WO2015115141A1 - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device Download PDF

Info

Publication number
WO2015115141A1
WO2015115141A1 PCT/JP2015/050306 JP2015050306W WO2015115141A1 WO 2015115141 A1 WO2015115141 A1 WO 2015115141A1 JP 2015050306 W JP2015050306 W JP 2015050306W WO 2015115141 A1 WO2015115141 A1 WO 2015115141A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
magnetic field
thermistor
resonance imaging
magnetic resonance
Prior art date
Application number
PCT/JP2015/050306
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 伸一郎
敦士 太田
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2015559845A priority Critical patent/JPWO2015115141A1/en
Publication of WO2015115141A1 publication Critical patent/WO2015115141A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/288Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils

Definitions

  • the present invention relates to a magnetic resonance imaging (hereinafter referred to as “MRI”) apparatus, and more particularly to a bore wall temperature monitoring function.
  • MRI magnetic resonance imaging
  • An MRI apparatus irradiates a subject with a high-frequency magnetic field pulse (hereinafter referred to as an RF pulse), measures an NMR signal generated by a nuclear spin constituting the subject, and forms the head, abdomen, limbs, etc. It is a device for imaging functions in two dimensions or three dimensions.
  • imaging in order to give position information to NMR signals, different phase encodings are given depending on the gradient magnetic field, frequency encoding is performed, and time-series data is measured. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
  • the object is irradiated with an RF pulse from an RF transmission coil.
  • the frequency of the RF pulse is set to a nuclear magnetic resonance frequency determined according to the static magnetic field strength and the excitation target nuclide. Therefore, the RF transmission coil is designed or adjusted (tuned) so that the resonance frequency matches the nuclear magnetic resonance frequency.
  • Patent Document 1 discloses an MRI apparatus having a function of measuring the temperature of an imaging region and blowing air from an air duct in order to prevent the imaging region in the gantry from becoming locally hot.
  • a birdcage (hereinafter referred to as “BC”) coil is known as an RF transmission coil.
  • BC RF transmission coil.
  • the generation efficiency of a high-frequency magnetic field that can be generated in the imaging region decreases.
  • One of the causes is that the coil pattern moves away from the limited imaging area inside the coil, and the other is that the coil pattern extends as the bore diameter increases, resulting in the conductor loss and gradient magnetic field of the pattern conductor itself.
  • the conductor loss due to the induction current flowing through the RF shield embedded in the coil surface is increased.
  • Recent wide-bore MRI apparatuses tend to supply a large amount of power to the RF transmission coil by using a higher-power RF power amplifier to compensate for such a decrease in efficiency of the RF transmission coil.
  • the output of the RF power amplifier was about 15 to 20kW, but the wide bore MRI equipment is about 35 to 40kW. Even if the output supplied to the RF transmitter coil is approximately doubled, the high-frequency magnetic field strength that can be generated in the imaging area is almost the same for the popular and wide-bore machines, and the reduction in transmission efficiency due to wide-bore is about 50%. . The remaining 50% is released as thermal energy.
  • the heat generation of elements such as capacitors and diodes inserted in the BC coil antenna pattern is approximately doubled, and the element temperature can be close to 100 ° C. without any cooling. Therefore, as in Patent Document 1, the BC coil is cooled by forced air cooling.
  • BC coil is close to the subject and greatly affects the temperature of the bore.
  • IEC International Electrotechnical Commission
  • thermometer it is known that there are two types of temperature sensors: contact type and non-contact type.
  • the former includes thermistors, thermocouples, platinum resistors, and fiber optic thermometers, and the latter includes infrared radiation thermometers.
  • contact-type thermometer it is necessary to connect an electric wire to the thermometer other than the optical fiber thermometer and connect it to the detection circuit.
  • the high-frequency electromagnetic field generated by the BC coil When measuring the surface temperature of the bore and the temperature of the BC coil, it is necessary to place the wire near the bore, and the high-frequency electromagnetic field generated by the BC coil generates high-frequency normal mode noise in the wire. .
  • the intensity (amplitude) of this high-frequency noise has the same order (number of digits) as the intensity of the detection signal of the thermistor, which causes malfunction of the A / D converter of the detection circuit, and stable temperature measurement cannot be performed.
  • the optical fiber thermometer is noise-free, but on the other hand, since the fiber is easily damaged by bending or impact, wiring is difficult, and there is a concern that it may be damaged during imaging or maintenance of the subject. The price is also high.
  • the BC coil is located only in the range of about ⁇ 25cm in the center of the bore, a sensor must be attached at least near the entrance of the magnet bore.
  • the entrance of the bore has a particularly high static magnetic field strength and is also exposed to a high-frequency electromagnetic field, it is difficult to install an infrared radiation thermometer in which the sensor unit and the main body are integrated. Even if it can be installed, the heat generation part may not be visible from the sensor depending on the physique and posture of the subject.
  • the present invention has been made in view of the above problems, and is to provide an MRI apparatus having a function of monitoring the temperature of the bore surface during imaging in real time.
  • a static magnetic field generator that applies a static magnetic field to an imaging space
  • a high-frequency magnetic field generator that is disposed closer to the imaging space than the static magnetic field generator
  • a bore wall that is disposed between the high-frequency magnetic field generation unit and the imaging space and forms a space in which the subject is disposed
  • a temperature determination unit that determines whether the temperature of the bore wall exceeds a predetermined temperature
  • the temperature determination unit includes a thermistor and a detection circuit which is connected to the thermistor and obtains a voltage signal corresponding to the electric resistance value of the thermistor and determines the voltage signal.
  • the detection circuit includes a determination circuit having a hysteresis characteristic, and when the temperature of the bore wall rises and the voltage signal reaches a voltage value higher than the voltage value corresponding to the first temperature, If it is determined that the abnormal condition exceeds the predetermined temperature, and then the temperature of the bore wall decreases, and reaches a voltage value on a lower temperature side than a voltage value corresponding to a second temperature lower than the first temperature. In this case, it is determined that the normal state is not more than the predetermined temperature.
  • the temperature of the bore surface during imaging can be monitored in real time.
  • Sectional drawing of the gantry 200 of the MRI apparatus which concerns on embodiment of this invention.
  • the block diagram which shows the circuit structure of the temperature determination of embodiment of this invention.
  • FIG. 3 is a graph showing output characteristics of the Schmitt trigger circuit of FIG. 3 is a graph showing an example of output characteristics of the thermistor 51 in FIG.
  • the perspective view of an example of a birdcage coil (BC coil). 1 is a block diagram showing the overall configuration of an MRI apparatus according to an embodiment of the present invention.
  • Sectional drawing of the gantry 200 of an MRI apparatus in case the bore wall 70 also serves as the cylindrical body 85 of the BC coil 58.
  • Sectional drawing of the gantry 200 of an MRI apparatus in case the bore wall 70 also serves as the cylindrical body 85 of the BC coil 58.
  • the MRI apparatus of the present invention includes a static magnetic field generation unit 2 that applies a static magnetic field to the imaging space 61, and a high-frequency magnetic field generation unit 58 that is disposed closer to the imaging space 61 than the static magnetic field generation unit 2.
  • a bore wall 70 that is disposed between the high-frequency magnetic field generator 58 and the imaging space 61 and forms a space in which the subject 1 is disposed, and a temperature that determines whether the temperature of the bore wall 70 exceeds a predetermined temperature And a determination unit 50.
  • the temperature determination unit 50 includes a thermistor 51 and a detection circuit 59.
  • the detection circuit 59 is connected to the thermistor 51, obtains a voltage signal corresponding to the electrical resistance value of the thermistor 51, and determines the voltage signal.
  • the detection circuit 59 includes a determination circuit 53 having hysteresis characteristics as shown in FIG.
  • the determination circuit 53 determines that the abnormality exceeds the predetermined temperature. Judged as a state. Thereafter, if the temperature of the bore wall 70 decreases and reaches a voltage value on a lower temperature side than the voltage value corresponding to the second temperature lower than the first temperature, it is determined that the normal state is equal to or lower than the predetermined temperature. .
  • a / D conversion that is normally performed when the thermistor is used as a temperature sensor is not performed, and only a determination is made as to whether an abnormal state exceeds a predetermined temperature (threshold temperature) or a normal state below a predetermined temperature.
  • a predetermined temperature threshold temperature
  • a normal state below a predetermined temperature a predetermined temperature.
  • the determination result becomes a high frequency. Less susceptible to noise.
  • the voltage signal output from the thermistor 51 is superimposed with high frequency noise having the same frequency as the high frequency magnetic field, as shown in FIG. 4, and this high frequency noise is in the order of amplitude intensity (digits). Is the same level as the voltage signal output by the thermistor, so if the judgment is made with only one judgment criterion (voltage), the judgment result is switched between abnormal and normal at high speed when the voltage signal reaches the vicinity of the judgment criterion.
  • the determination can be stably performed by using a determination circuit having hysteresis characteristics.
  • a Schmitt trigger circuit can be used as shown in FIG.
  • the detection circuit 59 preferably includes a variable unit (54, 53b) that makes at least one of the voltage value corresponding to the first temperature and the voltage value corresponding to the second temperature variable. This is due to individual differences in the temperature-resistance characteristics of the thermistor 51, errors in the distance between the thermistor 51 and the high-frequency magnetic field generator 58, which is the heat source, and differences in the degree of thermal contact between the thermistor 51 and the bore wall 70. The operating temperature deviation can be adjusted by the variable section (54, 53b). Therefore, it is possible to accurately determine whether the surface of the bore wall 70 has exceeded a predetermined temperature.
  • the thermistor 51 is preferably disposed at a position where the thermistor 51 is in thermal contact with the bore wall 70 or the high-frequency magnetic field generator 58 that is a heat source. Further, when the space surrounded by the bore wall has an elliptical cross section, it is desirable that the thermistor be disposed on the bore wall in the major axis direction of the ellipse. This is because, in the major axis direction, the high-frequency magnetic field generator is far from the subject, so that a large amount of electric power is supplied to the high-frequency magnetic field generator and the temperature is likely to rise.
  • the detection circuit 59 is disposed outside the space (bore) in which the subject is disposed in order to reduce the influence of high frequency noise.
  • the thermistor 51 and the detection circuit 59 are connected by a cable 57 made of nonmagnetic material.
  • at least a part of the cable 57 is provided with the high-frequency filter 52 at intervals of 1/8 or less of the wavelength of the high-frequency magnetic field generated by the high-frequency magnetic field generator 58.
  • a high-frequency filter 52 is inserted with a quarter wavelength or less in order to reduce high-frequency noise.
  • a mirror image of noise is generated between the cable 57 and the ground. Therefore, it is desirable to arrange the high frequency filter 52 with 1/8 wavelength or less. Thereby, high frequency noise can be reduced effectively.
  • the high frequency filter 52 may be any filter as long as it does not pass a signal having a frequency higher than the high frequency generated by the high frequency magnetic field generator 58.
  • an inductor showing high impedance at a high frequency generated by the high-frequency magnetic field generator 58, a resonant circuit of an inductor and a capacitor, or a choke coil can be used. Since the choke coil does not affect the magnetic field of the imaging space 61, a choke coil made of a nonmagnetic material is used.
  • the high frequency filter 52 is disposed in the cable 57 disposed in the region where the high frequency magnetic field generator 58 is disposed at intervals of 1/8 wavelength or less of the high frequency. This is because the region where the high-frequency magnetic field generator 58 is disposed has the highest strength of the high-frequency magnetic field and generates high-frequency high-frequency noise in the cable 57.
  • the cable 57 can be a twisted pair cable or a coaxial cable.
  • a twisted pair cable in which two cables are twisted together, magnetic fields generated in the two cables can be canceled and high-frequency noise can be reduced.
  • the coaxial cable since the signal line is surrounded by the ground line and electromagnetically shielded, it is possible to reduce high-frequency noise from being superimposed on the signal line.
  • the cable 57 is preferably disposed closer to the static magnetic field generation unit 2 than the bore wall 70. This is to prevent the cable 57 from projecting toward the space where the subject 1 is placed and to ensure a wide space where the subject is placed.
  • the thermistor 51 is attached to the surface of the bore wall 70 on the imaging space 51 side so that the temperature of the surface of the bore wall 70 on the imaging space 51 side can be accurately determined, and the cable 57 is provided on the bore wall 70. It is possible to adopt a configuration in which the static magnetic field generating unit 2 is drawn more than the bore wall 70 through the formed through hole 71. Even if the position where the cable 57 is wired is between the bore wall 70 and the high-frequency magnetic field generator 58 as shown in FIG. 1, it is outside the high-frequency magnetic field generator 58 (static magnetic field generator 2 side) as shown in FIG. It may be.
  • the high-frequency magnetic field generator 58 for example, a birdcage coil (see FIG. 5) can be used.
  • the MRI apparatus When the determination circuit 53 of the detection circuit 59 determines that the abnormal state (exceeds a predetermined temperature), the MRI apparatus desirably stops the execution of imaging. Therefore, as shown in FIG. 6, the control unit (sequencer 4) that controls the generation of high frequency of the high frequency magnetic field generation unit and executes predetermined imaging performs imaging when the determination circuit 53 determines that the abnormal state has occurred. Stop. And when it determines with a normal state again, execution of imaging is enabled.
  • FIG. 1 is a cross-sectional view of a gantry 200 of the MRI apparatus
  • FIG. 6 is a block diagram showing the overall configuration of the MRI apparatus
  • FIG. 7 is a perspective view of the gantry 200.
  • This MRI apparatus obtains a tomographic image of the subject 1 using the NMR phenomenon.
  • the MRI apparatus includes a gradient magnetic field generating unit 9, a high frequency coil (receiving high frequency coil) 14b, a signal processing unit 7, a sequencer 4, A central processing unit (CPU) 8 is provided.
  • a gradient magnetic field generating unit 9 a high frequency coil (receiving high frequency coil) 14b, a signal processing unit 7, a sequencer 4,
  • a central processing unit (CPU) 8 is provided.
  • the static magnetic field generator 2 In the case of the horizontal magnetic field method, the static magnetic field generator 2 generates a uniform static magnetic field in the body axis direction using a tunnel-shaped permanent magnet, normal conducting magnet or superconducting magnet as shown in FIG. In the case of the vertical magnetic field method, a pair of static magnetic field generators 2 are arranged above and below the subject 1.
  • a high-frequency magnetic field generator (hereinafter referred to as a high-frequency coil) 58 irradiates the subject 1 with a magnetic field (RF pulse) having a frequency that causes nuclear magnetic resonance to occur in the nuclear spins of atoms constituting the biological tissue of the subject 1.
  • a high frequency amplifier 13, a modulator 12, and a high frequency oscillator 11 are sequentially connected to the high frequency coil 58.
  • the RF pulse output from the high frequency oscillator 11 is amplitude-modulated by the modulator 12, amplified by the high frequency amplifier 13, and then supplied to the high frequency coil 58.
  • the sequencer 4 instructs the modulator 12 on the timing of modulation.
  • the BC coil has a plurality of linear conductors 81 arranged in parallel to the central axis of the cylinder and at equal intervals along the circumference of the cylinder, and a pair of annular conductors 82 are arranged at both ends thereof.
  • the plurality of linear conductors 81 are connected.
  • a plurality of resonance capacitors (capacitors) 83 having the same capacity are inserted in series in the annular conductor 82.
  • a PIN diode 84 is inserted in series at the intermediate point of the linear conductor 81 to prevent electromagnetic interference with the receiving high-frequency coil 14b that receives the NMR signal.
  • the linear conductor 81 and the annular conductor 82 are formed of a nonmagnetic conductor film formed on an insulating cylinder 85.
  • the bore wall 70 also serves as the cylindrical body 85 of the BC coil 58, and includes a plurality of linear conductors 81, a pair of annular conductors 82, a plurality of resonant capacitive elements 83 and a PIN of the BC coil 58.
  • the diode 84 can also be configured to be disposed on the bore wall 70.
  • the thermistor 51 can also be arranged in a through hole 71 provided in the bore wall 70 as shown in FIG.
  • the cable 57 is arranged by being drawn out from the region where the linear conductor 81 and the pair of annular conductors 82 are not arranged to the outer peripheral side (static magnetic field generating unit 2 side) of the high-frequency coil 58.
  • the thermistor 51 may be disposed on the outer peripheral surface of BC coil 58 (the outer peripheral surface of linear conductor 81 or annular conductor 82). Also in this case, the cable 57 is arranged on the outer peripheral side (static magnetic field generating unit 2 side) of the high-frequency coil 58.
  • a gradient magnetic field generating coil 9 is disposed between the static magnetic field generating unit 2 and the high frequency magnetic field generating unit 58 as shown in FIG.
  • the gradient magnetic field generating coil 9 includes coils that respectively apply gradient magnetic fields in the three-axis directions of X, Y, and Z that are coordinate parts (stationary coordinate parts) of the MRI apparatus.
  • Each coil is connected to a gradient magnetic field power supply 10 for supplying a drive current.
  • the sequencer 4 outputs a command to the gradient magnetic field power supply 10 to supply a drive current to each coil.
  • a slice direction gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and the remaining orthogonal to the slice plane and orthogonal to each other
  • the phase encoding direction gradient magnetic field pulse (Gp) and the frequency encoding direction gradient magnetic field pulse (Gf) are applied in the two directions, and the position information in each direction is encoded in the echo signal, thereby performing imaging.
  • the receiving high-frequency coil 14b detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1.
  • a signal amplifier 15, a quadrature detector 16, and an A / D converter 17 are sequentially connected to the reception high-frequency coil 14b.
  • the NMR signal generated by the subject 1 by the RF pulse irradiated from the high frequency coil 58 is detected by the high frequency coil 14b for reception, amplified by the signal amplifier 15, and then at a timing according to a command from the sequencer 4, a quadrature detector 16 is divided into two orthogonal signals.
  • the two systems of signals are each converted into a digital quantity by the A / D converter 17 and sent to the signal processing unit 7.
  • Sequencer 4 executes a predetermined imaging pulse sequence by controlling the timing of high-frequency magnetic field pulse irradiation, gradient magnetic field application, and quadrature detection, respectively.
  • a CPU 8 is connected to the sequencer 4 and its operation is controlled.
  • the signal processing unit 7 performs various data processing and display and storage of processing results, and includes a CPU 8, an external storage device such as an optical disk 19 and a magnetic disk 18, and a display 20 including a CRT and the like.
  • a CPU 8 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display 20, Recording is performed on the magnetic disk 18 or the like of the external storage device.
  • the operation unit 25 inputs various control information of the MRI apparatus and control information of processing performed by the signal processing unit 7, and includes an input device 21 such as a trackball, a mouse, and a keyboard.
  • the operation unit 25 is arranged in the vicinity of the display 20, and an operator inputs control information interactively through the operation unit 25 while looking at the display 20.
  • the subject 1 is mounted on the top 91 of the bed 90, inserted into a space surrounded by the bore wall 70, and an imaging region is arranged in the imaging space 61.
  • the temperature determination unit 50 is a circuit for monitoring the surface temperature of the bore wall 70 during imaging.
  • the temperature determination unit 50 includes a thermistor 51 that is a contact type temperature sensor, and a twisted pair cable 57 connected to the thermistor 51.
  • the thermistor 51 may be any one as long as the resistance changes depending on the temperature.
  • an NTC thermistor can be used.
  • the thermistor 51 is installed on the surface of the bore wall 70 or in the vicinity of the high frequency coil 58.
  • the twisted pair cable 57 that reduces normal mode noise is connected to the electrode of the thermistor 51.
  • RF chokes are inserted as a high frequency filter 52 for reducing common mode noise at intervals of 1/8 or less of the high frequency wavelength irradiated by the high frequency coil 58.
  • the other end of the twisted pair cable 57 is connected to the detection circuit 59.
  • the detection circuit 59 is disposed at least outside the high-frequency coil 58. Preferably, it is disposed outside the space (bore) in which the subject 1 surrounded by the bore wall 70 is disposed.
  • the output of the detection circuit 59 is input to the sequencer 4. If the detection circuit 59 determines that the surface temperature of the bore wall 70 has exceeded the safe temperature (abnormal state), the sequencer 4 interrupts imaging and the central processing unit (CPU) 8 displays an error message on the display 20 .
  • CPU central processing unit
  • the detection circuit 59 includes a high frequency filter (hereinafter referred to as an RF choke) 52, a fixed resistor 55, a power supply 49 that applies a power supply voltage to the thermistor 51 via the fixed resistor 55, and a Schmitt trigger circuit that is a determination circuit 53. And a bypass capacitor 56.
  • the fixed resistor 55 is connected in series with the thermistor 51 via one of the RF choke 52 and the twisted pair cable 57. The other end of the twisted pair cable 57 is connected to the ground.
  • the determination circuit 53 includes a comparator 53a and a positive feedback circuit, and a variable resistor 53b is inserted in series in the positive feedback circuit.
  • the cable to which the fixed resistor 55 is connected is connected to the negative terminal of the comparator 53a, and the voltage signal output from the thermistor 51 is input.
  • the voltage signal of the power supply 49 is input to the positive terminal of the comparator 53a via the variable resistor 54.
  • the output terminal (determination result) of the comparator 53a is input to the sequencer 4.
  • the voltage signal of the thermistor 51 as shown in FIG. 4 is input to the negative terminal of the comparator 53a of the Schmitt trigger circuit 53.
  • the voltage signal of the thermistor 51 is superimposed with high frequency noise having a frequency similar to that of the high frequency magnetic field generated by the high frequency coil 58 during imaging.
  • the voltage signal of the thermistor 51 decreases as the temperature increases, as shown in FIG.
  • the Schmitt trigger circuit 53 has a hysteresis characteristic as shown in FIG. 3, and indicates that the thermistor 51 is normal when the temperature of the thermistor 51 is lower than the first temperature and the output voltage is about 3 V or more. Outputs high voltage (5V).
  • the resistance value of the fixed resistor 55 determines the temperature-to-voltage conversion sensitivity (dV / dT) of the thermistor 51.
  • the resistance value of the variable resistor 54 is a resistance value for setting the first voltage. By adjusting the resistance of the variable resistor 54, the first temperature at which the temperature rises and is determined to be in an abnormal state can be adjusted. .
  • the variable resistor 53b is a resistance value that sets the second voltage, and by adjusting the variable resistor 53b, it is possible to adjust the second temperature at which it is determined that the temperature has fallen and returned to the normal state.
  • the thermistor 51 is installed on the surface of the bore wall 70 on the imaging space 61 side.
  • the installation position in the in-plane direction is bored relative to the position where the RF power is supplied to the high-frequency magnetic field coil 58 (hereinafter referred to as the BC coil 58), that is, when the RF power is supplied, that is, the position of the capacitor or diode of the BC coil 58 A position facing the wall 70 is desirable.
  • the BC coil 58 the high-frequency magnetic field coil 58
  • the position of the detection circuit 59 is preferably as the high frequency magnetic field received decreases as the distance from the BC coil 58 decreases.However, the wiring resistance of the thermistor 51 decreases the temperature responsiveness (dV / dT), so it is in the vicinity of the static magnetic field generation unit 2. It is desirable to arrange.
  • the detection circuit 59 can be disposed in a rack 60 disposed in the vicinity of the opening on the back surface of the gantry 200 (the side opposite to the bed 90).
  • the thermistor 51 and the detection circuit 59 are connected by a twisted pair cable 57, and the twisted pair cable 57 has an interval of 1/8 or less of the wavelength of the high-frequency magnetic field at least in the region where the BC coil 58 is disposed. Insert the RF choke 52 with.
  • the circuit configuration of the detection circuit 59 is as already described with reference to FIG.
  • the resistor 54 that determines the determination level of the comparator 53a as a variable resistor, it is possible to adjust the individual difference of the thermistor, the distance between the thermistor and the heat source, and the deviation of the operating temperature due to the difference in thermal contact. Therefore, the variable resistor 54 is adjusted so that it can be determined that the temperature of the thermistor 51 has reached the limit temperature (here, 41 ° C.).
  • the resistance 54 may be adjusted while measuring the temperature in the vicinity of the thermistor 51 using an optical fiber thermometer or the like as an adjustment jig.
  • the limit temperature for example, 41 ° C.
  • the intensity of the high-frequency magnetic field pulse can be increased to the limit of the limit temperature that does not reach the limit temperature, or the frequency of application can be increased, it is easy to execute a high-speed and high-function sequence.
  • the thermistor 51 is installed on the outer peripheral surface of the BC coil 58 as shown in FIGS.
  • the installation position is desirably in the vicinity of the capacitor 83 or the diode 84 of the BC coil 58 that becomes high temperature when the BC coil 58 generates a high-frequency magnetic field pulse.
  • the thermistors 51 are arranged at two locations on the BC coil 58.
  • a spacer 86 is arranged so that the cable 57 does not directly contact the conductor of the BC coil 58.
  • the bore wall 70 also serves as the cylindrical body 85 of the BC coil 58. Other aspects are the same as those of the first embodiment.
  • the merit of the configuration of the second embodiment is that the thermistor 51 and the cable 57 are not arranged on the surface of the bore wall 70 on the subject 1 side, so that the surface of the bore wall 70 is smooth when viewed from the subject 1, and the subject There is no fear that 1 contacts the thermistor 51 and it is safe. It is also excellent in design.
  • the thermistor 51 monitors the temperature of the BC coil 58 having a temperature higher than the limit temperature (41 ° C.) of the surface of the bore wall 70, a limit temperature (for example, 60 ° C.) higher than the limit temperature (41 ° C.) of the bore wall. ),
  • the variable resistor 54 is adjusted so as to determine that it is abnormal (error) (FIG. 4).
  • the relationship between the limit temperature of the bore wall 70 (41 ° C.) and the temperature of the BC coil 58 can be obtained in advance by measuring the temperature of the BC coil 58 while measuring the temperature of the bore surface with an optical fiber thermometer or the like. Is possible.
  • the variable resistor 54 of the detection circuit 59 may be adjusted so that an abnormality (error) occurs when the temperature of the bore wall 70 reaches the limit temperature (41 ° C.).
  • thermocouple measures the electromotive force generated by the Seebeck effect using two types of metal conductors.
  • the magnitude of the electromotive force is very small. For example, when the temperature of the non-measurement object is 100 ° C. or less, it is about several ⁇ to several tens ⁇ V.
  • the high-frequency noise on the probe wire mounted on the BC coil due to the high-frequency electromagnetic field generated from the BC coil being imaged is limited to several mV to several tens of mV even if it is reduced using a twisted pair and RF choke. It is. Therefore, it is difficult to accurately perform A / D conversion or normal / error binary determination on the voltage output from the thermocouple.
  • a platinum resistance thermometer measures the change in electrical resistance of a metal with respect to temperature changes.
  • a static magnetic field can be used in a magnetic field, but there is still a problem of high frequency noise in a high frequency magnetic field.
  • the platinum resistance thermometer has a feature that it is easily affected by the lead wire resistance of the probe, so it is difficult to put a multistage RF choke in terms of accuracy.
  • the price is higher than that of a thermocouple or thermistor.
  • the optical fiber thermometer is noise-free and can measure temperature in real time, but there is a problem that it is expensive and the probe is easily broken. Application to mass-produced products is particularly problematic in terms of cost.
  • the interval at which the RF choke 52 is inserted into the twisted pair cable 57 is preferably 1/8 or less of the wavelength of the high-frequency magnetic field, but if the noise resistance of the detection circuit 59 is high, it is longer than 1/8 wavelength. It may be long. However, in that case, it is necessary to consider that the wiring path of the twisted pair cable 57 is not too close to other cables and the ground conductor.
  • the temperature of the bore wall 70 or the high-frequency magnetic field coil 58 is determined by the thermistor 51.
  • the present invention is not limited to this, and the temperature of the gradient magnetic field coil 59 is not more than a predetermined temperature. It is also possible to determine whether or not there is.
  • the thermistor 51 is disposed so as to be in thermal contact with the gradient magnetic field coil 59 or disposed in the vicinity of the gradient magnetic field coil 59.

Abstract

This magnetic resonance imaging device comprises: a static magnetic field generating unit which applies a static magnetic field to an imaging space; a high frequency magnetic field generating unit which is disposed more to the imaging space side than the static magnetic field generating unit; a bore wall which is disposed between the high frequency magnetic field generating unit and imaging space, and which forms a space in which a subject is placed; and a temperature determination unit which determines whether the temperature of the bore wall exceeds a predetermined temperature. The temperature determination unit includes a thermistor, and a detection circuit which is connected to the thermistor and acquires a voltage signal corresponding to electrical resistivity of the thermistor to make a determination on the voltage signal. The detection circuit comprises a determination circuit which has hysteresis properties, wherein the determination circuit determines an abnormal condition exceeding the predetermined temperature when the temperature of the bore wall rises and the voltage signal reaches a voltage value of a higher temperature than the voltage value corresponding to a first temperature, and determines a normal condition at or below the predetermined temperature when the temperature of the bore wall decreases thereafter and the voltage signal reaches a voltage value of a lower temperature than the voltage value corresponding to a second temperature which is lower than the first temperature.

Description

磁気共鳴イメージング装置Magnetic resonance imaging system
 本発明は、磁気共鳴イメージング(以下、「MRI」という)装置に関し、特に、ボア壁の温度監視機能に関する。 The present invention relates to a magnetic resonance imaging (hereinafter referred to as “MRI”) apparatus, and more particularly to a bore wall temperature monitoring function.
 MRI装置は、被検体に高周波磁場パルス(以下、RFパルスという)を照射して、該被検体を構成する原子核スピンが発生するNMR信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮影においては、NMR信号に位置情報を付与するために、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時部列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。 An MRI apparatus irradiates a subject with a high-frequency magnetic field pulse (hereinafter referred to as an RF pulse), measures an NMR signal generated by a nuclear spin constituting the subject, and forms the head, abdomen, limbs, etc. It is a device for imaging functions in two dimensions or three dimensions. In imaging, in order to give position information to NMR signals, different phase encodings are given depending on the gradient magnetic field, frequency encoding is performed, and time-series data is measured. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
 被検体へのRFパルスの照射は、RF送信コイルから行われる。RFパルスの周波数は、静磁場強度と励起対象核種とに応じて定まる核磁気共鳴周波数に設定される。そのため、RF送信コイルは、共鳴周波数が核磁気共鳴周波数に一致するように設計又は調整(チューニング)されている。 The object is irradiated with an RF pulse from an RF transmission coil. The frequency of the RF pulse is set to a nuclear magnetic resonance frequency determined according to the static magnetic field strength and the excitation target nuclide. Therefore, the RF transmission coil is designed or adjusted (tuned) so that the resonance frequency matches the nuclear magnetic resonance frequency.
 近年のMRI装置は、被検体が挿入される空間(以下、ボアとよぶ)の口径を広くするワイドボア化が進み、口径70cmを超える装置が開発されている。それに合わせて、RF送信コイルや、傾斜磁場コイル、さらには超伝導磁石の口径の拡大が求められている。 In recent years, MRI apparatuses have been developed to have wide bores that widen the diameter of a space into which a subject is inserted (hereinafter referred to as “bore”), and apparatuses having a diameter exceeding 70 cm have been developed. Along with this, there is a demand for an increase in the diameter of RF transmission coils, gradient magnetic field coils, and superconducting magnets.
 特許文献1には、ガントリ内の撮影領域が局所的に高温になるのを防ぐために、撮影領域の温度を計測し、送風ダクトから送風する機能を備えたMRI装置が開示されている。 Patent Document 1 discloses an MRI apparatus having a function of measuring the temperature of an imaging region and blowing air from an air duct in order to prevent the imaging region in the gantry from becoming locally hot.
特開2009-5759号公報JP2009-5759
 RF送信コイルとしては、バードケージ(以下、「BC」という)コイルが知られているが、BCコイルは、ボア径が大きくなるほど、撮像領域で発生できる高周波磁場の発生効率が低下する。その原因の1つは、コイル内部の限られた撮像領域に対して、コイルパターンが遠ざかること、もう1つは、ボア径が大きくなるほどコイルパターンが延長し、パターン導体自体の導体損や傾斜磁場コイル表面に埋め込まれたRFシールドに誘導電流が流れることによる導体損が増加することにある。 A birdcage (hereinafter referred to as “BC”) coil is known as an RF transmission coil. However, as the bore diameter of the BC coil increases, the generation efficiency of a high-frequency magnetic field that can be generated in the imaging region decreases. One of the causes is that the coil pattern moves away from the limited imaging area inside the coil, and the other is that the coil pattern extends as the bore diameter increases, resulting in the conductor loss and gradient magnetic field of the pattern conductor itself. The conductor loss due to the induction current flowing through the RF shield embedded in the coil surface is increased.
 しかしながら、BCコイルの口径を大きくした方が、超伝導磁石や傾斜磁場コイルの口径を大きくするよりも、MRI装置価格へ与える影響が小さい。そのため、装置価格を抑えるために、超伝導磁石や傾斜磁場コイルの口径拡大を抑えて、BCコイルの口径拡大が求められる傾向がある。そのため、BCコイルと傾斜磁場コイルの間の距離(=シールドギャップ)は、ワイドボア化につれて狭くなる傾向にあり、ボア径が60cmの普及機は、シールドギャップが3cm程度あるが、70cmを超えるワイドボア機では、2cmを切る場合もある。シールドギャップが小さくなるとRFシールドに誘導電流が流れることによる損失が増加するため、BCコイルが撮像領域で発生できる高周波磁場の発生効率はさらに低下する。 However, increasing the diameter of the BC coil has less effect on the MRI apparatus price than increasing the diameter of the superconducting magnet or gradient magnetic field coil. For this reason, in order to reduce the device price, there is a tendency to increase the diameter of the BC coil while suppressing the expansion of the diameter of the superconducting magnet and the gradient magnetic field coil. For this reason, the distance between the BC coil and the gradient magnetic field coil (= shield gap) tends to become narrower as the wide bore becomes wider. The popular machine with a bore diameter of 60cm has a shield gap of about 3cm, but the wide bore machine with a diameter exceeding 70cm. Then, it may cut 2cm. When the shield gap is reduced, the loss due to the induction current flowing through the RF shield increases, so that the generation efficiency of the high-frequency magnetic field that the BC coil can generate in the imaging region further decreases.
 近年のワイドボアMRI装置は、このようなRF送信コイルの効率低下を補うために、より大出力のRFパワーアンプが使用され、RF送信コイルに大電力を供給する傾向にある。普及機では、RFパワーアンプの出力は15~20kW程度であったが、ワイドボアMRI装置は35~40kW程度が使用される。RF送信コイルに供給する出力が約2倍になっても、撮像領域で発生できる高周波磁場強度は、普及機とワイドボア機でほぼ同じであり、ワイドボア化による送信効率の低下は約50%である。残りの50%は熱エネルギーとして放出される。すなわち、BCコイルのアンテナパターンに挿入されたキャパシタやダイオードといった素子の発熱も約2倍になり、何の冷却も行わないと素子温度が100℃近くなり得る。そこで、特許文献1のように、強制空冷によってBCコイルを冷却することが行われている。 Recent wide-bore MRI apparatuses tend to supply a large amount of power to the RF transmission coil by using a higher-power RF power amplifier to compensate for such a decrease in efficiency of the RF transmission coil. In the popular machine, the output of the RF power amplifier was about 15 to 20kW, but the wide bore MRI equipment is about 35 to 40kW. Even if the output supplied to the RF transmitter coil is approximately doubled, the high-frequency magnetic field strength that can be generated in the imaging area is almost the same for the popular and wide-bore machines, and the reduction in transmission efficiency due to wide-bore is about 50%. . The remaining 50% is released as thermal energy. That is, the heat generation of elements such as capacitors and diodes inserted in the BC coil antenna pattern is approximately doubled, and the element temperature can be close to 100 ° C. without any cooling. Therefore, as in Patent Document 1, the BC coil is cooled by forced air cooling.
 BCコイルは被検体に近く、ボアの温度に大きな影響を与える。IEC(International Electrotechnical Commission)によれば、ボア壁の被検体側の表面の温度が、撮像中も含めて常に41℃を超えないように規定されている。そのため、強制空冷を行うMRI装置では、もし冷却ファンが故障により停止し、ボアの表面温度がIECで定める温度を超える場合には、撮像は中断しなければならない。 BC coil is close to the subject and greatly affects the temperature of the bore. According to IEC (International Electrotechnical Commission), it is regulated that the temperature of the surface of the bore wall on the subject side does not always exceed 41 ° C. even during imaging. Therefore, in an MRI apparatus that performs forced air cooling, if the cooling fan stops due to a failure and the surface temperature of the bore exceeds the temperature defined by IEC, imaging must be interrupted.
 強制空冷の場合、冷却ファンが故障したかどうかは、冷却ファンの動作を検出するセンサーを備えることで検出することができる。しかし、冷却ファンが正常に動作していても、冷却風のダクトが破れた場合には、ボアの冷却を行うことができず、ボアの表面温度は上昇するが、ボア表面の温度を直接計測しない限り、ボアの表面温度の上昇を検出することができない。また、強制空冷が正常に動作していても、RFとGC双方の出力強度が高い撮像シーケンス(スキャン)を、使用上想定される範囲を超えて連続で行った場合には、ボアの表面温度が被検体に対して安全温度を超える恐れがある。そのため、ボアの表面温度を温度センサーにより直接計測することが望まれている。 In the case of forced air cooling, whether or not the cooling fan has failed can be detected by providing a sensor that detects the operation of the cooling fan. However, even if the cooling fan is operating normally, if the duct of the cooling air is broken, the bore cannot be cooled and the bore surface temperature rises, but the bore surface temperature is directly measured. Unless this is done, an increase in the surface temperature of the bore cannot be detected. Even if forced air cooling is operating normally, if an imaging sequence (scan) with high output intensity of both RF and GC is performed continuously beyond the expected range of use, the surface temperature of the bore May exceed a safe temperature for the subject. Therefore, it is desired to directly measure the surface temperature of the bore with a temperature sensor.
 温度センサーには接触型と非接触型があることが知られており、前者はサーミスタ、熱電対、白金抵抗、光ファイバー温度計等、後者は赤外線放射温度計がある。しかしながら、接触型温度計の場合、光ファイバー温度計以外は温度計に電線を接続して検出回路に接続する必要がある。 It is known that there are two types of temperature sensors: contact type and non-contact type. The former includes thermistors, thermocouples, platinum resistors, and fiber optic thermometers, and the latter includes infrared radiation thermometers. However, in the case of a contact-type thermometer, it is necessary to connect an electric wire to the thermometer other than the optical fiber thermometer and connect it to the detection circuit.
 ボアの表面温度やBCコイルの温度を測定する場合には電線をボア近傍に配置する必要があり、BCコイルの発生する強度の大きな高周波電磁界が電線に高周波のノーマル・モード・ノイズを発生させる。この高周波のノイズの強度(振幅)は、サーミスタの検出信号の強度とオーダー(桁数)が同程度であるため、検出回路のA/Dコンバータ等の誤動作を招き、安定した温度測定ができない。 When measuring the surface temperature of the bore and the temperature of the BC coil, it is necessary to place the wire near the bore, and the high-frequency electromagnetic field generated by the BC coil generates high-frequency normal mode noise in the wire. . The intensity (amplitude) of this high-frequency noise has the same order (number of digits) as the intensity of the detection signal of the thermistor, which causes malfunction of the A / D converter of the detection circuit, and stable temperature measurement cannot be performed.
 これに対し、光ファイバー温度計はノイズフリーであるが、その反面、ファイバーが屈曲や衝撃で破損しやすいため、配線が難しく、被検体の撮像中やメンテナンス中に破損することも懸念される。また価格も高い。一方、非接触型温度計の場合、測定誤差を避けるため、測定ポイントに対して直角±30°程度の角度で測定するのが望ましい。 On the other hand, the optical fiber thermometer is noise-free, but on the other hand, since the fiber is easily damaged by bending or impact, wiring is difficult, and there is a concern that it may be damaged during imaging or maintenance of the subject. The price is also high. On the other hand, in the case of a non-contact type thermometer, it is desirable to measure at an angle of about ± 30 ° perpendicular to the measurement point in order to avoid measurement errors.
 BCコイルはボアの中心±25cm程度の範囲にしか配置されていないので、最低でも磁石ボアの入り口付近にセンサーを取り付けなければならない。しかし、ボアの入り口は静磁場強度が特に高く、高周波電磁界にもさらされるため、センサー部と本体が一体である赤外線放射温度計を設置することは困難である。また、仮に設置できたとしても、被検体の体格や体位によっては、センサーから発熱部分が見えない可能性がある。 ∗ Since the BC coil is located only in the range of about ± 25cm in the center of the bore, a sensor must be attached at least near the entrance of the magnet bore. However, since the entrance of the bore has a particularly high static magnetic field strength and is also exposed to a high-frequency electromagnetic field, it is difficult to install an infrared radiation thermometer in which the sensor unit and the main body are integrated. Even if it can be installed, the heat generation part may not be visible from the sensor depending on the physique and posture of the subject.
 本発明は、上記課題を鑑みてなされたものであり、撮像中のボア表面の温度をリアルタイムに監視する機能を備えたMRI装置を提供することである。 The present invention has been made in view of the above problems, and is to provide an MRI apparatus having a function of monitoring the temperature of the bore surface during imaging in real time.
 上記目的を達成するために、本発明によれば、撮像空間に静磁場を印加する静磁場発生部と、前記静磁場発生部よりも前記撮像空間側に配置された高周波磁場発生部と、前記高周波磁場発生部と前記撮像空間の間に配置され、被検体が配置される空間を形成するボア壁と、前記ボア壁の温度が所定温度を超えているかどうかを判定する温度判定部とを有するMRI装置が提供される。 In order to achieve the above object, according to the present invention, a static magnetic field generator that applies a static magnetic field to an imaging space, a high-frequency magnetic field generator that is disposed closer to the imaging space than the static magnetic field generator, A bore wall that is disposed between the high-frequency magnetic field generation unit and the imaging space and forms a space in which the subject is disposed, and a temperature determination unit that determines whether the temperature of the bore wall exceeds a predetermined temperature An MRI apparatus is provided.
 温度判定部は、サーミスタと、サーミスタに接続され、サーミスタの電気抵抗値に対応した電圧信号を得て、前記電圧信号の判定を行う検出回路とを含む。検出回路は、ヒステリシス特性をもつ判定回路を備え、判定回路は、ボア壁の温度が上昇し、電圧信号が、第1の温度に対応する電圧値より高温側の電圧値に到達した場合は、前記所定温度を超えた異常状態と判定し、その後前記ボア壁の温度が下降し、第1の温度よりも低温の第2の温度に対応する電圧値よりも低温側の電圧値に達したならば、前記所定温度以下の正常状態と判定する。 The temperature determination unit includes a thermistor and a detection circuit which is connected to the thermistor and obtains a voltage signal corresponding to the electric resistance value of the thermistor and determines the voltage signal. The detection circuit includes a determination circuit having a hysteresis characteristic, and when the temperature of the bore wall rises and the voltage signal reaches a voltage value higher than the voltage value corresponding to the first temperature, If it is determined that the abnormal condition exceeds the predetermined temperature, and then the temperature of the bore wall decreases, and reaches a voltage value on a lower temperature side than a voltage value corresponding to a second temperature lower than the first temperature. In this case, it is determined that the normal state is not more than the predetermined temperature.
 本発明によれば、撮像中のボア表面の温度をリアルタイムに監視することができる。 According to the present invention, the temperature of the bore surface during imaging can be monitored in real time.
本発明の実施形態に係るMRI装置のガントリ200の断面図。Sectional drawing of the gantry 200 of the MRI apparatus which concerns on embodiment of this invention. 本発明の実施形態の温度判定の回路構成を示すブロック図。The block diagram which shows the circuit structure of the temperature determination of embodiment of this invention. 図2のシュミット・トリガ回路の出力特性を示すグラフ。FIG. 3 is a graph showing output characteristics of the Schmitt trigger circuit of FIG. 図2のサーミスタ51の出力特性の一例を示すグラフ。3 is a graph showing an example of output characteristics of the thermistor 51 in FIG. バードケージコイル(BCコイル)の一例の斜視図。The perspective view of an example of a birdcage coil (BC coil). 本発明の実施形態のMRI装置の全体構成を示すブロック図。1 is a block diagram showing the overall configuration of an MRI apparatus according to an embodiment of the present invention. 本発明の実施形態のガントリの斜視図。The perspective view of the gantry of the embodiment of the present invention. ボア壁70がBCコイル58の円筒体85を兼用する場合のMRI装置のガントリ200の断面図。Sectional drawing of the gantry 200 of an MRI apparatus in case the bore wall 70 also serves as the cylindrical body 85 of the BC coil 58. ボア壁70がBCコイル58の円筒体85を兼用する場合のMRI装置のガントリ200の断面図。Sectional drawing of the gantry 200 of an MRI apparatus in case the bore wall 70 also serves as the cylindrical body 85 of the BC coil 58.
 本発明のMRI装置は、図1に示すように、撮像空間61に静磁場を印加する静磁場発生部2と、静磁場発生部2よりも撮像空間61側に配置された高周波磁場発生部58と、高周波磁場発生部58と撮像空間61の間に配置され、被検体1が配置される空間を形成するボア壁70と、ボア壁70の温度が所定温度を超えているかどうかを判定する温度判定部50とを備えて構成される。 As shown in FIG. 1, the MRI apparatus of the present invention includes a static magnetic field generation unit 2 that applies a static magnetic field to the imaging space 61, and a high-frequency magnetic field generation unit 58 that is disposed closer to the imaging space 61 than the static magnetic field generation unit 2. A bore wall 70 that is disposed between the high-frequency magnetic field generator 58 and the imaging space 61 and forms a space in which the subject 1 is disposed, and a temperature that determines whether the temperature of the bore wall 70 exceeds a predetermined temperature And a determination unit 50.
 温度判定部50は、サーミスタ51と、検出回路59とを備える。検出回路59は、サーミスタ51に接続され、サーミスタ51の電気抵抗値に対応した電圧信号を得て、電圧信号の判定を行う。 The temperature determination unit 50 includes a thermistor 51 and a detection circuit 59. The detection circuit 59 is connected to the thermistor 51, obtains a voltage signal corresponding to the electrical resistance value of the thermistor 51, and determines the voltage signal.
 検出回路59は、図2に示すように、ヒステリシス特性をもつ判定回路53を備える。 The detection circuit 59 includes a determination circuit 53 having hysteresis characteristics as shown in FIG.
 判定回路53は、ボア壁70の温度が上昇し、サーミスタ51の電圧信号が、所定の第1の温度に対応する電圧値より高温側の電圧値に到達した場合は、所定温度を超えた異常状態と判定する。その後、ボア壁70の温度が下降し、第1の温度よりも低温の第2の温度に対応する電圧値よりも低温側の電圧値に達したならば、所定温度以下の正常状態と判定する。 When the temperature of the bore wall 70 rises and the voltage signal of the thermistor 51 reaches a voltage value on the higher temperature side than the voltage value corresponding to the predetermined first temperature, the determination circuit 53 determines that the abnormality exceeds the predetermined temperature. Judged as a state. Thereafter, if the temperature of the bore wall 70 decreases and reaches a voltage value on a lower temperature side than the voltage value corresponding to the second temperature lower than the first temperature, it is determined that the normal state is equal to or lower than the predetermined temperature. .
 このように本発明では、サーミスタを温度センサーとして用いる場合に通常行うA/D変換は行わず、所定温度(閾値温度)を超えた異常状態か、所定温度以下の正常状態かの判定のみを行う。このとき、第1の温度に対応する電圧と第2の温度に対応する電圧との間で、ヒステリシス特性(例えば図3参照)を持つ判定回路を用いて判定を行うことにより、判定結果が高周波ノイズの影響を受けにくい。 As described above, in the present invention, A / D conversion that is normally performed when the thermistor is used as a temperature sensor is not performed, and only a determination is made as to whether an abnormal state exceeds a predetermined temperature (threshold temperature) or a normal state below a predetermined temperature. . At this time, by making a determination using a determination circuit having a hysteresis characteristic (for example, see FIG. 3) between the voltage corresponding to the first temperature and the voltage corresponding to the second temperature, the determination result becomes a high frequency. Less susceptible to noise.
 例えば、サーミスタ51の出力する電圧信号には、図4に示すように、高周波磁場と同程度の周波数の高周波ノイズが重畳されており、しかも、この高周波ノイズは、振幅強度のオーダー(桁数)がサーミスタの出力する電圧信号と同程度であるため、一つの判定基準(電圧)のみで判定すると、電圧信号が判定基準の近傍に達した際に、判定結果が異常と正常とに高速で切り替わってしまうが、本発明では、ヒステリシス特性を持つ判定回路を用いることにより、安定して判定を行うことができる。 For example, the voltage signal output from the thermistor 51 is superimposed with high frequency noise having the same frequency as the high frequency magnetic field, as shown in FIG. 4, and this high frequency noise is in the order of amplitude intensity (digits). Is the same level as the voltage signal output by the thermistor, so if the judgment is made with only one judgment criterion (voltage), the judgment result is switched between abnormal and normal at high speed when the voltage signal reaches the vicinity of the judgment criterion. However, in the present invention, the determination can be stably performed by using a determination circuit having hysteresis characteristics.
 判定回路53としては、図2に示すようにシュミット・トリガ回路を用いることができる。 As the determination circuit 53, a Schmitt trigger circuit can be used as shown in FIG.
 また、検出回路59は、第1の温度に対応する電圧値、および、第2の温度に対応する電圧値のうち少なくとも一方を可変にする可変部(54,53b)を備えることが望ましい。これにより、サーミスタ51の温度-抵抗特性の個体差や、サーミスタ51と熱源である高周波磁場発生部58との距離の誤差や、サーミスタ51とボア壁70との熱接触の度合いの差異等に起因する動作温度のずれを、可変部(54,53b)によって調整することができる。したがって、ボア壁70の表面が所定温度を超えたかどうかを、正確に判定することが可能である。 The detection circuit 59 preferably includes a variable unit (54, 53b) that makes at least one of the voltage value corresponding to the first temperature and the voltage value corresponding to the second temperature variable. This is due to individual differences in the temperature-resistance characteristics of the thermistor 51, errors in the distance between the thermistor 51 and the high-frequency magnetic field generator 58, which is the heat source, and differences in the degree of thermal contact between the thermistor 51 and the bore wall 70. The operating temperature deviation can be adjusted by the variable section (54, 53b). Therefore, it is possible to accurately determine whether the surface of the bore wall 70 has exceeded a predetermined temperature.
 ボア壁70の温度を精度よく判定するために、サーミスタ51は、ボア壁70または熱源である高周波磁場発生部58に熱接触する位置に配置することが好ましい。また、ボア壁で囲まれた空間は、断面が楕円形である場合、サーミスタは、楕円の長径方向のボア壁に配置されていることが望ましい。長径方向は、被検体から高周波磁場発生部が遠くなるため、多くの電力が高周波磁場発生部に供給され、温度が上昇しやすいためである。 In order to accurately determine the temperature of the bore wall 70, the thermistor 51 is preferably disposed at a position where the thermistor 51 is in thermal contact with the bore wall 70 or the high-frequency magnetic field generator 58 that is a heat source. Further, when the space surrounded by the bore wall has an elliptical cross section, it is desirable that the thermistor be disposed on the bore wall in the major axis direction of the ellipse. This is because, in the major axis direction, the high-frequency magnetic field generator is far from the subject, so that a large amount of electric power is supplied to the high-frequency magnetic field generator and the temperature is likely to rise.
 検出回路59は、被検体が配置される空間(ボア)の外側に配置されることが高周波ノイズの影響を低減するために望ましい。サーミスタ51と検出回路59とは、非磁性材料のケーブル57によって接続される。ケーブル57の少なくとも一部には、高周波磁場発生部58が発生する高周波磁場の波長の1/8以下の間隔で高周波フィルタ52が配置されていることが望ましい。アンテナ装置等の一般的な装置では、高周波ノイズを低減するために、1/4波長以下で高周波フィルタ52を挿入するが、MRI装置の場合、ケーブル57とグランドとの間にノイズの鏡像が生じるため、高周波フィルタ52は、1/8波長以下で配置することが望ましい。これにより、効果的に高周波ノイズを低減することができる。 It is desirable that the detection circuit 59 is disposed outside the space (bore) in which the subject is disposed in order to reduce the influence of high frequency noise. The thermistor 51 and the detection circuit 59 are connected by a cable 57 made of nonmagnetic material. Desirably, at least a part of the cable 57 is provided with the high-frequency filter 52 at intervals of 1/8 or less of the wavelength of the high-frequency magnetic field generated by the high-frequency magnetic field generator 58. In a general device such as an antenna device, a high-frequency filter 52 is inserted with a quarter wavelength or less in order to reduce high-frequency noise. However, in the case of an MRI device, a mirror image of noise is generated between the cable 57 and the ground. Therefore, it is desirable to arrange the high frequency filter 52 with 1/8 wavelength or less. Thereby, high frequency noise can be reduced effectively.
 高周波フィルタ52は、高周波磁場発生部58が発生する高周波の周波数より高い周波数の信号を通過させないものであればどのようなものでもよい。例えば、高周波磁場発生部58が発生する高周波で高いインピーダンスを示すインダクタ、もしくは、インダクタとキャパシタの共振回路や、チョークコイルを用いることができる。チョークコイルは、撮像空間61の磁場に影響を与えないため、非磁性材料によって形成されているものを用いる。 The high frequency filter 52 may be any filter as long as it does not pass a signal having a frequency higher than the high frequency generated by the high frequency magnetic field generator 58. For example, an inductor showing high impedance at a high frequency generated by the high-frequency magnetic field generator 58, a resonant circuit of an inductor and a capacitor, or a choke coil can be used. Since the choke coil does not affect the magnetic field of the imaging space 61, a choke coil made of a nonmagnetic material is used.
 高周波フィルタ52は、高周波磁場発生部58が配置されている領域に配置されているケーブル57に、高周波の1/8波長以下の間隔で配置されていることが望ましい。高周波磁場発生部58が配置されている領域は、高周波磁場の強度が最も大きく、ケーブル57に強度の大きな高周波ノイズが発生するためである。 It is desirable that the high frequency filter 52 is disposed in the cable 57 disposed in the region where the high frequency magnetic field generator 58 is disposed at intervals of 1/8 wavelength or less of the high frequency. This is because the region where the high-frequency magnetic field generator 58 is disposed has the highest strength of the high-frequency magnetic field and generates high-frequency high-frequency noise in the cable 57.
 ケーブル57は、ツイストペアケーブルまたは同軸ケーブルを用いることができる。2本のケーブルを撚り合わせたツイストペアケーブルを用いることにより、2本のケーブルに生じる磁場を打ち消し合わせ、高周波ノイズを低減することができる。同軸ケーブルは、信号線をグランド線が取り囲み、電磁気的にシールドしているため、高周波ノイズが信号線に重畳するのを低減できる。 The cable 57 can be a twisted pair cable or a coaxial cable. By using a twisted pair cable in which two cables are twisted together, magnetic fields generated in the two cables can be canceled and high-frequency noise can be reduced. In the coaxial cable, since the signal line is surrounded by the ground line and electromagnetically shielded, it is possible to reduce high-frequency noise from being superimposed on the signal line.
 ケーブル57は、ボア壁70よりも静磁場発生部2側に配置されていることが好ましい。被検体1が配置される空間側にケーブル57を突出させることを回避し、被検体が配置される空間を広く確保するためである。このとき、サーミスタ51は、ボア壁70の撮像空間51側の面に取り付けて、ボア壁70の撮像空間51側の面の温度を正確に判定できるようにし、ケーブル57は、ボア壁70に設けられた貫通孔71を介して、ボア壁70よりも静磁場発生部2側に引き込んだ構成にすることが可能である。ケーブル57を配線する位置は、図1のようにボア壁70と高周波磁場発生部58との間であっても、図5のように高周波磁場発生部58の外側(静磁場発生部2側)であってもよい。 The cable 57 is preferably disposed closer to the static magnetic field generation unit 2 than the bore wall 70. This is to prevent the cable 57 from projecting toward the space where the subject 1 is placed and to ensure a wide space where the subject is placed. At this time, the thermistor 51 is attached to the surface of the bore wall 70 on the imaging space 51 side so that the temperature of the surface of the bore wall 70 on the imaging space 51 side can be accurately determined, and the cable 57 is provided on the bore wall 70. It is possible to adopt a configuration in which the static magnetic field generating unit 2 is drawn more than the bore wall 70 through the formed through hole 71. Even if the position where the cable 57 is wired is between the bore wall 70 and the high-frequency magnetic field generator 58 as shown in FIG. 1, it is outside the high-frequency magnetic field generator 58 (static magnetic field generator 2 side) as shown in FIG. It may be.
 高周波磁場発生部58としては、例えばバードケージコイル(図5参照)を用いることが可能である。 As the high-frequency magnetic field generator 58, for example, a birdcage coil (see FIG. 5) can be used.
 検出回路59の判定回路53が、異常状態(所定温度を超えた)と判定した場合には、MRI装置は、撮像の実行を停止させることが望ましい。そのため、図6のように、高周波磁場発生部の高周波の発生を制御し、所定の撮像を実行させる制御部(シーケンサ4)は、判定回路53が異常状態と判定した場合には、撮像の実行を停止させる。そして、再び正常状態と判定した場合に、撮像の実行を可能にする。 When the determination circuit 53 of the detection circuit 59 determines that the abnormal state (exceeds a predetermined temperature), the MRI apparatus desirably stops the execution of imaging. Therefore, as shown in FIG. 6, the control unit (sequencer 4) that controls the generation of high frequency of the high frequency magnetic field generation unit and executes predetermined imaging performs imaging when the determination circuit 53 determines that the abnormal state has occurred. Stop. And when it determines with a normal state again, execution of imaging is enabled.
 以下、添付図面に従って、本発明のMRI装置の実施形態について具体的に説明する。 Hereinafter, embodiments of the MRI apparatus of the present invention will be specifically described with reference to the accompanying drawings.
 最初に、本発明に係るMRI装置の一例の全体概要を図1、図6および図7に基づいて説明する。図1は、MRI装置のガントリ200の断面図であり、図6は、MRI装置の全体構成を示すブロック図であり、図7は、ガントリ200の斜視図である。このMRI装置は、NMR現象を利用して被検体1の断層画像を得るものである。 First, an overall outline of an example of an MRI apparatus according to the present invention will be described with reference to FIGS. 1, 6, and 7. FIG. 1 is a cross-sectional view of a gantry 200 of the MRI apparatus, FIG. 6 is a block diagram showing the overall configuration of the MRI apparatus, and FIG. 7 is a perspective view of the gantry 200. This MRI apparatus obtains a tomographic image of the subject 1 using the NMR phenomenon.
 MRI装置は、上述の静磁場発生部2と、高周波磁場発生部58の他に、傾斜磁場発生部9と、高周波コイル(受信用高周波コイル)14bと、信号処理部7と、シーケンサ4と、中央処理装置(CPU)8等を備えて構成される。 In addition to the static magnetic field generating unit 2 and the high frequency magnetic field generating unit 58, the MRI apparatus includes a gradient magnetic field generating unit 9, a high frequency coil (receiving high frequency coil) 14b, a signal processing unit 7, a sequencer 4, A central processing unit (CPU) 8 is provided.
 静磁場発生部2は、水平磁場方式の場合、図7のようにトンネル形状の永久磁石、常伝導磁石または超電導磁石により、体軸方向に均一な静磁場を発生させる。垂直磁場方式の場合、被検体1の上下に一対の静磁場発生部2が配置される。 In the case of the horizontal magnetic field method, the static magnetic field generator 2 generates a uniform static magnetic field in the body axis direction using a tunnel-shaped permanent magnet, normal conducting magnet or superconducting magnet as shown in FIG. In the case of the vertical magnetic field method, a pair of static magnetic field generators 2 are arranged above and below the subject 1.
 高周波磁場発生部(以下、高周波コイルと呼ぶ)58は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせる周波数の磁場(RFパルス)を被検体1に照射する。高周波コイル58には、高周波増幅器13と、変調器12と、高周波発振器11とが順に接続されている。高周波発振器11から出力されたRFパルスを変調器12により振幅変調し、高周波増幅器13で増幅した後、高周波コイル58に供給する。シーケンサ4は、変調器12に変調のタイミングを指示する。 A high-frequency magnetic field generator (hereinafter referred to as a high-frequency coil) 58 irradiates the subject 1 with a magnetic field (RF pulse) having a frequency that causes nuclear magnetic resonance to occur in the nuclear spins of atoms constituting the biological tissue of the subject 1. A high frequency amplifier 13, a modulator 12, and a high frequency oscillator 11 are sequentially connected to the high frequency coil 58. The RF pulse output from the high frequency oscillator 11 is amplitude-modulated by the modulator 12, amplified by the high frequency amplifier 13, and then supplied to the high frequency coil 58. The sequencer 4 instructs the modulator 12 on the timing of modulation.
 水平磁場方式のMRI装置においては、高周波コイル58として、例えばバードケージ(BC)コイルが用いられる。BCコイルは、図5のように複数の線状導体81を、円筒形状の中心軸に平行に、円筒形状の円周に沿って等間隔で配置し、その両端に一対の環状導体82を配置し、複数の線状導体81と接続した構成である。環状導体82には、同一容量の複数の共振容量素子(キャパシタ)83が直列に挿入されている。また、線状導体81の中間点には、PINダイオード84が直列に挿入され、NMR信号を受信する受信用高周波コイル14bとの電磁気的な干渉を防止している。図5の例では、線状導体81および環状導体82は、絶縁性の円筒体85上に形成された非磁性導体膜により形成されている。 In the horizontal magnetic field type MRI apparatus, for example, a birdcage (BC) coil is used as the high-frequency coil 58. As shown in FIG. 5, the BC coil has a plurality of linear conductors 81 arranged in parallel to the central axis of the cylinder and at equal intervals along the circumference of the cylinder, and a pair of annular conductors 82 are arranged at both ends thereof. In this configuration, the plurality of linear conductors 81 are connected. A plurality of resonance capacitors (capacitors) 83 having the same capacity are inserted in series in the annular conductor 82. A PIN diode 84 is inserted in series at the intermediate point of the linear conductor 81 to prevent electromagnetic interference with the receiving high-frequency coil 14b that receives the NMR signal. In the example of FIG. 5, the linear conductor 81 and the annular conductor 82 are formed of a nonmagnetic conductor film formed on an insulating cylinder 85.
 また、図8のように、ボア壁70がBCコイル58の円筒体85を兼用しており、BCコイル58の複数の線状導体81、一対の環状導体82、複数の共振容量素子83およびPINダイオード84は、ボア壁70上に配置された構成にすることも可能である。この場合、サーミスタ51は、図8のように、ボア壁70に設けた貫通孔71内に配置することも可能である。ケーブル57は、線状導体81や一対の環状導体82が配置されていない領域から高周波コイル58の外周側(静磁場発生部2側)に引き出して配置する。また、図5、図9のように、サーミスタ51を、BCコイル58の外周面(線状導体81や環状導体82の外周面)に配置することも可能である。この場合も、ケーブル57は、高周波コイル58の外周側(静磁場発生部2側)に配置する。 Further, as shown in FIG. 8, the bore wall 70 also serves as the cylindrical body 85 of the BC coil 58, and includes a plurality of linear conductors 81, a pair of annular conductors 82, a plurality of resonant capacitive elements 83 and a PIN of the BC coil 58. The diode 84 can also be configured to be disposed on the bore wall 70. In this case, the thermistor 51 can also be arranged in a through hole 71 provided in the bore wall 70 as shown in FIG. The cable 57 is arranged by being drawn out from the region where the linear conductor 81 and the pair of annular conductors 82 are not arranged to the outer peripheral side (static magnetic field generating unit 2 side) of the high-frequency coil 58. Further, as shown in FIGS. 5 and 9, the thermistor 51 may be disposed on the outer peripheral surface of BC coil 58 (the outer peripheral surface of linear conductor 81 or annular conductor 82). Also in this case, the cable 57 is arranged on the outer peripheral side (static magnetic field generating unit 2 side) of the high-frequency coil 58.
 静磁場発生部2と高周波磁場発生部58との間には、図1のように傾斜磁場発生コイル9が配置される。傾斜磁場発生コイル9は、MRI装置の座標部(静止座標部)であるX,Y,Zの3軸方向に傾斜磁場をそれぞれ印加するコイルを含む。各コイルには、駆動電流を供給する傾斜磁場電源10が接続されている。シーケンサ4は、傾斜磁場電源10に指令を出力し、駆動電流を各コイルに供給させる。 A gradient magnetic field generating coil 9 is disposed between the static magnetic field generating unit 2 and the high frequency magnetic field generating unit 58 as shown in FIG. The gradient magnetic field generating coil 9 includes coils that respectively apply gradient magnetic fields in the three-axis directions of X, Y, and Z that are coordinate parts (stationary coordinate parts) of the MRI apparatus. Each coil is connected to a gradient magnetic field power supply 10 for supplying a drive current. The sequencer 4 outputs a command to the gradient magnetic field power supply 10 to supply a drive current to each coil.
 これにより、傾斜磁場コイル9からX,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzが印加される。具体的には、スライス面(撮影断面)に直交する方向にスライス方向傾斜磁場パルス(Gs)を印加して被検体1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード方向傾斜磁場パルス(Gp)と周波数エンコード方向傾斜磁場パルス(Gf)を印加して、エコー信号にそれぞれの方向の位置情報をエンコードすることにより、撮像を実行する。 This causes the gradient magnetic fields Gx, Gy, and Gz to be applied from the gradient coil 9 in the X, Y, and Z directions. Specifically, a slice direction gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and the remaining orthogonal to the slice plane and orthogonal to each other The phase encoding direction gradient magnetic field pulse (Gp) and the frequency encoding direction gradient magnetic field pulse (Gf) are applied in the two directions, and the position information in each direction is encoded in the echo signal, thereby performing imaging.
 受信用高周波コイル14bは、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出する。受信用高周波コイル14bには、信号増幅器15と、直交位相検波器16と、A/D変換器17とが順に接続されている。 The receiving high-frequency coil 14b detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1. A signal amplifier 15, a quadrature detector 16, and an A / D converter 17 are sequentially connected to the reception high-frequency coil 14b.
 高周波コイル58から照射されたRFパルスによって被検体1が発生したNMR信号は、受信用高周波コイル14bで検出され、信号増幅器15で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器16により直交する二系統の信号に分割される。二系統の信号は、それぞれがA/D変換器17でディジタル量に変換されて、信号処理部7に送られる。 The NMR signal generated by the subject 1 by the RF pulse irradiated from the high frequency coil 58 is detected by the high frequency coil 14b for reception, amplified by the signal amplifier 15, and then at a timing according to a command from the sequencer 4, a quadrature detector 16 is divided into two orthogonal signals. The two systems of signals are each converted into a digital quantity by the A / D converter 17 and sent to the signal processing unit 7.
 シーケンサ4は、高周波磁場パルスの照射、傾斜磁場の印加、直交位相検波のタイミングをそれぞれ制御することにより、所定の撮像パルスシーケンスを実行させる。シーケンサ4には、CPU8が接続され、その動作が制御される。 Sequencer 4 executes a predetermined imaging pulse sequence by controlling the timing of high-frequency magnetic field pulse irradiation, gradient magnetic field application, and quadrature detection, respectively. A CPU 8 is connected to the sequencer 4 and its operation is controlled.
 信号処理部7は、各種データ処理と処理結果の表示及び保存等を行うもので、CPU8と、光ディスク19、磁気ディスク18等の外部記憶装置と、CRT等からなるディスプレイ20とにより構成される。A/D変換器17からのデータがCPU8に入力されると、CPU8が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像をディスプレイ20に表示すると共に、外部記憶装置の磁気ディスク18等に記録する。 The signal processing unit 7 performs various data processing and display and storage of processing results, and includes a CPU 8, an external storage device such as an optical disk 19 and a magnetic disk 18, and a display 20 including a CRT and the like. When data from the A / D converter 17 is input to the CPU 8, the CPU 8 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display 20, Recording is performed on the magnetic disk 18 or the like of the external storage device.
 操作部25は、MRI装置の各種制御情報や上記信号処理部7で行う処理の制御情報を入力するもので、トラックボール、マウス、およびキーボード等の入力装置21を含む。 The operation unit 25 inputs various control information of the MRI apparatus and control information of processing performed by the signal processing unit 7, and includes an input device 21 such as a trackball, a mouse, and a keyboard.
 この操作部25はディスプレイ20に近接して配置され、操作者がディスプレイ20を見ながら操作部25を通してインタラクティブに制御情報を入力する。 The operation unit 25 is arranged in the vicinity of the display 20, and an operator inputs control information interactively through the operation unit 25 while looking at the display 20.
 また、被検体1は、寝台90の天板91に搭載され、ボア壁70で囲まれた空間に挿入され、撮像空間61に撮像部位が配置される。 In addition, the subject 1 is mounted on the top 91 of the bed 90, inserted into a space surrounded by the bore wall 70, and an imaging region is arranged in the imaging space 61.
 つぎに、温度判定部50についてさらに説明する。温度判定部50は、撮像中のボア壁70の表面温度を監視するための回路である。温度判定部50は、接触型温度センサーであるサーミスタ51と、サーミスタ51に接続されたツイストペアケーブル57を含む。 Next, the temperature determination unit 50 will be further described. The temperature determination unit 50 is a circuit for monitoring the surface temperature of the bore wall 70 during imaging. The temperature determination unit 50 includes a thermistor 51 that is a contact type temperature sensor, and a twisted pair cable 57 connected to the thermistor 51.
 サーミスタ51は、温度によって抵抗が変化するものであればどのようなものであってもよいが、例えばNTCサーミスタを用いることができる。 The thermistor 51 may be any one as long as the resistance changes depending on the temperature. For example, an NTC thermistor can be used.
 サーミスタ51は、ボア壁70の表面、または、高周波コイル58の近傍に設置する。 The thermistor 51 is installed on the surface of the bore wall 70 or in the vicinity of the high frequency coil 58.
 サーミスタ51の電極には、ノーマル・モード・ノイズを低減するツイストペアケーブル57が接続された構成である。ツイストペアケーブル57には、コモン・モード・ノイズを低減する高周波フィルタ52としてRFチョークが、高周波コイル58の照射する高周波波長の1/8以下の間隔で挿入されている。 The twisted pair cable 57 that reduces normal mode noise is connected to the electrode of the thermistor 51. In the twisted pair cable 57, RF chokes are inserted as a high frequency filter 52 for reducing common mode noise at intervals of 1/8 or less of the high frequency wavelength irradiated by the high frequency coil 58.
 ツイストペアケーブル57の他端は、検出回路59に接続される。検出回路59は、少なくとも高周波コイル58の外側に配置される。好ましくは、ボア壁70に囲まれた被検体1が配置される空間(ボア)より外側に配置する。検出回路59の出力は、シーケンサ4に入力される。検出回路59が、ボア壁70の表面温度が安全温度を超えた(異常状態)と判定した場合、シーケンサ4は撮像を中断し、中央処理装置(CPU)8がエラーメッセージをディスプレイ20に表示する。 The other end of the twisted pair cable 57 is connected to the detection circuit 59. The detection circuit 59 is disposed at least outside the high-frequency coil 58. Preferably, it is disposed outside the space (bore) in which the subject 1 surrounded by the bore wall 70 is disposed. The output of the detection circuit 59 is input to the sequencer 4. If the detection circuit 59 determines that the surface temperature of the bore wall 70 has exceeded the safe temperature (abnormal state), the sequencer 4 interrupts imaging and the central processing unit (CPU) 8 displays an error message on the display 20 .
 検出回路59は、高周波フィルタ(以下、RFチョークと呼ぶ)52と、固定抵抗55と、固定抵抗55を介してサーミスタ51に電源電圧を印加する電源49と、判定回路53であるシュミット・トリガ回路と、バイパスキャパシタ56とを含む。固定抵抗55は、RFチョーク52およびツイストペアケーブル57の一方のケーブルを介して、サーミスタ51と直列に接続されている。ツイストペアケーブル57の他方は、グランドに接続されている。 The detection circuit 59 includes a high frequency filter (hereinafter referred to as an RF choke) 52, a fixed resistor 55, a power supply 49 that applies a power supply voltage to the thermistor 51 via the fixed resistor 55, and a Schmitt trigger circuit that is a determination circuit 53. And a bypass capacitor 56. The fixed resistor 55 is connected in series with the thermistor 51 via one of the RF choke 52 and the twisted pair cable 57. The other end of the twisted pair cable 57 is connected to the ground.
 判定回路(以下、シュミット・トリガ回路と呼ぶ)53は、コンパレータ53aと、正帰還回路とを有し、正帰還回路には、可変抵抗53bが直列に挿入されている。コンパレータ53aの負端子には、ツイストペアケーブル57のうち、固定抵抗55が接続された方のケーブルが接続され、サーミスタ51の出力する電圧信号が入力される。コンパレータ53aの正端子には、可変抵抗54を介して電源49の電圧信号が入力されている。コンパレータ53aの出力端子(判定結果)は、シーケンサ4に入力される。 The determination circuit (hereinafter referred to as a Schmitt trigger circuit) 53 includes a comparator 53a and a positive feedback circuit, and a variable resistor 53b is inserted in series in the positive feedback circuit. Of the twisted pair cable 57, the cable to which the fixed resistor 55 is connected is connected to the negative terminal of the comparator 53a, and the voltage signal output from the thermistor 51 is input. The voltage signal of the power supply 49 is input to the positive terminal of the comparator 53a via the variable resistor 54. The output terminal (determination result) of the comparator 53a is input to the sequencer 4.
 このような検出回路59の構成により、シュミット・トリガ回路53のコンパレータ53aの負端子には、図4に示すようなサーミスタ51の電圧信号が入力される。サーミスタ51の電圧信号には、撮影時には、高周波コイル58の発生する高周波磁場と同程度の周波数の高周波ノイズが重畳されている。サーミスタ51の電圧信号は、NTCサーミスタの場合、図4のように、温度が上昇するにつれ低下する。 With such a configuration of the detection circuit 59, the voltage signal of the thermistor 51 as shown in FIG. 4 is input to the negative terminal of the comparator 53a of the Schmitt trigger circuit 53. The voltage signal of the thermistor 51 is superimposed with high frequency noise having a frequency similar to that of the high frequency magnetic field generated by the high frequency coil 58 during imaging. In the case of an NTC thermistor, the voltage signal of the thermistor 51 decreases as the temperature increases, as shown in FIG.
 シュミット・トリガ回路53は、図3のようにヒステリシス特性を有し、サーミスタ51の温度が第1の温度よりも低温で、出力電圧が約3V以上ある場合、正常(ノーマル)であることを示す高電圧(5V)を出力する。 The Schmitt trigger circuit 53 has a hysteresis characteristic as shown in FIG. 3, and indicates that the thermistor 51 is normal when the temperature of the thermistor 51 is lower than the first temperature and the output voltage is about 3 V or more. Outputs high voltage (5V).
 サーミスタ51の温度が上昇して出力電圧が低下し、第1の温度に対応する第1電圧(ここでは約3V)に到達すると、シュミット・トリガ回路53の出力は急激に低下し、第1電圧より小さくなったならば、異常(エラー)であることを示す低電圧(ここでは1V)を出力端子から出力する。 When the temperature of the thermistor 51 rises and the output voltage decreases and reaches the first voltage corresponding to the first temperature (about 3V in this case), the output of the Schmitt trigger circuit 53 decreases rapidly and the first voltage If it becomes smaller, a low voltage (1V in this case) indicating an abnormality (error) is output from the output terminal.
 サーミスタ51の温度が低下し、出力電圧が大きくなり、第2の温度に対応する第2電圧(ここでは約4V)に到達すると、シュミット・トリガ回路53の出力は急激に上昇し、第2電圧より大きくなったならば、正常(ノーマル)であることを示す高電圧(ここでは5V)を出力する。 When the temperature of the thermistor 51 decreases, the output voltage increases, and when the second voltage corresponding to the second temperature (about 4 V in this case) is reached, the output of the Schmitt trigger circuit 53 increases rapidly and the second voltage If it becomes larger, a high voltage (in this case, 5 V) indicating normal is output.
 固定抵抗55の抵抗値は、サーミスタ51の温度から電圧への変換感度(dV/dT)を決定する。 The resistance value of the fixed resistor 55 determines the temperature-to-voltage conversion sensitivity (dV / dT) of the thermistor 51.
 可変抵抗54の抵抗値は、上記第1電圧を設定する抵抗値であり、可変抵抗54の抵抗を調整することにより、温度が上昇して異常状態と判定する第1温度を調整することができる。一方、可変抵抗53bは、第2電圧を設定する抵抗値であり、可変抵抗53bを調整することにより、温度が下降して正常状態に戻ったと判定する第2温度を調整することができる。 The resistance value of the variable resistor 54 is a resistance value for setting the first voltage. By adjusting the resistance of the variable resistor 54, the first temperature at which the temperature rises and is determined to be in an abnormal state can be adjusted. . On the other hand, the variable resistor 53b is a resistance value that sets the second voltage, and by adjusting the variable resistor 53b, it is possible to adjust the second temperature at which it is determined that the temperature has fallen and returned to the normal state.
 <第1の実施形態>
 以下、第1の実施形態を具体的に説明する。サーミスタ51は、図1のように、ボア壁70の撮像空間61側の表面にサーミスタ51を設置する。面内方向の設置位置は、高周波磁場コイル58(以下、BCコイル58と呼ぶ)にRF電力が供給された場合に高温となる位置、すなわち、BCコイル58のキャパシタやダイオードの位置に対してボア壁70を挟んで向かい合う位置が望ましい。
<First Embodiment>
The first embodiment will be specifically described below. As shown in FIG. 1, the thermistor 51 is installed on the surface of the bore wall 70 on the imaging space 61 side. The installation position in the in-plane direction is bored relative to the position where the RF power is supplied to the high-frequency magnetic field coil 58 (hereinafter referred to as the BC coil 58), that is, when the RF power is supplied, that is, the position of the capacitor or diode of the BC coil 58 A position facing the wall 70 is desirable.
 検出回路59の位置は、BCコイル58から離れる程、受ける高周波磁場が弱まり好ましいが、サーミスタ51の配線抵抗は、温度応答性(dV/dT)を低下させるので、静磁場発生部2の近傍に配置することが望ましい。例えば、図1のように検出回路59を、ガントリ200の背面(寝台90とは逆側)の開口近傍に配置したラック60内に配置することができる。すでに説明した通り、サーミスタ51と検出回路59とはツイストペアケーブル57で接続し、ツイストペアケーブル57には、少なくともBCコイル58が配置されている領域内について、高周波磁場の波長の1/8以下の間隔でRFチョーク52を挿入する。 The position of the detection circuit 59 is preferably as the high frequency magnetic field received decreases as the distance from the BC coil 58 decreases.However, the wiring resistance of the thermistor 51 decreases the temperature responsiveness (dV / dT), so it is in the vicinity of the static magnetic field generation unit 2. It is desirable to arrange. For example, as shown in FIG. 1, the detection circuit 59 can be disposed in a rack 60 disposed in the vicinity of the opening on the back surface of the gantry 200 (the side opposite to the bed 90). As described above, the thermistor 51 and the detection circuit 59 are connected by a twisted pair cable 57, and the twisted pair cable 57 has an interval of 1/8 or less of the wavelength of the high-frequency magnetic field at least in the region where the BC coil 58 is disposed. Insert the RF choke 52 with.
 検出回路59の回路構成は、図2を用いて既に説明した通りである。コンパレータ53aの判定レベルを決定する抵抗54を可変抵抗としたことにより、サーミスタの個体差、及びサーミスタと熱源との距離や、熱接触の差異に起因する動作温度のずれを調整可能である。よって、サーミスタ51の温度が制限温度(ここでは41℃)に到達したことを判定できるように、可変抵抗54を調整しておく。 The circuit configuration of the detection circuit 59 is as already described with reference to FIG. By using the resistor 54 that determines the determination level of the comparator 53a as a variable resistor, it is possible to adjust the individual difference of the thermistor, the distance between the thermistor and the heat source, and the deviation of the operating temperature due to the difference in thermal contact. Therefore, the variable resistor 54 is adjusted so that it can be determined that the temperature of the thermistor 51 has reached the limit temperature (here, 41 ° C.).
 例えば、光ファイバー温度計等を調整治具として、サーミスタ51近傍の温度測定を行いながら抵抗54を調整すると良い。これにより、ボア壁70の表面が制限温度(例えば41℃)に到達したことを精度よく判定できるため、制限温度に到達するぎりぎりまで撮像を継続することが可能である。また、制限温度に到達しないぎりぎりの範囲まで高周波磁場パルスの強度を大きくしたり、印加頻度を増加したりできるため、高速・高機能シーケンスの実行が容易になる。 For example, the resistance 54 may be adjusted while measuring the temperature in the vicinity of the thermistor 51 using an optical fiber thermometer or the like as an adjustment jig. Thus, since it can be accurately determined that the surface of the bore wall 70 has reached the limit temperature (for example, 41 ° C.), it is possible to continue imaging until the limit temperature is reached. Moreover, since the intensity of the high-frequency magnetic field pulse can be increased to the limit of the limit temperature that does not reach the limit temperature, or the frequency of application can be increased, it is easy to execute a high-speed and high-function sequence.
 なお、可変抵抗54の抵抗値が調整により変化した場合、コンパレータ53aの帰還量が変化し、ヒステリシス特性が変化するが、可変抵抗53bによって帰還量を調整することにより、元のヒステリシス特性に戻すことができる。 When the resistance value of the variable resistor 54 is changed by adjustment, the feedback amount of the comparator 53a is changed and the hysteresis characteristic is changed. However, by adjusting the feedback amount by the variable resistor 53b, the original hysteresis characteristic is restored. Can do.
 <第2の実施形態>
 次に、本発明の第2の実施形態を説明する。第2の実施形態では、図5および図9のように、BCコイル58の外周面にサーミスタ51を設置する。設置位置は、BCコイル58が高周波磁場パルスを発生する時に高温となる、BCコイル58のキャパシタ83やダイオード84の近傍が望ましい。図5の例では、BCコイル58の2か所にサーミスタ51を配置している。また、ケーブル57がBCコイル58の導体に直接接触しないように、スペーサ86が配置されている。また、ボア壁70は、BCコイル58の円筒体85を兼用している。その他の形態は第1の実施形態と同じである。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. In the second embodiment, the thermistor 51 is installed on the outer peripheral surface of the BC coil 58 as shown in FIGS. The installation position is desirably in the vicinity of the capacitor 83 or the diode 84 of the BC coil 58 that becomes high temperature when the BC coil 58 generates a high-frequency magnetic field pulse. In the example of FIG. 5, the thermistors 51 are arranged at two locations on the BC coil 58. Further, a spacer 86 is arranged so that the cable 57 does not directly contact the conductor of the BC coil 58. The bore wall 70 also serves as the cylindrical body 85 of the BC coil 58. Other aspects are the same as those of the first embodiment.
 第2の実施形態の構成のメリットは、サーミスタ51とケーブル57がボア壁70の被検体1側の表面に配置されないので、被検体1から見てボア壁70の表面は滑らかであり、被検体1がサーミスタ51に接触するおそれがなく安全である。また、デザイン面でも優れている。 The merit of the configuration of the second embodiment is that the thermistor 51 and the cable 57 are not arranged on the surface of the bore wall 70 on the subject 1 side, so that the surface of the bore wall 70 is smooth when viewed from the subject 1, and the subject There is no fear that 1 contacts the thermistor 51 and it is safe. It is also excellent in design.
 また、ボア壁70の表面の制限温度(41℃)よりも温度の高いBCコイル58の温度をサーミスタ51で監視するので、ボア壁の制限温度(41℃)よりも高い制限温度(例えば60℃)に到達したならば異常(エラー)と判定するように可変抵抗54を調整する(図4)。ボア壁70の制限温度(41℃)と、BCコイル58の温度との関係は、ボア表面の温度を光ファイバー温度計等で測定しながらBCコイル58の温度を計測して予め求めておくことが可能である。また、ボア壁70の温度が制限温度(41℃)に到達したときに、異常(エラー)となるように検出回路59の可変抵抗54を調整してもよい。 Further, since the thermistor 51 monitors the temperature of the BC coil 58 having a temperature higher than the limit temperature (41 ° C.) of the surface of the bore wall 70, a limit temperature (for example, 60 ° C.) higher than the limit temperature (41 ° C.) of the bore wall. ), The variable resistor 54 is adjusted so as to determine that it is abnormal (error) (FIG. 4). The relationship between the limit temperature of the bore wall 70 (41 ° C.) and the temperature of the BC coil 58 can be obtained in advance by measuring the temperature of the BC coil 58 while measuring the temperature of the bore surface with an optical fiber thermometer or the like. Is possible. Further, the variable resistor 54 of the detection circuit 59 may be adjusted so that an abnormality (error) occurs when the temperature of the bore wall 70 reaches the limit temperature (41 ° C.).
 <比較例>
 ここで、比較例としてサーミスタの代わりに、他の接触型温度センサーを用いることを考えてみる。
<Comparative example>
Here, as another comparative example, consider using another contact type temperature sensor instead of the thermistor.
 熱電対は2種類の金属導体を用いて、ゼーベック効果により生じる起電力を測定するものである。その起電力の大きさは非常に小さく、例えば非測定物の温度が100℃以下の場合、数μ~数十μV程度である。一方、撮像中のBCコイルから発生する高周波電磁界に伴いBCコイルに実装されるプローブ電線にのる高周波ノイズは、ツイストペアとRFチョークを用いて低減しても数mV~数十mV程度が限度である。よって、熱電対からの電圧出力を精度良くA/D変換、もしくはノーマル/エラーの2値判定することは困難である。 A thermocouple measures the electromotive force generated by the Seebeck effect using two types of metal conductors. The magnitude of the electromotive force is very small. For example, when the temperature of the non-measurement object is 100 ° C. or less, it is about several μ to several tens μV. On the other hand, the high-frequency noise on the probe wire mounted on the BC coil due to the high-frequency electromagnetic field generated from the BC coil being imaged is limited to several mV to several tens of mV even if it is reduced using a twisted pair and RF choke. It is. Therefore, it is difficult to accurately perform A / D conversion or normal / error binary determination on the voltage output from the thermocouple.
 白金抵抗温度計は、金属の電気抵抗が温度変化に対して変化するのを測定するものである。静磁場であれば磁場中でも使用できるが、高周波磁場中ではやはり高周波ノイズの問題がある。しかし、白金抵抗温度計は、プローブのリード線抵抗の影響を受けやすいという特徴があるため、多段のRFチョークを入れることは精度の面で困難である。価格が熱電対やサーミスタと比較して高価という問題もある。 A platinum resistance thermometer measures the change in electrical resistance of a metal with respect to temperature changes. A static magnetic field can be used in a magnetic field, but there is still a problem of high frequency noise in a high frequency magnetic field. However, the platinum resistance thermometer has a feature that it is easily affected by the lead wire resistance of the probe, so it is difficult to put a multistage RF choke in terms of accuracy. There is also a problem that the price is higher than that of a thermocouple or thermistor.
 光ファイバー温度計は、ノイズフリーでリアルタイムの温度測定が可能であるが、高価でプローブが壊れやすい問題がある。量産製品への適用は特にコスト面で問題となる。 The optical fiber thermometer is noise-free and can measure temperature in real time, but there is a problem that it is expensive and the probe is easily broken. Application to mass-produced products is particularly problematic in terms of cost.
 上述した本発明の実施形態において、RFチョーク52をツイストペアケーブル57に挿入する間隔は、高周波磁場の波長の1/8以下が望ましいが、検出回路59のノイズ耐性が高ければ1/8波長よりも長くてもよい。但しその場合は、ツイストペアケーブル57の配線経路が他のケーブルやグランド導体と接近しすぎないように配慮する必要がある。 In the embodiment of the present invention described above, the interval at which the RF choke 52 is inserted into the twisted pair cable 57 is preferably 1/8 or less of the wavelength of the high-frequency magnetic field, but if the noise resistance of the detection circuit 59 is high, it is longer than 1/8 wavelength. It may be long. However, in that case, it is necessary to consider that the wiring path of the twisted pair cable 57 is not too close to other cables and the ground conductor.
 また、上述した実施形態では、サーミスタ51により、ボア壁70または高周波磁場コイル58の温度を判定したが、本発明は、これに限られるものではなく、傾斜磁場コイル59の温度が所定温度以下であるかどうかを判定することも可能である。サーミスタ51は、傾斜磁場コイル59に熱接触するように配置するか、傾斜磁場コイル59の近傍に配置する。 In the above-described embodiment, the temperature of the bore wall 70 or the high-frequency magnetic field coil 58 is determined by the thermistor 51. However, the present invention is not limited to this, and the temperature of the gradient magnetic field coil 59 is not more than a predetermined temperature. It is also possible to determine whether or not there is. The thermistor 51 is disposed so as to be in thermal contact with the gradient magnetic field coil 59 or disposed in the vicinity of the gradient magnetic field coil 59.
 1 被検体、2 静磁場発生部、3 傾斜磁場発生部、4 シーケンサ、5 送信部、6 受信部、7 信号処理部、8 中央処理装置(CPU)、9 傾斜磁場コイル、10 傾斜磁場電源、11 高周波発信器、12 変調器、13 高周波増幅器、14b 高周波コイル(受信用高周波コイル)、15 信号増幅器、16 直交位相検波器、17 A/D変換器、18 光ディスク、19 磁気ディスク、20 ディスプレイ、21 入力装置、51 サーミスタ、52 高周波フィルタ(RFチョーク)、53 判定部(シュミット・トリガ回路)、53a コンパレータ、53b 可変抵抗、54 可変抵抗、55 固定抵抗、56 バイパスキャパシタ、57 ケーブル(ツイストペアケーブル)、58 高周波磁場発生部(高周波コイル)、59 検出回路、60 ラック 1 subject, 2 static magnetic field generation unit, 3 gradient magnetic field generation unit, 4 sequencer, 5 transmission unit, 6 reception unit, 7 signal processing unit, 8 central processing unit (CPU), 9 gradient magnetic field coil, 10 gradient magnetic field power supply, 11 High-frequency transmitter, 12 modulator, 13 high-frequency amplifier, 14b high-frequency coil (receiving high-frequency coil), 15 signal amplifier, 16 quadrature phase detector, 17 A / D converter, 18 optical disk, 19 magnetic disk, 20 display, 21 input device, 51 thermistor, 52 high frequency filter (RF choke), 53 judgment unit (Schmitt trigger circuit), 53a comparator, 53b variable resistor, 54 variable resistor, 55 fixed resistor, 56 bypass capacitor, 57 cable (twisted pair cable) , 58 High-frequency magnetic field generator (high-frequency coil), 59 detection circuit, 60 racks

Claims (16)

  1.  撮像空間に静磁場を印加する静磁場発生部と、前記静磁場発生部よりも前記撮像空間側に配置された高周波磁場発生部と、前記高周波磁場発生部と前記撮像空間の間に配置され、被検体が配置される空間を形成するボア壁と、前記ボア壁の温度が所定温度を超えているかどうかを判定する温度判定部とを有し、
     前記温度判定部は、サーミスタと、前記サーミスタに接続され、前記サーミスタの電気抵抗値に対応した電圧信号を得て、前記電圧信号の判定を行う検出回路とを含み、
     前記検出回路は、ヒステリシス特性をもつ判定回路を備え、前記判定回路は、前記ボア壁の温度が上昇し、前記電圧信号が、第1の温度に対応する電圧値より高温側の電圧値に到達した場合は、前記所定温度を超えた異常状態と判定し、その後前記ボア壁の温度が下降し、前記第1の温度よりも低温の第2の温度に対応する電圧値よりも低温側の電圧値に達したならば、前記所定温度以下の正常状態と判定することを特徴とする磁気共鳴イメージング装置。
    A static magnetic field generation unit that applies a static magnetic field to the imaging space, a high-frequency magnetic field generation unit that is disposed on the imaging space side of the static magnetic field generation unit, and is disposed between the high-frequency magnetic field generation unit and the imaging space, A bore wall that forms a space in which the subject is disposed, and a temperature determination unit that determines whether the temperature of the bore wall exceeds a predetermined temperature;
    The temperature determination unit includes a thermistor and a detection circuit that is connected to the thermistor and obtains a voltage signal corresponding to an electric resistance value of the thermistor and determines the voltage signal.
    The detection circuit includes a determination circuit having a hysteresis characteristic, and the determination circuit increases a temperature of the bore wall, and the voltage signal reaches a voltage value higher than a voltage value corresponding to the first temperature. If it is, it is determined that the abnormal state exceeds the predetermined temperature, the temperature of the bore wall is then lowered, the voltage on the lower temperature side than the voltage value corresponding to the second temperature lower than the first temperature A magnetic resonance imaging apparatus characterized in that, when a value is reached, it is determined that the normal state is below the predetermined temperature.
  2.  請求項1に記載の磁気共鳴イメージング装置において、前記判定回路は、シュミット・トリガ回路であることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the determination circuit is a Schmitt trigger circuit.
  3.  請求項1に記載の磁気共鳴イメージング装置において、前記検出回路は、前記第1の温度に対応する電圧値、および、前記第2の温度に対応する電圧値のうち少なくとも一方を可変にする可変部を備えることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the detection circuit changes at least one of a voltage value corresponding to the first temperature and a voltage value corresponding to the second temperature. A magnetic resonance imaging apparatus comprising:
  4.  請求項1に記載の磁気共鳴イメージング装置において、前記サーミスタは、前記ボア壁または前記高周波磁場発生部に接触する位置に配置され、前記検出回路は、前記被検体が配置される空間の外側に配置され、
     前記サーミスタと前記検出回路とは非磁性材料のケーブルによって接続され、前記ケーブルの少なくとも一部には、前記高周波磁場発生部が発生する高周波磁場の波長の1/8以下の間隔で高周波フィルタが配置されていることを特徴とする磁気共鳴イメージング装置。
    2. The magnetic resonance imaging apparatus according to claim 1, wherein the thermistor is disposed at a position in contact with the bore wall or the high-frequency magnetic field generation unit, and the detection circuit is disposed outside a space in which the subject is disposed. And
    The thermistor and the detection circuit are connected by a cable made of a non-magnetic material, and at least a part of the cable is provided with a high-frequency filter at an interval of 1/8 or less of the wavelength of the high-frequency magnetic field generated by the high-frequency magnetic field generator. A magnetic resonance imaging apparatus.
  5.  請求項4に記載の磁気共鳴イメージング装置において、前記サーミスタは、前記高周波磁場発生部の外周面に配置されていることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the thermistor is disposed on an outer peripheral surface of the high-frequency magnetic field generation unit.
  6.  請求項4に記載の磁気共鳴イメージング装置において、前記高周波フィルタは、インダクタ、または、インダクタとキャパシタとの共振回路であり、非磁性材料によって形成されていることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the high-frequency filter is an inductor or a resonance circuit of an inductor and a capacitor, and is formed of a nonmagnetic material.
  7.  請求項4に記載の磁気共鳴イメージング装置において、前記高周波フィルタは、前記高周波磁場発生部が配置されている領域内の前記ケーブルに前記間隔で配置されていることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the high-frequency filter is arranged at the interval in the cable in a region where the high-frequency magnetic field generation unit is arranged.
  8.  請求項4に記載の磁気共鳴イメージング装置において、前記ケーブルは、ツイストペアケーブルであることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the cable is a twisted pair cable.
  9.  請求項4に記載の磁気共鳴イメージング装置において、前記ケーブルは、同軸ケーブルであることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the cable is a coaxial cable.
  10.  請求項4に記載の磁気共鳴イメージング装置において、前記ケーブルは、前記ボア壁よりも前記静磁場発生部側に配置されていることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the cable is disposed closer to the static magnetic field generation unit than the bore wall.
  11.  請求項4に記載の磁気共鳴イメージング装置において、前記サーミスタは、前記ボア壁の前記撮像空間側の面に取り付けられ、前記サーミスタに接続されたケーブルは、前記ボア壁に設けられた貫通孔を介して、前記ボア壁よりも前記静磁場発生部側に引き込まれていることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the thermistor is attached to a surface of the bore wall on the imaging space side, and a cable connected to the thermistor passes through a through hole provided in the bore wall. The magnetic resonance imaging apparatus is drawn to the static magnetic field generation unit side of the bore wall.
  12.  請求項4に記載の磁気共鳴イメージング装置において、前記高周波磁場発生部は、導体と、前記導体を支持する円筒体とを含み、前記ボア壁は、前記円筒体を兼用し、
     前記ケーブルは、前記高周波磁場発生部の外周側に配置されていることを特徴とする磁気共鳴イメージング装置。
    5. The magnetic resonance imaging apparatus according to claim 4, wherein the high-frequency magnetic field generation unit includes a conductor and a cylindrical body that supports the conductor, and the bore wall also serves as the cylindrical body,
    The magnetic resonance imaging apparatus according to claim 1, wherein the cable is disposed on an outer peripheral side of the high-frequency magnetic field generation unit.
  13.  請求項1に記載の磁気共鳴イメージング装置において、前記高周波磁場発生部は、バードケージコイルであることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the high-frequency magnetic field generation unit is a birdcage coil.
  14.  請求項1に記載の磁気共鳴イメージング装置において、前記ボア壁で囲まれた空間は、断面が楕円形であり、前記サーミスタは、前記楕円形の長径方向の前記ボア壁に配置されていることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the space surrounded by the bore wall has an elliptical cross section, and the thermistor is disposed on the bore wall in the major axis direction of the elliptical shape. A magnetic resonance imaging apparatus.
  15.  請求項1に記載の磁気共鳴イメージング装置において、前記高周波磁場発生部の高周波の発生を制御し、所定の撮像を実行させる制御部をさらに有し、前記制御部は、前記判定回路が前記異常状態と判定した場合には、前記撮像の実行を停止させることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, further comprising a control unit that controls generation of a high frequency of the high-frequency magnetic field generation unit and executes predetermined imaging, wherein the determination circuit includes the determination circuit in the abnormal state. If it is determined, the magnetic resonance imaging apparatus is characterized in that execution of the imaging is stopped.
  16.  撮像空間に静磁場を印加する静磁場発生部と、前記静磁場発生部よりも前記撮像空間側に順に配置された傾斜磁場発生部および高周波磁場発生部と、前記高周波磁場発生部と前記撮像空間の間に配置され、被検体が配置される空間を形成するボア壁と、
     前記傾斜磁場発生部の温度が所定温度以下であるかどうかを判定する温度判定部とを有し、
     前記温度判定部は、サーミスタと、前記サーミスタに接続され、前記サーミスタの抵抗変化を電圧信号として取得し、前記電圧信号の判定を行う検出回路とを含み、
     前記検出回路は、ヒステリシス特性をもつ判定回路を備え、前記判定回路は、前記電圧信号が、第1の温度に対応する電圧値より高温側の電圧値に到達した場合は、前記所定温度を超えたと判定し、その後、前記第1の温度よりも低温の第2の温度に対応する電圧値よりも低温側の電圧値に達したならば、前記所定温度以下であると判定することを特徴とする磁気共鳴イメージング装置。
    A static magnetic field generation unit that applies a static magnetic field to the imaging space, a gradient magnetic field generation unit and a high-frequency magnetic field generation unit that are sequentially arranged on the imaging space side of the static magnetic field generation unit, the high-frequency magnetic field generation unit, and the imaging space A bore wall that forms a space in which the subject is placed,
    A temperature determination unit that determines whether the temperature of the gradient magnetic field generation unit is equal to or lower than a predetermined temperature;
    The temperature determination unit includes a thermistor and a detection circuit that is connected to the thermistor, acquires a resistance change of the thermistor as a voltage signal, and determines the voltage signal;
    The detection circuit includes a determination circuit having a hysteresis characteristic, and the determination circuit exceeds the predetermined temperature when the voltage signal reaches a voltage value higher than a voltage value corresponding to a first temperature. And then, if a voltage value lower than the voltage value corresponding to the second temperature lower than the first temperature is reached, it is determined that the temperature is equal to or lower than the predetermined temperature. Magnetic resonance imaging device.
PCT/JP2015/050306 2014-01-28 2015-01-08 Magnetic resonance imaging device WO2015115141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559845A JPWO2015115141A1 (en) 2014-01-28 2015-01-08 Magnetic resonance imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014013701 2014-01-28
JP2014-013701 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015115141A1 true WO2015115141A1 (en) 2015-08-06

Family

ID=53756719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050306 WO2015115141A1 (en) 2014-01-28 2015-01-08 Magnetic resonance imaging device

Country Status (2)

Country Link
JP (1) JPWO2015115141A1 (en)
WO (1) WO2015115141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201868A (en) * 2017-06-05 2018-12-27 キヤノンメディカルシステムズ株式会社 Gradient magnetic field coil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280192A (en) * 1985-10-04 1987-04-13 本田技研工業株式会社 Speed-change operation detector
WO1999065392A1 (en) * 1998-06-19 1999-12-23 Sumitomo Special Metals Co., Ltd. Mri magnetic field generator
JP2002119493A (en) * 2000-10-10 2002-04-23 Oxford Magnet Technol Ltd Improvement of cooling system
JP2007038017A (en) * 2006-10-10 2007-02-15 Toshiba Corp Mri apparatus
JP2007533392A (en) * 2004-04-23 2007-11-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging system with electrical attachment
JP2009183472A (en) * 2008-02-06 2009-08-20 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2010005198A (en) * 2008-06-27 2010-01-14 Toshiba Corp Pump system and magnetic resonance diagnostic apparatus
WO2011016398A1 (en) * 2009-08-05 2011-02-10 株式会社 日立メディコ Magnetic resonance measurement device
JP2013504238A (en) * 2009-09-08 2013-02-04 シーメンス アクチエンゲゼルシヤフト Hybrid up-converter, wireless magnetic resonance diagnostic imaging system, and hybrid up-converter gain control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280192A (en) * 1985-10-04 1987-04-13 本田技研工業株式会社 Speed-change operation detector
WO1999065392A1 (en) * 1998-06-19 1999-12-23 Sumitomo Special Metals Co., Ltd. Mri magnetic field generator
JP2002119493A (en) * 2000-10-10 2002-04-23 Oxford Magnet Technol Ltd Improvement of cooling system
JP2007533392A (en) * 2004-04-23 2007-11-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging system with electrical attachment
JP2007038017A (en) * 2006-10-10 2007-02-15 Toshiba Corp Mri apparatus
JP2009183472A (en) * 2008-02-06 2009-08-20 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2010005198A (en) * 2008-06-27 2010-01-14 Toshiba Corp Pump system and magnetic resonance diagnostic apparatus
WO2011016398A1 (en) * 2009-08-05 2011-02-10 株式会社 日立メディコ Magnetic resonance measurement device
JP2013504238A (en) * 2009-09-08 2013-02-04 シーメンス アクチエンゲゼルシヤフト Hybrid up-converter, wireless magnetic resonance diagnostic imaging system, and hybrid up-converter gain control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201868A (en) * 2017-06-05 2018-12-27 キヤノンメディカルシステムズ株式会社 Gradient magnetic field coil
JP7005179B2 (en) 2017-06-05 2022-01-21 キヤノンメディカルシステムズ株式会社 Inclined magnetic field coil

Also Published As

Publication number Publication date
JPWO2015115141A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6532647B2 (en) Magnetic resonance imaging system and control method thereof
EP3227699B1 (en) Magnetic resonance imaging system with infrared thermometry sensors
US9606203B2 (en) Radio frequency (RF) coil device, magnetic resonance apparatus employing the RF coil device, and method of operating the RF coil device
US20100056378A1 (en) Detecting quench in a magnetic resonance examination system
CN208921846U (en) The monitoring arrangement of gradient system, the system including monitoring arrangement and magnetic resonance equipment
Yeung et al. RF transmit power limit for the barewire loopless catheter antenna
CN108872895A (en) The device and method of aerial coil for identification
Attaran et al. Reliable RF B/E-field probes for time-domain monitoring of EM exposure during medical device testing
WO2015115141A1 (en) Magnetic resonance imaging device
WO2016109263A1 (en) Systems and methods for integrated pick-up loops in body coil conductors
US10534049B2 (en) Radio frequency volume coil with improved space and access for use in a magnetic resonance examination system
CN104367323A (en) Thermostabilization of antenna array for magnetic resonance tomography
JP6227917B2 (en) Active quench detection method for superconducting magnets
JP5566085B2 (en) Gradient magnetic field coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus using the same
US9945916B2 (en) Temperature monitoring of local coils
JP6310221B2 (en) Passive quench detection method for superconducting magnets
Atalar Radiofrequency Safety for Interventional MRI Procedures1
JP2019524177A5 (en)
JP2009183472A (en) Magnetic resonance imaging apparatus
Danisi et al. Modeling and compensation of thermal effects on an ironless inductive position sensor
US10271736B2 (en) Low cost magnetic resonance safe probe for temperature measurement
US11073582B2 (en) Apparatus and method for B1 limiting
Zhao et al. Method of standard field for LF magnetic field meter calibration
Sasaki et al. Study of magnetic field measurement system for g-2/EDM experiment at J-PARC
CN108802640B (en) Coil arrangement for emitting high-frequency radiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743785

Country of ref document: EP

Kind code of ref document: A1