WO2015111981A1 - Stereoscopic sheet having variable perspective viewing angle, and thin layer stereoscopic sheet - Google Patents

Stereoscopic sheet having variable perspective viewing angle, and thin layer stereoscopic sheet Download PDF

Info

Publication number
WO2015111981A1
WO2015111981A1 PCT/KR2015/000811 KR2015000811W WO2015111981A1 WO 2015111981 A1 WO2015111981 A1 WO 2015111981A1 KR 2015000811 W KR2015000811 W KR 2015000811W WO 2015111981 A1 WO2015111981 A1 WO 2015111981A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
distance
pattern
sheet
lens
Prior art date
Application number
PCT/KR2015/000811
Other languages
French (fr)
Korean (ko)
Inventor
신현재
Original Assignee
신현재
(주)다이아벨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현재, (주)다이아벨 filed Critical 신현재
Priority to CN201580005366.0A priority Critical patent/CN106415367B/en
Priority to US15/113,833 priority patent/US10302956B2/en
Priority claimed from KR1020150011851A external-priority patent/KR101743000B1/en
Publication of WO2015111981A1 publication Critical patent/WO2015111981A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F7/00Designs imitating three-dimensional effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/08Designs or pictures characterised by special or unusual light effects characterised by colour effects
    • B44F1/10Changing, amusing, or secret pictures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/06Veined printings; Fluorescent printings; Stereoscopic images; Imitated patterns, e.g. tissues, textiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses

Definitions

  • the present invention is a kind of integral photography technology by convex lens, which induces maximization of the perspective angle change according to the change of focal length, and uses the convex lens's image formation principle to change the refraction of light and the change of perspective path. Accordingly, the present invention relates to the production of three-dimensional sheets that are far beyond the visual perception and the limit of the sheet thickness due to the focal length.
  • the basic structure of the conventional techniques is that in the lens sheet formed with the convex lenses cross-aligned, the printed pattern having the same arrangement structure as that of the block lens is formed at a constant focal length forming the thickness of the sheet, Moiré image is three-dimensionally formed by the pattern spacing) is used as a common basic configuration and principle.
  • Utility Model Registration No. 20-0311905 registered on April 17, 2003
  • 'Radial Convex Lens Stereoscopic Print Sheet' is a combination of a focal length and a non-focal distance as a stereoscopic expression method using a Voltok lens sheet.
  • the present invention should be formed of a physical structure that causes a fast perspective angle change to obtain a dynamic image, and in order to be able to observe the combined image by seeing the micro area, a calculation method according to the formation and composition conditions of the combined image, and '
  • the intended image is considered by considering the visual path of the sight and the eye, the characteristics formed during the refraction process, and accurately determining the refraction path of light to minimize the thickness of the three-dimensional sheet. Should be able to produce
  • the specific problem of the present invention is a method for producing a product with more sophisticated and dynamic visual effect by mitigating the problems of economics and prior art.
  • the present invention is a three-dimensional sheet in which the convex lenses are arranged on the upper surface of the three-dimensional sheet at regular intervals and the printing layer 60 is formed at the focal length of the convex lenses forming the thickness of the sheet.
  • the distance is formed at least about 3.5 times longer than the pitch;
  • the repetition interval (x5) of the print pattern 62-1 formed on a portion of the print area of the print layer 60 is made up of a pattern interval in which a sense of depth or protrusion can be felt over a 'myopia' distance (about 10 cm to 25 oii). under; It can be achieved by the three-dimensional sheet, characterized in that the printed pattern repeat interval (x5) is formed about 80% to 98% smaller than the minimum proximity distance perspective parallax interval (x4) within the 'myopia' distance.
  • the present invention has the advantages of producing the following effects as a three-dimensional sheet and a three-dimensional sheet of three-dimensional viewing angle having a three-dimensional decorative effect.
  • the screen composition area that is divided into three-dimensional and non-three-dimensional parts when viewed above the specified distance, the size of the moiré image and Causing a change in depth, the two regions appear to be three-dimensionally divided;
  • three-dimensional sheet perspective in which clustered printing patterns with different three-dimensional effects overlap, three-dimensional images and three-dimensionally unseen images appear invisible and the three-dimensional images disappear.
  • the narrow width or line width of the area of letters or figures is 0.3 ⁇ ⁇ 3 ⁇ or less, and the pattern images printed on the letters or figures can be observed within the 'myopia' distance and at least 1 It is possible to recognize more than two combination images (images below the parent) and to overcome the limitation of focal length to form a minimum three-dimensional sheet thickness or to produce a thin sheet to be used as an injection film. It is effective as a three-dimensional sheet. Therefore, the three-dimensional parts of the display are changed dynamically according to the perspective distance, which is used for furniture, interior, and injection techniques that have various design effects.
  • the decorative sheet used for the surface of the product can be produced.
  • FIG. 1 is a cross-sectional view illustrating the perspective path and structural features of the eye through the three-dimensional sheet as an embodiment of the present invention.
  • Figure 2 is an exploded perspective view illustrating a three-dimensional sheet laminated structure as an embodiment of the present invention.
  • 3 is a cross-sectional view illustrating a general perspective path of the eyeball.
  • FIG. 4 is a cross-sectional view illustrating the object observation path through a single convex lens of the eye.
  • Figure 5 is a cross-sectional view illustrating a perspective path of the eye as an embodiment of the present invention.
  • Figure 6 is a cross-sectional view illustrating a parallax interval for the perspective distance as an embodiment of the present invention.
  • 7 is a cross-sectional view illustrating a parallax interval with respect to a near perspective distance as an embodiment of the present invention.
  • FIG 8 is a cross-sectional view of the three-dimensional sheet is coated with the refractive index layer illustrating the parallax interval with respect to the perspective distance as an embodiment of the present invention.
  • Figure 9 is a cross-sectional view of the three-dimensional sheet is coated with an oyster cutting resin layer illustrating a parallax interval for the near-view distance as an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a three-dimensional sheet to ensure a viewing distance more than 'myopia' as an embodiment of the present invention.
  • 11A is a cross-sectional view illustrating a three-dimensional sheet in which a focal length is adjusted by a non-focal length printing layer and a reflective layer as another embodiment of the present invention.
  • Lib is a cross-sectional view illustrating a three-dimensional sheet in which the focal length is adjusted by the non-focal length printing layer and the reflective layer as another embodiment of the present invention
  • 11C is a cross-sectional view illustrating a three-dimensional sheet in which a focal length is adjusted by a non-focal length printing layer and a reflective layer as another embodiment of the present invention.
  • FIG. 12A is a cross-sectional view illustrating a three-dimensional sheet having a radial surface downwardly curved in a state where the convex lens layer is inverted as another embodiment of the present invention.
  • 12B is a cross-sectional view illustrating a thin layered three-dimensional sheet having a curvature radius surface downward as the convex lens layer is inverted according to another embodiment of the present invention.
  • FIG. 13 is a plan view illustrating a configuration form of a printed pattern surface formed on a printed layer of a three-dimensional sheet as an embodiment of the present invention.
  • FIG. 14 is an enlarged view illustrating the arrangement structure of the figure pattern 62-1 formed as one embodiment of the present invention and the visually recognized shape.
  • FIG. 15 is a cross-sectional view illustrating that a printing layer 65 is formed for applying a water or a liquid material and a multi-perspective effect instead of applying a refractive resin on the convex lens upper surface according to an embodiment of the present invention.
  • Thickness layer transparent to non-focal length printing layer and reflective layer
  • 1 to 2 are cross-sectional and exploded perspective views illustrating the present invention, wherein the transparent lens Volt.
  • Lenses (:) are composed of a lens layer 10 formed of a vertical pitch array or a 60 degree cross array of a constant pitch distance, On the upper surface of the lens layer 10, a refractive resin layer 20 made of refractive index lower than the refractive index of the convex lens 11 is applied and cured, and the refractive resin layer 20 is made of a transparent UV cured resin or a bond resin.
  • the protective layer 30 formed by bonding or adhering to the refractive resin layer 20 is preferably used as a protective film or a base layer depending on the purpose of use, but may be made of a removed sieve.
  • the focal length t2 is formed at the lower portion of the lens layer 10 by the refractive index and the curvature radius r of the boltok lenses 11 and the refractive index of the refractive resin layer 20. It consists of transparent resin and forms the thickness layer 50.
  • the figure pattern is to be printed, and the figure pattern is formed in the printing layer 60 is formed by the printing or irregular pattern-a ⁇ de bo ti tri o. Toshi 7 1 P] ni le -X ⁇ 3 ⁇ 4-lz t3 ⁇ 4 -sl-oll] ⁇ led] 3 ⁇ 4 o 3 ⁇ 4 ol is divided into two parts, so you can see more than 'Near Point of Eye'.
  • the human eye is referred to as a near point of eye, which is the closest distance that a person can see clearly from the eye. Also called).
  • 'Myopia' (D1) is about 10cm for adolescents, about 25cm as adults, and increases to about lm due to presbyopia. Therefore, the perspective 'myopia' (D1) distance that can be seen varies depending on the age, so the present invention will be explained assuming a perspective view of a healthy adult.
  • 3 to 5 illustrate the eye and the path of light of the eye by way of example, illustrating the constitutive difference that the image is perceived in the brain according to the method of visual refraction through the lens and refraction through the lens. have.
  • FIG. 3 illustrates the cognitive situation of a character or a figure farther than the 'myopia' (D1) distance, and the projection of the letter 'A' passes through the convex lens, ie, the lens 41, in the eye.
  • the convex lens ie, the lens 41
  • This is an example of a general situation in which the human eye is visually reversed and visually recognized by the brain. Therefore, if you observe from the perspective distance (D) within the 'myopia' (D1), the image is blurred because the eye's retina is not focused. Therefore, as illustrated in FIG. 4, even if the letter 'A' within the 'myopia' (D1) is observed through the magnifier lens 15, the convex lens 15 is focused on the retina.
  • the letter 'A' that is projected can be recognized by the brain as in FIG. 5 is a view illustrating a situation in which the perspective view angle stereoscopic sheet of the present invention is projected, and the letter 'A' within the 'myopia' (D1) is configured to be recognized as a combination image by convex lenses.
  • the small letters 'A' are formed at the position where each Voltolens forming the lens array are in focus, and are composed of the array angle of the lens array, and the perspective parallax interval and the letters 'A' which pass through the center of the convex lenses Recognizing and stereoscopically viewing the combined image of Moire phenomenon by the difference in pattern density to be. As shown in FIG.
  • FIGS. 6 to 9 illustrate the difference in the effects of reaching the present invention according to the configuration method of the three-dimensional sheet by the lens array as illustrated in the drawings as an embodiment of the present invention.
  • D 'perspective distance
  • D the proper distance between the human eye and the object for observing objects.
  • you want to measure the distance you will measure the distance from the eye to the object with a tape measure.
  • the present invention since it is important to obtain accurate perspective and parallax values constituting the three-dimensional sheet, the following criteria are required.
  • the human eye recognizes the image formed on the retina by the lens of lens 41, although there is a slight difference in each person.
  • the object focus of the lens 41 is about 13 mm, and the focal length formed on the retina is About 23 ⁇ .
  • the perspective image is assumed to be 'minimal proximity' to place the object as close to the eye as possible, and as illustrated in FIG. 9.
  • the 'perspective intersection' (44) which is reversed from the inner surface of the 'crystal', is formed, so this point will be the starting point of the angle of view that is visible.
  • the distance from the eye's surface 43 to the lens's perspective intersecting point 44 is about 7.2 mm for the average person, so The interval must be included. Therefore, the distance from the starting angle of view to the target is about 15.2 ⁇ , so the perspective distance 'D4' should be calculated including the extension distance 'D3' in the eye.
  • the error in measuring the viewing distance is the main cause of the error by calculating the measured value of the distance from the eye surface 43 to the object.
  • Computation of the difference between the repetition interval and the projected parallax value (X) in advance determines the size, depth, or projection of the stereoscopic image perceived by the difference, so that the parallax value (X) projected through the center of the convex lens is determined. By precomputing, the intended effect can be obtained.
  • the moire stereoscopic technique using a lens array focuses on the lens pitch.
  • the printing pattern interval value of depth and protrusion must be determined based on this criterion, and slightly larger or smaller based on this 'perspective vertex parallax interval'
  • the difference in depth level of the three-dimensional sheet is controlled by the difference in the density intervals of the small print patterns.
  • the projection patterns 61 and 62 printed with the density of 'perspective vertex parallax interval' are projected at a predetermined perspective distance, it is impossible to perceive 3 ⁇ 4 sensation at all at this perspective distance.
  • the moiré 70 is generated from the parallax gap through the convex lenses and the density gap of the printing pattern, and the three-dimensional effect should be represented.
  • the three-dimensional moire 80 can be recognized because the distance between the parallax and the printing pattern is the same. It is absent and eventually becomes a perspective vertex (or infinite distance awareness) interval. Also, the perspective vertex parallax interval is different from the lens pitch interval. It cannot be the same and can be obtained by the following formula. Equation 1.
  • the present invention accurately finds the perspective vertex parallax interval according to this observation distance, and rather, by using the characteristics of the parallax interval that changes according to this observation distance, It is possible to produce 'stereocognitive sheet by variable angle of view' by maximizing the perceived change according to the change of observation perspective distance.
  • 6 to 7 illustrate an embodiment of the present invention using a general convex lens sheet. For example, assuming the configuration illustrated in FIG. 6, the lens pitch P is lmm, the observation distance D is 1200 ⁇ , the focal length tl is 1.8 ⁇ , and the radius of curvature r is 0.6mm.
  • the value of the see-through peak parallax interval (xl) obtained by the above formula is 1.001 mm.
  • the parallax interval (x2) becomes 1.0048 mm, resulting in a 0.38% difference in the parallax interval according to the observation time point.
  • the three-dimensional image recognition technique by the moiré 80 can recognize a solid three-dimensional feeling at a density difference of about 1% to about a perspective vertex parallax interval, and within a density difference of about 1% to 2% Extremely three-dimensional changes occur even with small numerical changes.
  • the difference in the parallax values calculated above is only 0.38% of the density difference of less than 1%. Therefore, the result of the extremely small angle of view change that is not enough to recognize the stereoscopic image change according to the viewing distance is inevitably obtained.
  • the objective of the present invention cannot be achieved with a three-dimensional sheet having a general focal length conventionally used. Therefore, as a way to solve this problem, the longer the focal length, the better the angle of view change. Therefore, in the same situation as the above lens condition, only the focal length is changed to 5 ⁇ . Assuming that the case of Fig.
  • the present invention obtains the perspective vertex parallax spacing (xl) value and the parallax spacing (x2) value according to the change of the perspective distance according to the 'calculation', and the preferred focal length (tl) for obtaining the two parallax spacing values is a lens. It is desirable to produce a three-dimensional sheet that is about 3.5 times more than the pitch (P), and the longer the focal length, the greater the disparity difference according to the viewing distance.
  • the utilization of such a product needs to be produced within a shorter observation distance, for example, the application of a small product holding by hand like a smartphone surface material
  • the thickness of the sheet should be made thinner, it is a sheet having a focal length of about 0.8 ⁇ .
  • the pitch is about 0.1289mm
  • the radius of curvature of the lens is about 0.294 ⁇
  • the refractive index is 1.48. It is assumed that a fine micro lens should be manufactured.
  • the production of such a microlens array sheet is required to produce a mold for mass production, and the cost must be invested, and to secure a radius of curvature for adjusting the thickness is a very difficult task and cumbersome situation.
  • the present invention is to produce a lens layer 10 of the curvature radius (r) of about 0.06 ⁇ , which is easy to manufacture as a means to solve this problem, the focal length (tl) by the curvature radius of 0.294mm
  • the transparent refractive index resin 20 having an index of refraction of about 1.45 to the upper surface of the lens layer 10
  • the refractive index of 1.58 of the lens and the refractive index of 1.45 of the refractive index of the refractive index of the refractive index of the refractive index of the refractive index of the refractive index of the resin is used. You can get 0.8mm.
  • the refractive resin layer 20 is formed at a position in contact with the surface of the botox lens layer 10 as a three-dimensional sheet according to an embodiment of the present invention.
  • the focal length t2 longer than the pitch P of the lens, the effect according to the angle of change is easy, so that the focal length t2 is 0.8 ⁇ when the lens pitch P is 0.1289 ⁇ .
  • the focal length (t2) of about 6.2 times the pitch (P) is formed.
  • the distance between the intraocular perspective intersection (44) and the eye surface (43) branches is about 7.2 mm, and if you put the eyelid, eyebrows, and facial skeleton away from the eye surface, you can see the object surface as much as possible.
  • the thickness of the sheet is about 0.8 ⁇ , so the correct see-through distance D4 is about 15 mra.
  • the method that can be seen with the naked eye within the 'myopia' is as described in FIG. 5, and since the extension line of the straight line passing through the centroid of the convex lenses 11 from the intraocular perspective intersection 44 is the 'perspective path'.
  • a contrast difference of about 4.6% appears when comparing the perspective vertex parallax interval (x3) of about 0.1393 mm and the parallax interval (X4) of near vision of 0.11293 mm.
  • a three-dimensional pattern (62-1) with a pattern spacing of about 4.6% is printed, with a parallax interval (x4) of 0.13554.
  • the perspective can be viewed while recognizing a solid three-dimensional effect by the changed perspective angle.
  • the method is as follows. Seeing things means that only objects that are above the 'myopia' distance (D1) can be seen clearly, and the three-dimensional sheet of the present invention can produce a sheet capable of identifying a perspective even at a minimum proximity within the 'myopia'. Mentioned above.
  • the principle is that since the sheet itself of the present invention is made by the botox lenses 11, it projects the object within the 'myopia' (D1) with the naked eye as illustrated in the description of Figs.
  • Figure 10 illustrates a temporal example of a three-dimensional sheet to ensure a viewing distance more than 'myopia' of the present invention.
  • the configuration of the printed pattern to recede more than 25cm can be varied depending on the size, curvature radius, and focal length of each botox lens.
  • the focal length U is about 0.42 0.4.
  • the refractive index of the refractive resin 20 coated on the surfaces of the convex lenses 11 is 1.506
  • the focal length t2 becomes about 3.1 ⁇ s
  • the focal length is the same as the curvature radius of the lens is about 1.144mm.
  • the components that make the depth of field (Di) of the combined image, which shows the focal length three-dimensional, retreat more than about 250mm from the 'myopia' distance, are characterized by a long focal length, It can manufacture by a formula. Equation 2
  • the stereoscopic image perceived at about 40cm is (3.1-1.144 ) X 400 XI / [0.254 x 400-(3.1-1.144) x I] 250 ⁇ , which is I-19.978 mm. That is, a stereoscopic image having a repetition interval I of 19.978 mm for one moiré 80 is accurately recognized as a sense of depth (Di) of about 250.000467 mm by the above equation, and a sense of depth (Dt) of 250 ⁇ s or more is secured. Is about 7.38 times thicker than the existing focal length (tl), making it easy to manufacture.
  • the present invention can be obtained only when the focal length is farther than the general lens sheet, but the glass interior products of 3mm or more are used in the decorative products for architectural interiors, but the sheet sheet used for electronic products is used according to the product. It will need to be made thin. Therefore, the farther the focal length of the element used in the present invention is to increase the thickness of the three-dimensional sheet, a method that needs to be made thinner the thickness of the sheet as needed.
  • FIG. 11A to 12B illustrate a method according to another embodiment of the present invention, in which the focal length t2 is extended by the refractive resin 20 applied to the surface of the convex lens layer 10 so that the sheet thickness becomes too thick.
  • a method of reducing the thickness of the sheet under the same focal length conditions is as follows.
  • the reflective layer 70 is formed between the convex lens and the focal length t2 to form the sheet thickness from the convex lens to the reflective layer, and the printing formed at the original focal length t2.
  • the non-focal length printed layer 60-1 is formed on the substrate.
  • the position of the reflective layer 70 is formed at the thickness of almost half or less from the surface of the refractive resin 20 formed on the convex lens layer 10 to the original focal length t2, and the vortex lens
  • the incident light of (11) is reflected by the reflective layer 70 so as to focus on the newly formed non-focal length printing layer 60-1.
  • the path through which the printed pattern 62-1 formed in the printed layer 60-1 passes through the printing worm 60-1 having a non-focal length from the naked eye passes through the center of the convex lenses 11, and reflects the reflective layer ( 70 reflects the patterns 61-1 and 62-1 printed on the non-focal length printing layer 60-1 interval t4, reflected from the reflective layer 70 and again passing through the botox lenses 11 from the reflective layer 70.
  • the focus becomes narrow again and the focal length becomes slightly shorter.
  • the non-focal distance printing layer 60-1 is formed as close as possible to the surface of the convex lens to maintain about 1/2 of the thickness of the original three-dimensional sheet, or , Can be manufactured by adjusting the correlation between the refractive index of the boltok lens, the radius of curvature and the refractive index of the refractive resin.
  • the protective layer 30 is formed on the convex lens layer and the non-focal distance printing layer 6 is formed on the protective layer by the application method of the three-dimensional sheet illustrated in FIG. 11A.
  • the non-focal length printing layer 60-1 is printed with the general printing, the three-dimensional pattern printing surface 61, and the variable angle recognition pattern surface 62.
  • the general printing is independent of the focal length, and thus the protective layer 30 It is preferable to maintain the surface gloss of the general printing surface by the protective film 30 by printing on the lower surface, and the surface of the convex lens layer 10 and the protective layer 30 by the refractive resin 20.
  • the lower surface can be used to adhere to each other. Therefore, as illustrated in FIG. 11C, the lower surface of the protective film 30 is the focal point of arrival, and the non-focal distance printing layer 60-1 is formed by printing on the lower surface of the protective film 30 to be convex.
  • the lens layer 10 is adhered to the surface and can be applied and manufactured by user convenience.
  • FIG. 12A shows another method of the present invention, wherein the curved radius surface is turned downward with the convex lens layer 10 turned upside down, thereby adhering or adhering to the thickness layer 50-1 of the sheet by the refractive resin 20.
  • Non-focal distance printing layer 60-1 is formed on the upper layer surface of the inverted Voltolens layer, and the center of gravity of the lens changes as the radius of curvature of the lens changes. As the angle of view is changed from the center of gravity as shown in the drawings, there is an advantageous effect that the difference in the parallax seen through it becomes larger.
  • this method can be used in the three-dimensional sheet illustrated in FIG. 10, and the focal length and the thickness of the sheet can be obtained.
  • Figure 12b is another embodiment of the present invention, illustrates a method that can be produced with a minimum thickness of a three-dimensional sheet that can be visually viewed.
  • the convex lens layer 10 is turned upside down, and the surface of the radius of curvature is configured downward.
  • the refractive resin 20 is formed to form a plane, and the reflective layer 70 is formed on the surface of the refractive resin 20. It is configured to reflect the light of the incident light.
  • the thickness of the three-dimensional sheet is remarkably thinner, because the incident light passes through the convex lens 11 and is reflected from the reflective layer 70 and passes through the convex lens again to pass the non-focal length printing layer ( In the process of reaching 60-1, the convex lens penetrates twice and is perceived by the naked eye. Therefore, as mentioned above, the sheet thickness that can be perceived by the naked eye compared to the original focal length (t2) once passed through the convex lens can be manufactured as a thin three-dimensional sheet that is significantly thinner than 1/3 thickness. will be.
  • FIG. 13 illustrates, by way of example, the configuration of the graphic design of the three-dimensional sheet and the configuration of the print patterns 61-1, 62-1.
  • Another advantage of the present invention is that as a non-representative function, a pattern 62-1 image printed on a very small 'area area' can be identified by a minimum proximity view.
  • the 'Small area' perspective in the present invention is a part of the three-dimensional printing surface (61, 62) formed in the printing layer 60, the minimum width of the shape consisting of figures, lines, characters, etc. is about 3 ⁇ or less.
  • the pattern shape formed in such a small area is closely viewed to allow one or more moires 80 to be recognized as a combination image.
  • the smaller the area used for the maximum effect, the smaller the better. Therefore, the present invention is capable of seeing even a very small area of the minimum width of 1 ⁇ or less forming a figure, if it is to recognize the image 80 printed therein can be produced by the following method.
  • At least one combination image 80 should be visible within the minimum area projected as mentioned above.
  • the parallax (x2) between the lenses at the minimum proximity distance is about 0.1298 mm.
  • the vertex perspective parallax gap (xl) between lenses at the perspective distance (D2 + D3) of 400 ⁇ it becomes about 0.12893 ⁇ , so this value is a reference for the pattern interval (xl) to be printed. It should be printed smaller than 0.12893mm because it should exhibit a depth of about 250mm distance.
  • the present invention will be described assuming that the focal length t2 is changed from 0.163 ms to 0.8 ms under the same configuration conditions.
  • one moiré (80) pattern size (i) is 39.27 microns at a depth Dt of about 250 microns
  • the interval of the printed pattern (x5) is about 0.128478 microns.
  • the throwing distance (D2 + D3) is 15
  • the calculated parallax (x4) between the lenses at the minimum close range is about 0.1353 ⁇
  • the perspective of the print pattern (x5) is about 0.128478 ⁇ .
  • one calculates the size of a stereocognitive pattern with one moiré (80) size (I) it becomes about 2.548 mm, so that a small area of about 3 ⁇ has a minimum width of about 3 ⁇ s. More than one can be observed. Accordingly, as illustrated in the drawing of FIG.
  • the three-dimensional sheet according to the exemplary embodiment of the present invention is illustrated, and the printing layer 60 disposed below the botox lens layer 10 may have the printed pattern surface 61 or (and )
  • the variable angle recognition pattern surface 62 is formed and printed (or unevenly molded).
  • the pattern printing surface 61 exhibiting a special effect by the Voltok lens is formed of figure patterns 61-1 configured to exhibit effects such as stereoscopic effect, motion, color conversion, and the like.
  • 62 is formed of figure patterns 62-1 configured such that the moiré pattern image 80, which appears in three dimensions due to the change of angle of view according to the viewing distance, is changed and perceived according to the viewing distance. Any other text or figure that has no effect can be used according to design intent.
  • the letter 'M' is formed in a small circle located in the upper left.
  • the figure pattern of the 'variable moving angle recognition pattern surface' 62 formed on a small circle around it as a part showing a general stereoscopic effect or an effect such as motion or color conversion. According to 1) it is configured to look differentiated according to the viewing distance.
  • the large letter 'M' formed at the center of the sheet is a 'variable angle of view'
  • the pattern pattern 62-1 which constitutes the edge pattern surface 62, and is made to be differentiated by the figure pattern 61-1 formed on the entire base surfaces 61 and 62 of the sheet or the base surface.
  • the figure pattern 62-1 formed on the whole is composed of the difference pattern of parallax density different from the figure pattern 62-1 formed on the large letter 'M' to recognize a differential change according to the viewing distance. It can be produced. Particularly, fine letters are formed in a circle on the upper right side. As illustrated in an enlarged view of the drawing, the width of an area constituting two lines of words having a thickness of 0.3 ⁇ is about 3.8 mm. This configuration is such that the above-mentioned very small area lines are combined, and a figure pattern 62-1 is formed to form a 'variable angle of view perception pattern surface' 62 within a 0.3 mm line width.
  • such a configuration is a structure in which the moiré pattern image 80 cannot be visually recognized when the three-dimensional figure pattern is constructed.
  • the present invention can visually check the image 80 under the parent of the combination of the figure pattern 62-1 composed of 'M' as illustrated in the drawing. will be. The reason is that it is virtually impossible to see more than one under the hair at 0.3mm perspective area, but the present invention has already shown that the depth Dt of the hair that recognizes the figure pattern 62-1 is 'myopia'.
  • FIG. 14 is a view illustrating an arrangement of convex lenses projected within a 'myopia' distance and an arrangement of a figure pattern 62-1 formed on a 'variable angle of view recognition pattern surface' 62 according to an embodiment of the present invention. The shape which becomes is illustrated and demonstrated.
  • the arrangement of the figure pattern 62-1 has the same configuration as the arrangement angle of the convex lens 11 and consists of a vertically crosswise arrangement of 45 degree inclination.
  • the array spacing (x5) has a smaller density than the array spacing (P) of the convex lenses (11), and observes more than one moiré (80) perceived in seeing the 'variation angle of view recognition pattern surface' (62).
  • the parallax ( ⁇ 4) spacing which projects the center of convex lenses 11 at the minimum close range.
  • FIG. 15 illustrates an exemplary embodiment of the present invention, in which water or a liquid material is applied instead of applying a refractive resin on an upper surface of a convex lens, and a printing layer 65 is configured for a multiple perspective effect.
  • the second printing layer 65 is formed between the convex lens ray 10 and the printing layer 60, and the printing 61 constituted here is composed of a figure pattern 61-1, and the focal length of the convex lens is It is printed (or uneven molded) at the position of T1.
  • the surface of the pattern printing (61) exhibiting special effects by the convex lens is configured to exhibit effects such as stereoscopic effect, motion, color conversion, etc., and the three-dimensional moiré pattern image (80) that is three-dimensionally visible on the print layer (60) is a viewing distance.
  • variable viewing angle stereoscopic sheet and the mono-thin sheet of the present invention are not limited to the above-described embodiments and can be modified in various ways within the scope of the technical idea of the present invention.

Abstract

The present invention relates to "a stereoscopic sheet having a variable perspective viewing angle and a thin-layered stereoscopic sheet" having a three-dimensional decorative effect, and thus has advantages of having various dramatic visual and design effects by which portions of the sheet, viewed three-dimensionally, create dynamic changes according to the perspective distance, and is manufactured by the following constituent features. The stereoscopic sheet includes convex lenses (11) arrayed on the top surface of the stereoscopic sheet to intersect at regular intervals, and a printed layer (60) formed at the focal distance of the convex lenses forming the thickness of the sheet, wherein: the focal distance of the convex lenses (11) is formed to be at least approximately 3.5 times longer than the pitch; a repetition gap (x5) of a printed pattern (62-1) formed on a portion of a printed area of the printed layer (60) is determined as a pattern gap to allow the impression of depth or protrusion to be sensed as at least a "short-sighted" distance (approximately 10cm-25cm); and the repetition gap (x5) of the printed pattern is less than a parallax gap (x4) at a minimum proximity distance within the "short-sighted" distance by approximately 80% to 98%.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
변동투시화각 입체시트 및 박층시트  Variable Perspective Angle Extrusion Sheets and Thin Layer Sheets
【기술분야】 Technical Field
본 발명은 볼록렌즈에 의한 인테그럴포토그래피 기술의 일종으로써, 초점거 리의 변화에 따른 투시화각변화 극대화를 유도하고, 볼록렌즈를 이용한 안구의 결 상 원리를 이용하여 빛의 굴절 및 투시경로 변화에 따라 액티브한 비쥬얼 연출과 ' 근시점 '거리 이내의 투시 인지 및 소면적에 적용된 입체조합화상의 투시인지 한계 및 초점거리에 의한시트두께의 한계를 극북한 입체시트 제작에 관한 것이다.  The present invention is a kind of integral photography technology by convex lens, which induces maximization of the perspective angle change according to the change of focal length, and uses the convex lens's image formation principle to change the refraction of light and the change of perspective path. Accordingly, the present invention relates to the production of three-dimensional sheets that are far beyond the visual perception and the limit of the sheet thickness due to the focal length.
【배경기술】 Background Art
종래의 기술들의 기본구성은 볼록렌즈들이 교차배열올 이루어 형성된 렌즈시 트에 있어서, 시트의 두께를 형성하는 일정한 초점거리에 불록렌즈와 동일한 배열 구조의 인쇄패턴을 형성하되 인쇄패턴의 배열 조밀도 (패턴간격)에 의하여 모아레 이미지가 입체적으로 형성되는공통된 기본구성 및 원리로써 활용되고 있다. 선행 기술로써, 실용신안등록 제 20-0311905호 (2003년 4월 17일 등록) '방 사형 볼록렌즈 입체인쇄시트' 는 볼톡렌즈시트에 의한 입체표현방법으로써 초점거 리와 비초점거리에 맺히는 조합화상의 정도 차이를 이용하여 선명한 입체 조합화상 과 불필요한 모아레 (Moire)가 제거된 이미지를 차등 구분하여 투시할 수 있는 입체 인쇄 방법을 제안하고 있는데, 종래의 볼록렌즈의 초점거리 한도 내에서 표현되는 기본적 구성으로 이루어져 볼록렌즈들의 난반사 때문에 시트의 표면이 무광택 표면 으로 제작될 수밖에 없어 고광택의 고급제품으로 제작하는데 문제가 있다. 특허등록 제 10-0841438호 (2006년 3월 9일 등록) '광속차를 이용한 인쇄용 평면렌즈시트' 는 볼록렌즈의 표면에 단순히 굴절수지를 평탄하게 도포함으로서 초 점거리를 확보하여 입체이미지를 연출할수 있도록 하는 방법으로국한되어 있다. 실용신안등록 제 20— 0470351호 (2013년 12월 4일 등록) '입체비표시트' 는 볼록렌즈의 크기와 곡률반경이 다른 2가지의 렌즈가 구비되어, 큰 렌즈들의 배열 공간사이에 작은 렌즈돌이 동일한 배열각도와 간격으로 구성되어 다른 초점거리를  The basic structure of the conventional techniques is that in the lens sheet formed with the convex lenses cross-aligned, the printed pattern having the same arrangement structure as that of the block lens is formed at a constant focal length forming the thickness of the sheet, Moiré image is three-dimensionally formed by the pattern spacing) is used as a common basic configuration and principle. As a prior art, Utility Model Registration No. 20-0311905 (registered on April 17, 2003) 'Radial Convex Lens Stereoscopic Print Sheet' is a combination of a focal length and a non-focal distance as a stereoscopic expression method using a Voltok lens sheet. We propose a three-dimensional printing method that can differentiate the three-dimensional image of the clear stereoscopic combined image and the image from which unnecessary moire is removed using the difference of the degree of image, and it is basically expressed within the focal length limit of the conventional convex lens. Due to the convex reflections of the convex lenses, the surface of the sheet has to be made of a matte surface, and thus there is a problem in manufacturing a high-gloss quality product. Patent Registration No. 10-0841438 (registered on March 9, 2006) 'Printing flat lens sheet using luminous flux' creates a three-dimensional image by securing a focal length by simply applying a refractive resin flat on the surface of the convex lens. It's limited to how you can. Utility Model Registration No. 20 — 0470351 (registered on December 4, 2013) The three-dimensional ratio display is equipped with two lenses of different convex lens size and radius of curvature. Consists of the same array angle and spacing
대체용지 (규칙 제 26조) 가지지만 렌즈의 표면에 물 또는 액체를 바르면 큰 렌즈에서 보이던 입체화상은 사 라지고 작은 렌즈에 의해 새로운 입체화상이 만들어지는 기법인데, 다소 화질이 떨 러지는 문제점이 있다. 따라서 본 발명은 상기와 같은 선행기술에서 제안하고 예시한 방법과는 달리 더욱 차별화된 화상연출을 달성하기 위한 것이다. . Alternative Site (Article 26) However, when water or liquid is applied to the surface of the lens, the three-dimensional image seen in the large lens disappears and a new three-dimensional image is made by the small lens. Therefore, the present invention is to achieve a more differentiated image production, unlike the method proposed and illustrated in the prior art as described above. .
【발명의 상세한 설명】 [Detailed Description of the Invention]
[기술적 과제]  [Technical Challenges]
본 발명은 역동적 화상을 얻기 위하여 빠른 투시화각 변화를 일으키는 물리적 구조 로 형성되어야 하고, 또한 미세면적을 투시하여 조합화상의 관찰이 가능하려면 조 합화상의 형성 및 구성조건에 따르는 계산 방법과, 또한 '근시점'거리 내에서 투시 관찰이 가능하려면 투시화면 과 안구의 시각적 경로 및 굴절과정에서 형성되는 특 성 등을 고려하고 입체시트의 두께를 최소화 하기위한 빛의 굴절경로를 정확히 파 악하여 의도된 화상을 제작할 수 있어야 한다. The present invention should be formed of a physical structure that causes a fast perspective angle change to obtain a dynamic image, and in order to be able to observe the combined image by seeing the micro area, a calculation method according to the formation and composition conditions of the combined image, and ' In order to be able to observe the sight within the distance of 'myopia', the intended image is considered by considering the visual path of the sight and the eye, the characteristics formed during the refraction process, and accurately determining the refraction path of light to minimize the thickness of the three-dimensional sheet. Should be able to produce
[기술적 해결방법] 따라서 본 발명의 구체적인 해결과제는 경제성 및 선행기술의 문제점을 가만 하여 더욱 정교하고 다이나믹한 시각적 효과의 제품을 제작하기위한 방법으로, [Technical Solution] Therefore, the specific problem of the present invention is a method for producing a product with more sophisticated and dynamic visual effect by mitigating the problems of economics and prior art.
1. 화각변화를 유도하는 볼록렌즈의 구조적 조건과 ; 1. Structural conditions of convex lens inducing a change in angle of view;
2. 육안으로 관찰하는 투시거리에서의 조합화상의 최대정점으로 인식할 수 있는 시 차간격 값을 구하는 방법과 ;  2. A method of obtaining a time difference value that can be recognized as the maximum peak of the combined image at the viewing distance visually observed;
3. 최소 근접거리 투시에서 조합되어 인지되는 상의 시차간격 값을 구하는 방법과  3. To calculate the parallax interval value of the combined images in the minimum close-up perspective;
4. 극소면적에 적용된 입체조합화상을 인지할 수 있는 초점거리 조건과 ; 4. The focal length condition to recognize the stereoscopic combined image applied to the micro area;
5. '근시점'거리 이상 투시거리에서 입체가 보이면서 '근시점'거리 이내에서의 투 시에서도 입체를 관찰할 수 있는 조건과;  5. The conditions under which stereoscopic vision can be observed at a distance within the 'myopia' distance while seeing the stereoscopic distance at or above the 'myopia' distance;
6. '근시점'거리 이상 투시거리에서 인지할 수 없는 이미지를 '근시점'거리 내에 서 투시 인지가 가능하도록 구성되는 조건과:  6. The condition that is configured to enable the perspective recognition within the 'myopia' distance from the image that is not recognized at the perspective distance above the 'myopia'
7. 초점형성거리를 최소화 하여 박층 (薄層)시트를 제작할 수 있는 조건 등이 충족 될 때, 본 발명의 목적에 도달할 수 있는 것이다. 따라서 본 발명은, 입체시트의 상면에 볼록렌즈들이 일정한 간격의 교차배열 로 구성되며 시트의 두께를 이루는 볼록렌즈들의 초점거리에 인쇄층 (60)이 형성된 입체시트 있어서, 볼록렌즈 (11)들의 초점거리가 피치보다 약 3.5배 이상 길게 형성 되고; 인쇄층 (60)의 인쇄면적 일부분에 형성된 인쇄패턴 (62-1)의 반복간격 (x5)이 깊이감 또는 돌출감을 '근시점' 거리 (약 10cm~25oii)이상 느낄 수 있는 패턴간격으 로 이루어지고; 상기 인쇄패턴 반복간격 (x5)이 '근시점' 거리 이내의 최소근접거리 투시 시차간격 (x4)보다 약 80% ~ 98% 작게 형성됨을 특징으로 하는 입체시트에 의 하여 달성될 수 있는 것이다. 7. Minimize the focal length and meet the conditions for making thin sheets When this is possible, the object of the present invention can be reached. Accordingly, the present invention is a three-dimensional sheet in which the convex lenses are arranged on the upper surface of the three-dimensional sheet at regular intervals and the printing layer 60 is formed at the focal length of the convex lenses forming the thickness of the sheet. The distance is formed at least about 3.5 times longer than the pitch; The repetition interval (x5) of the print pattern 62-1 formed on a portion of the print area of the print layer 60 is made up of a pattern interval in which a sense of depth or protrusion can be felt over a 'myopia' distance (about 10 cm to 25 oii). under; It can be achieved by the three-dimensional sheet, characterized in that the printed pattern repeat interval (x5) is formed about 80% to 98% smaller than the minimum proximity distance perspective parallax interval (x4) within the 'myopia' distance.
[유리한 효과] [Favorable effect]
본 발명은 입체적인 장식효과가 가 있는 변동투시화각 입체시트 및 박층 (薄層) 입 체시트로써 다음과 같은 효과를 연출하는 장점이 있다. 명시거리 이상에서 볼 때 입체적으로 보이는 부분과 입체적으로 보이지 않는 부분으로 구분된 화면구성 영역에 있어서, 투시거리 이동에 따른 근접투시로의 화 각변화에 의해 상기 두 개의 영역 모두에서 모아레 이미지의 크기 및 깊이감 변화 를 일으켜 두 영역이 입체적으로 차둥 구분되어 보이는 효과가 있으며; 입체효과가 다른 각각의 군집된 인쇄패턴이 겹쳐진 입체시트 투시에 있어서, 입체적으로 보이 는 이미지와 입체적으로 보미지 않던 이미지들이 투시거리 변화에 따라 보이지 않 던 이미지가 새로 나타나고, 입체적으로 보이던 이미지가 사라지는 효과가 있으며, 또는 두 가지의 이미지가 겹쳐 보이면서 제 3의 이미지를 연출하게 만드는 시각적 디자인변화 효과가 있으며; 비표 표식으로써 문자, 도형을 이루는 면적의 좁은 폭 또는 라인 폭이 0.3瞧 ~ 3隱 이하로 이루어지고, 문자 또는 도형부분에 인쇄된 패 턴이미지들을 '근시점' 거리 이내에서 관찰 가능하도록 하고 최소한 1개 이상의 조합화상 (모아래 이미지)을 인지할 수 있고 또한 초점거리의 한계를 극복하여 최소 한의 입체시트 두께를 형성하고 또는 박층 (薄層)시트로 제작되어 사출용 필름으로 사용될 수 있도록 가공성이 높은 입체시트로써의 효과가 있다. 따라서 투시 거리에 따라 입체적으로 보이는 부분이 역동적인 변화를 일으켜 다양한 디자인 연출효과를 가지는 가구, 인테리어 및 사출기법등에 사용되는 전자 제품 표면에 사용되는 장식시트를 제작할 수 있다. 【도면의 간단한 설명】 The present invention has the advantages of producing the following effects as a three-dimensional sheet and a three-dimensional sheet of three-dimensional viewing angle having a three-dimensional decorative effect. In the screen composition area that is divided into three-dimensional and non-three-dimensional parts when viewed above the specified distance, the size of the moiré image and Causing a change in depth, the two regions appear to be three-dimensionally divided; In three-dimensional sheet perspective, in which clustered printing patterns with different three-dimensional effects overlap, three-dimensional images and three-dimensionally unseen images appear invisible and the three-dimensional images disappear. Effect, or a visual design change effect that causes two images to overlap and produce a third image; As a non-marking mark, the narrow width or line width of the area of letters or figures is 0.3 瞧 ~ 3 隱 or less, and the pattern images printed on the letters or figures can be observed within the 'myopia' distance and at least 1 It is possible to recognize more than two combination images (images below the parent) and to overcome the limitation of focal length to form a minimum three-dimensional sheet thickness or to produce a thin sheet to be used as an injection film. It is effective as a three-dimensional sheet. Therefore, the three-dimensional parts of the display are changed dynamically according to the perspective distance, which is used for furniture, interior, and injection techniques that have various design effects. The decorative sheet used for the surface of the product can be produced. [Brief Description of Drawings]
도 1은 본 발명의 일실시예로서 입체시트를 투시하는 안구의 투시경로 및 구 조적인 특징을 예시한 단면도.  1 is a cross-sectional view illustrating the perspective path and structural features of the eye through the three-dimensional sheet as an embodiment of the present invention.
도 2는 본 발명의 일실시예로서 입체시트 적층구조를 예시한 분해사시도. 도 3은 안구의 일반적 투시경로를 예시한 단면도.  Figure 2 is an exploded perspective view illustrating a three-dimensional sheet laminated structure as an embodiment of the present invention. 3 is a cross-sectional view illustrating a general perspective path of the eyeball.
도 4는 안구의 단일 볼록렌즈를 통한 물체관찰투시경로를 예시한 단면도. 도 5는 본 발명의 일실시예로서 안구의 투시경로를 예시한 단면도.  4 is a cross-sectional view illustrating the object observation path through a single convex lens of the eye. Figure 5 is a cross-sectional view illustrating a perspective path of the eye as an embodiment of the present invention.
도 6은 본 발명의 일실시예로서 투시거리에 대한 시차간격을 예시한 단면도. 도 7은 본 발명의 일실시예로서 근접 투시거리에 대한 시차간격을 예시한 단면도.  Figure 6 is a cross-sectional view illustrating a parallax interval for the perspective distance as an embodiment of the present invention. 7 is a cross-sectional view illustrating a parallax interval with respect to a near perspective distance as an embodiment of the present invention.
도 8은 본 발명의 일실시예로서 투시거리에 대한 시차간격을 예시한 굴절수 지층이 도포된 입체시트의 단면도.  8 is a cross-sectional view of the three-dimensional sheet is coated with the refractive index layer illustrating the parallax interval with respect to the perspective distance as an embodiment of the present invention.
도 9는 본 발명의 일실시예로서 근접 투시거리에 대한 시차간격을 예시한 굴 절수지층이 도포된 입체시트의 단면도.  Figure 9 is a cross-sectional view of the three-dimensional sheet is coated with an oyster cutting resin layer illustrating a parallax interval for the near-view distance as an embodiment of the present invention.
도 10은 본 발명의 일실시예로서 '근시점'이상 투시거리를 확보하는 입체시 트를 예시한 단면도.  10 is a cross-sectional view illustrating a three-dimensional sheet to ensure a viewing distance more than 'myopia' as an embodiment of the present invention.
도 11a은 본 발명의 다른 일실시예로써 비초점거리 인쇄층 및 반사층에 의해 초점거리가 조절된 입체시트를 예시한 단면도.  11A is a cross-sectional view illustrating a three-dimensional sheet in which a focal length is adjusted by a non-focal length printing layer and a reflective layer as another embodiment of the present invention.
도 lib는 본 발명의 다른 일실시예로써 비초점거리 인쇄층 및 반사층에 의해 초점거리가조절된 입체시트를 예시한 단면도.  Lib is a cross-sectional view illustrating a three-dimensional sheet in which the focal length is adjusted by the non-focal length printing layer and the reflective layer as another embodiment of the present invention;
도 11c은 본 발명의 다른 일실시예로써 비초점거리 인쇄층 및 반사층에 의해 초점거리가 조절된 입체시트를 예시한 단면도.  11C is a cross-sectional view illustrating a three-dimensional sheet in which a focal length is adjusted by a non-focal length printing layer and a reflective layer as another embodiment of the present invention.
도 12a은 본 발명의 다른 일실시예로써 볼록렌즈층이 뒤집힌 상태로써 곡를 반경 표면이 하향으로구성된 입체시트를 예시한 단면도.  12A is a cross-sectional view illustrating a three-dimensional sheet having a radial surface downwardly curved in a state where the convex lens layer is inverted as another embodiment of the present invention.
도 12b는 본 발명의 다른 일실시예로써 볼록렌즈층이 뒤집힌 상태로써 곡률 반경 표면이 하향으로 구성된 박층 (薄層) 입체시트를 예시한 단면도.  12B is a cross-sectional view illustrating a thin layered three-dimensional sheet having a curvature radius surface downward as the convex lens layer is inverted according to another embodiment of the present invention.
도 13은 본 발명의 일실시예로서 입체시트의 인쇄층에 형성된 인쇄패턴면의 구성 형태를 예시한 평면도.  13 is a plan view illustrating a configuration form of a printed pattern surface formed on a printed layer of a three-dimensional sheet as an embodiment of the present invention.
도 14는 본 발명의 일실시예로서 형성된 도형패턴 (62-1)의 배열구조 및 육안 으로 인지되는 형상을 예시한 확대도 도 15는 본 발명의 일실시예로써 볼록렌즈 상면에 굴절수지가 도포됨을 대신 하여 물 또는 액상물질이 도포되어짐과 다중투시효과를 위한 인쇄층 (65)이 구성됨 을 예시한 단면도. Fig. 14 is an enlarged view illustrating the arrangement structure of the figure pattern 62-1 formed as one embodiment of the present invention and the visually recognized shape. FIG. 15 is a cross-sectional view illustrating that a printing layer 65 is formed for applying a water or a liquid material and a multi-perspective effect instead of applying a refractive resin on the convex lens upper surface according to an embodiment of the present invention.
(부호의 설명) (Explanation of the sign)
I . 변동투시화각 입체시트 10. 볼록렌즈충  I. Variable perspective angle three-dimensional sheet 10. Convex lens
II . 볼록렌즈 15. 일반 돋보기 (볼록렌즈)  II. Convex Lens 15. Regular Magnifier (Convex Lens)
20. 굴절수지 30. 보호필름 20. Refractive resin 30. Protective film
40. 안구 41. 수정체 40. Eyeball 41. Lens
42. 망막 43. 안구표면  42. Retina 43. Ocular surface
44. 투시교차점 (마디점) 50. 두께층 (투명층)  44. Perspective Intersection Point (Nodal Point) 50. Thick Layer (Transparent Layer)
50-1. 비초점거리 인쇄층과 반사층까지 두께의 두께층 (투명충)  50-1. Thickness layer (transparent) to non-focal length printing layer and reflective layer
60. 인쇄층 60-1. 비초점거리 인쇄층  60. Printed layer 60-1. Non Focal Length Printed Layer
61. 패턴 인쇄면  61. Pattern printed side
61- 1. 패턴 인쇄면에 형성된 인쇄패턴  61- 1. Print pattern formed on the pattern printing surface
62. 변동화각 인지 패턴면  62. Variable angle recognition pattern surface
62- 1. 변동화각 인지 패턴면에 형성된 인쇄패턴  62-1. Printed pattern formed on the variable angle recognition pattern surface
65. 제 2인쇄층 65. Second Printing Layer
70. 반사층  70. Reflective layer
80. 한 개의 모아레이미지 (조합화상 이미지)  80. One moiré image (combined image)
D. 투시거리  D. Perspective Distance
D1. 명시거리 (근시점)  D1. Manifestation distance (myopia)
D2. 안구표면으로부터 볼록렌즈의 구심까지의 투시거리  D2. Perspective distance from eye surface to center of convex lens
D3. 안구표면으로부터 수정체의 투시교차점까지의 거리  D3. Distance from eye surface to fluoroscopy point of lens
D4. 수정체의 투시교차점부터 인쇄층까지의 거리  D4. Distance from Perspective Intersection of the Lens to the Printed Layer
Dt . 렌시시트의 표면으로부터 인지되는 모아레의 깊이감 거리  Dt. Depth sense distance of moire perceived from surface of lens sheet
I . 모아레이미지 1개의 크기  I. MoiréImage 1 Size
P . 피치 (렌즈배열 간격 )  P. Pitch (Lens Array Spacing)
r . 볼록렌즈의 반지름 r. Radius of convex lens
t . 초점거리 t. Focal Length
t l . 일반렌즈의 초점거리 t l. Focal Length of Regular Lens
t2. 굴절수지가 도포된 렌즈의 초점거리 t3. 볼톡렌즈로 곡률반경 표면으로부터 반사층까지의 거리 t2. Focal Length of Refractory Lens t3. Distance from the curvature radius surface to the reflective layer with a Voltok lens
t4. 반사층으로부터 '초점거리 인쇄층' 또는 '비초점거리 인쇄층' 까지의 거리 X . 투시 시차간격 t4. Distance from reflective layer to 'focal length printed layer' or 'focal distance printed layer' X. Perspective parallax interval
xl . 볼톡렌즈 시트의 근시점 이상 투시거리 시차간격 xl. Peripheral Distance Parallax Spacing
x2. 볼톡렌즈 시트의 근접투시 시차간격 x2. Close-up parallax spacing of Voltolens sheet
x3. 굴절수지가도포된 시트의 근시점 이상 투시거리 시차간격 x3. Perspective distance parallax or more near myopia of sheet with refractive resin
x4. 굴절수지가도포된 시트의 근접투시 시차간격 x4. Perspective parallax spacing of sheets with refractive resin
x5. 인쇄패턴의 반복간격. x5. Repeat interval of print pattern.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
본 발명은 변동화각에 의한 입체인지시트로써 투시거리에 따라 화각변화를 일으키는 렌즈시트의 구조적 특성과 종래 입체시트의 문제점을 고려하여 도면과 함 께 상세히 설명하면 다음과 같다. 도 1 내지 도 2는 본 발명을 설명하는 단면도 및 분해 사시도로써, 투명한 소재의 볼톡렌즈 (: )들이 일정한 피치거리의 수직교차배열 또는 60도 교차배열로 이루어 형성된 렌즈층 (10)으로 구성되고 , 렌즈층 (10)의 상면에는 볼록렌즈 (11)의 굴절률보다 낮은 굴절를로 이루어진 굴절수지층 (20)이 도포 경화되어 있으며, 굴절 수지층 (20)은 투명한 UV경화수지 또는 본드수지 등으로 이루어지는데, 굴절수지층 (20)과 접착 또는 점착되어 형성되는 보호층 (30)은 사용목적에 따라 보호필름 또는 기재층으로써 사용됨이 바람직 하지만 제거된 체로 제작되어도 무방하다. 렌즈층 (10)의 하부에는 상기 볼톡렌즈 (11)들의 굴절률 및 곡률반경 (r)과 굴 절수지층 (20)의 굴절률에 의하여 초점거리 (t2)가 형성되는데, 이 초점거리가 형성 되는 간격이 투명한 수지로 이루어져 두께층 (50)을 형성하고 있다. 두께층 (50)의 하면에는 상기 렌즈층 (10)과 굴절수지층 (20)을 투과하여 투시되는 인쇄충 (60)이 그 래픽 또는 도형패턴으로 형성되어있는데, 입체적으로 보이지 않는 일반적인그림 과 입체적으로 보이도록 하는 도형패턴이 인쇄되는 것이고, 도형패턴은 인쇄 또는 요 철무늬로 형성되어 인쇄층 (60)내에 구성되는 것이디- ᄀ ^데 보 ti tri o. 토시 71 P]에 ni르 -X\ ¾-lz t¾ -sl-oll ] ^led ] ¾ o ¾ ol 는 부분이 차둥 구분되어 연출되므로 '근시점ᅳ (Near Point of Eye)이상 투시거리에 서 입체적으로 보이는 입체패턴 (61)부와 '근시점' 이하의 거리에서도 투시관찰이 가능한 근접시차 (視差)에 의한 패턴 (62-1)영역이 인쇄층 (60)에 형성되어 있다. 인간의 눈은 도 3 내지 도 5에서 예시한 바와 같이, 사람이 사물을 볼 때 눈으 로부터 선명하게 볼 수 있는 가장 가까운 거리를 '근시점' (near point of eye) 이 라고 하는데 명시거리 (Visual Range)라고도 한다. '근시점' (D1)은 청소년의 경우 약 10cm, 성인이 되면서 약 25cm, 더 나이가 들면 노안으로 인해 약 lm 까지 늘어 나게 된다. 따라서 투시 가능한 '근시점' (D1)거리는 나이에 따라 차이가 있기 때문 에 본 발명은 건강한 성인의 투시관찰을 가정하여 설명한다. 도 3 내지 도 5는 안구의 사물투시 및 빛의 경로를 예시하여 설명하고 있는 데, 육안투시 및 렌즈를 통한 굴절투시가 망막에 결상되는 방법에 따라 이미지가 뇌에서 인지되는 구성적 차이를 설명하고 있다. 도 3는 '근시점 ' (D1)거리보다 멀리 있는 문자 또는 도형의 인지상황을 설명 하고 있는데, 문자 'A'를 투시함은 안구내의 볼록렌즈 즉, 수정체 (41)를 통과하여 망막 (42)에서 역상으로 결상되어 뇌에서 인지함으로 육안으로 보는 일반적인 상황 을 예시하고 있다. 따라서 '근시점' (D1) 이내의 투시거리 (D)에서 관찰하게 되면 안 구내의 망막에 초점이 맺혀지지 않으므로 화상 (書像)이 흐리게 보이게 되는 것이 다. 따라서 도 4에서 예시하는 바와 같이 '근시점' (D1) 이내의 문자 'A' 라 할 지라도 한 개의 돋보기 렌즈 (15)를 투과하여 관찰하게 되면, 볼록렌즈 (15)가 망막 에 초점이 맺히도록 화각 조절되어, 투시되는 문자 'A' 가 도 2와 마찬가지로 뇌 에서 인지할 수 있게 된다. 도 5는 본 발명의 '변동투시화각 입체시트' 를 투시하는 상황을 설명하고 있는데, '근시점' (D1) 이내의 문자 'A' 들을 볼록렌즈들에 의하여 조합화상으로 인지되도톡 구성됨을 설명하고 있다. 렌즈어레이를 이루는 각각의 볼톡렌즈들이 초 점을 아루는 위치에 작은 문자 'A' 들이 패턴을 이루어 렌즈어레이의 배열각도로 구성되고, 볼록렌즈들의 구심을 통과하는 투시 시차간격과 문자 'A' 들의 패턴조 밀도 차이에 의하여 모아래 (Moire)현상의 조합화상을 인지하고 입체적으로 보는 것 이다. 이 때 보이는 조합화상은 도 2에서 설명되는 것과 마찬가지로 렌즈들을 통 하여 망막에 맺히는 상이, 마치 '근시점' (D1)보다 먼 거리에 있는 이미지를 보는 것처럼 인지됨올 설명하는 것이다. 따라서 도 6 내지 도 9는 본 발명의 일실시예로써 도면에 예시하는 바와 같 이, 렌즈어레이에 의한 입체시트의 구성방법 차이에 따라 본 발명에 도달하는 효과 의 차이를 설명하고 있다. 사물을 관찰하는 데는 사람의 눈과 사물과의 적정거리인 '투시거리 (D)' 가 존재하는데, 일반적으로 투시거리를 측정하고자 한다면 눈으로부터 사물까지의 거 리를 줄자 등으로 측정하게 될 것이다. 그러나 본 발명에서는 입체시트를 구성하는 정확한 투시 및 시차 값을 구함이 중요하므로 다음과 같은 기준을 필요로 한다. 즉, 사람의 눈은 사람마다 약간의 차이는 있지만 수정체 (41)렌즈에 의하여 망막에 맺혀진 상을 인지하게 되는데, 수정체 (41)의 물체초점이 약 13mm이고, 망 막에 맺히는 상초점거리가 약 23瞧 이다. 또한 투시되는 상은 수정체 (43)의 중심축 을 지나 망막에 맺혀진 상을 뇌가 인지하게 되므로, 물체를 눈에 최대한 가깝게 두 고 관찰하는 '최소 근접투시' 를 가정한다면, 도 9에서 예시한 바와 같이 '수정 체' 의 안쪽 곡면에서 역상으로 바뀌는 '투시교차점' (44) 형성되므로 이 지점이 투시되는 화각의 시작점이 될 것이다. 따라서 눈꺼풀 두께 약 3隱 와 물체와의 최소근접거리 약 5諷를 가정하여 , 안구의 표면 (43)에서부터 수정체의 투시교차점 (44)까지의 거리가 사람은 평균 7.2mm 정도이므로, 정확한 투시거리는 이 간격이 반드시 포함되어야 한다. 따라서 투시화각 시작점에서 목표물 까지 의 거리는 약 15.2瞧로써 투시거리 'D4'는 안구 내의 연장거리 'D3' 가 포함되어 계산되어야 하는 것이다. 대체로 투시거리를 측정할 때의 오차는, 눈 표면 (43)으로부터 물체까지의 거 리를 측정된 값을 계산함에 따라 오류가 발생되는 주요원인이 되는 것이다. 특히 ' 근시점 '거리 (D1) 이내의 투시거리에서의 관찰거리를 측정할 때는 이러한 문제가 화 각에 따른 수치값에 큰 영향을 미치므로, 도 6 내지 도 9에서 예시하듯이 안구의 표면 (43)부터 수정체의 투시 교차점 (44)까지의 거리 (D3)와 눈 표면으로부터 볼록렌 즈 ( 11) 구심까지의 거리 (D2)및 구심으로부터 인쇄층 (60)까지의 거리를 포함한 측정 거리 'D4 '를 대입시켜, 볼록렌즈 ( 11)들의 구심을 통해 투시되는 시차 값 (X)을 구 할 수 있는 것이다. 즉, 상기 도 5에서 설명처럼 볼록렌즈들의 구심을 통과하여 투시되는 시차간 격과 반복되는 도형들의 패턴조밀도 차이에 의하여 모아래 (Moi re)현상의 조합화상 을 입체적으로 보게 되므로, 인쇄된 패턴의 반복간격과 투시되는 시차 값 (X)의 차 이를 미리 계산함은 그 차이에 의하여 인지되는 입체화상의 크기와 깊이감 또는 돌 출감이 결정되므로, 볼록렌즈의 구심을 통해 투시되는 시차 값 (X)을 미리 계산함에 따라 의도된 효과를 얻을 수 있는 것이다. 통상적으로 렌즈어레이를 이용한 모아레 입체기법은 렌즈피치를 중심으로The present invention is described in detail with reference to the drawings in consideration of the structural characteristics of the lens sheet causing the angle of view changes according to the viewing distance and the problem of the conventional three-dimensional sheet as a three-dimensional recognition sheet by the variable angle of view. 1 to 2 are cross-sectional and exploded perspective views illustrating the present invention, wherein the transparent lens Volt. Lenses (:) are composed of a lens layer 10 formed of a vertical pitch array or a 60 degree cross array of a constant pitch distance, On the upper surface of the lens layer 10, a refractive resin layer 20 made of refractive index lower than the refractive index of the convex lens 11 is applied and cured, and the refractive resin layer 20 is made of a transparent UV cured resin or a bond resin. , The protective layer 30 formed by bonding or adhering to the refractive resin layer 20 is preferably used as a protective film or a base layer depending on the purpose of use, but may be made of a removed sieve. The focal length t2 is formed at the lower portion of the lens layer 10 by the refractive index and the curvature radius r of the boltok lenses 11 and the refractive index of the refractive resin layer 20. It consists of transparent resin and forms the thickness layer 50. FIG. On the lower surface of the thickness layer 50, the printing insects 60 transmitted through the lens layer 10 and the refractive resin layer 20 are formed in a graphic or graphic pattern. The figure pattern is to be printed, and the figure pattern is formed in the printing layer 60 is formed by the printing or irregular pattern-a ^ de bo ti tri o. Toshi 7 1 P] ni le -X \ ¾-lz t¾ -sl-oll] ^ led] ¾ o ¾ ol is divided into two parts, so you can see more than 'Near Point of Eye'. In the printing layer 60, a region of the pattern 62-1 by proximity parallax, which can be viewed even at a distance below the 'myopia' and the three-dimensional pattern 61, which is three-dimensionally visible, is formed. As illustrated in FIGS. 3 to 5, the human eye is referred to as a near point of eye, which is the closest distance that a person can see clearly from the eye. Also called). 'Myopia' (D1) is about 10cm for adolescents, about 25cm as adults, and increases to about lm due to presbyopia. Therefore, the perspective 'myopia' (D1) distance that can be seen varies depending on the age, so the present invention will be explained assuming a perspective view of a healthy adult. 3 to 5 illustrate the eye and the path of light of the eye by way of example, illustrating the constitutive difference that the image is perceived in the brain according to the method of visual refraction through the lens and refraction through the lens. have. FIG. 3 illustrates the cognitive situation of a character or a figure farther than the 'myopia' (D1) distance, and the projection of the letter 'A' passes through the convex lens, ie, the lens 41, in the eye. This is an example of a general situation in which the human eye is visually reversed and visually recognized by the brain. Therefore, if you observe from the perspective distance (D) within the 'myopia' (D1), the image is blurred because the eye's retina is not focused. Therefore, as illustrated in FIG. 4, even if the letter 'A' within the 'myopia' (D1) is observed through the magnifier lens 15, the convex lens 15 is focused on the retina. By adjusting the angle of view, the letter 'A' that is projected can be recognized by the brain as in FIG. 5 is a view illustrating a situation in which the perspective view angle stereoscopic sheet of the present invention is projected, and the letter 'A' within the 'myopia' (D1) is configured to be recognized as a combination image by convex lenses. Doing. The small letters 'A' are formed at the position where each Voltolens forming the lens array are in focus, and are composed of the array angle of the lens array, and the perspective parallax interval and the letters 'A' which pass through the center of the convex lenses Recognizing and stereoscopically viewing the combined image of Moire phenomenon by the difference in pattern density to be. As shown in FIG. 2, the combined image seen at this time is an image formed on the retina through the lenses, and it is explained that the image is perceived as if the image is farther than the 'myopia' (D1). Therefore, FIGS. 6 to 9 illustrate the difference in the effects of reaching the present invention according to the configuration method of the three-dimensional sheet by the lens array as illustrated in the drawings as an embodiment of the present invention. There is 'perspective distance (D)', which is the proper distance between the human eye and the object for observing objects. In general, if you want to measure the distance, you will measure the distance from the eye to the object with a tape measure. However, in the present invention, since it is important to obtain accurate perspective and parallax values constituting the three-dimensional sheet, the following criteria are required. That is, the human eye recognizes the image formed on the retina by the lens of lens 41, although there is a slight difference in each person. The object focus of the lens 41 is about 13 mm, and the focal length formed on the retina is About 23 瞧. In addition, since the brain recognizes the image formed on the retina past the central axis of the lens 43, the perspective image is assumed to be 'minimal proximity' to place the object as close to the eye as possible, and as illustrated in FIG. 9. Likewise, the 'perspective intersection' (44), which is reversed from the inner surface of the 'crystal', is formed, so this point will be the starting point of the angle of view that is visible. Therefore, assuming an eyelid thickness of about 3 隱 and a minimum proximity of about 5 諷 to an object, the distance from the eye's surface 43 to the lens's perspective intersecting point 44 is about 7.2 mm for the average person, so The interval must be included. Therefore, the distance from the starting angle of view to the target is about 15.2 瞧, so the perspective distance 'D4' should be calculated including the extension distance 'D3' in the eye. In general, the error in measuring the viewing distance is the main cause of the error by calculating the measured value of the distance from the eye surface 43 to the object. In particular, when measuring the observation distance within the 'myopia' distance (D1), this problem has a significant effect on the numerical value according to the angle of view, as shown in Figures 6 to 9 43) from the eye surface to the distance (D3) from the lens's perspective junction (44) (11) Substitute the measured distance 'D4' including the distance to the centripet (D2) and the distance from the centripet to the printed layer (60) to find the parallax value (X) projected through the centripet of the convex lenses (11). You can get it. That is, as shown in FIG. 5, the combined image of the Moi re phenomenon is viewed in three dimensions by the parallax interval projected through the centers of the convex lenses and the pattern density difference of the repeated figures. Computation of the difference between the repetition interval and the projected parallax value (X) in advance determines the size, depth, or projection of the stereoscopic image perceived by the difference, so that the parallax value (X) projected through the center of the convex lens is determined. By precomputing, the intended effect can be obtained. In general, the moire stereoscopic technique using a lens array focuses on the lens pitch.
98%내지 102% 내외에서 인쇄패턴 망점간격에 의해 제작됨이 종래의 방법이었다. 그 러나 이러한 기준은 투시거리에 따른 변화를 적용하지 않은 방법이다. 따라서 디자 인의 의도에 따라 인식되는 패턴의 크기와 간격을 결정해야 하지만 그 값올 구하는 것은 1M 밖에서 주로 투시하는 목적물 과 1M 이내의 근거리에서 투시하는 물체의 투시거리에 따라 그 화각이 달라지므로, 당업자가 정확한 투시거리 가준에 의해 인 쇄패턴의 간격을 결정하여 제작됨이 바람직하다. 따라서 투시거리에 따른 '투시정점 시차간격 (xl) ' 을 기준으로 정하여, 이 기준을 중심으로 깊이감과 돌출감의 인쇄패턴 간격값을 정해야 하고, 이 '투시정점 시차간격' 을 기준으로 조금씩 크거나 작은 인쇄패턴의 조밀도 간격 차이에 의해 입체시트의 깊이감 레벨 ( level )차이가 조절되는 것이다. 그런데 미리정한 투시거리에서 '투시정점 시차간격' 의 조밀도로 인쇄된 도 형패턴 (61 , 62)을 투시하게 되면, 이 투시거리 에서는 전혀 ¾체감을 인지할 수 없 게 된다. 즉, 볼록렌즈들을 통한 시차간격과 인쇄패턴의 조밀도간격차에서 모아레 (70) 가 발생되어 입체감이 나타내야 하는데, 투시돠는 시차와 인쇄패턴의 간격이 동일 하므로 입체적인 모아레 (80)를 인식할 수없는 것이고, 결국 투시정점 (또는 무한대 거리 인식)간격이 되는 것이다. 또한 투시정점 시차간격 은 렌즈 피치간격과는 같을 수 없고 다음 식에 의하여 구할 수 있다. 식 1. It is a conventional method to be produced by printing pattern dot spacing in the range of 98% to 102%. However, this criterion is a method that does not apply the change in perspective distance. Therefore, it is necessary to determine the size and spacing of the recognized pattern according to the design intention, but to find out the value of the pattern depends on the perspective distance of the object projected mainly from outside 1M and the object projected from near distance within 1M. It is preferable that the distance between print patterns is determined by the perspective distance provision. Therefore, based on the 'perspective vertex parallax interval (xl)' according to the perspective distance, the printing pattern interval value of depth and protrusion must be determined based on this criterion, and slightly larger or smaller based on this 'perspective vertex parallax interval' The difference in depth level of the three-dimensional sheet is controlled by the difference in the density intervals of the small print patterns. However, if the projection patterns 61 and 62 printed with the density of 'perspective vertex parallax interval' are projected at a predetermined perspective distance, it is impossible to perceive ¾ sensation at all at this perspective distance. In other words, the moiré 70 is generated from the parallax gap through the convex lenses and the density gap of the printing pattern, and the three-dimensional effect should be represented. In the perspective, the three-dimensional moire 80 can be recognized because the distance between the parallax and the printing pattern is the same. It is absent and eventually becomes a perspective vertex (or infinite distance awareness) interval. Also, the perspective vertex parallax interval is different from the lens pitch interval. It cannot be the same and can be obtained by the following formula. Equation 1.
X = P (D2 +D3 +t2 - r) / D2 +D3 따라서 본 발명은 이러한 관측거리에 따라 투시정점 시차간격을 정확히 찾 고, 오히려 이러한 관측거리에 따라 변화되는 시차간격의 특징을 이용하여, 관측 투시거리 변화에 따라 육안으로 인식되는 변화를 극대화 하여 '변동화각에 의한 입체인지시트' 를 제작할 수 있는 것이다. 도 6 내지 도 7은 일반적인 볼록렌즈시트를 이용한 본 발명의 일실시예를 예시 한 도면이다. 예컨대 도 6에서 예시된 구성을 가정하면, 렌즈피치 (P)가 lmm 이고, 관측거 리 (D)가 1200隨이고, 초점거리 (t l)는 1.8瞧 이고, 곡률반경 (r)이 0.6mm 일 경우에 상기 식에 의해 구한 투시정점 시차간격 (xl)의 값은 1.001mm이다. 그리고 도 7에서 예시하듯이 똑같은 조건에서 관측거리가 (D) 250mm일 때를 가정한다면, 시차간격 (x2)값은 1.0048mm가 되므로 관찰시점에 따른 시차간격차이가 0.38% 차이가 나타난 다. 그런데, 모아레 (80)에 의한 입체화상 인지기법은 투시정점 시차간격을 기준 으로 약 1% - 약 의 조밀도 차이에서 확실한 입체감을 인식할 수 있고, 약 1% ~ 2%의 조밀도 차이 내에서는 작은 수치변화에도 극심한 입체변화가 나타나게 된다. 따라서 상기에서 계산된 시차값의 차이가 1%미만의 0.38%의 조밀도 차이밖에 되지 않으므로, 결국 투시거리에 따른 입체화상변화를 인지할 수 없을 정도의 극히 미미 한 화각 변화의 결과 값을 얻을 수밖에 없고, 종래에 사용되는 일반적인 초점거리 의 입체시트로는 본 발명의 목적에 도달할수 없음을 알수 있다. 따라서 이러한 문제점을 해결하기 위한 방법으로써 초점거리를 더 길게 하면 화각변화가유리해 지는 것이다. 따라서 상기의 렌즈조건과 똑같은 상황에서 단지 초점거리가 5隱로 바뀐 상 태의 도 6의 경우를 가정하여 위 계산식에 의하여 계산하면, 관측거리 (D)가 1200mm 일 때 관찰위치에 따른 투시정점 시차간격 (xl)은 약 1.0036mm 이고, 다시 똑같은 조건에서 도 7의 초점거리가 5ι丽이고 관측거리가 (D)가 250麵일 때를 가정한하여 계 산하면 시차간격 (X)은 1.0179隱 로써 약 1.4%의 만큼의 투시화각변화가 발생하므 로, 확실한 입체화상의 변화를 일으킬 수 있는 것이다. 즉 투시되는 시차간격이 1.4%만큼 변화됨은 동일한 관측시점 변화라 할지라 도 초점거리가 길어짐에 따라 매우 액티브한 입체영상의 변화를 제작할 수 있는 중 요 요인이 되는 것이다. 따라서 본 발명은 상기 '계산식' 에 의한 투시정점 시차간격 (xl)값 과 투시 거리 변화에 따른 시차간격 (x2)값을 구하고, 이 두 시차간격 값을 얻기 위한 바람 직한 초점거리 (tl)는 렌즈의 피치 (P) 대비 약 3.5배 이상 되는 입체시트를 제작함 이 바람직하고, 초점거리가 길면 길수록 투시거리에 따른 시차간격차이가 커지므로 더욱 액티브한 입체조합화상의 변화를 인지하게 됨은 당연한 것이다. 도 8 내지 도 9는 본 발명의 일실시예로써, 이러한 제품의 활용은 스마트폰 표면소재처럼 손으로 들고 보는 소형 제품의 적용을 예로 들어, 더욱 짧은 관측거 리 내에서의 연출됨이 필요하고, 시트의 두께도 더욱 얇게 제작 돼야하는 것이므 로, 약 0.8画의 두께의 초점거리를 이루는 시트로써, 예컨대 피치가 약 0.1289mm이 고, 렌즈의 곡률반경 (R)이 약 0.294画, 굴절률이 1.48인 미세한 마이크로 렌즈를 제작해야 함을 가정한다. 그런데 이러한 마이크로렌즈어레이 시트를 제작함은 양산을 위하여 몰드를 제작해야 하는데 그만큼의 비용이 투자되어야 하고, 두께를 조절하기 위한 곡률반 경을 확보하기란 매우 까다로운 잡업이고 번거로운 상황이 되는 것이다. 따라서 본 발명은 이러한 문제점을 해결하기 위한 수단으로 제작이 용이한 약 0.06議의 곡률반경 (r)을 이루는 렌즈층 (10)을 제작하고, 상기 0.294mm의 곡률반 경에 의한 초점거리 (tl)를 얻는 대신 굴절률 약 1.45의 투명굴절수지 (20)를 렌즈층 (10)의 상면에 도포 경화시켜 사용함으로써, 렌즈의 굴절률 1.58과 굴절수지의 굴 절률 1.45의 굴절차이에 의하여 초점거리 (t2) 약 0.8mm를 얻을 수 있는 것이다. 도 8은 본 발명의 일실시예에 의한 입체시트로써 볼톡렌즈층 (10)의 표면과 맞닿은 위치에 굴절수지층 (20)이 형성됨을 예시하고 있다. 상기에서 서술된 바와 렌즈의 피치 (P)대비 초점거리 (t2)를 길게 형성함으로써 변동화각에 따른 효과가 용 이하므로, 렌즈의 피치 (P)가 0.1289画일 때 초점거리 (t2)가 0.8隱라 함은 피치 (P) 대비 약 6.2배의 초점거리 (t2)가 형성된 것이다ᅳ 도 8 내지 도 9에서 보는바와 같이 투시거리는 D4 = D2 +D3 + t2 - r 이므로 투시거리 (D4)가 250mm일 때를 가정하여 상기 계산식에 의하여 계산하면, x3 = 0.1289 X (242.06 +7.2 +0.8 —0.06) I 242.06 +7.2 =0.12925 투시정점 시차간격 (x3)은 약으12925隱 이다. 도 9는 '근시점' 이내의 투시거리 (D4)에서 본 발명의 입체시트를 관찰함을 예사하고 았다. 투시거리가 짧으면 짧을수톡 투시화각의 변화는 점점 심해질 것이 다. 따라서 안구내의 투시 시작점부터 투시물체 위치까지 정확하게 계산돼야 함을 상기에서 언급한 바 있다. 따라서 안구내의 투시교차점 (44)부터 안구표면 (43)가지의 거리가 약 7.2mm이 고, 안구표면으로부터 눈꺼풀 과 눈썹 및 안면의 골격을 가만하면 물체표면을 최대 한 갖다 대고 보는 투시간격은 약 7醒로 가정하여, 시트의 두께가 약 0.8薩 이므로 정확한 투시거리 (D4)는 약 15mra가 된다. 물론, '근시점 '이내에서 육안으로 볼 수 있는 방법은 도 5에서 설명한바와 같으며, 안구내의 투시교차점 (44)으로부터 볼록렌즈 (11)들의 구심을 통과하는 직선 의 연장선이 '투시경로' 이므로, 볼록렌즈의 곡률반경 (r)이 약 0.06隱일 때 안 구표면 (43)으로부터 볼록렌즈 ( 11)들의 구심가지의 거리 (D2)는 7.06腿 이고, 초점거 리 (t2)에서 볼록렌즈의 곡률반경 (r )값을 빼면 0.74瞧 이다. 따라서 이 수치 값들을 상기 계산식에 의해 최소근접 투시거리에서 입체시트를 투시하는 시차간격 (x4)을 구하면, 0.1289(7.06 +7.2 + 0.8 - 0.06) I 7.06 + 7.2 = 0. 1355醜의 수치를 얻을 수 있다. 따라서 .상기 투시정점 시차간격 (x3) 약 0. 1293mm와 근접투시에서의 시차간격 (X4) 0.1355ran를 대비하면 약 4.6%의 조밀도 차이가 나타나게 된다. 결국 시차간격 (x4) 0.1355画를 중심으로 약 4.6% 이내의 패턴 간격의 입체패턴 (62-1)을 인쇄할 경우 변동된 투시화각에 의해 확실한 입체감을 인식하면서 투시 할 수 있게 되는 것이다. 그런데 본 발명은 '근시점 '이상 거리에서도 입체감이 인식되고 '근시점 '이내 의 최소근접거리에서도 입체감을 인식할 수 있도록 인쇄패턴의 시차 (x3)값을 구해 야 하므로 그 방법은 다음과 같다. 사물을 본다함은 '근시점'거리 (D1)이상에 있는 물체만 선명하게 볼 수 있다 는 것인데, 본 발명의 입체시트는 '근시점' 이내의 최소근접거리 에서도 투시 식별 이 가능한 시트를 제작할 수 있다고 상기에서 언급하였다. 그 원리는 본 발명의 시 트자체가 볼톡렌즈 (11)들에 의해 만들진 것이기 때문에, 도 4 내지 도 5의 설명에서 예시한 것처럼 육안으로 '근시점 ' (D1)이내에 있는 물체를 투시하지만 볼록렌즈들에 의하여 '근시점' 이상 거리에 있는 물체를 보는 것처럼 느낄 수 있으면 해결되는 것이다. 따라서 입체적으로 보이는 모아레 (80)의 깊이감이 시트의 표면보다 약 25cm 뒤에 물러나 보인다면 당연히 아무리 시트의 표면까지 눈을 갖다 대고 본다하더라 도 '근시점' 이상의 사물올 보는 것과 같을 것이다. 따라서 투시거리에서 볼 때 표 면보다 입체이미지의 깊이감이 근시점거리 (약 10cm ~ 25cm) 이상 물러나 보이도톡 인쇄패턴의 배열간격이 구성되어야 하는 것이다. 따라서 도 10은 본 발명의 '근시점'이상 투시거리를 확보하는 입체시트의 일시시예를 예시하고 있다. X = P (D2 + D3 + t2-r) / D2 + D3 Therefore, the present invention accurately finds the perspective vertex parallax interval according to this observation distance, and rather, by using the characteristics of the parallax interval that changes according to this observation distance, It is possible to produce 'stereocognitive sheet by variable angle of view' by maximizing the perceived change according to the change of observation perspective distance. 6 to 7 illustrate an embodiment of the present invention using a general convex lens sheet. For example, assuming the configuration illustrated in FIG. 6, the lens pitch P is lmm, the observation distance D is 1200 隨, the focal length tl is 1.8 瞧, and the radius of curvature r is 0.6mm. In this case, the value of the see-through peak parallax interval (xl) obtained by the above formula is 1.001 mm. As shown in FIG. 7, when the observation distance is (D) 250 mm under the same conditions, the parallax interval (x2) becomes 1.0048 mm, resulting in a 0.38% difference in the parallax interval according to the observation time point. However, the three-dimensional image recognition technique by the moiré 80 can recognize a solid three-dimensional feeling at a density difference of about 1% to about a perspective vertex parallax interval, and within a density difference of about 1% to 2% Extremely three-dimensional changes occur even with small numerical changes. Therefore, the difference in the parallax values calculated above is only 0.38% of the density difference of less than 1%. Therefore, the result of the extremely small angle of view change that is not enough to recognize the stereoscopic image change according to the viewing distance is inevitably obtained. It can be seen that the objective of the present invention cannot be achieved with a three-dimensional sheet having a general focal length conventionally used. Therefore, as a way to solve this problem, the longer the focal length, the better the angle of view change. Therefore, in the same situation as the above lens condition, only the focal length is changed to 5 隱. Assuming that the case of Fig. 6 is calculated by the above formula, when the observation distance (D) is 1200mm, the perspective vertex parallax interval (xl) according to the observation position is about 1.0036mm, and again under the same conditions, the focal length of FIG. Is calculated as assuming that the viewing distance is (5) and the observation distance is 250 麵, the parallax interval (X) is 1.0179 隱, resulting in a change in perspective angle of about 1.4%. It can be. In other words, the 1.4% change in the parallax spacing becomes an important factor to produce a very active 3D image change as the focal length becomes longer even with the same observation point change. Therefore, the present invention obtains the perspective vertex parallax spacing (xl) value and the parallax spacing (x2) value according to the change of the perspective distance according to the 'calculation', and the preferred focal length (tl) for obtaining the two parallax spacing values is a lens. It is desirable to produce a three-dimensional sheet that is about 3.5 times more than the pitch (P), and the longer the focal length, the greater the disparity difference according to the viewing distance. 8 to 9 is an embodiment of the present invention, the utilization of such a product needs to be produced within a shorter observation distance, for example, the application of a small product holding by hand like a smartphone surface material, Since the thickness of the sheet should be made thinner, it is a sheet having a focal length of about 0.8 画. For example, the pitch is about 0.1289mm, the radius of curvature of the lens is about 0.294 画, and the refractive index is 1.48. It is assumed that a fine micro lens should be manufactured. By the way, the production of such a microlens array sheet is required to produce a mold for mass production, and the cost must be invested, and to secure a radius of curvature for adjusting the thickness is a very difficult task and cumbersome situation. Therefore, the present invention is to produce a lens layer 10 of the curvature radius (r) of about 0.06 議, which is easy to manufacture as a means to solve this problem, the focal length (tl) by the curvature radius of 0.294mm By applying and curing the transparent refractive index resin 20 having an index of refraction of about 1.45 to the upper surface of the lens layer 10, the refractive index of 1.58 of the lens and the refractive index of 1.45 of the refractive index of the refractive index of the refractive index of the refractive index of the resin is used. You can get 0.8mm. 8 illustrates that the refractive resin layer 20 is formed at a position in contact with the surface of the botox lens layer 10 as a three-dimensional sheet according to an embodiment of the present invention. As described above, by forming the focal length t2 longer than the pitch P of the lens, the effect according to the angle of change is easy, so that the focal length t2 is 0.8 隱 when the lens pitch P is 0.1289 画. The focal length (t2) of about 6.2 times the pitch (P) is formed. As shown in FIGS. 8 to 9, the viewing distance is D4 = D2 + D3 + t2-r, so the viewing distance (D4) is 250 mm. Assuming that the time is calculated according to the above formula, x3 = 0.1289 X (242.06 +7.2 +0.8 -0.06) I 242.06 +7.2 = 0.12925 Perspective peak parallax interval (x3) is about 12925 隱. 9 is an example of observing the three-dimensional sheet of the present invention at a viewing distance (D4) within the 'myopia'. The shorter the viewing distance, the shorter the field of view change will be. Therefore, it has been mentioned above that the perspective from the starting point of fluoroscopy to the position of fluoroscopy object must be accurately calculated. Therefore, the distance between the intraocular perspective intersection (44) and the eye surface (43) branches is about 7.2 mm, and if you put the eyelid, eyebrows, and facial skeleton away from the eye surface, you can see the object surface as much as possible. Assume that 시트, the thickness of the sheet is about 0.8 薩, so the correct see-through distance D4 is about 15 mra. Of course, the method that can be seen with the naked eye within the 'myopia' is as described in FIG. 5, and since the extension line of the straight line passing through the centroid of the convex lenses 11 from the intraocular perspective intersection 44 is the 'perspective path'. When the radius of curvature (r) of the convex lens is about 0.06 隱, the distance (D2) of the centripetal branch of the convex lenses (11) from the eye surface (43) is 7.06 腿, and at the focal length (t2) Subtracting the radius of curvature (r), it is 0.74 瞧. Therefore, if the parallax interval (x4) through which the three-dimensional sheet is projected through the minimum perspective distance is calculated by the above formula, the numerical value of 0.1289 (7.06 +7.2 + 0.8-0.06) I 7.06 + 7.2 = 0.135 ms is obtained. Can be. Therefore, a contrast difference of about 4.6% appears when comparing the perspective vertex parallax interval (x3) of about 0.1393 mm and the parallax interval (X4) of near vision of 0.11293 mm. Eventually, a three-dimensional pattern (62-1) with a pattern spacing of about 4.6% is printed, with a parallax interval (x4) of 0.13554. In this case, the perspective can be viewed while recognizing a solid three-dimensional effect by the changed perspective angle. However, in the present invention, since the three-dimensional effect is recognized even at a distance near the 'myopia', and the parallax (x3) value of the printing pattern must be obtained to recognize the three-dimensional sense even at the minimum close distance within the 'myopia', the method is as follows. Seeing things means that only objects that are above the 'myopia' distance (D1) can be seen clearly, and the three-dimensional sheet of the present invention can produce a sheet capable of identifying a perspective even at a minimum proximity within the 'myopia'. Mentioned above. The principle is that since the sheet itself of the present invention is made by the botox lenses 11, it projects the object within the 'myopia' (D1) with the naked eye as illustrated in the description of Figs. If you can feel as if you are seeing an object that is more than your 'myopia', then it is solved. Therefore, if the depth of the three-dimensional moire 80 seems to be about 25cm behind the surface of the sheet, of course, even if you look into the surface of the sheet, it will be as if you are seeing more than 'myopia'. Therefore, the depth of the three-dimensional image than the surface when viewed from the perspective distance more than the near-optical distance (about 10cm ~ 25cm) should be arranged, the arrangement interval of the Voiddot print pattern should be configured. Therefore, Figure 10 illustrates a temporal example of a three-dimensional sheet to ensure a viewing distance more than 'myopia' of the present invention.
25cm 이상 물러나 보이도톡 하는 인쇄패턴의 구성은 각각의 볼톡렌즈의 크기 와 곡률반경, 초점거리에 의하여 각각 달라질 수 있는데 예컨대 볼록렌즈의 피치가 0.254腿이고 곡률반경이 0.155瞧 및 굴절률이 1.585 인 렌즈시트의 초점거리 (U)는 약 0.42顏 가 된다. 이 경우 볼록렌즈 (11)들의 표면에 도포되는 굴절수지 (20)의 굴 절률이 1.506이면 초점거리 (t2)는 약 3.1瞧가 되는데, 렌즈의 피치가 0.254mra이고 초점거리가 3.1讓의 시트는 렌즈의 곡률반경이 약 1.144mm일 때와 동일한 초점거리 가 된다. 초점거리가 입체적으로 보이는 조합화상의 깊이감 (Di )이 '근시점'거리 약 250mm 이상 물러나 보이도록 하는 구성요소는 길어진 초점거리와 투시 시차와 다음 식에 의하여 제작할 수 있다. 식 2 The configuration of the printed pattern to recede more than 25cm can be varied depending on the size, curvature radius, and focal length of each botox lens.For example, a lens sheet with a convex lens pitch of 0.254 腿, curvature radius of 0.155 瞧 and a refractive index of 1.585 The focal length U is about 0.42 0.4. In this case, when the refractive index of the refractive resin 20 coated on the surfaces of the convex lenses 11 is 1.506, the focal length t2 becomes about 3.1 μs, and the sheet having the lens pitch of 0.254 mra and the focal length of 3.1 μs The focal length is the same as the curvature radius of the lens is about 1.144mm. The components that make the depth of field (Di) of the combined image, which shows the focal length three-dimensional, retreat more than about 250mm from the 'myopia' distance, are characterized by a long focal length, It can manufacture by a formula. Equation 2
Di = (t2 - r)(D2 +D3) I I [P(D2 +D3) - (t2 - r) I] 따라서 투시거리 (D2 +D3) 약 40cm에서 인지되어 보이는 입체이미지는, (3.1 - 1.144) X 400 X I / [0.254 x 400 - (3.1 - 1.144) x I ] 250圆 이므로, I - 19.978mm이다. 즉, 모아레 (80) 1개의 반복 간격 ( I )이 19.978mm인 입체이미지는 상기 식에 의하여 정확하게는 약 250.000467mm 깊이감 (Di )으로 인식된는 것이고, 250瞧 이상 의 깊이감 (Dt )이 확보됨은 기존 초점거리 (tl)보다 약 7.38배 두꺼워짐으로써 용이 하게 제작할 수 있는 것이다. 결국 이것은 '근시점'거리를 전, 후한 모든 투시거리 에서 선명하게 모아레 (80)이미지를 확인 할 수 있는 것이다. 또한 이것은 상기 '식 1' 에 의하여 계산하면, 투시거리의 정점시차 간격 (x3) 약 0.2541mm는 투시인지 무한대거리를 나타냄과 같으므로, 상기 투시인지 깊 이감 (Di ) 약 250mm로 인지되는 인쇄패턴 (x5)의 간격은 정점시차 간격 (x3)보다 작을 수밖에 없고, 입체 조합화상으로 인지되는 입체패턴 (80) 즉, 1개의 모아래의 크기 가 각각의 볼록렌즈들에 의해 조합되어 보이는 것이므로 볼록렌즈의 개수를 계산하 여 인쇄패턴 간격 (x5)을 계산하면 약 0.2508mm가 되는 것이다. 따러서 피치 0.254隱보다는 약 98.7% 작게 형성됨을 알 수 있고, 이것은 초 점거리가 더 길어지면 길어질수록 그리고 사람에 따라 근점거리가 짧으면 짧을수록 그 차이는 더욱 벌어지게 된다. 따라서 본 발명은 일반렌즈시트보다 초점거리가 멀어져야만 효과를 얻을 수 있는데, 건축 인테리어용 장식제품에는 3mm이상의 유리가공 제품을 많이 사용하지 만, 전자제품 등에 사용되는 장시시트로는 제품에 따라 시트의 두께가 얇게 제작되 어야 함이 필요로 하게 될 것이다. 따라서 본 발명에서 사용되는 요소의 초점거리 가 멀어진다함은 입체시트의 두께가 두꺼워지는 것이므로, 필요에 따라 시트의 두 께를 얇게 제작해야 하는 방법이 필요하다. 도 11a 내지 도 12b는 본 발명의 다른 일실시예에 의한 방법으로써, 볼록렌 즈층 (10)표면에 도포된 굴절수지 (20)에 의해 초점거리 (t2)가 길어져 시트의 두께가 너무 두꺼워 지면 경제성 및 가공성이 떨어지게 되는 경우가 발생하므로 동일한 초 점거리 조건에서 시트의 두께를 줄일 수 있는 방법은 다음과 같다. 도 11a 내지 도 11c에 예시된 바와 같이, 볼록렌즈와 초점거리 (t2) 사이에 반사층 (70)이 형성되어 볼록렌즈로부터 반사층 까지의 시트두께를 형성하고, 원래 의 초점거리 (t2)에 형성된 인쇄충 (60)의 위치를 대신하여, 상기 반사층 (70)으로부 터 원래의 초점거리 (t2)까지의 간격 (t4)만큼 반사층 (70)으로부터 볼톡렌즈 ( 11) 상 부의 동일한 거리 (t4) 위치에 비초점거리 인쇄층 (60-1)을 형성하게 하는 것이다. 반사층 (70)의 위치는 볼록렌즈층 ( 10)상부에 형성된 굴절수지 (20)표면으로부 터 원래의 초점거리 (t2)까지의 거의 절반 이하의 두께위치에 반사층 (70)이 형성되 고 볼톡렌즈 ( 11)들의 입사광이 반사층 (70)에 반사되어 새로이 형성된 비초점거리 인쇄층 (60-1)에 초점이 맺히도록 하는 것이다. 즉, 인쇄층 (60-1)에 형성된 인쇄패턴 (62-1)을 투시하는 경로는 육안으로부터 비초점거리의 인쇄충 (60-1)을 지나 볼록렌즈 (11)들의 구심을 통과하여 반사층 (70) 에서 반사되고, 반사층 (70)으로부터 다시 볼톡렌즈 (11)들을 통과하여 비초점거리 인쇄층 (60-1)간격 (t4)에 인쇄된 패턴 (61-1 , 62-1)을 투시함으로써, 원래 입체시트 의 두께에 비해 절반아하의 두께 (t4-l)로 본 발명의 입체효과를 연출할 수 있는 것 이다. 또한 반사층 (70)으로부터 반사되어 다시 볼록렌즈 (11)들을 통과하는 과정에 서 초점이 다시 좁아지는 현상이 발생하여 초점거리가 약간 더 짧아지는 현상이 있 으므로 볼톡렌즈 (11)로부터 반사층 (70)까지의 거리 또는 투명층 (50-1)이 짧은면 짧 을수록 초점거리가 짧아지어 되어 원래의 입체시트의 두께에 비해 1/3미만 까자도 더욱 줄일 수 있는 장점이 있어 본 발명의 또 다른 용도로써 입체패턴 (61— 1)을 주 로 투시하기위한 박층 (薄層) 입체시트로도 사용될 수 있는 것이다. 너무 초점거리가 짧아지면 육안으로 느끼는 입체감도 짧아지므로 변동화각 인지패턴면 (62-1)을 투시하기 위해서는 볼록렌즈의 표면에 최대한 가까이 비초점거 리 인쇄층 (60-1)이 형성되도록 하여 원래의 입체시트의 두께에 비해 약 1/2정도를 유지하거나, 볼톡렌즈의 굴절률과 곡률반경 및 굴절수지 굴절률의 상관관계를 조절 하여 제작할 수 있는 것이다. 물론, 투시경로에 있어서 눈으로부터 인쇄패턴 (62-1)을 처음 투과될 때는 육안으로 인지되지 않지만, 반시되어 다시 인쇄층 (60-1)에 집광되는 포인트를 조합 하여 인지하는 것이므로, 반사체 (70)의 경면효과가 좋아야만 왜곡이 생기지 않으 므로, 주로 메탈증착 방법을 활용하여 반사체 (70)를 형성하도록 하는 것이 바람직 하다. 도 lib는 상기 도 11a에서 예시한 입체시트의 응용방법으로 볼록렌즈층 상부 에 보호층 (30)이 형성되고, 보호층 상면에 비초점거리 인쇄층 (6으1)이 형성되어 있 다. 비초점거리 인쇄층 (60-1) 에는 일반인쇄 와 입체패턴인쇄면 (61)과 변동화각 인 지 패턴면 (62)이 인쇄되는데, 목적에 따라 일반인쇄는 초점거리와 무관하므로 보호 층 (30)하면에 인쇄하여 보호필름 (30)에 의해 일반인쇄면의 표면광택을 유지시키는 것이 디자인적 느낌으로 바람직하며, 굴절수지 (20)에 의해 볼록렌즈층 ( 10)표면과 보호층 (30)의 하면을 서로 접착하여 사용될 수 있는 것이다. 따라서 도 11c에 예시된 바와 같이, 보호필름 (30)하면이 초점 도달위치가 되 도록 하고, 상기 보호필름 (30)하면에 인쇄를 하여 비초점거리 인쇄층 (60-1)이 형 성되어 볼록렌즈층 ( 10)표면과 서로 접착하여 사용자 편리에 의해 응용되어 제작될 수 있는 것이다. 도 12a은 본 발명의 또 다른 웅용방법으로써, 볼록렌즈층 ( 10)이 뒤집힌 상태 로써 곡륙반경 표면이 하향으로 구성되어 굴절수지 (20)에 의하여 시트의 두께층 (50— 1)에 점착 또는 접착되어 형성되고, 뒤집힌 볼톡렌즈층의 상층면에 비초점거리 인쇄층 (60-1)이 형성되는데, 렌즈의 곡률반경 방향이 바뀌면서 렌즈의 구심 위치도 바뀌게 되므로 투시경로의 볼톡렌즈의 구심을 통과하는 화각은 도면에 나타낸 것처 럼 구심위치가 바뀜으로써, 투시되는 시차의 차이가 더욱 커지는 유리한 효과가 있 다. 물론 이 방법은 상기 도 10에서 예시한 입체시트에서 사용됨이 무방하며 초점 거리 및 시트의 두께가낮아지는 효과를 얻을 수 있다. 도 12b는 본 발명의 다른 일실시예로써, 육안으로 투시할 수 있는 입체시트 를 최소 두께로 제작될 수 있는 방법을 예시하고 있다. 볼록렌즈층 (10)이 뒤집힌 상태로써 곡륙반경 표면이 하향으로 구성되어있고, 볼록렌즈의 하면에는 굴절수지 (20)가 평면을 이루도록 형성되어 있으며 굴절수지 (20)의 표면에 반사층 (70)이 형 성되어 입사광의 빛을 반사하도록 구성된다. 그런데 도면에서 예시하였듯이 입체 시트의 두께가 현저하게 얇아짐을 알 수 있는데 그 이유는 입사광으로부터 볼록렌즈 (11)를 통과하여 반사층 (70)에서 반사되 어 다시 볼록렌즈를 통과하여 비초점거리 인쇄층 (60-1)에 도달하는 과정에서 볼록 렌즈를 두 번 투과하여 육안으로 인지되는 것이기 때문에, 두 번째 통과히:는 과정 에서 초점형성각이 현저하게 굴절되는 것이다. 따라서 상기에서 언급하였듯이 볼록 렌즈를 한번 통과한 원래의 초점거리 (t2)에 비하여 육안으로 인지할 수 있는 시트 의 두께는 1/3이하두께로 현저하게 얇아진 박층 (薄層) 입체시트로써 제작이 가능한 것이다. 물론, 비초점거리인쇄충 (60-1)은 상기 도 lib 내지 도 11c에서 예시된바와 같 이, 보호필름 (30)의 상면 또는 (및) 하면에 인쇄를 통하여 보호필름 (30)을 제작하 고, 초점이 맺혀지는 투명층 (50-1)상면에 인쇄 (또는 요철성형)된 보호필름 (30)을 추가 접착하는 방법으로 얼마든지 옹용제작 될 수 있음은 당연한 것이다. 도 13은 본 발명의 일실시예로써, 입체시트의 그래픽 디자인과 인쇄패턴 (61- 1 , 62-1)의 구성 형태를 예시하여 설명하고 있다. 본 발명의 또 다른 장점은 비표 기능으로써, 아주 작은 '소면적' 에 인쇄된 패턴 (62-1)이미지를 최소근접거리 투 시로써 확인할 수 있는 것이다. 본 발명에서의 '소면적' 투시라 함은, 인쇄층 (60)에 구성된 입체인쇄면 (61 , 62)의 일부분으로써 도형, 라인, 문자 등으로 구성된 형태의 최소 폭이 약 3醒 이 하로 이루어짐을 말하며, 이러한 소면적 내에 형성된 패턴도형을 근접 투시하여 1 개 이상의 모아레 (80)를 조합화상으로써 인지할 수 있도록 함을 말한다. 효과의 극 대화를 위해 사용되는 면적은 작으면 작올수록 좋다. 따라서 본 발명은 도형을 이루는 최소 폭 1瞧 이하의 극소면적까지도 투시가 가능한데, 그 속에 인쇄된 이미지 상 (80)을 인지하고자 한다면 다음과 같은 방법에 의해 제작할 수 있다 Di = (t2-r) (D2 + D3) II [P (D2 + D3)-(t2-r) I] Therefore, the stereoscopic image perceived at about 40cm is (3.1-1.144 ) X 400 XI / [0.254 x 400-(3.1-1.144) x I] 250 圆, which is I-19.978 mm. That is, a stereoscopic image having a repetition interval I of 19.978 mm for one moiré 80 is accurately recognized as a sense of depth (Di) of about 250.000467 mm by the above equation, and a sense of depth (Dt) of 250 μs or more is secured. Is about 7.38 times thicker than the existing focal length (tl), making it easy to manufacture. After all, this can be seen clearly in the moiré (80) image at all perspective distances before and after the 'myopia' distance. In addition, this is calculated by Equation 1, and since the vertex parallax gap (x3) of about 0.2541 mm represents the perspective or infinity distance, the printed pattern is recognized as the perception depth (Di) of about 250 mm. The interval of (x5) must be smaller than the vertex parallax interval (x3), and the convex lens because the three-dimensional pattern 80 recognized as a stereoscopic combined image, that is, the size under one hat is combined by the respective convex lenses. By calculating the number of times and calculating the print pattern spacing (x5), it is about 0.2508 mm. Therefore, it can be seen that it is formed about 98.7% smaller than the pitch 0.254 隱, which means that the longer the focal length is longer and the shorter the short distance is according to the person, the wider the difference becomes. Therefore, the present invention can be obtained only when the focal length is farther than the general lens sheet, but the glass interior products of 3mm or more are used in the decorative products for architectural interiors, but the sheet sheet used for electronic products is used according to the product. It will need to be made thin. Therefore, the farther the focal length of the element used in the present invention is to increase the thickness of the three-dimensional sheet, a method that needs to be made thinner the thickness of the sheet as needed. 11A to 12B illustrate a method according to another embodiment of the present invention, in which the focal length t2 is extended by the refractive resin 20 applied to the surface of the convex lens layer 10 so that the sheet thickness becomes too thick. And since workability may occur, a method of reducing the thickness of the sheet under the same focal length conditions is as follows. As illustrated in Figs. 11A to 11C, the reflective layer 70 is formed between the convex lens and the focal length t2 to form the sheet thickness from the convex lens to the reflective layer, and the printing formed at the original focal length t2. The same distance t4 on the Voltolens 11 from the reflective layer 70 by the distance t4 from the reflective layer 70 to the original focal length t2 instead of the position of the charge 60. The non-focal length printed layer 60-1 is formed on the substrate. The position of the reflective layer 70 is formed at the thickness of almost half or less from the surface of the refractive resin 20 formed on the convex lens layer 10 to the original focal length t2, and the vortex lens The incident light of (11) is reflected by the reflective layer 70 so as to focus on the newly formed non-focal length printing layer 60-1. That is, the path through which the printed pattern 62-1 formed in the printed layer 60-1 passes through the printing worm 60-1 having a non-focal length from the naked eye, passes through the center of the convex lenses 11, and reflects the reflective layer ( 70 reflects the patterns 61-1 and 62-1 printed on the non-focal length printing layer 60-1 interval t4, reflected from the reflective layer 70 and again passing through the botox lenses 11 from the reflective layer 70. , It can produce three-dimensional effect of the present invention with a thickness (t4-l) of less than half the thickness of the original three-dimensional sheet. In addition, in the process of passing through the convex lenses 11 by reflecting from the reflective layer 70 again, the focus becomes narrow again and the focal length becomes slightly shorter. The shorter the distance to or the shorter the transparent layer 50-1, the shorter the focal length, and thus the advantage is that even if it is less than 1/3, the thickness of the original three-dimensional sheet can be further reduced. It can also be used as a thin three-dimensional sheet for viewing the pattern (61–1) mainly. If the focal length is too short, the three-dimensional feeling felt by the naked eye is also shortened. In order to see the recognition pattern surface 62-1, the non-focal distance printing layer 60-1 is formed as close as possible to the surface of the convex lens to maintain about 1/2 of the thickness of the original three-dimensional sheet, or , Can be manufactured by adjusting the correlation between the refractive index of the boltok lens, the radius of curvature and the refractive index of the refractive resin. Of course, when the first transmission of the print pattern 62-1 from the eye in the see-through path is not recognized by the naked eye, it is a combination of the points that are half-reflected and focused on the printed layer 60-1, so that the reflector 70 Distortion does not occur only when the mirror effect is good, so it is preferable to use the metal deposition method to form the reflector 70. In FIG. Lib, the protective layer 30 is formed on the convex lens layer and the non-focal distance printing layer 6 is formed on the protective layer by the application method of the three-dimensional sheet illustrated in FIG. 11A. The non-focal length printing layer 60-1 is printed with the general printing, the three-dimensional pattern printing surface 61, and the variable angle recognition pattern surface 62. Depending on the purpose, the general printing is independent of the focal length, and thus the protective layer 30 It is preferable to maintain the surface gloss of the general printing surface by the protective film 30 by printing on the lower surface, and the surface of the convex lens layer 10 and the protective layer 30 by the refractive resin 20. The lower surface can be used to adhere to each other. Therefore, as illustrated in FIG. 11C, the lower surface of the protective film 30 is the focal point of arrival, and the non-focal distance printing layer 60-1 is formed by printing on the lower surface of the protective film 30 to be convex. The lens layer 10 is adhered to the surface and can be applied and manufactured by user convenience. 12A shows another method of the present invention, wherein the curved radius surface is turned downward with the convex lens layer 10 turned upside down, thereby adhering or adhering to the thickness layer 50-1 of the sheet by the refractive resin 20. Non-focal distance printing layer 60-1 is formed on the upper layer surface of the inverted Voltolens layer, and the center of gravity of the lens changes as the radius of curvature of the lens changes. As the angle of view is changed from the center of gravity as shown in the drawings, there is an advantageous effect that the difference in the parallax seen through it becomes larger. Of course, this method can be used in the three-dimensional sheet illustrated in FIG. 10, and the focal length and the thickness of the sheet can be obtained. Figure 12b is another embodiment of the present invention, illustrates a method that can be produced with a minimum thickness of a three-dimensional sheet that can be visually viewed. The convex lens layer 10 is turned upside down, and the surface of the radius of curvature is configured downward. On the lower surface of the convex lens, the refractive resin 20 is formed to form a plane, and the reflective layer 70 is formed on the surface of the refractive resin 20. It is configured to reflect the light of the incident light. However, as illustrated in the drawing, it can be seen that the thickness of the three-dimensional sheet is remarkably thinner, because the incident light passes through the convex lens 11 and is reflected from the reflective layer 70 and passes through the convex lens again to pass the non-focal length printing layer ( In the process of reaching 60-1, the convex lens penetrates twice and is perceived by the naked eye. Therefore, as mentioned above, the sheet thickness that can be perceived by the naked eye compared to the original focal length (t2) once passed through the convex lens can be manufactured as a thin three-dimensional sheet that is significantly thinner than 1/3 thickness. will be. Of course, the non-focal length printing insect 60-1, as illustrated in Figures lib to 11c above, to produce the protective film 30 through printing on the upper or (and) lower surface of the protective film 30. It is a matter of course that it can be produced in any way by further bonding the protective film 30 (or irregularities molded) printed on the upper surface of the transparent layer 50-1 to be focused. FIG. 13 illustrates, by way of example, the configuration of the graphic design of the three-dimensional sheet and the configuration of the print patterns 61-1, 62-1. Another advantage of the present invention is that as a non-representative function, a pattern 62-1 image printed on a very small 'area area' can be identified by a minimum proximity view. 'Small area' perspective in the present invention is a part of the three-dimensional printing surface (61, 62) formed in the printing layer 60, the minimum width of the shape consisting of figures, lines, characters, etc. is about 3 醒 or less. In other words, the pattern shape formed in such a small area is closely viewed to allow one or more moires 80 to be recognized as a combination image. The smaller the area used for the maximum effect, the smaller the better. Therefore, the present invention is capable of seeing even a very small area of the minimum width of 1 瞧 or less forming a figure, if it is to recognize the image 80 printed therein can be produced by the following method.
'소면적투시' 에 있어서는 상기에 언급한바와 같이 투시하는 최소면적 내에 서 최소한 1개의 조합화상 (80)을 볼 수 있어야 하는데, 렌즈의 크기가 작으면서 초 점거리가 길면 길수록 투시되는 조합화상의 크기를 작게 인지할 수 있도록 조절이 가능하다. J 따라서 육안으로 인지되는 그래픽 패턴 (80)의 크기도 매우 중요한데, 인쇄되 는 패턴의 간격 및 초점거리에 의하여 투시되어 인지되는 조합화상의 크기가 결정 되므로, 상기 계산식에 의하여 도 6내지 도 7에서 이미 예시하였듯이 일반적인 볼 록렌즈시트를 적용한 경우를 계산하면, 렌즈의 피치 (P)가 0.1289mm이고 굴절률이 1.58이고 곡률반경 (r)이 0.06瞧 이므로 초점거리 (U)는 약 0.163隱 가 되고, 최소 근접 투시거리 (D2 +D3)가 15讓를 가정하면, 최소 근접거리에서의 렌즈간의 투시되 는 시차 (x2)는 약 0.1298mm가 된다. 또한 투시거리 (D2 +D3) 400誦 에서 렌즈간의 정점투시 시차간격 (xl)을 계산 하면 약 0.12893麵가 되므로 이 수치가 인쇄되는 패턴간격 (xl)의 기준이 되고、、상기 에서 언급하였듯이 근시점 거리 약 250mm의 깊이감을 나타내야 하므로 0.12893mm 보다 작게 인쇄될 것이다. 따라서 '근시점' 거리 약 250謹의 깊이감을 갖는 1개의 모아레의.크기 ( I )를 상기 식에 의하여 계산하면 I = 192.535馳이고 투시되는 인쇄패턴 갑격 (x5)은 0.12881謹 이다. 따라서 최소 근접거리 (D2 +D3)의 15讓에서 투시되는 시차 (x2)를 계산하면 약 0.1298画이므로, 0.12881画의 인쇄패턴은 근접투사 시차 (x2)에 의해 1개의 모아레 (80) 패턴크기 ( 0가 만들어지는데 이를 계산하면 약 7.6隱 크기로 관측하게 되는 것이다. 결국 도형의 최소폭이 최소한 약 7.6mm 이상이어야 하므로 본 발명의 '소 면적' 폭 3mm 미만에서는 1개의 조합화상 이미지 (80)를 제대로 관찰확인 할수 없 는문제가 발생하게 되는 것이다. 따라서 본 발명은 상기 동일한 구성조건에서 초점거리 (t2)가 0.163瞧에서 0.8隱로 바뀐 경우를 가정하여 설명한다. 렌즈의 피치 (P)가 0.1289隱일 때 곡률반 경 (r)은 약 0.295mm와 같다고 할 수 있다. 따라서 상기 '식 2' 에 의하여 투시거리 400mro에서 '근시점'이상 깊이감과 1개의 모아레 (80) 패턴크기 ( i )를 구하면 , (0.8 - 0.295) 400 X I / [ ( 400 X 0.1289) - (0.8 - 0.295) I ] = 250 이므로, I = 약 39.27翻 이다. 따라서 깊이감 (Dt ) 약 250瞧에서 1개의 모아레 (80) 패턴크기 (i )가 39.27麵 이므로 인쇄패턴 (x5)의 간격은 약 0.128478讓가 된다. 투시거리 (D2 +D3)가 15隱 일 때, 최소 근접거리에서의 렌즈간의 투시되는 시 차 (x4)를 계산하면 약 0.1353隨가 되므로 인쇄패턴 (x5)의 간격 약 0.128478瞧를 대 비하여 투시되는 1개의 모아레 (80) 크기 ( I )로써 입체인지 패턴의 크기를 계산하면 약 2.548mm가 되므로 소면적 최소폭 약 3薩 변동화각 인지 패턴면 (62)이내에서 충분 히 모아래 (80)패턴 1개 이상을 관찰할 수 있는 것이다. 따라서 도 13의 도면에 예시된 바와 같이, 본 발명의 일실시예에 의한 입체 시트를 예시하고 있는데, 볼톡렌즈층 (10) 하단에 위치한 인쇄층 (60)은 인쇄패턴면 (61) 또는 (및) 변동화각 인지 패턴면 (62)이 구성되어 인쇄 (또는 요철성형)되어있 다. 볼톡렌즈에 의해 특수효과를 나타내는 패턴 인쇄면 (61)은 입체효과, 모션, 색 상변환 등의 효과를 나타내도록 구성된 도형패턴 (61-1)들로 형성되고, '변동화각 인지 패턴면' (62)은 투시거리에 따른 변동화각 변화에 일으켜 입체적으로 보이는 모아레 패턴 이미지 (80)가 투시거리에 따라 변화되어 인지되도록 구성된 도형패턴 (62-1)들로 형성된다. 기타 문자 또는 도형들 중 아무 효과가 없는 면은 디자인 의도에 따라사용하면 될 것이다. 따라서 도 13에 일실시예로써 예시된 바와 같이, 좌측상단에 위치한 작은 원 안에 문자 'M'이 형성되어 있다. 문자 ' M'의 면 (61)에는 일반적인 입체효과 또는 모션, 색상변환 등의 효과를 나타내는 부위로써, 그 주변의 작은 원에 형성된 '변 동화각 인지 패턴면' (62)의 도형패턴 (61-1)에 의하여 투시거리에 따라 차등 구분 되어 보이도록 구성된 것이다. 시트의 중앙에 형성된 큰 문자 'M'은 문자를 이루는 도형에 '변동화각 인 지 패턴면' (62)을 이루는 도형패턴 (62-1)으로 이루어지고, 시트의 바탕 면 (61, 62)전체에 형성된 도형패턴 (61-1)에 의하여 차등 구분되어 보이도록 하거나 또는 바탕 면 전체에 형성된 도형패턴 (62-1)이 큰 문자 'M'에 형성된 도형패턴 (62-1)과 다른 시차 조밀도 간격으로 이루어져 투시거리에 따른 차등 변화를 인지하도록 구 성되어 더욱 역동적인 화면을 연출할 수 있는 것이다. 특히, 우측 상단의 원 안에는 미세한 글자들이 형성되어 있는데 도면의 확대 도에 예시하듯이, 문자의 굵기가 0.3麵로 이루어진 두 줄의 단어를 이루는 면적의 폭이 약 3.8mm로 형성되어 있다. 이것은 상기에서 언급한 극소면적의 라인이 조합 되어 보이도록 하는 구성인데 0.3mm라인 폭 안에 '변동화각 인지 패턴면' (62)을 이루는 도형패턴 (62-1)이 형성되어 있다. 사실상 이러한 구성은 입체 도형패턴 구성되면 모아레 패턴 이미지 (80)를 육안으로 인지할 수 없는 구조이다. 그러나 본 발명은 입체시트를 안구에 최대한 근접하여 투시할 때, 도면에 예시된 바와 같 이 'M '으로 이루어진 도형패턴 (62-1) 조합의 모아래 이미지 (80)를 육안으로 확인 할 수 있는 것이다. 그 이유는 사실상 정확하게 0.3mm 투시면적에서 모아래 1개 이상을 본다는 것이 거와 불가능한 일이지만 본 발명은 이미 도형패턴 (62-1)을 인지하는 모아래 의 깊이감 (Dt )이 '근시점' 이상 거리를 투시할 수 있도록 구성되어 있는 것이고, 사물의 위치가 수정체 (41)의 '근시점' 이내에 놓인 것이므로, 도형패턴 (62— 1)의 모아레 이미지 (80)만을 인직하고 투시면적 주변의 구성화면은 반투명하게 가려진 효과처럼 보이게 되는 것이다. 즉, 망막 (42)에 결상된 이미지를 '뇌' 는 약 0.3!蘭 의 면적 내에 인쇄된 패 턴 (62-1)만을 인지하게 되고, 나머지 주변화면은 수정체가 망막에 결상시키지 못하 므로 그 주변은 뿌옇게 보이게 되는 것이고, 이것을 마치 반투명하게 인지하는 것 이다. 따라서 이것은 사람이 검은 종이에 바늘구멍을 내고 들여다볼 때의 효과처럼 뇌에서 자동으로 차등된 빛을 구분하여 인지 할 수 있도록 하는데 바늘구멍을 통 한 투시반대편 쪽이 밝을수록 선명하게 들여다 볼 수 있는 원리이다. 따라서 근접 투시할 때 본 발명의 입체시트를 블빛에 향하여 두고, '배면광' 에 의한 투시로써 시트를 관찰한다면 더욱 선명하게 볼 수 있게 된다. 또한 '변동화각 인지 패턴면As mentioned above, at least one combination image 80 should be visible within the minimum area projected as mentioned above. The smaller the lens size and the longer the focal length, the longer the combined image is visible. It can be adjusted to make the size small. J Therefore, the size of the graphic pattern 80 perceived by the naked eye is also very important. Since the size of the combined image projected and perceived is determined by the interval and the focal length of the printed pattern, the calculation formula is used in FIGS. 6 to 7. As already illustrated, when the typical convex lens sheet is applied, the focal length (U) is about 0.163 隱 because the pitch (P) of the lens is 0.1289mm, the refractive index is 1.58, and the radius of curvature (r) is 0.06 瞧. Assuming that the minimum near vision distance (D2 + D3) is 15 microseconds, the parallax (x2) between the lenses at the minimum proximity distance is about 0.1298 mm. In addition, when calculating the vertex perspective parallax gap (xl) between lenses at the perspective distance (D2 + D3) of 400 麵, it becomes about 0.12893 麵, so this value is a reference for the pattern interval (xl) to be printed. It should be printed smaller than 0.12893mm because it should exhibit a depth of about 250mm distance. Therefore, if the size (I) of one moiré having a depth of 'myopia' distance of about 250 [mu] s is calculated according to the above equation, I = 192.535 [mu] s and the printed pattern armor (x5) projected is 0.12881 [mu] s. Therefore, when calculating the parallax (x2) projected at 15 ms of the minimum proximity distance (D2 + D3), about 0.1298 ms, the printing pattern of 0.12881 ms is one moiré (80) pattern size by the proximity projection parallax (x2). 0 is created, which is observed to be about 7.6 mm in size, so that the minimum width of the figure should be at least about 7.6 mm. There is a problem that cannot be observed properly. Therefore, the present invention will be described assuming that the focal length t2 is changed from 0.163 ms to 0.8 ms under the same configuration conditions. When the pitch P of the lens is 0.1289 같다, the radius of curvature r may be equal to about 0.295 mm. Therefore, by using the above formula (2), if the depth of vision and the moire (80) pattern size (i) are more than 'myopia' at the perspective distance 400mro, (0.8-0.295) 400 XI / [(400 X 0.1289)-(0.8 -0.295) Since I] = 250, I = about 39.27 翻. Therefore, since one moiré (80) pattern size (i) is 39.27 microns at a depth Dt of about 250 microns, the interval of the printed pattern (x5) is about 0.128478 microns. When the throwing distance (D2 + D3) is 15 ,, the calculated parallax (x4) between the lenses at the minimum close range is about 0.1353 隨, so the perspective of the print pattern (x5) is about 0.128478 瞧. When one calculates the size of a stereocognitive pattern with one moiré (80) size (I), it becomes about 2.548 mm, so that a small area of about 3 薩 has a minimum width of about 3 μs. More than one can be observed. Accordingly, as illustrated in the drawing of FIG. 13, the three-dimensional sheet according to the exemplary embodiment of the present invention is illustrated, and the printing layer 60 disposed below the botox lens layer 10 may have the printed pattern surface 61 or (and ) The variable angle recognition pattern surface 62 is formed and printed (or unevenly molded). The pattern printing surface 61 exhibiting a special effect by the Voltok lens is formed of figure patterns 61-1 configured to exhibit effects such as stereoscopic effect, motion, color conversion, and the like. 62 is formed of figure patterns 62-1 configured such that the moiré pattern image 80, which appears in three dimensions due to the change of angle of view according to the viewing distance, is changed and perceived according to the viewing distance. Any other text or figure that has no effect can be used according to design intent. Thus, as illustrated as an embodiment in Figure 13, the letter 'M' is formed in a small circle located in the upper left. On the surface 61 of the letter 'M', the figure pattern of the 'variable moving angle recognition pattern surface' 62 formed on a small circle around it as a part showing a general stereoscopic effect or an effect such as motion or color conversion. According to 1) it is configured to look differentiated according to the viewing distance. The large letter 'M' formed at the center of the sheet is a 'variable angle of view' The pattern pattern 62-1, which constitutes the edge pattern surface 62, and is made to be differentiated by the figure pattern 61-1 formed on the entire base surfaces 61 and 62 of the sheet or the base surface. The figure pattern 62-1 formed on the whole is composed of the difference pattern of parallax density different from the figure pattern 62-1 formed on the large letter 'M' to recognize a differential change according to the viewing distance. It can be produced. Particularly, fine letters are formed in a circle on the upper right side. As illustrated in an enlarged view of the drawing, the width of an area constituting two lines of words having a thickness of 0.3 麵 is about 3.8 mm. This configuration is such that the above-mentioned very small area lines are combined, and a figure pattern 62-1 is formed to form a 'variable angle of view perception pattern surface' 62 within a 0.3 mm line width. In fact, such a configuration is a structure in which the moiré pattern image 80 cannot be visually recognized when the three-dimensional figure pattern is constructed. However, when the three-dimensional sheet is viewed as close to the eye as possible, the present invention can visually check the image 80 under the parent of the combination of the figure pattern 62-1 composed of 'M' as illustrated in the drawing. will be. The reason is that it is virtually impossible to see more than one under the hair at 0.3mm perspective area, but the present invention has already shown that the depth Dt of the hair that recognizes the figure pattern 62-1 is 'myopia'. It is configured to be able to see the abnormal distance, and since the position of the object lies within the 'myopia' of the lens 41, only the moiré image 80 of the figure pattern 62-1 is formed, and the configuration around the perspective area is shown. The screen looks like a translucent masked effect. That is, the image of the image formed on the retina 42 is only recognized by the pattern 62-1 printed in the area of about 0.3! 蘭, and the remaining peripheral screen cannot be formed by the lens on the retina. Is to look cloudy, and to perceive it as translucent. Therefore, this makes it possible to recognize the light automatically differentiated by the brain as the effect of a person making a peek through a black hole and looking into it.The brighter the opposite side through the needle hole, the clearer the view can be. to be. Therefore, the three-dimensional sheet of the present invention in close-up perspective facing the light, as a perspective by the 'back light' If you observe the sheet, you can see more clearly. Also, 'Variation angle of view recognition pattern surface
' (62)의 도형라인이 확대도면처럼 여러개가 서로 근접해 있는 형태가 아니더라도 단일라인 면적의 최소한 약 0.5讓 내에 형성된 도형패턴 (62-1)을 근접투시에 의해 최소한 1개 이상의 모아래 이미지 (80)로 인지할 수 있는것이다. 도 14는 본 발명의 일실시예로써 '근시점'거리 내에서 투시되는 볼록렌즈의 배열구성과 '변동화각 인지 패턴면' (62)에 형성된 도형패턴 (62-1)의 배열 및 육 안으로 인지되는 형상을 예시하여 설명한다. 도형패턴 (62-1)의 배열은 볼록렌즈 (11)의 배열각도와 동일한 구성이고 45도 기울기의 수직 교차배열로 이루어져 있다. 다만 배열간격 (x5)이 볼록렌즈 (11)들의 배열간격 (P)보다 작은 조밀도로 이루어지는데, '변동화각 인지 패턴면' (62)을 투시함에 있어 인지되는 1개의 모아레 (80) 이상을 관측할 수 있는 크기로써, 최소 근접거리에서의 볼록렌즈 (11)들의 구심을 투시하는 시차 (χ4)간격보다 약 80% -98% 작은 간격으로 이루어진다. 도면에서 보는 바와 같이 각각의 볼록렌즈 (11)들의 초점에 비쳐진 각각 도형 패턴 (62-1)의 일부분들이 확대되어, 그 확대된 이미지들이 서로 연결되어 보임으로 써 모아레 (80)의 이미지 1개를 형성하여 인식할 수 있게 하는 것이다. 물론 볼록렌 즈의 교차배열각도와 기울기는 작업자가 얼마든지 변경할 수 있는 것이므로 도형패 턴 (62-1)의 교차배열각도와 기울기 또한 같은 구조로 이루어지고 본 발명의 조밀도 간격 내에서 이루어지는 것이다. 도 15는 본 발명의 일실시예로써 볼록렌즈 상면에 굴절수지가 도포됨을 대신 하여 물 또는 액상물질이 도포되어짐과 다중투시효과를 위한 인쇄층 (65)이 구성됨 을 예시하여 설명한다. 볼록렌즈 레이에:10) 와 인홰층 (60) 사이에 제 2인쇄층 (65) 이 형성되어, 여 기에 구성된 인쇄 (61)는 도형패턴 (61-1)으로 이루어지고, 볼록렌즈의 초점거리 (T1) 의 위치에 인쇄 (또는 요철성형)되어진다. 볼록렌즈에 의해 특수효과를 나타내는 패 턴 인쇄 (61)면은 입체효과, 모션, 색상변환 등의 효과를 나타내도록 구성되고, 인 쇄층 (60)에는 입체적으로 보이는 모아레 패턴 이미지 (80)가 투시거리에 따라 변화 되어 인지되도록 연출하기 위한 도형패턴 (62-1)들로 구성된다. 따라서 더욱 역동적인 연출을 위하여 볼록렌즈 표면에 물 또는 액상물질이 도포됨은 가변적인 연출이 즉석에서 이루어짐을 나타내게 되는 것이고, 예컨대 사 용자가 액상물질을 불규칙적으로 도포하였다고 가정할 때, 도포된 부분과 도포되지 않은 부분의 효과가 차등되어 나타나게 되고, 도포된 부분의 모아레 패턴 이미지 (80)가 투시거리에 따라 변화되어 인지되도록 연출된다면 도포되지 않은 부분은 상 대적으로 차등입체 또는 모션 이미지를 연출하게 되므로써, 사용자의 의도에 따라 그때마다 도포하고 닦는 행위에 의해 즉석으로 새로운 연출이 가능함 등의 장점이 있다. 본 발명의 '변동투시화각 입체시트 및 단박입체시트' 는 전술한 실시 예에 국한되지 않고 본 발명의 기술 사상이 허용하는 범위에서 다양하게 변형하여 실시 할 수가 있다. 'Even though the figure lines of (62) are not close to each other like the enlarged drawing, at least one image of the figure pattern (62-1) formed within at least about 0.5 mm of the area of a single line by close-up projection is used. It can be recognized as). FIG. 14 is a view illustrating an arrangement of convex lenses projected within a 'myopia' distance and an arrangement of a figure pattern 62-1 formed on a 'variable angle of view recognition pattern surface' 62 according to an embodiment of the present invention. The shape which becomes is illustrated and demonstrated. The arrangement of the figure pattern 62-1 has the same configuration as the arrangement angle of the convex lens 11 and consists of a vertically crosswise arrangement of 45 degree inclination. However, the array spacing (x5) has a smaller density than the array spacing (P) of the convex lenses (11), and observes more than one moiré (80) perceived in seeing the 'variation angle of view recognition pattern surface' (62). As a possible size, it is about 80% -98% smaller than the parallax (χ4) spacing which projects the center of convex lenses 11 at the minimum close range. As shown in the figure, portions of the figure pattern 62-1, which are reflected in the focus of the respective convex lenses 11, are enlarged, and the enlarged images are connected to each other so that one image of the moire 80 is shown. It is to form and recognize. Of course, since the cross-arrangement angle and the slope of the convex lens can be changed by the operator as much as possible, the cross-array angle and the slope of the figure pattern 62-1 also have the same structure and are made within the density interval of the present invention. FIG. 15 illustrates an exemplary embodiment of the present invention, in which water or a liquid material is applied instead of applying a refractive resin on an upper surface of a convex lens, and a printing layer 65 is configured for a multiple perspective effect. The second printing layer 65 is formed between the convex lens ray 10 and the printing layer 60, and the printing 61 constituted here is composed of a figure pattern 61-1, and the focal length of the convex lens is It is printed (or uneven molded) at the position of T1. The surface of the pattern printing (61) exhibiting special effects by the convex lens is configured to exhibit effects such as stereoscopic effect, motion, color conversion, etc., and the three-dimensional moiré pattern image (80) that is three-dimensionally visible on the print layer (60) is a viewing distance. Depends on And figure patterns 62-1 for directing them to be perceived. Therefore, the application of water or liquid material on the surface of the convex lens for more dynamic presentation means that the variable production is performed on the fly. For example, assuming that the user applies the liquid material irregularly, the applied part and the application If the moiré pattern image 80 of the uncoated portion is produced to be perceived by changing the perspective distance, the uncoated portion produces a differential stereoscopic or motion image, According to the intention of the user, there is an advantage such that the new production can be instantaneously by applying and wiping each time. The variable viewing angle stereoscopic sheet and the mono-thin sheet of the present invention are not limited to the above-described embodiments and can be modified in various ways within the scope of the technical idea of the present invention.

Claims

【청구의 범위】 【Scope of Claim】
【청구항 1] [Claim 1]
입체시트의 상면에 볼톡렌즈들이 일정한 간격의 교차배열로 구성되며 시트의 두께를 이루는 볼록렌즈들의 초점거리에 인쇄층 (60)이 형성된 압체시트 있어서, 볼 톡렌즈 (11)들의 초점거리가 피치보다 약 3.5배 이상 길게 형성되고; 인쇄층 (60)의 인쇄면적 일부분에 형성된 인쇄패턴 (62-1)의 반복간격 (x5)이 깊이감 또는 돌출감을 On the upper surface of the three-dimensional sheet, the volcanic lenses are arranged in a cross arrangement at regular intervals, and the printed layer 60 is formed at the focal length of the convex lenses that make up the thickness of the sheet. The focal length of the volcanic lenses 11 is greater than the pitch. It is formed about 3.5 times longer; The repetition interval (x5) of the printing pattern (62-1) formed in a portion of the printing area of the printing layer (60) creates a sense of depth or protrusion.
'근시점' 거리 (약 10cm~25cm)이상 느낄 수 있는 패턴간격으로 이루어지고; 상기 인 쇄패턴 반복간격 (x5)이 '근시점' 거리 이내의 최소근접거리 투시 시차간격 (χ4)보다 약 80% ~ 98%작게 형성됨을 특징으로 하는 입체시트. It consists of pattern intervals that can be felt over a 'myopic point' distance (approximately 10cm to 25cm); A three-dimensional sheet, characterized in that the printing pattern repetition interval (x5) is formed to be about 80% to 98% smaller than the minimum close-distance perspective parallax interval (χ4) within the 'myopic point' distance.
【청구항 2】 【Claim 2】
청구 1항에 있어서 볼록렌즈들의 상부 표면에 볼록렌즈의 굴절률보다 낮은 굴절률로 이루어진 굴절수지가 도포 (경화)되어 굴절률 (η) 1.35이상으로써, 초점거리 가 렌즈의 피치보다 3.5배 이상 길게 형성됨을 특징으로 하는 입체시트. According to claim 1, a refractive resin having a lower refractive index than the refractive index of the convex lens is applied (cured) to the upper surface of the convex lenses, so that the refractive index (η) is 1.35 or more, and the focal length is formed to be 3.5 times longer than the pitch of the lens. A three-dimensional sheet made of.
【청구항 3] [Claim 3]
청구 1항에 있어서 볼록렌즈들의 상부 표면에 볼록렌즈의 굴절률보다 낮은 물 또는 액상물질 도포함에 굴절률 (η) 1.3 이상으로써, 초점거리가 렌즈의 피치보 다 3.5배 이상 길게 형성됨을 특징으로 하는 입체시트. The three-dimensional sheet according to claim 1, wherein water or a liquid material lower than the refractive index of the convex lenses is applied to the upper surfaces of the convex lenses, and the focal length is formed to be at least 3.5 times longer than the pitch of the lenses by having a refractive index (η) of 1.3 or more. .
【청구항 4】 【Claim 4】
청구 1항 내지 청구 3항의 어느 한 항에 있어서, 볼록렌즈들의 배열구성이 수직 교차배열 또는 60도 교차배열로 이루어짐을 특징으로 하는 입체시트. The three-dimensional sheet according to any one of claims 1 to 3, wherein the convex lenses are arranged in a vertical cross array or a 60 degree cross array.
【청구항 5] [Claim 5]
청구 1항 내지 청구 3항의 어느 한 항에 있어서, 인쇄층에 패턴 인쇄면 (61) 또는 인쇄도형과 변동화각 인지 패턴면 (62)이 차둥 구분되어 인지되도록 형성됨을 특징으로 하는 입체시트. The three-dimensional sheet according to any one of claims 1 to 3, wherein the pattern printing surface (61) or the printed figure and the variable viewing angle recognition pattern surface (62) are formed on the printing layer so that they can be recognized separately.
【청구항 6】 【Claim 6】
청구 5항에 있어서 인쇄층에 형성된 패턴 인쇄면 (61) 또는 변동화각 인지 패 턴면 (62)의 인쇄패턴 (62_1, 61-1)이 인쇄, 요철, 증착 등에 의해 표시됨을 특징으 로 하는 입체시트. The three-dimensional sheet according to claim 5, wherein the print pattern (62_1, 61-1) of the pattern print surface (61) or the variable angle of view pattern surface (62) formed on the print layer is displayed by printing, unevenness, deposition, etc. .
【청구항 7] [Claim 7]
청구 5항에 있어서 인쇄층에 형성된 인쇄패턴 (62-1 , 61-1)이 이중으로 겹쳐 져 형성됨을 특징으로 하는 입체시트. The three-dimensional sheet according to claim 5, wherein the printed patterns (62-1, 61-1) formed on the printed layer are formed by double overlapping.
【청구항 8】 【Claim 8】
청구 1항 내지 청구 3항의 어느 한 항에 있어서 인쇄층에 형성된 변동화각 인지 패턴면 (62)을 이루는 라인 또는 도형의 최소 폭이 lmm 이하로 형성됨을 특징 으로 하는 입체시트. The three-dimensional sheet according to any one of claims 1 to 3, wherein the minimum width of the line or figure forming the variable angle of view pattern surface (62) formed on the printed layer is formed to be less than lmm.
【청구항 9] [Claim 9]
청구 1항 내지 청구 3항의 어느 한 항에 있어서, 변동화각 인지 패턴면 (62) 의 인쇄패턴 (62-1)이 투시거리에 따른 볼록렌즈의 구심을 통과하는 투시 시차에 따 라, '근시점'거리 이상에서도 입체 모아레 (80)를 인식할 수 있고 '근시점'거리 이 내에서도 입체 모아레 (80)를 인식할 수 있도록 형성됨을 특징으로 하는 입체시트. The method according to any one of claims 1 to 3, wherein the printed pattern (62-1) of the variable viewing angle pattern surface (62) has a 'myopia point' according to the perspective parallax passing through the centripetal center of the convex lens according to the perspective distance. A three-dimensional sheet characterized in that it can recognize three-dimensional moiré (80) even beyond the distance and is formed to recognize three-dimensional moiré (80) even within the 'myopic point' distance.
【청구항 10】 【Claim 10】
청구 1항 내지 청구 3항의 어느 한 항에 있어서, 볼록렌즈와 초점거리 (t2) 사이에 반사층 (70)이 형성되어 볼록렌즈로부터 반사층까지의 시트두께를 형성하고, 초절거리 (t2)에 형성된 인쇄층 (60)을 대신하여, 반사층 (70)으로부터 초점거리 (t2) 까지의 간격 ( t4)만큼 반사층 (70)으로부터 볼록렌즈 ( 11 ) 상부의 동일한 거리 ( ) 위 치에 비초점거리 인쇄층 (60-1)이 형성되고, The method according to any one of claims 1 to 3, wherein a reflective layer (70) is formed between the convex lens and the focal distance (t2) to form a sheet thickness from the convex lens to the reflective layer, and the printing formed at the transverse distance (t2). Instead of the layer 60 , a non - focal distance printed layer ( 60-1) is formed,
상기 비초점거리 인쇄층 (60-1)에 형성된 인쇄패턴의 간격이 25cm 이하의 깊 이감 또는 돌출감으로 인지되도록 형성됨을 특징으로 하는 박층 (薄層) 입체시트. A thin layer three-dimensional sheet, characterized in that the spacing of the printed patterns formed on the non-focus distance printed layer (60-1) is formed so as to be perceived as a sense of depth or protrusion of 25 cm or less.
【청구항 11】 【Claim 11】
청구 10항에 있어서, 볼톡렌즈층 상부에 보호층 (30)이 형성되고, 보호층 하 면에 비초점거리 인쇄층 (60-1)이 형성됨을 특징으로 하는 박층 (薄層) 입체시트. The thin-layer three-dimensional sheet according to claim 10, wherein a protective layer (30) is formed on the upper part of the Boltock lens layer, and a non-focal distance printing layer (60-1) is formed on the lower surface of the protective layer.
【청구항 12】 【Claim 12】
청구 10항에 있어서, 볼록렌즈층 상부에 보호층 (30)이 형성되고, 보호층 상 면에 비초점거리 인쇄층 (60-1)이 형성되고 보호층의 하면에 일반인쇄가 형성됨을 특징으로 하는 박층 (薄層) 입체시트. The method of claim 10, wherein a protective layer (30) is formed on the upper part of the convex lens layer, a non-focal distance print layer (60-1) is formed on the upper surface of the protective layer, and a general print is formed on the lower surface of the protective layer. Features a thin layer three-dimensional sheet.
【청구항 13】 【Claim 13】
청구 10항에 있어서, 볼록렌즈층 (10)이 뒤집힌 상태로써 곡륙반경 표면이 하향으로 구성되어 굴절수지 (20)에 의하여 시트의 두께층 (50-1)에 점착 또는 접착 되어 형성되고, 뒤집힌 볼록렌즈층의 상층면에 비초점거리 인쇄충 (60-1)이 형성됨 을 특징으로 하는 박층 (薄層) 입체시트. The method of claim 10, wherein the convex lens layer (10) is in an inverted state and the curved radius surface is configured downward, and is formed by adhesion or adhesion to the thick layer (50-1) of the sheet by the refractive resin (20), and the inverted convex A thin-layer three-dimensional sheet characterized in that a non-focal length print layer (60-1) is formed on the upper surface of the lens layer.
【청구항 14】 【Claim 14】
청구 2항에 있어서, 볼톡.렌즈층 (10)이 뒤집힌 상패로써 곡륙반경 표면이 하 향으로 구성되어 굴절수지 (20)에 의하여 시트의 두께층 (50)에 점착 또는 접착되어 형성됨을 특징으로 하는 입체시트. The method of claim 2, wherein the bolt/lens layer (10) is an inverted plate with the curved radius surface facing downward and is formed by adhering or adhering to the thick layer (50) of the sheet by the refractive resin (20). Three-dimensional sheet.
【청구항 15】 【Claim 15】
청구 1항 내지 청구 3항 및 청구 10항의 어느 한 항에 있어서, '근시점'거리 이상에서 투시할 때 입체적으로 인식되는 깊이감 또는 돌출감을 근점거리이상으로 느낄 수 있는 구성요소로써, 투시 시차를 측정하는기준의 투시거라는 안구의 표면 (43)으로부터 안구내부의 투시교차점 (44)까지의 약 7.2mm거리 (D3) 및 안구의 표면 으로부터 볼록렌즈의 구심까지의 거리 (D2) 및 볼톡렌즈의 구심으로부터 인쇄층 (60) 까지의 거리 (t-r)이며, 투시거리 측정치에 의한 계산에 따라 인쇄패턴 (62-1)의 조 밀도 간격 (x5)이 조절되어 형성됨을 특징으로 하는 입체시트. According to any one of claims 1 to 3 and claim 10, when viewing from a distance above the 'myopic point', a three-dimensional sense of depth or prominence can be felt beyond the near point distance, which is a component that can feel the sense of depth or prominence beyond the near point distance, and is a perspective parallax. The standard perspective distance to measure is the distance of about 7.2mm from the surface of the eye (43) to the perspective intersection point (44) inside the eye (D3), the distance from the surface of the eye to the centroid of the convex lens (D2), and the centroid of the convex lens. It is the distance (t-r) from the printed layer 60, and is formed by adjusting the rough density interval (x5) of the printed pattern (62-1) according to calculation based on the perspective distance measurement.
【청구항 16】 【Claim 16】
볼록렌즈 (11)들이 일정한 간격의 교차배열로 구성된 입체시트 있어서, 볼록 렌즈층 ( 10)의 곡륙반경 표면이 하향으로 구성되어있고; 볼록렌즈의 하면에는 볼록 렌즈층 ( 10)표면에 도포된 굴절수자 (20)가 평면을 이루도록 형성되며; 평면을 이룬 굴절수지 (20)의 표면에 반사층 (70)이 형성되고: 입사광으로부터 반사층 (70)에 반사 되어 초점거리 두께를 이루는 볼록렌즈 상부에 투명층 (50-1)이 형성되고: 투명층 (50-1)의 표면에 비초점 거리 인쇄층 (60— 1)이 형성됨을 특징으로 하는 박층 (薄層) 입체시트. In the three-dimensional sheet composed of convex lenses (11) arranged in a cross arrangement at regular intervals, the curved radius surface of the convex lens layer (10) is configured downward; On the lower surface of the convex lens, refractive elements 20 applied to the surface of the convex lens layer 10 are formed to form a plane; A reflective layer (70) is formed on the surface of the flat refractive resin (20): a transparent layer (50-1) is formed on the upper part of the convex lens forming the focal length thickness by reflecting from the incident light on the reflective layer (70): transparent layer (50) -1) A thin layer three-dimensional sheet characterized in that a non-focus distance printed layer (60—1) is formed on the surface.
【청구항 17] 청구 1항 내지 청구 8항의 어느 한 항에 있어서, 볼톡렌즈층 (10)과 인쇄층 (60) 사이에 제 2인쇄층 (65)이 구성되고, 볼톡렌즈와 그 상면에 도포되는 물 또는 액상물질의 굴절차에 의해 투시되는 인쇄층 (60)의 도형패턴 (62-1)이 투시거리에 따른 변화효과를 나타냄과, 상기 물질이 도포되지 않은 부위의 볼록렌즈들에 의해 투시되는 제 2인쇄층 (65)에 형성된 도형패턴 (61-1)의 투시효과가 차둥 구분되어 투 시되도록 구성됨을 특징으로 하는 입체시트. [Claim 17] The method according to any one of claims 1 to 8, wherein a second printed layer (65) is formed between the Boltock lens layer (10) and the print layer (60), and water or liquid material applied to the Boltock lens and its upper surface. The figure pattern 62-1 of the printed layer 60, which is transmitted by the refractive difference, shows a change effect according to the viewing distance, and the second printed layer, which is transmitted by convex lenses in the area where the material is not applied ( A three-dimensional sheet characterized in that the perspective effect of the figure pattern (61-1) formed in 65) is configured to be transparent in a differentiated manner.
PCT/KR2015/000811 2014-01-27 2015-01-26 Stereoscopic sheet having variable perspective viewing angle, and thin layer stereoscopic sheet WO2015111981A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580005366.0A CN106415367B (en) 2014-01-27 2015-01-26 Change perspective angle stereoscope film and thin layer stereoscope film
US15/113,833 US10302956B2 (en) 2014-01-27 2015-01-26 Stereoscopic sheet having variable perspective viewing angle and thin-layered stereoscopic sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0009307 2014-01-27
KR20140009307 2014-01-27
KR10-2015-0011851 2015-01-26
KR1020150011851A KR101743000B1 (en) 2014-01-27 2015-01-26 3D sheets for change perspective image

Publications (1)

Publication Number Publication Date
WO2015111981A1 true WO2015111981A1 (en) 2015-07-30

Family

ID=53681699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000811 WO2015111981A1 (en) 2014-01-27 2015-01-26 Stereoscopic sheet having variable perspective viewing angle, and thin layer stereoscopic sheet

Country Status (1)

Country Link
WO (1) WO2015111981A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490872A (en) * 2017-09-05 2017-12-19 朱光波 A kind of grating image film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035882A (en) * 2001-07-25 2003-02-07 Canon Inc Image display element and image display device using the same
KR20070080608A (en) * 2007-06-27 2007-08-10 최수인 Integral photography plastic sheet by special print
KR100841438B1 (en) * 2006-12-29 2008-06-26 정현인 Positive lens sheet of flat surface
KR20120137784A (en) * 2011-06-13 2012-12-24 이명주 Three dimensional printed film
JP2013007940A (en) * 2011-06-27 2013-01-10 Kiso Kasei Sangyo Kk Stereoscopic image printed matter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035882A (en) * 2001-07-25 2003-02-07 Canon Inc Image display element and image display device using the same
KR100841438B1 (en) * 2006-12-29 2008-06-26 정현인 Positive lens sheet of flat surface
KR20070080608A (en) * 2007-06-27 2007-08-10 최수인 Integral photography plastic sheet by special print
KR20120137784A (en) * 2011-06-13 2012-12-24 이명주 Three dimensional printed film
JP2013007940A (en) * 2011-06-27 2013-01-10 Kiso Kasei Sangyo Kk Stereoscopic image printed matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490872A (en) * 2017-09-05 2017-12-19 朱光波 A kind of grating image film
CN107490872B (en) * 2017-09-05 2023-11-21 朱光波 Grating imaging film

Similar Documents

Publication Publication Date Title
CN108064351B (en) Optical device
KR100841438B1 (en) Positive lens sheet of flat surface
US10670866B2 (en) Method for providing composite image based on optical transparency and apparatus using the same
WO2016086742A1 (en) Microlens array based near-eye display (ned)
KR100938990B1 (en) Integral photography sheet by total reflection
KR101324764B1 (en) Lenticular lense sheet with hidden effect
US9715117B2 (en) Autostereoscopic three dimensional display
US10148942B2 (en) Mirror display system
JP2012128423A (en) Lenticular lens sheet serving as microlens
KR101743000B1 (en) 3D sheets for change perspective image
US20120236411A1 (en) Microretarder Film
CN107728244A (en) A kind of slit grating preparation method for bore hole 3D printings
CN106094231A (en) Display base plate and display device
KR101167709B1 (en) Stereoscopic lens sheet comprising printed pattern layer formed at bottom of injection resin and method for fabricating the same lens sheet
WO2014024145A1 (en) Cosmetic article to be applied to human keratin materials
JP7048045B2 (en) Liquid crystal display module for naked eye 3D
KR101043770B1 (en) Stereoscopic sheet comprising surfaces of different refraction index and method for fabricating the same sheet
WO2015111981A1 (en) Stereoscopic sheet having variable perspective viewing angle, and thin layer stereoscopic sheet
TW201544845A (en) Stereoscopic image displayer
JP2011020403A (en) Decorative member
JP2013008087A (en) Operation input device
KR101366660B1 (en) A sheet hanving a partial 3d pattern
KR101167708B1 (en) Stereoscopic lens sheet comprising injection resin that lens and patterns are formed at top and bottom surfaces of and method for fabricating the same lens sheet
KR101051879B1 (en) Micro-pattern mold, stereoscopic lens sheet using the same mold, method for fabricating the same lens sheet
KR20110053009A (en) High-glossy stereoscopic sheet and method for fabricating the same stereoscopic sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113833

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740670

Country of ref document: EP

Kind code of ref document: A1