, by inserting the cylindrical portion 45 integrally formed with the drive gear 31 into the insertion hole formed in the drive gear support portion 49, the drive gear 31 is rotatably supported by the drive gear support portion 49. Has been. A bearing (for example, a sliding bearing) may be provided between the inner peripheral surface of the insertion hole formed in the drive gear support portion 49 and the outer peripheral surface of the cylindrical portion 45.
 そして、駆動ギア31を駆動ギア支持部49によって支持し、従動ギア30を繰出ケース21の左側壁33(従動ギア支持部)によって支持した状態において、当該駆動ギア31と従動ギア30が噛み合うように構成されている(図3及び図4の状態)。 In a state where the drive gear 31 is supported by the drive gear support 49 and the driven gear 30 is supported by the left side wall 33 (driven gear support) of the feeding case 21, the drive gear 31 and the driven gear 30 are engaged with each other. It is configured (state shown in FIGS. 3 and 4).
 ところで前述のように、駆動ギア支持部49は、繰出ケース21に設けられている。従って、駆動ギア31は、繰出ケース21によって支持されている、ということもできる。また、従動ギア30は、繰出ケース21の左側壁33によって支持されているので、当該従動ギア30は繰出ケース21によって支持されている、ということができる。 Incidentally, as described above, the drive gear support 49 is provided in the feeding case 21. Therefore, it can also be said that the drive gear 31 is supported by the feeding case 21. Further, since the driven gear 30 is supported by the left side wall 33 of the feeding case 21, it can be said that the driven gear 30 is supported by the feeding case 21.
 このように、本実施形態の直播装置8は、駆動ギア31と従動ギア30の両方を、繰出ケース21によって支持している。これにより、ギア30,31同士の噛合いが安定する。 Thus, the direct seeding device 8 of the present embodiment supports both the drive gear 31 and the driven gear 30 by the feeding case 21. As a result, the meshing between the gears 30 and 31 is stabilized.
 例えば特許文献1においては、従動ギアは繰出ケースに支持され、駆動ギアはブラケットに支持されていた。このため、ブラケットに対する繰出ケースの取付精度の影響により、従動ギアと駆動ギアの間隔(芯間)がバラつく結果、従動ギアと駆動ギアとの噛合いが悪くなる場合があったのである。 For example, in Patent Document 1, the driven gear is supported by the feeding case, and the drive gear is supported by the bracket. For this reason, the distance between the driven gear and the driving gear (between the cores) varies due to the influence of the mounting case mounting accuracy with respect to the bracket, and as a result, the engagement between the driven gear and the driving gear may be deteriorated.
 これに対し、本実施形態では、駆動ギア31と従動ギア30の両方を繰出ケース21によって支持しているので、ギア30,31の芯間は、繰出ケース21の精度だけで決まる。これにより、芯間のバラツキを最小限に抑え、ギア30,31同士の噛合いが悪くなることを防止できる。 On the other hand, in the present embodiment, since both the drive gear 31 and the driven gear 30 are supported by the feeding case 21, the distance between the cores of the gears 30 and 31 is determined only by the accuracy of the feeding case 21. Thereby, the dispersion | variation between cores can be suppressed to the minimum and it can prevent that mesh | engagement of gears 30 and 31 worsens.
 特に、本実施形態では、従動ギア支持部(繰出ケース21の左側壁)と、駆動ギア支持部49とは、一体形成されている。従って、ギア30,31の芯間は、繰出ケース21の成形精度のみで決まり、組立精度の影響を受けない。これにより、駆動ギア31と、従動ギア30と、の噛合いが更に安定する。 In particular, in this embodiment, the driven gear support portion (the left side wall of the feeding case 21) and the drive gear support portion 49 are integrally formed. Accordingly, the distance between the cores of the gears 30 and 31 is determined only by the molding accuracy of the feeding case 21 and is not affected by the assembly accuracy. As a result, the meshing between the drive gear 31 and the driven gear 30 is further stabilized.
 続いて、本実施形態の駆動伝達軸32について説明する。 Subsequently, the drive transmission shaft 32 of the present embodiment will be described.
 本実施形態の直播装置8において、駆動伝達軸32は、繰出ケース21ごとに独立して設けられている。なお、本実施形態の直播装置8は、繰出ケース21を6つ備えているので、6本の駆動伝達軸32を備えている。 In the direct seeding device 8 of the present embodiment, the drive transmission shaft 32 is provided independently for each feeding case 21. In addition, since the direct seeding apparatus 8 of this embodiment is provided with six feeding cases 21, it is provided with six drive transmission shafts 32.
 直播装置8は、隣接する駆動伝達軸32同士を連結する連結部を備えている。本実施形態の連結部は、連結軸68と、連結部材69と、から構成されている。 The direct seeding device 8 includes a connecting part that connects adjacent drive transmission shafts 32 to each other. The connecting portion of this embodiment includes a connecting shaft 68 and a connecting member 69.
 図3に示すように、駆動伝達軸32の端部と、連結軸68の端部は、連結部材69によって連結される。駆動伝達軸32及び連結軸68の端部には、それぞれ切欠き(いわゆるDカット)71などが適宜形成されている。前記連結部材69は、前記切欠き71に嵌合するように構成されている。これにより、連結部材69によって、駆動伝達軸32と連結軸68を相対回転不能に連結することができる。 3, the end of the drive transmission shaft 32 and the end of the connecting shaft 68 are connected by a connecting member 69. Notches (so-called D cuts) 71 and the like are appropriately formed at the ends of the drive transmission shaft 32 and the connecting shaft 68, respectively. The connecting member 69 is configured to fit into the notch 71. Thereby, the drive transmission shaft 32 and the connecting shaft 68 can be connected by the connecting member 69 so as not to be relatively rotatable.
 図2に示すように、繰出ケース21同士の間には、それぞれ連結軸68が配置されている。本実施形態の直播装置8では、以上の構成により、隣接する繰出ケース21の駆動伝達軸32同士を、連結部(連結軸68及び連結部材69)によって連結している。なお、本実施形態の直播装置8は、繰出ケース21を6つ備えているので、全部で5本の連結軸68を備えている。図3に示すように、連結軸68は、連結部材69を介して、駆動伝達軸32の端部に連結されている。以上の構成により、直播装置8が備える6本の駆動伝達軸32が、連結軸68(及び連結部材69)を介して互いに連結されている。 As shown in FIG. 2, a connecting shaft 68 is disposed between the feeding cases 21. In the direct seeding device 8 of the present embodiment, the drive transmission shafts 32 of the adjacent feeding cases 21 are connected to each other by the connecting portion (the connecting shaft 68 and the connecting member 69) with the above configuration. In addition, since the direct sowing apparatus 8 of this embodiment is provided with six feeding cases 21, it is provided with five connecting shafts 68 in total. As shown in FIG. 3, the connecting shaft 68 is connected to the end of the drive transmission shaft 32 through a connecting member 69. With the above configuration, the six drive transmission shafts 32 included in the direct seeding device 8 are coupled to each other via the coupling shaft 68 (and the coupling member 69).
 直播装置8が備える5本の連結軸68のうち、何れか1本には、駆動入力ギア70が固定されている。図2に示すように、本実施形態では、5本の連結軸68のうち中央の連結軸68に駆動入力ギア70が固定されている。 A drive input gear 70 is fixed to any one of the five connecting shafts 68 included in the direct seeding device 8. As shown in FIG. 2, in the present embodiment, the drive input gear 70 is fixed to the central connecting shaft 68 among the five connecting shafts 68.
 駆動入力ギア70には、前述の駆動出力部が出力した駆動力が入力されている。前記駆動力が駆動入力ギア70に入力されることにより、駆動入力ギア70が回転駆動される。このように駆動入力ギア70が回転駆動されることにより、直播装置8が備える6本の駆動伝達軸32を回転駆動できる。 The driving force output from the driving output unit described above is input to the driving input gear 70. When the driving force is input to the driving input gear 70, the driving input gear 70 is rotationally driven. Thus, the drive input gear 70 is rotationally driven, whereby the six drive transmission shafts 32 included in the direct seeding device 8 can be rotationally driven.
 以上の構成により、6つの繰出ケース21がそれぞれ有する駆動伝達軸32を、一斉に回転駆動することができる。 With the above configuration, the drive transmission shafts 32 of the six feeding cases 21 can be rotationally driven all at once.
 続いて、本実施形態の繰出ケース21が備えるクラッチ機構50について説明する。クラッチ機構50は、駆動伝達軸32と、駆動ギア31と、の間の断接を切り換えるものである。 Subsequently, the clutch mechanism 50 provided in the feeding case 21 of the present embodiment will be described. The clutch mechanism 50 switches connection / disconnection between the drive transmission shaft 32 and the drive gear 31.
 図3に示すように、クラッチ機構50は、クラッチ部材53を備えている。図9に示すように、駆動伝達軸32の軸方向中央部は、断面6角形の6角軸部52となっている。6角軸部52には、前記クラッチ部材53が相対回転不能に取り付けられている。また、このクラッチ部材53は、駆動伝達軸32の軸線と平行な方向(図9の太線矢印で示す方向)にスライド可能となっている。 As shown in FIG. 3, the clutch mechanism 50 includes a clutch member 53. As shown in FIG. 9, the axial center portion of the drive transmission shaft 32 is a hexagonal shaft portion 52 having a hexagonal cross section. The clutch member 53 is attached to the hexagonal shaft portion 52 so as not to be relatively rotatable. The clutch member 53 is slidable in a direction parallel to the axis of the drive transmission shaft 32 (a direction indicated by a thick arrow in FIG. 9).
 駆動伝達軸32の両端部は、断面円形の丸棒状に形成されている。図3及び図9に示すように、駆動伝達軸32の一側の端部(丸棒状の部分)には、前記駆動ギア31が取り付けられている。駆動ギア31は、駆動伝達軸32に対して軸線まわりで相対回転できるように構成されている。 The both ends of the drive transmission shaft 32 are formed in a round bar shape with a circular cross section. As shown in FIGS. 3 and 9, the drive gear 31 is attached to one end portion (round bar-like portion) of the drive transmission shaft 32. The drive gear 31 is configured to be able to rotate relative to the drive transmission shaft 32 around the axis.
 図9に示すように、クラッチ部材53には、駆動ギア31に向けて突出するクラッチ側係合部54が形成されている。また、図9に示すように、駆動ギア31と一体形成された円筒部47には、クラッチ部材53側を向く面に、前記クラッチ側係合部54に係合するギア側係合部55が形成されている。 As shown in FIG. 9, the clutch member 53 is formed with a clutch-side engagement portion 54 that protrudes toward the drive gear 31. As shown in FIG. 9, the cylindrical portion 47 formed integrally with the drive gear 31 has a gear side engaging portion 55 that engages with the clutch side engaging portion 54 on the surface facing the clutch member 53 side. Is formed.
 クラッチ側係合部54とギア側係合部55が係合することにより、駆動ギア31と、クラッチ部材53とが、相対回転不能に連結される。前述のように、クラッチ部材53は駆動伝達軸32に対して相対回転不能であるから、クラッチ側係合部54とギア側係合部55が係合することにより、駆動伝達軸32と駆動ギア31とが相対回転不能に連結される。これにより、駆動伝達軸32から駆動ギア31に駆動力を伝達できる。 When the clutch side engaging portion 54 and the gear side engaging portion 55 are engaged, the drive gear 31 and the clutch member 53 are connected so as not to be relatively rotatable. As described above, since the clutch member 53 is not relatively rotatable with respect to the drive transmission shaft 32, the drive transmission shaft 32 and the drive gear are engaged by the engagement of the clutch side engagement portion 54 and the gear side engagement portion 55. 31 is connected so that relative rotation is impossible. Thereby, a driving force can be transmitted from the drive transmission shaft 32 to the drive gear 31.
 前述のように、クラッチ部材53は、駆動伝達軸32の軸線方向でスライド可能となっている。クラッチ部材53を、駆動ギア31から離れる方向にスライドさせることにより、クラッチ側係合部54とギア側係合部55の係合を解除できる。これにより、駆動ギア31と駆動伝達軸32の連結が解除される。従って、駆動伝達軸32から駆動ギア31に駆動力が伝達されなくなる。 As described above, the clutch member 53 is slidable in the axial direction of the drive transmission shaft 32. By sliding the clutch member 53 in the direction away from the drive gear 31, the engagement of the clutch side engaging portion 54 and the gear side engaging portion 55 can be released. As a result, the connection between the drive gear 31 and the drive transmission shaft 32 is released. Accordingly, the driving force is not transmitted from the drive transmission shaft 32 to the drive gear 31.
 以上のように構成されたクラッチ機構50において、クラッチ部材53をスライドさせることにより、駆動ギア31が駆動伝達軸32に連結された状態と、駆動ギア31と駆動伝達軸32の連結が解除された状態と、を切り換えることができる。前述のように、駆動伝達軸32は回転駆動されるので、当該駆動伝達軸32に駆動ギア31を連結することで、当該駆動ギア31を回転駆動できる。駆動ギア31が回転駆動されれば、これに噛み合っている従動ギア30(図4)が回転駆動されるので、当該従動ギア30に対して相対回転不能に連結されている繰出ロール28(図6)が回転駆動される。これにより、繰出ケース21内の繰出ロール28を回転駆動できる。 In the clutch mechanism 50 configured as described above, the state in which the drive gear 31 is connected to the drive transmission shaft 32 and the connection between the drive gear 31 and the drive transmission shaft 32 are released by sliding the clutch member 53. The state can be switched. Since the drive transmission shaft 32 is rotationally driven as described above, the drive gear 31 can be rotationally driven by connecting the drive gear 31 to the drive transmission shaft 32. When the drive gear 31 is rotationally driven, the driven gear 30 (FIG. 4) meshing with the drive gear 31 is rotationally driven, so that the feeding roll 28 (FIG. 6) connected to the driven gear 30 so as not to be relatively rotatable. ) Is driven to rotate. Thereby, the feeding roll 28 in the feeding case 21 can be rotationally driven.
 本実施形態では前述のように、連結部(連結軸68及び連結部材69)によって駆動伝達軸32同士を連結することにより、各繰出ケース21が有する駆動伝達軸32を一斉に回転駆動できる。従って、各繰出ケース21のクラッチ機構50において、駆動ギア31と駆動伝達軸32を連結させておくことにより、各繰出ケース21の繰出ロール28を一斉に駆動することができる。従って、直播装置8が備える6つの繰出ケース21により、種子の散布を一斉に行うことができる。 In the present embodiment, as described above, the drive transmission shafts 32 of the respective feeding cases 21 can be rotationally driven at the same time by connecting the drive transmission shafts 32 to each other by the connecting portions (the connecting shaft 68 and the connecting member 69). Therefore, by connecting the drive gear 31 and the drive transmission shaft 32 in the clutch mechanism 50 of each feeding case 21, the feeding rolls 28 of each feeding case 21 can be driven all at once. Therefore, seeds can be sprayed all at once by the six feeding cases 21 provided in the direct sowing apparatus 8.
 一方、クラッチ部材53をスライドさせることにより、駆動ギア31と駆動伝達軸32の連結を解除すれば、当該駆動ギア31の回転を停止させることができる。これにより、繰出ケース21内の繰出ロール28の回転を停止できる。本実施形態の直播装置8では、上記クラッチ機構50を各繰出ケース21に設けているので、繰出ケース21ごとに、繰出ロール28の駆動の有無を切り換えることができる。従って、一部の繰出ケース21のみ繰出ロール28の駆動を停止して、種子の散布を停止することができる。 On the other hand, if the coupling between the drive gear 31 and the drive transmission shaft 32 is released by sliding the clutch member 53, the rotation of the drive gear 31 can be stopped. Thereby, rotation of the supply roll 28 in the supply case 21 can be stopped. In the direct seeding device 8 of the present embodiment, since the clutch mechanism 50 is provided in each feeding case 21, whether or not the feeding roll 28 is driven can be switched for each feeding case 21. Therefore, the driving of the feeding roll 28 can be stopped only in a part of the feeding cases 21 and the seed spraying can be stopped.
 また、直播装置8が備えるフレーム29には、前記クラッチ部材53を、駆動伝達軸32の軸線方向に沿って移動させる操作部材(図略)が設けられている。この操作部材は、各繰出ケース21に対応して設けられている。この操作部材は、運転座席に搭乗しているオペレータによって任意に操作可能となっている。これにより、オペレータは、繰出ケース21ごとに、繰出ロール28の駆動の有無を切り換えることができる。 Further, the frame 29 provided in the direct seeding device 8 is provided with an operation member (not shown) that moves the clutch member 53 along the axial direction of the drive transmission shaft 32. This operation member is provided corresponding to each feeding case 21. This operation member can be arbitrarily operated by an operator on the driver's seat. Thereby, the operator can switch the presence / absence of driving of the feeding roll 28 for each feeding case 21.
 続いて、本実施形態における駆動伝達軸32の支持構造について説明する。図3に示すように、駆動伝達軸32の一側の端部(左側の端部)には、駆動ギア31が取り付けられる。前述のように、駆動ギア31は繰出ケース21に支持されている。従って、駆動伝達軸32の左側の端部は、駆動ギア31を介して繰出ケース21に支持されている、ということができる。 Subsequently, the support structure of the drive transmission shaft 32 in this embodiment will be described. As shown in FIG. 3, the drive gear 31 is attached to one end portion (left end portion) of the drive transmission shaft 32. As described above, the drive gear 31 is supported by the feeding case 21. Accordingly, it can be said that the left end portion of the drive transmission shaft 32 is supported by the feeding case 21 via the drive gear 31.
 図3に示すように、繰出ケース21には、駆動伝達軸32の他側の端部(右側の端部)を支持するための伝達軸支持部48が一体的に設けられている。伝達軸支持部48は、軸受を介して、駆動伝達軸32の右側の端部を支持している。以上のように、駆動伝達軸32は、その両端を、繰出ケース21によって支持されている。 As shown in FIG. 3, the feeding case 21 is integrally provided with a transmission shaft support portion 48 for supporting the other end portion (right end portion) of the drive transmission shaft 32. The transmission shaft support 48 supports the right end of the drive transmission shaft 32 via a bearing. As described above, both ends of the drive transmission shaft 32 are supported by the feeding case 21.
 前述のように、クラッチ部材53は、駆動伝達軸32に取り付けられている。従って、クラッチ部材53は、駆動伝達軸32を介して繰出ケース21に支持されているということができる。このように、本実施形態のクラッチ機構50は、繰出ケース21に支持されている。 As described above, the clutch member 53 is attached to the drive transmission shaft 32. Accordingly, it can be said that the clutch member 53 is supported by the feeding case 21 via the drive transmission shaft 32. As described above, the clutch mechanism 50 of the present embodiment is supported by the feeding case 21.
 以上のように、本実施形態では、駆動伝達軸32、クラッチ機構50及び駆動ギア31を繰出ケース21ごとに個別に設け、かつこれらの構成を繰出ケース21に支持させている。これにより、駆動伝達軸32、クラッチ機構50、駆動ギア31及び繰出ケース21をひとまとめにして1つのユニットとして取り扱うことができる。従って、本実施形態の直播装置8を組み立てる際には、駆動伝達軸32、クラッチ機構50及び駆動ギア31等を繰出ケース21に予め組み付けておき、その後、当該繰出ケース21をフレーム29に取り付ければ良い。これにより、直播装置8の組立てが簡単になる。 As described above, in this embodiment, the drive transmission shaft 32, the clutch mechanism 50, and the drive gear 31 are individually provided for each feeding case 21, and these configurations are supported by the feeding case 21. Thereby, the drive transmission shaft 32, the clutch mechanism 50, the drive gear 31, and the feeding case 21 can be collectively handled as one unit. Therefore, when assembling the direct seeding device 8 of the present embodiment, the drive transmission shaft 32, the clutch mechanism 50, the drive gear 31 and the like are assembled in advance in the feeding case 21, and then the feeding case 21 is attached to the frame 29. good. Thereby, the assembly of the direct seeding apparatus 8 becomes easy.
 続いて、本実施形態の直播装置8において、繰出ロール28による種子の繰出量(種子の散布量)を調整するための構成について説明する。 Subsequently, in the direct sowing apparatus 8 of the present embodiment, a configuration for adjusting the amount of seeds fed (the amount of seed spread) by the feeding roll 28 will be described.
 本実施形態の繰出ロール28は、繰出穴28aの容量を調整できるスライドロールタイプの繰出ロールとして構成されている。即ち、図6から図8までに示すように、繰出ロール28は、本体ロール57と、嵌合ロール58と、を組み合わせて構成されている。嵌合ロール58は、本体ロール57に対して、軸線28cと平行な方向にスライド可能となっている。 The feeding roll 28 of the present embodiment is configured as a slide roll type feeding roll capable of adjusting the capacity of the feeding hole 28a. That is, as shown in FIGS. 6 to 8, the feeding roll 28 is configured by combining the main body roll 57 and the fitting roll 58. The fitting roll 58 is slidable in the direction parallel to the axis 28 c with respect to the main body roll 57.
 図8に示すように、本体ロール57及び嵌合ロール58は、それぞれ略円柱状に構成されている。本体ロール57の周面には、前述の繰出穴28aが形成されている。繰出穴28aは、軸線28cと平行な方向に沿って形成された溝部として構成されている。嵌合ロール58には、軸線28cと平行な方向に突出するように形成された突出部60が形成されている。この突出部60は、本体ロール57の前記繰出穴28aに対応して、複数形成されている。そして、図8に示すように、嵌合ロール58の突出部60が、本体ロール57の繰出穴28aの内部に軸線28cと平行な向きに挿入できるように構成されている。繰出穴28aのうち、突出部60が挿入された部分は、当該突出部60によって塞がれる。従って、繰出穴28aに対する突出部60の挿入量を変更することにより、当該繰出穴28aの容量を変更できる。 As shown in FIG. 8, the main body roll 57 and the fitting roll 58 are each formed in a substantially cylindrical shape. On the peripheral surface of the main body roll 57, the aforementioned feeding hole 28a is formed. The feed hole 28a is configured as a groove formed along a direction parallel to the axis 28c. The fitting roll 58 is formed with a protruding portion 60 formed so as to protrude in a direction parallel to the axis 28c. A plurality of the projecting portions 60 are formed corresponding to the feeding holes 28 a of the main body roll 57. And as shown in FIG. 8, the protrusion part 60 of the fitting roll 58 is comprised so that it can insert in the direction parallel to the axis line 28c inside the delivery hole 28a of the main body roll 57. As shown in FIG. A portion of the feeding hole 28 a where the protruding portion 60 is inserted is closed by the protruding portion 60. Therefore, the capacity of the feeding hole 28a can be changed by changing the amount of the protrusion 60 inserted into the feeding hole 28a.
 以上の構成で、本体ロール57に対して、嵌合ロール58を軸線28cと平行な方向で移動させることにより、繰出穴28aの容量を変更できる。これにより、繰出穴28aによって繰り出される種子の量(繰出量)を調整できる。 With the above configuration, the capacity of the feeding hole 28a can be changed by moving the fitting roll 58 in a direction parallel to the axis 28c with respect to the main body roll 57. Thereby, the amount (feeding amount) of seeds fed out by the feeding hole 28a can be adjusted.
 図7に示すように、繰出ケース21が備える繰出ロール28には、嵌合ロール58の位置を軸線28cと平行な方向で調整するためのネジ送り機構(調整機構)40が設けられている。 As shown in FIG. 7, the feeding roll 28 provided in the feeding case 21 is provided with a screw feeding mechanism (adjusting mechanism) 40 for adjusting the position of the fitting roll 58 in a direction parallel to the axis 28c.
 ネジ送り機構40は、繰出ロール28の軸線28cに一致して配置されたネジ軸(調整軸)41を有する。従って、ネジ軸41は、車体左右方向と平行に配置されている。ネジ軸41の外周にはオネジが形成されている。一方、嵌合ロール58には、前記オネジに螺合するメネジが形成されている。この構成で、ネジ軸41を回転させることにより、嵌合ロール58を軸線28cと平行な方向に移動させて、繰出穴28aの容量を変更することができる。 The screw feed mechanism 40 has a screw shaft (adjustment shaft) 41 disposed in alignment with the axis 28c of the feeding roll 28. Accordingly, the screw shaft 41 is disposed in parallel with the left-right direction of the vehicle body. A male screw is formed on the outer periphery of the screw shaft 41. On the other hand, the fitting roll 58 is formed with a female screw that is screwed into the male screw. With this configuration, by rotating the screw shaft 41, the fitting roll 58 can be moved in a direction parallel to the axis 28c, and the capacity of the feeding hole 28a can be changed.
 図7に示すように、繰出ケース21の外側には、前記ネジ送り機構40を動作させるための調整ギア61が設けられている。この調整ギア61は、平ギアとして構成されており、前記ネジ軸41と軸線が一致するように配置され、かつ当該ネジ軸41に固定されている。また、図3及び図10に示すように、繰出ケース21の外側には、調整ギア61に噛合い可能な操作ギア62が設けられている。この操作ギア62は平ギアとして構成されており、その軸線は、前記ネジ軸41と平行な方向(左右方向)に沿って配置されている。 As shown in FIG. 7, an adjustment gear 61 for operating the screw feeding mechanism 40 is provided outside the feeding case 21. The adjustment gear 61 is configured as a flat gear, is arranged so that the screw shaft 41 and the axis line coincide with each other, and is fixed to the screw shaft 41. As shown in FIGS. 3 and 10, an operation gear 62 that can mesh with the adjustment gear 61 is provided outside the feeding case 21. The operation gear 62 is configured as a flat gear, and its axis is disposed along a direction (left-right direction) parallel to the screw shaft 41.
 操作ギア62を調整ギア61に噛み合わせた状態で、当該操作ギア62を回転操作することにより、前記調整ギア61を介してネジ軸41を回転させ、前記ネジ送り機構40によって嵌合ロール58を軸線28cと平行な方向に移動させる。これにより、繰出穴28aの容量を変更し、当該繰出穴28aが種子を繰り出す量(繰出量)を調整できる。 In a state where the operation gear 62 is engaged with the adjustment gear 61, the operation gear 62 is rotated to rotate the screw shaft 41 via the adjustment gear 61, and the screw feed mechanism 40 causes the fitting roll 58 to move. It is moved in a direction parallel to the axis 28c. Thereby, the capacity | capacitance of the feeding hole 28a can be changed and the quantity (feeding quantity) which the said feeding hole 28a delivers a seed can be adjusted.
 図7に示すように、ネジ軸41の端部には、フランジ部42が設けられている。当該フランジ部42と、本体ロール57と、の間には、デテント機構43が設けられている。このデテント機構43は、本体ロール57と、ネジ軸41と、が相対回転しないように連結するものである。これにより、嵌合ロール58とネジ軸41が相対回転することを防ぎ、嵌合ロール58の位置が軸線28c方向に勝手に動いてしまうことを防止する。 As shown in FIG. 7, a flange portion 42 is provided at the end of the screw shaft 41. A detent mechanism 43 is provided between the flange portion 42 and the main body roll 57. This detent mechanism 43 is connected so that the main body roll 57 and the screw shaft 41 do not rotate relative to each other. Thereby, the fitting roll 58 and the screw shaft 41 are prevented from rotating relative to each other, and the position of the fitting roll 58 is prevented from moving freely in the direction of the axis 28c.
 なお、デテント機構43は、所定以上のトルクが加わった場合には、本体ロール57とネジ軸41との相対回転を許容するように構成されている。従って、前記調整ギア61に所定のトルクを入力することにより、ネジ軸41と嵌合ロール58を相対回転させ、ネジ送り機構40を動作させることができる。 The detent mechanism 43 is configured to allow relative rotation between the main body roll 57 and the screw shaft 41 when a predetermined torque or more is applied. Therefore, by inputting a predetermined torque to the adjustment gear 61, the screw shaft 41 and the fitting roll 58 can be rotated relative to each other to operate the screw feed mechanism 40.
 続いて、操作ギア62の支持構造について説明する。 Subsequently, the support structure of the operation gear 62 will be described.
 即ち、上記操作ギア62は、繰出ケース21とは別の部材(例えばフレーム29)によって支持することもできる。しかしながら、仮に操作ギア62をフレーム29によって支持した場合、フレーム29に対する繰出ケース21の取付精度の影響により、操作ギア62と調整ギア61の芯間がバラつく。このため、操作ギア62と調整ギア61の噛合いが悪くなることが考えられる。 That is, the operation gear 62 can be supported by a member (for example, the frame 29) different from the feeding case 21. However, if the operation gear 62 is supported by the frame 29, the gap between the cores of the operation gear 62 and the adjustment gear 61 varies due to the influence of the mounting accuracy of the feeding case 21 with respect to the frame 29. For this reason, it is conceivable that the engagement between the operation gear 62 and the adjustment gear 61 is deteriorated.
 そこで本実施形態の直播装置8では、操作ギア62を、繰出ケース21に支持させている。具体的には図3に示すように、繰出ケース21の正面には、前方に向けてリブ状に突出する操作ギア支持部73が設けられている。操作ギア支持部73は、操作ギア62を回転可能に支持するように構成されている。なお、本実施形態の操作ギア支持部73は、繰出ケース21と一体形成されている。 Therefore, in the direct seeding device 8 of the present embodiment, the operation gear 62 is supported by the feeding case 21. Specifically, as shown in FIG. 3, an operation gear support portion 73 protruding in a rib shape toward the front is provided on the front surface of the feeding case 21. The operation gear support 73 is configured to rotatably support the operation gear 62. Note that the operation gear support portion 73 of this embodiment is formed integrally with the feeding case 21.
 このように本実施形態では、操作ギア62を繰出ケース21に支持させているので、当該操作ギア62と、調整ギア61と、の芯間は、繰出ケース21の精度のみで決まる。これにより、調整ギア61と操作ギア62の噛合いが安定するので、繰出穴28aによる種子の繰出し量の調整を安定して行うことができる。 Thus, in the present embodiment, since the operation gear 62 is supported by the feeding case 21, the distance between the operation gear 62 and the adjustment gear 61 is determined only by the accuracy of the feeding case 21. Thereby, since the meshing of the adjustment gear 61 and the operation gear 62 is stabilized, the adjustment of the seed feeding amount by the feeding hole 28a can be stably performed.
 なお、繰出穴28aの容量を変更するための機構(上記のネジ送り機構40、調整ギア61、操作ギア62、デテント機構43など)は、直播装置8が備える6つの繰出ケース21それぞれに設けられている。従って、本実施形態の直播装置8は、6つの操作ギア62を有している。図2に示すように、隣接する繰出ケース21の操作ギア62同士は、車体左右方向に沿って配置された連結軸63によって連結されている。 A mechanism for changing the capacity of the feeding hole 28a (the screw feeding mechanism 40, the adjustment gear 61, the operation gear 62, the detent mechanism 43, etc.) is provided in each of the six feeding cases 21 provided in the direct seeding device 8. ing. Therefore, the direct seeding device 8 of the present embodiment has six operation gears 62. As shown in FIG. 2, the operation gears 62 of the adjacent feeding cases 21 are connected by a connecting shaft 63 arranged along the left-right direction of the vehicle body.
 具体的には、以下のとおりである。即ち、図3に示すように、操作ギア62には、当該操作ギア62に軸線を一致して配置された円筒状の回転軸部65が固定的に設けられている。なお、本実施形態では、操作ギア62と回転軸部65は一体形成されている。操作ギア62及び回転軸部65は、その軸中心に前記連結軸63を挿通させることができるように構成されている。そして、回転軸部65は、前記連結軸63に対して相対回転不能に固定されている。 Specifically, it is as follows. That is, as shown in FIG. 3, the operation gear 62 is fixedly provided with a cylindrical rotating shaft portion 65 that is arranged so that the axis line coincides with the operation gear 62. In the present embodiment, the operation gear 62 and the rotating shaft portion 65 are integrally formed. The operation gear 62 and the rotating shaft portion 65 are configured so that the connecting shaft 63 can be inserted through the center of the shaft. The rotating shaft 65 is fixed so as not to rotate relative to the connecting shaft 63.
 本実施形態の直播装置8では、連結軸63を1本のみ備えている。そして、この連結軸63に対して、6つの操作ギア62がそれぞれ固定されている。これにより、直播装置8が備える6つの操作ギア62が、連結軸63によって軸線を一致させて相対回転不能に連結されている。従って、6つの操作ギア62を、一斉に回転操作できる。 In the direct seeding device 8 of the present embodiment, only one connecting shaft 63 is provided. Six operation gears 62 are fixed to the connecting shaft 63. Accordingly, the six operation gears 62 included in the direct seeding device 8 are connected by the connecting shaft 63 so that the axes thereof coincide with each other so as not to be relatively rotatable. Accordingly, the six operation gears 62 can be rotated all at once.
 図2に示すように、6つの操作ギア62同士を連結する連結軸63の端部には、操作ハンドル64が設けられている。オペレータは、この操作ハンドル64を回転操作することにより、6つの繰出ケース21の操作ギア62を一斉に回転操作することができる。以上の構成により、繰出ロール28の繰出穴28aの容量を、6つの繰出ケース21で一斉に変更することができる。即ち、6条分の繰出量を一斉に変更できる。これにより、繰出量の変更を簡単に行うことができる。 As shown in FIG. 2, an operation handle 64 is provided at the end of a connecting shaft 63 that connects the six operation gears 62 to each other. The operator can simultaneously rotate the operation gears 62 of the six feeding cases 21 by rotating the operation handle 64. With the above configuration, the capacity of the feeding hole 28 a of the feeding roll 28 can be changed simultaneously by the six feeding cases 21. That is, the feeding amount for the six articles can be changed all at once. Thereby, the amount of feeding can be changed easily.
 前述のように、本体ロール57と、ネジ軸41と、の間には、デテント機構43が設けられている。これにより、繰出ロール28とネジ軸41が勝手に相対回転しないように連結されている。このため、繰出ロール28の回転駆動に伴って、ネジ軸41(及びこれに固定された調整ギア61)が回転駆動されることになる。このとき、当該調整ギア61に操作ギア62が噛み合っていると、操作ギア62も回転駆動される。このように調整ギア61と操作ギア62が、噛み合ったままの状態で回転駆動されると、当該操作ギア62及び調整ギア61の摩耗が進行し得るし、破損の原因ともなり得る。 As described above, the detent mechanism 43 is provided between the main body roll 57 and the screw shaft 41. Thereby, the supply roll 28 and the screw shaft 41 are connected so as not to rotate relative to each other. For this reason, the screw shaft 41 (and the adjustment gear 61 fixed thereto) is rotationally driven with the rotational driving of the feeding roll 28. At this time, if the operation gear 62 is engaged with the adjustment gear 61, the operation gear 62 is also rotationally driven. When the adjustment gear 61 and the operation gear 62 are rotationally driven in a state where they are engaged with each other as described above, the operation gear 62 and the adjustment gear 61 may be worn and may be damaged.
 ところで、操作ギア62と調整ギア61の噛合いが必要なのは、繰出穴28aの容量の変更(繰出量の調整)を行うときのみであり、それ以外のときには、操作ギア62と調整ギア61が噛み合っている必要はない。 By the way, the operation gear 62 and the adjustment gear 61 need to be engaged only when the capacity of the supply hole 28a is changed (adjustment of the supply amount). In other cases, the operation gear 62 and the adjustment gear 61 are engaged. You don't have to.
 そこで本実施形態では、必要に応じて、操作ギア62と調整ギア61の噛合いの有無を切り換えることができるようにしている。 Therefore, in this embodiment, the presence / absence of engagement of the operation gear 62 and the adjustment gear 61 can be switched as necessary.
 実施形態の繰出ケース21には、図3及び図5等に示すように、当該繰出ケース21の正面から前方に向けてリブ状に突出する操作ギア支持部73が、固定的に設けられている。なお、本実施形態の操作ギア支持部73は、繰出ケース21と一体形成されている。 As shown in FIGS. 3 and 5, the feeding case 21 of the embodiment is fixedly provided with an operation gear support 73 that protrudes in a rib shape from the front of the feeding case 21 toward the front. . Note that the operation gear support portion 73 of this embodiment is formed integrally with the feeding case 21.
 図3及び図5等に示すように、操作ギア支持部73には、長孔72が形成されている。この長孔72は、操作ギア支持部73を、操作ギア62の軸線方向(左右方向)に貫通するように形成されている。また、当該長孔72の幅は、操作ギア62の回転軸部65の直径と同じ、又は当該直径よりもやや大きい程度に形成されている。従って、前記回転軸部65を、その軸線方向(左右方向)で長孔72に挿通させることができる(図3の状態)。このように、操作ギア支持部73は、操作ギア62の回転軸部65を長孔72に挿通させることにより、当該操作ギア62を支持することができる。 As shown in FIGS. 3 and 5, etc., the operation gear support 73 has a long hole 72 formed therein. The elongated hole 72 is formed so as to penetrate the operation gear support portion 73 in the axial direction (left-right direction) of the operation gear 62. Further, the width of the elongated hole 72 is formed to be the same as or slightly larger than the diameter of the rotating shaft portion 65 of the operation gear 62. Therefore, the rotating shaft portion 65 can be inserted through the elongated hole 72 in the axial direction (left-right direction) (state shown in FIG. 3). As described above, the operation gear support portion 73 can support the operation gear 62 by inserting the rotary shaft portion 65 of the operation gear 62 into the long hole 72.
 また、回転軸部65は、長孔72に挿通された状態で、当該長孔72の長手方向に移動することができる。図5に示すように、ネジ軸41の軸線方向(左右方向)で見たときに、長孔72の長手方向の一側の端部72aは、他側の端部72bよりも、ネジ軸41に近い位置となっている。従って、長孔72に挿通された状態の回転軸部65を、端部72aと72bの間で移動させることにより、当該回転軸部65を、調整ギア61の回転軸(ネジ軸41)に接近又は離間する方向に移動させることができる。 Further, the rotating shaft portion 65 can move in the longitudinal direction of the long hole 72 while being inserted into the long hole 72. As shown in FIG. 5, when viewed in the axial direction (left-right direction) of the screw shaft 41, one end portion 72a in the longitudinal direction of the long hole 72 is more threaded than the other end portion 72b. It is close to the position. Accordingly, by moving the rotary shaft portion 65 inserted through the long hole 72 between the end portions 72a and 72b, the rotary shaft portion 65 is moved closer to the rotary shaft (screw shaft 41) of the adjustment gear 61. Or it can be moved in the direction of separation.
 操作ギア62の回転軸部65が長孔72の内部で移動する様子を、図10及び図11を参照して説明する。なお、図10及び図11においては、回転軸部65を分かり易く図示するため、操作ギア62は二点鎖線で示している。 A state in which the rotating shaft portion 65 of the operation gear 62 moves inside the elongated hole 72 will be described with reference to FIGS. 10 and 11. 10 and 11, the operation gear 62 is indicated by a two-dot chain line in order to easily illustrate the rotating shaft portion 65.
 図10及び図11に示すように、長孔72の長手方向の端部のうち、ネジ軸41側に近い側を接近側端部72aとする。即ち、長孔72の内部において、回転軸部65をネジ軸41に向けて最大限移動させれば、当該回転軸部65は接近側端部72aに接触する(図10の状態)。この状態において、図10に示すように、操作ギア62と調整ギア61が噛み合うように構成されている。 As shown in FIGS. 10 and 11, of the end portions in the longitudinal direction of the long holes 72, the side close to the screw shaft 41 side is defined as an approach side end portion 72 a. That is, if the rotary shaft 65 is moved to the maximum extent toward the screw shaft 41 inside the long hole 72, the rotary shaft 65 comes into contact with the approaching side end 72a (state of FIG. 10). In this state, as shown in FIG. 10, the operation gear 62 and the adjustment gear 61 are configured to mesh with each other.
 図10及び図11に示すように、長孔72の長手方向の端部のうち、接近側端部72aとは反対側の端部を、離間側端部72bとする。即ち、長孔72の内部において、回転軸部65をネジ軸41から離れる方向に最大限移動させれば、当該回転軸部65は離間側端部72bに接触する(図11の状態)。この状態においては、図11に示すように、操作ギア62と調整ギア61の噛合いが解除されるように構成されている。 As shown in FIG. 10 and FIG. 11, among the end portions in the longitudinal direction of the long holes 72, the end portion on the opposite side to the approach side end portion 72a is defined as a separation side end portion 72b. That is, if the rotary shaft portion 65 is moved to the maximum in the direction away from the screw shaft 41 inside the long hole 72, the rotary shaft portion 65 comes into contact with the separation-side end portion 72b (state of FIG. 11). In this state, as shown in FIG. 11, the engagement between the operation gear 62 and the adjustment gear 61 is released.
 以上のように、本実施形態の構成によれば、操作ギア62を、調整ギア61に噛み合う位置(図10)と、調整ギア61との噛合いを解除した位置(図11)と、の間で移動させることができる。これにより、操作ギア62と調整ギア61との噛合いの有無を切り換えることができる。 As described above, according to the configuration of the present embodiment, the position between the position where the operation gear 62 is engaged with the adjustment gear 61 (FIG. 10) and the position where the engagement with the adjustment gear 61 is released (FIG. 11). It can be moved with. Thereby, the presence or absence of meshing of the operation gear 62 and the adjustment gear 61 can be switched.
 また、本実施形態では上記のように、操作ギア62の回転軸部65を、長孔72の内部で移動させる構成であるから、回転軸部65の移動範囲は、長孔72の長手方向の端部によって規制される。即ち、回転軸部65は、長孔72の接近側端部72aに接触した状態(図10の状態)から、更にネジ軸41に近づくことはできない。また、回転軸部65は、長孔72の離間側端部72bに接触した状態(図11の状態)から、更にネジ軸41から離れることはできない。 Further, in the present embodiment, as described above, the rotation shaft portion 65 of the operation gear 62 is configured to move inside the long hole 72, and therefore the movement range of the rotation shaft portion 65 is in the longitudinal direction of the long hole 72. Regulated by the edge. That is, the rotating shaft portion 65 cannot further approach the screw shaft 41 from the state in which the rotating shaft portion 65 is in contact with the approaching end portion 72a of the long hole 72 (the state in FIG. 10). Further, the rotating shaft portion 65 cannot further move away from the screw shaft 41 from the state in which the rotating shaft portion 65 is in contact with the separation-side end portion 72b of the long hole 72 (state in FIG. 11).
 このように、本実施形態では、操作ギア62の回転軸部65の移動範囲を長孔72によって規制できるので、操作ギア62が調整ギア61に対して近付き過ぎたり、離れ過ぎたりすることを防止できる。 Thus, in this embodiment, since the moving range of the rotating shaft part 65 of the operation gear 62 can be regulated by the long hole 72, the operation gear 62 is prevented from being too close or too far from the adjustment gear 61. it can.
 また、本実施形態では上記のように、長孔72が形成されている操作ギア支持部73は、繰出ケース21に一体形成されている。従って、長孔72の位置及び形状の精度は、もっぱら繰出ケース21の成形精度によって決まり、組立精度などの影響を受けない。これにより、長孔72を、繰出ケース21に対して精度良く配置できる。 In the present embodiment, as described above, the operation gear support portion 73 in which the long hole 72 is formed is formed integrally with the feeding case 21. Accordingly, the accuracy of the position and shape of the long hole 72 is determined solely by the molding accuracy of the feeding case 21 and is not affected by the assembly accuracy. Thereby, the long hole 72 can be accurately arranged with respect to the feeding case 21.
 従って、当該長孔72の接近側端部72aに回転軸部65を接触させることにより(図10の状態)、当該回転軸部65を、ネジ軸41に対して精度良く位置決めできる。これにより、操作ギア62の回転軸(回転軸部65)と、調整ギア61の回転軸(ネジ軸41)と、の距離(芯間)のバラツキを抑えることができる。従って、本実施形態の構成によれば、操作ギア62と調整ギア61を、安定して噛み合わせることができる。 Therefore, the rotating shaft portion 65 can be accurately positioned with respect to the screw shaft 41 by bringing the rotating shaft portion 65 into contact with the approaching end portion 72a of the long hole 72 (state of FIG. 10). Thereby, variation in the distance (between the cores) between the rotation shaft (rotation shaft portion 65) of the operation gear 62 and the rotation shaft (screw shaft 41) of the adjustment gear 61 can be suppressed. Therefore, according to the configuration of the present embodiment, the operation gear 62 and the adjustment gear 61 can be meshed stably.
 なお、前述のように、本実施形態の直播装置8が備える6つの操作ギア62の回転軸部65は、連結軸63によって連結されている。従って、当該回転軸部65を、ネジ軸41に対して接近又は離間する方向に移動させる場合は、直播装置8が備える6つの操作ギア62を一斉に移動させることになる。即ち、本実施形態の構成によれば、操作ギア62と調整ギア61との噛合いの有無を、6つの繰出ケース21で一斉に切り換えることができる。 As described above, the rotary shaft portions 65 of the six operation gears 62 included in the direct seeding device 8 of the present embodiment are connected by the connecting shaft 63. Therefore, when the rotary shaft 65 is moved in a direction approaching or separating from the screw shaft 41, the six operation gears 62 included in the direct seeding device 8 are moved all at once. That is, according to the configuration of the present embodiment, the presence / absence of engagement between the operation gear 62 and the adjustment gear 61 can be switched simultaneously by the six feeding cases 21.
 ところで、ギア同士の噛合いの有無を切り換える手法としては、本実施形態のようにギアの軸同士を接近又は離間させる方向に移動させる手法以外にも、ギアを軸方向にズラすことで、当該ギア同士の噛合いの有無を切り換える手法がある。しかし、ギアを軸方向にズラして噛合いの有無を切り換える手法の場合、ギアを再び噛み合わせるためには、両方のギアのギア歯の端面にチャンファを設ける必要があり、コストが掛かるという問題がある。 By the way, as a method of switching the presence / absence of engagement between gears, in addition to a method of moving the gear shafts in the direction of approaching or separating from each other as in the present embodiment, There is a method for switching the presence / absence of engagement between gears. However, in the case of the method of switching the presence / absence of meshing by shifting the gear in the axial direction, it is necessary to provide a chamfer on the end surfaces of the gear teeth of both gears in order to mesh the gears again, which is costly There is.
 この点、本実施形態では上記のように、操作ギア62の回転軸部65を、調整ギア61の回転軸(ネジ軸41)に対して接近又は離間させる方向に移動させることで、操作ギア62と調整ギア61との噛合いの有無を切り換えるものであるから、操作ギア62と調整ギア61を噛み合わせるためのチャンファは不要である。これにより、操作ギア62及び調整ギア61を安価に構成でき、直播装置8全体のコストを下げることができる。 In this respect, in this embodiment, as described above, the operation gear 62 is moved by moving the rotation shaft portion 65 of the operation gear 62 in the direction of approaching or separating from the rotation shaft (screw shaft 41) of the adjustment gear 61. Therefore, the chamfer for meshing the operation gear 62 and the adjustment gear 61 is not necessary. Thereby, the operation gear 62 and the adjustment gear 61 can be configured at low cost, and the cost of the direct seeding device 8 as a whole can be reduced.
 続いて、操作ギア62と調整ギア61との噛合いの有無を切り換えるように操作するための構成について説明する。本実施形態の直播装置においては、リンク機構によって操作ギア62を移動させることにより、当該操作ギア62と調整ギア61との噛合いの有無を切り換えるように構成されている。図10及び図11に示すように、本実施形態のリンク機構は、芯間変更リンク(リンク部材)75と、リンク操作軸76と、から構成されている。 Subsequently, a configuration for performing an operation so as to switch the presence / absence of engagement between the operation gear 62 and the adjustment gear 61 will be described. In the direct seeding apparatus of the present embodiment, the operation gear 62 is moved by a link mechanism, so that the presence / absence of engagement between the operation gear 62 and the adjustment gear 61 is switched. As shown in FIGS. 10 and 11, the link mechanism of this embodiment includes an inter-core change link (link member) 75 and a link operation shaft 76.
 リンク操作軸76は、ネジ軸41と平行な方向(左右方向)に沿って配置された丸棒状の部材である。図4等に示すように、繰出ケース21には、リンク操作軸76を挿通可能な丸孔77が形成されている。リンク操作軸76は、前記丸孔77に挿通されることにより、繰出ケース21によって回転可能に支持されている。なお、図2に示すように、リンク操作軸76は、直播装置8が備える複数(本実施形態の場合は6つ)の繰出ケース21にまたがって配置されている。 The link operation shaft 76 is a round bar-shaped member arranged along a direction (left-right direction) parallel to the screw shaft 41. As shown in FIG. 4 and the like, the feeding case 21 is formed with a round hole 77 into which the link operation shaft 76 can be inserted. The link operation shaft 76 is rotatably supported by the feeding case 21 by being inserted into the round hole 77. As shown in FIG. 2, the link operation shaft 76 is disposed across a plurality of (six in the case of this embodiment) feeding cases 21 included in the direct seeding device 8.
 図2に示すように、リンク操作軸76の端部には、操作レバー81が固定的に設けられている。オペレータは、操作レバー81を回転操作することにより、リンク操作軸76を回転させることができる。 As shown in FIG. 2, an operation lever 81 is fixedly provided at the end of the link operation shaft 76. The operator can rotate the link operation shaft 76 by rotating the operation lever 81.
 リンク操作軸76には、前記芯間変更リンク75が固定されている。芯間変更リンク75は、リンク操作軸76に略直交して配置された略板状の部材である。リンク操作軸76を軸線まわりで回転させることにより、当該リンク操作軸76に固定されている芯間変更リンク75を、ネジ軸41の軸線方向(左右方向)に直交する平面(図10及び図11において紙面に平行な平面)内で回動させることができる。なお、本実施形態において、芯間変更リンク75は、各繰出ケース21に対応して設けられている。 The link change shaft 75 is fixed to the link operation shaft 76. The center-to-center change link 75 is a substantially plate-like member disposed substantially orthogonal to the link operation shaft 76. By rotating the link operation shaft 76 about the axis, the center-to-center change link 75 fixed to the link operation shaft 76 is made a plane orthogonal to the axial direction (left-right direction) of the screw shaft 41 (FIGS. 10 and 11). In the plane parallel to the paper surface). In the present embodiment, the center-to-center change link 75 is provided corresponding to each feeding case 21.
 図10及び図11に示すように、芯間変更リンク75の先端部には、リンク操作軸76とは略反対側に向けて突出する突出部79,80が形成されている。図10及び図11に示すように、突出部79,80は、ネジ軸41の軸線方向(左右方向)で見たときに、長孔72にオーバーラップできるように配置されている。また、図10及び図11に示すように、ネジ軸41の軸線方向(左右方向)で見たときに、突出部79,80の長手方向(突出方向)は、長孔72の長手方向に略直交するように配置されている。2本の突出部79,80の間隔は、操作ギア62の回転軸部65の直径とほぼ同じ程度に設定されている。これにより、図10及び図11に示すように、長孔72に挿通された状態の回転軸部65が、2本の突出部79,80の間に嵌まり込むことができるように構成されている。 As shown in FIGS. 10 and 11, projecting portions 79 and 80 projecting toward the side substantially opposite to the link operation shaft 76 are formed at the tip of the inter-center changing link 75. As shown in FIGS. 10 and 11, the protrusions 79 and 80 are arranged so as to overlap the elongated hole 72 when viewed in the axial direction (left-right direction) of the screw shaft 41. 10 and 11, when viewed in the axial direction (left and right direction) of the screw shaft 41, the longitudinal direction (protruding direction) of the projecting portions 79 and 80 is substantially the same as the longitudinal direction of the long hole 72. It arrange | positions so that it may orthogonally cross. The interval between the two protruding portions 79 and 80 is set to be approximately the same as the diameter of the rotating shaft portion 65 of the operation gear 62. Accordingly, as shown in FIGS. 10 and 11, the rotary shaft portion 65 inserted into the long hole 72 is configured to be fitted between the two projecting portions 79 and 80. Yes.
 このように、芯間変更リンク75の2本の突出部79,80が、長孔72に挿入された状態の回転軸部65に接触できるように構成されている。そして、当該芯間変更リンク75を、リンク操作軸76まわりで回動させることにより、前記回転軸部65を、長孔72の内部で、当該長孔72の長手方向に沿って移動させることができる。 Thus, the two projecting portions 79 and 80 of the inter-center changing link 75 are configured to be able to contact the rotating shaft portion 65 inserted in the long hole 72. Then, by rotating the center-to-center change link 75 around the link operation shaft 76, the rotary shaft portion 65 can be moved along the longitudinal direction of the long hole 72 inside the long hole 72. it can.
 芯間変更リンク75は、回転軸部65を長孔72の接近側端部72aに接触させた状態(図10の状態)と、回転軸部65を長孔72の離間側端部72bに接触させた状態(図11の状態)と、の間で回動できるように構成されている。従って、芯間変更リンク75をリンク操作軸76まわりで回動させることにより、操作ギア62を、調整ギア61と噛み合う位置(図10)と、噛合いが解除された位置(図11)と、の間で移動させることができるようになっている。 The center-to-center change link 75 is in a state where the rotary shaft portion 65 is in contact with the approaching side end portion 72a of the long hole 72 (the state shown in FIG. It is comprised so that it can rotate between the made state (state of FIG. 11). Accordingly, by rotating the inter-center change link 75 around the link operation shaft 76, the operation gear 62 is engaged with the adjustment gear 61 (FIG. 10), the disengagement position (FIG. 11), It can be moved between.
 そして前述のように、芯間変更リンク75が固定されているリンク操作軸76には、操作レバー81が固定的に設けられている。従って、オペレータは、操作レバー81を回転操作することにより、芯間変更リンク75を、リンク操作軸76まわりで回動させることができる。ここで、操作ギア62と調整ギア61とが噛み合った状態(図10の状態)での操作レバー81の位置を、第1位置とする。また、操作ギア62と調整ギア61との噛合いが解除された状態(図11の状態)での操作レバー81の位置を、第2位置とする。即ち、オペレータは、操作レバー81を第1位置まで回動操作することにより、操作ギア62と調整ギア61とを噛み合わせることができる。また、オペレータは、操作レバー81を第2位置まで回動操作させることにより、操作ギア62と調整ギア61との噛合いを解除させることができる。 As described above, the operation lever 81 is fixedly provided on the link operation shaft 76 to which the center change link 75 is fixed. Accordingly, the operator can rotate the inter-link changing link 75 around the link operation shaft 76 by rotating the operation lever 81. Here, the position of the operation lever 81 when the operation gear 62 and the adjustment gear 61 are engaged with each other (the state shown in FIG. 10) is defined as a first position. Further, the position of the operation lever 81 in a state where the engagement between the operation gear 62 and the adjustment gear 61 is released (the state shown in FIG. 11) is defined as a second position. That is, the operator can engage the operation gear 62 and the adjustment gear 61 by rotating the operation lever 81 to the first position. Further, the operator can release the engagement between the operation gear 62 and the adjustment gear 61 by rotating the operation lever 81 to the second position.
 続いて、長孔72の形状についてより詳しく説明する。図12に示すように、本実施形態において、ネジ軸41の軸線方向で見たときに、長孔72は、その長手方向を、リンク操作軸76の軸心を中心とする仮想円C1に沿わせて形成されている。従って、当該長孔72内に挿入された状態の回転軸部65は、仮想円C1(図12に一点鎖線で示す)に沿って、リンク操作軸76を中心とする円弧運動を行うことになる。 Subsequently, the shape of the long hole 72 will be described in more detail. As shown in FIG. 12, in this embodiment, when viewed in the axial direction of the screw shaft 41, the long hole 72 has its longitudinal direction along a virtual circle C <b> 1 centered on the axis of the link operation shaft 76. Are formed. Accordingly, the rotary shaft portion 65 inserted into the elongated hole 72 performs an arc motion around the link operation shaft 76 along the virtual circle C1 (indicated by a one-dot chain line in FIG. 12). .
 回転軸部65が、ネジ軸41に接近する方向に移動する際の移動方向を、図12に白抜きの矢印A1で示す。前述のように、矢印A1は、リンク操作軸76の軸心を中心とする仮想円C1に沿っている。 The moving direction when the rotating shaft 65 moves in the direction approaching the screw shaft 41 is indicated by a white arrow A1 in FIG. As described above, the arrow A <b> 1 is along the virtual circle C <b> 1 centered on the axis of the link operation shaft 76.
 図12に示すように、ネジ軸41の軸線方向で見たときに、矢印A1は、ネジ軸41の軸中心P1からズレた方向を向くように構成されている。つまり、回転軸部65は、ネジ軸41に接近する方向に移動する際、ネジ軸41の軸中心P1に向けて真っ直ぐに移動するのではなく、軸中心P1からズレた位置に向けて移動する。 As shown in FIG. 12, when viewed in the axial direction of the screw shaft 41, the arrow A1 is configured to face a direction shifted from the axial center P1 of the screw shaft 41. That is, when the rotary shaft 65 moves in the direction approaching the screw shaft 41, the rotary shaft portion 65 does not move straight toward the axis center P1 of the screw shaft 41 but moves toward a position shifted from the axis center P1. .
 以上の構成により、操作ギア62のギア歯は、調整ギア61のギア歯に対して、斜め方向から接近することになる。これにより、調整ギア61と操作ギア62のギア歯同士が接触したときに、調整ギア61のギア歯を、操作ギア62のギア歯が斜めから押すので、両ギアが自然に回転し、ギア同士が噛み合うことができる。従って、ギア同士を確実に噛み合わせることができる。 With the above configuration, the gear teeth of the operation gear 62 approach the gear teeth of the adjustment gear 61 from an oblique direction. As a result, when the gear teeth of the adjustment gear 61 and the operation gear 62 come into contact with each other, the gear teeth of the adjustment gear 61 are pushed diagonally by the gear teeth of the operation gear 62. Can mesh. Therefore, the gears can be reliably engaged with each other.
 なお、仮に、回転軸部65をネジ軸41の軸中心P1に向けて真っ直ぐに移動させた場合(矢印A1が、ネジ軸41の軸中心P1を向いている場合)、操作ギア62と調整ギア61のギア歯同士が正面から衝突してしまうことがある。この場合、ギア歯同士を噛み合わせることができないだけでなく、ギア歯が破損する原因になり得る。この点、本実施形態の構成によれば、上記のように、操作ギア62と調整ギア61のギア歯が斜め方向から接触するので、ギア歯同士が正面衝突することがなく、ギア歯の破損を防止できる。 If the rotary shaft 65 is moved straight toward the axis center P1 of the screw shaft 41 (when the arrow A1 faces the axis center P1 of the screw shaft 41), the operation gear 62 and the adjustment gear are used. 61 gear teeth may collide from the front. In this case, not only the gear teeth cannot be meshed but also the gear teeth can be damaged. In this regard, according to the configuration of the present embodiment, as described above, the gear teeth of the operation gear 62 and the adjustment gear 61 come in contact with each other from an oblique direction. Can be prevented.
 また、本実施形態では、図10に示すように、操作ギア62の位置を保持するための保持部82が設けられている。この保持部82は、第1係止部83と、第2係止部84と、を備えている。第1係止部83及び第2係止部84は、操作レバー81を係止して(引っ掛けて)固定できるように構成されている。 In the present embodiment, as shown in FIG. 10, a holding portion 82 for holding the position of the operation gear 62 is provided. The holding portion 82 includes a first locking portion 83 and a second locking portion 84. The first locking portion 83 and the second locking portion 84 are configured so that the operation lever 81 can be locked (hooked) and fixed.
 図10に示すように、第1係止部83は、当該第1係止部83に操作レバー81を係止させる(引っ掛ける)ことにより、当該操作レバー81を第1位置で固定できるように構成されている。 As shown in FIG. 10, the first locking portion 83 is configured so that the operation lever 81 can be fixed at the first position by locking (hooking) the operation lever 81 with the first locking portion 83. Has been.
 従って、オペレータは、繰出ロール28による種子の繰出量の調整を行うときには、操作レバー81を第1係止部83に係止させれば良い。これによれば、操作ギア62を、調整ギア61に噛み合った位置(図10)で保持できる。従って、オペレータは、この状態で操作ハンドル64を回転操作することにより、操作ギア62を介して調整ギア61を回転させることができるので、ネジ送り機構40を作動させて繰出ロール28の繰出穴28aの容量を変更できる。これにより、繰出量を調整することができる。 Therefore, the operator only needs to lock the operation lever 81 to the first locking portion 83 when adjusting the amount of seed fed by the feeding roll 28. According to this, the operation gear 62 can be held at a position (FIG. 10) meshed with the adjustment gear 61. Accordingly, the operator can rotate the adjustment gear 61 via the operation gear 62 by rotating the operation handle 64 in this state. Therefore, the screw feeding mechanism 40 is operated to feed the feeding hole 28a of the feeding roll 28. You can change the capacity. Thereby, the feeding amount can be adjusted.
 また、図11に示すように、第2係止部84は、当該第2係止部84に操作レバー81を係止させる(引っ掛ける)ことにより、当該操作レバー81を第2位置で固定できるように構成されている。 Further, as shown in FIG. 11, the second locking portion 84 can fix the operation lever 81 in the second position by locking (hooking) the operation lever 81 with the second locking portion 84. It is configured.
 従って、オペレータは、繰出量の調整を行わないときには、操作レバー81を第2係止部84に係止させれば良い。これによれば、操作ギア62を、調整ギア61に噛み合わない位置(図11)で保持できる。このように、必要なとき以外には操作ギア62と調整ギア61が噛み合わないようにできるので、当該操作ギア62と調整ギア61の摩耗や破損を防止できる。 Therefore, when the operator does not adjust the feeding amount, the operator may lock the operation lever 81 with the second locking portion 84. According to this, the operation gear 62 can be held at a position where it does not mesh with the adjustment gear 61 (FIG. 11). In this way, the operation gear 62 and the adjustment gear 61 can be prevented from meshing except when necessary, so that the operation gear 62 and the adjustment gear 61 can be prevented from being worn or damaged.
 以上で説明したように、本実施形態の直播装置8が備える種子繰出装置9は、種子を収容するホッパ20の下方に配置され、前記種子が供給される繰出ケース21を備える。繰出ケース21内には、種子を所定量ずつ繰り出す繰出ロール28が設けられる。繰出ケース21は、繰出ロール28と一体的に回転する従動ギア30を支持する従動ギア支持部(繰出ケース21の左側壁33)と、前記従動ギア30に噛み合う駆動ギア31を支持する駆動ギア支持部49と、を有する。 As described above, the seed feeding device 9 included in the direct sowing device 8 of the present embodiment includes the feeding case 21 that is arranged below the hopper 20 that accommodates seeds and is supplied with the seeds. In the feeding case 21, a feeding roll 28 for feeding seeds by a predetermined amount is provided. The feeding case 21 includes a driven gear support (a left side wall 33 of the feeding case 21) that supports a driven gear 30 that rotates integrally with the feeding roll 28, and a driving gear support that supports a driving gear 31 that meshes with the driven gear 30. Part 49.
 このように、従動ギア30と駆動ギア31の両方を繰出ケース21に支持させたことにより、当該従動ギア30及び駆動ギア31の芯間が、繰出ケース21の精度のみで決まる。これにより、従動ギア30と駆動ギア31の芯間のバラツキを抑え、ギア30,31の噛合せ精度を向上させることができる。 Thus, by supporting both the driven gear 30 and the driving gear 31 on the feeding case 21, the distance between the cores of the driven gear 30 and the driving gear 31 is determined only by the accuracy of the feeding case 21. Thereby, the dispersion | variation between the cores of the driven gear 30 and the drive gear 31 can be suppressed, and the meshing precision of the gears 30 and 31 can be improved.
 また、上記で説明したように、本実施形態の種子繰出装置9において、従動ギア支持部(繰出ケース21の左側壁33)と、駆動ギア支持部49が、一体形成されている。 Further, as described above, in the seed feeding device 9 of the present embodiment, the driven gear support (the left side wall 33 of the feeding case 21) and the drive gear support 49 are integrally formed.
 このように、従動ギア支持部と駆動ギア支持部49を一体形成することで、当該従動ギア支持部と駆動ギア支持部49の位置が、繰出ケースの成形精度のみによって定まる。従って、従動ギア30及び駆動ギア31の芯間が、組立精度の影響を受けない。これにより、ギア30,31の噛合せ精度を更に向上させることができる。 Thus, by integrally forming the driven gear support portion and the drive gear support portion 49, the positions of the driven gear support portion and the drive gear support portion 49 are determined only by the forming accuracy of the feeding case. Therefore, the center of the driven gear 30 and the drive gear 31 is not affected by the assembly accuracy. Thereby, the meshing accuracy of the gears 30 and 31 can be further improved.
 また、上記で説明したように、本実施形態の種子繰出装置9は、繰出ケース21を複数備えている。各繰出ケース21は、駆動ギア31に軸線を一致させて配置され、当該駆動ギア31に対して駆動力を伝達する駆動伝達軸32を備える。駆動伝達軸32は、繰出ケース21ごとに独立して設けられている。各繰出ケース21は、駆動伝達軸32を支持する伝達軸支持部48を備える。そして、種子繰出装置9は、隣接する繰出ケース21の駆動伝達軸32同士を連結する連結軸68を備えている。 Further, as described above, the seed feeding device 9 of the present embodiment includes a plurality of feeding cases 21. Each feeding case 21 includes a drive transmission shaft 32 that is arranged so that the axis line coincides with the drive gear 31 and transmits a driving force to the drive gear 31. The drive transmission shaft 32 is provided independently for each feeding case 21. Each feeding case 21 includes a transmission shaft support portion 48 that supports the drive transmission shaft 32. The seed feeding device 9 includes a connecting shaft 68 that connects the drive transmission shafts 32 of the adjacent feeding cases 21.
 このように、繰出ケース21ごとに独立して駆動伝達軸32を設けたので、繰出ケース21と駆動伝達軸32をまとめて1つのユニットとして扱うことができる。そして、隣接する繰出ケース21の駆動伝達軸32同士を連結軸68によって連結することにより、全ての駆動伝達軸32に駆動力を伝達できる。 Thus, since the drive transmission shaft 32 is provided independently for each feeding case 21, the feeding case 21 and the drive transmission shaft 32 can be collectively handled as one unit. Then, the driving force can be transmitted to all the drive transmission shafts 32 by connecting the drive transmission shafts 32 of the adjacent feeding cases 21 by the connection shaft 68.
 また、上記で説明したように、本実施形態の種子繰出装置9は、各繰出ケース21において、駆動伝達軸32と、駆動ギア31と、の間にクラッチ機構50を有している。 Further, as described above, the seed feeding device 9 of the present embodiment includes the clutch mechanism 50 between the drive transmission shaft 32 and the drive gear 31 in each feeding case 21.
 即ち、本実施形態においては、繰出ケース21ごとに個別に駆動伝達軸32を設けているので、これに加えて繰出ケース21ごとにクラッチ機構50を設ければ、駆動伝達軸32、クラッチ機構50、繰出ケース21をまとめて1つのユニットとして扱うことができる。 That is, in the present embodiment, the drive transmission shaft 32 is individually provided for each feeding case 21. If the clutch mechanism 50 is provided for each feeding case 21 in addition to this, the driving transmission shaft 32 and the clutch mechanism 50 are provided. The feeding case 21 can be collectively handled as one unit.
 また、上記で説明したように、本実施形態の種子繰出装置9において、繰出ロール28は、種子を繰り出す量を調整可能なネジ送り機構40を有している。繰出ケース21は、ネジ送り機構40のネジ軸41に固定された調整ギア61と、調整ギア61に噛合い可能な操作ギア62を支持する操作ギア支持部73と、を備えている。 Also, as described above, in the seed feeding device 9 of the present embodiment, the feeding roll 28 has a screw feed mechanism 40 that can adjust the amount of seeds fed out. The feeding case 21 includes an adjustment gear 61 fixed to the screw shaft 41 of the screw feeding mechanism 40 and an operation gear support portion 73 that supports an operation gear 62 that can mesh with the adjustment gear 61.
 このように、操作ギア62を繰出ケース21に支持させたことにより、当該操作ギア62と調整ギア61の芯間が、繰出ケース21の精度のみで決まる。これにより、調整ギア61と操作ギア62の芯間のバラツキを抑え、当該調整ギア61及び操作ギア62の噛合せ精度を向上させることができる。 Thus, by supporting the operation gear 62 on the feeding case 21, the distance between the operation gear 62 and the adjustment gear 61 is determined only by the accuracy of the feeding case 21. Thereby, the variation between the centers of the adjustment gear 61 and the operation gear 62 can be suppressed, and the meshing accuracy of the adjustment gear 61 and the operation gear 62 can be improved.
 また、上記で説明したように、本実施形態の種子繰出装置9において、前記操作ギア62の回転軸部65を、ネジ軸41に対して接近又は離間する方向に移動させることにより、調整ギア61と操作ギア62が噛み合った状態と、噛み合っていない状態と、を切換可能に構成されている。 Further, as described above, in the seed feeding device 9 of the present embodiment, the adjustment gear 61 is moved by moving the rotary shaft portion 65 of the operation gear 62 in a direction approaching or separating from the screw shaft 41. The operation gear 62 can be switched between a state where the operation gear 62 is engaged and a state where the operation gear 62 is not engaged.
 このように操作ギア62の回転軸部65を、調整ギア61の回転軸(ネジ軸41)から離間させることにより、操作ギア62と調整ギア61の噛合いを解除できる。これにより、繰出量の調整を行わないときには操作ギア62と調整ギア61を離間させておくことができるので、当該操作ギア62及び調整ギア61の摩耗又は破損を防止できる。また、このようにギアの軸同士を接近又は離間させる構成であれば、チャンファ無しで噛合い可能であるから、コストアップを防止できる。 In this way, the engagement between the operation gear 62 and the adjustment gear 61 can be released by separating the rotation shaft portion 65 of the operation gear 62 from the rotation shaft (screw shaft 41) of the adjustment gear 61. Thus, when the feed amount is not adjusted, the operation gear 62 and the adjustment gear 61 can be separated from each other, so that the operation gear 62 and the adjustment gear 61 can be prevented from being worn or damaged. In addition, if the gear shafts are configured to approach or separate from each other in this way, the gears can be engaged without a chamfer, so that an increase in cost can be prevented.
 また、上記で説明したように、本実施形態の直播装置8は、複数の繰出ケース21を一方向に並べて備えるとともに、当該複数の繰出ケース21それぞれに対応して調整ギア61及び操作ギア62が設けられている。各操作ギア62の回転軸部65は、互いに連結されている。 Further, as described above, the direct seeding device 8 of the present embodiment includes a plurality of feeding cases 21 arranged in one direction, and an adjustment gear 61 and an operation gear 62 corresponding to each of the plurality of feeding cases 21. Is provided. The rotation shaft portions 65 of the operation gears 62 are connected to each other.
 このように、複数の操作ギア62の回転軸部65を連結することにより、複数の操作ギア62を一斉に回転操作できる。これにより、各繰出ケース21の繰出ロール28の繰出量を、一斉に調整できる。また、各操作ギア62の回転軸部65が連結されているので、調整ギア61との噛合いの有無の切換を、複数の操作ギア62で一斉に行うことができる。 In this way, by connecting the rotating shaft portions 65 of the plurality of operation gears 62, the plurality of operation gears 62 can be rotated at the same time. Thereby, the feeding amount of the feeding roll 28 of each feeding case 21 can be adjusted all at once. Further, since the rotation shaft portion 65 of each operation gear 62 is connected, the switching of the presence / absence of engagement with the adjustment gear 61 can be performed simultaneously by the plurality of operation gears 62.
 また、上記で説明したように、本実施形態の直播装置8においては、操作ギア62の回転軸部65を支持する操作ギア支持部73を、繰出ケース21に固定的に設けている。 Also, as described above, in the direct seeding device 8 of the present embodiment, the operation gear support portion 73 that supports the rotating shaft portion 65 of the operation gear 62 is fixedly provided on the feeding case 21.
 このように、繰出ケース21に固定的に設けられた操作ギア支持部73によって、操作ギア62の回転軸部65を支持するので、操作ギア62を繰出ケース21に対して精度良く位置決めできる。これにより、当該操作ギア62と調整ギア61の芯間のバラツキを抑え、両ギアの噛合せ精度を向上させることができる。 As described above, since the rotation shaft portion 65 of the operation gear 62 is supported by the operation gear support portion 73 fixedly provided on the supply case 21, the operation gear 62 can be accurately positioned with respect to the supply case 21. Thereby, the dispersion | variation between the cores of the said operation gear 62 and the adjustment gear 61 can be suppressed, and the meshing precision of both gears can be improved.
 また、上記で説明したように、本実施形態の直播装置において、操作ギア支持部73には長孔72が形成されている。回転軸部65は、長孔72の内部に挿入され、かつ当該長孔72に沿って移動可能に構成されている。 Further, as described above, in the direct seeding device of the present embodiment, the operation gear support portion 73 has a long hole 72 formed therein. The rotating shaft portion 65 is inserted into the long hole 72 and is configured to be movable along the long hole 72.
 このように、操作ギア62の回転軸部65を挿通させる長孔72を設けることによって、当該回転軸部65の移動範囲を規制できる。これにより、操作ギア62と調整ギア61が必要以上に近付いてしまうことを防止できる。 Thus, by providing the long hole 72 through which the rotation shaft portion 65 of the operation gear 62 is inserted, the movement range of the rotation shaft portion 65 can be regulated. As a result, the operation gear 62 and the adjustment gear 61 can be prevented from approaching more than necessary.
 また、上記で説明したように、本実施形態の直播装置8は、操作ギア62の回転軸部65に接触可能な芯間変更リンク75を備えている。そして、芯間変更リンク75がリンク操作軸76まわりで回動することにより、回転軸部65をネジ軸41に対して接近又は離間する方向に移動させる。 Further, as described above, the direct seeding device 8 of the present embodiment includes the inter-center changing link 75 that can contact the rotating shaft portion 65 of the operation gear 62. Then, the center-to-center change link 75 rotates around the link operation shaft 76 to move the rotation shaft portion 65 in a direction approaching or separating from the screw shaft 41.
 以上の構成によれば、リンク操作軸76を回転操作することにより、操作ギア62を、調整ギア61に噛み合う位置と、噛合いを解除した位置と、の間で移動させることができる。 According to the above configuration, by operating the link operation shaft 76 to rotate, the operation gear 62 can be moved between the position where the adjustment gear 61 is engaged and the position where the engagement is released.
 また、上記で説明したように、本実施形態の直播装置8においては、ネジ軸41に対して接近する際の回転軸部65の移動方向(図11に矢印A1で示す方向)が、ネジ軸41の軸中心P1からズレた位置を向いている。 Further, as described above, in the direct seeding device 8 of the present embodiment, the moving direction (the direction indicated by the arrow A1 in FIG. 11) of the rotating shaft portion 65 when approaching the screw shaft 41 is the screw shaft. It faces the position shifted from the axis center P1 of 41.
 これにより、調整ギア61に対して、操作ギア62が斜め方向から接近することになるので、ギア歯同士が正面から衝突することがない。これにより、ギア歯同士を確実に噛み合わせることができるとともに、ギア歯同士が衝突して破損することを防止できる。 Thereby, since the operation gear 62 approaches the adjustment gear 61 from an oblique direction, the gear teeth do not collide from the front. Thereby, while being able to mesh | engage gear teeth reliably, it can prevent that gear teeth collide and are damaged.
 また、本実施形態の散布作業車1は、上記の種子繰出装置9と、当該種子繰出装置9を搭載して走行可能な車体2と、を備えている。 Moreover, the spreading work vehicle 1 of the present embodiment includes the seed feeding device 9 and a vehicle body 2 that can travel by mounting the seed feeding device 9.
 この散布作業車1は、従動ギア30と駆動ギア31の噛合せ精度が向上しているので、繰出ロール28を安定して駆動しながら走行できる。これにより、種子を確実かつ安定して繰り出しながら走行することができる。 Since the meshing accuracy of the driven gear 30 and the drive gear 31 is improved, the spreading work vehicle 1 can travel while driving the feeding roll 28 stably. Thereby, it can drive | work, feeding a seed reliably and stably.
 以上に本発明の第1実施形態を説明したが、上記の構成は例えば以下のように変更することができる。 Although the first embodiment of the present invention has been described above, the above configuration can be modified as follows, for example.
 上記実施形態では、従動ギア支持部(繰出ケース21の左側壁)と、駆動ギア支持部49と、を一体形成したものとしたが、必ずしもこれに限定されない。例えば、駆動ギア支持部49を、繰出ケース21とは別部材として構成するとともに、当該駆動ギア支持部49を繰出ケース21に固定した構成とすることもできる。 In the above embodiment, the driven gear support (the left side wall of the feeding case 21) and the drive gear support 49 are integrally formed, but the present invention is not necessarily limited thereto. For example, the drive gear support 49 may be configured as a separate member from the feeding case 21 and the driving gear support 49 may be fixed to the feeding case 21.
 上記実施形態において、繰出ロール28は、繰出穴28aの容量を変更可能なスライドロールタイプとしたが、これに限らず、繰出穴28aの容量を変更できないタイプの繰出ロールを採用することもできる。 In the above embodiment, the feeding roll 28 is a slide roll type that can change the capacity of the feeding hole 28a. However, the present invention is not limited to this, and a feeding roll of a type that cannot change the capacity of the feeding hole 28a can also be adopted.
 上記実施形態においては、駆動伝達軸32と連結軸68の端部に切欠き(Dカット)を形成し、この部分に連結部材69を嵌合させることにより、駆動伝達軸32と連結軸68を相対回転不能に連結する構成としている。しかしながら、駆動伝達軸32と連結軸68の連結構造は、これに限定されない。例えば、駆動伝達軸32と連結軸68の端部に、切欠きの代わりにキー溝を形成し、この部分に連結部材69を嵌合させても良い。また例えば、駆動伝達軸32と連結軸68をスプライン嵌合により連結しても良い(この場合、連結部材69は省略できる)。その他、駆動伝達軸32と連結軸68とを連結する構成としては、公知の適宜の連結構造を採用できる。もっとも、隣接する駆動伝達軸32同士を、例えば連結部材69によって直接的に連結することも可能である。この場合、連結軸68は省略できる。 In the above embodiment, a notch (D cut) is formed at the ends of the drive transmission shaft 32 and the connection shaft 68, and the connection member 69 is fitted into this portion, whereby the drive transmission shaft 32 and the connection shaft 68 are connected. It is set as the structure connected so that relative rotation is impossible. However, the connection structure of the drive transmission shaft 32 and the connection shaft 68 is not limited to this. For example, a keyway may be formed in the end portions of the drive transmission shaft 32 and the connecting shaft 68 instead of the notch, and the connecting member 69 may be fitted in this portion. Further, for example, the drive transmission shaft 32 and the connecting shaft 68 may be connected by spline fitting (in this case, the connecting member 69 can be omitted). In addition, as a configuration for connecting the drive transmission shaft 32 and the connecting shaft 68, a known appropriate connecting structure can be adopted. However, the adjacent drive transmission shafts 32 can be directly connected by, for example, the connecting member 69. In this case, the connecting shaft 68 can be omitted.
 上記実施形態では、芯間変更リンク75は、各繰出ケース21に対応して設けられているものとしたが、芯間変更リンク75の数は特に限定されず、1つ以上の芯間変更リンク75が設けられていれば良い。 In the embodiment described above, the inter-center change link 75 is provided corresponding to each feeding case 21, but the number of inter-core change links 75 is not particularly limited, and one or more inter-core change links. 75 should just be provided.
 上記実施形態では、各操作ギア62の回転軸部65が、連結軸63によって連結されており、これにより複数の操作ギア62を一斉に回転操作する構成とした。しかし、これに限らず、各操作ギア62を個別に回転操作できる構成とすることもできる。 In the above-described embodiment, the rotation shaft portions 65 of the operation gears 62 are connected by the connection shaft 63, whereby the plurality of operation gears 62 are rotated at the same time. However, the present invention is not limited to this, and the operation gears 62 can be individually rotated.
 上記実施形態では、操作ギア62の回転軸部65、及びリンク操作軸76を、それぞれ繰出ケース21に支持させる構成としているが、これに限らず、回転軸部65及びリンク操作軸76の何れか又は両方を、繰出ケース21とは別の部材によって支持させる構成であっても良い。 In the above-described embodiment, the rotation shaft portion 65 and the link operation shaft 76 of the operation gear 62 are configured to be supported by the feeding case 21, but the present invention is not limited thereto, and either the rotation shaft portion 65 or the link operation shaft 76 is used. Or the structure which supports both by the member different from the feeding case 21 may be sufficient.
 上述したように、繰出量の調整を行うとき以外は、操作ギア62と調整ギア61が噛み合っている必要はないが、調整ギア61と操作ギア62との芯間を変更するための構成を省略し、図13に示すように、調整ギア61と操作ギア62とが常時噛み合うように構成しても良い。 As described above, the operation gear 62 and the adjustment gear 61 do not need to be engaged except when adjusting the feed amount, but the configuration for changing the center between the adjustment gear 61 and the operation gear 62 is omitted. However, as shown in FIG. 13, the adjustment gear 61 and the operation gear 62 may be configured to always mesh with each other.
 上記実施形態では、直播装置8(粒状体散布装置)や種子繰出装置9が車体2の後方に配置された構成となっている。しかし、粒状体散布装置の配置は必ずしもこれに限らず、例えば車体中央部や車体前方に粒状体散布装置を配置しても良い。 In the above-described embodiment, the direct sowing device 8 (granule spraying device) and the seed feeding device 9 are arranged behind the vehicle body 2. However, the arrangement of the granular material spraying device is not necessarily limited thereto, and for example, the granular material spraying device may be disposed in the center of the vehicle body or in front of the vehicle body.
 上記実施形態の構成は、種子繰出装置や直播装置に限らず、粒状体(例えば粒状の肥料など)を繰り出すための装置又は散布するための装置に広く採用することができる。 The configuration of the above embodiment is not limited to a seed feeding device and a direct sowing device, and can be widely used in a device for feeding a granular material (for example, granular fertilizer) or a device for spraying.
 次に、本発明の第2実施形態を説明する。なお、以降の実施形態及び変形例の説明においては、先に説明した実施形態等と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。図14は、本発明の第2実施形態に係る作業車としての田植機1xの側面図である。 Next, a second embodiment of the present invention will be described. In the following description of the embodiments and modifications, members that are the same as or similar to the previously described embodiments and the like are denoted by the same reference numerals in the drawings, and description thereof may be omitted. FIG. 14 is a side view of a rice transplanter 1x as a work vehicle according to the second embodiment of the present invention.
 図14に示すように、田植機1xは、車体2と、当該車体2の後方に配置された植付部3と、施肥機(粒状体散布装置)8xと、を備えている。 As shown in FIG. 14, the rice transplanter 1x includes a vehicle body 2, a planting part 3 disposed behind the vehicle body 2, and a fertilizer applicator (granular material spraying device) 8x.
 操向ハンドル7の左右には、予備苗台111が設けられている。予備苗台111には、予備のマット苗を収容した苗箱を搭載することができる。 The spare seedling stands 111 are provided on the left and right of the steering handle 7. A seedling box containing spare mat seedlings can be mounted on the spare seedling stand 111.
 前記植付部3は、車体2の後方に昇降リンク機構12を介して連結されている。また、車体2の後部には、エンジン10の駆動力を植付部3に出力するためのPTO軸13、植付部3を昇降駆動するための昇降シリンダ14等が配置されている。 The planting part 3 is connected to the rear of the vehicle body 2 via a lifting link mechanism 12. Further, a PTO shaft 13 for outputting the driving force of the engine 10 to the planting unit 3, a lifting cylinder 14 for driving the planting unit 3 up and down, and the like are disposed at the rear part of the vehicle body 2.
 昇降リンク機構12は、トップリンク18、ロワーリンク19等からなる平行リンク構造から構成されている。また、ロワーリンク19には、前記昇降シリンダ14が連結されている。昇降シリンダ14を伸縮動作させることにより、植付部3全体を上下に昇降できるように構成されている。 The elevating link mechanism 12 has a parallel link structure including a top link 18, a lower link 19, and the like. Further, the elevating cylinder 14 is connected to the lower link 19. By extending and retracting the elevating cylinder 14, the entire planting unit 3 can be moved up and down.
 植付部3は、苗載台17と、複数の植付ユニット90と、複数のフロート16と、を備えている。 The planting unit 3 includes a seedling stage 17, a plurality of planting units 90, and a plurality of floats 16.
 各植付ユニット90は、回転ケース91に2つの植付爪92を備えるロータリ式植付装置として構成されている。前記PTO軸13から入力される駆動力によって、回転ケース91が回転駆動されることで苗の植え付けを行うように構成されている。なお、本実施形態の田植機は4条植えの田植機として構成されており、4条分の植付ユニット90を車体の左右方向に並べて備えている。 Each planting unit 90 is configured as a rotary planting device provided with two planting claws 92 on a rotating case 91. The rotating case 91 is rotationally driven by the driving force input from the PTO shaft 13 so as to plant seedlings. In addition, the rice transplanter of this embodiment is comprised as a 4-row planting rice transplanter, and is equipped with the planting unit 90 for 4 strips arranged in the left-right direction of the vehicle body.
 苗載台17は、植付ユニット90の上方に配置されており、マット苗を載置可能に構成されている。なお、本実施形態の田植機は4条植えであるから、苗載台17は4条分のマット苗を車体の左右方向に並べて載置できるように構成されている。 The seedling stage 17 is disposed above the planting unit 90 and is configured to be able to place a mat seedling. In addition, since the rice transplanter of this embodiment is 4 row planting, the seedling mounting stand 17 is comprised so that the mat seedlings for 4 strips can be mounted side by side in the left-right direction of a vehicle body.
 苗載台17は、前記マット苗を各植付ユニット90に対して供給する搬送機構(周知の縦送り機構及び横送り機構)を備えている。これにより、各植付ユニット90に対して苗を順次供給できるので、各植付ユニット90が苗の植付けを行うことができる。 The seedling mounting stand 17 includes a transport mechanism (a well-known vertical feed mechanism and horizontal feed mechanism) that supplies the mat seedlings to the planting units 90. Thereby, since a seedling can be sequentially supplied with respect to each planting unit 90, each planting unit 90 can plant a seedling.
 フロート(浮き)16は、植付部3の下部に設けられ、その下面が地面に接触することができるように配置されている。 The float (floating) 16 is provided in the lower part of the planting part 3, and is arrange | positioned so that the lower surface can contact the ground.
 施肥機(粒状体散布装置)8は、固体粒状の肥料(粒状体)を圃場に散布するための装置である。施肥機8xは、肥料ホッパ27xと、肥料繰出装置9xと、搬送部36と、ブロア93と、空気供給管94と、を備えている。 The fertilizer applicator (granular material spraying device) 8 is a device for spraying solid granular fertilizer (granular material) to the field. The fertilizer applicator 8x includes a fertilizer hopper 27x, a fertilizer feeding device 9x, a transport unit 36, a blower 93, and an air supply pipe 94.
 図14に示すように、肥料ホッパ27xは、車体の前後方向において運転座席6と苗載台17の間の位置に配置されている。図15に示すように、肥料ホッパ27xは、ホッパ本体87と、蓋部88とを備えている。ホッパ本体87は、その上部が開放された容器として構成されており、当該ホッパ本体87の内部に肥料が収容される。蓋部88は、ホッパ本体87の上部の開放部を覆うように配置されている。 As shown in FIG. 14, the fertilizer hopper 27x is disposed at a position between the driver's seat 6 and the seedling stage 17 in the longitudinal direction of the vehicle body. As shown in FIG. 15, the fertilizer hopper 27 x includes a hopper body 87 and a lid portion 88. The hopper body 87 is configured as a container having an open top, and fertilizer is accommodated in the hopper body 87. The lid portion 88 is disposed so as to cover the open portion at the top of the hopper body 87.
 図15に示すように、ホッパ本体87の下部は、下に進むにつれて細くなるように漏斗状に形成された通路部89となっている。通路部89の下部は開放されている。従って、ホッパ本体87内の肥料は、通路部89を介して下方に流出する。 As shown in FIG. 15, the lower portion of the hopper body 87 is a passage portion 89 formed in a funnel shape so as to become thinner as it goes downward. The lower part of the passage part 89 is open. Accordingly, the fertilizer in the hopper body 87 flows downward through the passage portion 89.
 次に、肥料繰出装置9xについて説明する。肥料繰出装置9xは、肥料ホッパ27xの下方に配置されている。肥料繰出装置9xは、肥料ホッパ27xから供給された肥料を、少量ずつ下方に繰り出すように構成されている。 Next, the fertilizer feeding device 9x will be described. The fertilizer feeding device 9x is disposed below the fertilizer hopper 27x. The fertilizer feeding device 9x is configured to feed the fertilizer supplied from the fertilizer hopper 27x downward little by little.
 肥料繰出装置9xは、繰出ケース21xを備えている。繰出ケース21xは、中空状のケースとして構成されている。当該繰出ケース21xは、前記ホッパ本体87の通路部89の下部に取り付けることができるように構成されている。図19に示すように、繰出ケース21xは、その内部に、肥料流入空間25を有している。肥料流入空間25は、前記通路部89に連通している。従って、肥料ホッパ27xから供給された肥料は、肥料流入空間25に流入する。 The fertilizer feeding device 9x includes a feeding case 21x. The feeding case 21x is configured as a hollow case. The feeding case 21x is configured to be attached to the lower portion of the passage portion 89 of the hopper body 87. As shown in FIG. 19, the feeding case 21x has a fertilizer inflow space 25 therein. The fertilizer inflow space 25 communicates with the passage portion 89. Accordingly, the fertilizer supplied from the fertilizer hopper 27 x flows into the fertilizer inflow space 25.
 図19に示すように、繰出ケース21xの内部において、前記肥料流入空間25の下部には、繰出皿(繰出部)28xが配置されている。繰出皿28xは、略円板状に形成された部材である。繰出皿28xの軸心には、回転軸45xが固定的に設けられている。 As shown in FIG. 19, a feeding tray (feeding portion) 28x is disposed in the lower portion of the fertilizer inflow space 25 inside the feeding case 21x. The feeding tray 28x is a member formed in a substantially disc shape. A rotating shaft 45x is fixedly provided at the axis of the feeding tray 28x.
 図19に示すように、繰出皿28xの回転軸45xには、従動側ベベルギア(従動ギア)34が固定的に設けられている。また、繰出ケース21xには、駆動軸26が回転可能に支持されている。駆動軸26には、図19に示すように、駆動側ベベルギア(駆動ギア)35が固定的に設けられている。駆動側ベベルギア35は、前記従動側ベベルギア34と噛み合うように配置されている。繰出ケース21xには、従動側ベベルギア34を支持する支持壁(従動ギア支持部)と、駆動側ベベルギア35を支持する支持壁(駆動ギア支持部)と、が一体的に形成されている。 As shown in FIG. 19, a driven-side bevel gear (driven gear) 34 is fixedly provided on the rotating shaft 45x of the feeding tray 28x. Further, the drive shaft 26 is rotatably supported by the feeding case 21x. As shown in FIG. 19, a drive-side bevel gear (drive gear) 35 is fixedly provided on the drive shaft 26. The driving side bevel gear 35 is arranged so as to mesh with the driven side bevel gear 34. A support wall (driven gear support portion) that supports the driven side bevel gear 34 and a support wall (drive gear support portion) that supports the drive side bevel gear 35 are integrally formed in the feeding case 21x.
 駆動軸26には、駆動源である電動モータ95が出力した駆動力が入力されている(詳しくは後述する)。当該駆動力は、ベベルギア34,35を介して回転軸45xに伝達される。これにより、繰出皿28xが、回転軸45xまわりで回転駆動される。 The driving force output from the electric motor 95 as a driving source is input to the driving shaft 26 (details will be described later). The driving force is transmitted to the rotating shaft 45x via the bevel gears 34 and 35. Thereby, the feeding tray 28x is rotationally driven around the rotation shaft 45x.
 また、繰出皿28xには、当該繰出皿28xを厚み方向に貫通する繰出孔28bが複数形成されている。この繰出孔28bは、所定量(1粒から数粒程度)の肥料を収容できる程度のサイズで形成されている。これにより、肥料流入空間25内の肥料は、所定量ずつ繰出孔28b内に取り込まれる。このように繰出孔28bに所定量の肥料が取り込まれた状態で、当該繰出皿28xが回転駆動されることにより、肥料を取り込んだ状態の繰出孔28bが回転軸45xまわりで移動する。そして、繰出孔28bの位置が所定の繰出位置に一致したときに、当該繰出孔28b内に取り込まれていた前記肥料が、下方に放出されるように構成されている。以上の構成で、肥料ホッパ27x内の肥料を所定量(1粒から数粒程度)ずつ下方に繰り出すことができる。 Further, the feeding tray 28x is formed with a plurality of feeding holes 28b penetrating the feeding tray 28x in the thickness direction. The feeding hole 28b is formed in a size that can accommodate a predetermined amount (one to several grains) of fertilizer. As a result, the fertilizer in the fertilizer inflow space 25 is taken into the feed hole 28b by a predetermined amount. Thus, the feeding tray 28x is rotationally driven in a state where a predetermined amount of fertilizer is taken into the feeding hole 28b, so that the feeding hole 28b in the state in which the fertilizer is taken moves around the rotation shaft 45x. And when the position of the delivery hole 28b corresponds to a predetermined delivery position, the fertilizer taken in the delivery hole 28b is discharged downward. With the above configuration, the fertilizer in the fertilizer hopper 27x can be fed downward by a predetermined amount (about 1 to several grains).
 続いて、空気供給管94及びブロア93について説明する。空気供給管94は、略パイプ状の部材であり、図15に示すように、車体の左右方向に沿って配置されている。空気供給管94の一側の端部(本実施形態の場合は右側の端部)は閉じられており、他方の端部(本実施形態の場合は左側の端部)にはブロア93が接続されている。なお、空気供給管94は、車体2に対して相対移動しないように固定的に設けられている。ブロア93は、前記空気供給管94の内部に、空気を送り込むように構成されている。 Subsequently, the air supply pipe 94 and the blower 93 will be described. The air supply pipe 94 is a substantially pipe-shaped member, and is disposed along the left-right direction of the vehicle body as shown in FIG. One end of the air supply pipe 94 (the right end in the present embodiment) is closed, and the blower 93 is connected to the other end (the left end in the present embodiment). Has been. The air supply pipe 94 is fixedly provided so as not to move relative to the vehicle body 2. The blower 93 is configured to send air into the air supply pipe 94.
 続いて、搬送部36について説明する。搬送部36は、導入部106と、接続路107と、搬送ホース108と、散布口109と、を備えている。 Subsequently, the transport unit 36 will be described. The transport unit 36 includes an introduction unit 106, a connection path 107, a transport hose 108, and a spray port 109.
 導入部106は、繰出ケース21xの下方に配置されている。図21等に示すように、導入部106の上部は開放されており、繰出ケース21xの下端部に接続している。また、導入部106は、下側に進むにつれて徐々に細くなるように漏斗状に形成されている。 The introduction unit 106 is disposed below the feeding case 21x. As shown in FIG. 21 and the like, the upper portion of the introducing portion 106 is open and connected to the lower end portion of the feeding case 21x. Moreover, the introduction part 106 is formed in a funnel shape so that it gradually becomes thinner as it proceeds downward.
 接続路107は、導入部106の下方に配置されている。図19等に示すように、接続路107は、円管状に構成されており、車体2の前後方向に略沿って配置されている。接続路107の前後方向の中間部には、前記導入部106の下端部が接続されている。これにより、接続路107の内部空間は、導入部106に連通している。従って、肥料繰出装置9xによって繰り出された肥料は、導入部106を介して、接続路107内に導入される。なお、本実施形態において、導入部106と接続路107は一体的に形成されている。 The connection path 107 is disposed below the introduction unit 106. As shown in FIG. 19 and the like, the connection path 107 is formed in a circular tube shape, and is disposed substantially along the front-rear direction of the vehicle body 2. A lower end portion of the introduction portion 106 is connected to an intermediate portion in the front-rear direction of the connection path 107. Thereby, the internal space of the connection path 107 communicates with the introduction part 106. Therefore, the fertilizer fed by the fertilizer feeding device 9 x is introduced into the connection path 107 through the introduction unit 106. In the present embodiment, the introduction part 106 and the connection path 107 are integrally formed.
 接続路107の前側の端部には、空気供給管94が接続されている。これにより、前記ブロア93が発生させた空気流が、空気供給管94を介して、接続路107内に供給される。当該空気流は、接続路107内を、後方に向けて流れる。これにより、接続路107内に導入された肥料を、前記空気流に乗せて後方に向けて搬送できる。なお、接続路107は、空気供給管94に対して相対移動しないように、車体2に対して固定的に配置されている。 An air supply pipe 94 is connected to the front end of the connection path 107. As a result, the air flow generated by the blower 93 is supplied into the connection path 107 via the air supply pipe 94. The air flow flows backward in the connection path 107. Thereby, the fertilizer introduced in the connection path 107 can be conveyed toward the back on the said airflow. The connection path 107 is fixedly arranged with respect to the vehicle body 2 so as not to move relative to the air supply pipe 94.
 接続路107の後側の端部には、搬送ホース108が接続されている。搬送ホース108は、可撓性を有するチューブ状の部材である。搬送ホース108の、接続路107とは反対側の端部には、散布口(放出口)109が設けられている(図14)。図14に示すように、散布口109は、地面に近接させて設けられている。従って、前記肥料は、ブロア93が発生させた前記空気流に乗って搬送ホース108内を散布口109まで搬送され、当該散布口109から地面に向けて放出される。 A transfer hose 108 is connected to the rear end of the connection path 107. The conveyance hose 108 is a tube-like member having flexibility. A spray port (discharge port) 109 is provided at the end of the transport hose 108 opposite to the connection path 107 (FIG. 14). As shown in FIG. 14, the spray port 109 is provided close to the ground. Therefore, the fertilizer is carried on the air flow generated by the blower 93, is transported through the transport hose 108 to the spray port 109, and is discharged from the spray port 109 toward the ground.
 以上のように構成された施肥機8xによれば、肥料ホッパ27x内の肥料を、肥料繰出装置9xによって所定量ずつ繰り出すとともに、搬送部36によって地面まで搬送して散布できる。 According to the fertilizer applicator 8x configured as described above, the fertilizer in the fertilizer hopper 27x can be fed by a predetermined amount by the fertilizer feeding device 9x and can be transported to the ground by the transport unit 36 and sprayed.
 なお、本実施形態の田植機は4条植えであるから、本実施形態の施肥機8xは、4条分の肥料を同時に散布できるように、4つの肥料繰出装置9xと、4つの搬送部36を、それぞれ車体2の左右方向に並べて設けている(図15参照)。 In addition, since the rice transplanter of this embodiment is 4 row planting, the fertilizer applicator 8x of this embodiment can disperse | distribute 4 fertilizers simultaneously, the four fertilizer supply apparatuses 9x, and the four conveyance parts 36. Are arranged side by side in the left-right direction of the vehicle body 2 (see FIG. 15).
 また、本実施形態の肥料ホッパ27xは、2条分の肥料を収容するように構成されている。即ち、図15に示すように、ホッパ本体87の下部が二股にわかれて、2つの通路部89を形成している。そして、各通路部89に、肥料繰出装置9xが接続されている。これにより、1つの肥料ホッパ27xによって、2つの肥料繰出装置9xに対して肥料を供給できる。そこで本実施形態の施肥機8xは、4条分の肥料を収容できるように、2つの肥料ホッパ27xを、車体の左右方向に並べて配置されている。ここで、左側の肥料ホッパ27xを左ホッパ27L、右側の肥料ホッパ27xを右ホッパ27Rと呼ぶことがある。 Further, the fertilizer hopper 27x of the present embodiment is configured to accommodate two strips of fertilizer. That is, as shown in FIG. 15, the lower part of the hopper main body 87 is divided into two forks to form two passage portions 89. A fertilizer feeding device 9 x is connected to each passage portion 89. Thereby, a fertilizer can be supplied with respect to the two fertilizer supply apparatuses 9x by one fertilizer hopper 27x. Therefore, the fertilizer applicator 8x of this embodiment has two fertilizer hoppers 27x arranged side by side in the left-right direction of the vehicle body so that four fertilizers can be accommodated. Here, the left manure hopper 27x may be referred to as a left hopper 27L, and the right manure hopper 27x may be referred to as a right hopper 27R.
 前述のように、施肥機8xは、肥料繰出装置9xの繰出皿28xを回転駆動するための駆動軸26を有している。本実施形態では、2条分の肥料繰出装置9xを、1本の駆動軸26によって駆動するように構成されている。従って、本実施形態の施肥機8xは、2本の駆動軸26を有している。具体的には、図15に示すように、施肥機8xは、左の駆動軸26Lと、右の駆動軸26Rと、を備えている。なお、左右の駆動軸26L,26Rは、互いに独立している。 As described above, the fertilizer applicator 8x has the drive shaft 26 for rotationally driving the feeding tray 28x of the fertilizer feeding device 9x. In the present embodiment, the two fertilizer feeding devices 9x are configured to be driven by a single drive shaft 26. Therefore, the fertilizer applicator 8x of the present embodiment has two drive shafts 26. Specifically, as shown in FIG. 15, the fertilizer applicator 8x includes a left drive shaft 26L and a right drive shaft 26R. The left and right drive shafts 26L and 26R are independent of each other.
 図15に示すように、左の駆動軸26Lは、左ホッパ27Lに接続されている2つの肥料繰出装置9xにまたがって配置されている。左の駆動軸26Lに駆動力を入力することにより、左ホッパ27Lに接続されている前記2つの肥料繰出装置9xを同時に駆動できる。 As shown in FIG. 15, the left drive shaft 26L is disposed across the two fertilizer feeding devices 9x connected to the left hopper 27L. By inputting a driving force to the left drive shaft 26L, the two fertilizer feeding devices 9x connected to the left hopper 27L can be driven simultaneously.
 また図15に示すように、右の駆動軸26Rは、右ホッパ27Rに接続されている2つの肥料繰出装置9xにまたがって配置されている。右の駆動軸26Rに駆動力を入力することにより、右ホッパ27Rに接続されている前記2つの肥料繰出装置9xを同時に駆動できる。 As shown in FIG. 15, the right drive shaft 26R is disposed across the two fertilizer feeding devices 9x connected to the right hopper 27R. By inputting a driving force to the right drive shaft 26R, the two fertilizer feeding devices 9x connected to the right hopper 27R can be driven simultaneously.
 続いて、肥料ホッパ27xの回動機構について説明する。 Subsequently, the rotation mechanism of the fertilizer hopper 27x will be described.
 即ち、本実施形態の施肥機8xは、肥料ホッパ27x内の肥料を外部に排出できるようにするため、当該肥料ホッパ27xを回動させることができるように構成されている。即ち、図17に示すように、ホッパ本体87から蓋部88を外した状態で、当該ホッパ本体87を回動させて上部の開放部分を下に向けることにより(図17の状態)、当該ホッパ本体87内の肥料を排出できる。また、上記のようにホッパ本体87を回動させることができるので、当該ホッパ本体87内を清掃するなどのメンテナンスも容易に行うことができる。 That is, the fertilizer applicator 8x of this embodiment is configured to be able to rotate the fertilizer hopper 27x so that the fertilizer in the fertilizer hopper 27x can be discharged to the outside. That is, as shown in FIG. 17, with the lid 88 removed from the hopper body 87, the hopper body 87 is rotated so that the upper open portion faces downward (state of FIG. 17). The fertilizer in the main body 87 can be discharged. Further, since the hopper body 87 can be rotated as described above, maintenance such as cleaning the inside of the hopper body 87 can be easily performed.
 肥料ホッパ27xを回動可能とする構成について詳しく説明すると、以下のとおりである。即ち、本実施形態の施肥機8xは、回動軸78と、回動ステー85と、支持ステー86を備えている。なお前述のように、本実施形態の施肥機8xでは、2つの肥料ホッパ27x(左ホッパ27L及び右ホッパ27R)を、車体の左右方向に並べて有している。そこで本実施形態では、図15に示すように、回動軸78、回動ステー85、及び支持ステー86を、施肥機8xの左側と右側にそれぞれ設けている。以下の説明及び図面において、符号の後に「L」を付した場合は左側の構成を、符号の後に「R」を付した場合は右側の構成を、それぞれ示すものとする。 A detailed description of the configuration that allows the fertilizer hopper 27x to rotate is as follows. That is, the fertilizer applicator 8x of the present embodiment includes a rotation shaft 78, a rotation stay 85, and a support stay 86. As described above, the fertilizer applicator 8x of the present embodiment has the two fertilizer hoppers 27x (the left hopper 27L and the right hopper 27R) arranged in the left-right direction of the vehicle body. Therefore, in the present embodiment, as shown in FIG. 15, the rotation shaft 78, the rotation stay 85, and the support stay 86 are provided on the left side and the right side of the fertilizer applicator 8x, respectively. In the following description and drawings, the structure on the left side is indicated when “L” is appended to the reference numeral, and the structure on the right side is indicated when “R” is appended after the reference numeral.
 支持ステー86は、空気供給管94に対して固定的に設けられている。つまり、支持ステー86は、車体2に対して固定的に設けられている。左の支持ステー86Lは、空気供給管94の左側の端部近傍に配置されている。右の支持ステー86Rは、空気供給管94の右側の端部近傍に配置されている。 The support stay 86 is fixed to the air supply pipe 94. That is, the support stay 86 is fixed to the vehicle body 2. The left support stay 86L is disposed in the vicinity of the left end of the air supply pipe 94. The right support stay 86 </ b> R is disposed in the vicinity of the right end of the air supply pipe 94.
 前記支持ステー86には、回動軸78が支持されている。回動軸78は、車体の前後方向と平行に配置されている。左の回動軸78Lは左の支持ステー86Lに、右の回動軸78Rは右の支持ステー86Rに、それぞれ支持されている。 A rotation shaft 78 is supported on the support stay 86. The rotation shaft 78 is disposed in parallel with the front-rear direction of the vehicle body. The left rotation shaft 78L is supported by the left support stay 86L, and the right rotation shaft 78R is supported by the right support stay 86R.
 図15に示すように、回動ステー85は、略上下方向に沿って配置されている。回動ステー85の下側の端部は、回動軸78を介して支持ステー86に支持されている。これにより、回動ステー85は、支持ステー86に対して回動軸78まわりで回動可能となっている。左の回動ステー85Lは、左の回動軸78Lを介して、左の支持ステー86Lに支持されている。右の回動ステー85Rは、右の回動軸78Rを介して、右の支持ステー86Rに支持されている。 As shown in FIG. 15, the rotation stay 85 is disposed substantially along the vertical direction. The lower end of the rotation stay 85 is supported by the support stay 86 via a rotation shaft 78. Thereby, the rotation stay 85 can be rotated around the rotation shaft 78 with respect to the support stay 86. The left rotation stay 85L is supported by the left support stay 86L via the left rotation shaft 78L. The right rotation stay 85R is supported by the right support stay 86R via the right rotation shaft 78R.
 回動ステー85の上側の端部は、ホッパ本体87に固定されている。これにより、肥料ホッパ27xを、回動軸78まわりで回動させることができる。具体的には、左の回動ステー85Lの上側の端部が、左ホッパ27Lのホッパ本体87の左側面に固定されている。これにより、左ホッパ27Lを、左の回動軸78Lまわりで左上方に向けて回動させることができる(図17の太線矢印A参照)。また、右の回動ステー85Rの上側の端部が、右ホッパ27Rのホッパ本体87の右側面に固定されている。これにより、右ホッパ27Rを、右の回動軸78Rまわりで右上方に向けて回動させることができる(図17の太線矢印B参照)。 The upper end of the rotating stay 85 is fixed to the hopper body 87. Thereby, the fertilizer hopper 27x can be rotated around the rotation shaft 78. Specifically, the upper end of the left rotating stay 85L is fixed to the left side surface of the hopper body 87 of the left hopper 27L. As a result, the left hopper 27L can be rotated around the left rotation shaft 78L in the upper left direction (see the thick arrow A in FIG. 17). Further, the upper end portion of the right rotating stay 85R is fixed to the right side surface of the hopper body 87 of the right hopper 27R. Thereby, the right hopper 27R can be rotated to the upper right around the right rotation shaft 78R (see the thick arrow B in FIG. 17).
 なお本実施形態では、図16に二点鎖線で示すように、ブロア93を、左ホッパ27Lから離れる方向に退避できるように構成されている。というのも、図15に示すように、当該ブロア93は左ホッパ27Lのすぐ左側に配置されているので、当該左ホッパ27Lが回動したときにブロア93の位置に干渉してしまうためである。そこで上記のように、ブロア93を左ホッパ27Lから退避できるようにしたことで、当該ブロア93に干渉すること無く左ホッパ27Lを上方に回動させることができる。 In this embodiment, as shown by a two-dot chain line in FIG. 16, the blower 93 can be retracted in a direction away from the left hopper 27L. This is because, as shown in FIG. 15, the blower 93 is arranged on the left side of the left hopper 27L, and therefore interferes with the position of the blower 93 when the left hopper 27L rotates. . Thus, as described above, by allowing the blower 93 to be retracted from the left hopper 27L, the left hopper 27L can be rotated upward without interfering with the blower 93.
 図16に示すように、左右の肥料ホッパ27xのそれぞれに対応して、把手98が設けられている。把手98は、肥料ホッパ27xに対して固定的に設けられている。従って、オペレータは、把手98を手で掴んで持ち上げることにより、肥料ホッパ27xを、回動軸78を中心として上方に回動させることができる。なお、図16に示すように、本実施形態の把手98は、肥料ホッパ27xから、前方に向けて(運転座席6側に向けて)突出するように配置されている。これにより、オペレータは、肥料ホッパ27xの回動操作を、運転座席6側から容易に行うことができる。 As shown in FIG. 16, a handle 98 is provided corresponding to each of the left and right fertilizer hoppers 27x. The handle 98 is fixed to the fertilizer hopper 27x. Therefore, the operator can rotate the fertilizer hopper 27x upward around the rotation shaft 78 by grasping and lifting the handle 98 by hand. In addition, as shown in FIG. 16, the handle 98 of this embodiment is arrange | positioned so that it may protrude toward the front (toward the driver's seat 6 side) from the manure hopper 27x. Thereby, the operator can easily perform the turning operation of the fertilizer hopper 27x from the driver seat 6 side.
 また、本実施形態において、肥料ホッパ27xは、回動軸78まわりで回動する際に、当該肥料ホッパ27xに接続されている2つの肥料繰出装置9xと一体的に回動するように構成されている(図17参照)。従って、肥料ホッパ27xを回動させる際に、当該肥料ホッパ27xを肥料繰出装置9xから切り離す操作は不要である。 In the present embodiment, the fertilizer hopper 27x is configured to rotate integrally with the two fertilizer feeding devices 9x connected to the fertilizer hopper 27x when rotating around the rotation shaft 78. (See FIG. 17). Therefore, when rotating the fertilizer hopper 27x, an operation of separating the fertilizer hopper 27x from the fertilizer feeding device 9x is unnecessary.
 なお、肥料ホッパ27xと肥料繰出装置9xが回動軸78まわりで一体的に回動できるようにするためには、当該肥料繰出装置9xが搬送部36から離間できる必要がある。そこで図21に示すように、肥料繰出装置9xは、搬送部36の導入部106から上に向けて離間できるように構成されている。 In addition, in order to allow the fertilizer hopper 27x and the fertilizer feeding device 9x to rotate integrally around the rotation shaft 78, the fertilizer feeding device 9x needs to be able to be separated from the transport unit 36. Therefore, as shown in FIG. 21, the fertilizer feeding device 9 x is configured to be separated upward from the introduction unit 106 of the transport unit 36.
 また前述のように、肥料繰出装置9xの繰出ケース21xには駆動軸26が支持されているので、肥料ホッパ27xは、駆動軸26と一体的に回動するということもできる。具体的には、左の駆動軸26Lは、左の回動軸78Lまわりで左ホッパ27Lと一体的に回動する。また、右の駆動軸26Rは、右の回動軸78Rまわりで右ホッパ27R一体的に回動する。 As described above, since the drive shaft 26 is supported by the feeding case 21x of the fertilizer feeding device 9x, it can be said that the fertilizer hopper 27x rotates integrally with the driving shaft 26. Specifically, the left drive shaft 26L rotates integrally with the left hopper 27L around the left rotation shaft 78L. Further, the right drive shaft 26R rotates integrally with the right hopper 27R around the right rotation shaft 78R.
 以上のように、本実施形態の施肥機8xにおいて、肥料ホッパ27x、当該肥料ホッパ27xに取り付けられている2つの肥料繰出装置9x、及び当該2つの肥料繰出装置9xにまたがって配置された駆動軸26は、回動軸78まわりで一体的に回動可能である。ここで、肥料ホッパ27x、肥料繰出装置9x、及び駆動軸26は、搬送部36に対して肥料を供給するものである。そこで以下の説明では、施肥機8xが備える構成のうち、回動軸78まわりで回動する構成を、まとめて「供給部」と呼ぶ。 As described above, in the fertilizer applicator 8x of the present embodiment, the fertilizer hopper 27x, the two fertilizer feeding devices 9x attached to the fertilizer hopper 27x, and the drive shaft disposed across the two fertilizer feeding devices 9x. 26 can rotate integrally around a rotation shaft 78. Here, the fertilizer hopper 27 x, the fertilizer feeding device 9 x, and the drive shaft 26 supply fertilizer to the transport unit 36. Therefore, in the following description, among the configurations included in the fertilizer applicator 8x, the configuration that rotates around the rotation shaft 78 is collectively referred to as a “supply unit”.
 より具体的には、左ホッパ27L、当該左ホッパ27Lに取り付けられた2つの肥料繰出装置9x、及び左の駆動軸26Lは、左の回動軸78Lまわりで一体的に回動可能である(図17の太線矢印A参照)。そこで、これらをまとめて「左の供給部」と呼ぶ。また、右ホッパ27R、当該右ホッパ27Rに取り付けられた2つの肥料繰出装置9x、及び右の駆動軸26Rは、右の回動軸78Rまわりで一体的に回動可能である(図17の太線矢印B参照)。そこで、これらをまとめて「右の供給部」と呼ぶ。 More specifically, the left hopper 27L, the two fertilizer feeding devices 9x attached to the left hopper 27L, and the left drive shaft 26L can rotate integrally around the left rotation shaft 78L ( (See thick line arrow A in FIG. 17). Therefore, these are collectively referred to as the “left supply unit”. Further, the right hopper 27R, the two fertilizer feeding devices 9x attached to the right hopper 27R, and the right drive shaft 26R can rotate integrally around the right rotation shaft 78R (the thick line in FIG. 17). (See arrow B). Therefore, these are collectively referred to as the “right supply unit”.
 以上のように、本実施形態の施肥機8xにおいて、左右の供給部は、それぞれ回動軸78まわりで回動可能である。これにより、左右の供給部は、それぞれ、作業位置(図15、図16)と開放位置(図17)のあいだで移動することができる。 As described above, in the fertilizer applicator 8x of the present embodiment, the left and right supply units can rotate around the rotation shaft 78, respectively. Accordingly, the left and right supply units can move between the work position (FIGS. 15 and 16) and the open position (FIG. 17), respectively.
 ここで、供給部の「作業位置」とは、当該供給部が、搬送部36に対して肥料を供給できる状態にあるときの位置をいう。具体的には、供給部が備える2つの肥料繰出装置9xのそれぞれが、対応する搬送部36の導入部106の上端に接続している状態(図15、図18、及び図19に示す状態)を、当該供給部の「作業位置」とする。この状態で、供給部が備える駆動軸26に駆動力を入力することにより、当該供給部が備える2つの肥料繰出装置9xの繰出皿28xをそれぞれ回転駆動し、2条分の肥料を所定量ずつ繰り出して、当該肥料を、対応する搬送部36に対して供給できる。 Here, the “working position” of the supply unit refers to a position when the supply unit is in a state in which fertilizer can be supplied to the transport unit 36. Specifically, each of the two fertilizer feeding devices 9x included in the supply unit is connected to the upper end of the introduction unit 106 of the corresponding transport unit 36 (the state illustrated in FIGS. 15, 18, and 19). Is the “working position” of the supply section. In this state, by inputting a driving force to the drive shaft 26 provided in the supply unit, the feeding trays 28x of the two fertilizer feeding devices 9x provided in the supply unit are respectively driven to rotate, and a predetermined amount of fertilizer for two strips is provided. The fertilizer can be fed out and supplied to the corresponding conveyance unit 36.
 「作業位置」にある供給部を、回動軸78まわりで上方に回動させることにより、当該供給部を搬送部36から離間させることができる(例えば図17の状態)。この状態の供給部の位置を、「開放位置」と呼ぶ。なお、この状態の供給部は、搬送部36に対して肥料を供給できない。 Rotating the supply unit at the “working position” upward around the rotation shaft 78 allows the supply unit to be separated from the transport unit 36 (for example, the state shown in FIG. 17). The position of the supply unit in this state is referred to as “open position”. The supply unit in this state cannot supply fertilizer to the conveyance unit 36.
 続いて、本実施形態の特徴的な構成について説明する。 Subsequently, a characteristic configuration of the present embodiment will be described.
 図15に示すように、左の供給部を「作業位置」としたときに、左の駆動軸26Lは、車体の左右方向と略平行になるように配置されている。また、左の供給部は、左の駆動軸26Lに固定的に設けられた左の駆動入力ギア56Lを有している。この左の駆動入力ギア56Lは、左の駆動軸26Lの両端部のうち、右の供給部に近い側の端部(右側の端部)の近傍に配置されている。なお、この左の駆動入力ギア56Lは、平ギア(平歯車)となっている。 As shown in FIG. 15, when the left supply unit is set to the “working position”, the left drive shaft 26L is arranged so as to be substantially parallel to the left-right direction of the vehicle body. The left supply section has a left drive input gear 56L fixedly provided on the left drive shaft 26L. The left drive input gear 56L is disposed in the vicinity of the end portion on the side close to the right supply portion (the right end portion) of the both ends of the left drive shaft 26L. The left drive input gear 56L is a spur gear (spur gear).
 また、図15に示すように、右の供給部を「作業位置」としたときに、右の駆動軸26Rは、車体の左右方向と略平行になるように配置されている。また、右の供給部は、右の駆動軸26Rに固定的に設けられた右の駆動入力ギア56Rを有している。この右の駆動入力ギア56Rは、右の駆動軸26Rの両端部のうち、左の供給部に近い側の端部(左側の端部)の近傍に配置されている。なお、この右の駆動入力ギア56Rは、平ギア(平歯車)となっている。 Further, as shown in FIG. 15, when the right supply unit is set to the “working position”, the right drive shaft 26R is arranged to be substantially parallel to the left-right direction of the vehicle body. The right supply unit has a right drive input gear 56R fixedly provided on the right drive shaft 26R. The right drive input gear 56R is disposed in the vicinity of the end portion on the side close to the left supply portion (the left end portion) of both ends of the right drive shaft 26R. The right drive input gear 56R is a spur gear (spur gear).
 図15及び図16に示すように、左右の供給部をともに「作業位置」としたときに、左の駆動軸26Lと右の駆動軸26Rの軸線が一致するように、当該左右の駆動軸26L,26Rが配置されている。このとき、左右の駆動入力ギア56L,56Rが、軸線方向で隣接して並ぶように配置されている。 As shown in FIGS. 15 and 16, when both the left and right supply units are set to the “working position”, the left and right drive shafts 26 </ b> L so that the axis lines of the left drive shaft 26 </ b> L and the right drive shaft 26 </ b> R coincide with each other. , 26R are arranged. At this time, the left and right drive input gears 56L and 56R are arranged adjacent to each other in the axial direction.
 車体2には、図15等に示すように、施肥機8xの駆動源である電動モータ95が設けられている。電動モータ95は、車体2に対して相対移動しないように固定的に配置されている。電動モータ95の出力軸は、車体2の左右方向と略平行になるように設けられている。当該出力軸には、駆動出力ギア51が固定的に設けられている。なお、この駆動出力ギア51は、平ギア(平歯車)となっている。 The vehicle body 2 is provided with an electric motor 95 as a drive source of the fertilizer applicator 8x as shown in FIG. The electric motor 95 is fixedly disposed so as not to move relative to the vehicle body 2. The output shaft of the electric motor 95 is provided so as to be substantially parallel to the left-right direction of the vehicle body 2. A drive output gear 51 is fixedly provided on the output shaft. The drive output gear 51 is a spur gear (spur gear).
 図15及び図16に示すように、左の供給部を「作業位置」としたときに、左の駆動入力ギア56Lが、駆動出力ギア51に噛み合うように配置されている。この状態で、電動モータ95を駆動することにより、駆動出力ギア51と左の駆動入力ギア56Lを介して、左の駆動軸26Lまで回転駆動力が伝達される。これにより、左の供給部が備える2つの肥料繰出装置9xを駆動できる。 15 and 16, the left drive input gear 56L is arranged so as to mesh with the drive output gear 51 when the left supply unit is set to the “working position”. By driving the electric motor 95 in this state, the rotational driving force is transmitted to the left drive shaft 26L via the drive output gear 51 and the left drive input gear 56L. Thereby, the two fertilizer supply apparatuses 9x with which the left supply part is equipped can be driven.
 また図15及び図16に示すように、右の供給部を「作業位置」としたときに、右の駆動入力ギア56Rが、駆動出力ギア51に噛み合うように配置されている。この状態で、電動モータ95を駆動することにより、駆動出力ギア51と右の駆動入力ギア56Rを介して、右の駆動軸26Rまで回転駆動力が伝達される。これにより、右の供給部が備える2つの肥料繰出装置9xを駆動できる。 As shown in FIGS. 15 and 16, the right drive input gear 56 </ b> R is arranged to mesh with the drive output gear 51 when the right supply unit is set to the “working position”. By driving the electric motor 95 in this state, the rotational driving force is transmitted to the right drive shaft 26R via the drive output gear 51 and the right drive input gear 56R. Thereby, the two fertilizer supply apparatuses 9x with which the right supply part is equipped can be driven.
 そして、図15及び図16に示すように、左右の駆動入力ギア56L,56Rは、1つの駆動出力ギア51に対して同時に噛み合うことができるように配置されている。以上の構成により、1つの駆動出力ギア51から、左右の駆動軸26L,26Rそれぞれに対して駆動力を伝達できる。 15 and FIG. 16, the left and right drive input gears 56L and 56R are arranged so as to be able to mesh with one drive output gear 51 at the same time. With the above configuration, the driving force can be transmitted from the single drive output gear 51 to the left and right drive shafts 26L and 26R.
 なお、前述の特許文献3では、右の駆動軸(第1入力軸)にのみ駆動力が入力される構成であったため、左の駆動軸(第2入力軸)に対して駆動力を伝達するために、左右の駆動軸を連結する連結機構が必要であった。この点、本実施形態では、1つの駆動出力ギア51から、左右の駆動軸26L,26Rそれぞれに対して駆動力を伝達する構成であるため、右の駆動軸26Rから左の駆動軸26Lに駆動力を伝達する必要はない。そこで、本実施形態の施肥機8xでは、左右の駆動軸26L,26Rを連結する連結機構を有していない。これにより、施肥機8xをシンプルに構成できる。 In the above-mentioned Patent Document 3, since the driving force is input only to the right driving shaft (first input shaft), the driving force is transmitted to the left driving shaft (second input shaft). Therefore, a connection mechanism that connects the left and right drive shafts is necessary. In this regard, in the present embodiment, the driving force is transmitted from the single drive output gear 51 to the left and right drive shafts 26L and 26R, so that the right drive shaft 26R is driven to the left drive shaft 26L. There is no need to transmit power. Therefore, the fertilizer applicator 8x of this embodiment does not have a connection mechanism that connects the left and right drive shafts 26L, 26R. Thereby, the fertilizer applicator 8x can be comprised simply.
 図18に示すように、駆動入力ギア56(図18の場合は右の駆動入力ギア56R)の軸中心(図18の場合は右の駆動軸26R)は、駆動出力ギア51の軸中心よりも高い位置に配置されている。言い換えると、駆動入力ギア56(図18の場合は右の駆動入力ギア56R)は、駆動出力ギア51に対して上方から噛み合うように配置されている。 As shown in FIG. 18, the axial center of the drive input gear 56 (right drive input gear 56 </ b> R in the case of FIG. 18) (right drive shaft 26 </ b> R in FIG. 18) is more than the axial center of the drive output gear 51. It is placed at a high position. In other words, the drive input gear 56 (the right drive input gear 56R in the case of FIG. 18) is arranged to mesh with the drive output gear 51 from above.
 従って、図20に示すように、駆動入力ギア56(図20の場合は右の駆動入力ギア56R)は、上方に向けて移動することにより、駆動出力ギア51との噛合いを解除して、当該駆動出力ギア51から離間することが可能である(図20の太線矢印を参照)。これとは逆に、駆動入力ギア56を、駆動出力ギア51に対して上方から接近させることにより、当該駆動出力ギア51と噛み合わせることができる。 Accordingly, as shown in FIG. 20, the drive input gear 56 (the right drive input gear 56R in the case of FIG. 20) moves upward to release the engagement with the drive output gear 51, and It is possible to move away from the drive output gear 51 (see the bold arrow in FIG. 20). On the contrary, the drive input gear 56 can be meshed with the drive output gear 51 by approaching the drive output gear 51 from above.
 従って、図17に示すように、左の供給部を、「作業位置」から「開放位置」まで移動させることにより、左の駆動入力ギア56Lを、駆動出力ギア51から上方に向けて離間させることができる(図17の太線矢印Aを参照)。これにより、電動モータ95の出力軸と、左の駆動軸26Lと、の間の連結が解除された状態となる。逆に、左の供給部を、「開放位置」から「作業位置」まで移動させることにより、左の駆動入力ギア56Lと、駆動出力ギア51と、を噛み合わせることができる(図15の状態)。これにより、電動モータ95の出力軸と、左の駆動軸26Lと、の間が連結された状態となる。 Accordingly, as shown in FIG. 17, the left drive input gear 56 </ b> L is separated upward from the drive output gear 51 by moving the left supply unit from the “work position” to the “open position”. (See the thick arrow A in FIG. 17). As a result, the connection between the output shaft of the electric motor 95 and the left drive shaft 26L is released. Conversely, the left drive input gear 56L and the drive output gear 51 can be engaged with each other by moving the left supply section from the “open position” to the “work position” (state of FIG. 15). . As a result, the output shaft of the electric motor 95 and the left drive shaft 26L are connected.
 このように、本実施形態の構成によれば、左の供給部を左の回動軸78Lまわりで移動させることにより、電動モータ95の出力軸と、左の駆動軸26Lと、の間を連結又は切断することができる。そして、当該連結及び切断は、左の駆動入力ギア56Lと、駆動出力ギア51とが、離間又は接近することにより実現される。従って、当該連結及び切断を実現するためのクラッチ等は不要である。そこで本実施形態では、電動モータ95の出力軸と、左の駆動軸26Lと、の間にクラッチを有していない。 As described above, according to the configuration of the present embodiment, the left supply unit is moved around the left rotation shaft 78L, thereby connecting the output shaft of the electric motor 95 and the left drive shaft 26L. Or it can be cut. The connection and disconnection are realized by the left drive input gear 56L and the drive output gear 51 being separated or approached. Therefore, a clutch or the like for realizing the connection and disconnection is unnecessary. Therefore, in the present embodiment, no clutch is provided between the output shaft of the electric motor 95 and the left drive shaft 26L.
 また同様に、右の供給部を、「作業位置」から「開放位置」まで移動させることにより、右の駆動入力ギア56Rを、駆動出力ギア51から上方に向けて離間させることができる(図17の太線矢印Bを参照)。これにより、電動モータ95の出力軸と、右の駆動軸26Rと、の間の連結が解除された状態となる。逆に、右の供給部を、「開放位置」から「作業位置」まで移動させることにより、右の駆動入力ギア56Rと、駆動出力ギア51と、を噛み合わせることができる(図15の状態)。これにより、電動モータ95の出力軸と、右の駆動軸26Rと、の間が連結された状態となる。 Similarly, by moving the right supply unit from the “work position” to the “open position”, the right drive input gear 56R can be separated upward from the drive output gear 51 (FIG. 17). (See bold arrow B). As a result, the connection between the output shaft of the electric motor 95 and the right drive shaft 26R is released. Conversely, the right drive input gear 56R and the drive output gear 51 can be engaged with each other by moving the right supply section from the “open position” to the “work position” (state of FIG. 15). . As a result, the output shaft of the electric motor 95 and the right drive shaft 26R are connected.
 このように、本実施形態の構成によれば、右の供給部を右の回動軸78Rまわりで移動させることにより、電動モータ95の出力軸と、右の駆動軸26Rと、の間を連結又は切断することができる。そして、当該連結及び切断は、右の駆動入力ギア56Rと、駆動出力ギア51とが、離間又は接近することにより実現される。従って、当該連結及び切断を実現するためのクラッチ等は不要である。そこで本実施形態では、電動モータ95の出力軸と、右の駆動軸26Rと、の間にクラッチを有していない。 As described above, according to the configuration of the present embodiment, the right supply unit is moved around the right rotation shaft 78R, thereby connecting the output shaft of the electric motor 95 and the right drive shaft 26R. Or it can be cut. The connection and disconnection are realized by separating or approaching the right drive input gear 56R and the drive output gear 51. Therefore, a clutch or the like for realizing the connection and disconnection is unnecessary. Therefore, in this embodiment, no clutch is provided between the output shaft of the electric motor 95 and the right drive shaft 26R.
 なお、前述の特許文献3では、供給部(上部施肥機)を回動させる際には、クラッチ及び連結機構を切断する操作が必要であった。このため、供給部を回動させる際に、クラッチ又は連結機構を切断する操作を忘れてしまうと、前記クラッチ又は連結機構を破損するおそれがあった。 In addition, in the above-mentioned patent document 3, when rotating a supply part (upper fertilizer machine), the operation which cut | disconnects a clutch and a connection mechanism was required. For this reason, when forgetting the operation which cuts | disconnects a clutch or a connection mechanism when rotating a supply part, there existed a possibility of damaging the said clutch or a connection mechanism.
 この点、本実施形態の施肥機8xでは、上記のように、クラッチ及び連結機構を有していないので、当該クラッチ及び連結機構が破損するという問題は生じない。また、供給部を回動軸78まわりで移動させる際に、クラッチや連結機構を操作する必要がないので、簡単な操作で、供給部を回動軸78まわりで移動させることができる。 In this respect, since the fertilizer applicator 8x of the present embodiment does not have the clutch and the coupling mechanism as described above, there is no problem that the clutch and the coupling mechanism are damaged. In addition, since it is not necessary to operate the clutch or the coupling mechanism when the supply unit is moved around the rotation shaft 78, the supply unit can be moved around the rotation shaft 78 with a simple operation.
 ところで、特許文献3のクラッチは、エンジンと、供給部(上部施肥機)と、の間の連結を断接制御するものである。特許文献3の構成において、仮にクラッチを省略したとすれば、供給部をエンジンから切り離すことができなくなるので、当該供給部を停止させることができなくなる。従って、特許文献3の構成においては、供給部をエンジンから切り離して停止させるためにも、クラッチは必須の構成である。 By the way, the clutch of patent document 3 controls connection / disconnection between an engine and a supply part (upper fertilizer). In the configuration of Patent Document 3, if the clutch is omitted, the supply unit cannot be disconnected from the engine, and the supply unit cannot be stopped. Therefore, in the configuration of Patent Document 3, the clutch is an essential configuration in order to separate and stop the supply unit from the engine.
 これに対し、本実施形態の田植機1xでは、供給部を駆動するための専用の駆動源として、電動モータ95を設けている。電動モータ95は、エンジン10とは独立して制御可能であるから、供給部を停止するためには、電動モータ95を停止すれば良い。このように、本実施形態の施肥機8xでは、供給部専用の駆動源として電動モータ95を設けているので、当該供給部をエンジンから切り離して停止させるためのクラッチは不要である。これにより、上記のように、クラッチを省略できるのである。 In contrast, in the rice transplanter 1x of the present embodiment, an electric motor 95 is provided as a dedicated drive source for driving the supply unit. Since the electric motor 95 can be controlled independently of the engine 10, the electric motor 95 may be stopped to stop the supply unit. Thus, in the fertilizer applicator 8x of this embodiment, since the electric motor 95 is provided as a drive source dedicated to the supply unit, a clutch for separating and stopping the supply unit from the engine is unnecessary. As a result, the clutch can be omitted as described above.
 本実施形態の田植機1xにおいて、仮に、供給部の駆動源をエンジン10とした場合は、当該エンジン10から駆動出力ギア51まで駆動を伝達するための駆動伝達機構を設ける必要がある。このため、当該駆動伝達機構のレイアウトの制約により、駆動出力ギア51を車体の左右方向中央部に配置することが難しい。この結果、駆動出力ギア51を、左右の駆動入力ギア56L,56Rが噛み合うことができる位置に配置することが難しくなる。 In the rice transplanter 1x of this embodiment, if the drive source of the supply unit is the engine 10, it is necessary to provide a drive transmission mechanism for transmitting drive from the engine 10 to the drive output gear 51. For this reason, it is difficult to dispose the drive output gear 51 at the center in the left-right direction of the vehicle body due to layout restrictions of the drive transmission mechanism. As a result, it is difficult to dispose the drive output gear 51 at a position where the left and right drive input gears 56L and 56R can mesh with each other.
 この点、電動モータ95は、比較的自由に車体に配置できるので、駆動出力ギア51を車体2の左右方向中央部に配置することに、格別の困難は無い。本実施形態では、図15及び図16に示すように、駆動出力ギア51を、車体2の左右方向中央部に配置しているので、当該駆動出力ギア51に対して、左右の駆動入力ギア56L,56Rが噛み合うことができる。 In this respect, since the electric motor 95 can be arranged on the vehicle body relatively freely, there is no particular difficulty in arranging the drive output gear 51 at the center in the left-right direction of the vehicle body 2. In the present embodiment, as shown in FIGS. 15 and 16, the drive output gear 51 is disposed at the center in the left-right direction of the vehicle body 2, and therefore, the left and right drive input gears 56 </ b> L with respect to the drive output gear 51. 56R can mesh with each other.
 特許文献3には、上述の連結機構を解除する操作を行うための操作部材が記載されている。特許文献3においては、操作部材は、把手(第2把持部)の近傍に配置されている。従って、オペレータは、操作部材を、把手(第2把持部)とともに把持することで、連結機構の連結を解除できる。ここで、操作部材は、連結機構の近傍に配置される必要があるため、把手(第2把持部)も、連結機構の近傍に配置される必要がある。このように、特許文献3の構成では、把手の位置が制約を受けてしまう。 Patent Document 3 describes an operation member for performing an operation for releasing the above-described coupling mechanism. In Patent Document 3, the operation member is disposed in the vicinity of the handle (second gripping portion). Therefore, the operator can release the connection of the connection mechanism by holding the operation member together with the handle (second holding portion). Here, since the operation member needs to be disposed in the vicinity of the coupling mechanism, the handle (second grip portion) needs to be disposed in the vicinity of the coupling mechanism. As described above, in the configuration of Patent Document 3, the position of the handle is restricted.
 この点、本実施形態の施肥機8xでは、上記のように、クラッチ及び連結機構を有していないので、当該クラッチ又は連結機構を操作するための操作部材も不要である。従って、当該操作部材の近傍に把手98を配置しなければならないという制約もない。このように、本実施形態の構成によれば、把手98を自由に配置できる。従って、オペレータが握り易い位置に把手98を配置することが可能になるので、当該把手98を握って供給部を移動させる作業を行い易くなる。 In this respect, since the fertilizer applicator 8x of the present embodiment does not have the clutch and the coupling mechanism as described above, an operation member for operating the clutch or the coupling mechanism is not necessary. Therefore, there is no restriction that the handle 98 must be disposed in the vicinity of the operation member. Thus, according to the configuration of the present embodiment, the handle 98 can be freely arranged. Therefore, the handle 98 can be arranged at a position where the operator can easily grip it, so that the operation of moving the supply unit by gripping the handle 98 can be easily performed.
 続いて、搬送部36のメンテナンスについて説明する。 Subsequently, maintenance of the transport unit 36 will be described.
 上記のように、本実施形態の施肥機8xにおいては、供給部を上方に回動させることにより、当該供給部を、搬送部36の導入部106から離間させることができる。これにより、図21に示すように、導入部106の内部空間を露出させることができる。従って、上記の構成によれば、導入部106の内部の清掃などを容易に行うことができるという効果も得られる。 As described above, in the fertilizer applicator 8x of the present embodiment, the supply unit can be separated from the introduction unit 106 of the transport unit 36 by rotating the supply unit upward. Thereby, as shown in FIG. 21, the internal space of the introducing | transducing part 106 can be exposed. Therefore, according to said structure, the effect that the inside of the introducing | transducing part 106 etc. can be performed easily is also acquired.
 しかしながら、上記のように供給部を上方に回動させたとしても、図21に示すように、接続路107の内部はほとんど露出しない。従って、接続路107の内部を清掃することは難しい。そこで本実施形態では、接続路107の内部の清掃を容易に行えるように、当該接続路107の内部に清掃部材101を設けたものである。 However, even if the supply unit is rotated upward as described above, the inside of the connection path 107 is hardly exposed as shown in FIG. Therefore, it is difficult to clean the inside of the connection path 107. Therefore, in this embodiment, the cleaning member 101 is provided inside the connection path 107 so that the inside of the connection path 107 can be easily cleaned.
 この清掃部材101は、接続路107の長手方向のうち、肥料が通過する部分を少なくとも清掃できれば良い。そこで図19等に示すように、本実施形態の清掃部材101は、接続路107のうち、導入部106が接続されている箇所から、当該接続路107の下流側(後側)の端部までの間の領域に設けられている。この清掃部材101は、接続路107の内部において、当該接続路107の軸線まわりで回転できるように構成されている。このように、接続路107内において、清掃部材101を回転させることにより、当該接続路107の内周壁面に堆積した付着物を削ぎ落すことができる。これにより、肥料の詰まりなどを防止できる。 The cleaning member 101 only needs to clean at least a portion through which the fertilizer passes in the longitudinal direction of the connection path 107. Therefore, as shown in FIG. 19 and the like, the cleaning member 101 of the present embodiment is connected to a downstream side (rear side) end of the connection path 107 from a location where the introduction part 106 is connected in the connection path 107. It is provided in the area between. The cleaning member 101 is configured to be rotatable around the axis of the connection path 107 inside the connection path 107. As described above, by rotating the cleaning member 101 in the connection path 107, the deposits deposited on the inner peripheral wall surface of the connection path 107 can be scraped off. Thereby, clogging of fertilizer etc. can be prevented.
 ところで、上記清掃部材101は、例えばブラシのようなものから構成することも考えられる。しかしながら、仮に、接続路107の中にブラシのようなものが配置されていると、当該接続路107の内部を肥料が通過する際に邪魔になってしまう。 Incidentally, the cleaning member 101 may be composed of a brush, for example. However, if a brush or the like is disposed in the connection path 107, it will be an obstacle when the fertilizer passes through the connection path 107.
 そこで本実施形態では、清掃部材101を、線材(針金)から構成している。より具体的には、本実施形態の清掃部材101は、線材を適宜湾曲させることにより、接続路107の内径に応じた径を有するコイル状(つる巻線状)に構成している。 Therefore, in this embodiment, the cleaning member 101 is composed of a wire (wire). More specifically, the cleaning member 101 of the present embodiment is configured in a coil shape (a vine winding shape) having a diameter corresponding to the inner diameter of the connection path 107 by appropriately bending the wire.
 このように、清掃部材101を線材から構成したので、接続路107の内部において清掃部材101が占有するスペースはわずかなものである。これにより、接続路107内での肥料の搬送に与える悪影響を最小限に抑えることができる。特に、本実施形態では、清掃部材101をコイル状としたので、その軸中心を肥料が通過できる。これにより、接続路107内の肥料の搬送が清掃部材101によって妨げられることがない。 Thus, since the cleaning member 101 is composed of a wire rod, the space occupied by the cleaning member 101 in the connection path 107 is very small. Thereby, the bad influence which it has on the conveyance of the fertilizer in the connection path 107 can be suppressed to the minimum. In particular, in this embodiment, since the cleaning member 101 is coiled, the fertilizer can pass through the axial center. Thereby, conveyance of the fertilizer in the connection path 107 is not prevented by the cleaning member 101.
 図19に示すように、本実施形態では、清掃部材101から前方に向けて伸びる延伸部102が設けられている。延伸部102は、接続路107の軸線に一致して配置された線材(針金)であり、清掃部材101と一体的に形成されている。図19に示すように、延伸部102は、接続路107の前側の端部から突出し、更に空気供給管94の内部を通過するように配置されている。空気供給管94の周壁には、前記延伸部102を前後に通過させることができるように通過孔が形成されている。これにより、延伸部102は、空気供給管94から、前方に向けて突出するように配置されている。 As shown in FIG. 19, in this embodiment, an extending portion 102 extending from the cleaning member 101 toward the front is provided. The extending portion 102 is a wire rod (wire) disposed so as to coincide with the axis of the connection path 107 and is formed integrally with the cleaning member 101. As shown in FIG. 19, the extending portion 102 is disposed so as to protrude from the front end portion of the connection path 107 and further pass through the inside of the air supply pipe 94. A passage hole is formed in the peripheral wall of the air supply pipe 94 so that the extending portion 102 can be passed back and forth. Thereby, the extending | stretching part 102 is arrange | positioned so that it may protrude toward the front from the air supply pipe | tube 94. FIG.
 そして、延伸部102の前側の端部には、操作部103が設けられている。操作部103は、延伸部102に対して固定的に設けられており、オペレータが指で操作できるようにレバー状に構成されている。オペレータは、操作部103を、延伸部102の長手方向まわりで回転操作することができる。これにより、オペレータは、接続路107の内部の清掃部材101を、当該接続路107の軸線まわりで回転させることができる。これにより、当該接続路107の内部の清掃を行うことができる。 And the operation part 103 is provided in the edge part of the front side of the extending | stretching part 102. FIG. The operation unit 103 is fixed to the extending unit 102 and is configured in a lever shape so that the operator can operate it with a finger. The operator can rotate the operation unit 103 around the longitudinal direction of the extending unit 102. Thus, the operator can rotate the cleaning member 101 inside the connection path 107 around the axis of the connection path 107. Thereby, the inside of the connection path 107 can be cleaned.
 なお上記のように、操作部103は、空気供給管94の前方に設けられている。即ち、操作部103は、運転座席6側に配置されている。従って、オペレータは、運転座席6側から、操作部103を操作できる。これにより、操作部103の操作を容易に行うことができるので、清掃部材101による接続路107内の清掃を簡単に行うことができる。 As described above, the operation unit 103 is provided in front of the air supply pipe 94. That is, the operation unit 103 is disposed on the driver seat 6 side. Therefore, the operator can operate the operation unit 103 from the driver seat 6 side. Thereby, since operation of the operation part 103 can be performed easily, the cleaning in the connection path 107 by the cleaning member 101 can be performed easily.
 以上で説明したように、本実施形態の施肥機8xは、肥料繰出装置9xと、ホッパ20と、駆動出力ギア51と、搬送部36と、を備えている。駆動出力ギア51は、駆動源である電動モータ95からの駆動力によって回転駆動される。搬送部36は、肥料繰出装置9xから繰り出された肥料を地面まで搬送する。肥料を供給する供給部が、ホッパ20と、肥料繰出装置9xと、を含んで構成される。この供給部は、繰出皿28xと、駆動入力ギア56と、を備える。駆動入力ギア56には、繰出皿28xを駆動するための駆動力が入力される。供給部は、搬送部36に対して肥料を供給できる作業位置(図15)と、搬送部36から離間した開放位置(図17)と、の間で移動可能に構成されている。供給部が作業位置にあるときには、駆動出力ギア51と駆動入力ギア56が噛み合う。また、供給部を作業位置から開放位置に向けて移動させることで、駆動入力ギア56が駆動出力ギア51から離間する。 As described above, the fertilizer applicator 8x of this embodiment includes the fertilizer feeding device 9x, the hopper 20, the drive output gear 51, and the transport unit 36. The drive output gear 51 is rotationally driven by a driving force from an electric motor 95 that is a driving source. The conveyance unit 36 conveys the fertilizer fed from the fertilizer feeding device 9x to the ground. The supply part which supplies a fertilizer is comprised including the hopper 20 and the fertilizer supply apparatus 9x. The supply unit includes a feeding tray 28 x and a drive input gear 56. A driving force for driving the feeding tray 28x is input to the drive input gear 56. The supply unit is configured to be movable between a work position (FIG. 15) where fertilizer can be supplied to the transport unit 36 and an open position (FIG. 17) separated from the transport unit 36. When the supply unit is in the working position, the drive output gear 51 and the drive input gear 56 are engaged with each other. Further, the drive input gear 56 is separated from the drive output gear 51 by moving the supply unit from the work position toward the open position.
 このように、駆動源である電動モータ95から肥料繰出装置9xへの駆動の伝達をギアの噛合いによって実現するとともに、供給部を開放位置まで移動させる際にはギア同士が離間するようにした。これにより、供給部を開放位置まで移動させる際に、当該供給部と電動モータ95の間の連結を解除するためのクラッチの操作等が不要となる。また、当該クラッチが不要となるため、クラッチを切り忘れて破損するおそれもない。 As described above, the transmission of the drive from the electric motor 95 as the drive source to the fertilizer feeding device 9x is realized by the meshing of the gears, and the gears are separated when the supply unit is moved to the open position. . Thereby, when moving a supply part to an open position, the operation of the clutch for canceling the connection between the supply part and the electric motor 95 becomes unnecessary. Further, since the clutch becomes unnecessary, there is no possibility that the clutch is forgotten to be broken and damaged.
 また、上記で説明したように、本実施形態の施肥機8xは、供給部を左右に2つ備える。各供給部が備える駆動入力ギア56が、駆動出力ギア51に噛合い可能である。 Moreover, as demonstrated above, the fertilizer applicator 8x of this embodiment is provided with two supply parts on the left and right. The drive input gear 56 included in each supply unit can mesh with the drive output gear 51.
 2つ供給部のそれぞれに、駆動出力ギア51からの駆動力を受け取るための駆動入力ギア56を設けたので、1つの駆動出力ギア51から各供給部に対して駆動力を伝達できる。従って、複数の供給部の間で駆動力を伝達するための連結機構が不要となる。また、当該連結機構を解除する操作も不要となり、当該連結機構を解除し忘れて破損するおそれもない。 Since each of the two supply units is provided with the drive input gear 56 for receiving the drive force from the drive output gear 51, the drive force can be transmitted from one drive output gear 51 to each supply unit. Therefore, a connection mechanism for transmitting driving force between the plurality of supply units is not necessary. In addition, the operation of releasing the connection mechanism is not required, and there is no possibility that the connection mechanism is forgotten to be broken and damaged.
 また、上記で説明したように、本実施形態の施肥機8xにおいて、駆動出力ギア51の駆動源は電動モータ95である。 Also, as described above, in the fertilizer applicator 8x of the present embodiment, the drive source of the drive output gear 51 is the electric motor 95.
 例えば、エンジンの駆動力によって施肥機8xを駆動することも考えられるが、この場合、当該エンジンから駆動出力ギア51まで駆動力の伝達機構を設ける必要があるため、当該駆動出力ギア51の配置の自由度が低くなる。この点、上記のように、施肥機8xの駆動源を電動モータ95とすることで、当該駆動源をエンジンに比べて自由に配置できるので、駆動出力ギア51の配置の自由度が高まる。 For example, it is conceivable to drive the fertilizer applicator 8x with the driving force of the engine. In this case, however, it is necessary to provide a driving force transmission mechanism from the engine to the driving output gear 51. The degree of freedom is reduced. In this regard, by using the electric motor 95 as the drive source of the fertilizer applicator 8x as described above, the drive source can be freely arranged as compared with the engine, so that the degree of freedom of arrangement of the drive output gear 51 is increased.
 また、上記で説明したように、本実施形態の施肥機8xは以下のように構成されている。即ち、搬送部36は、略漏斗状の導入部106と、略管状に構成された接続路107と、搬送ホース108と、清掃部材101と、を備えている。導入部106には、供給部からの肥料が供給される。接続路107は、導入部106の下端部に接続される。搬送ホース108は、接続路107に接続され、肥料を地面まで搬送する。清掃部材101は、接続路107の内部にて、当該接続路107の軸線まわりに回転可能に構成される。 Further, as described above, the fertilizer applicator 8x of the present embodiment is configured as follows. That is, the conveyance unit 36 includes a substantially funnel-shaped introduction unit 106, a connection path 107 configured in a substantially tubular shape, a conveyance hose 108, and a cleaning member 101. Fertilizer from the supply unit is supplied to the introduction unit 106. The connection path 107 is connected to the lower end part of the introduction part 106. The conveyance hose 108 is connected to the connection path 107 and conveys the fertilizer to the ground. The cleaning member 101 is configured to be rotatable around the axis of the connection path 107 inside the connection path 107.
 上記のように、清掃部材101を設けたことにより、接続路107の内部を清掃できるので、当該接続路107内に付着物が堆積することを防止できる。 As described above, by providing the cleaning member 101, the inside of the connection path 107 can be cleaned, so that deposits can be prevented from accumulating in the connection path 107.
 また、上記で説明したように、本実施形態の施肥機8xにおいて、清掃部材101は、線材から構成されている。 Further, as described above, in the fertilizer applicator 8x of the present embodiment, the cleaning member 101 is made of a wire.
 このように、清掃部材101を線材によって構成したので、接続路107内において清掃部材101が占有するスペースはわずかである。従って、当該接続路107内を肥料が搬送される際に、清掃部材101が邪魔にならない。 Thus, since the cleaning member 101 is made of a wire, the space occupied by the cleaning member 101 in the connection path 107 is very small. Therefore, when the fertilizer is conveyed in the connection path 107, the cleaning member 101 does not get in the way.
 次に、上記実施形態の変形例について、図22を参照して説明する。 Next, a modification of the above embodiment will be described with reference to FIG.
 図22(a)に示す変形例は、清掃部材101を、接続路107の軸線方向に沿って往復移動させることができるように構成したものである。このように、接続路107内で清掃部材101を往復させることにより、接続路107内を清掃できる。 22A is configured such that the cleaning member 101 can be reciprocated along the axial direction of the connection path 107. In the modification shown in FIG. Thus, the inside of the connection path 107 can be cleaned by reciprocating the cleaning member 101 in the connection path 107.
 図22(a)の変形例においては、操作部103を、接続路107の軸線方向(前後方向)に沿ってスライドさせることができるように構成されている。従って、オペレータは、操作部103を前後に動かすことにより、接続路107内の清掃部材101を、当該接続路107の軸線に沿って往復移動させることができる。また、図22(a)の変形例では、操作部103と空気供給管94の間に、圧縮コイルばねとして構成された付勢部材104が配置されている。これにより、操作部103は、前方(図22の左側)に向けて付勢されている。従って、オペレータは、操作部103を、後方(図22の右側)に向けて押し込み、その後、当該押込みを解除することにより、清掃部材101を、接続路107の内部で往復移動させることができる。 22 (a), the operation unit 103 is configured to be slidable along the axial direction (front-rear direction) of the connection path 107. Therefore, the operator can reciprocate the cleaning member 101 in the connection path 107 along the axis of the connection path 107 by moving the operation unit 103 back and forth. 22A, an urging member 104 configured as a compression coil spring is disposed between the operation unit 103 and the air supply pipe 94. Thereby, the operation part 103 is urged | biased toward the front (left side of FIG. 22). Therefore, the operator can reciprocate the cleaning member 101 inside the connection path 107 by pushing the operation unit 103 backward (right side in FIG. 22) and then releasing the push.
 図22(b)に示す変形例は、接続路107を、ブロア93が発生させる風によって自動的に回転させるようにしたものである。具体的には、図22(b)に示すように、延伸部102に、風受け部105を設けたものである。風受け部105は、空気供給管94の内部に配置されている。風受け部105は、空気供給管94内を流れる空気を受けることができる形状とされ、かつ延伸部102に対して固定されている。空気供給管94には、ブロア93が発生させた空気流が供給されているので、当該空気流が風受け部105に作用し、延伸部102を軸線まわりで回転させることができる。 In the modification shown in FIG. 22B, the connection path 107 is automatically rotated by the wind generated by the blower 93. Specifically, as shown in FIG. 22 (b), a wind receiving portion 105 is provided in the extending portion 102. The wind receiving portion 105 is disposed inside the air supply pipe 94. The wind receiving portion 105 has a shape capable of receiving air flowing in the air supply pipe 94 and is fixed to the extending portion 102. Since the air flow generated by the blower 93 is supplied to the air supply pipe 94, the air flow acts on the wind receiving portion 105, and the extending portion 102 can be rotated around the axis.
 これによれば、ブロア93が発生させた空気流の作用によって、清掃部材101を、接続路107内で回転させることができる。清掃部材101は、ブロア93が空気流を供給しているあいだは回転し続ける。即ち、清掃部材101による清掃を自動的かつ連続的に行うことができるので、接続路107内を常に清浄に保ち、当該接続路107に付着物が堆積することを確実に防止できる。そして、この図22(b)の変形例では、清掃部材101を回転させるためにブロア93の風を利用しているので、清掃部材101を回転させるための駆動源を別途設ける必要がなく、施肥機8xをシンプルに構成できる。 According to this, the cleaning member 101 can be rotated in the connection path 107 by the action of the air flow generated by the blower 93. The cleaning member 101 continues to rotate while the blower 93 supplies airflow. That is, since the cleaning by the cleaning member 101 can be performed automatically and continuously, the inside of the connection path 107 can always be kept clean and deposits can be reliably prevented from accumulating in the connection path 107. In the modification of FIG. 22B, since the wind of the blower 93 is used to rotate the cleaning member 101, it is not necessary to separately provide a drive source for rotating the cleaning member 101, and fertilization is performed. The machine 8x can be configured simply.
 以上に第2実施形態及び変形例を説明したが、上記の構成は例えば以下のように変更することができる。 Although the second embodiment and the modified examples have been described above, the above configuration can be changed as follows, for example.
 上記実施形態では、肥料繰出装置9xは、円板状の繰出皿28xに、その厚み方向で貫通する繰出孔28bを複数設け、当該繰出皿28xを、略垂直方向に配置された回転軸45xまわりで回転駆動する構成となっている。しかし、肥料繰出装置9xの構成はこれに限定されず、肥料を所定量ずつ繰り出せる構成であれば良い。例えば、肥料繰出装置9xは、円柱状の繰出ロールの周囲に、複数の繰出穴を設け、当該繰出ロールを、略水平方向に配置された回転軸まわりで回転駆動する構成であっても良い。 In the above-described embodiment, the fertilizer feeding device 9x is provided with a plurality of feeding holes 28b penetrating in the thickness direction in the disc-shaped feeding tray 28x, and the feeding tray 28x is arranged around the rotation axis 45x disposed in a substantially vertical direction. It is the structure which is rotationally driven by. However, the configuration of the fertilizer feeding device 9x is not limited to this, and any configuration can be used as long as the fertilizer can be fed out by a predetermined amount. For example, the fertilizer feeding device 9x may have a configuration in which a plurality of feeding holes are provided around a cylindrical feeding roll, and the feeding roll is rotationally driven around a rotation axis arranged in a substantially horizontal direction.
 上記実施形態では、左右の供給部が「作業状態」にあるときに(図15及び図16)、左右の駆動入力ギア56L,56Rが軸線方向に並んで隣接した配置となっているが、必ずしもこれに限らない。要は、1つの駆動出力ギア51に対して、左右の駆動入力ギア56L,56Rが同時に噛み合うことができれば良いのであり、必ずしも左右の駆動入力ギア56L,56Rの軸線が一致している必要はない。 In the above embodiment, when the left and right supply units are in the “working state” (FIGS. 15 and 16), the left and right drive input gears 56L and 56R are arranged adjacent to each other in the axial direction. Not limited to this. In short, it is only necessary that the left and right drive input gears 56L and 56R can simultaneously mesh with one drive output gear 51, and the axes of the left and right drive input gears 56L and 56R do not necessarily have to coincide. .
 上記実施形態の施肥機8xは4条分の肥料を散布するものであり、左右の供給部が、それぞれ2条分の肥料を供給する構成となっているが、これに限定されない。例えば、6条分の肥料を散布する施肥機8xとして、左右の供給部が、それぞれ3条分の肥料を供給する構成とすることができる。もっとも、左右の供給部が同じ条数分の肥料を供給する必要はない。例えば6条分の肥料を散布する施肥機8xにおいては、左の供給部が4条分の肥料を供給し、右の供給部が2条分の肥料を供給するような構成とすることもできる。 The fertilizer applicator 8x of the above embodiment is configured to spray four pieces of fertilizer, and the left and right supply units are configured to supply two pieces of fertilizer, respectively, but are not limited thereto. For example, as a fertilizer applicator 8x for spraying 6 pieces of fertilizer, the left and right supply units can supply 3 pieces of fertilizer. However, it is not necessary for the supply parts on the left and right to supply the same number of fertilizers. For example, in the fertilizer applicator 8x for spraying 6 pieces of fertilizer, the left supply unit can supply 4 pieces of fertilizer and the right supply unit can supply 2 pieces of fertilizer. .
 本発明の構成は、施肥機に限らず、粒状体(粒状の固形物)を地面に散布する粒状体散布装置に広く適用することができる。 The configuration of the present invention is not limited to a fertilizer applicator, and can be widely applied to a granular material spraying device that sprays granular material (a granular solid material) to the ground.
 次に、本発明の第3実施形態を説明する。図23は、本発明の第3実施形態に係る田植機1xの側面図である。図23に示すように、田植機1xは、車体2と、当該車体2の後方に配置された植付部3と、から構成されている。 Next, a third embodiment of the present invention will be described. FIG. 23 is a side view of a rice transplanter 1x according to a third embodiment of the present invention. As shown in FIG. 23, the rice transplanter 1x includes a vehicle body 2 and a planting unit 3 disposed behind the vehicle body 2.
 本実施形態の田植機1xは本実施形態の田植機は4条植えの田植機として構成されており、図24に示すように、4条分の植付ユニット90を車体の左右方向に並べて備えている。 The rice transplanter 1x of this embodiment is configured as a four-row planting rice transplanter, as shown in FIG. 24, and has four rows of planting units 90 arranged in the left-right direction of the vehicle body. ing.
 苗載台17は、マット苗を載置可能な載置面17bを有している。載置面17bは、斜め後上方を向いている。また、苗載台17の上端17aは、斜め前上方を向いている。 The seedling mounting table 17 has a mounting surface 17b on which a mat seedling can be mounted. The placement surface 17b faces obliquely rearward and upward. Further, the upper end 17a of the seedling stage 17 is directed obliquely forward and upward.
 また、車体2には、肥料を圃場に散布するための施肥機8xが設けられている。施肥機8xは、固体粒状の肥料を収容するための肥料ホッパ27xと、肥料ホッパ27x内の肥料を所定量ずつ繰り出す肥料繰出装置9xと、繰り出された肥料を地面まで搬送する搬送ホース108と、を主に有している。 Further, the body 2 is provided with a fertilizer applicator 8x for spraying fertilizer on the field. The fertilizer applicator 8x includes a fertilizer hopper 27x for storing solid granular fertilizer, a fertilizer feeding device 9x for feeding the fertilizer in the fertilizer hopper 27x by a predetermined amount, a transport hose 108 for transporting the fed fertilizer to the ground, It has mainly.
 肥料ホッパ27xは、図23及び図24に示すように、車体の前後方向において、運転座席6と苗載台17の間の位置に配置されている。図25に示すように、肥料ホッパ27xは、ホッパ本体87と、蓋部88とを備えている。ホッパ本体87は、その上部が開放された容器として構成されており、当該ホッパ本体87の内部に肥料が収容される。 As shown in FIGS. 23 and 24, the fertilizer hopper 27x is disposed at a position between the driver seat 6 and the seedling stage 17 in the front-rear direction of the vehicle body. As shown in FIG. 25, the fertilizer hopper 27 x includes a hopper body 87 and a lid portion 88. The hopper body 87 is configured as a container having an open top, and fertilizer is accommodated in the hopper body 87.
 蓋部88は、ホッパ本体87の上部の開放部を覆うように配置されている。なお、蓋部88の上面であって、車体の前後方向の中央部88aには、例えば施肥機8xによる肥料散布量の調整方法などを記載した注意書きシール(図略)が貼られている。 The lid portion 88 is disposed so as to cover the open portion at the top of the hopper body 87. Note that a cautionary note seal (not shown) describing, for example, a method for adjusting the fertilizer application amount by the fertilizer applicator 8x is affixed to the upper surface of the lid portion 88 and the central portion 88a in the longitudinal direction of the vehicle body.
 図25に示すように、蓋部88は、ヒンジ部115を介してホッパ本体87に連結されている。蓋部88は、ヒンジ部115を中心に回転可能である。このヒンジ部115は、ホッパ本体87の後側の壁面に設けられている。ヒンジ部115を中心にして、蓋部88を後側に向けて回転させることにより、ホッパ本体87の開放部を開放した状態とすることができる(図27の状態)。 As shown in FIG. 25, the lid portion 88 is connected to the hopper body 87 via the hinge portion 115. The lid part 88 is rotatable around the hinge part 115. The hinge portion 115 is provided on the rear wall surface of the hopper body 87. By rotating the lid portion 88 around the hinge portion 115 toward the rear side, the open portion of the hopper body 87 can be opened (state shown in FIG. 27).
 図25に示すように、ホッパ本体87の下部は、下に進むにつれて細くなるように漏斗状に形成された通路部89となっている。そして、当該通路部89の下端部は、肥料繰出装置9xの上部に接続されている。なお、本実施形態では、1つの肥料ホッパ27xに2条分の肥料を収容するように構成されている。図26に示すように、ホッパ本体87の下部が二股にわかれて、2つの通路部89を形成している。そして、各通路部89に肥料繰出装置9xが接続されている。これにより、1つの肥料ホッパ27xによって、2つの肥料繰出装置9xに対して肥料を供給できる。なお、本実施形態の田植機は4条植えであるから、施肥機8xは4条分の肥料を散布できるように4つの肥料繰出装置9xを備えている。従って、本実施形態の施肥機8xは、図26に示すように、2つの肥料ホッパ27xを車体の左右方向に並べて備えている。 As shown in FIG. 25, the lower portion of the hopper body 87 is a passage portion 89 formed in a funnel shape so as to become thinner as it goes downward. And the lower end part of the said channel | path part 89 is connected to the upper part of the fertilizer supply apparatus 9x. In the present embodiment, two fertilizers are accommodated in one fertilizer hopper 27x. As shown in FIG. 26, the lower part of the hopper body 87 is divided into two forks to form two passage parts 89. A fertilizer feeding device 9 x is connected to each passage portion 89. Thereby, a fertilizer can be supplied with respect to the two fertilizer supply apparatuses 9x by one fertilizer hopper 27x. In addition, since the rice transplanter of this embodiment is 4 row planting, the fertilizer applicator 8x is provided with the four fertilizer supply apparatuses 9x so that the fertilizer for 4 rows can be sprayed. Therefore, as shown in FIG. 26, the fertilizer applicator 8x of the present embodiment includes two fertilizer hoppers 27x arranged in the left-right direction of the vehicle body.
 肥料繰出装置9xは、肥料ホッパ27xから通路部89を介して供給された肥料を、少量ずつ繰り出して搬送ホース108に供給するように構成されている。搬送ホース108は、可撓性を有するチューブ状の部材であり、その先端には散布口109が形成されている。図23に示すように、散布口109は、地面に近接させて設けられている。 The fertilizer feeding device 9x is configured to feed the fertilizer supplied from the fertilizer hopper 27x through the passage portion 89 little by little to the transport hose 108. The transport hose 108 is a tube-like member having flexibility, and a spray port 109 is formed at the tip thereof. As shown in FIG. 23, the spray port 109 is provided close to the ground.
 以上の構成で、肥料ホッパ27x内の肥料は、肥料繰出装置9xによって所定量ずつ繰り出された後、搬送ホース108によって散布口109まで搬送され、地面に放出される。 With the above configuration, the fertilizer in the fertilizer hopper 27x is fed out by a predetermined amount by the fertilizer feeding device 9x, and then transported to the spraying port 109 by the transport hose 108 and released to the ground.
 ところで、一般的に、肥料は、肥料袋に入った状態で市場に供給されている。従って、肥料ホッパ27x内に肥料を投入する際には、従来、以下のように行っていた。即ち、まず、オペレータは、肥料が入った肥料袋に穴を開ける。続いて、オペレータは、穴を開けた状態の肥料袋を、肥料ホッパ27xの開口部よりも高い位置まで持ち上げる。そして、オペレータは、上記肥料袋を傾けて、前述の穴を介して肥料ホッパ27x内へと肥料を投入する。しかしながら、肥料袋は重たいため、肥料ホッパ27xに肥料を供給する作業は重労働であり、オペレータにとって負担が大きい。また、肥料袋に穴を開けた状態で、当該肥料袋を持ち上げなければならないため、肥料がこぼれることがあった。 By the way, in general, fertilizers are supplied to the market in the state of fertilizer bags. Therefore, conventionally, when fertilizer is put into the fertilizer hopper 27x, it has been performed as follows. That is, first, the operator opens a hole in the fertilizer bag containing the fertilizer. Subsequently, the operator lifts the fertilizer bag in a state where the hole is opened to a position higher than the opening of the fertilizer hopper 27x. Then, the operator tilts the fertilizer bag and inputs the fertilizer into the fertilizer hopper 27x through the aforementioned hole. However, since the fertilizer bag is heavy, the work of supplying the fertilizer to the fertilizer hopper 27x is a heavy labor and a heavy burden on the operator. Moreover, since the said fertilizer bag had to be lifted in the state which opened the fertilizer bag, the fertilizer might spill.
 そこで本実施形態では、図27に示すように、ホッパ本体87の内部に、略水平に配置された肥料袋台116を設けている。肥料袋台116は、固体粒状の肥料が上下に通過できるように、格子状に構成されている。この構成によれば、肥料ホッパ27xに肥料を供給する際に、オペレータは、肥料袋117を、肥料袋台116の上に置くことができる(図27の状態)。これにより、肥料袋117内の肥料をホッパ本体87内に投入する際に、オペレータが肥料袋117を支えておく必要がない。従って、肥料を供給する作業におけるオペレータの負担を軽減できる。 Therefore, in the present embodiment, as shown in FIG. 27, a fertilizer bag base 116 arranged substantially horizontally is provided inside the hopper body 87. The fertilizer bag base 116 is configured in a lattice shape so that solid granular fertilizer can pass vertically. According to this configuration, when supplying fertilizer to the fertilizer hopper 27x, the operator can place the fertilizer bag 117 on the fertilizer bag base 116 (state of FIG. 27). This eliminates the need for the operator to support the fertilizer bag 117 when the fertilizer in the fertilizer bag 117 is put into the hopper body 87. Therefore, the burden on the operator in the work of supplying fertilizer can be reduced.
 更に、本実施形態の肥料ホッパ27xには、肥料袋台116に載置された肥料袋117に穴を開けるための穴開け手段が設けられている。本実施形態において、穴開け手段は、ホッパ本体87の壁面に設けられたスリット118である。このスリット118は、肥料袋台116に載置された肥料袋の下部近傍に対面するように形成されている。そして、当該スリット118を介して、ホッパの外側からナイフ110などを挿入することにより(図28)、肥料袋台116に載置された肥料袋117に穴を開けることができる。このように、肥料ホッパ27xの内部に肥料袋117を配置した状態(肥料袋台116に載置した状態)で、当該肥料袋117に穴を開けるようにすれば、肥料がこぼれることを防止できる。 Furthermore, the fertilizer hopper 27x of the present embodiment is provided with a punching means for making a hole in the fertilizer bag 117 placed on the fertilizer bag base 116. In the present embodiment, the hole punching means is a slit 118 provided on the wall surface of the hopper body 87. The slit 118 is formed to face the vicinity of the lower part of the fertilizer bag placed on the fertilizer bag base 116. Then, by inserting a knife 110 or the like from the outside of the hopper through the slit 118 (FIG. 28), a hole can be made in the fertilizer bag 117 placed on the fertilizer bag base 116. In this way, if the fertilizer bag 117 is placed inside the fertilizer hopper 27x (the state where the fertilizer bag is placed on the fertilizer bag base 116), the fertilizer bag 117 can be prevented from spilling if the hole is opened. .
 なお、本実施形態の肥料ホッパ27xにおいて、上記スリット118はゴム製のシール部材119に形成されている。そして、スリット118にナイフ110などを挿入していない状態においては、ゴムの弾力によって前記スリット118が閉じた状態となるように構成されている。これにより、肥料ホッパ27x内の肥料が、前記スリット118を介して外に漏れることを防止できる。 In the fertilizer hopper 27x of the present embodiment, the slit 118 is formed in a rubber seal member 119. When the knife 110 or the like is not inserted into the slit 118, the slit 118 is closed by the elasticity of rubber. Thereby, it is possible to prevent the fertilizer in the fertilizer hopper 27x from leaking out through the slit 118.
 続いて、本実施形態の肥料ホッパ27xが備える雨避け部145について説明する。 Then, the rain avoidance part 145 with which the fertilizer hopper 27x of this embodiment is provided is demonstrated.
 肥料ホッパ27x内に肥料を供給する際には、蓋部88を開ける(ホッパ本体87上部の開口部を開放する)必要がある。このため、雨天時に肥料供給を行うと、肥料ホッパ27x内に雨水が侵入する可能性がある。仮に、肥料ホッパ27x内に雨水が侵入してしまった場合、当該肥料ホッパ27x内の肥料が溶けて固まり、当該肥料を散布できなくなるという問題がある。 When supplying fertilizer into the fertilizer hopper 27x, it is necessary to open the lid 88 (open the opening at the top of the hopper main body 87). For this reason, if fertilizer is supplied during rainy weather, rainwater may enter the fertilizer hopper 27x. If rainwater has entered the fertilizer hopper 27x, the fertilizer in the fertilizer hopper 27x melts and hardens, and the fertilizer cannot be sprayed.
 そこで、本実施形態の肥料ホッパ27xは雨避け部145を備えている。雨避け部145は、ある程度の剛性を有する略平板状の部材であり、雨水を通さない素材(合成樹脂など)で構成されている。図25に示すように、雨避け部145は、蓋部88の、ヒンジ部115とは反対側の端部に連結されている。 Therefore, the fertilizer hopper 27x of this embodiment includes a rain avoiding portion 145. The rain avoiding portion 145 is a substantially flat plate-like member having a certain degree of rigidity, and is made of a material (such as synthetic resin) that does not allow rain water to pass through. As shown in FIG. 25, the rain avoiding portion 145 is connected to the end portion of the lid portion 88 opposite to the hinge portion 115.
 図25に示すように、車体左右方向で見たときに、雨避け部145は、蓋部88に対して略直角に接続している。従って、蓋部88を開けた状態(蓋部88を略直立させた状態、図27の状態)において、前記雨避け部145は、略水平となり、前方に向けて張り出した状態となる。これにより、蓋部88を開けたときに、雨避け部145が、ホッパ本体87の開口部に対面する配置となっている。 As shown in FIG. 25, the rain avoiding portion 145 is connected to the lid portion 88 at a substantially right angle when viewed in the left-right direction of the vehicle body. Therefore, in the state where the lid portion 88 is opened (the state where the lid portion 88 is substantially upright, the state shown in FIG. 27), the rain avoiding portion 145 is substantially horizontal and protrudes forward. Thereby, when the cover part 88 is opened, the rain avoiding part 145 is arranged to face the opening part of the hopper body 87.
 以上のように雨避け部145を設けたことにより、蓋部88を開けた状態(図27の状態)においては、雨避け部145がホッパ本体87の開口部の上方を覆った状態となる。これにより、雨天時に蓋部88を開けたとしても、雨避け部145によって雨水を受け止めることができるので、当該雨水がホッパ本体87内に降り注ぐことを防止できる。従って、雨天時においても、肥料ホッパ27xへの肥料の供給を行うことができる。 By providing the rain avoiding portion 145 as described above, the rain avoiding portion 145 covers the upper portion of the opening of the hopper body 87 when the lid 88 is opened (the state shown in FIG. 27). Accordingly, even if the lid 88 is opened during rainy weather, the rainwater can be received by the rain avoiding portion 145, so that the rainwater can be prevented from pouring into the hopper body 87. Therefore, the fertilizer can be supplied to the fertilizer hopper 27x even in rainy weather.
 一方、蓋部88を閉めた状態においては、雨避け部145は、ホッパ本体87の前面に沿った状態となる(図25の状態)。従って、蓋部88を閉めた状態であれば、雨避け部145が邪魔になることはない。 On the other hand, in a state in which the lid portion 88 is closed, the rain avoiding portion 145 is in a state along the front surface of the hopper body 87 (state in FIG. 25). Therefore, if the cover part 88 is closed, the rain avoiding part 145 does not get in the way.
 なお、雨が降っていないときは、肥料ホッパ27xに肥料を供給する際に雨避け部145がかえって邪魔になることがある。従って、雨避け部145は、取外し可能、又は退避可能であることが好ましい。図27に示すように、本実施形態の雨避け部145は、ヒンジ部147を介して蓋部88に連結されている。そして、蓋部88を開けた状態で、前記ヒンジ部147を中心に雨避け部145を回転させることで、当該雨避け部145を後方に倒すことができるように構成されている(図28の状態)。このように、雨が降っていないときには、肥料供給の際に邪魔にならないように、雨避け部145を退避させておくことができる。 In addition, when it is not raining, when supplying fertilizer to the fertilizer hopper 27x, the rain avoiding portion 145 may get in the way. Therefore, it is preferable that the rain avoiding portion 145 can be removed or retracted. As shown in FIG. 27, the rain avoiding portion 145 of this embodiment is connected to the lid portion 88 via a hinge portion 147. Then, the rain avoiding portion 145 can be tilted backward by rotating the rain avoiding portion 145 around the hinge portion 147 with the lid portion 88 opened (see FIG. 28). Status). As described above, when it is not raining, the rain avoiding portion 145 can be retracted so as not to disturb the supply of fertilizer.
 また、本実施形態では、蓋部88と雨避け部145の間の隙間を覆うシール部材148を設けている。シール部材148は、例えば可撓性を有するビニール製のシート部材であり、雨避け部145のヒンジ部147側の端部と、蓋部88のヒンジ部147側の端部と、に跨がるように配置されている。このようにシール部材148を設けたので、蓋部88と雨避け部145の間の隙間を通って雨水が侵入することを防止できる。 In this embodiment, a seal member 148 that covers the gap between the lid 88 and the rain avoiding portion 145 is provided. The seal member 148 is, for example, a flexible vinyl sheet member, and straddles the end portion on the hinge portion 147 side of the rain avoiding portion 145 and the end portion on the hinge portion 147 side of the lid portion 88. Are arranged as follows. Since the seal member 148 is provided in this way, rainwater can be prevented from entering through the gap between the lid portion 88 and the rain avoiding portion 145.
 続いて、本実施形態の田植機が備える苗供給補助部121について説明する。 Subsequently, the seedling supply auxiliary unit 121 included in the rice transplanter of the present embodiment will be described.
 苗載台17に載置されたマット苗が残り少なくなった場合、オペレータは、予備苗台111に搭載された苗箱(図略)に収容されている予備のマット苗を、苗載台17に供給する。このときオペレータは、苗箱内の予備のマット苗を、苗取板によってすくい上げて、苗載台17まで運ぶ必要がある。ところが、当該マット苗を載せた苗取板は比較的重量があるため、当該苗取板を苗載台17まで運ぶ作業はオペレータにとって負担が大きい。 When the mat seedlings placed on the seedling table 17 are reduced, the operator places the spare mat seedlings stored in the seedling box (not shown) mounted on the preliminary seedling table 111 on the seedling table 17. Supply. At this time, the operator needs to scoop up the spare mat seedling in the seedling box with the seedling collecting plate and carry it to the seedling placing stand 17. However, since the seedling collecting plate on which the mat seedling is placed is relatively heavy, the operation of carrying the seedling collecting plate to the seedling placing stand 17 is heavy for the operator.
 そこで本実施形態の田植機1xは、図23等に示すように、車体2の前後方向において運転座席6と苗載台17との間の位置に、苗取板を一時的に載置(仮置き)可能な苗供給補助部121を設けたものである。 Therefore, the rice transplanter 1x according to the present embodiment temporarily places a seedling plate (temporary) at a position between the driver's seat 6 and the seedling platform 17 in the front-rear direction of the vehicle body 2 as shown in FIG. It is provided with a possible seedling supply auxiliary unit 121.
 このように苗供給補助部121を設けたことにより、オペレータは、苗取板を苗載台17まで搬送する途中で、当該苗取板を、運転座席6と苗載台17との間に仮置きできる。これにより、オペレータは、苗取板を運ぶ作業の途中で一休みできるので、オペレータの負担を軽減できる。 By providing the seedling supply assist unit 121 in this way, the operator temporarily moves the seedling plate between the driver seat 6 and the seedling table 17 while the seedling plate is being transported to the seedling table 17. I can put it. Thereby, since the operator can take a rest in the middle of the operation | work which carries a seedling board, it can reduce an operator's burden.
 次に、より具体的に説明する。本実施形態において、苗供給補助部121は、肥料ホッパ27xの蓋部88と、突出部122(後述)と、によって構成されている。そして本実施形態の苗供給補助部121は、図29に示すように、肥料ホッパ27xの蓋部88の上面に、マット苗112を載せた苗取板99を載置できるように構成されている。 Next, a more specific explanation will be given. In the present embodiment, the seedling supply auxiliary unit 121 is configured by a lid portion 88 of the fertilizer hopper 27x and a protruding portion 122 (described later). And the seedling supply auxiliary | assistant part 121 of this embodiment is comprised so that the seedling collection board 99 which mounted the mat seedling 112 on the upper surface of the cover part 88 of the fertilizer hopper 27x can be mounted, as shown in FIG. .
 前述のように、肥料ホッパ27xは、運転座席6と苗載台17との間に位置している。従って、上記のように肥料ホッパ27xの上に苗取板99を載置可能とすることにより、当該苗取板99を、運転座席6と苗載台17との間に仮置きできる。 As described above, the fertilizer hopper 27x is located between the driver seat 6 and the seedling stage 17. Therefore, by making it possible to place the seedling plate 99 on the fertilizer hopper 27x as described above, the seedling plate 99 can be temporarily placed between the driver seat 6 and the seedling table 17.
 このように、本実施形態の苗供給補助部121は、肥料ホッパ27xの蓋部88の上面に苗取板99を載置する構成としたので、当該苗取板99を仮置きするための台のようなものを別途設ける必要がない。これにより、苗供給補助部121をシンプルに構成でき、田植機1xの製造コストが上昇することを防止できる。 Thus, since the seedling supply assisting part 121 of the present embodiment is configured to place the seedling collecting plate 99 on the upper surface of the lid part 88 of the fertilizer hopper 27x, a stand for temporarily placing the seedling collecting plate 99 is provided. There is no need to provide a separate one. Thereby, the seedling supply auxiliary | assistance part 121 can be comprised simply, and it can prevent that the manufacturing cost of the rice transplanter 1x rises.
 なお、従来の田植機においても、肥料ホッパ27xの蓋部88の上に苗取板99を置くことは不可能ではなかった。しかしながら、図27に示すように、肥料ホッパ27xの蓋部88の上面は必ずしも平面ではなく、湾曲している。このため、肥料ホッパ27xの蓋部88の上面は、苗取板99を載置する場所として適切であるとはいいがたい。 In the conventional rice transplanter, it was not impossible to place the seedling plate 99 on the lid 88 of the fertilizer hopper 27x. However, as shown in FIG. 27, the upper surface of the lid portion 88 of the fertilizer hopper 27x is not necessarily a flat surface but is curved. For this reason, it cannot be said that the upper surface of the lid portion 88 of the fertilizer hopper 27x is suitable as a place where the seedling collection plate 99 is placed.
 従って、従来の田植機においては、肥料ホッパ27xの蓋部88の上に苗取板99を置いたとしても不安定であり、当該苗取板99が落下するおそれがあった。また前述のように、肥料ホッパ27xの蓋部88の上面の中央部88aには、注意書きシール(図略)が貼られている。このため、仮に、蓋部88の上面に苗取板99を直接置いてしまうと、前記注意書きシールがこすれたり剥がれたりして、前記注意書きを読めなくなってしまうという問題がある。 Therefore, in the conventional rice transplanter, even if the seedling plate 99 is placed on the cover portion 88 of the fertilizer hopper 27x, it is unstable and the seedling plate 99 may fall. Further, as described above, a cautionary note seal (not shown) is attached to the central portion 88a of the upper surface of the lid portion 88 of the fertilizer hopper 27x. For this reason, if the seedling plate 99 is directly placed on the upper surface of the lid portion 88, there is a problem in that the caution note seal is rubbed or peeled off and the caution note cannot be read.
 そこで本実施形態の苗供給補助部121は、肥料ホッパ27xの上部に、上向きに凸となる突出部122を有している。図25に示すように、突出部122の上端は、肥料ホッパ27xの蓋部88の上面よりも上に突出するように形成されている。また、図27等に示すように、本実施形態において、突出部122は、蓋部88の上面に一体形成されている。 Therefore, the seedling supply assisting part 121 of the present embodiment has a protruding part 122 that protrudes upward at the upper part of the fertilizer hopper 27x. As shown in FIG. 25, the upper end of the protrusion 122 is formed to protrude above the upper surface of the lid 88 of the fertilizer hopper 27x. Further, as shown in FIG. 27 and the like, in the present embodiment, the protruding portion 122 is integrally formed on the upper surface of the lid portion 88.
 また、突出部122は、肥料ホッパ27xの前後方向で、後寄りの位置に形成されている。図25に示すように、車体の左右方向で見たときに、突出部122の先端(上端)は、丸みを帯びた形状となっている。また、図25に示すように、車体の左右方向で見たときに、突出部122の上面と、蓋部88の上面と、の共通の接線123が、当該蓋部88の上面の前後方向の中央部88aに干渉しないように構成されている。 Moreover, the protrusion part 122 is formed in the back position in the front-back direction of the fertilizer hopper 27x. As shown in FIG. 25, when viewed in the left-right direction of the vehicle body, the tip (upper end) of the protrusion 122 has a rounded shape. Further, as shown in FIG. 25, when viewed in the left-right direction of the vehicle body, a common tangent line 123 between the upper surface of the projecting portion 122 and the upper surface of the lid portion 88 is in the front-rear direction of the upper surface of the lid portion 88. It is configured not to interfere with the central portion 88a.
 また図24及び図26に示すように、突出部122は、車体の左右方向に沿って細長く形成されている。また、図26に示すように、突出部122は、蓋部88の車体の左右方向のほぼ全幅にわたって形成されている。 Further, as shown in FIGS. 24 and 26, the projecting portion 122 is formed elongated along the left-right direction of the vehicle body. Further, as shown in FIG. 26, the projecting portion 122 is formed over substantially the entire width of the lid 88 in the left-right direction of the vehicle body.
 以上のように、肥料ホッパ27xの蓋部88の上面に突出部122を設けたので、当該蓋部88の上に苗取板99を載置したときに、蓋部88の上面と、突出部122の上面が、それぞれ苗取板99の下面に接触する(図29)。これにより、蓋部88の上面と、突出部122の上面と、によって、苗取板99を下から支えることができる。従って、蓋部88と突出部122は、支持部であるということができる。 As described above, since the protruding portion 122 is provided on the upper surface of the lid portion 88 of the fertilizer hopper 27x, when the seedling plate 99 is placed on the lid portion 88, the upper surface of the lid portion 88 and the protruding portion The upper surface of 122 is in contact with the lower surface of the seedling plate 99 (FIG. 29). As a result, the seedling plate 99 can be supported from below by the upper surface of the lid 88 and the upper surface of the protrusion 122. Therefore, it can be said that the cover part 88 and the protrusion part 122 are support parts.
 図29に示すように、本実施形態の蓋部88の上面は、車体の左右方向から見て、上に凸となるように湾曲している。従って、蓋部88の上面と、苗取板99の下面とは、車体の前後方向において1箇所でしか接触できない。このため、仮に突出部122が無いとすれば、蓋部88の上面に載置された苗取板99は前後方向の1箇所でしか支持されないので、非常に不安定となり、蓋部88から落ちてしまうおそれがある。 As shown in FIG. 29, the upper surface of the lid portion 88 of the present embodiment is curved so as to be convex upward when viewed from the left-right direction of the vehicle body. Therefore, the upper surface of the cover 88 and the lower surface of the seedling plate 99 can be contacted at only one place in the front-rear direction of the vehicle body. For this reason, if there is no protrusion 122, the seedling plate 99 placed on the upper surface of the lid 88 is supported only at one place in the front-rear direction, so it becomes very unstable and falls off the lid 88. There is a risk that.
 この点、本実施形態の苗供給補助部121では、上記のように、蓋部88の上面から突出する突出部122を設けたので、苗取板99を、蓋部88の上面と、突出部122の上面と、によって前後方向の2箇所で支持できる。より具体的には、苗取板99の前側は蓋部88の上面によって支持され、苗取板99の後側は突出部122の上面によって支持される。このように、苗取板99を前後方向の2箇所で安定して支持できるので、当該苗取板99が蓋部88から落ちてしまうことを防止できる。 In this respect, in the seedling supply auxiliary part 121 of the present embodiment, since the protruding part 122 protruding from the upper surface of the lid part 88 is provided as described above, the seedling collecting plate 99 is connected to the upper surface of the lid part 88 and the protruding part. The upper surface of 122 can be supported at two places in the front-rear direction. More specifically, the front side of the seedling plate 99 is supported by the upper surface of the lid portion 88, and the rear side of the seedling plate 99 is supported by the upper surface of the protruding portion 122. Thus, since the seedling plate 99 can be stably supported at two places in the front-rear direction, the seedling plate 99 can be prevented from falling from the lid portion 88.
 また、上記のように、本実施形態の苗供給補助部121においては、前述の接線123が蓋部88の中央部88aに干渉しないようにしているので、苗取板99を蓋部88の上に載置したときに、図29に示すように、当該苗取板99の下面が蓋部88の中央部88aから浮いた状態となる。これにより、蓋部88の上面の中央部88aに貼られた注意書きシール(図略)に対して苗取板99が接触しないので、当該注意書きシールがこすれたり剥がれたりすることを防止できる。 Further, as described above, in the seedling supply assisting portion 121 of the present embodiment, since the tangent line 123 described above does not interfere with the central portion 88a of the lid portion 88, the seedling collection plate 99 is placed on the lid portion 88. 29, the lower surface of the seedling collection plate 99 is in a state of being lifted from the central portion 88a of the lid portion 88, as shown in FIG. Thereby, since the seedling plate 99 does not contact the caution sticker (not shown) attached to the central portion 88a on the upper surface of the lid portion 88, it is possible to prevent the caution sticker from being rubbed or peeled off.
 続いて、上記のように苗取板99を仮置きした状態から、苗載台17へマット苗112を供給する作業について説明する。 Subsequently, an operation of supplying the mat seedling 112 to the seedling placing stand 17 from the state where the seedling collecting plate 99 is temporarily placed as described above will be described.
 肥料ホッパ27xの上に苗取板99を仮置きした後、苗載台17にマット苗112を供給する際には、オペレータは、図30に示すように、前記苗取板99の前端部を持ち上げる。これにより、図30の矢印で示すように、苗取板99は、突出部122を中心として回転する。このように、突出部122は、苗取板99を回転させる際の支点となることができる。従って、本実施形態の突出部122は、回転支点部であるということもできる。 After temporarily placing the seedling plate 99 on the fertilizer hopper 27x, when supplying the mat seedling 112 to the seedling stage 17, the operator places the front end portion of the seedling plate 99 as shown in FIG. lift. Thereby, as shown by the arrow in FIG. 30, the seedling plate 99 rotates around the protruding portion 122. Thus, the protrusion 122 can serve as a fulcrum when the seedling plate 99 is rotated. Therefore, it can also be said that the protrusion part 122 of this embodiment is a rotation fulcrum part.
 特に、本実施形態では、回転支点部(突出部122)を、肥料ホッパ27xの蓋部88の前後方向で後寄りの位置に配置している。これにより、突出部122を中心として苗取板99を回転させたときに、当該苗取板99の先端99aは、肥料ホッパ27xの後側(苗載台17側)に回り込むことになる(図30)。このように、本実施形態の構成によれば、苗取板99を、肥料ホッパ27xを跨ぐように移動させることができる。これにより、オペレータは、運転座席6側から、肥料ホッパ27x越しに、苗載台17に対してマット苗112を簡単に供給できる。 In particular, in this embodiment, the rotation fulcrum part (protrusion part 122) is disposed at a position rearward in the front-rear direction of the lid part 88 of the fertilizer hopper 27x. Thereby, when the seedling plate 99 is rotated around the protruding portion 122, the tip 99a of the seedling plate 99 wraps around the rear side (the seedling stage 17 side) of the fertilizer hopper 27x (see FIG. 30). Thus, according to the configuration of the present embodiment, the seedling plate 99 can be moved so as to straddle the fertilizer hopper 27x. As a result, the operator can easily supply the mat seedling 112 to the seedling mount 17 from the driver seat 6 side through the fertilizer hopper 27x.
 また、オペレータは、上記のように苗取板99を回転させるのと同時に、当該苗取板99を、車体の前後方向(図30の左右方向)に沿ってスライドさせることができる。なお、苗取板99の前端部を持ち上げた状態(図30の状態)において、当該苗取板99は、突出部122の上面によってのみ支えられた状態となる。突出部122の上面は丸みを帯びた形状となっているので、当該突出部122と苗取板99とは「線」で接触することになり、両者の間の接触面積は小さい。このため、苗取板99をスライドさせる際の摩擦抵抗は小さくなっている。従って、オペレータは、苗取板99を、車体の前後方向にスムーズにスライドさせることができる。 Also, the operator can slide the seedling plate 99 along the front-rear direction of the vehicle body (the left-right direction in FIG. 30) simultaneously with rotating the seedling plate 99 as described above. In the state where the front end portion of the seedling plate 99 is lifted (the state shown in FIG. 30), the seedling plate 99 is supported only by the upper surface of the protruding portion 122. Since the upper surface of the protrusion 122 has a rounded shape, the protrusion 122 and the seedling plate 99 are in contact with each other by a “line”, and the contact area between the two is small. For this reason, the frictional resistance when the seedling plate 99 is slid is small. Therefore, the operator can slide the seedling plate 99 smoothly in the front-rear direction of the vehicle body.
 以上のように、オペレータは、苗取板99を、突出部122を中心として回転させ、かつ前後にスライドさせることにより、当該苗取板99の先端99aを、苗載台17の上端17aの位置に合わせることができる。 As described above, the operator rotates the seedling plate 99 around the protruding portion 122 and slides the seedling plate 99 back and forth, so that the tip 99a of the seedling plate 99 is positioned at the upper end 17a of the seedling stage 17. Can be adapted to
 このように、実施形態の苗供給補助部121の構成によれば、オペレータは、苗取板99の重量を突出部122によって支えつつ、当該苗取板99と苗載台17との位置合せを行うことができる。これにより、オペレータが上記位置合せを簡単に行うことができるとともに、オペレータの負担を軽減できる。 Thus, according to the configuration of the seedling supply assisting unit 121 of the embodiment, the operator aligns the seedling collecting plate 99 and the seedling placing stand 17 while supporting the weight of the seedling collecting plate 99 by the protruding portion 122. It can be carried out. As a result, the operator can easily perform the alignment, and the burden on the operator can be reduced.
 そして、オペレータは、苗取板99の先端99aと、苗載台17の上端17aと、を適宜位置合せした状態(例えば図30に示す状態)で、当該苗取板99に載っているマット苗112を、苗載台17に供給する。このように、苗取板99と、苗載台17と、を位置合せした状態で、当該苗載台17に対してマット苗112を供給するので、当該供給を確実に行うことができる。 Then, the operator places the mat seedling placed on the seedling plate 99 in a state where the tip 99a of the seedling plate 99 and the upper end 17a of the seedling platform 17 are appropriately aligned (for example, the state shown in FIG. 30). 112 is supplied to the seedling stage 17. Thus, since the mat seedling 112 is supplied to the seedling mounting base 17 in a state where the seedling collecting plate 99 and the seedling mounting base 17 are aligned, the supply can be reliably performed.
 また前述のように、植付部3は、上下に昇降駆動することができる。そこで、苗載台17へのマット苗112の供給作業を行う際には、苗載台17の上端17aが、突出部(支持部)52の上端よりも低い位置となるように、植付部3の上下位置を予め調整しておけば好適である(図29の状態)。これによれば、苗取板99の先端99aと、苗載台17の上端17aと、を位置合せしたときに、苗取板99の先端99aが下を向いた状態となる(図30に示す状態)。従って、この状態から、当該苗取板99に載っているマット苗112を、苗載台17に向けて滑り落すことができる。これにより、マット苗112を、苗載台17に対して簡単に供給できる。 Also, as described above, the planting unit 3 can be driven up and down. Therefore, when the mat seedling 112 is supplied to the seedling stage 17, the planting part is arranged so that the upper end 17 a of the seedling stage 17 is lower than the upper end of the protruding part (support part) 52. It is preferable to adjust the vertical position of 3 in advance (state shown in FIG. 29). According to this, when the tip 99a of the seedling collection plate 99 and the upper end 17a of the seedling placing table 17 are aligned, the tip 99a of the seedling collection plate 99 is in a state of facing downward (shown in FIG. 30). Status). Therefore, from this state, the mat seedling 112 placed on the seedling collecting plate 99 can be slid down toward the seedling placing stand 17. Thereby, the mat seedling 112 can be easily supplied to the seedling mount 17.
 以上で説明したように、本実施形態の田植機1xは、車体2と、植付部3と、苗供給補助部121と、を備えている。車体2は、運転座席6を備える。植付部3は、マット苗112を載置するための苗載台17を有し、車体2の後方に位置する。苗供給補助部121は、車体2の前後方向において運転座席6と苗載台17との間の位置に、マット苗112を載せた略板状の苗取板99を載置可能である。苗供給補助部は、突出部122を備えている。突出部122は、載置した苗取板99を下から支える支持部としての機能を有している。また、突出部122は、当該突出部122が支持した状態の苗取板99を回転させる際の支点となる回転支点部としての機能を兼ねている。 As described above, the rice transplanter 1x of the present embodiment includes the vehicle body 2, the planting unit 3, and the seedling supply auxiliary unit 121. The vehicle body 2 includes a driver seat 6. The planting unit 3 includes a seedling stage 17 on which the mat seedling 112 is placed and is located behind the vehicle body 2. The seedling supply assisting unit 121 can place a substantially plate-shaped seedling collecting plate 99 on which a mat seedling 112 is placed at a position between the driver's seat 6 and the seedling placing stand 17 in the front-rear direction of the vehicle body 2. The seedling supply assist unit includes a protrusion 122. The projecting portion 122 has a function as a support portion that supports the seedling collecting plate 99 placed from below. The protrusion 122 also functions as a rotation fulcrum that becomes a fulcrum when the seedling plate 99 supported by the protrusion 122 is rotated.
 このように、運転座席6と苗載台17との間に苗取板99を載置できるようにしたことで、マット苗112の供給を行うオペレータの負担を低減できる。そして、突出部122によって支持した状態で苗取板99を回転させることにより、当該苗取板99を、苗載台17に向けて傾斜させることができるので、当該苗載台17に対してマット苗112を容易に供給できる。 Thus, by allowing the seedling collection plate 99 to be placed between the driver's seat 6 and the seedling stage 17, the burden on the operator who supplies the mat seedling 112 can be reduced. Then, by rotating the seedling plate 99 in a state where it is supported by the projecting portion 122, the seedling plate 99 can be inclined toward the seedling table 17. The seedling 112 can be easily supplied.
 また、上記で説明したように、本実施形態の田植機1xにおいて、植付部3は、上下に昇降駆動可能に構成される。これにより、苗載台17の上端17aを、突出部122の上面よりも低い位置まで下げることが可能である。 Also, as described above, in the rice transplanter 1x of the present embodiment, the planting unit 3 is configured to be driven up and down. As a result, the upper end 17 a of the seedling stage 17 can be lowered to a position lower than the upper surface of the protruding portion 122.
 このように、突出部122よりも低い位置まで苗載台17を下げることにより、当該苗載台17に向けてマット苗112を滑り落とすことができる。これにより、苗載台17に対するマット苗112の供給を簡単に行うことができる。 As described above, the mat seedling 112 can be slid down toward the seedling stage 17 by lowering the seedling stage 17 to a position lower than the projecting portion 122. Thereby, the mat seedling 112 can be easily supplied to the seedling mount 17.
 また、以上で説明したように、本実施形態の田植機1xにおいて、苗供給補助部121は、上向きに凸となる突出部122を備えている。そして、突出部122は、前記支持部及び前記回転支点部を兼ねている。 In addition, as described above, in the rice transplanter 1x of the present embodiment, the seedling supply auxiliary unit 121 includes the protruding portion 122 that is convex upward. And the protrusion part 122 serves as the said support part and the said rotation fulcrum part.
 このように、上向きに凸となる突出部122によって苗取板99を支えることができるとともに、当該突出部122の先端を支点として苗取板99を回転させることができる。これにより、苗供給補助部121を簡単な構成で実現できる。 Thus, the seedling plate 99 can be supported by the projecting portion 122 that protrudes upward, and the seedling plate 99 can be rotated with the tip of the projecting portion 122 as a fulcrum. Thereby, seedling supply auxiliary part 121 is realizable by simple composition.
 また、以上で説明したように、本実施形態の田植機1xは、肥料を収容する肥料ホッパ27xを、運転座席6と苗載台17の間に備えている。突出部122の上端は、肥料ホッパ27xの蓋部88の上面よりも高い位置に配置されている。車体の左右方向で見たときに、突出部122の上面と、蓋部88の上面と、の共通の接線123が、当該蓋部88の上面の前後方向の中央部88aに干渉しないように構成されている。苗供給補助部121は、突出部122の上面と、蓋部88の上面と、により、苗取板99を下から支持する。 As described above, the rice transplanter 1x of the present embodiment includes the fertilizer hopper 27x that accommodates the fertilizer between the driver seat 6 and the seedling stage 17. The upper end of the protrusion part 122 is arrange | positioned in the position higher than the upper surface of the cover part 88 of the fertilizer hopper 27x. When viewed in the left-right direction of the vehicle body, the common tangent line 123 between the upper surface of the protruding portion 122 and the upper surface of the lid portion 88 is configured not to interfere with the center portion 88a in the front-rear direction of the upper surface of the lid portion 88. Has been. The seedling supply assisting unit 121 supports the seedling collecting plate 99 from below by the upper surface of the protruding portion 122 and the upper surface of the lid portion 88.
 この構成により、苗取板99を、蓋部88の上面の中央部88aから浮かせた状態で、安定して支持できる。 With this configuration, the seedling collection plate 99 can be stably supported in a state where the seedling plate 99 is floated from the central portion 88a on the upper surface of the lid 88.
 また、以上で説明したように、本実施形態の田植機1xにおいて、突出部122は、車体2の前後方向で、前記肥料ホッパ27xの蓋部88の中央部88aよりも後ろ寄りに位置している。 Further, as described above, in the rice transplanter 1x of the present embodiment, the protruding portion 122 is located behind the center portion 88a of the lid portion 88 of the fertilizer hopper 27x in the front-rear direction of the vehicle body 2. Yes.
 これにより、苗載台17に対して、運転座席6側から肥料ホッパ27x越しにマット苗112を容易に供給できる。 This makes it possible to easily supply the mat seedling 112 to the seedling mount 17 from the driver seat 6 side through the fertilizer hopper 27x.
 また、以上で説明したように、本実施形態の田植機1xにおいて、肥料ホッパ27xの蓋部88の後端部は、ホッパ本体87に対してヒンジ部115を介して回転可能に連結されている。蓋部88の前端部には、当該蓋部88を閉じた状態においてホッパ本体87の前面を覆う雨避け部145が設けられている。 Further, as described above, in the rice transplanter 1x of the present embodiment, the rear end portion of the lid portion 88 of the fertilizer hopper 27x is rotatably connected to the hopper body 87 via the hinge portion 115. . A rain avoiding portion 145 that covers the front surface of the hopper main body 87 when the lid portion 88 is closed is provided at the front end portion of the lid portion 88.
 このように雨避け部145を設けたことにより、蓋部88を開けたときに、雨避け部145がホッパ本体87の開口部を上方から覆った状態となる。これにより、雨天時に蓋部88を開けたとしても、ホッパ本体87内に雨水が降り注ぐことを防ぐことができる。また、蓋部88を閉じた状態においては、雨避け部145がホッパ本体87の前面を覆った状態となるので、当該雨避け部145が邪魔になることがない。 By providing the rain avoiding portion 145 in this way, when the lid portion 88 is opened, the rain avoiding portion 145 covers the opening of the hopper body 87 from above. Thereby, even if it opens the cover part 88 at the time of rainy weather, it can prevent rain water falling in the hopper main body 87. FIG. Further, when the lid 88 is closed, the rain avoiding portion 145 covers the front surface of the hopper main body 87, so that the rain avoiding portion 145 does not get in the way.
 また、以上で説明したように、本実施形態の田植機1xにおいて、雨避け部145は、蓋部88に対して回転可能である。 Also, as described above, in the rice transplanter 1x of the present embodiment, the rain avoiding portion 145 is rotatable with respect to the lid portion 88.
 雨避け部145を回転させることにより、邪魔にならない位置まで雨避け部145を退避させることができる。これにより、雨が降っていないときの作業の際に、雨避け部145が邪魔になることがない。 By rotating the rain avoiding portion 145, the rain avoiding portion 145 can be retreated to a position where it does not get in the way. Thereby, the rain avoiding portion 145 does not get in the way during work when it is not raining.
 続いて、第3実施形態の変形例について、図31から図34を参照して説明する。 Subsequently, a modification of the third embodiment will be described with reference to FIGS. 31 to 34.
 この変形例において、苗供給補助部121は、上記第3実施形態の突出部122の代わりに、ローラ部材124を有している。 In this modified example, the seedling supply assisting part 121 has a roller member 124 instead of the protruding part 122 of the third embodiment.
 このローラ部材124は、図31に示すように、蓋部88の上面に配置されている。ローラ部材124は、車体の左右方向と平行な回転軸125を中心に回転可能に構成されている。なお、この回転軸125は、蓋部88に支持されている。また、回転軸125は、肥料ホッパ27xの前後方向で、後寄りの位置に形成されている。図31に示すように、車体の左右方向で見たときに、ローラ部材124の周面の上側と、蓋部88の上面と、の共通の接線123が、当該蓋部88の上面の前後方向中央部88aに干渉しないように構成されている。 The roller member 124 is disposed on the upper surface of the lid 88 as shown in FIG. The roller member 124 is configured to be rotatable about a rotation shaft 125 parallel to the left-right direction of the vehicle body. The rotating shaft 125 is supported by the lid portion 88. Moreover, the rotating shaft 125 is formed at a rearward position in the front-rear direction of the fertilizer hopper 27x. As shown in FIG. 31, when viewed in the left-right direction of the vehicle body, a common tangent line 123 between the upper surface of the roller member 124 and the upper surface of the lid 88 is the front-rear direction of the upper surface of the lid 88. It is configured not to interfere with the central portion 88a.
 以上のように、この変形例では、肥料ホッパ27xの蓋部88の上面に、突出部122の代わりにローラ部材124を設けたものである。この変形例においても、肥料ホッパ27xの上に、苗取板99を載置することができる。この様子を、図33に示す。即ち、図33に示すように、苗取板99を、ローラ部材124の周面と、蓋部88の上面と、によって下から支えることができる。従って、この変形例においては、ローラ部材124と蓋部88が支持部であるということができる。 As described above, in this modification, the roller member 124 is provided on the upper surface of the lid portion 88 of the fertilizer hopper 27x instead of the protruding portion 122. Also in this modified example, the seedling collecting plate 99 can be placed on the fertilizer hopper 27x. This is shown in FIG. That is, as shown in FIG. 33, the seedling plate 99 can be supported from below by the peripheral surface of the roller member 124 and the upper surface of the lid portion 88. Therefore, in this modification, it can be said that the roller member 124 and the lid portion 88 are support portions.
 図33の状態から、苗取板99の前端部を持ち上げた様子を、図34に示す。図34に示すように、苗取板99は、ローラ部材124によって下から支えられた状態で、当該ローラ部材124の回転軸125を中心として回転する。このように、本変形例では、ローラ部材124を回転可能としているので、当該ローラ部材124によって支持している苗取板99を、回転軸125を中心として容易に回転させることができる。従って、本実施形態では、ローラ部材124の回転軸125が、回転支点部であるということができる。 FIG. 34 shows a state where the front end portion of the seedling collection plate 99 is lifted from the state of FIG. As shown in FIG. 34, the seedling plate 99 rotates around the rotation shaft 125 of the roller member 124 while being supported by the roller member 124 from below. Thus, in this modification, since the roller member 124 is rotatable, the seedling plate 99 supported by the roller member 124 can be easily rotated around the rotation shaft 125. Therefore, in this embodiment, it can be said that the rotating shaft 125 of the roller member 124 is a rotation fulcrum part.
 また、この変形例では、回転可能なローラ部材124によって苗取板99を支持しているので、当該苗取板99を、車体の前後方向(図34の左右方向)に沿ってスムーズにスライドさせることができる。 Further, in this modification, the seedling plate 99 is supported by the rotatable roller member 124, so that the seedling plate 99 is smoothly slid along the longitudinal direction of the vehicle body (the left-right direction in FIG. 34). be able to.
 以上のように、本変形例では、回転可能なローラ部材124によって苗取板99を支持しつつ、当該苗取板99を回転及びスライドさせることができる。これにより、苗取板99の先端99aと、苗載台17の上端17aと、の位置合せをスムーズに行うことができる。 As described above, in the present modification, the seedling plate 99 can be rotated and slid while the seedling plate 99 is supported by the rotatable roller member 124. Thereby, alignment with the front-end | tip 99a of the seedling collection board 99 and the upper end 17a of the seedling mounting stand 17 can be performed smoothly.
 以上で説明したように、上記の変形例において、苗供給補助部121は、回転可能なローラ部材124を有している。当該ローラ部材124の周面が支持部として機能する。また、ローラ部材124の回転軸125が、回転支点部として機能する。 As described above, in the above-described modification, the seedling supply auxiliary unit 121 has a rotatable roller member 124. The peripheral surface of the roller member 124 functions as a support portion. Further, the rotation shaft 125 of the roller member 124 functions as a rotation fulcrum portion.
 このように、ローラ部材124の周面により、苗取板99を支持することもできる。また、当該ローラ部材124によって支持した苗取板99を、回転軸125を中心として回転させることができる。また、ローラ部材124が回転できるので、当該ローラ部材124によって支持した苗取板99を簡単にスライドさせることができる。 In this way, the seedling plate 99 can be supported by the peripheral surface of the roller member 124. In addition, the seedling plate 99 supported by the roller member 124 can be rotated about the rotation shaft 125. Further, since the roller member 124 can rotate, the seedling plate 99 supported by the roller member 124 can be easily slid.
 続いて、本発明の第4実施形態について、図35から図37を参照して説明する。 Subsequently, a fourth embodiment of the present invention will be described with reference to FIGS.
 図35に示す第4実施形態は、肥料ホッパ27xにカバー部材132を設けたものである。 In the fourth embodiment shown in FIG. 35, a cover member 132 is provided on the fertilizer hopper 27x.
 カバー部材132は、蓋部88の上面を覆うように配置されている。カバー部材132は、ある程度の剛性を有する薄板状の部材であり、例えば板金から構成することができる。カバー部材132は、蓋部88の上面に密着して隙間がない状態にできるように構成されている。なお、上記第3実施形態で説明したように、蓋部88の上面は上に凸となるように湾曲している。そこで、図35に示すように、カバー部材132は、蓋部88の上面に沿って上に凸となるように湾曲して形成されている。これにより、カバー部材132を、蓋部88の上面に密着させることができる。 The cover member 132 is disposed so as to cover the upper surface of the lid portion 88. The cover member 132 is a thin plate-like member having a certain degree of rigidity, and can be made of, for example, a sheet metal. The cover member 132 is configured to be in close contact with the upper surface of the lid portion 88 so that there is no gap. As described in the third embodiment, the upper surface of the lid portion 88 is curved so as to be convex upward. Therefore, as shown in FIG. 35, the cover member 132 is formed to be curved so as to protrude upward along the upper surface of the lid portion 88. Thereby, the cover member 132 can be brought into close contact with the upper surface of the lid portion 88.
 カバー部材132は、ホッパ本体87に対して、回転軸(カバー部材回転軸)133を介して取り付けられている。この回転軸133は、ホッパ本体87の背面(後を向く面)に配置されている。また、この回転軸133は、車体の左右方向と平行に設けられている。カバー部材132は、上記回転軸133まわりで回転できるように構成されている。カバー部材132を、回転軸133まわりで後方に回転させることにより、蓋部88の上面を露出させることができる。 The cover member 132 is attached to the hopper body 87 via a rotation shaft (cover member rotation shaft) 133. The rotating shaft 133 is disposed on the back surface (surface facing rearward) of the hopper body 87. The rotating shaft 133 is provided in parallel with the left-right direction of the vehicle body. The cover member 132 is configured to be able to rotate around the rotation shaft 133. By rotating the cover member 132 rearward around the rotation shaft 133, the upper surface of the lid portion 88 can be exposed.
 続いて、上記のようにカバー部材132を設けた効果について説明する。 Subsequently, the effect of providing the cover member 132 as described above will be described.
 即ち、前述のように、肥料ホッパ27xの蓋部88の上面には、注意書きシール(図略)が貼られている。ところが、この注意書きシールは、泥などが付着して汚れたり、剥がれたりすることがある。このため、田植機1xの使用を続けていると、注意書きシールが徐々に読みにくくなってしまっていた。 That is, as described above, a caution sticker (not shown) is pasted on the upper surface of the lid portion 88 of the fertilizer hopper 27x. However, this caution sticker may become dirty or peel off due to mud or the like. For this reason, when using the rice transplanter 1x, the notice sticker gradually became difficult to read.
 そこで第4実施形態の田植機は、上記のように、蓋部88の上面を覆うカバー部材132を設けたものである。これにより、蓋部88の上面が汚れたり、こすれたりすることがないので、注意書きシールが汚れたり剥がれたりすることを防止できる。これにより、注意書きシールが読み易い状態を長年にわたって維持できる。 Therefore, the rice transplanter of the fourth embodiment is provided with the cover member 132 that covers the upper surface of the lid 88 as described above. Thereby, since the upper surface of the cover part 88 is not soiled or rubbed, it is possible to prevent the caution sticker from being stained or peeled off. Thereby, the state where the caution sticker is easy to read can be maintained for many years.
 また、本実施形態では、上記のように、カバー部材132を、蓋部88の上面に密着できるように形成している。これにより、蓋部88とカバー部材132の間に泥水やホコリが侵入しにくい。これにより、蓋部88の上面が更に汚れにくくなっている。 In this embodiment, as described above, the cover member 132 is formed so as to be in close contact with the upper surface of the lid portion 88. This makes it difficult for muddy water and dust to enter between the lid portion 88 and the cover member 132. Thereby, the upper surface of the cover part 88 becomes further difficult to get dirty.
 なお、肥料ホッパ27xに肥料を供給する際には、蓋部88を開ける必要がある。この場合には、オペレータは、カバー部材132を回転軸133まわりで後に回転させて、蓋部88を露出させた後、当該蓋部88を開ければ良い。そして、肥料の供給が終わった後は、蓋部88を閉じるとともに、カバー部材132を元の位置まで戻すことにより、当該カバー部材132で蓋部88を覆う。また、蓋部88の上面に貼られている注意書きシール(図略)を確認する際には、オペレータは、カバー部材132を後方に回転させて蓋部88の上面を露出させれば良い。そして、注意書きシールを確認し終えたオペレータは、カバー部材132を元の位置まで戻すことにより、当該カバー部材132で蓋部88を覆う。 In addition, when supplying fertilizer to the fertilizer hopper 27x, it is necessary to open the cover part 88. FIG. In this case, the operator may rotate the cover member 132 later around the rotation shaft 133 to expose the cover 88, and then open the cover 88. Then, after the supply of fertilizer is finished, the lid 88 is closed and the cover member 132 is returned to the original position, thereby covering the lid 88 with the cover member 132. Further, when confirming the caution sticker (not shown) attached to the upper surface of the lid portion 88, the operator may rotate the cover member 132 rearward to expose the upper surface of the lid portion 88. Then, the operator who has confirmed the notice sticker returns the cover member 132 to the original position, thereby covering the lid portion 88 with the cover member 132.
 このように、カバー部材132を、回転軸133まわりで回転可能としたので、当該カバー部材132を回転させて蓋部88を容易に露出させることができる。これにより、必要なときだけ蓋部88を露出させ、それ以外のときには当該蓋部88をカバー部材132によって覆うことができるので、蓋部88の上面が汚れることを確実に防止できる。 As described above, since the cover member 132 can be rotated around the rotation shaft 133, the cover member 132 can be rotated to easily expose the cover portion 88. As a result, the cover 88 can be exposed only when necessary, and the cover 88 can be covered with the cover member 132 at other times, so that the upper surface of the cover 88 can be reliably prevented from becoming dirty.
 続いて、この第4実施形態における苗供給補助部131の構成について説明する。 Subsequently, the configuration of the seedling supply auxiliary unit 131 in the fourth embodiment will be described.
 第4実施形態の苗供給補助部131は、前述のカバー部材132を有している。そして、第4実施形態の苗供給補助部131は、カバー部材132の上に苗取板99に載置するように構成されている(図36)。 The seedling supply auxiliary part 131 of the fourth embodiment has the cover member 132 described above. And the seedling supply auxiliary | assistant part 131 of 4th Embodiment is comprised so that it may mount in the seedling collection board 99 on the cover member 132 (FIG. 36).
 なお前述のように、本実施形態のカバー部材132は、上向きに凸となるように湾曲状に形成されている。このため、当該湾曲状のカバー部材132の上にそのまま苗取板99を載置したとしても、当該苗取板99を安定して支持できない。そこで、第4実施形態の苗供給補助部131では、カバー部材132の上面に、上向きに凸となる突出部134が設けられている。 As described above, the cover member 132 of this embodiment is formed in a curved shape so as to protrude upward. For this reason, even if the seedling plate 99 is placed on the curved cover member 132 as it is, the seedling plate 99 cannot be stably supported. Therefore, in the seedling supply auxiliary unit 131 of the fourth embodiment, a protruding portion 134 that protrudes upward is provided on the upper surface of the cover member 132.
 この突出部134は、第3実施形態の突出部122と同様に、肥料ホッパ27xの前後方向で、後寄りの位置に形成されている。図35に示すように、車体の左右方向で見たときに、突出部122の先端(上端)は、丸みを帯びた形状となっている。また、突出部134は、第3実施形態の突出部122と同様に、車体の左右方向に沿って細長く形成されている(図略)。また、突出部134は、カバー部材132の左右方向のほぼ全幅にわたって形成されている(図略)。なお、本実施形態の突出部134は、カバー部材132に一体的に形成されている。 The protruding portion 134 is formed at a rearward position in the front-rear direction of the fertilizer hopper 27x, similarly to the protruding portion 122 of the third embodiment. As shown in FIG. 35, when viewed in the left-right direction of the vehicle body, the tip (upper end) of the protrusion 122 has a rounded shape. Moreover, the protrusion part 134 is elongate along the left-right direction of a vehicle body similarly to the protrusion part 122 of 3rd Embodiment (not shown). Moreover, the protrusion part 134 is formed over substantially the full width of the left-right direction of the cover member 132 (not shown). Note that the protruding portion 134 of the present embodiment is formed integrally with the cover member 132.
 以上のように構成された第4実施形態の苗供給補助部131では、図36に示すように、突出部134の上面と、カバー部材132の上面と、によって、苗取板99を下から支えることができる。従って、この第4実施形態においては、突出部134とカバー部材132が、支持部であるということができる。 In the seedling supply auxiliary part 131 of the fourth embodiment configured as described above, the seedling collection plate 99 is supported from below by the upper surface of the protruding part 134 and the upper surface of the cover member 132, as shown in FIG. be able to. Therefore, in this 4th Embodiment, it can be said that the protrusion part 134 and the cover member 132 are support parts.
 また、この第4実施形態においても、第3実施形態と同様に、図36の状態から苗取板99の前側端部を持ち上げることにより、当該苗取板99を、突出部134を支点として回転させることができる(図示は省略)。この場合、突出部134が、回転支点部であるということができる。 Also in the fourth embodiment, as in the third embodiment, by lifting the front end of the seedling plate 99 from the state shown in FIG. 36, the seedling plate 99 is rotated about the protruding portion 134 as a fulcrum. (Not shown). In this case, it can be said that the protrusion part 134 is a rotation fulcrum part.
 なお、本実施形態では、カバー部材132が、回転軸133を中心に回転するように構成されているので、カバー部材132(及び突出部134)に苗取板99を載せたあと、図37に示すように、カバー部材132(及び突出部134)ごと苗取板99を回転させることもできる。このように、カバー部材132に載せた状態のままで苗取板99を回転させるので、当該苗取板99の姿勢を安定させた状態で回転させることができる。この場合、苗取板99は、カバー部材132の回転軸133まわりで回転することになる。従って、この場合は、カバー部材132の回転軸133が、回転支点部であるということができる。 In the present embodiment, since the cover member 132 is configured to rotate about the rotation shaft 133, after the seedling plate 99 is placed on the cover member 132 (and the protruding portion 134), FIG. As shown, the seedling plate 99 can be rotated together with the cover member 132 (and the protruding portion 134). Thus, since the seedling plate 99 is rotated while being placed on the cover member 132, the seedling plate 99 can be rotated in a stable state. In this case, the seedling plate 99 rotates around the rotation shaft 133 of the cover member 132. Therefore, in this case, it can be said that the rotation shaft 133 of the cover member 132 is a rotation fulcrum portion.
 以上のように、本実施形態の苗供給補助部131においては、肥料ホッパ27xの蓋部88を覆うカバー部材132の上に苗取板99を載置するようにしたので、苗取板99が蓋部88の上面に直接接触することがない。従って、蓋部88の上面が苗取板99に接触してこすれてしまうことがない。これにより、当該蓋部88の上面に貼られている注意書きシールが汚れたり剥がれたりすることを確実に防止できる。 As described above, in the seedling supply auxiliary unit 131 of the present embodiment, the seedling plate 99 is placed on the cover member 132 that covers the lid portion 88 of the fertilizer hopper 27x. There is no direct contact with the upper surface of the lid 88. Therefore, the upper surface of the lid portion 88 does not rub against the seedling plate 99. Thereby, it can prevent reliably that the cautionary sticker stuck on the upper surface of the said cover part 88 gets dirty or peels.
 以上で説明したように、本実施形態の田植機は、以下のように構成されている。即ち、当該田植機は、肥料を収容する肥料ホッパ27xを、運転座席6と苗載台17の間に備える。苗供給補助部131は、肥料ホッパ27xの蓋部88の上面を覆うように配置されるとともに、車体の左右方向に平行な回転軸133を中心に回転可能に設けられた、カバー部材132を備える。支持部としての突出部134が、カバー部材132の上面に設けられている。そして、カバー部材132の回転軸133が、回転支点部として機能する。 As described above, the rice transplanter of this embodiment is configured as follows. That is, the rice transplanter includes a fertilizer hopper 27x that stores fertilizer between the driver seat 6 and the seedling stage 17. The seedling supply assisting unit 131 includes a cover member 132 that is disposed so as to cover the upper surface of the lid portion 88 of the fertilizer hopper 27x and is rotatable about a rotation shaft 133 that is parallel to the left-right direction of the vehicle body. . A projecting portion 134 as a support portion is provided on the upper surface of the cover member 132. And the rotating shaft 133 of the cover member 132 functions as a rotation fulcrum part.
 このように、蓋部88の上面を覆うカバー部材132を設けることで、蓋部88の上面が傷ついたり汚れたりすることを確実に防止できる。また、カバー部材132の上面に設けられた突出部134によって、苗取板99を支持できる。そして、カバー部材132を、回転軸133を中心に回転させることにより、突出部134で支持した苗取板99を、苗載台17に向けて傾けることができる。これにより、苗載台17へのマット苗112の供給を容易に行うことができる。 Thus, by providing the cover member 132 that covers the upper surface of the lid portion 88, the upper surface of the lid portion 88 can be reliably prevented from being damaged or dirty. Further, the seedling collection plate 99 can be supported by the protrusion 134 provided on the upper surface of the cover member 132. Then, by rotating the cover member 132 about the rotation shaft 133, the seedling collection plate 99 supported by the projecting portion 134 can be tilted toward the seedling mount 17. Thereby, it is possible to easily supply the mat seedling 112 to the seedling placing stand 17.
 続いて、上記第4実施形態の変形例について、図38を参照して説明する。図38に示す変形例は、上記第4実施形態の突出部134の代わりに、ローラ部材135を設けたものである。 Subsequently, a modification of the fourth embodiment will be described with reference to FIG. In the modification shown in FIG. 38, a roller member 135 is provided instead of the protrusion 134 of the fourth embodiment.
 ローラ部材135は、カバー部材132の上面に配置されている。このローラ部材135は、車体の左右方向と平行な回転軸136を中心に回転可能に構成されている。ローラ部材135の回転軸136は、肥料ホッパ27xの前後方向で、後寄りの位置に形成されている。この回転軸136は、カバー部材132に支持されている。 The roller member 135 is disposed on the upper surface of the cover member 132. The roller member 135 is configured to be rotatable about a rotation shaft 136 parallel to the left-right direction of the vehicle body. The rotation shaft 136 of the roller member 135 is formed at a rearward position in the front-rear direction of the fertilizer hopper 27x. The rotating shaft 136 is supported by the cover member 132.
 このように、カバー部材132の上面に、突出部134の代わりにローラ部材135を設けることもできる。これによれば、第3実施形態の変形例(図31から図34まで)と同様に、ローラ部材135によって苗取板99を支持できる。従って、この変形例においては、ローラ部材135が支持部であるということができる。また、ローラ部材135を回転可能としたので、当該ローラ部材135によって支持されている苗取板99を、スムーズにスライドさせることができる。 As described above, the roller member 135 can be provided on the upper surface of the cover member 132 instead of the protruding portion 134. According to this, the seedling plate 99 can be supported by the roller member 135 as in the modification of the third embodiment (FIGS. 31 to 34). Therefore, in this modification, it can be said that the roller member 135 is a support part. Since the roller member 135 is rotatable, the seedling plate 99 supported by the roller member 135 can be smoothly slid.
 続いて、本発明の第5実施形態について説明する。 Subsequently, a fifth embodiment of the present invention will be described.
 上記第3実施形態及び第4実施形態の苗供給補助部では、肥料ホッパ27xの蓋部88の上に苗取板99を載置する構成としている。しかしながら、苗取板99を載置するのは肥料ホッパ27xの蓋部88の上に限らない。苗供給補助部は、肥料ホッパ27xとは別に、苗取板99を載置するための台のようなものを有していても良い。 In the seedling supply auxiliary part of the third embodiment and the fourth embodiment, the seedling collecting plate 99 is placed on the lid part 88 of the fertilizer hopper 27x. However, the placement of the seedling collecting plate 99 is not limited to the top of the cover portion 88 of the fertilizer hopper 27x. In addition to the fertilizer hopper 27x, the seedling supply assisting unit may have something like a table on which the seedling collecting plate 99 is placed.
 そこで、この第5実施形態は、図39に示すように、運転座席6の後方、かつ苗載台17の前方に、後部予備苗台113を設けた構成である。この後部予備苗台113には、予備のマット苗を載せた苗取板99を載置することができる。後部予備苗台113の上面は、苗取板99を安定して載置できるように、略水平面となっている。なお、この後部予備苗台113は、田植機1xの条数に応じた数の苗取板99を、車体の左右方向に並べて載置できる程度の幅を有している。本実施形態の田植機は4条植えであるため、上記後部予備苗台113は、4つの苗取板99を車体2の左右方向に並べて載置できる程度の幅となっている。 Therefore, in the fifth embodiment, as shown in FIG. 39, a rear preliminary seedling table 113 is provided behind the driver seat 6 and in front of the seedling mounting table 17. A seedling collecting plate 99 on which a spare mat seedling is placed can be placed on the rear spare seedling stand 113. The upper surface of the rear spare seed bed 113 is substantially horizontal so that the seedling plate 99 can be placed stably. The rear spare seedling table 113 has a width that allows the number of seedling collecting plates 99 corresponding to the number of strips of the rice transplanter 1x to be placed side by side in the left-right direction of the vehicle body. Since the rice transplanter of this embodiment is four-row planting, the rear preliminary seedling table 113 has a width that allows the four seedling collection plates 99 to be placed side by side in the left-right direction of the vehicle body 2.
 上記のように、本実施形態の田植機1xは、苗取板99を載置可能な後部予備苗台113を、苗載台17のすぐ前方に有している。従って、オペレータが苗載台17まで苗取板99を運ばなければならない距離は、第3実施形態及び第4実施形態よりも短くなっている。これにより、苗載台17へのマット苗112の供給作業を省力化できる。 As described above, the rice transplanter 1x of the present embodiment has the rear spare seedling table 113 on which the seedling collecting plate 99 can be placed, immediately in front of the seedling placing table 17. Therefore, the distance that the operator has to carry the seedling plate 99 to the seedling stage 17 is shorter than that in the third embodiment and the fourth embodiment. Thereby, labor for supplying the mat seedling 112 to the seedling stage 17 can be saved.
 このように、本実施形態の後部予備苗台113は、運転座席6と苗載台17の間に苗取板99を載置できるので、当該後部予備苗台113は苗供給補助部であるということができる。 Thus, since the rear spare seedling table 113 of the present embodiment can place the seedling collecting plate 99 between the driver seat 6 and the seedling mounting table 17, the rear preliminary seedling table 113 is a seedling supply assisting unit. be able to.
 また、後部予備苗台113は、その上面によって、苗取板99を下から支えることができる。従って、後部予備苗台113の上面は、支持部であるということができる。 Also, the rear preliminary seedling table 113 can support the seedling collection plate 99 from below by its upper surface. Therefore, it can be said that the upper surface of the rear preliminary seedling table 113 is a support portion.
 図39に示すように、後部予備苗台113は、肥料ホッパ27xの上方に配置されている。これにより、肥料ホッパ27xの上方の空間を有効利用して、苗取板99を載置できる。ただし、後部予備苗台113が肥料ホッパ27xの上方に位置していると、当該肥料ホッパ27xの蓋部88を開けることができない。 As shown in FIG. 39, the rear preliminary seedling table 113 is disposed above the fertilizer hopper 27x. Thereby, the seedling collection board 99 can be mounted using the space above the fertilizer hopper 27x effectively. However, if the rear spare seedling stand 113 is positioned above the fertilizer hopper 27x, the lid portion 88 of the fertilizer hopper 27x cannot be opened.
 そこで、後部予備苗台113は、回転軸(予備苗台回転軸)114を中心として、上方に跳ね上げるように回転できるように構成されている(図40)。この回転軸114は、車体の左右方向と平行に配置されており、かつ後部予備苗台113の後端部近傍に設けられている。このように、回転軸114を中心として後部予備苗台113を跳ね上げるように回転させることで、肥料ホッパ27xの蓋部88の上方を開放できる。これにより、肥料ホッパ27xの蓋部88を開けることが可能となる(図40)。 Therefore, the rear preliminary seedling table 113 is configured to be able to rotate so as to spring up around a rotation shaft (preliminary seedling rotation shaft) 114 (FIG. 40). The rotating shaft 114 is disposed in parallel with the left-right direction of the vehicle body and is provided in the vicinity of the rear end portion of the rear preliminary seedling table 113. Thus, the upper part of the cover part 88 of the fertilizer hopper 27x can be opened by rotating the rear preliminary seedling stand 113 around the rotation shaft 114 so as to jump up. Thereby, it becomes possible to open the cover part 88 of the fertilizer hopper 27x (FIG. 40).
 続いて、本実施形態の後部予備苗台113に苗取板99を載置した状態から、苗載台17に対してマット苗112の供給を行う様子について説明する。 Subsequently, a state in which the mat seedling 112 is supplied to the seedling placing stand 17 from the state where the seedling collecting plate 99 is placed on the rear spare seedling stand 113 of the present embodiment will be described.
 この場合、図41に示すように、苗取板99を乗せた状態の後部予備苗台113を、回転軸114を中心として、上方に跳ね上げるように回転させる。これにより、当該後部予備苗台113の上に載置されている苗取板99を傾けて、当該苗取板99の先端99aと、苗載台17の上端17aと、を位置合せできる。そして、このように位置合せした状態で、苗取板99に載っているマット苗112を、苗載台17に滑り落とす。 41. In this case, as shown in FIG. 41, the rear spare seedling table 113 with the seedling plate 99 placed thereon is rotated so as to spring up around the rotation shaft 114. Thereby, the seedling plate 99 placed on the rear preliminary seedling table 113 can be tilted so that the tip 99a of the seedling plate 99 and the upper end 17a of the seedling table 17 can be aligned. Then, the mat seedling 112 placed on the seedling collecting plate 99 is slid down on the seedling placing stand 17 in such a state of alignment.
 以上のように、本実施形態においては、後部予備苗台113に苗取板99を載置した状態で、当該苗取板99ごと後部予備苗台113を回転させることができる。この場合、苗取板99は、後部予備苗台113の回転軸114まわりで回転することになる。従って、この場合は、後部予備苗台113の回転軸114が、回転支点部であるということができる。 As described above, in the present embodiment, the rear spare seedling table 113 can be rotated together with the seedling collecting plate 99 in a state where the seedling collecting plate 99 is placed on the rear preliminary seedling stand 113. In this case, the seedling plate 99 rotates around the rotation shaft 114 of the rear spare seedling table 113. Therefore, in this case, it can be said that the rotation shaft 114 of the rear preliminary seedling table 113 is a rotation fulcrum portion.
 以上で説明したように、本実施形態において、苗供給補助部は、複数の苗取板99を載置可能な後部予備苗台113である。当該後部予備苗台113は、車体の左右方向に平行な回転軸114を中心に回転可能に構成されている。従って、前記回転軸114が、回転支点部として機能する。 As described above, in the present embodiment, the seedling supply auxiliary unit is the rear preliminary seedling table 113 on which a plurality of seedling collecting plates 99 can be placed. The rear preliminary seedling table 113 is configured to be rotatable around a rotation shaft 114 parallel to the left-right direction of the vehicle body. Accordingly, the rotation shaft 114 functions as a rotation fulcrum portion.
 このように、運転座席6と苗載台17の間に後部予備苗台113を設けておけば、当該後部予備苗台113の上に苗取板99を載置しておくことができる。そして、後部予備苗台113を回転させることで、当該後部予備苗台113に載置された苗取板99を、苗載台17に向けて傾けることができる。これにより、苗載台17へのマット苗112の供給を容易に行うことができる。 As described above, if the rear spare seedling stand 113 is provided between the driver seat 6 and the seedling placing stand 17, the seedling collecting plate 99 can be placed on the rear spare seedling stand 113. Then, by rotating the rear spare seedling stand 113, the seedling collecting plate 99 placed on the rear preliminary seedling stand 113 can be tilted toward the seedling placing stand 17. Thereby, it is possible to easily supply the mat seedling 112 to the seedling placing stand 17.
 なお、第3実施形態から第5実施形態までに関して、上記の構成は例えば以下のように変更することができる。 In addition, about 3rd Embodiment to 5th Embodiment, said structure can be changed as follows, for example.
 第3実施形態(又はその変形例)において、突出部122(又はローラ部材124)は、肥料ホッパ27xの蓋部88の上面に設けられている。しかこれに限らず、突出部122(又はローラ部材124)は、蓋部88とは別に設けられていても良い。即ち、突出部122(又はローラ部材124)は、苗取板99を下から支えることができれば良いのであり、肥料ホッパ27xの蓋部88に設けられている必要はない。 In the third embodiment (or a modification thereof), the protrusion 122 (or the roller member 124) is provided on the upper surface of the lid portion 88 of the fertilizer hopper 27x. However, the invention is not limited thereto, and the protruding portion 122 (or the roller member 124) may be provided separately from the lid portion 88. That is, the protrusion 122 (or the roller member 124) is only required to support the seedling plate 99 from below, and does not need to be provided on the lid 88 of the fertilizer hopper 27x.
 第3実施形態から第5実施形態までにおいては、施肥機8xを省略しても良い。 In the third to fifth embodiments, the fertilizer applicator 8x may be omitted.
 第5実施形態においては、後部予備苗台113の上面は、略水平面としている。しかしこれに限らず、後部予備苗台113の上面に、第3実施形態及び第4実施形態で示したような突起部又はローラ部材を配置することもできる。これにより、後部予備苗第70の上面に載置した苗取板99を、スムーズにスライドさせることができる。 In the fifth embodiment, the upper surface of the rear preliminary seedling table 113 is substantially horizontal. However, the present invention is not limited to this, and a protrusion or a roller member as shown in the third embodiment and the fourth embodiment can be arranged on the upper surface of the rear preliminary seedling table 113. Thereby, the seedling collecting plate 99 placed on the upper surface of the rear spare seedling 70 can be smoothly slid.
 本発明において、「苗取部材」とは、マット苗を載せて搬送できる略板状の部材を広く含むものである。従って、苗供給補助部に載置する苗取部材は、苗取板99に限らない。 In the present invention, the “seedling member” includes a wide range of substantially plate-like members that can carry mat seedlings. Therefore, the seedling collecting member placed on the seedling supply assisting unit is not limited to the seedling collecting plate 99.
 例えば図42に示すように、マット苗が収容される苗箱140は、マット苗を載せる底板142を有している。従って、苗箱140も「苗取部材」の一種であると考えることができる。そこで、苗取板99の代わりに、苗箱140を苗供給補助部に載置してもよい。この場合、図42に示す苗箱140のように、当該苗箱140の四方の壁のうち、1つの壁を取り除いて開放部140aとすれば好適である。このようにすれば、開放部140aが下を向くように苗箱140を傾けることで、当該苗箱140に収容されているマット苗(図略)を、底板142から滑り落とすことができる。これにより、苗箱140から苗載台17へマット苗の補給を直接行うことができる。 For example, as shown in FIG. 42, the seedling box 140 in which the mat seedling is accommodated has a bottom plate 142 on which the mat seedling is placed. Therefore, it can be considered that the seedling box 140 is also a kind of “seedling member”. Therefore, instead of the seedling collecting plate 99, the seedling box 140 may be placed on the seedling supply auxiliary unit. In this case, it is preferable to remove one of the four walls of the seedling box 140 as the seedling box 140 shown in FIG. In this way, the mat seedling (not shown) accommodated in the seedling box 140 can be slid down from the bottom plate 142 by tilting the seedling box 140 so that the open portion 140a faces downward. Thereby, the mat seedling can be directly supplied from the seedling box 140 to the seedling mounting stand 17.
 上記第3実施形態において、雨避け部145は、蓋部88に対して回動可能としているが、これに限らず、例えば、雨避け部145と蓋部88が一体的に形成されていても良い。 In the third embodiment, the rain avoiding portion 145 is rotatable with respect to the lid portion 88. However, the present invention is not limited to this. For example, the rain avoiding portion 145 and the lid portion 88 may be integrally formed. good.
 1 散布作業車(作業車)
 1x 田植機(作業車)
 2 車体
 3 直播装置
 8 直播装置(粒状体散布装置)
 8x 施肥機(粒状体散布装置)
 9 種子繰出装置(粒状体繰出装置)
 9x 肥料繰出装置(粒状体繰出装置)
 20 ホッパ
 21 繰出ケース
 28 繰出ロール(繰出部)
 30 従動ギア
 31 駆動ギア
 32 駆動伝達軸
 33 左側壁(従動ギア支持部)
 49 駆動ギア支持部
1 Scatter work vehicle (work vehicle)
1x Rice transplanter (work vehicle)
2 Car body 3 Direct seeding device 8 Direct seeding device (granular material spraying device)
8x fertilizer applicator (granular material spraying device)
9 Seed feeding device (granular material feeding device)
9x fertilizer feeding device (granular material feeding device)
20 hopper 21 feeding case 28 feeding roll (feeding part)
30 driven gear 31 drive gear 32 drive transmission shaft 33 left side wall (driven gear support)
49 Drive gear support

Claims (12)

  1.  粒状体を収容するホッパの下方に配置され、前記粒状体が供給される繰出ケースを備え、
     前記繰出ケース内には、前記粒状体を所定量ずつ繰り出す繰出部が設けられ、
     前記繰出ケースは、
     前記繰出部と一体的に回転する従動ギアを支持する従動ギア支持部と、
     前記従動ギアに噛み合う駆動ギアを支持する駆動ギア支持部と、
    を有することを特徴とする粒状体繰出装置。
    Arranged below the hopper for accommodating the granular material, comprising a feeding case to which the granular material is supplied,
    In the feeding case, a feeding portion for feeding the granular material by a predetermined amount is provided,
    The feeding case is
    A driven gear support portion that supports a driven gear that rotates integrally with the feeding portion;
    A drive gear support that supports a drive gear meshing with the driven gear;
    A granular material feeding device characterized by comprising:
  2.  請求項1に記載の粒状体繰出装置であって、
     前記従動ギア支持部と前記駆動ギア支持部が一体形成されていることを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 1,
    The granular material feeding device, wherein the driven gear support portion and the drive gear support portion are integrally formed.
  3.  請求項1に記載の粒状体繰出装置であって、
     前記繰出ケースを複数備え、
     各繰出ケースは、前記駆動ギアに軸線を一致させて配置され、当該駆動ギアに対して駆動力を伝達する駆動伝達軸を備え、
     前記駆動伝達軸は、前記繰出ケースごとに独立して設けられており、
     隣接する繰出ケースの前記駆動伝達軸同士を連結する連結部を備えていることを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 1,
    A plurality of the feeding cases are provided,
    Each feeding case is provided with a drive transmission shaft that is arranged with the axis line aligned with the drive gear, and transmits a driving force to the drive gear,
    The drive transmission shaft is provided independently for each feeding case,
    A granular material feeding device comprising a connecting portion for connecting the drive transmission shafts of adjacent feeding cases.
  4.  請求項3に記載の粒状体繰出装置であって、
     各繰出ケースにおいて、前記駆動伝達軸と、前記駆動ギアと、の間にクラッチ機構を有することを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 3,
    In each feeding case, a granular material feeding device having a clutch mechanism between the drive transmission shaft and the driving gear.
  5.  請求項1に記載の粒状体繰出装置であって、
     前記繰出部は、前記粒状体を繰り出す量を調整可能な調整機構を有し、
     前記繰出ケースは、
     前記調整機構の調整軸に固定された調整ギアと、
     前記調整ギアに噛合い可能な操作ギアを支持する操作ギア支持部と、
    を備えることを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 1,
    The feeding unit has an adjustment mechanism capable of adjusting an amount of feeding out the granular material,
    The feeding case is
    An adjustment gear fixed to the adjustment shaft of the adjustment mechanism;
    An operation gear support that supports an operation gear that can mesh with the adjustment gear;
    A granular material feeding device comprising:
  6.  請求項5に記載の粒状体繰出装置であって、
     前記操作ギアの回転軸を、前記調整軸に対して接近又は離間する方向に移動させることにより、前記調整ギアと前記操作ギアが噛み合った状態と、噛み合っていない状態と、を切換可能に構成されていることを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 5,
    By moving the rotation shaft of the operation gear in a direction approaching or separating from the adjustment shaft, the operation gear can be switched between a state in which the adjustment gear and the operation gear are engaged and a state in which the operation gear is not engaged. A granular material feeding device characterized by comprising:
  7.  請求項6に記載の粒状体繰出装置であって、
     複数の繰出ケースを一方向に並べて備えるとともに、当該複数の繰出ケースそれぞれに対応して前記調整ギア及び前記操作ギアが設けられ、
     各操作ギアの回転軸は、互いに連結されていることを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 6,
    A plurality of feeding cases are arranged in one direction, and the adjustment gear and the operation gear are provided corresponding to each of the plurality of feeding cases,
    The granular material feeding device, wherein the rotation shafts of the operation gears are connected to each other.
  8.  請求項6に記載の粒状体繰出装置であって、
     前記操作ギアの回転軸を支持する操作ギア支持部を、前記繰出ケースに固定的に設けたことを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 6,
    The granular material feeding device, wherein an operation gear support portion for supporting a rotation shaft of the operation gear is fixedly provided in the feeding case.
  9.  請求項6に記載の粒状体繰出装置であって、
     前記操作ギアの回転軸に接触可能なリンク部材を備え、
     前記リンク部材がリンク操作軸まわりで回動することにより、前記操作ギアの回転軸を前記調整軸に対して接近又は離間する方向に移動させることを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 6,
    A link member capable of contacting the rotating shaft of the operation gear;
    The granular material feeding device according to claim 1, wherein the link member is rotated around a link operation shaft to move the rotation shaft of the operation gear in a direction approaching or separating from the adjustment shaft.
  10.  請求項6に記載の粒状体繰出装置であって、
     前記調整軸に対して接近する際の前記操作ギアの回転軸の移動方向が、前記調整軸の軸中心からズレた位置を向いていることを特徴とする粒状体繰出装置。
    The granular material feeding device according to claim 6,
    The granular material feeding device according to claim 1, wherein a moving direction of the rotating shaft of the operation gear when approaching the adjusting shaft is directed to a position shifted from an axis center of the adjusting shaft.
  11.  請求項1に記載の粒状体繰出装置と、
     前記ホッパと、
     駆動源からの駆動力によって回転駆動される駆動出力ギアと、
     前記粒状体繰出装置から繰り出された前記粒状体を地面まで搬送する搬送部と、
    を備え、
     前記粒状体を供給する供給部が、前記ホッパと、前記粒状体繰出装置と、を含んでおり、
     前記供給部は、
     前記繰出部と、
     前記繰出部を駆動するための駆動力が入力される駆動入力ギアと、
    を備え、
     前記供給部は、前記搬送部に対して前記粒状体を供給できる作業位置と、前記搬送部から離間した開放位置と、の間で移動可能に構成されており、
     前記供給部が前記作業位置にあるときには、前記駆動出力ギアと前記駆動入力ギアが噛み合い、
     前記供給部を前記作業位置から前記開放位置に向けて移動させることで、前記駆動入力ギアが前記駆動出力ギアから離間することを特徴とする粒状体散布装置。
    The granular material feeding device according to claim 1;
    The hopper;
    A drive output gear that is rotationally driven by a drive force from a drive source;
    A transport unit that transports the granular material fed from the granular material feeding device to the ground;
    With
    The supply unit for supplying the granular material includes the hopper and the granular material feeding device,
    The supply unit
    The feeding section;
    A drive input gear to which a driving force for driving the feeding portion is input;
    With
    The supply unit is configured to be movable between a work position where the granular material can be supplied to the transport unit and an open position separated from the transport unit,
    When the supply unit is in the working position, the drive output gear and the drive input gear mesh with each other,
    The granular material spraying apparatus, wherein the drive input gear is separated from the drive output gear by moving the supply unit from the work position toward the open position.
  12.  請求項11に記載の粒状体散布装置であって、
     前記供給部を複数備え、
     各供給部が備える前記駆動入力ギアが、前記駆動出力ギアに噛合い可能であることを特徴とする粒状体散布装置。
    The granular material spraying device according to claim 11,
    A plurality of the supply units are provided,
    The granular material spraying device, wherein the drive input gear included in each supply unit can mesh with the drive output gear.
PCT/JP2015/000614 2014-02-10 2015-02-10 Granular body feeding device and granular body spraying device WO2015118891A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580007904.XA CN105979766B (en) 2014-02-10 2015-02-10 Granule drawing mechanism and granule dissemination apparatus
KR1020167015033A KR101869622B1 (en) 2014-02-10 2015-02-10 Granular body feeding device and granular body spraying device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014023859A JP2015149913A (en) 2014-02-10 2014-02-10 rice planting machine
JP2014072055A JP6239428B2 (en) 2014-03-31 2014-03-31 Granular material dispersion device and work vehicle equipped with the same
JP2014-074485 2014-03-31
JP2014074485A JP2015195747A (en) 2014-03-31 2014-03-31 Granule dispersing device and dispersing work vehicle including the same
JP2014-074487 2014-03-31
JP2014-072055 2014-03-31
JP2014074487A JP6328470B2 (en) 2014-03-31 2014-03-31 Granular material spraying device and spraying vehicle equipped with the same
JP2014-023859 2014-10-24

Publications (1)

Publication Number Publication Date
WO2015118891A1 true WO2015118891A1 (en) 2015-08-13

Family

ID=53777700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000614 WO2015118891A1 (en) 2014-02-10 2015-02-10 Granular body feeding device and granular body spraying device

Country Status (3)

Country Link
KR (1) KR101869622B1 (en)
CN (1) CN105979766B (en)
WO (1) WO2015118891A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492774A (en) * 2020-05-28 2020-08-07 陈永乐 Solid-liquid fertilizer injection unit for farming

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765676B2 (en) * 2017-01-27 2020-10-07 アグリテクノ矢崎株式会社 Weighing mechanism of roll type feeding device
DE102017005094A1 (en) * 2017-05-29 2018-11-29 Rauch Landmaschinenfabrik Gmbh Agricultural machine for spreading and dosing device for the same
CN108738426A (en) * 2018-04-09 2018-11-06 隋晓晓 A kind of agricultural of time-saving and efficiency grading seeder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226411U (en) * 1988-08-03 1990-02-21
JPH10327635A (en) * 1997-05-28 1998-12-15 Kubota Corp Apparatus for sending out granule
WO2008150240A1 (en) * 2007-06-06 2008-12-11 Väderstad-Verken Aktiebolag Seeding house
JP2010130932A (en) * 2008-12-03 2010-06-17 Yoka Ind Co Ltd Fertilizing apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2139769Y (en) * 1992-12-18 1993-08-11 山东省农业机械科学研究所 Quick dismounting, adjustable, multipurpose seeding machine
JPH10164911A (en) * 1996-12-05 1998-06-23 Mitsubishi Agricult Mach Co Ltd Send-out device for fluid in farm machine
CN2760920Y (en) * 2005-01-05 2006-03-01 张宝军 Multifunction seeder
JP2007037495A (en) 2005-08-04 2007-02-15 Agritecno Yazaki Co Ltd Feeding apparatus
JP4764239B2 (en) 2006-04-14 2011-08-31 株式会社クボタ Reserve seedling storage structure of rice transplanter
CN201199786Y (en) * 2008-04-16 2009-03-04 高丽丹 Seed metering device of precision hill planter for rice
JP2013132235A (en) 2011-12-26 2013-07-08 Kubota Corp Paddy field working machine
CN102626013A (en) * 2012-04-19 2012-08-08 大庆同方农牧业科技研究所 Drip-irrigating and film-mulching planting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226411U (en) * 1988-08-03 1990-02-21
JPH10327635A (en) * 1997-05-28 1998-12-15 Kubota Corp Apparatus for sending out granule
WO2008150240A1 (en) * 2007-06-06 2008-12-11 Väderstad-Verken Aktiebolag Seeding house
JP2010130932A (en) * 2008-12-03 2010-06-17 Yoka Ind Co Ltd Fertilizing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492774A (en) * 2020-05-28 2020-08-07 陈永乐 Solid-liquid fertilizer injection unit for farming

Also Published As

Publication number Publication date
CN105979766B (en) 2018-05-22
KR101869622B1 (en) 2018-06-20
CN105979766A (en) 2016-09-28
KR20160082700A (en) 2016-07-08

Similar Documents

Publication Publication Date Title
WO2015118891A1 (en) Granular body feeding device and granular body spraying device
TWI683615B (en) Ride-on rice transplanter
ITPN20110007A1 (en) SELF PROPELLED SEMINATOR MACHINE OF SMALL SIZE
JP4910540B2 (en) Powder application machine
JP2002027895A (en) Medicinal agent-spraying device of sulky rice-planter
JP2013022002A (en) Working machine equipped with fertilizer spreader
JP5586197B2 (en) Solid material spreader and work vehicle
JP2003164207A (en) Granule delivery machine
JP2004321104A (en) Granule-discharging machine
JP2003210014A (en) Apparatus for delivering powder and granule
JP6239428B2 (en) Granular material dispersion device and work vehicle equipped with the same
JP3892176B2 (en) Rice transplanter
JP2004105015A (en) Granule discharging machine
JP3380719B2 (en) Powder supply unit
JP2015195747A (en) Granule dispersing device and dispersing work vehicle including the same
JP2016119874A (en) Granule scattering device, and agriculture implement having granule scattering device
JP2015208300A (en) Granule dispersion device and dispersion work vehicle including the same
JP3423561B2 (en) Rice transplanter with fertilizer application device
JP2019076085A (en) Sulky rice transplanter
JP2004024178A (en) Seedling transplanter
JP4727865B2 (en) Side strip fertilizer machine
JP7138590B2 (en) Paddy work machine
JP3783642B2 (en) Granule dispenser
JP2004242635A (en) Residue recovering device of fertilizer drilling machine
JP4562796B2 (en) Rice transplanter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015033

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746956

Country of ref document: EP

Kind code of ref document: A1