WO2015109961A1 - Method and apparatus for transmitting d2d synchronization signals - Google Patents

Method and apparatus for transmitting d2d synchronization signals Download PDF

Info

Publication number
WO2015109961A1
WO2015109961A1 PCT/CN2015/070587 CN2015070587W WO2015109961A1 WO 2015109961 A1 WO2015109961 A1 WO 2015109961A1 CN 2015070587 W CN2015070587 W CN 2015070587W WO 2015109961 A1 WO2015109961 A1 WO 2015109961A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signals
hop number
synchronization
d2dss
network node
Prior art date
Application number
PCT/CN2015/070587
Other languages
French (fr)
Inventor
Zhenshan Zhao
Qianxi Lu
Stefano Sorrentino
Original Assignee
Telefonaktiebolaget L M Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget L M Ericsson (Publ) filed Critical Telefonaktiebolaget L M Ericsson (Publ)
Priority to JP2016547146A priority Critical patent/JP6666252B2/en
Priority to US15/113,695 priority patent/US9967844B2/en
Priority to KR1020167023192A priority patent/KR20160113662A/en
Priority to KR1020187013104A priority patent/KR101905372B1/en
Priority to EP15740619.0A priority patent/EP3097730B1/en
Priority to CN201580005802.4A priority patent/CN105934981B/en
Priority to ES15740619T priority patent/ES2784243T3/en
Priority to CA2937925A priority patent/CA2937925C/en
Publication of WO2015109961A1 publication Critical patent/WO2015109961A1/en
Priority to US15/949,599 priority patent/US10616841B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]

Definitions

  • UEs that are under coverage of a synchronization source may, according to predefined rules, transmit D2DSS and/or PD2DSCH themselves, according to the synchronization reference received from their synchronization source. They may also transmit at least parts of the control information received from the synchronization master by use of D2DSS and/or PD2DSCH. Such mode of operation is here termed as sync-relay or control plane (CP) -relay.
  • CP control plane
  • embodiments of the present invention would propose to identity the associated hop number, to efficiently transmit the D2D synchronization signals.
  • embodiments of the invention provide an apparatus for transmitting D2D synchronization signals.
  • the apparatus comprises a receiving unit, a first determining unit and a second determining unit.
  • the receiving unit is configured to receive D2D synchronization signals from a first network node.
  • the first determining unit is configured to determine a hop number of the D2D synchronization signals based on radio resources of the D2D synchronization signals.
  • the second determining unit is configured to determine whether to transmit the D2D synchronization signals to a second network node based on the hop number.
  • Fig. 7 illustrates a schematic diagram of D2DSS/PD2DSCH mapping according to further embodiments of the invention.
  • D2D synchronization signals are received from a first network node.
  • a hop number of the D2D synchronization signals is determined based on radio resources of the D2D synchronization signals.
  • Whether to transmit the D2D synchronization signals to a second network node is determined based on the hop number.
  • D2DSS and PD2DSCH indicate any form of respectively reference signals and control information that may be exploited, possibly among other purposes, for the synchronization of devices.
  • Embodiments of the present invention may be combined in any appropriate ways. It is assumed here that both D2DSS and PD2DSCH are transmitted by a synchronization source UE, but embodiments of the present invention may be applied even if only any of them is transmitted. Embodiments of the present invention may be implemented in UEs participating in a D2D communication (as receivers and/or transmitters) . Now some exemplary embodiments of the present invention will be described below.
  • Fig. 6 illustrates a schematic diagram of D2DSS/PD2DSCH mapping according to embodiments of the invention.
  • D2DSS and PD2DSCH of the same hop number are TDMed in one subframe (SF) .
  • D2DSS/PD2DSCH of different hop number are mapped on different subframe.
  • the subframe offset (n, m in Fig. 6) could be preconfigured or assigned by NW.
  • the relative mapping and relative periodicity of PD2DSCH associated to a certain D2DSS is the same, independently of the associated synchronization hop number.
  • the period of D2DSS of different hops may be the same, the period of PD2DSCH of different hops may be the same, and periods of D2DSS and PD2DSCH of the same hop may be different.
  • a UE receiving a certain synchronization signal associated with the corresponding hop number is thus able to retrieve the frame synchronization (based on the predefined mapping of D2DSS/PD2DSCH to the frame, for each hop number) .
  • a D2D-capable transmitter UE avoids transmitting any other signal than D2DSS/PD2DSCH on resources reserved for such signals, even if those resources are associated to different synchronization hop numbers than the synchronization reference received and/or transmitted by the UE.
  • the amount of reserved resources is a function of the maximum number of supported synchronization hops.
  • a UE avoids using the OFDM symbols where D2DSS and/or PD2DSCH associated to a certain hop number are potentially transmitted (of course the UE may still be able to transmit D2DSS/PD2DSCH associated to its own hop number) .
  • a subset of OFDM symbols preceding and/or following a D2DSS and/or PD2DSCH potential transmission associated to a given sync hop number are reserved.
  • Fig. 7 illustrates a schematic diagram of D2DSS/PD2DSCH mapping according to embodiments of the invention.
  • the apparatus 800 comprises: a receiving unit 810 configured to receive D2D synchronization signals from a first network node, a first determining unit 820 configured to determine a hop number of the D2D synchronization signals based on radio resources of the D2D synchronization signals, and a second determining unit 830 configured to determine whether to transmit the D2D synchronization signals to a second network node based on the hop number.
  • the apparatus 800 may be implemented at a network node, for example, a UE, a D2D transmitter, a D2D receiver, and some other suitable device.
  • the first determining unit 820 may comprise: an obtaining unit configured to obtain D2DSS/PD2DSCH according to the radio resources of the D2D synchronization signals; and a third determining unit configured to determine the hop number of the D2D synchronization signals based on the D2DSS/PD2DSCH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the disclosure provide a method, an apparatus, a network node, and a computer program product for transmitting D2D synchronization signals. According to the method, D2D synchronization signals are received from a first network node. A hop number of the D2D synchronization signals is determined based on radio resources of the D2D synchronization signals. Whether to transmit the D2D synchronization signals to a second network node is determined based on the hop number.

Description

METHOD AND APPARATUS FOR TRANSMITTING D2D SYNCHRONIZATION SIGNALS TECHNICAL FIELD
Embodiments of the present invention generally relate to communication techniques. More particularly, embodiments of the present invention relate to a method and an apparatus, a network node and a computer program product for transmitting device-to-device (D2D) synchronization signals.
BACKGROUND
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent the work is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
D2D communication is a well-known and widely used component of many existing wireless technologies, including ad hoc and cellular networks. Examples include Bluetooth and several variants of the IEEE 802.11 standards suite such as WiFi Direct. These systems operate in unlicensed spectrum.
Recently, D2D communications as an underlay to cellular networks have been proposed as a means to take advantage of the proximity of communicating devices and at the same time to allow devices to operate in a controlled interference environment. Typically, it is suggested that such device-to-device communication shares the same spectrum as the cellular system, for example by reserving some of the cellular uplink resources for device-to-device purposes. Allocating dedicated spectrum for device-to-device purposes is a less likely alternative as spectrum is a scarce resource and (dynamic) sharing between the device-to-device services and cellular services is more flexible and provides higher spectrum efficiency.
The ProSe Study Item recommends also support D2D operation between out of NW coverage user equipments (UEs) and between in-coverage and out-of-coverage UEs. In such a case, certain UEs may regularly transmit  synchronization signals (for example, Device to device Synchronization Signal (D2DSS) ) and provide local synchronization to their neighbor UEs. The ProSe Study Item recommends also support for inter-cell D2D scenarios where UEs camping on possibly unsynchronized cells are able to synchronize to each other.
It is also agreed in 3GPP in the ProSe SI in Long Term Evolution (LTE) that D2D capable UEs will operate D2D within the UL spectrum (for Frequency Division Duplexing (FDD) spectrum) and UL subframes (for Time Division Duplexing (TDD) spectrum) . Therefore, D2D UEs are not expected to transmit sync signals in DL spectrum, differently from eNBs.
eNBs provide synchronization by periodically transmitting sync signals (for example, Primary Sync signal (PSS) /Secondary Sync signal (SSS) ) . Such signals are also intended for cell search operation and for acquiring initial synchronization. PSS/SSS are generated based on pre-defined sequences with good correlation properties, in order to limit inter-cell interference, minimize cell identification errors and obtain reliable synchronization. In total, 504 combinations of PSS/SSS sequences are defined in LTE and are mapped to as many cell IDs. UEs that successfully detect and identify a sync signal are thus able to identify the corresponding cell-ID, too. Fig. 1 illustrates PSS and SSS time positions in case of FDD and TDD, and Figs. 2 and 3 illustrate generation and structure of PSS and SSS.
D2D requires UEs to be able to synchronize to each other directly in order to support direct communication. It has been discussed in 3GPP that the legacy LTE sequences may be considered for sync signals (D2DSS) transmitted by UEs:
Working Assumption:
-Synchronization sources transmit at least a D2DSS: D2D Synchronization Signal
○ May be used by D2D UEs at least to derive time/frequency
○ May (FFS) also carry the identity and/or type of the synchronization source (s)○ Comprises at least a PD2DSS
■ PD2DSS is a ZC sequence
■ Length FFS
○ May also comprise a SD2DSS
■ SD2DSS is an M sequence
■ Length FFS
Even though a range of different distributed synchronization protocols are possible, one option that is being considered in 3GPP is based on  hierarchical synchronization with the possibility of multihop sync-relay. In short, some nodes adopt the role of synchronization masters (sometimes referred to as SH, Synchronization head, or CH, Cluster Head) according to a distributed synchronization algorithm. If the synchronization master is a UE, it provides synchronization by transmitting D2DSS and/or PD2DSCH (Physical Device to Device Synchronization Channel) . If the synchronization master is an eNB it provides synchronization by PSS/SSS and broadcast control information by, e.g. , MIB/SIB signaling. The synchronization master is a special case of synchronization source that acts as an independent synchronization source, i.e., it does not inherit synchronization from other nodes by use of the radio interface.
UEs that are under coverage of a synchronization source may, according to predefined rules, transmit D2DSS and/or PD2DSCH themselves, according to the synchronization reference received from their synchronization source. They may also transmit at least parts of the control information received from the synchronization master by use of D2DSS and/or PD2DSCH. Such mode of operation is here termed as sync-relay or control plane (CP) -relay.
In order to limit error propagation and limit dependency on a single failure point, it has been proposed to limit the number of CP-relay hops to a predefined number. The hop numbers are counted from the synchronization master.
There are a number of issues associated with multihop synchronization. For example, the receiver needs to assess the hop number associated to a certain synchronization signal because the hop number contributes to the distributed synchronization protocol (e.g., sync sources with low hop-number are preferred as synchronization references) . However, if D2DSS is generated according to the 3GPP working assumption, it is impossible for the receiver to identify the associated hop number. In addition, considering that a given CP-relay UE may be only aware of D2DSS/PD2DSCH associated with some but not all of the supported hop numbers, interference towards other D2DSS not detected by the UE may be generated.
In view of the foregoing problems, it would be desirable to identity the associated hop number, to efficiently transmit the D2D synchronization signals.
SUMMARY
To address or mitigate at least one of the above potential problems, embodiments of the present invention would propose to identity the associated hop number, to efficiently transmit the D2D synchronization signals.
According to a first aspect of the present invention, embodiments of the invention provide a method for transmitting D2D synchronization signals. According to the method, D2D synchronization signals are received from a first network node. A hop number of the D2D synchronization signals is determined based on radio resources of the D2D synchronization signals. Whether to transmit the D2D synchronization signals to a second network node is determined based on the hop number.
According to a second aspect of the present invention, embodiments of the invention provide an apparatus for transmitting D2D synchronization signals. The apparatus comprises a receiving unit, a first determining unit and a second determining unit. The receiving unit is configured to receive D2D synchronization signals from a first network node. The first determining unit is configured to determine a hop number of the D2D synchronization signals based on radio resources of the D2D synchronization signals. The second determining unit is configured to determine whether to transmit the D2D synchronization signals to a second network node based on the hop number.
According to a third aspect of the present invention, embodiments of the invention provide a network node for transmitting D2D synchronization signals comprising an apparatus according to embodiments according to the second aspect of the present invention.
According to a fourth aspect of the present invention, embodiments of the invention provide a computer program product. The computer program product comprises at least one computer readable storage medium having a computer readable program code portion stored thereon, and the computer readable program code portion may comprise program code instructions for performing methods according to embodiments of the present invention.
Other features and advantages of the embodiments of the present invention will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The embodiments of the present invention that are presented in the sense of examples and their advantages are explained in greater detail below with reference to the accompanying drawings, in which:
Fig. 1 illustrates a schematic diagram of PSS and SSS time positions in case of FDD and TDD;
Fig. 2 illustrates a schematic diagram of PSS generation and structure;
Fig. 3 illustrates a schematic diagram of SSS generation and structure;
Fig. 4 illustrates a schematic diagram of a 2-hop system;
Fig. 5 illustrates a flow chart of a method 500 for transmitting D2D synchronization signals according to embodiments of the invention;
Fig. 6 illustrates a schematic diagram of D2DSS/PD2DSCH mapping according to embodiments of the invention;
Fig. 7 illustrates a schematic diagram of D2DSS/PD2DSCH mapping according to further embodiments of the invention;
Fig. 8 illustrates a block diagram of an apparatus 800 for transmitting D2D synchronization signals according to embodiments of the invention; and
Fig. 9 illustrates a block diagram of an apparatus 900 for transmitting D2D synchronization signals according to embodiments of the invention.
Throughout the figures, same or similar reference numbers indicate same or similar elements.
DETAILED DESCRIPTION
Embodiments of the invention will be described thoroughly hereinafter with reference to the accompanying drawings. It will be apparent to those skilled in the art that the invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments and specific details set forth herein. Like numbers refer to like elements throughout the specification.
The features, structures, or characteristics of the invention  described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, the usage of the phrases “certain embodiments, ” “some embodiments, ” or other similar language, throughout this specification refers to the fact that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present invention. Thus, appearances of the phrases “in certain embodiments, ” “in some embodiments, ” “in other embodiments, ” or other similar language, throughout this specification do not necessarily all refer to the same group of embodiments, and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
Embodiments of the present invention may be applied in various wireless networks, including but not limited to a Long Term Evolution (LTE) network. Given the rapid development in communications, there will of course also be future type wireless communication technologies and systems with which the present invention may be embodied. It should not be seen as limiting the scope of the invention to only the aforementioned system.
In the context of the disclosure, the term “user equipment” or “UE” may refer to a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station (PSS) , Mobile Station (MS) , or an Access Terminal (AT) , and so on. The UE may include some or all of the functions of the UE, the terminal, the MT, the SS, the PSS, the MS, or the AT.
The term “network node” may refer to, but not limited to, for example, a UE, a D2D transmitter, a D2D receiver, and so on.
Embodiments of the present invention provide a method for transmitting D2D synchronization signals. According to embodiments of the present invention, the D2DSS and/or PD2DSCH resources are mapped associated to different hop numbers to the subframe in a mutually orthogonal fashion, such that inter-D2DSS/PD2DSCH interference is mitigated or prevented.
According to further embodiments of the present invention, the D2DSS/PD2DSCH signals the associated hop number. The relative mapping of D2DSS/PD2DSCH resources associated to different hop numbers may be pre-defined. According to still further embodiments of the present invention, UEs may avoid transmitting over resources reserved for any of the supported hop numbers. According to optional embodiments of the present invention, the network (NW) has the  possibility to configure the maximum number of supported hops and avoid reserving unnecessarily many resources for sync transmission. The network may refer to the base station (BS) side. The term “base station” or “BS” may refer to a node B (NodeB) , an evolved NodeB (eNodeB) , a Base Transceiver Station (BTS) , an Access Point (AP) , a Radio Access Station (RAS) , or a Mobile Multihop Relay (MMR) -BS, and some or all of the functions of the BS, the NodeB, the eNodeB, the BTS, the AP, the RAS, or the MMR-BS may be included.
Now some exemplary embodiments of the present invention will be described below with reference to the figures.
Reference is first made to Fig. 4, which illustrates a schematic diagram of a 2-hop system. As is shown in Fig. 4, in the left cell, the eNB transmits synchronization signals to UE2, which is referred to as Hop 1. Then, UE2 transmits to UE3 D2D synchronization signals in Hop 2. Thus, there are two hops in the left cell. The right cell likewise has two hops. For example, UE5 transmits to UE4 D2D synchronization signals in Hop 1, and the UE4 transmits to UE3 D2D synchronization signals in Hop 2.
Each D2DSS/PD2DSCH signal is associated to a certain (sync) hop number. We also define a “synchronization reference” as a time and/or frequency reference associated to a certain synchronization signal. For example, a relayed synchronization signal is associated to the same synchronization reference as the sync signal in the first hop.
Reference is now made to Fig. 5, which illustrates a flow chart of a method 500 for transmitting D2D synchronization signals according to embodiments of the invention.
At step S501, D2D synchronization signals are received from a first network node. At step S502, A hop number of the D2D synchronization signals is determined based on radio resources of the D2D synchronization signals. At step S503, Whether to transmit the D2D synchronization signals to a second network node is determined based on the hop number.
According to embodiments of the present invention, the hop number of the D2D synchronization signals may be detennined by obtaining D2DSS/PD2DSCH according to the radio resources of the D2D synchronization signals; and determining the hop number of the D2D synchronization signals based on the D2DSS/PD2DSCH.
According to embodiments of the present invention, whether to transmitting the D2D synchronization signals to a next network node may be determined by comparing the hop number with a predefined maximum hop number; and if the hop number is less than the predefined maximum hop number, determining further radio resources to transmit the D2D synchronization signals to the next network node.
In accordance with embodiments of the present invention, the terms D2DSS and PD2DSCH indicate any form of respectively reference signals and control information that may be exploited, possibly among other purposes, for the synchronization of devices.
Embodiments of the present invention may be combined in any appropriate ways. It is assumed here that both D2DSS and PD2DSCH are transmitted by a synchronization source UE, but embodiments of the present invention may be applied even if only any of them is transmitted. Embodiments of the present invention may be implemented in UEs participating in a D2D communication (as receivers and/or transmitters) . Now some exemplary embodiments of the present invention will be described below.
Embodiment 1
In a first example, the radio resources are partitioned such that a number of possibly periodic orthogonal resources are assigned to D2DSS and/or PD2DSCH associated to different hop numbers, such that inter-D2DSS and/or inter-PD2DSCH interference between different hop numbers are avoided. E.g., the different hops may be partitioned in a TDM fashion. Such a solution would allow a UE that is transmitting on hop number n to track the synchronization signals on other hop numbers.
In a further example, a UE that is tracking hop number n scans resources associated to hop numbers not greater than n, and it avoids searching for synchronization sources with hop number greater than n. This is because higher hop numbers reduce priority in the distributed synchronization protocols and complexity/energy can be reduced by focusing on hop numbers of interest.
In a further example, a UE transmitting D2DSS/PD2DSCH associated to a certain hop number periodically or pseudo-randomly or occasionally drops transmission of D2DSS and/or PD2DSCH in order to be able to scan for the presence of other synchronization signals transmitted on overlapping resources.
In a further example, the mapping of D2DSS/PD2DSCH associated to a given hop number and the corresponding resource offset in the subframe are pre-defined according to a specification or assigned by the NW.
Reference is now made to Fig. 6, which illustrates a schematic diagram of D2DSS/PD2DSCH mapping according to embodiments of the invention. In this example, D2DSS and PD2DSCH of the same hop number are TDMed in one subframe (SF) . D2DSS/PD2DSCH of different hop number are mapped on different subframe. The subframe offset (n, m in Fig. 6) could be preconfigured or assigned by NW.
As shown in Fig. 6, in subframe n, D2DSS and PD2DSCH of hop 1 occupy 6 Physical Resource Blocks (PRBs) in the uplink (UL) carrier bandwidth (BW) , respectively. Demodulation Reference Signals (DMRSs) exit in PD2DSCH. Besides the 6 PRBs, other PRBs in subframe n are empty, for example GP, guard band, and so on. And also, the last OFDM symbol of this subframe is empty and reserved for GP. In Figs. 6 and 7, CP is Cyclic Prefix and eCP is extended CP.
In a further example, the relative mapping and relative periodicity of PD2DSCH associated to a certain D2DSS is the same, independently of the associated synchronization hop number. In some embodiments, the period of D2DSS of different hops may be the same, the period of PD2DSCH of different hops may be the same, and periods of D2DSS and PD2DSCH of the same hop may be different.
Embodiment 2
In a further example, D2DSS and/or PD2DSCH carry explicitly or implicitly the associated hop number in the synchronization protocol. This can be done, e.g., by the PD2DSCH payload or the D2DSS sequence or the PD2DSCH and/or D2DSS resource mapping.
A UE receiving a certain synchronization signal associated with the corresponding hop number is thus able to retrieve the frame synchronization (based on the predefined mapping of D2DSS/PD2DSCH to the frame, for each hop number) .
Embodiment 3
In a further example, a D2D-capable transmitter UE avoids transmitting any other signal than D2DSS/PD2DSCH on resources reserved for such signals, even if those resources are associated to different synchronization hop numbers than the synchronization reference received and/or transmitted by the UE. The amount of reserved resources is a function of the maximum number of supported  synchronization hops.
In a further example, not only the resources potentially used for transmission of a given D2DSS/PD2DSCH transmission are reserved, but even those surrounding them in time and/or frequency domains. For example, a UE avoids using the OFDM symbols where D2DSS and/or PD2DSCH associated to a certain hop number are potentially transmitted (of course the UE may still be able to transmit D2DSS/PD2DSCH associated to its own hop number) . In a further example, a subset of OFDM symbols preceding and/or following a D2DSS and/or PD2DSCH potential transmission associated to a given sync hop number are reserved. Fig. 7 illustrates a schematic diagram of D2DSS/PD2DSCH mapping according to embodiments of the invention.
Embodiment 4
In a further embodiment, the NW signals the maximum number of hops supported in the synchronization protocol. Such signal may happen by SIB signaling (broadcast control info) or by UE specific signaling. Different classes of UEs (e.g., Public Safety and Commercial UEs) may be assigned with different sync hops limitations. Furthermore, the maximum number of hops that a certain synchronization reference may be retransmitted may be different depending on the type of the original synchronization source (first hop) . For example, synchronization references originally originating from an eNB may be relayed more times than synchronization references originally originated by a UE. The maximum number of hops that a certain synchronization reference may be retransmitted may also be different depending on the NW-coverage status of the sync-relay UE.
According to embodiments of the present invention, the maximum number of hops may be predefined in the synchronization protocol or by the network side (NW) .
Reference is now made to Fig. 8, which illustrates a block diagram of an apparatus 800 for transmitting D2D synchronization signals according to embodiments of the invention. As shown, the apparatus 800 comprises: a receiving unit 810 configured to receive D2D synchronization signals from a first network node, a first determining unit 820 configured to determine a hop number of the D2D synchronization signals based on radio resources of the D2D synchronization signals, and a second determining unit 830 configured to determine whether to transmit the D2D synchronization signals to a second network node based on the hop number. In  accordance with embodiments of the present invention, the apparatus 800 may be implemented at a network node, for example, a UE, a D2D transmitter, a D2D receiver, and some other suitable device.
In accordance with embodiments of the present invention, the first determining unit 820 may comprise: an obtaining unit configured to obtain D2DSS/PD2DSCH according to the radio resources of the D2D synchronization signals; and a third determining unit configured to determine the hop number of the D2D synchronization signals based on the D2DSS/PD2DSCH.
In accordance with embodiments of the present invention, the second determining unit 830 may comprise: a comparing unit configured to compare the hop number with a predefined maximum hop number; and a fourth determining unit configured to, if the hop number is less than the predefined maximum hop number, determine further radio resources to transmit the D2D synchronization signals to the next network node.
Reference is now made to Fig. 9, which illustrates a block diagram of an apparatus 900 that is suitable for implementing the exemplary embodiments of the invention. The apparatus 900 may comprise at least one processor 910; and at least one memory 920 including compute program instructions 921, wherein the at least one memory 920 and computer program instructions 921 are configured to, with the at least one processor 910, cause the apparatus 900 at least to perform methods according to embodiments of the present invention.
The at least one processor is suitable for use with embodiments of the present disclosure and may include, by way of example, both general and special purpose processors already known or developed in the future. The at least one memory may include, for example, semiconductor memory devices, e.g., RAM, ROM, EPROM, EEPROM, and flash memory devices. The at least one memory may be used to store program of computer executable instructions. The program can be written in any high-level and/or low-level compliable or interpretable programming languages. In accordance with embodiments, the computer executable instructions may be configured, with the at least one processor, to cause the apparatus to at least perform according to method 500 as discussed above. It is to be noted that although the  apparatus  800 or 900 may be included in a network node, the apparatus may be associated with the network node (for example, interfaces with the network node) , instead of being a part of the network node.
In general, the various exemplary embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the invention is not limited thereto. While various aspects of the exemplary embodiments of this invention may be illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The various blocks shown in Fig. 5 may be viewed as method steps, and/or as operations that result from operation of computer program code, and/or as a plurality of coupled logic circuit elements constructed to carry out the associated function (s) . At least some aspects of the exemplary embodiments of the inventions may be practiced in various components such as integrated circuit chips and modules, and that the exemplary embodiments of this invention may be realized in an apparatus that is embodied as an integrated circuit, FPGA or ASIC that is configurable to operate in accordance with the exemplary embodiments of the present invention.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be  performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems may generally be integrated together in a single software product or packaged into multiple software products.
Various modifications, adaptations to the foregoing exemplary embodiments of this invention may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings. Any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this invention. Furthermore, other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these embodiments of the invention pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the embodiments of the disclosure are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are used herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (8)

  1. A method for transmitting device-to-device (D2D) synchronization signals, comprising:
    receiving D2D synchronization signals from a first network node;
    determining a hop number of the D2D synchronization signals based on radio resources of the D2D synchronization signals; and
    determining whether to transmit the D2D synchronization signals to a second network node based on the hop number.
  2. The method of Claim 1, wherein determining a hop number of the D2D synchronization signals based on radio resources of the D2D synchronization signals comprises:
    obtaining D2DSS/PD2DSCH according to the radio resources of the D2D synchronization signals; and
    determining the hop number of the D2D synchronization signals based on the D2DSS/PD2DSCH.
  3. The method of Claim 1, wherein determining whether to transmitting the D2D synchronization signals to a next network node based on the hop number comprises:
    comparing the hop number with a predefined maximum hop number; and
    if the hop number is less than the predefined maximum hop number, determining further radio resources to transmit the D2D synchronization signals to the next network node.
  4. An apparatus for transmitting device-to-device (D2D) synchronization signals, comprising:
    a receiving unit configured to receive D2D synchronization signals from a first network node;
    a first determining unit configured to determine a hop number of the D2D synchronization signals based on radio resources of the D2D synchronization signals; and
    a second determining unit configured to determine whether to transmit the D2D synchronization signals to a second network node based on the hop number.
  5. The apparatus of Claim 4, wherein the first determining unit comprises:
    an obtaining unit configured to obtain D2DSS/PD2DSCH according to the radio resources of the D2D synchronization signals; and
    a third determining unit configured to determine the hop number of the D2D synchronization signals based on the D2DSS/PD2DSCH.
  6. The apparatus of Claim 4, wherein the second determining unit comprises:
    a comparing unit configured to compare the hop number with a predefined maximum hop number; and
    a fourth determining unit configured to, if the hop number is less than the predefined maximum hop number, determine further radio resources to transmit the D2D synchronization signals to the next network node.
  7. A network node, comprising an apparatus according to any of Claims 4-6.
  8. An apparatus (900) for transmitting device-to-device (D2D) synchronization signals, comprising:
    at least one processor (910) ; and
    at least one memory (920) including compute program instructions (921) ,
    wherein the at least one memory (920) and computer program instructions (921) are configured to, with the at least one processor (910) , cause the apparatus (900) at least to perform a method according to any of Claims 1-3.
PCT/CN2015/070587 2014-01-24 2015-01-13 Method and apparatus for transmitting d2d synchronization signals WO2015109961A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016547146A JP6666252B2 (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting D2D synchronization signal
US15/113,695 US9967844B2 (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting D2D synchronization signals
KR1020167023192A KR20160113662A (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting d2d synchronization signals
KR1020187013104A KR101905372B1 (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting d2d synchronization signals
EP15740619.0A EP3097730B1 (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting d2d synchronization signals
CN201580005802.4A CN105934981B (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting D2D synchronization signal
ES15740619T ES2784243T3 (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting D2D synchronization signals
CA2937925A CA2937925C (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting d2d synchronization signals
US15/949,599 US10616841B2 (en) 2014-01-24 2018-04-10 Method and apparatus for transmitting D2D synchronization signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2014071409 2014-01-24
CNPCT/CN2014/071409 2014-01-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/113,695 A-371-Of-International US9967844B2 (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting D2D synchronization signals
US15/949,599 Continuation US10616841B2 (en) 2014-01-24 2018-04-10 Method and apparatus for transmitting D2D synchronization signals

Publications (1)

Publication Number Publication Date
WO2015109961A1 true WO2015109961A1 (en) 2015-07-30

Family

ID=53680799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070587 WO2015109961A1 (en) 2014-01-24 2015-01-13 Method and apparatus for transmitting d2d synchronization signals

Country Status (8)

Country Link
US (2) US9967844B2 (en)
EP (1) EP3097730B1 (en)
JP (1) JP6666252B2 (en)
KR (1) KR101905372B1 (en)
CN (1) CN105934981B (en)
CA (1) CA2937925C (en)
ES (1) ES2784243T3 (en)
WO (1) WO2015109961A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193355A1 (en) * 2016-05-13 2017-11-16 华为技术有限公司 Device-to-device (d2d) communication method and d2d terminal device
WO2018038851A1 (en) * 2016-08-25 2018-03-01 Sprint Communications Company L.P. Data communication network to provide hop count data for user equipment selection of a wireless relay

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6356818B2 (en) 2014-01-24 2018-07-11 華為技術有限公司Huawei Technologies Co.,Ltd. Device and device synchronization method in inter-device (D2D) communication
WO2015111908A1 (en) * 2014-01-26 2015-07-30 엘지전자(주) Method for transmitting synchronization signal and synchronization channel in wireless communication system supporting device-to-device communication and apparatus for same
US10638435B2 (en) * 2014-07-30 2020-04-28 Lg Electronics Inc. Method and device for performing device-to-device synchronization in wireless communication system
EP3777369B1 (en) * 2018-04-06 2023-08-02 Telefonaktiebolaget LM Ericsson (publ) A wireless device, a network node and methods therein for transmission of synchronization signals
KR102011666B1 (en) 2018-12-28 2019-08-19 주식회사 온페이스 D-to-D system using 5G small cell, and the method therefor
CN113273260B (en) * 2019-01-10 2024-04-16 株式会社Ntt都科摩 Communication device and communication method
JP2022118873A (en) * 2021-02-03 2022-08-16 株式会社デンソー User device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428818A (en) * 2012-05-24 2013-12-04 华为技术有限公司 Terminal device discovery method, device and system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1815650T3 (en) * 2004-11-25 2009-07-20 Fraunhofer Gelellschaft Zur Fo Method of synchronization and data transfer
FR2900007A1 (en) 2006-04-12 2007-10-19 Evolium Sas Soc Par Actions Si METHOD OF BROADCASTING MULTIMEDIA DATA BY CONTROLLED SYNCHRONIZATION OF DIFFUSION TIMES OF BASE STATIONS OF FDMA / TDMA NETWORK AND USE OF COMMON CARRIER FREQUENCY
US7873710B2 (en) * 2007-02-06 2011-01-18 5O9, Inc. Contextual data communication platform
WO2012034269A1 (en) * 2010-09-14 2012-03-22 Nokia Corporation Interference measurement and reporting for device-to-device communications in communication system
US10271293B2 (en) * 2011-11-18 2019-04-23 Apple Inc. Group formation within a synchronized hierarchy of peer-to-peer devices
US9473574B2 (en) * 2011-11-18 2016-10-18 Apple Inc. Synchronization of devices in a peer-to-peer network environment
CN102780993B (en) * 2012-08-20 2015-04-15 哈尔滨工业大学 Terminal D2D (device-to-device) cooperation relay communication implementation method in TD-LTE-A (time division-long term evolution-advanced) system
WO2015046985A1 (en) * 2013-09-27 2015-04-02 엘지전자 주식회사 Method for transmitting synchronisation reference signal for device-to-device (d2d) communication in wireless communication system and apparatus therefor
WO2015046264A1 (en) * 2013-09-27 2015-04-02 京セラ株式会社 Communication control method and user terminal
US9603113B2 (en) * 2013-10-29 2017-03-21 Qualcomm Incorporated Distributed algorithm for constructing and maintaining a hierarchical structure for device-to-device synchronization
US9572171B2 (en) * 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
US20150264588A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Methods and apparatus for synchronization in device-to-device communication networks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428818A (en) * 2012-05-24 2013-12-04 华为技术有限公司 Terminal device discovery method, device and system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION.: "Discussion on D2D Synchronization", 3GPP TSG-RAN WG1 #75 R1-135113, 2 November 2013 (2013-11-02), XP050734815 *
INTEL CORPORATION.: "Preliminary performance analysis of D2D synchronization", 3GPP TSG-RAN WG1 #75 R1-135114, 2 November 2013 (2013-11-02), XP050734816 *
QUALCOMM INCORPORATED: "Multi-hop D2D synchronization performance", 3GPP TSG-RAN WG1 #75 R1-135316, 2 November 2013 (2013-11-02), XP050735001 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193355A1 (en) * 2016-05-13 2017-11-16 华为技术有限公司 Device-to-device (d2d) communication method and d2d terminal device
US10736066B2 (en) 2016-05-13 2020-08-04 Huawei Technologies Co., Ltd. Device-to-device D2D communication method and D2D terminal device
WO2018038851A1 (en) * 2016-08-25 2018-03-01 Sprint Communications Company L.P. Data communication network to provide hop count data for user equipment selection of a wireless relay
US10142918B2 (en) 2016-08-25 2018-11-27 Sprint Communications Company L.P. Data communication network to provide hop count data for user equipment selection of a wireless relay
US10652802B2 (en) 2016-08-25 2020-05-12 Sprint Communications Company L.P. Data communication network to provide hop count data for user equipment selection of a wireless relay

Also Published As

Publication number Publication date
EP3097730A4 (en) 2017-09-27
CA2937925C (en) 2020-09-22
EP3097730B1 (en) 2020-03-04
CN105934981A (en) 2016-09-07
EP3097730A1 (en) 2016-11-30
US20170230922A1 (en) 2017-08-10
KR101905372B1 (en) 2018-10-05
ES2784243T3 (en) 2020-09-23
KR20180055906A (en) 2018-05-25
US9967844B2 (en) 2018-05-08
JP6666252B2 (en) 2020-03-13
US20180295592A1 (en) 2018-10-11
CA2937925A1 (en) 2015-07-30
CN105934981B (en) 2020-07-21
JP2017509211A (en) 2017-03-30
US10616841B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
US10616841B2 (en) Method and apparatus for transmitting D2D synchronization signals
US11330545B2 (en) Method and apparatus for device-to-device synchronization sequence processing
CN107040868B (en) Synchronizing point-to-point operation of out-of-network coverage and local network coverage using L TE air interface
US10021654B2 (en) Method for controlling power and apparatus therefor in wireless communication system supporting device-to-device communication
US20140254429A1 (en) Signaling for device-to-device wireless communication
KR20160148011A (en) Device-to-device resource pattern signaling
CN107258099B (en) User equipment device for authorized assisted access based on reference signal and equipment thereof
US9510353B2 (en) Devices and methods for D2D synchronization signalling
WO2015141709A1 (en) Base station, user equipment, transmission timing information transmitting method, and discovery signal transmitting method
EP3687258A1 (en) Collision avoidance with synchronized transmission
US9042903B2 (en) Methods and apparatus for efficient co-existence of macro and small cells
KR20110119691A (en) Method and apparatus for communication for relay node and user equipment in wireless communication system
EP3133880B1 (en) Method, apparatus and system for transmitting synchronization signal for direct device to device communication in wireless communication system
US10848281B2 (en) Coordinated transmission in unlicensed band
CN105409296B (en) Method for realizing multicast communication based on device to device in cellular network
KR20160113662A (en) Method and apparatus for transmitting d2d synchronization signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547146

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113695

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2937925

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015740619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740619

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167023192

Country of ref document: KR

Kind code of ref document: A