WO2015110072A1 - 一种网络频谱共享方法 - Google Patents

一种网络频谱共享方法 Download PDF

Info

Publication number
WO2015110072A1
WO2015110072A1 PCT/CN2015/071503 CN2015071503W WO2015110072A1 WO 2015110072 A1 WO2015110072 A1 WO 2015110072A1 CN 2015071503 W CN2015071503 W CN 2015071503W WO 2015110072 A1 WO2015110072 A1 WO 2015110072A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
small cells
spectrum
overlap
operator
Prior art date
Application number
PCT/CN2015/071503
Other languages
English (en)
French (fr)
Inventor
朱元萍
王江
于巧玲
滕勇
霍内曼·卡里
Original Assignee
上海无线通信研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海无线通信研究中心 filed Critical 上海无线通信研究中心
Priority to EP15740366.8A priority Critical patent/EP3099096B1/en
Priority to US15/113,406 priority patent/US9749872B2/en
Publication of WO2015110072A1 publication Critical patent/WO2015110072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies

Definitions

  • the present invention relates to a network spectrum sharing method, and more particularly to a spectrum sharing method between different networks having the same priority, and belongs to the field of wireless communication technologies.
  • Heterogeneous Network has received extensive attention. Its flexible networking method can meet a variety of different needs.
  • the deployment of a macro cell can provide wide area coverage, and a large number of small cell deployments such as a micro cell, a pico cell, and a femto cell can be enhanced. Indoor coverage and high speed access are also available.
  • the base station transmit power of the small cell is much lower than that of the macro base station.
  • the wireless signal will have a large wall wear loss after passing through the building. Under certain geographical isolation conditions, operators of heterogeneous networking networks can share spectrum without causing strong interference.
  • Co-primary Spectrum Sharing is a new spectrum access mode. Dynamic and flexible spectrum sharing with the same priority can be achieved among different operators. It requires two or more wireless band license holders to agree on how to jointly use their respective licensed bands. The entire spectrum sharing model is dominated by national frequency band management agencies. Therefore, people are assuming a new model: the band management organization no longer allocates a piece of spectrum resources to an operator in an exclusive manner, but simultaneously allocates it to multiple potential operators (users). These potential operators (users) need to use this part of the spectrum resources fairly in accordance with certain specific rules. For this new spectrum usage model, organizations and institutions around the world have begun discussions.
  • Figure 1 shows the hybrid network coverage overlap scenario deployed by different operators at this stage.
  • Carrier A and Carrier B deployed the network in one area.
  • A1 to A5 are the five small cell base stations deployed by the operator A
  • B1 to B4 are the four small cell base stations deployed by the operator B.
  • the strategies for deploying networks of different operators may be different, and it is difficult to exchange detailed information about network deployment. It is only possible to estimate the network topology based on some limited non-sensitive information and then determine the spectrum allocator. law. Therefore, if you can understand the network coverage topology deployed by different operators, it is of great significance to negotiate the spectrum allocation strategy among operators, which can improve spectrum utilization.
  • the technical problem to be solved by the present invention is to provide a network spectrum sharing method.
  • a network spectrum sharing method is used for implementing shared spectrum allocation between a first network (A) and a second network (B), including the following steps:
  • the first network (A) interacts with the second network (B) with network coverage topology based information of the second network (B), and obtains the first network from the second network (B) (A) information based on network coverage topology;
  • a shared spectrum between the first network (A) and the second network (B) is calculated.
  • the present invention has the following technical features:
  • the spectrum allocation can be automatically adjusted according to the degree of network coverage overlap, so that the appropriate operators occupy a reasonable shared spectrum, and the scope of application is wide, the algorithm is simple, and the efficiency is high.
  • Figure 1 is a schematic diagram of overlapping scenarios of hybrid network coverage deployed by different operators at this stage;
  • Figure 2 is a block diagram showing the flow of sharing different network spectrums
  • FIG. 5 is a diagram showing an example of allocation of an exclusive spectrum and a shared spectrum in a spectrum used by a first network
  • Figure 6 is a schematic diagram of spectrum sharing allocation between different networks.
  • the network spectrum sharing method provided by the present invention can be applied to any one of 2G/3G/4G or other wireless communication networks in the future, except that existing networks such as 2G/3G do not have multi-operator spectrum shared with priority. Application, but does not rule out the possibility that this method can be applied to 2G/3G/.
  • 4G-LTE network is taken as an example to illustrate the spectrum sharing scheme between different operators or different networks. The following mainly discusses the network conditions of different operators with the same priority. The situation of different networks of the same carrier with the same priority is similar, and will not be described here.
  • This network spectrum sharing method is mainly applicable to networks with the same priority. According to the overlap degree of the inter-network coverage of different operators, it provides a reasonable spectrum division scheme for spectrum sharing between operators/networks, which is applicable to different operators/networks under certain conditions within a certain range. Share spectrum resources fairly.
  • the operator conducts the measurement of the different carriers by the user equipment (User Equipment, UE) in the area, and then estimates the other operators according to the results measured by the different carriers.
  • the extent to which the network deployed in the area overlaps with its own network coverage, and the allocation scheme of shared spectrum among different operators is obtained according to the overlapping coverage topology information of the network. Referring to FIG. 2 and FIG. 3, the following describes the present invention by taking the process of spectrum sharing between the operator A and the operator B as an example.
  • the operator divides the small cells into different groups according to the geographical location and coverage.
  • each group needs to be assigned a corresponding group identifier.
  • the small cell needs to inform the small cell base station of the packet identifier of the belonging packet.
  • the method can be applied to a small cell or a macro cell, and can be selected according to service needs.
  • Step 1 Different networks perform different operator measurement and reporting.
  • the small cell base station of the operator/network needs to guide the respective user terminals to perform network signal measurement on different operators.
  • the user terminal After the user terminal completes the measurement of the information of different operators, it needs to send a different operator measurement report to the base station it serves according to the format defined in advance.
  • the base station After receiving the different operator measurement report from the user terminal, the base station forwards the packet to the corresponding operator's operation management node (O&M).
  • O&M operation management node
  • the operation management node evaluates the overlap degree indicator of the different operator small cell within the packet range represented by the packet identifier according to the different operator measurement report and the packet identifier judgment, so that the network coverage of the different operator can be determined. Topology.
  • a first operation network/first network (hereinafter referred to as: the present operator) A and a second operation network/second network (hereinafter referred to as a different operator) B are included.
  • this operator and “different operators” are relative and can be interchanged.
  • a certain small cell base station of the carrier A is the SeNBA
  • the operation management node is the O&MA
  • the user terminal served by the SeNBA is the UEA.
  • a certain small cell base station of the different operator B is the SeNBB
  • the operation management node is the O&MB
  • the user terminal served by the SeNBB is the UEB.
  • All user terminals UEA of the SeNBA perform different operator measurements.
  • the user terminal UE A may initiate the different operator measurement in multiple ways: one is periodic measurement, the measurement period is pre-configured by the base station after negotiation between the operators; the other may be event triggering, and the triggered event may be a base station. Or the UE is subject to strong interference.
  • the initiation conditions can be set according to the business requirements, and will not be described here.
  • all user terminals UEB of the SeNBB also perform different operator measurements.
  • the working content of the different operator B is not shown in FIG. 3, and the working mode and content thereof are the same as those of the carrier A.
  • the SeNBB is a different operator small cell base station measured by the UEA.
  • the user terminal UEA measures the signal strength information of the corresponding small cell of the SeNBB of the operator B according to the reference signal periodically transmitted by the SeNBB, Reference Signal Received Power (RSRP).
  • RSRP Reference Signal Received Power
  • the UEA sends a different operator network signal measurement report to the small cell base station SeNBA to which it belongs.
  • the different operator measurement report needs to be sent according to the defined format.
  • the report includes the reference signal received power RSRP of the SeNBB received by the user terminal UEA in the measured small cell, the associated operator/network identifier (operator ID), and the packet identifier ( Group ID), E-UTRAN Cell global Identifier (ECGI).
  • the measured cell belongs to some closed user groups, it should also include the enclosed user group identity (CSG ID); if the measured cell does not belong to some closed user groups, there is no need to report the closed user group identity.
  • CSG ID
  • Step 2 According to the different operator network measurement report, the network overlap degree indication of the small cell of the operator and the small cell of the different operator is evaluated.
  • the small cell base station of the operator reports the different operator network measurement report to the operation management node to which it belongs.
  • the operation management node may determine the network coverage overlap of a small cell of the different operator B and the carrier A.
  • the degree of overlap of the coverage of the network coverage indicates the degree of coverage overlap between the small cell deployed by the different operator and the carrier network.
  • the degree of overlap indicates that there are multiple ways to obtain it. Since a small cell deployed by a different operator may be detected by multiple carrier deployment cells, in one embodiment of the present invention, the degree of overlap indication is obtained by the sum of neighbor relationship values with RSRP weights.
  • the calculation process of the degree of overlap indication is as follows:
  • the reference neighbor relationship value of the small cell of the different operator B is set to 1; Then, the weight value of the reference signal received power of each of the measured different operators of the small cell is calculated. Finally, adding all the weighted neighbor relationship values measured to the different operator small cell is an indication of the degree of overlap of the small cell. Since the reference neighbor relationship value is 1, it is only necessary to add the weight values of the reference signal received power of the small cell of the different operator B measured by each small cell base station SeNBA, and the small operator B can be obtained. The degree of overlap of the cells is indicated.
  • the small cell base station SeNBA forwards the different operator measurements of the user terminal UEA to its corresponding O&M A .
  • the O&M A calculates an indication of the degree of overlap between each measured different operator B small cell and the carrier A network according to the measurement result of the different carrier network signal. Therefore, the measured formula of the degree of overlap between the small cell of the operator B and the carrier A network is as follows:
  • x is a serial number is measured in the base station SeNBB
  • i is the serial number with a neighbor relationship with the x-th SeNBB the SeNB A
  • N is the number of SeNB A has a neighbor relationship with the x-th SeNB B's
  • Wi is a section
  • the network overlap degree indication V represents the degree of interference of the base station of the different operator B that interferes with the small cell of the operator A, and the small cell of the carrier A.
  • the weight value in Equation 1 is simply summed, or it may be other methods such as re-weighting and summing Wi.
  • the weight value is directly related to the measured signal received power value measured by the user terminal.
  • a mapping relationship between a weight value W and a reference signal received power RSRP is given in Table 1.
  • a number of threshold values R 1 , R 2 , R 3 , . . . are set, and corresponding weight values are assigned according to the size of the RSRP and the threshold value.
  • the principle of assignment is that the higher the reference signal received power value RSRP, the larger the weight value.
  • the threshold value For the setting of the threshold value, the operator can set it according to the actual situation, and no further explanation will be given here.
  • the threshold of R can be set. If the RSRP measured by the user terminal UEA of the base station SeNB A of the carrier A is less than the threshold (that is, the maximum value R is less than the threshold) In this case, it is determined that the network coverage overlap is low.
  • Step 3 Count the different operator small cells according to the overlap degree indication.
  • the degree of overlap is indicated as an important parameter of the degree of overlap between the different carrier B and the small cell network signal of the operator A.
  • the operation management node of the carrier A is based on the degree of overlap of the different operator B small cells.
  • the size of the indication, its network ID and the group ID to which it belongs divides the small cells belonging to the same group of the same network into several classes according to the degree of overlap. According to the classification, the number of small cells included in each class is counted. According to the number of small cells with different degrees of overlap, the network coverage topology of the small cell network of the packet of the different operator B and the carrier A can be basically determined.
  • the following two threshold values indicated by the degree of overlap are taken as an example for explanation.
  • the two thresholds are defined as TH1 and TH2, respectively, where TH1 > TH2. Therefore, through the two thresholds, the small cells can be classified into high, medium and low according to the degree of coverage overlap.
  • the degree of overlap indicates that TH2 ⁇ V ⁇ TH1
  • M the number of small cells with medium network coverage overlap
  • M the number of small cells deployed by different operators B with moderate coverage of network coverage deployed by the carrier A.
  • L the number of small cells deployed by B operators with low degree of network coverage overlap with the carrier A.
  • the threshold value may be determined according to the reference signal received power RSRP of the small cell of the different operator B detected by the carrier A.
  • the first solution is: in each RSRP from the different carrier base station SeNB B measured by the user terminal UEA of different SeNB A , the maximum value is R, and the threshold TH1 is set to a larger proportion of R. (eg 2/3); the threshold TH1 is set to a smaller ratio of R (eg 1/3).
  • the second option is to set a fixed threshold based on the empirical data of the carrier A.
  • the third solution is to determine the threshold value between the carrier A and the different carrier B in advance. In the first two scenarios, operators exchange thresholds when interacting with information based on network coverage topology. The third option does not require an interaction threshold.
  • the topology of the different operator network coverage in the small cell of the packet may be determined, and the topology information of the different carrier network coverage is obtained.
  • Step 4 The interaction between different networks is based on the information of the network coverage topology.
  • the inter-operator coverage overlap indicator is used to indicate the overlapping coverage between different networks, which includes the number of small cells with different network coverage overlap, that is, according to the overlap in step 3.
  • the degree indicates the number of small cells of the obtained operator.
  • the network of the carrier A will have the number of small cells of the different operators B with different network coverage overlaps with the carrier A network. After this information interacts with the network of the different operators, each operator can The interaction information determines the overlapping coverage of the deployed small cells to other operators.
  • the operation management node There are two ways for operators to interact: one is through the operation management node; the other is through the spectrum controller.
  • the operator A's operation management node only needs to overlap the carrier network overlay indication, including at least H and L (a threshold), and may include M (two thresholds). It can be sent to the operation management node of the operator B, and will not be described here.
  • the operator that needs to share the spectrum sends the overlap indication of the inter-operator network coverage to the spectrum control center to which it belongs through the respective operation management node, and then the spectrum of the operator The control center performs overlay indication interaction between different carriers.
  • Step 5 Negotiating an inter-operator spectrum sharing allocation scheme according to the information based on the network coverage topology.
  • the ratio between the operators' exclusive spectrum and/or the shared spectrum is determined by the number of cells H, M, and L between the operators according to the different network coverage overlaps included in the interaction information. Then, according to the ratio of the exclusive spectrum and/or the shared spectrum, the distribution ratio of the shared frequency band is negotiated between the operators.
  • the frequency bands shared by the two operators are divided into three parts: the shared frequency band, the frequency band occupied by only one operator (operator A exclusive spectrum), and the frequency band occupied by only another operator ( Carrier B monopolizes the spectrum).
  • the spectrum resource division structure is shown in Figure 4.
  • the principle of frequency band resource allocation is as follows: If the coverage of the inter-network coverage of different operators is higher (that is, the larger the H), the fewer frequency bands shared by the operators, the more bandwidth resources need to be allocated to the operators. To reduce the interference between operators; on the other hand, if the coverage of the inter-network coverage deployed by different operators is lower, the more frequency bands that can be allocated to the operators to share, the independently occupied frequency bands (also called: exclusive spectrum) The less.
  • the operator is determined to determine the proportion of the spectrum and shared spectrum that he or she needs to occupy. According to the number of small cells with different network coverage overlaps, each operator evaluates the proportion of its own occupied and shared spectrum allocation. When determining the ratio between the two, the operator can adopt different criteria according to the actual situation.
  • the total number of overlapping small cells of the high, medium, and low network coverage of the different carriers B measured by the operator A is H.
  • B + M B + L B there may be some different operators B small cells are not measured by the operator A, the number of these small cells is recorded as Z B .
  • Two criteria for determining the spectrum allocation ratio are given in this embodiment, see FIG.
  • the allocation is based on the spectrum allocation ratio criterion (Guide 1), that is, the proportion of the exclusive spectrum allocated in the spectrum used by the operator is The ratio of shared spectrum allocation is Taking the different carrier B as an example, the proportion of the exclusive spectrum allocated in the spectrum used by the operator is The ratio of shared spectrum allocation is
  • each operator allocates according to another spectrum allocation ratio criterion (criteria 2): the proportion of the exclusive spectrum allocated in the spectrum used by the operator is The proportion of the shared spectrum allocated in the spectrum used by the operator is Taking the different carrier B as an example, the proportion of the exclusive spectrum allocated in the spectrum used by the operator is The proportion of the shared spectrum allocated in the spectrum used by the operator is
  • the small cell of the different operator B measured by the carrier A is divided into two categories: high and low.
  • the proportion of the exclusive spectrum allocated in the spectrum used by the different operator B is or Similarly, the shared spectrum is allocated in the spectrum used by the different operator B. or Since the case of a threshold is similar to the case of multiple thresholds, it will not be described separately below.
  • FIG. 6 shows the spectrum sharing allocation ratio in this embodiment.
  • the spectrum shared between the two operators is defined as 1.
  • Carrier A determines that the ratio between the spectrum that needs to be occupied independently and the shared spectrum is R A
  • the ratio between the spectrum occupied by the operator B and the shared spectrum is R B
  • the two ratios between the operators R A and R B (as the network coverage topology information)
  • the inter-operator spectrum sharing allocation scheme can be obtained according to the operator's respective allocation ratio scheme.
  • Guideline 1 The ratio between operator A’s exclusive spectrum and the shared spectrum
  • Guideline 2 The ratio between operator A’s exclusive spectrum and the shared spectrum
  • H A is an interaction between the operator information acquired by the operator A in the small area within a given cell deployment, the number belonging to the network of high degree of overlap small cells; operator A T A is at a The number of all small cells deployed in the fixed area, or the number of all small cells deployed by the operator A of the operator B in a given area (ie, the case where Z A is 0); M A is based on The number of small cells belonging to the medium category of the network overlap degree among the small cells deployed by the operator A in the given area, which is known by the operator interaction information.
  • Carrier B can also determine the ratio R B between its exclusive spectrum and the shared spectrum according to criterion 1 or criterion 2.
  • Carrier A and Carrier B exchange the ratios R A and R B between the respective exclusive spectrum and the shared spectrum obtained according to criterion 1 or 2, thereby calculating the distribution ratio of the two exclusive spectrums and the shared spectrum.
  • Operator A s ratio of exclusive spectrum to total spectrum is The ratio of spectrum shared by operators A and B to the total spectrum is The ratio of operator B's exclusive spectrum to the total spectrum is The total spectrum refers to the shared spectrum between the operator and the different operators and the sum of their respective exclusive spectrum.
  • the operators can negotiate a reasonable spectrum allocation scheme between the operators according to the network coverage topology information of the interaction, and the following solutions can also be adopted.
  • the following schemes do not require the operator to determine the proportion of the spectrum and the shared spectrum that it needs to be occupied by itself. Instead, Carrier A and Carrier B directly exchange the total number of small cells deployed by each other and the small cells that measure the overlap of different network coverages of the other party.
  • the quantity (as the network coverage topology information) is directly allocated to the spectrum according to the number of small cells whose respective network coverage overlaps. After the operation and management nodes of the carrier A and the carrier B respectively obtain the number of small cells with different network coverage overlaps, the difference between the different network coverages of the operator and the operator B is small.
  • the number of cells and the total number of small cells deployed by the carrier are used as network coverage topology information. That is, the operator A informs the operation of the total number of small cells H A +M A +L A +Z A of the deployed small cells and the measured small cell numbers H B , M B , L B of the different coverage overlaps of the operator B.
  • Carrier A and Carrier B perform spectrum allocation according to the following criteria 3, respectively.
  • operator A and operator B can also perform spectrum allocation according to the following criterion 4, respectively.
  • the application of criterion 3 or criterion 4 is more efficient in calculation and interaction.
  • the first network (A) monopolizes the spectrum
  • the second network (B) monopolizes the spectrum
  • the shared spectrum of the first network (A) and the second network (B) the ratio of the three is: the second network (B) measures The number of small cells with a high degree of network overlap of the first network (A): the number of small cells with a high degree of network overlap of the second network (B) measured by the first network (A): all small of the two networks The number of remaining small cells in the cell.
  • the ratio of the three may also be: the sum of the network overlap degree of the first network (A) measured by the second network (B) and the number of small cells in the middle: the second network (A) measured second
  • the sum of the network overlap of the network (B) is high and the number of small cells in the middle: the number of remaining small cells in all the small cells of the two networks.
  • the H A is the number of small cells that belong to the network with a high degree of overlap in the small cell deployed by the operator A in a given area according to the interaction information between the operators; and the H B is based on the interaction between the operators.
  • the number of small cells that the operator B knows in a given area belongs to the small cell with a high degree of network overlap; T A is the number of all small cells deployed by the operator A in a given area, or Is the number of all small cells deployed by the operator A of the operator B in a given area; T B is the number of all small cells deployed by the operator B in a given area, or the number of operators A
  • M A is the small cell that is deployed in a given area by the operator A learned according to the interaction information between the operators.
  • M B is the number of network belonging to the category of medium degree of overlap in a small region of a given cell deployment in accordance with the interaction between the operator information acquired by the
  • the network coverage topology information between the operator A and the carrier B is the number of small cells with high overlap of detected network coverage of different operators and the small deployment of the carrier.
  • the total number of cells T That is, the operator A informs the operator B of the total number of small cells T A deployed by the operator and the measured number of small cells H B with high coverage of the network coverage of the operator B; the total number of small cells T B that the operator B deploys And the measured number of small cells H A with a high degree of network coverage overlap of the operator A tells the operator A.
  • the simplified criteria 4-1 apply, and the network coverage topology information exchanged between the operator A and the operator B is that the detected network coverage overlap of the different operators is high and the number of small cells in the middle is H, M. And the total number of small cells T deployed by the operator. I.e., carrier A network deploy the total number of small cells T A and the measurement to the operator B to cover a high degree of overlap and the small cell number H B, M B tell the operator B; operator B to deploy The total number of small cells T B and the measured degree of network coverage overlap of the operator A are high and the number of small cells H A , M A tells the operator A.
  • the ratio of the shared frequency bands does not need to be as high as in the criteria 3 and 4.
  • the following criteria 5 and 6 make the division of the shared partial frequency bands more reasonable and efficient.
  • S 1 indicates the maximum number of small cells in the shared frequency band used by the carrier A and the carrier B. The number of small cells in the shared frequency band is adopted by each operator, that is, the small cell deployed by the operator is removed from the network coverage of the different carrier. The number of small cells outside the small cell.
  • the maximum number of small cells in the shared frequency band is used by the carrier A and the carrier B under the criterion, which is a small cell with a low degree of network overlap in the number of small cells deployed by the operator A, and is not detected by the operator B.
  • the sum of the number of small cells, and the sum of the small cells with low degree of network overlap and the number of small cells not detected by the operator A in the number of small cells deployed by the operator B which are larger By.
  • the number of small cells deployed by the operator A is reduced by the number of small networks and the number of small cells in the network, and the number of small cells deployed by the operator B minus the number of small networks and the number of small cells in the network. The larger of the two.
  • the first network (A) monopolizes the spectrum
  • the second network (B) monopolizes the spectrum
  • the shared spectrum of the first network (A) and the second network (B) the ratio of the three is: the second network (B) measures The number of small cells with a high degree of network overlap of the first network (A): the number of small cells with a high degree of network overlap of the second network (B) measured by the first network (A): the first network (A) The maximum number of small cells in the shared frequency band used by the second network (B).
  • the ratio of the three may also be: the sum of the network overlap degree of the first network (A) measured by the second network (B) and the number of small cells in the middle: the second network (A) measured second
  • the sum of the network overlap degree of the network (B) and the number of small cells in the middle the maximum number of small cells in the shared frequency band adopted by the first network (A) and the second network (B).
  • the operators can ignore the small cells that are not detected by the different operators.
  • the operators only need to exchange the network coverage topology information measured by the different carriers (that is, include Covering the number of small cells with high, medium, and low overlaps, you do not need to know the number of all small cells deployed by other operators.
  • the corresponding frequency division criteria can be described as follows:
  • Criterion 7 In the above criteria 1 - criterion 6, regardless of the true values of Z A and Z B , Z A and Z B are set to 0 when calculating the spectrum allocation ratio for each segment.
  • T A is the number of all small cells deployed by the operator A of the operator B in a given area
  • T B is the carrier B detected by the user terminal of the operator A.
  • the number of all small cells deployed in a given area is the case where both Z A and Z B are zero.
  • the number of small cells in which the different network coverages of the different operators are overlapped between the operator A and the operator B that is, the number of cells H B and M B of the operator B measured by the operator A L B tells the operator B; the operator B informs the operator A of the number of cells H A , M A , L A of the measurement operator A.
  • the criteria 3 and 4 are taken as an example to illustrate the case where Z A and Z B are set to 0 (including 0 when they are not at the same time).
  • Operator A and Carrier B perform spectrum allocation according to the following criteria 7-1 (corresponding to criterion 3) or criterion 7-2 (corresponding to criterion 4).
  • the criteria 1, 2, 5, and 6 can all set Z A and Z B to 0 (including the case where they are not 0 at the same time), similar to the case of the criteria 3 and 4, and will not be described in detail.
  • the carrier A when Z A is 0 and Z B is not 0, the carrier A combines the detected number of the operator B small cells H B , M B , L B , and Z B according to the self-detection.
  • the ratio of H A , M A , and L A obtained by operator B is obtained by the ratio of operator A exclusive spectrum to total spectrum:
  • the case where Z B is 0 and Z A is not 0 is similar to the case where Z A is 0 and Z B is not 0.
  • the ratio of the operator B exclusive spectrum to the total spectrum may have a case where Z A is 0 and Z B is not 0 or Z B is 0 and Z.
  • Z A is 0
  • Z B is not 0
  • Z is not described here.
  • the proportion of the operator's exclusive spectrum to the total spectrum, the ratio of the exclusive operator B exclusive spectrum to the total spectrum, and the ratio of the shared spectrum to the total spectrum may have Z A of 0 and Z.
  • B is not 0 or the case where Z B is 0 and Z A is not 0 will not be described here.
  • the carrier A In the spectrum used, the spectrum that is close to the spectrum used by the different operator B is allocated to the shared spectrum, and the spectrum used in the spectrum that is used by the different operator B is allocated to the exclusive spectrum. It can be understood that the carrier A may not allocate the spectrum in this way, or may allocate the separated frequency bands to the shared spectrum or the exclusive spectrum according to the service requirements, as long as the foregoing criteria are met.
  • the network spectrum sharing method enables the same priority spectrum sharing among different operators.
  • the operator groups the small cells according to the geographic location and coverage, and assigns the group identity; the operator performs the measurement and reporting of the different carriers, and the operation management node to which the operator belongs evaluates the small cell of the different operator according to the different operator measurement report.
  • the degree of overlap of the own network is obtained, and the indication of the degree of overlap of the small cell of the different operators is obtained.
  • the small cell of the same group is classified according to the overlapping coverage, and the number of small cells with different overlapping coverage is counted to form a different carrier network.
  • Overlay overlap indication then, the inter-operator network overlaps the overlap indication between the operators.
  • the operator will negotiate frequency resource allocation according to the number of small cells with overlapping coverage of different networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种网络频谱共享方法,用于在本运营商和异运营商之间实现共享频谱分配。在某个区域内,本运营商的用户终端进行异运营商网络信号强度测量,并向所属基站发送异运营商网络信号强度测量报告;本运营商的运营管理节点,根据基站转发的异运营商网络信号强度测量报告,计算异运营商网络重叠程度指示,并且根据网络重叠程度指示获得异运营商的基于网络覆盖拓扑的信息,本运营商网络与异运营商网络交互异运营商的基于网络覆盖拓扑的信息,计算出本运营商和异运营商之间分配共享频谱资源的策略。本发明可以使不同的运营商在一定范围内公平合理地共享频谱资源,从而提高整个通信网络的频谱利用率,保证了用户终端的通信质量。

Description

一种网络频谱共享方法 技术领域
本发明涉及一种网络频谱共享方法,尤其涉及一种在具有相同优先级的不同网络之间的频谱共享方法,属于无线通信技术领域。
背景技术
近年来,异构组网(Heterogeneous Network,HetNet)受到了广泛关注。其灵活的组网方式可以满足多种不同的需求。参见图1,宏小区(Macro cell)的部署可以提供广域覆盖,而大量的诸如微小区(Micro cell)、微微小区(Pico cell)、家庭基站小区(Femto cell)等小小区部署不仅可以增强室内覆盖,还可以提供高速接入。与宏基站相比,小小区的基站发射功率要低的多。对于一些室内部署的小小区基站来说,其无线信号在穿过建筑物后会有较大的穿墙损耗。那么在一定的地理位置隔离条件下,异构组网的运营商之间是可以频谱共享且不会造成很强的干扰的。
同优先级频谱共享(Co-primary Spectrum Sharing)是一种新的频谱接入模式,不同运营商间可以实现同优先级的动态灵活的频谱共享。它需要两个或多个无线频段执照持有者通过协商,就如何共同使用各自的部分授权频段达成一致。整个频谱共享模式受国家频段管理机构支配。因此人们在假设一种新的模式:频段管理机构不再将一段频谱资源以独占的方式分配给某个运营商,而是同时分配给多个潜在的运营商(用户)。这些潜在的运营商(用户)需要根据某些特定的规则公平地共同使用这部分频谱资源。针对这种新的频谱使用模式,世界上已有组织和机构开始讨论。例如德国联邦网络管理机构在2004年5月关于固定宽带无线接入系统(Fixed BWA)中3.5GHz频段的分配讨论中就曾涉及。此外,美国联邦通信委员会在关于3650~3700MHz的light licensing方案中也提出了类似的概念。
图1为现阶段不同运营商部署的混合网络覆盖重叠场景。运营商A和运营商B在一个区域内都部署了网络。A1~A5为运营商A部署的5个小小区基站,B1~B4表示运营商B部署的4个小小区基站。图中两个运营商的网络之间覆盖重叠大致有三种情况:覆盖重叠度高;覆盖重叠度中等;覆盖重叠度低或者无覆盖重叠。不同运营商各自部署网络的策略可能有较大差异,且相互之间很难交互关于网络部署的细节信息,只能根据一些有限的非敏感信息对网络拓扑进行估测然后确定频谱分配方 法。因此若能了解不同运营商部署的网络覆盖拓扑,对运营商间协商频谱分配策略具有重要意义,可以提高频谱利用率。
发明内容
针对现有技术的不足,本发明所要解决的技术问题在于提供一种网络频谱共享方法。
为实现上述发明目的,本发明采用下述的技术方案:
一种网络频谱共享方法,用于第一网络(A)和第二网络(B)之间实现共享频谱分配,包括如下步骤:
测量第二网络(B)的网络信号;
根据所述第二网络(B)的网络信号,计算所述第一网络(A)和所述第二网络(B)之间的网络重叠程度指示,并且根据所述网络重叠程度指示(V)获得所述第二网络(B)的基于网络覆盖拓扑的信息;
所述第一网络(A)与所述第二网络(B)交互所述第二网络(B)的基于网络覆盖拓扑的信息,并从所述第二网络(B)获得所述第一网络(A)的基于网络覆盖拓扑的信息;
计算出所述第一网络(A)与所述第二网络(B)之间的共用频谱。
与现有技术相比较,本发明具有如下的技术特点:
1.适用于一定范围内不同的运营商/网络/用户之间共享频谱资源。通过根据异运营商间的网络覆盖重叠程度,为不同的运营商合理分配共享频谱资源,实现了同优先级频谱共享,提高了整个通信网络的频谱利用率。
2.可以在同优先级的前提下实现公平的频谱共享,保证处于网络覆盖重叠区域的不同终端,能够公平地使用频谱资源,维护不同运营商的利益。
3.能够在同优先级的前提下根据网络覆盖重叠程度的不同,自动调整频谱分配,让合适的运营商占用合理的共用频谱,适用范围广,算法简单,效率高。
附图说明
图1为现阶段不同运营商部署的混合网络覆盖重叠场景示意图;
图2为实现不同网络频谱共享的流程框图;
图3为本发明中实现不同网络频谱共享的详细流程图;
图4为不同网络重叠覆盖场景中的频谱分配示意图;
图5为第一网络使用的频谱中的独占频谱与共用频谱的分配示例图;
图6为不同网络之间频谱共享分配示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。
本发明所提供的网络频谱共享方法,可以应用于2G/3G/4G或未来其他无线通信网络中的任何一种,只是2G/3G等已有网络中目前还没有多运营商频谱同优先级共享的应用,但不排除本方法可以应用于2G/3G/的可能性。下文仅以4G-LTE网络为例说明不同运营商或者不同网络之间的频谱共享方案。以下主要讨论不同运营商的具有相同优先级的网络情况,同一运营商的具有相同优先级的不同网络的情况与之类似,在此不予赘述。
本网络频谱共享方法主要适用于具有相同优先级的网络。根据异运营商的网络间覆盖重叠程度,为运营商/网络之间进行频谱共享提供了一种合理的频谱划分方案,适用于一定范围内不同的运营商/网络之间在同优先级条件下公平地共享频谱资源。在某个网络间覆盖重叠区域内,运营商通过指导其部署的该区域内的用户终端(User Equipment,UE)进行异运营商测量,然后根据异运营商测量的结果,估计其他运营商在该区域内部署的网络与自己网络覆盖重叠的程度,并根据网络重叠覆盖拓扑信息得出了异运营商间共享频谱的分配方案。参见图2和图3,下面以运营商A和运营商B频谱共享的过程为例对本发明进行详细介绍。
运营商根据地理位置和覆盖范围将小小区划分为不同的组。运营商在进行分组时,需为每组分配相应的分组标识。分组完成后,小小区需将所属分组的分组标识告知小小区基站。本方法可以适用于小小区或宏小区,可以根据业务需要选择使用。
步骤1,不同网络分别进行异运营商测量和汇报。
运营商/网络的小小区基站需要指导各自的用户终端对不同的运营商进行网络信号测量。待用户终端对不同运营商的信息测量完成,需要根据事先定义好的格式向其所服务的基站将发送异运营商测量报告。基站接收到来自用户终端的异运营商测量报告后,将其连同分组标识转发至对应的运营商的运营管理节点(Operations and Maintenance,O&M)。运营管理节点根据异运营商测量报告以及分组标识判断,评估出在该分组标识代表的分组范围内的异运营商小小区的重叠程度指示(Overlap Degree Indicator),从而可以确定异运营商的网络覆盖拓扑。
在本发明的一个实施例中,包括第一运营网/第一网络(以下称为:本运营商)A和第二运营网/第二网络(以下称为:异运营商)B。可以理解,所谓“本运营商”与“异运营商”是相对的,可以互换。本运营商A的某个小小区基站为SeNBA,运营管理节点为O&MA,SeNBA所服务的用户终端为UEA。异运营商B的某个小小区基站为SeNBB,运营管理节点为O&MB,SeNBB所服务的用户终端为UEB。下面以SeNBA进行异运营商测量和汇报进行介绍。
SeNBA所有的用户终端UEA进行异运营商测量。用户终端UEA发起异运营商测量可以有多种方式:一种是周期性测量,测量周期由运营商之间协商后基站预先配置好;另一种可以是事件触发,触发的事件可以是基站或者UE受到强干扰。发起条件可以根据业务需求进行设置,在此不赘述。
同时,SeNBB所有的用户终端UEB也进行异运营商测量。为简明表示,在图3中没有表示异运营商B(包括用户终端UEB及SeNBB等)的工作内容,其工作方式和内容与本运营商A相同。
SeNBB为UEA测量到的异运营商小小区基站。用户终端UEA根据SeNBB周期发送的参考信号来测量运营商B的SeNBB相应小小区的信号强度信息—参考信号接收功率(Reference Signal Received Power,RSRP)。测量完成后,UEA向其所属的小小区基站SeNBA发送异运营商网络信号测量报告。异运营商测量报告需按照定义好的格式进行发送,报告中包括用户终端UEA在被测小小区接收到的SeNBB的参考信号接收功率RSRP、所属运营商/网络标识(operator ID)及分组标识(group ID)、小区全网唯一标识(E-UTRAN Cell global Identifier,ECGI)。此外,如果被测小区属于某些封闭用户群,还应包含所属封闭用户群标识(CSG ID);如果被测小区不属于某些封闭用户群,则无需报告封闭用户群标识。
步骤2,根据异运营商网络测量报告,评估本运营商小小区与异运营商小小区的网络重叠程度指示。
在步骤1中,本运营商的小小区基站向其所属的运营管理节点汇报异运营商网络测量报告。根据不同的小小区基站的网络测量报告,运营管理节点可以确定异运营商B的某个小小区与本运营商A的网络覆盖重叠情况。在本实施例中,通过网络覆盖的重叠程度指示来表示异运营商部署的小小区与本运营商网络的覆盖重叠程度。重叠程度指示有多种获得方式。由于一个异运营商部署的小小区可能被多个本运营商部署小区检测到,在本发明的一个实施例中重叠程度指示通过带RSRP权重的邻居关系值之和得到。重叠程度指示的计算过程如下:
如果本运营商A的一个小小区能测量到异运营商部署的某一小小区,则将异运营商B的该小小区的基准邻居关系值设为1;测量不到的即为0。然后计算每个测量到的异运营商该小小区的参考信号接收功率的权重值。最后将所有测量到该异运营商小小区的带权重的邻居关系值相加即为该小小区的重叠程度指示。由于基准邻居关系值为1,因此只需将每个小小区基站SeNBA测量到的异运营商B的该小小区的参考信号接收功率的权重值相加,即可得到异运营商B的该小小区的重叠程度指示。
在本发明的一个实施例中,小小区基站SeNBA将用户终端UEA的异运营商测量 结果转发至其所对应的O&MA。O&MA根据异运营商网络信号测量结果计算每一个被测量到的异运营商B小小区与本运营商A网络的重叠程度指示。因此被测量到的运营商B的小小区与本运营商A网络的重叠程度指示V的公式如下:
Figure PCTCN2015071503-appb-000001
其中,x为被测量到的基站SeNBB的序号,i为与第x个SeNBB有邻居关系的SeNBA的序号,N为与第x个SeNBB有邻居关系的SeNBA的数量,Wi是根据第i个所述本运营商基站SeNBA的用户终端汇报的来自第x个所述异运营商基站SeNBB的参考信号接收功率值,计算出的权重值。网络重叠程度指示V表征对本运营商A的小小区有干扰的异运营商B的基站,对本运营商A的小小区的干扰程度。公式1中权重值是简单求和,也可以是对Wi再加权求和等其他方式。
权重值与用户终端测量到参考信号接收功率值直接相关。表1中给出了一种权重值W和参考信号接收功率RSRP的映射关系。首先设定若干门限值R1、R2、R3……,并根据RSRP与门限值的大小,赋予相应的权重值。赋值的原则为参考信号接收功率值RSRP越高,则权重值越大。而对于门限值的设定,运营商可以根据实际情况自行设定,这里不再进行说明。
RSRP的范围 W的值
RSRP≥R1 1
R2≤RSRP<R1 0.8
R3≤RSRP<R2 0.5
表1权重值W和参考信号接收功率RSRP的映射关系
作为另一种权重值W和参考信号接收功率RSRP的映射关系,可以根据不同SeNBA的用户终端UEA测量到的来自异运营商基站SeNBB的各个RSRP中,取最大值为R,Wi=RSRPi/R。采用这种映射关系时,在极端情况下,两个运营商的网络覆盖重叠程度很低,R的值会很小,但根据Wi=RSRPi/R计算出来的权重值Wi还是会较大。为避免这种情况,可以设定R的门限值,如果本运营商A的基站SeNBA的用户终端UEA测量到的各个RSRP均小于该门限值(即,最大值R小于该门限值),这种情况就判定为网络覆盖重叠程度低。
步骤3,根据重叠程度指示,对异运营商小小区计数。
本发明中重叠程度指示为异运营商B与本运营商A的小小区网络信号重叠程度的一个重要参数。本运营商A的运营管理节点根据异运营商B小小区的重叠程度指 示值的大小,及其网络ID和所属分组ID,将同一网络的属于同一个分组的小小区按照重叠程度分为若干类。根据分类情况,统计每一类中包含小小区的数量。根据不同重叠程度的小小区数量,基本可以确定异运营商B的该分组的小小区网络与本运营商A的网络覆盖拓扑。在进行小小区分类时,首先需要定义重叠程度指示的门限值。该门限值用于划分小小区的不同覆盖重叠水平。
下面以重叠程度指示的两个门限值为例进行说明。两个门限值分别定义为TH1和TH2,其中TH1>TH2。因此通过两个门限值,将小小区按覆盖重叠程度可分为高、中、低三类。其中每一类对应的小小区数量分别用H、M、L表示。若重叠程度指示V>=TH1,则表示此异运营商B部署的小小区与本运营商A的网络覆盖重叠程度高。此时高重叠度小小区数量加1,即H=H+1;H表示与本运营商A部署的网络的覆盖重叠程度高的B运营商部署的小小区的数量。若重叠程度指示TH2<V<TH1,则表示此异运营商B部署的小小区与本运营商A的网络的覆盖重叠程度中等。此时中等网络覆盖重叠度的小小区数量加1,即M=M+1;M表示与本运营商A部署的网络覆盖重叠程度中等的异运营商B部署的小小区的数量。其余情况,认为此异运营商小小区与本运营商网络覆盖重叠程度低。低重叠度小小区数量加1,即L=L+1;L表示与本运营商A部署网络覆盖重叠程度低的B运营商部署小小区的数量。
门限值的设定,可以是根据本运营商A检测到的异运营商B的小小区的参考信号接收功率RSRP确定。例如,第一种方案是:不同SeNBA的用户终端UEA测量到的来自异运营商基站SeNBB的各个RSRP中,取最大值为R,门限值TH1设定为R的一个较大的比例(例如2/3);门限值TH1设定为R的一个较小比例(例如1/3)。第二种方案是:根据本运营商A的经验数据设定固定的门限值。第三种方案是:本运营商A与异运营商B之间事先协商确定门限值。前两种方案中,运营商之间在交互基于网络覆盖拓扑的信息的时候,交互门限值。第三种方案不需要交互门限值。
待同一分组内的异运营商小小区按照上述的分类和计数方法处理完成后,可以确定在该分组小小区的异运营商网络覆盖拓扑结构,得到异运营商网络覆盖拓扑信息。
步骤4,不同网络间交互基于网络覆盖拓扑的信息。
利用运营商网络间覆盖重叠指示(inter-operator coverage overlap indicator)这一参数,表示不同网络间的重叠覆盖程度,其包含具有不同网络覆盖重叠程度的小小区数量,即,在步骤3中根据重叠程度指示得到的运营商的小小区数量。本运营商A的网络将具有与本运营商A网络之间的不同网络覆盖重叠度的异运营商B的小小区数量,这一信息与异运营商的网络交互后,各个运营商可以根据 该交互信息确定其部署的小小区对其他运营商的重叠覆盖情况。
运营商间进行交互的方式有两种:一是通过运营管理节点;二是通过频谱控制中心(spectrum controller)。通过运营管理节点交互时,运营商A的运营管理节点只需将运营商网络间覆盖重叠指示,至少包含H和L(一个门限值的情况),可以包含M(两个门限值的情况)发送至运营商B的运营管理节点即可,这里不再赘述。当系统中存在频谱分配方案决策的频谱控制中心时,需要共享频谱的运营商通过各自的运营管理节点将异运营商网络间覆盖重叠指示发送至其所属的频谱控制中心,然后由运营商的频谱控制中心进行异运营商网络间覆盖重叠指示交互。
步骤5,根据基于网络覆盖拓扑的信息,协商运营商间频谱共享分配方案。
运营商之间根据交互信息所包含的不同网络覆盖重叠程度的小区数量H,M和L,确定自己独占频谱和/或共用频谱的比例。然后根据独占频谱和/或共用频谱的比例,运营商之间协商得出共用频段的分配比例。
在本方案中,两个运营商共享的频段分为三个部分,分别是:共用频段、只被一个运营商占用的频段(运营商A独占频谱)、只被另一个运营商占用的频段(运营商B独占频谱)。频谱资源划分结构如图4所示。频段资源分配的原则如下:如果不同的运营商的网络间覆盖重叠程度越高(即,H越大),则运营商共用的频段越少,需要将更多的频段资源分配给运营商独自占用,以减轻运营商间的干扰;反之,若不同运营商部署的网络间覆盖重叠程度越低,则可以分配越多的频段给运营商共用,各自独立占用的频段(也称为:独占频谱)越少。
首先介绍运营商确定自己所需独自占用频谱和共用频谱的比例。根据不同网络覆盖重叠程度的小小区数量,每个运营商评估自己独立占用和共用频谱分配的比例。在确定二者之间的比例时,运营商可以根据实际情况采用不同的准则。
在本发明的一个实施例中,对运营商B部署的小小区来说,除了那些被运营商A测量到的异运营商B的高、中、低程度的网络覆盖重叠小小区数量总数为HB+MB+LB,还可能会有些异运营商B小小区并未被运营商A测量到,将这些小小区的数量记为ZB。本实施例中给出了两种确定频谱分配比例的准则,参见图5。
每个运营商获得不同网络间覆盖重叠程度的小小区数量后,根据频谱分配比例的准则(准则1)进行分配,即独占频谱在该运营商使用的频谱中的分配比例为
Figure PCTCN2015071503-appb-000002
共用频谱分配比例为
Figure PCTCN2015071503-appb-000003
以异运营商B为例,独占频谱在本运营商使用的频谱中的分配比例为
Figure PCTCN2015071503-appb-000004
共用频谱分配比例为
Figure PCTCN2015071503-appb-000005
或者,每个运营商根据另一种频谱分配比例的准则(准则2)进行分配:独占频谱在该运营商使用的频谱中的分配比例为
Figure PCTCN2015071503-appb-000006
共用频谱在该运营商使用的频谱中的分配比例为
Figure PCTCN2015071503-appb-000007
以异运营商B为例,独占频谱在该运营商使用的频谱中的分配比例为
Figure PCTCN2015071503-appb-000008
共用频谱在该运营商使用的频谱中的分配比例为
Figure PCTCN2015071503-appb-000009
可以理解,如果只有一个门限值,将本运营商A测量到的异运营商B的小小区分成高、低两类。则独占频谱在异运营商B使用的频谱中分配的比例为
Figure PCTCN2015071503-appb-000010
或者
Figure PCTCN2015071503-appb-000011
类似的,共用频谱在异运营商B使用的频谱中分配比例为
Figure PCTCN2015071503-appb-000012
或者
Figure PCTCN2015071503-appb-000013
由于一个门限值的情况与多个门限值的情况类似,下文不作单独的说明。
运营商根据相应的准则确定自身的频谱分配比例后,接下来需要协商运营商之间合理的频谱分配方案。图6中为本实施例中频谱共享分配比例。首先两个运营商之间共享的频谱定义为1。运营商A确定其需要独立占用频谱与共用频谱之间的比例为RA,运营商B独立占用频谱与共用频谱之间的比例为RB,运营商之间交互这两个比例RA和RB(作为网络覆盖拓扑信息),则可以根据运营商各自的分配比例方案得出运营商间频谱共享分配方案。
若根据分配准则1,则
Figure PCTCN2015071503-appb-000014
若根据分配准则2,则
Figure PCTCN2015071503-appb-000015
上述准则1或2还可以简化为:
准则1:运营商A独占频谱与共用频谱之间的比例
Figure PCTCN2015071503-appb-000016
准则2:运营商A独占频谱与共用频谱之间的比例
Figure PCTCN2015071503-appb-000017
其中,HA是根据运营商之间交互信息所获知的运营商A在给定区域内部署的小小区中,属于所述网络重叠程度高的小小区的数量;TA是运营商A在给定区域内部署 的所有的小小区数量,或是运营商B的用户终端检测到的运营商A在给定区域内部署的所有小小区数量(即ZA为0的情况);MA是根据运营商之间交互信息所获知的运营商A在给定区域内部署的小小区中属于所述网络重叠程度中等类别的小小区的数量。
相应地,运营商B也可根据准则1或准则2确定其独占频谱和共用频谱之间的比例RB
运营商A和运营商B之间交互根据准则1或2得到的各自的独占频谱与共用频谱之间的比例RA和RB,由此计算得到两段独占频谱以及共享频谱三部分的分配比例为:运营商A独占频谱与全部频谱的比例为
Figure PCTCN2015071503-appb-000018
运营商A和B共用频谱与全部频谱的比例为
Figure PCTCN2015071503-appb-000019
运营商B独占频谱与全部频谱的比例为
Figure PCTCN2015071503-appb-000020
全部频谱是指本运营商与异运营商之间的共用频谱以及各自独占频谱的总和。
作为步骤5的另一种实现方式,运营商之间根据交互的网络覆盖拓扑信息,协商运营商间合理的频谱分配方案,也可以采用以下方案。下述方案不需要运营商确定自己所需独自占用频谱和共用频谱的比例,而是运营商A和运营商B直接交互各自部署的小小区总数和测量到对方的不同网络覆盖重叠程度的小小区数量(作为网络覆盖拓扑信息),再分别根据各自不同网络覆盖重叠程度的小小区数量直接分配频谱。运营商A和运营商B的运营管理节点在分别获得异运营商部署的不同网络覆盖重叠程度的小小区数量后,运营商A和运营商B之间交互异运营商不同网络覆盖重叠程度的小小区数量和本运营商部署的小小区总数,作为网络覆盖拓扑信息。即,运营商A将其部署的小小区总数HA+MA+LA+ZA以及测量到的运营商B的不同覆盖重叠程度的各个小小区数HB、MB、LB告诉运营商B;运营商B将其部署的小小区总数HB+MB+LB+ZB以及测量到的运营商A的各个小区数HA、MA、LA告诉运营商A。运营商A和运营商B分别按下述准则3进行频谱分配。作为另一种替代准则,运营商A和运营商B也可以分别按下述准则4进行频谱分配。与准则1或准则2相比,适用准则3或者准则4计算和交互的效率更高。
准则3:
运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000021
运营商A和B的共用频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000022
运营商B独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000023
准则4:
运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000024
运营商A和B的共用频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000025
运营商B独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000026
准则3和4,可以归纳为以下规律:
第一网络(A)独占频谱、第二网络(B)独占频谱以及第一网络(A)与第二网络(B)的共用频谱,这三者之比为:第二网络(B)测量到的第一网络(A)的网络重叠程度高的小小区的数量:第一网络(A)测量到的第二网络(B)的网络重叠程度高的小小区的数量:两个网络的全部小小区中其余小小区数量。这三者之比也可以为:第二网络(B)测量到的第一网络(A)的网络重叠程度高与中的小小区的数量之和:第一网络(A)测量到的第二网络(B)的网络重叠程度高与中的小小区的数量之和:两个网络的全部小小区中其余小小区数量。
如果假设本运营商用户终端检测到的异运营商所有小小区数量为TA=HA+MA+LA+ZA,TB=HB+MB+LB+ZB,则上述准则3或4可以简化为:
准则3-1:
运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000027
运营商A和B的共用频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000028
运营商B独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000029
准则4-1:
运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000030
运营商A和B的共用频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000031
运营商B独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000032
其中,HA是根据运营商之间交互信息所获知的运营商A在给定区域内部署的小小区中属于所述网络重叠程度高的小小区的数量;HB是根据运营商之间交互信息所获知的运营商B在给定区域内部署的小小区中属于所述网络重叠程度高的小小区的数量;TA是运营商A在给定区域内部署的所有的小小区数量,或是运营商B的用户终 端检测到的运营商A在给定区域内部署的所有小小区数量;TB是运营商B在给定区域内部署的所有的小小区数量,或是运营商A的用户终端检测到的运营商B在给定区域内部署的所有小小区数量;MA是根据运营商之间交互信息所获知的运营商A在给定区域内部署的小小区中属于所述网络重叠程度中等类别的小小区的数量;MB是根据运营商之间交互信息所获知的运营商B在给定区域内部署的小小区中属于所述网络重叠程度中等类别的小小区的数量。
适用简化后的准则3-1,运营商A和运营商B之间交互的网络覆盖拓扑信息是,检测到的异运营商的网络覆盖重叠程度高的小小区数量H和本运营商部署的小小区总数T。即,运营商A将其部署的小小区总数TA以及测量到的运营商B的网络覆盖重叠程度高的小小区数HB告诉运营商B;运营商B将其部署的小小区总数TB以及测量到的运营商A的网络覆盖重叠程度高的小小区数HA告诉运营商A。
类似的,适用简化后的准则4-1,运营商A和运营商B之间交互的网络覆盖拓扑信息是,检测到的异运营商的网络覆盖重叠程度高和中的小小区数量H、M以及本运营商部署的小小区总数T。即,运营商A将其部署的小小区总数TA以及测量到的运营商B的网络覆盖重叠程度高和中的小小区数HB、MB告诉运营商B;运营商B将其部署的小小区总数TB以及测量到的运营商A的网络覆盖重叠程度高和中的小小区数HA、MA告诉运营商A。
考虑到共用频段将被两个运营商的小区复用,则共用频段的比例不需要如准则3和准则4中那么高,下述准则5和准则6使共用部分频段的划分更合理高效。
准则5:
运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000033
运营商A和B的共用频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000034
运营商B独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000035
其中S1=max{MA+LA+ZA,MB+LB+ZB}或者,S1=max{TA-HA,TB-HB}。S1表示运营商A和运营商B采用共用频段小小区数量的最大值,各个运营商采用共用频段的小小区数量,即该运营商部署的小小区中除去与异运营商网络覆盖重叠程度高的小小区之外的小小区数量。
准则6:
运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000036
运营商A和B的共用频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000037
运营商B独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000038
其中S2=max{LA+ZA,LB+ZB}或者S1=max{TA-HA-MA,TB-HB-MB}。表示该准则下运营商A和运营商B采用共用频段小小区数量的最大值,是所述运营商A部署的小小区数量中的网络重叠程度低的小小区及未被运营商B检测到的小小区的数量之和,以及所述运营商B部署的小小区数量中网络重叠程度低的小小区及未被运营商A检测到的小小区的数量之和,这两者之中的较大者。也可以是,所述运营商A部署的小小区数量减去网络重叠程度高和中的小小区数量,以及所述运营商B部署的小小区数量减去网络重叠程度高和中的小小区数量,这两者之中的较大者。
第一网络(A)独占频谱、第二网络(B)独占频谱以及第一网络(A)与第二网络(B)的共用频谱,这三者之比为:第二网络(B)测量到的第一网络(A)的网络重叠程度高的小小区的数量:第一网络(A)测量到的第二网络(B)的网络重叠程度高的小小区的数量:第一网络(A)与第二网络(B)采用的共用频段小小区数量的最大值。这三者之比也可以为:第二网络(B)测量到的第一网络(A)的网络重叠程度高与中的小小区的数量之和:第一网络(A)测量到的第二网络(B)的网络重叠程度高与中的小小区的数量之和:第一网络(A)与第二网络(B)采用的共用频段小小区数量的最大值。
值得注意的是,每个运营商部署的小小区中,除了能被异运营商测量到的网络覆盖重叠程度高、中、低的那些小小区(对应数量H、M、L)还可能有一些未被异运营商检测到的小小区(对应数量为Z)。这些未被异运营商测量到的小小区可认为与异运营商网络几乎无覆盖重叠。在上述准则1-准则6中,均认为这些未被异运营商检测到的小小区使用共用频段。事实上,这些小小区不仅可以使用共用频谱,还能使用分配给异运营商专用的频谱,而不会对该异运营商的网络造成强干扰。另一方面,这类小小区的数量Z也不会很大。综合考虑上述因素,运营商之间在协商共享频谱划分策略时,可以不考虑这些未被异运营商检测到的小小区,运营商只需交互异运营商测量得到的网络覆盖拓扑信息(即包含覆盖重叠程度高、中、低的小小区数量),无需知道其他运营商部署的所有小小区数量,对应的频率划分准则可描述如下:
准则7:在上述准则1-准则6中,无论真实的ZA和ZB是何值,计算各段频谱分配比例时,将ZA和ZB设为0。换言之,准则1-6中TA是运营商B的用户终端检测到的运营商A在给定区域内部署的所有小小区数量,TB是运营商A的用户终端检 测到的运营商B在给定区域内部署的所有小小区数量,就是ZA和ZB均为0的情况。
具体而言,运营商A和运营商B之间交互异运营商不同网络覆盖重叠程度的小小区数量,即运营商A将其测量到的运营商B的各类小区数HB、MB、LB告诉运营商B;运营商B将其测量运营商A的各类小区数HA、MA、LA告诉运营商A。下面以准则3、4为例,说明ZA和ZB设为0(包括不同时为0)的情况。运营商A和运营商B分别按下述准则7-1(对应准则3)或准则7-2(对应准则4)进行频谱分配。准则1、2、5、6均可以将ZA和ZB设为0(包括不同时为0的情况),与准则3、4的情况类似,不详细说明。
准则7-1:
ZA和ZB均为0的情况下,运营商A根据自己检测得到的运营商B小小区数量HB、MB、LB,以及从异运营商B交互得到的HA、MA、LA,计算出运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000039
作为一种替代方式,ZA为0且ZB不为0的情况下,运营商A根据自己检测得到的运营商B小小区数量HB、MB、LB、ZB,再结合从异运营商B交互得到的HA、MA、LA,得到运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000040
ZB为0且ZA不为0的情况与ZA为0且ZB不为0的情况类似。
运营商A和B的共用频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000041
运营商B独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000042
类似的,准则7-1中,运营商B独占频谱与全部频谱的比例、共用频谱与全部频谱的比例,均可以有ZA为0且ZB不为0的情况或者ZB为0且ZA不为0的情况,这里不再赘述。
准则7-2:
运营商A独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000043
运营商A和B的共用频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000044
运营商B独占频谱与全部频谱的比例为:
Figure PCTCN2015071503-appb-000045
类似的,准则7-2中,本运营商A独占频谱与全部频谱的比例、异运营商B独占频谱与全部频谱的比例、共用频谱与全部频谱的比例,均可以有ZA为0且ZB不 为0的情况或者ZB为0且ZA不为0的情况,这里不再赘述。
如图5中位于上部的图所示,根据本运营商A独占频谱与全部频谱的比例、异运营商B独占频谱与全部频谱的比例、共用频谱与全部频谱的比例,本运营商A将其使用的频谱中,接近异运营商B使用频谱的那一段频谱分配给共用频谱,将其使用的频谱中与异运营商B使用频谱较远的那段频谱分配成独占频谱。可以理解,本运营商A也可以不是这样分配频谱,也可以根据业务需要将分离的频段分配个共用频谱或独占频谱,只要满足前述准则即可。
综上所述,本发明所提供的网络频谱共享方法可以使异运营商间进行同优先级频谱共享。首先,运营商根据地理位置和覆盖范围将小小区分组,并分配分组标识;运营商进行异运营商测量和汇报,其所属的运营管理节点根据异运营商测量报告评估异运营商的小小区与自己网络的重叠程度,得出异运营商小小区的重叠程度指示;将同一分组的异运营商小小区按照重叠覆盖程度进行分类,再统计不同重叠覆盖程度的小小区数量,形成异运营商网络覆盖重叠指示;然后,运营商之间交互异运营商网络覆盖重叠指示。运营商将根据不同网络重叠覆盖程度的小小区数量进行频率资源分配协商。通过本网络频谱共享方法,可以使不同的运营商之间公平合理地共享频谱资源,提高整个通信网络的频谱利用率,保证了用户终端的通信质量。
上面对本发明所提供的网络频谱共享方法进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (23)

  1. 一种网络频谱共享方法,用于第一网络(A)和第二网络(B)之间实现共享频谱分配,其特征在于包括如下步骤:
    测量第二网络(B)的网络信号;
    根据所述第二网络(B)的网络信号,计算所述第一网络(A)和所述第二网络(B)之间的网络重叠程度指示,并且根据所述网络重叠程度指示(V)获得所述第二网络(B)的基于网络覆盖拓扑的信息;
    所述第一网络(A)与所述第二网络(B)交互所述第二网络(B)的基于网络覆盖拓扑的信息,并从所述第二网络(B)获得所述第一网络(A)的基于网络覆盖拓扑的信息;
    计算出所述第一网络(A)与所述第二网络(B)之间的共用频谱。
  2. 如权利要求1所述的网络频谱共享方法,其特征在于:
    所述第二网络(B)的网络信号强度,是由所述第一网络(A)的用户终端测量得到的,对所述第一网络(A)的小小区有干扰的所述第二网络(B)的基站的参考信号接收功率值。
  3. 如权利要求1所述的网络频谱共享方法,其特征在于:
    所述第二网络(B)网络重叠程度指示为,根据被所述第一网络(A)的各个用户终端检测到的所述第二网络(B)的基站的参考信号接收功率值,计算出的所述第二网络(B)对所述第一网络(A)的干扰程度。
  4. 如权利要求3所述的网络频谱共享方法,其特征在于:
    所述第二网络(B)对所述第一网络(A)的干扰程度,是根据被所述第一网络(A)的各个用户终端检测到的所述第二网络(B)的基站的参考信号接收功率值,计算出的权重值Wi的和。
  5. 如权利要求1所述的网络频谱共享方法,其特征在于:
    所述第二网络(B)的基于网络覆盖拓扑的信息,包括根据所述第二网络(B)的网络重叠程度指示,由所述第一网络(A)计算得到的所述第二网络(B)独占频谱与共用频谱之间的比例。
  6. 如权利要求1或3所述的网络频谱共享方法,其特征在于:
    所述第一网络(A)的基于网络覆盖拓扑的信息包括,根据所述第一网络(A)网络重叠程度指示得到的,网络重叠程度指示属于不同程度的所述第一网络(A)的小小区的数量,
    所述第二网络(B)的基于网络覆盖拓扑的信息包括,根据所述第二网络(B)网络重叠程度指示得到的,网络重叠程度指示属于不同程度的所述第二网络(B)的小小区的数量。
  7. 如权利要求6所述的网络频谱共享方法,其特征在于:
    网络重叠程度指示属于不同程度的所述第二网络(B)的小小区的数量,按照下述步骤获得:
    定义划分所述第二网络(B)网络重叠程度的门限值;
    基于所述门限值,根据所述第二网络(B)网络重叠程度指示的大小,对属于同一所述第二网络(B)基站的小小区全部进行分类;
    统计每一类的所述第二网络(B)的小小区的数量,得到网络重叠程度指示属于不同程度的所述第二网络(B)的小小区的数量。
  8. 如权利要求6或7所述的网络频谱共享方法,其特征在于:
    所述第二网络(B)的小小区的数量至少包括属于所述网络重叠指示高的小小区的数量,
    所述第二网络(B)独占频谱与全部频谱的比例为,所述网络重叠指示高的小小区的数量,与所述第一网络(A)用户终端检测到的全部所述第二网络(B)的小小区数量以及所述第一网络(A)部署的小小区数量之和的比例;或者
    所述第二网络(B)独占频谱与全部频谱的比例为,所述网络重叠指示高的小小区的数量,与所述第二网络(B)部署的小小区数量以及所述第一网络(A)部署的小小区数量之和的比例。
  9. 如权利要求6或7所述的网络频谱共享方法,其特征在于:
    所述第一网络(A)的小小区的数量至少包括属于所述网络重叠指示高的小小区的数量HA,所述第二网络(B)的小小区的数量至少包括属于所述网络重叠指示高的小小区的数量HB
    所述第二网络(B)独占频谱与全部频谱的比例为,
    Figure PCTCN2015071503-appb-100001
    其中,S1=max{TA-HA,TB-HB},TA是所述第一网络(A)在给定区域内部署的所有的小小区数量,TB是所述第二网络(B)在给定区域内部署的所有的小小区数量。
  10. 如权利要求6或7所述的网络频谱共享方法,其特征在于:
    所述第一网络(A)的小小区的数量至少包括属于所述网络重叠指示高的小小区的数量HA,所述第二网络(B)的小小区的数量至少包括属于所述网络重叠指示高的小小区的数量HB
    所述第一网络(A)与所述第二网络(B)的共用频谱,与全部频谱的比例为:
    Figure PCTCN2015071503-appb-100002
    其中,S1=max{TA-HA,TB-HB},TA是所述第一网络(A)在给定区域内部署的所有的小小区数量,TB是所述第二网络(B)在给定区域内部署的所有的小小区数量。
  11. 如权利要求6或7所述的网络频谱共享方法,其特征在于:
    所述第二网络(B)的小小区的数量至少包括属于所述网络重叠指示高的小小区的数量HB
    所述第二网络(B)独占频谱与所述共用频谱之间的比例为:
    Figure PCTCN2015071503-appb-100003
    其中,TB是所述第一网络(A)用户终端检测到的全部所述第二网络(B)的小小区数量,或者,所述第二网络(B)在给定区域内部署的所有的小小区数量。
  12. 如权利要求7所述的网络频谱共享方法,其特征在于:
    所述门限值包括第一门限值和第二门限值,
    所述第二网络(B)的小小区的数量,包括网络重叠指示大于等于所述第一门限值的小小区HB,以及网络重叠指示大于所述第二门限值且小于所述第一门限值的小小区MB
    所述第二网络(B)独占频谱与全部频谱的比例为:
    Figure PCTCN2015071503-appb-100004
    其中,TA是所述第二网络(B)用户终端检测到的全部所述第一网络(A)的小小区数量,或者,所述第一网络(A)在给定区域内部署的所有的小小区数量;TB是所述第一网络(A)用户终端检测到的全部所述第二网络(B)的小小区数量,或者,所述第二网络(B)在给定区域内部署的所有的小小区数量。
  13. 如权利要求7所述的网络频谱共享方法,其特征在于:
    所述门限值包括第一门限值和第二门限值,
    所述第二网络(B)的小小区的数量,包括网络重叠指示大于等于所述第一门限值的小小区HB,以及网络重叠指示大于所述第二门限值且小于所述第一门限值的小小区MB
    所述第二网络(B)独占频谱与所述共用频谱之间的比例为:
    Figure PCTCN2015071503-appb-100005
    其中,TB是所述第一网络(A)用户终端检测到的全部所述第二网络(B)的小小区数量,或者,所述第二网络(B)在给定区域内部署的所有的小小区数量。
  14. 如权利要求7所述的网络频谱共享方法,其特征在于:
    所述第一网络(A)的小小区的数量至少包括所述网络重叠指示高的小小区的数量 HA以及所述网络重叠指示中的小小区的数量MA,所述第二网络(B)的小小区的数量至少包括所述网络重叠指示高的小小区的数量HB以及所述网络重叠指示中的小小区的数量MB
    所述第一网络(A)与所述第二网络(B)的共用频谱,与全部频谱的比例为:
    Figure PCTCN2015071503-appb-100006
    其中,S1=max{TA-HA-MA,TB-HB-MB},TA是所述第一网络(A)在给定区域内部署的所有的小小区数量,TB是所述第二网络(B)在给定区域内部署的所有的小小区数量。
  15. 如权利要求7所述的网络频谱共享方法,其特征在于:
    所述门限值包括第一门限值和第二门限值,
    所述第一网络(A)的小小区的数量至少包括所述网络重叠指示大于等于所述第一门限值的小小区的数量HA,所述网络重叠指示小于所述第一门限值且大于等于所述第二门限值的小小区的数量MA,所述网络重叠指示小于所述第二门限值的小小区的数量LA,以及所述第二网络(B)未检测到的所述第一网络(A)的小小区的数量ZA
    所述第二网络(B)的小小区的数量至少包括所述网络重叠指示大于等于所述第一门限值的小小区的数量HB,所述网络重叠指示小于所述第一门限值且大于等于所述第二门限值的小小区的数量MB,所述网络重叠指示小于所述第二门限值的小小区的数量LB,以及所述第一网络(A)未检测到的所述第二网络(B)的小小区的数量ZB
    所述第一网络(A)与所述第二网络(B)的共用频谱,与全部频谱的比例为:
    Figure PCTCN2015071503-appb-100007
    其中ZA和ZB可以取值为0,
    所述全部频谱是指所述本运营商与所述异运营商之间的共用频谱以及各自独占频谱的总和。
  16. 如权利要求5所述的网络频谱共享方法,其特征在于:
    所述第一网络(A)的小小区的数量至少包括属于所述网络重叠指示高的小小区的数量HA,所述第二网络(B)的小小区的数量至少包括属于所述网络重叠指示高的小小区的数量HB
    所述第一网络(A)与所述第二网络(B)之间的共用频谱与全部频谱的比例为:
    Figure PCTCN2015071503-appb-100008
    其中,
    Figure PCTCN2015071503-appb-100009
    Figure PCTCN2015071503-appb-100010
    TA是所述第二网络(B)用户终端检测到的全部 所述第一网络(A)的小小区数量,或者,所述第一网络(A)在给定区域内部署的所有的小小区数量;TB是所述第一网络(A)用户终端检测到的全部所述第二网络(B)的小小区数量,或者,所述第二网络(B)在给定区域内部署的所有的小小区数量,
    所述全部频谱是指所述本运营商与所述异运营商之间的共用频谱以及各自独占频谱的总和。
  17. 如权利要求3所述的网络频谱共享方法,其特征在于:
    所述权重值Wi与测量到的第x个所述第二网络(B)基站的参考信号接收功率值RSRPi,满足以下关系:Wi=RSRPi/R,其中R是测量到的所述异运营商各基站的参考信号接收功率值RSRP中的最大值。
  18. 如权利要求3所述的网络频谱共享方法,其特征在于:
    所述权重值Wi与测量到的第x个所述第二网络(B)基站的参考信号接收功率值RSRPi之间的映射关系是,根据RSRPi与预设的多个门限值的相对大小,赋予RSRPi相应的权重值Wi,参考信号接收功率值越高,则所述权重值Wi越大。
  19. 如权利要求1所述的网络频谱共享方法,其特征在于确定共享频谱分配的方法为:
    所述第一网络(A)独占频谱与全部频谱的比例为
    Figure PCTCN2015071503-appb-100011
    所述共用频谱与全部频谱的比例为
    Figure PCTCN2015071503-appb-100012
    所述第二网络(B)独占频谱与全部频谱的比例为
    Figure PCTCN2015071503-appb-100013
    其中,RA为所述第一网络(A)独占频谱与所述共用频谱的比例;RB为所述第二网络(B)独占频谱与所述共用频谱的比例。
  20. 如权利要求6所述的网络频谱共享方法,其特征在于:
    所述第一网络(A)独占频谱、所述第二网络(B)独占频谱以及所述第一网络(A)与所述第二网络(B)的共用频谱,这三者之比为:
    所述第二网络(B)测量到的所述第一网络(A)的所述网络重叠程度高的小小区的数量:所述第一网络(A)测量到的所述第二网络(B)的所述网络重叠程度高的小小区的数量:两个网络的全部小小区中其余小小区数量,或者
    所述第二网络(B)测量到的所述第一网络(A)的所述网络重叠程度高与中的小小区的数量之和:所述第一网络(A)测量到的所述第二网络(B)的所述网络重叠程度高与中的小小区的数量之和:两个网络的全部小小区中其余小小区数量,
    所述全部频谱是指所述本运营商与所述异运营商之间的共用频谱以及各自独占 频谱的总和。
  21. 如权利要求6所述的网络频谱共享方法,其特征在于:
    所述第一网络(A)独占频谱、所述第二网络(B)独占频谱以及所述第一网络(A)与所述第二网络(B)的共用频谱,这三者之比为:
    所述第二网络(B)测量到的所述第一网络(A)的所述网络重叠程度高的小小区的数量:所述第一网络(A)测量到的所述第二网络(B)的所述网络重叠程度高的小小区的数量:所述第一网络(A)与所述第二网络(B)采用的共用频段小小区数量的最大值,或者
    所述第二网络(B)测量到的所述第一网络(A)的所述网络重叠程度高与中的小小区的数量之和:所述第一网络(A)测量到的所述第二网络(B)的所述网络重叠程度高与中的小小区的数量之和:所述第一网络(A)与所述第二网络(B)采用的共用频段小小区数量的最大值。
  22. 如权利要求1所述的网络频谱共享方法,其特征在于:
    所述第二网络(B)检测所述第一网络(A)的网络信号;
    根据所述第一网络(A)的网络信号,计算所述第一网络(A)和所述第二网络(B)之间的网络重叠程度指示,并且根据所述网络重叠程度指示(V)获得所述第一网络(A)的基于网络覆盖拓扑的信息;
    所述第二网络(B)与所述第二网络(B)交互所述第一网络(A)的基于网络覆盖拓扑的信息。
  23. 如权利要求1所述的网络频谱共享方法,其特征在于:
    所述第一网络(A)通过运营管理节点或频谱控制中心,交互所述第二网络(B)的基于网络覆盖拓扑的信息。
PCT/CN2015/071503 2014-01-23 2015-01-23 一种网络频谱共享方法 WO2015110072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15740366.8A EP3099096B1 (en) 2014-01-23 2015-01-23 Network frequency spectrum sharing method
US15/113,406 US9749872B2 (en) 2014-01-23 2015-01-23 Method for sharing frequency spectrum between networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410032758.3 2014-01-23
CN201410032758.3A CN103763708B (zh) 2014-01-23 2014-01-23 一种网络频谱共享方法

Publications (1)

Publication Number Publication Date
WO2015110072A1 true WO2015110072A1 (zh) 2015-07-30

Family

ID=50530853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071503 WO2015110072A1 (zh) 2014-01-23 2015-01-23 一种网络频谱共享方法

Country Status (4)

Country Link
US (1) US9749872B2 (zh)
EP (1) EP3099096B1 (zh)
CN (1) CN103763708B (zh)
WO (1) WO2015110072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357016B2 (en) 2018-01-11 2022-06-07 Sony Corporation Base station device, terminal device, and method

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103763708B (zh) 2014-01-23 2017-07-14 上海无线通信研究中心 一种网络频谱共享方法
CN104113844B (zh) * 2014-07-24 2018-06-26 电信科学技术研究院 一种频谱分配方法和信息上报方法、装置
CN106664636B (zh) 2014-10-29 2020-06-16 华为技术有限公司 一种数据帧的传输方法及装置
US10117107B2 (en) 2014-11-11 2018-10-30 Nokia Solutions And Networks Oy Method, apparatus, system and computer program
US10225055B2 (en) * 2014-11-26 2019-03-05 Qualcomm Incorporated Network identification based on discovery reference signals in wireless communications
CN105792224B (zh) * 2014-12-26 2019-06-04 上海无线通信研究中心 一种网络间干扰协调方法
US9294931B1 (en) * 2015-01-26 2016-03-22 Nokia Solutions And Networks Oy Co-primaryspectrum sharing for 4G/5G small cell base stations with long term fairness criteria
WO2016129616A1 (ja) * 2015-02-10 2016-08-18 京セラ株式会社 ユーザ端末及び基地局
EP3269044B1 (en) * 2015-03-09 2018-10-24 Telefonaktiebolaget LM Ericsson (publ) Controlling an antenna beam optimization algorithm
CN107431929B (zh) 2015-03-31 2020-01-21 华为技术有限公司 一种频谱共享的方法及装置
US10251088B2 (en) * 2015-04-09 2019-04-02 At&T Mobility Ii Llc Facilitating load balancing in wireless heterogeneous networks
KR102250991B1 (ko) * 2015-04-16 2021-05-12 한국전자통신연구원 이종 네트워크 환경에서 기지국을 관리하는 제어기 및 그 관리 방법, 기지국 관리 시스템
CN106304093B (zh) * 2015-06-12 2019-09-20 上海无线通信研究中心 一种网络间共享频谱优化系统及方法
CN104968003B (zh) * 2015-06-26 2019-02-22 北京中网华通设计咨询有限公司 基站共建共享规划方法
TWI618422B (zh) * 2015-07-07 2018-03-11 財團法人資訊工業策進會 基地台、使用者終端機以及確定共用頻譜之使用之方法
CN107409309B (zh) * 2015-08-28 2019-11-29 华为技术有限公司 一种频谱共享的方法及装置
CN106507368B (zh) * 2015-09-08 2019-11-05 上海无线通信研究中心 一种网络频谱共享方法和系统
CN106604285B (zh) * 2015-10-15 2022-01-25 中兴通讯股份有限公司 一种干扰处理方法、终端、基站和干扰处理系统
US10045312B2 (en) * 2016-08-12 2018-08-07 Nokia Technologies Oy Method and apparatus for controlling high power transmission
US10645586B2 (en) * 2016-10-13 2020-05-05 Qualcomm Incorporated Coordinated resource partitioning
US10405190B2 (en) 2016-11-04 2019-09-03 Qualcomm Incorporated Channel assignment in shared spectrum based on network coverage overlap and network weights
US10609664B2 (en) * 2016-11-04 2020-03-31 Qualcomm Incorporated Techniques and apparatuses for frequency division multiplexing (FDM) based medium access on shared spectrum
US10848978B2 (en) * 2018-04-30 2020-11-24 Qualcomm Incorporated Radio (NR) for spectrum sharing
US11937093B2 (en) * 2019-02-19 2024-03-19 Indian Institute Of Technology Madras Simultaneous sharing of spectrum in wireless communications
CN112105031B (zh) * 2019-06-18 2023-08-01 中国移动通信有限公司研究院 测量方法、终端及网络侧设备
CN112492636B (zh) * 2020-12-18 2023-06-16 中国联合网络通信集团有限公司 一种传播损耗的确定方法及装置
CN113873638B (zh) * 2021-10-27 2024-02-06 中国电信股份有限公司 共享基站定位方法、装置、存储介质及电子设备
CN114158075A (zh) * 2021-12-10 2022-03-08 中国联合网络通信集团有限公司 网络资源配置方法、装置、设备及存储介质
CN118510048A (zh) * 2024-07-19 2024-08-16 中国电信股份有限公司 网络频率复用的方法、装置、计算机设备、可读存储介质和程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768545A (zh) * 2003-03-28 2006-05-03 摩托罗拉公司 确定基于小区的通信系统中的覆盖区域的方法
WO2010107055A1 (ja) * 2009-03-17 2010-09-23 日本電気株式会社 無線基地局装置、無線通信システム、無線通信方法、及びプログラム
CN103249160A (zh) * 2012-02-06 2013-08-14 工业和信息化部电信传输研究所 一种LTE-A系统中CoMP下的资源分配方法
CN103763708A (zh) * 2014-01-23 2014-04-30 上海无线通信研究中心 一种网络频谱共享方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730308B (zh) 2008-10-30 2016-07-06 株式会社Ntt都科摩 无线蜂窝网络中频谱的使用方法和装置
US8238303B2 (en) 2008-11-26 2012-08-07 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus of allocating subcarriers in an orthogonal frequency division multiplexing system
CN101600210B (zh) * 2008-12-30 2012-09-12 上海无线通信研究中心 基于不同带宽的移动通信系统网络的频率复用分配方法
CN102378206B (zh) * 2010-08-13 2015-06-03 华为技术有限公司 干扰协调方法、装置及系统
CN103891334B (zh) * 2011-09-08 2018-03-20 意大利电信股份公司 运营商间频谱共享控制、运营商间干扰协调方法,以及无线通信系统中的无线电资源调度
CN103167528B (zh) * 2011-12-12 2016-09-07 中国移动通信集团北京有限公司 一种频率配置评估方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768545A (zh) * 2003-03-28 2006-05-03 摩托罗拉公司 确定基于小区的通信系统中的覆盖区域的方法
WO2010107055A1 (ja) * 2009-03-17 2010-09-23 日本電気株式会社 無線基地局装置、無線通信システム、無線通信方法、及びプログラム
CN103249160A (zh) * 2012-02-06 2013-08-14 工业和信息化部电信传输研究所 一种LTE-A系统中CoMP下的资源分配方法
CN103763708A (zh) * 2014-01-23 2014-04-30 上海无线通信研究中心 一种网络频谱共享方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3099096A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357016B2 (en) 2018-01-11 2022-06-07 Sony Corporation Base station device, terminal device, and method

Also Published As

Publication number Publication date
EP3099096B1 (en) 2020-07-08
US9749872B2 (en) 2017-08-29
CN103763708A (zh) 2014-04-30
EP3099096A1 (en) 2016-11-30
US20170013468A1 (en) 2017-01-12
EP3099096A4 (en) 2018-01-10
CN103763708B (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
WO2015110072A1 (zh) 一种网络频谱共享方法
CN105792224B (zh) 一种网络间干扰协调方法
US10057034B2 (en) Method and system for dynamic allocation of resources in a cellular network
US9179363B2 (en) Systems and methods for determining a coupling characteristic in a radio communications network
US8447314B2 (en) System and method for providing resource management in a network environment
Gür et al. Cognitive femtocell networks: an overlay architecture for localized dynamic spectrum access [dynamic spectrum management]
WO2015127880A1 (zh) 一种基站频率资源配置方法及网络设备
US20150126207A1 (en) Coexistence of lte operated in unlicesnsed band
WO2016197583A1 (zh) 一种网络间共享频谱优化系统及方法
WO2015117398A1 (zh) 重配置方法及装置
WO2013135087A1 (zh) 一种动态家庭基站网络的频谱分配方法
CN103731837B (zh) 一种频谱资源分配方法和装置
Hatoum et al. QoS-based power control and resource allocation in OFDMA femtocell networks
CN104486799B (zh) 基于x2接口用户分流与资源借调的负载均衡方法和装置
WO2011116646A1 (zh) 一种无线资源调度方法和设备
US20180206128A1 (en) Methods and apparatuses for determining an equivalent cell in a communications network
WO2017041395A1 (zh) 一种网络频谱共享方法和系统
Panahi et al. Stochastic geometry based analytical modeling of cognitive heterogeneous cellular networks
CN102958060A (zh) 一种触发无线资源重配的方法及装置
KR101197551B1 (ko) 무선 통신 시스템에서 주파수 자원 할당 방법 및 이를 위한 장치
JP5793730B2 (ja) 小型基地局装置及びサブバンド割当方法
CN106937294B (zh) 一种网络间频谱资源协调方法及其基站
KR101206916B1 (ko) 이동 무선접속시스템에서 펨토셀과 매크로셀의 자원 공유방법
KR20110136485A (ko) 다중 계위 네트워크 기반 자원 관리 방법
Rasheed et al. Interference and resource management strategy for handover in femtocells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740366

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015740366

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740366

Country of ref document: EP