WO2015108033A1 - Antenna device and radio apparatus provided therewith - Google Patents

Antenna device and radio apparatus provided therewith Download PDF

Info

Publication number
WO2015108033A1
WO2015108033A1 PCT/JP2015/050665 JP2015050665W WO2015108033A1 WO 2015108033 A1 WO2015108033 A1 WO 2015108033A1 JP 2015050665 W JP2015050665 W JP 2015050665W WO 2015108033 A1 WO2015108033 A1 WO 2015108033A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
feeding
less
mode
antenna device
Prior art date
Application number
PCT/JP2015/050665
Other languages
French (fr)
Japanese (ja)
Inventor
龍太 園田
井川 耕司
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015557831A priority Critical patent/JP6436100B2/en
Priority to CN201580003237.8A priority patent/CN105849974B/en
Publication of WO2015108033A1 publication Critical patent/WO2015108033A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the non-contact power feeding method can be said to be a structure resistant to impact.
  • a brittle material such as glass or ceramics
  • an antenna is formed on the housing, if power is supplied with a power supply pin or the like, it will become a point on the housing when a strong impact is applied from the outside. When the stress is concentrated, the housing may be damaged and the antenna may not operate.
  • non-contact power feeding can be said to be very effective.
  • the capacitance value greatly changes due to manufacturing errors and the relative positional relationship between the radiation conductor and the capacitive plate, in particular, the gap deviates from the design value. To do. As a result, impedance matching may not be achieved. In addition, the same may occur even if the relative positional relationship between the radiation conductor and the capacitive plate changes due to vibrations caused by use.
  • the radiating element has a power feeding part fed from the power feeding element, When the wavelength in vacuum at the resonance frequency of the fundamental mode of the radiating element is ⁇ 0 , The shortest distance between the ground reference of the feed point and the feed section, 0.0034Ramuda is 0 or more 0.21Ramuda 0 or less, the antenna device is provided.
  • FIG. 1 is a perspective view showing a simulation model on a computer for analyzing the operation of the antenna device 1 according to an embodiment of the present invention.
  • an electromagnetic simulator Microwave Studio (registered trademark) (CST) was used.
  • the antenna device 1 is an antenna mounted on the wireless device 100, for example.
  • Examples of the wireless device 100 include the mobile body itself or a wireless communication device built in the mobile body.
  • Examples of the mobile object include a portable terminal device, a vehicle such as an automobile, and a robot.
  • Specific examples of the mobile terminal device include electronic devices such as a mobile phone, a smartphone, a tablet computer, a game machine, a television, and a music and video player.
  • the antenna device 1 includes a ground plane 70, a feeding element 37, and a radiating element 31.
  • the power feeding element 37 extends in the Y-axis direction starting from the power feeding point 38, is then bent in the X-axis direction, and extends to an end portion 39 extending in the X-axis direction.
  • the end 39 is an open end to which no other conductor is connected.
  • the power feeding element 37 is not limited to the illustrated shape, and may be another shape such as a linear shape.
  • the feeding point 38 is a feeding part connected to a predetermined transmission line or feeding line using the ground plane 70.
  • the predetermined transmission line include a microstrip line, a strip line, and a coplanar waveguide with a ground plane (a coplanar waveguide having a ground plane disposed on the surface opposite to the conductor surface).
  • the feeder line include a feeder line and a coaxial cable.
  • FIG. 1 shows a form in which the microstrip line 28 is connected to the feeding point 38.
  • the microstrip line 28 includes a substrate 25, a ground plane 70 is disposed on one surface of the substrate 25, and a linear strip conductor 27 is disposed on the other opposite surface of the substrate 25.
  • a connection point between the strip conductor 27 and the feed element 37 is defined as a feed point 38, and the substrate 25 is assumed to be a substrate on which an integrated circuit such as an IC chip connected to the feed point 38 via the microstrip line 28 is mounted. Yes.
  • the power feeding element 37 is provided on the substrate 25, for example, and is disposed on the same surface as the strip conductor 27.
  • the boundary between the feeding element 37 and the strip conductor 27 is a portion that appears to coincide with the outer edge portion 71 of the ground plane 70 in a plan view in the Z-axis direction, and is a feeding point 38.
  • the radiating element 31 is an example of a radiating element that is disposed away from the power feeding element 37 and that is fed by electromagnetic coupling with the power feeding element 37 and functions as a radiation conductor.
  • the radiating element 31 is a linear conductor having a power feeding unit 36 that receives power from the power feeding element 37 in a non-contact manner.
  • a radiation element 31 formed in a linear shape is illustrated.
  • the linear radiating element 31 has a conductor portion that is arranged away from the outer edge portion 71 and extends in the X-axis direction along the outer edge portion 71.
  • the linear radiating element 31 is illustrated, but the shape of the radiating element 31 may be other shapes such as an L shape, a loop shape, and a meander shape.
  • the radiating element 31 has the conductor portion along the outer edge portion 71, for example, the directivity of the antenna device 1 can be easily controlled.
  • the radiation element 31 is provided on the substrate 26, for example.
  • the substrate 26 is arranged in the normal direction of the substrate 25 (a direction parallel to the Z axis) with an interval L68 from the substrate 25.
  • the radiating element 31 is formed on the surface of the substrate 26 on the side close to the substrate 25 on which the power feeding element 37 is formed.
  • the radiating element 31 is a linear conductor that linearly connects one end 34 and the other end 35.
  • the radiating element 31 and the feeding element 37 may be arranged in any direction such as the X-axis, Y-axis, or Z-axis direction as long as the feeding element 37 is separated from the radiating element 31 by a distance that enables electromagnetic coupling so that power can be fed without contact. Even if it overlaps in planar view, it does not need to overlap.
  • the feeding element 37 and the radiating element 31 are arranged at a distance allowing electromagnetic field coupling to each other.
  • the radiating element 31 includes a power feeding unit 36 that receives power from the power feeding element 37.
  • the radiating element 31 is fed in a non-contact manner by electromagnetic coupling through the feeding element 37 in the feeding section 36. By being fed in this way, the radiating element 31 functions as a radiating conductor of the antenna device 1.
  • the radiating element 31 when the radiating element 31 is a linear conductor connecting two points, a resonance current (distribution) similar to that of the half-wave dipole antenna is formed on the radiating element 31. That is, the radiating element 31 functions as a dipole antenna that resonates at a half wavelength of a predetermined frequency (hereinafter referred to as a dipole mode).
  • the radiating element 31 may be a loop conductor that forms a square with a linear conductor.
  • a resonance current (distribution) similar to that of the loop antenna is formed on the radiating element 31. That is, the radiating element 31 functions as a loop antenna that resonates at one wavelength of a predetermined frequency (hereinafter referred to as a loop mode).
  • the radiating element 31 may be a linear conductor connected to the ground reference of the feeding point 38.
  • the ground reference of the feeding point 38 is, for example, the ground plane 70 or a conductor connected to the ground plane 70 so as to be DC conductive.
  • the end 35 of the radiating element 31 is connected to the outer edge 71 of the ground plane 70.
  • the radiating element 31 is a linear conductor having one end connected to the ground reference of the feeding point 38 and the other end being an open end, a resonance current (distribution) similar to that of the ⁇ / 4 monopole antenna is generated on the radiating element 31.
  • the radiating element 31 functions as a monopole antenna that resonates at a quarter wavelength of a predetermined frequency (hereinafter referred to as a monopole mode).
  • Electromagnetic coupling is coupling utilizing the resonance phenomenon of electromagnetic fields.
  • non-patent literature A. Kurs, et al, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science Express3. 5834, pp. 83-86, Jul. 2007.
  • Electromagnetic coupling is also referred to as electromagnetic resonance coupling or electromagnetic resonance coupling.
  • electromagnetic resonance coupling When two resonators that resonate at the same frequency are brought close to each other and one of the resonators resonates, a near field (non-radiation) is created between the resonators. This is a technique for transmitting energy to the other resonator via coupling in the field region.
  • a structure strong against impact can be obtained by electromagnetically coupling the feeding element 37 and the radiating element 31. That is, by using electromagnetic field coupling, power can be supplied to the radiating element 31 using the power feeding element 37 without physically contacting the power feeding element 37 and the radiating element 31, so that a contact power feeding method that requires physical contact is adopted. In comparison, a structure strong against impact can be obtained.
  • the radiating element when the power is fed by electromagnetic coupling, the radiating element can be provided even if the separation distance (coupling distance) between the feeding element 37 and the radiating element 31 is longer than that when power is fed by capacitive coupling or magnetic coupling.
  • the operation gain (antenna gain) 31 is unlikely to decrease.
  • the operating gain is an amount calculated by antenna radiation efficiency ⁇ return loss, and is an amount defined as antenna efficiency with respect to input power. Accordingly, by electromagnetically coupling the feeding element 37 and the radiating element 31, it is possible to increase the degree of freedom in determining the arrangement positions of the feeding element 37 and the radiating element 31, and to improve the position robustness.
  • the power feeding part 36 which is a part where the power feeding element 37 feeds power to the radiating element 31, is a part other than the central part 33 between one end 34 and the other end 35 of the radiating element 31 ( It is located in the part between the center part 33 and the edge part 34 or the edge part 35).
  • the matching of the antenna device 1 is achieved by positioning the feeding portion 36 at a portion of the radiating element 31 other than the portion (in this case, the central portion 33) having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element 31.
  • the power feeding unit 36 is a part defined by a portion closest to the feeding point 38 among the conductor portions of the radiating element 31 where the radiating element 31 and the power feeding element 37 are closest to each other.
  • the shortest distance D1 between the feeding portion 36 and the ground plane 70 is a 0.0034Ramuda 0 or 0.21Ramuda 0 or less .
  • the shortest distance D1 is more preferably 0.0043 ⁇ 0 or more and 0.199 ⁇ 0 or less, and still more preferably 0.0069 ⁇ 0 or more and 0.164 ⁇ 0 or less.
  • the shortest distance D1 corresponds to a distance obtained by connecting the closest portions of the power feeding unit 36 and the outer edge 71 with a straight line.
  • the outer edge 71 is connected to a power feeding element 37 that feeds power to the power feeding unit 36.
  • This is the outer edge portion of the ground plane 70 that is the ground reference of the feeding point 38.
  • the radiating element 31 and the ground plane 70 may be on the same plane or different planes.
  • the radiating element 31 may be arranged in a plane parallel to the plane in which the ground plane 70 is arranged, or may be arranged in a plane that intersects at an arbitrary angle.
  • the radiating element 31 is positioned with respect to the feeding element 37 so that the conductor part in the X-axis direction of the radiating element 31 overlaps the conductor part in the X-axis direction of the feeding element 37 when viewed from the Z-axis direction. Placed away in the direction.
  • the operation gain of the radiating element 31 is reduced because the matching state of the radiating element 31 is deteriorated as the power feeding portion 36 is separated from the outer edge portion 71 to some extent.
  • the shortest distance D1 is, 0.0034Ramuda 0 or 0.21Ramuda 0 or less (more preferably not 0.0043Ramuda 0 or 0.199Ramuda 0 or less, more preferably, 0.0069Ramuda 0 or 0.164Ramuda 0.
  • the following is advantageous in that the operating gain of the radiating element 31 is improved.
  • the shortest distance D1 is a value satisfying 0.0152 ⁇ R S 0.5229 or more, it is advantageous in improving the operating gain of the radiating element 31. That is, by reducing the sheet resistance RS , the shortest distance D1 can be reduced, and the antenna device can be downsized.
  • the shortest distance D2 corresponds to a distance obtained by connecting the power supply unit 36 and the closest part of the power supply element 37 that supplies power to the power supply unit 36 with a straight line.
  • the feeding element 37 and the radiating element 31 may or may not intersect when viewed from an arbitrary direction, and the intersection angle may be an arbitrary angle. Good.
  • the radiating element 31 and the feeding element 37 may be on the same plane or on different planes.
  • the radiating element 31 may be arranged in a plane parallel to the plane in which the power feeding element 37 is arranged, or may be arranged in a plane that intersects at an arbitrary angle.
  • the distance that the feeding element 37 and the radiating element 31 run in parallel at the shortest distance D2 is preferably 3/8 or less of the physical length of the radiating element 31 in the dipole mode. More preferably, it is 1/4 or less, and more preferably 1/8 or less.
  • the length is preferably 3/16 or less of the inner circumferential length of the loop of the radiating element 31. More preferably, it is 1/8 or less, and more preferably 1/16 or less.
  • the monopole mode it is preferably 3/4 or less of the physical length of the radiating element 31. More preferably, it is 1/2 or less, and still more preferably 1/4 or less.
  • the physical length L37 of the feeding element 37 is a wavelength shortening effect depending on the mounting environment, where ⁇ 0 is the wavelength of the radio wave in the vacuum at the resonance frequency of the fundamental mode of the radiating element when a matching circuit or the like is not included.
  • k 1 is a relative dielectric constant of a medium (environment) such as a dielectric substrate provided with a feeding element such as an effective relative dielectric constant ( ⁇ r1 ) and an effective relative permeability ( ⁇ r1 ) of the environment of the feeding element 37. It is a value calculated from the rate, relative permeability, thickness, resonance frequency, and the like.
  • m is the number of modes in the higher order mode and is a natural number.
  • L31 is ideally (1/2) ⁇ ⁇ g2 when the fundamental mode of resonance of the radiating element 31 is a dipole mode.
  • the length L31 of the radiating element 31 is preferably (1/4) ⁇ ⁇ g2 or more and (5/8) ⁇ ⁇ g2 or less, and more preferably (3/8) ⁇ ⁇ g2 or more.
  • L31 is (7/8) ⁇ ⁇ g2 or more and (9/8) ⁇ ⁇ g2 or less when the fundamental mode of resonance of the radiating element 31 is the loop mode.
  • L31 is (1/8) ⁇ ⁇ g2 or more and (3/8) ⁇ ⁇ g2 or less when the fundamental mode of resonance of the radiating element 31 is the monopole mode.
  • the substrate 25 includes a feeding element 37, a feeding point 38, and a ground plane 70 that is a ground reference of the feeding point 38.
  • the substrate 25 has a transmission line including a strip conductor 27 connected to the feeding point 38.
  • the strip conductor 27 is a signal line formed on the surface of the substrate 25 so that the substrate 25 is sandwiched between the strip conductor 27 and the ground plane 70, for example.

Landscapes

  • Details Of Aerials (AREA)

Abstract

An antenna device provided with: a power feeding element connected to a power feeding point; and a radiation element which is disposed apart from the power feeding element, to which power is fed by electromagnetic field coupling to the power feeding element, and which functions as a radiation conductor, wherein the radiation element comprises a power fed part to which power is fed from the power feeding element, and when the wavelength in a vacuum at a resonance frequency in a basic mode of the radiation element is taken as λ0, the shortest distance between the power fed part and a ground reference at the power feeding point is 0.0034-0.21 λ0 inclusive.

Description

アンテナ装置及びそれを備える無線装置ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
 本発明は、アンテナ装置及びそれを備える無線装置に関する。 The present invention relates to an antenna device and a wireless device including the antenna device.
 携帯無線機等に搭載されるアンテナは、近年、その個数が増加しており、また回路基板の集積密度が高まっているため、筺体表面、あるいは筺体内部など、回路基板から離れた部位に実装されている。 In recent years, the number of antennas mounted on portable wireless devices and the like has increased, and the integration density of circuit boards has increased. Therefore, the antennas are mounted on the surface of the enclosure or inside the enclosure away from the circuit board. ing.
 例えば、特許文献1に開示されたアンテナ導体(放射導体)は、筐体外装面に形成されていて、基板に設けられた給電ピンに物理的に接触している(特許文献1の図2参照)。このような給電ピンを用いる場合には、外部からの衝撃が加わった際の信頼性を向上するために、スプリングピンコネクタなどの衝撃を緩和する機構を有する特殊な接続端子が利用される。また、このような特殊な機構を使用しない例として、特許文献2に開示された給電方式がある。 For example, the antenna conductor (radiation conductor) disclosed in Patent Document 1 is formed on the exterior surface of the housing and is in physical contact with a power supply pin provided on the substrate (see FIG. 2 of Patent Document 1). ). When such a power supply pin is used, a special connection terminal having a mechanism for mitigating the impact, such as a spring pin connector, is used in order to improve reliability when an external impact is applied. In addition, as an example in which such a special mechanism is not used, there is a power feeding method disclosed in Patent Document 2.
 特許文献2のアンテナ装置は、筐体に放射導体が形成され、また、回路基板上に垂直に立てられた給電線の先端に容量板が配置されている(特許文献2の図1参照)。容量板と放射導体が容量結合することにより、非接触で放射導体に給電されるため、非接触給電方式は、衝撃に強い構造といえる。特に、筐体にガラスやセラミックスなどの脆性材料を利用し、筐体にアンテナを形成する場合において、給電ピンなどで給電を行うと、外部から強い衝撃が加わった際に筐体の1点に応力が集中することで、筐体が破損し、アンテナも動作しなくなる可能性がある。このような問題を回避する手段として、非接触給電は非常に有効といえる。 In the antenna device of Patent Document 2, a radiating conductor is formed in a casing, and a capacitor plate is disposed at the tip of a feeder line that stands vertically on a circuit board (see FIG. 1 of Patent Document 2). Since the capacitive plate and the radiation conductor are capacitively coupled, the radiation conductor is fed in a non-contact manner. Therefore, the non-contact power feeding method can be said to be a structure resistant to impact. In particular, when a brittle material such as glass or ceramics is used for the housing, and an antenna is formed on the housing, if power is supplied with a power supply pin or the like, it will become a point on the housing when a strong impact is applied from the outside. When the stress is concentrated, the housing may be damaged and the antenna may not operate. As a means for avoiding such a problem, non-contact power feeding can be said to be very effective.
特開2009-060268号公報JP 2009-060268 A 特開2001-244715号公報JP 2001-244715 A
 しかしながら、放射導体と容量板とを容量結合させる給電方式では、製造上の誤差などで、放射導体と容量板との相対的な位置関係、特に間隔が設計値からずれることによって容量値が大きく変化する。その結果、インピーダンスマッチングがとれなくなるおそれがある。また、使用による振動などによって放射導体と容量板との相対的な位置関係が変化しても同様のことが発生するおそれがある。 However, in the power feeding method in which the radiation conductor and the capacitive plate are capacitively coupled, the capacitance value greatly changes due to manufacturing errors and the relative positional relationship between the radiation conductor and the capacitive plate, in particular, the gap deviates from the design value. To do. As a result, impedance matching may not be achieved. In addition, the same may occur even if the relative positional relationship between the radiation conductor and the capacitive plate changes due to vibrations caused by use.
 さらに、携帯無線機等へのアンテナの設置スペースは限られている。そのため、充分な動作利得を確保しつつ、設置スペースが小さいアンテナが求められている。 Furthermore, the space for installing antennas on portable radios is limited. Therefore, there is a demand for an antenna with a small installation space while ensuring a sufficient operating gain.
 そこで、放射導体との位置関係について高い位置ロバスト性を有し、小型化を実現できる非接触給電のアンテナ装置及びそれを備える無線装置の提供を目的とする。 Therefore, an object of the present invention is to provide a non-contact power feeding antenna device that has high positional robustness with respect to the positional relationship with the radiation conductor and can be miniaturized, and a wireless device including the antenna device.
 一つの案では、
 給電点に接続された給電素子と、
 前記給電素子から離れて配置され、前記給電素子と電磁界結合することにより給電されて放射導体として機能する放射素子とを備え、
 前記放射素子は、前記給電素子から給電される給電部を有し、
 前記放射素子の基本モードの共振周波数における真空中の波長をλとする場合、
 前記給電部と前記給電点のグランド基準との最短距離は、0.0034λ以上0.21λ以下である、アンテナ装置が提供される。
One idea is that
A feed element connected to the feed point;
A radiating element that is arranged away from the feeding element and that is fed by electromagnetic coupling with the feeding element and functions as a radiation conductor;
The radiating element has a power feeding part fed from the power feeding element,
When the wavelength in vacuum at the resonance frequency of the fundamental mode of the radiating element is λ 0 ,
The shortest distance between the ground reference of the feed point and the feed section, 0.0034Ramuda is 0 or more 0.21Ramuda 0 or less, the antenna device is provided.
 一態様によれば、放射導体との位置関係について高い位置ロバスト性を有し、小型化を実現できる非接触給電のアンテナ装置及びそれを備える無線装置を実現できる。 According to one aspect, it is possible to realize a contactless power supply antenna device that has high positional robustness with respect to the positional relationship with the radiation conductor and can be downsized, and a wireless device including the antenna device.
アンテナ装置の一構成例を示す斜視図である。It is a perspective view which shows one structural example of an antenna device. 給電部と給電点のグランド基準との最短距離D1と、放射素子の動作利得との関係の一例を示す図である。It is a figure which shows an example of the relationship between the shortest distance D1 of a feed part and the ground reference | standard of a feed point, and the operating gain of a radiation element. 放射素子の動作利得が0.65以上になるときの、放射素子のシート抵抗と最短距離D1との関係の一例を示す図である。It is a figure which shows an example of the relationship between the sheet resistance of a radiation element, and the shortest distance D1, when the operation gain of a radiation element becomes 0.65 or more.
 以下、本発明の実施形態を図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態であるアンテナ装置1の動作を解析するためのコンピュータ上のシミュレーションモデルを示した斜視図である。電磁界シミュレータとして、Microwave Studio(登録商標)(CST社)を使用した。 FIG. 1 is a perspective view showing a simulation model on a computer for analyzing the operation of the antenna device 1 according to an embodiment of the present invention. As an electromagnetic simulator, Microwave Studio (registered trademark) (CST) was used.
 アンテナ装置1は、例えば、無線装置100に搭載されるアンテナである。無線装置100の例として、移動体自体又は移動体に内蔵される無線通信装置が挙げられる。移動体の例として、携帯可能な携帯端末装置、自動車等の車両、ロボットなどが挙げられる。携帯端末装置の具体例として、携帯電話、スマートフォン、タブレット型コンピュータ、ゲーム機、テレビ、音楽や映像のプレーヤーなどの電子機器が挙げられる。アンテナ装置1は、グランドプレーン70と、給電素子37と、放射素子31とを備えている。 The antenna device 1 is an antenna mounted on the wireless device 100, for example. Examples of the wireless device 100 include the mobile body itself or a wireless communication device built in the mobile body. Examples of the mobile object include a portable terminal device, a vehicle such as an automobile, and a robot. Specific examples of the mobile terminal device include electronic devices such as a mobile phone, a smartphone, a tablet computer, a game machine, a television, and a music and video player. The antenna device 1 includes a ground plane 70, a feeding element 37, and a radiating element 31.
 グランドプレーン70は、少なくとも一本の線分を外縁部として有する平面状の導体パターンであり、図面には、XY平面内に延在する長方形状のグランドプレーン70が例示されている。グランドプレーン70は、例えば、X軸方向に直線的に延伸する外縁部71を有している。グランドプレーン70は、例えば、XY平面に平行に配置され、X軸方向に平行な横の長さをL64とし、Y軸方向に平行な縦の長さをL67とする長方形の外形を有している。 The ground plane 70 is a planar conductor pattern having at least one line segment as an outer edge, and a rectangular ground plane 70 extending in the XY plane is illustrated in the drawing. The ground plane 70 has, for example, an outer edge portion 71 that extends linearly in the X-axis direction. For example, the ground plane 70 is arranged in parallel to the XY plane, and has a rectangular outer shape in which the horizontal length parallel to the X-axis direction is L64 and the vertical length parallel to the Y-axis direction is L67. Yes.
 給電素子37は、グランドプレーン70をグランド基準とする給電点38に接続された給電素子の一例である。給電素子37は、放射素子31に対して非接触で高周波的に結合して給電可能な線状導体である。図面には、外縁部71に対して直角且つY軸に平行な方向に延在する直線状導体と、X軸に平行な外縁部71に並走して延在する直線状導体とによって、L字状に形成された給電素子37が例示されている。図示の場合、給電素子37は、給電点38を起点にY軸方向に延伸してからX軸方向に折り曲げられ、X軸方向への延伸の端部39まで延伸している。端部39は、他の導体が接続されていない開放端である。給電素子37は、図示の形状に限られず、直線状などの他の形状でもよい。 The power feeding element 37 is an example of a power feeding element connected to a power feeding point 38 with the ground plane 70 as a ground reference. The feeding element 37 is a linear conductor that can be fed to the radiating element 31 in a non-contact manner in a high frequency manner. In the drawing, a linear conductor extending in a direction perpendicular to the outer edge 71 and parallel to the Y-axis, and a linear conductor extending parallel to the outer edge 71 parallel to the X-axis, A power feeding element 37 formed in a letter shape is illustrated. In the illustrated case, the power feeding element 37 extends in the Y-axis direction starting from the power feeding point 38, is then bent in the X-axis direction, and extends to an end portion 39 extending in the X-axis direction. The end 39 is an open end to which no other conductor is connected. The power feeding element 37 is not limited to the illustrated shape, and may be another shape such as a linear shape.
 給電点38は、グランドプレーン70を利用した所定の伝送線路や給電線等に接続される給電部位である。所定の伝送線路の具体例として、マイクロストリップライン、ストリップライン、グランドプレーン付きコプレーナウェーブガイド(導体面とは反対側の表面にグランドプレーンが配置されたコプレーナウェーブガイド)などが挙げられる。給電線としては、フィーダー線や同軸ケーブルが挙げられる。 The feeding point 38 is a feeding part connected to a predetermined transmission line or feeding line using the ground plane 70. Specific examples of the predetermined transmission line include a microstrip line, a strip line, and a coplanar waveguide with a ground plane (a coplanar waveguide having a ground plane disposed on the surface opposite to the conductor surface). Examples of the feeder line include a feeder line and a coaxial cable.
 図1には、マイクロストリップライン28が給電点38に接続される形態が示されている。マイクロストリップライン28は、基板25を有し、基板25の一方の表面にグランドプレーン70が配置され、基板25のもう一方の反対側の表面に線状のストリップ導体27が配置されている。ストリップ導体27と給電素子37との接続点を給電点38とし、基板25は、給電点38にマイクロストリップライン28を介して接続されるICチップ等の集積回路が実装される基板を想定している。 FIG. 1 shows a form in which the microstrip line 28 is connected to the feeding point 38. The microstrip line 28 includes a substrate 25, a ground plane 70 is disposed on one surface of the substrate 25, and a linear strip conductor 27 is disposed on the other opposite surface of the substrate 25. A connection point between the strip conductor 27 and the feed element 37 is defined as a feed point 38, and the substrate 25 is assumed to be a substrate on which an integrated circuit such as an IC chip connected to the feed point 38 via the microstrip line 28 is mounted. Yes.
 給電素子37は、例えば、基板25に設けられ、ストリップ導体27と同じ表面に配置されている。給電素子37とストリップ導体27との境界は、Z軸方向での平面視において、グランドプレーン70の外縁部71に一致して見える箇所であり、給電点38である。 The power feeding element 37 is provided on the substrate 25, for example, and is disposed on the same surface as the strip conductor 27. The boundary between the feeding element 37 and the strip conductor 27 is a portion that appears to coincide with the outer edge portion 71 of the ground plane 70 in a plan view in the Z-axis direction, and is a feeding point 38.
 放射素子31は、給電素子37から離れて配置され、給電素子37と電磁界結合することにより給電されて放射導体として機能する放射素子の一例である。放射素子31は、給電素子37から非接触で給電を受ける給電部36を有する線状導体である。 The radiating element 31 is an example of a radiating element that is disposed away from the power feeding element 37 and that is fed by electromagnetic coupling with the power feeding element 37 and functions as a radiation conductor. The radiating element 31 is a linear conductor having a power feeding unit 36 that receives power from the power feeding element 37 in a non-contact manner.
 図面には、直線状に形成された放射素子31が例示されている。直線状の放射素子31は、外縁部71から離れて配置され外縁部71に沿うようにX軸方向に延伸する導体部分を有している。図面には、直線状の放射素子31が例示されているが、放射素子31の形状は、L字状、ループ状、メアンダ状などの他の形状であってもよい。放射素子31が、外縁部71に沿った導体部分を有することによって、例えばアンテナ装置1の指向性を容易に制御することが可能となる。 In the drawing, a radiation element 31 formed in a linear shape is illustrated. The linear radiating element 31 has a conductor portion that is arranged away from the outer edge portion 71 and extends in the X-axis direction along the outer edge portion 71. In the drawing, the linear radiating element 31 is illustrated, but the shape of the radiating element 31 may be other shapes such as an L shape, a loop shape, and a meander shape. When the radiating element 31 has the conductor portion along the outer edge portion 71, for example, the directivity of the antenna device 1 can be easily controlled.
 放射素子31は、例えば、基板26に設けられている。基板26は、基板25の法線方向(Z軸に平行な方向)に、基板25から間隔L68をあけて配置されている。放射素子31は、基板26の表面のうち、給電素子37が形成される基板25に近い側の面に形成される。放射素子31は、一方の端部34と他方の端部35とを直線的に結ぶ線状導体である。 The radiation element 31 is provided on the substrate 26, for example. The substrate 26 is arranged in the normal direction of the substrate 25 (a direction parallel to the Z axis) with an interval L68 from the substrate 25. The radiating element 31 is formed on the surface of the substrate 26 on the side close to the substrate 25 on which the power feeding element 37 is formed. The radiating element 31 is a linear conductor that linearly connects one end 34 and the other end 35.
 放射素子31と給電素子37は、給電素子37が放射素子31に非接触で給電可能に電磁界結合可能な距離離れていれば、X軸、Y軸又はZ軸方向などの任意の方向での平面視において重複していても重複していなくてもよい。 The radiating element 31 and the feeding element 37 may be arranged in any direction such as the X-axis, Y-axis, or Z-axis direction as long as the feeding element 37 is separated from the radiating element 31 by a distance that enables electromagnetic coupling so that power can be fed without contact. Even if it overlaps in planar view, it does not need to overlap.
 給電素子37と放射素子31は、互いに電磁界結合可能な距離で離れて配置されている。放射素子31は、給電素子37から給電を受ける給電部36を有している。放射素子31は、給電部36で給電素子37を介して電磁界結合によって非接触で給電される。このように給電されることによって、放射素子31は、アンテナ装置1の放射導体として機能する。 The feeding element 37 and the radiating element 31 are arranged at a distance allowing electromagnetic field coupling to each other. The radiating element 31 includes a power feeding unit 36 that receives power from the power feeding element 37. The radiating element 31 is fed in a non-contact manner by electromagnetic coupling through the feeding element 37 in the feeding section 36. By being fed in this way, the radiating element 31 functions as a radiating conductor of the antenna device 1.
 図示のように、放射素子31が2点間を結ぶ線状導体である場合、半波長ダイポールアンテナと同様の共振電流(分布)が放射素子31上に形成される。すなわち、放射素子31は、所定の周波数の半波長で共振するダイポールアンテナとして機能(以下、ダイポールモードという)する。 As shown in the figure, when the radiating element 31 is a linear conductor connecting two points, a resonance current (distribution) similar to that of the half-wave dipole antenna is formed on the radiating element 31. That is, the radiating element 31 functions as a dipole antenna that resonates at a half wavelength of a predetermined frequency (hereinafter referred to as a dipole mode).
 また、図示しないが、放射素子31は線状導体で四角形を形成するようなループ状導体であってもよい。放射素子31がループ状導体である場合、ループアンテナと同様の共振電流(分布)が放射素子31上に形成される。すなわち、放射素子31は、所定の周波数の1波長で共振するループアンテナとして機能(以下、ループモードという)する。 Although not shown, the radiating element 31 may be a loop conductor that forms a square with a linear conductor. When the radiating element 31 is a loop conductor, a resonance current (distribution) similar to that of the loop antenna is formed on the radiating element 31. That is, the radiating element 31 functions as a loop antenna that resonates at one wavelength of a predetermined frequency (hereinafter referred to as a loop mode).
 また、図示しないが、放射素子31は、給電点38のグランド基準に接続される線状導体であってもよい。給電点38のグランド基準とは、例えば、グランドプレーン70、又はグランドプレーン70に直流的に導通可能に接続された導体などである。例えば、放射素子31の端部35が、グランドプレーン70の外縁部71に接続される。放射素子31は、一端が給電点38のグランド基準に接続され、他端が開放端である線状導体である場合、λ/4モノポールアンテナと同様の共振電流(分布)が放射素子31上に形成される。すなわち、放射素子31は、所定の周波数の4分の1波長で共振するモノポールアンテナとして機能(以下、モノポールモードという)する。 Although not shown, the radiating element 31 may be a linear conductor connected to the ground reference of the feeding point 38. The ground reference of the feeding point 38 is, for example, the ground plane 70 or a conductor connected to the ground plane 70 so as to be DC conductive. For example, the end 35 of the radiating element 31 is connected to the outer edge 71 of the ground plane 70. When the radiating element 31 is a linear conductor having one end connected to the ground reference of the feeding point 38 and the other end being an open end, a resonance current (distribution) similar to that of the λ / 4 monopole antenna is generated on the radiating element 31. Formed. That is, the radiating element 31 functions as a monopole antenna that resonates at a quarter wavelength of a predetermined frequency (hereinafter referred to as a monopole mode).
 電磁界結合とは、電磁界の共鳴現象を利用した結合であり、例えば非特許文献(A.Kurs, et al,“Wireless Power Transfer via Strongly Coupled Magnetic Resonances,”Science Express, Vol.317, No.5834, pp.83-86, Jul. 2007)に開示されている。電磁界結合は、電磁界共振結合又は電磁界共鳴結合とも称され、同じ周波数で共振する共振器同士を近接させ、一方の共振器を共振させると、共振器間に作られるニアフィールド(非放射界領域)での結合を介して、他方の共振器にエネルギーを伝送する技術である。また、電磁界結合とは、静電容量結合や電磁誘導による結合を除いた高周波における電界及び磁界による結合を意味する。なお、ここでの「静電容量結合や電磁誘導による結合を除いた」とは、これらの結合が全くなくなることを意味するのではなく、影響を及ぼさない程度に小さいことを意味する。給電素子37と放射素子31との間の媒体は、空気でもよいし、ガラスや樹脂材等の誘電体でもよい。なお、給電素子37と放射素子31との間には、グランドプレーンやディスプレイ等の導電性材料を配置しないことが好ましい。 Electromagnetic coupling is coupling utilizing the resonance phenomenon of electromagnetic fields. For example, non-patent literature (A. Kurs, et al, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science Express3. 5834, pp. 83-86, Jul. 2007). Electromagnetic coupling is also referred to as electromagnetic resonance coupling or electromagnetic resonance coupling. When two resonators that resonate at the same frequency are brought close to each other and one of the resonators resonates, a near field (non-radiation) is created between the resonators. This is a technique for transmitting energy to the other resonator via coupling in the field region. Further, the electromagnetic field coupling means coupling by an electric field and a magnetic field at a high frequency excluding capacitive coupling and electromagnetic induction coupling. Here, “excluding capacitive coupling and electromagnetic induction coupling” does not mean that these couplings are eliminated at all, but means that they are small enough to have no effect. The medium between the feeding element 37 and the radiating element 31 may be air or a dielectric such as glass or a resin material. In addition, it is preferable not to arrange a conductive material such as a ground plane or a display between the feeding element 37 and the radiating element 31.
 給電素子37と放射素子31を電磁界結合させることによって、衝撃に対して強い構造が得られる。すなわち、電磁界結合の利用によって、給電素子37と放射素子31を物理的に接触させることなく、給電素子37を用いて放射素子31に給電できるため、物理的な接触が必要な接触給電方式に比べて、衝撃に対して強い構造が得られる。 A structure strong against impact can be obtained by electromagnetically coupling the feeding element 37 and the radiating element 31. That is, by using electromagnetic field coupling, power can be supplied to the radiating element 31 using the power feeding element 37 without physically contacting the power feeding element 37 and the radiating element 31, so that a contact power feeding method that requires physical contact is adopted. In comparison, a structure strong against impact can be obtained.
 給電素子37と放射素子31を電磁界結合させることによって、非接触給電を簡易な構成で実現できる。すなわち、電磁界結合の利用によって、給電素子37と放射素子31を物理的に接触させることなく、給電素子37を用いて放射素子31に給電できるため、物理的な接触が必要な接触給電方式に比べて、簡易な構成での給電が可能である。また、電磁界結合の利用によって、容量板などの余計な部品を構成してなくても、給電素子37を用いて放射素子31に給電できるため、静電容量結合で給電する場合に比べて、簡易な構成での給電が可能である。 By connecting the feeding element 37 and the radiating element 31 to an electromagnetic field, non-contact feeding can be realized with a simple configuration. That is, by using electromagnetic field coupling, power can be supplied to the radiating element 31 using the power feeding element 37 without physically contacting the power feeding element 37 and the radiating element 31, so that a contact power feeding method that requires physical contact is adopted. In comparison, power supply with a simple configuration is possible. In addition, by using electromagnetic field coupling, it is possible to supply power to the radiating element 31 using the power feeding element 37 without configuring extra parts such as a capacitive plate. Power can be supplied with a simple configuration.
 また、電磁界結合で給電する場合の方が、静電容量結合又は磁界結合で給電する場合に比べて、給電素子37と放射素子31の離間距離(結合距離)を長くしても、放射素子31の動作利得(アンテナ利得)は低下しにくい。ここで、動作利得とは、アンテナの放射効率×リターンロスで算出される量であり、入力電力に対するアンテナの効率として定義される量である。したがって、給電素子37と放射素子31を電磁界結合させることで、給電素子37と放射素子31の配置位置を決める自由度を高めることができ、位置ロバスト性も高めることができる。なお、位置ロバスト性が高いとは、給電素子37及び放射素子31の配置位置等がずれても、放射素子31の動作利得に与える影響が低いことを意味する。また、給電素子37と放射素子31の配置位置を決める自由度が高いため、アンテナ装置1の設置に必要なスペースを容易に縮小できる点で有利である。 Further, when the power is fed by electromagnetic coupling, the radiating element can be provided even if the separation distance (coupling distance) between the feeding element 37 and the radiating element 31 is longer than that when power is fed by capacitive coupling or magnetic coupling. The operation gain (antenna gain) 31 is unlikely to decrease. Here, the operating gain is an amount calculated by antenna radiation efficiency × return loss, and is an amount defined as antenna efficiency with respect to input power. Accordingly, by electromagnetically coupling the feeding element 37 and the radiating element 31, it is possible to increase the degree of freedom in determining the arrangement positions of the feeding element 37 and the radiating element 31, and to improve the position robustness. Note that high position robustness means that even if the arrangement positions of the feeding element 37 and the radiating element 31 are shifted, the influence on the operation gain of the radiating element 31 is low. Further, since the degree of freedom in determining the arrangement positions of the feeding element 37 and the radiating element 31 is high, it is advantageous in that the space required for installing the antenna device 1 can be easily reduced.
 また、図示の場合、給電素子37が放射素子31に給電する部位である給電部36は、放射素子31の一方の端部34と他方の端部35との間の中央部33以外の部位(中央部33と端部34又は端部35との間の部位)に位置している。このように、給電部36を放射素子31の基本モードの共振周波数における最も低いインピーダンスになる部分(この場合、中央部33)以外の放射素子31の部位に位置させることによって、アンテナ装置1のマッチングを容易に取ることができる。給電部36は、放射素子31と給電素子37とが最近接する放射素子31の導体部分のうち給電点38に最も近い部分で定義される部位である。 Further, in the illustrated case, the power feeding part 36, which is a part where the power feeding element 37 feeds power to the radiating element 31, is a part other than the central part 33 between one end 34 and the other end 35 of the radiating element 31 ( It is located in the part between the center part 33 and the edge part 34 or the edge part 35). Thus, the matching of the antenna device 1 is achieved by positioning the feeding portion 36 at a portion of the radiating element 31 other than the portion (in this case, the central portion 33) having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element 31. Can be taken easily. The power feeding unit 36 is a part defined by a portion closest to the feeding point 38 among the conductor portions of the radiating element 31 where the radiating element 31 and the power feeding element 37 are closest to each other.
 放射素子31のインピーダンスは、ダイポールモードの場合、放射素子31の中央部33から端部34又は端部35の方に離れるにつれて高くなる。電磁界結合における高インピーダンスでの結合の場合、給電素子37と放射素子31間のインピーダンスが多少変化しても一定以上の高インピーダンスで結合していればインピーダンスマッチングに対する影響は小さい。よって、マッチングを容易に取るために、放射素子31の給電部36は、放射素子31の高インピーダンスの部分に位置することが好ましい。 In the dipole mode, the impedance of the radiating element 31 increases as the distance from the central portion 33 of the radiating element 31 increases toward the end portion 34 or the end portion 35. In the case of coupling with high impedance in electromagnetic coupling, even if the impedance between the feed element 37 and the radiating element 31 changes slightly, the effect on impedance matching is small if the coupling is performed with a high impedance above a certain level. Therefore, in order to make matching easy, it is preferable that the power feeding portion 36 of the radiating element 31 is located in a high impedance portion of the radiating element 31.
 ダイポールモードの場合、例えば、アンテナ装置1のインピーダンスマッチングを容易に取るために、給電部36は、放射素子31の基本モードの共振周波数における最も低いインピーダンスになる部分(この場合、中央部33)から放射素子31の全長の1/8以上(好ましくは、1/6以上、さらに好ましくは、1/4以上)の距離を離した部位に位置するとよい。図示の場合、放射素子31の全長は、L52に相当し、給電部36は、中央部33に対して端部34側に位置している。 In the case of the dipole mode, for example, in order to easily perform impedance matching of the antenna device 1, the power feeding unit 36 starts from a portion (in this case, the central portion 33) having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element 31. It is good to be located in the site | part which separated the distance of 1/8 or more (preferably 1/6 or more, more preferably 1/4 or more) of the full length of the radiation element 31. In the illustrated case, the entire length of the radiating element 31 corresponds to L52, and the power feeding portion 36 is located on the end 34 side with respect to the central portion 33.
 一方、ループモードの場合、例えば、アンテナ装置1のインピーダンスマッチングを容易に取るために、給電部36は、放射素子31の基本モードの共振周波数における最も低いインピーダンスになる部分から放射素子31のループの内周側の周長の1/16以下(好ましくは1/12,さらに好ましくは、1/8以下)の距離を離した範囲内の部位に位置するとよい。 On the other hand, in the case of the loop mode, for example, in order to easily perform impedance matching of the antenna device 1, the power feeding unit 36 starts the loop of the radiating element 31 from the portion having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element 31. It is good to be located in the site | part within the range which separated the distance of 1/16 or less (preferably 1/12, more preferably 1/8 or less) of the circumference of the inner circumference side.
 他方、端部35が給電点38のグランド基準に接続されるモノポールモードの場合、給電素子37が放射素子31に給電する部位である給電部36は、放射素子31の基本モードの共振周波数における最も低いインピーダンスになる部分(この場合、端部35)から端部34側に近い部位に位置させることによって、アンテナ装置1のインピーダンスマッチングを容易に取ることができる。特には中央部33より端部34側に位置させることが好ましい。なお、給電部36は、放射素子31と給電素子37とが最近接する放射素子31の導体部分のうち給電点38に最も近い部分で定義される部位である。 On the other hand, in the case of the monopole mode in which the end portion 35 is connected to the ground reference of the feeding point 38, the feeding portion 36, which is a portion where the feeding element 37 feeds the radiating element 31, at the resonance frequency of the fundamental mode of the radiating element 31. Impedance matching of the antenna device 1 can be easily achieved by positioning the antenna device 1 at a portion close to the end 34 side from the portion having the lowest impedance (in this case, the end 35). In particular, it is preferable to locate the end portion 34 side from the central portion 33. The power feeding unit 36 is a part defined by a portion closest to the feeding point 38 among the conductor portions of the radiating element 31 where the radiating element 31 and the power feeding element 37 are closest to each other.
 放射素子31のインピーダンスは、端部35が給電点38のグランド基準に接続されるモノポールモードの場合、放射素子31の端部35から端部34に近づくにつれて高くなる。電磁界結合における高インピーダンスでの結合の場合、給電素子37と放射素子31との間のインピーダンスが多少変化しても一定以上の高インピーダンスで結合していればインピーダンスマッチングに対する影響は小さい。よって、マッチングを容易に取るために、放射素子31の給電部36は、放射素子31の高インピーダンスの部分に位置させることが好ましい。 The impedance of the radiating element 31 increases in the monopole mode in which the end portion 35 is connected to the ground reference of the feeding point 38 as the end portion 35 of the radiating element 31 approaches the end portion 34. In the case of coupling with high impedance in electromagnetic coupling, even if the impedance between the feeding element 37 and the radiating element 31 changes slightly, the effect on impedance matching is small if coupling is performed with a high impedance above a certain level. Therefore, in order to make matching easy, it is preferable that the power feeding portion 36 of the radiating element 31 is positioned at a high impedance portion of the radiating element 31.
 端部35が給電点38のグランド基準に接続されるモノポールモードの場合、例えば、アンテナ装置1のインピーダンスマッチングを容易に取るために、給電部36は、放射素子31の基本モードの共振周波数における最も低いインピーダンスになる部分(この場合、端部35)から放射素子31の全長の1/4以上(好ましくは、1/3以上、より好ましくは、1/2以上)の距離を離した部位、さらに好ましくは中央部33よりも端部34側に位置するとよい。 In the case of the monopole mode in which the end portion 35 is connected to the ground reference of the feeding point 38, for example, in order to easily perform impedance matching of the antenna device 1, the feeding portion 36 is at the resonance frequency of the fundamental mode of the radiating element 31. A portion separated from the portion (in this case, the end portion 35) having the lowest impedance by a distance of 1/4 or more (preferably 1/3 or more, more preferably 1/2 or more) of the entire length of the radiating element 31; More preferably, it may be located closer to the end 34 than the center 33.
 また、放射素子31の基本モードの共振周波数における真空中の電波波長をλとする場合、給電部36とグランドプレーン70との最短距離D1は、0.0034λ以上0.21λ以下である。最短距離D1は、より好ましくは、0.0043λ以上0.199λ以下であり、更に好ましくは、0.0069λ以上0.164λ以下である。最短距離D1をこのような範囲に設定することによって、放射素子31とグランドプレーン70との距離を短くしたまま、すなわちアンテナ装置1を小型化しても放射素子31の動作利得を充分に確保できる。また、最短距離D1が(λ/4)未満であるため、アンテナ装置1は、円偏波を発生させるのではなく、直線偏波を発生させる。 In the case of the radio wave wavelength in vacuum at the resonant frequency of the fundamental mode of the radiation element 31 and the lambda 0, the shortest distance D1 between the feeding portion 36 and the ground plane 70 is a 0.0034Ramuda 0 or 0.21Ramuda 0 or less . The shortest distance D1 is more preferably 0.0043λ 0 or more and 0.199λ 0 or less, and still more preferably 0.0069λ 0 or more and 0.164λ 0 or less. By setting the shortest distance D1 in such a range, the operating gain of the radiating element 31 can be sufficiently secured even when the distance between the radiating element 31 and the ground plane 70 is kept short, that is, even when the antenna device 1 is downsized. Further, since it is less than the shortest distance D1 is (λ 0/4), the antenna device 1, instead of generating the circular polarization, generates a linearly polarized wave.
 なお、最短距離D1とは、給電部36と外縁部71との最近接部分を直線で結んだ距離に相当し、この場合の外縁部71は、給電部36に給電する給電素子37に接続された給電点38のグランド基準であるグランドプレーン70の外縁部である。また、放射素子31とグランドプレーン70は、同一平面上にあってもよいし、異なる平面上にあってもよい。また、放射素子31は、グランドプレーン70が配置された平面に対して、平行な平面に配置されてもよいし、任意の角度で交差する平面に配置されてもよい。 The shortest distance D1 corresponds to a distance obtained by connecting the closest portions of the power feeding unit 36 and the outer edge 71 with a straight line. In this case, the outer edge 71 is connected to a power feeding element 37 that feeds power to the power feeding unit 36. This is the outer edge portion of the ground plane 70 that is the ground reference of the feeding point 38. Further, the radiating element 31 and the ground plane 70 may be on the same plane or different planes. The radiating element 31 may be arranged in a plane parallel to the plane in which the ground plane 70 is arranged, or may be arranged in a plane that intersects at an arbitrary angle.
 図2は、最短距離D1と放射素子31の動作利得との関係を示したグラフである。縦軸の動作利得とは、アンテナの反射損失を考慮した放射効率であり、放射効率をη、反射係数をΓとしたときに、η×(1-|Γ|)で算出される数値である。 FIG. 2 is a graph showing the relationship between the shortest distance D1 and the operating gain of the radiating element 31. The operating gain on the vertical axis is the radiation efficiency considering the reflection loss of the antenna, and is a numerical value calculated by η × (1− | Γ | 2 ) where η is the radiation efficiency and Γ is the reflection coefficient. is there.
 図2を解析したときのシミュレーション条件では、図1のグランドプレーン70は、横の長さL64が140mm、縦の長さL67が40mmの、厚みが無い仮想導体とした。また、給電素子37のL53を10mmとし、放射素子31のL52を60mm、L54を0mmとした。また、放射素子31の一方の端部34が、Z軸方向から見たときに、給電素子37のL字の折れ曲がり部で重なるように、放射素子31は給電素子37に対してZ軸方向に離して配置した。また、放射素子31のX軸方向の導体部分が、Z軸方向から見たときに、給電素子37のX軸方向の導体部分と重なるように、放射素子31は給電素子37に対してZ軸方向に離して配置した。基板25は、横の長さL64が140mm、縦の長さL61が(70+D1)mm、厚さが0.8mm、比誘電率が3.4、tanδ=0.0015である基板とした。基板26は、横の長さL65が120mm、縦の長さL62が40mm、厚さが1.0mm、比誘電率が8.926、tanδ=0.00356である基板とした。L63が15mm、L66が10mm、L68が2mm、L69が35.95mmとした。 In the simulation conditions when FIG. 2 was analyzed, the ground plane 70 of FIG. 1 was a virtual conductor having a thickness of 140 mm in the horizontal length L64 and 40 mm in the vertical length L67 and having no thickness. Further, L53 of the feeding element 37 was 10 mm, L52 of the radiating element 31 was 60 mm, and L54 was 0 mm. Further, the radiating element 31 is positioned in the Z-axis direction with respect to the feeding element 37 so that one end 34 of the radiating element 31 overlaps with the L-shaped bent portion of the feeding element 37 when viewed from the Z-axis direction. Placed apart. In addition, the radiating element 31 is positioned with respect to the feeding element 37 so that the conductor part in the X-axis direction of the radiating element 31 overlaps the conductor part in the X-axis direction of the feeding element 37 when viewed from the Z-axis direction. Placed away in the direction. The substrate 25 was a substrate having a horizontal length L64 of 140 mm, a vertical length L61 of (70 + D1) mm, a thickness of 0.8 mm, a relative dielectric constant of 3.4, and tan δ = 0.015. The substrate 26 was a substrate having a horizontal length L65 of 120 mm, a vertical length L62 of 40 mm, a thickness of 1.0 mm, a relative dielectric constant of 8.926, and tan δ = 0.00356. L63 was 15 mm, L66 was 10 mm, L68 was 2 mm, and L69 was 35.95 mm.
 図2のデータは、給電素子37の位置及びX軸方向の長さL53を10mmに固定したまま、最短距離D1を変化させて、放射素子31の動作利得を計算した結果である。最短距離D1を変化させるとき、給電素子37のY軸方向の長さも、最短距離D1の変化量と同じだけ変化させている。図2の縦軸は、電波の周波数を1.3GHzに設定したときの放射素子31の動作利得である。図2の横軸の最短距離D1は、1波長で規格化した値(1波長当たりの距離に換算した値)である。 The data in FIG. 2 is a result of calculating the operating gain of the radiating element 31 while changing the shortest distance D1 while fixing the position of the feeding element 37 and the length L53 in the X-axis direction to 10 mm. When changing the shortest distance D1, the length of the feed element 37 in the Y-axis direction is also changed by the same amount as the change amount of the shortest distance D1. The vertical axis in FIG. 2 represents the operating gain of the radiating element 31 when the radio wave frequency is set to 1.3 GHz. The shortest distance D1 on the horizontal axis in FIG. 2 is a value normalized by one wavelength (a value converted to a distance per wavelength).
 図2に示されるように、給電部36が外縁部71からある程度離れるにつれて、放射素子31のマッチング状態が悪化するため、放射素子31の動作利得が低下していることがわかる。このように、最短距離D1は、0.0034λ以上0.21λ以下(より好ましくは、0.0043λ以上0.199λ以下であり、更に好ましくは、0.0069λ以上0.164λ以下)であると、放射素子31の動作利得を向上させる点で有利である。 As shown in FIG. 2, it can be seen that the operation gain of the radiating element 31 is reduced because the matching state of the radiating element 31 is deteriorated as the power feeding portion 36 is separated from the outer edge portion 71 to some extent. Thus, the shortest distance D1 is, 0.0034Ramuda 0 or 0.21Ramuda 0 or less (more preferably not 0.0043Ramuda 0 or 0.199Ramuda 0 or less, more preferably, 0.0069Ramuda 0 or 0.164Ramuda 0 The following is advantageous in that the operating gain of the radiating element 31 is improved.
 図3は、放射素子31の動作利得が0.65以上になるときの、放射素子31(導体)のシート抵抗Rと最短距離D1との関係を示す図である。放射素子31の動作利得とは、図2の場合と同様に、アンテナの反射損失を考慮した放射効率であり、放射効率をη、反射係数をΓとしたときに、η×(1-|Γ|)で算出される数値である。シート抵抗Rの単位は、Ω/□(Ohms per square)である。図3は、図2と同じシミュレーション条件下で計算されている。 FIG. 3 is a diagram illustrating a relationship between the sheet resistance RS of the radiating element 31 (conductor) and the shortest distance D1 when the operating gain of the radiating element 31 is 0.65 or more. Similarly to the case of FIG. 2, the operating gain of the radiating element 31 is the radiation efficiency considering the reflection loss of the antenna, and when the radiation efficiency is η and the reflection coefficient is Γ, η × (1− | Γ | 2 ) is a numerical value calculated. The unit of the sheet resistance RS is Ω / □ (Ohms per square). FIG. 3 is calculated under the same simulation conditions as FIG.
 図3によれば、シート抵抗Rと最短距離D1との関係について、最小二乗法により近似式を求めると、
 D1=0.0152×R 0.5229
という関係式が得られる。
According to FIG. 3, when an approximate expression is obtained by the least square method for the relationship between the sheet resistance RS and the shortest distance D1,
D1 = 0.0152 × R S 0.5229
Is obtained.
 したがって、最短距離D1が0.0152×R 0.5229以上を満たす値であれば、放射素子31の動作利得を向上させる点で有利である。すなわち、シート抵抗Rを低くすることにより最短距離D1を小さくでき、アンテナ装置を小型化できる。 Therefore, if the shortest distance D1 is a value satisfying 0.0152 × R S 0.5229 or more, it is advantageous in improving the operating gain of the radiating element 31. That is, by reducing the sheet resistance RS , the shortest distance D1 can be reduced, and the antenna device can be downsized.
 また、放射素子31の基本モードの共振周波数における真空中の電波波長をλとする場合、給電素子37と放射素子31との最短距離D2は、0.2×λ以下(より好ましくは、0.1×λ以下、更に好ましくは、0.05×λ以下)であると好適である。給電素子37と放射素子31をこのような最短距離D2だけ離して配置することによって、放射素子31の動作利得を向上させる点で有利である。 When the radio wave wavelength in vacuum at the resonance frequency of the fundamental mode of the radiating element 31 is λ 0 , the shortest distance D2 between the feeding element 37 and the radiating element 31 is 0.2 × λ 0 or less (more preferably, 0.1 × λ 0 or less, more preferably 0.05 × λ 0 or less). Disposing the feeding element 37 and the radiating element 31 by such a shortest distance D2 is advantageous in that the operating gain of the radiating element 31 is improved.
 なお、最短距離D2とは、給電部36と給電部36に給電する給電素子37との最近接部分を直線で結んだ距離に相当する。また、給電素子37と放射素子31は、両者が電磁界結合していれば、任意の方向から見たときに、交差しても交差しなくてもよいし、その交差角度も任意の角度でよい。また、放射素子31と給電素子37は、同一平面上にあってもよいし、異なる平面上にあってもよい。また、放射素子31は、給電素子37が配置された平面に対して、平行な平面に配置されてもよいし、任意の角度で交差する平面に配置されてもよい。 The shortest distance D2 corresponds to a distance obtained by connecting the power supply unit 36 and the closest part of the power supply element 37 that supplies power to the power supply unit 36 with a straight line. Further, as long as the feeding element 37 and the radiating element 31 are electromagnetically coupled to each other, the feeding element 37 and the radiating element 31 may or may not intersect when viewed from an arbitrary direction, and the intersection angle may be an arbitrary angle. Good. Further, the radiating element 31 and the feeding element 37 may be on the same plane or on different planes. The radiating element 31 may be arranged in a plane parallel to the plane in which the power feeding element 37 is arranged, or may be arranged in a plane that intersects at an arbitrary angle.
 また、給電素子37と放射素子31とが最短距離D2で並走する距離は、ダイポールモードの場合は、放射素子31の物理的な長さの3/8以下であることが好ましい。より好ましくは、1/4以下、更に好ましくは、1/8以下である。ループモードの場合は、放射素子31のループの内周側の周長の3/16以下であることが好ましい。より好ましくは、1/8以下、更に好ましくは、1/16以下である。モノポールモードの場合は、放射素子31の物理的な長さの3/4以下であることが好ましい。より好ましくは、1/2以下、更に好ましくは、1/4以下である。 In addition, the distance that the feeding element 37 and the radiating element 31 run in parallel at the shortest distance D2 is preferably 3/8 or less of the physical length of the radiating element 31 in the dipole mode. More preferably, it is 1/4 or less, and more preferably 1/8 or less. In the case of the loop mode, the length is preferably 3/16 or less of the inner circumferential length of the loop of the radiating element 31. More preferably, it is 1/8 or less, and more preferably 1/16 or less. In the case of the monopole mode, it is preferably 3/4 or less of the physical length of the radiating element 31. More preferably, it is 1/2 or less, and still more preferably 1/4 or less.
 最短距離D2となる位置は給電素子37と放射素子31との結合が強い部位であり、最短距離D2で並走する距離が長いと、放射素子31のインピーダンスが高い部分と低い部分の両方と強く結合することになるため、インピーダンスマッチングが取れない場合がある。よって、放射素子31のインピーダンスの変化が少ない部位のみと強く結合するために最短距離D2で並走する距離は短い方がインピーダンスマッチングの点で有利である。 The position where the shortest distance D2 is located is a portion where the coupling between the feeding element 37 and the radiating element 31 is strong, and if the parallel distance at the shortest distance D2 is long, the radiating element 31 has a strong and low impedance portion. Since they are coupled, impedance matching may not be achieved. Therefore, in order to strongly couple only with a portion where the impedance change of the radiating element 31 is small, it is advantageous in terms of impedance matching that the distance of parallel running at the shortest distance D2 is short.
 また、給電素子37の共振の基本モードを与える電気長をLe37、放射素子31の共振の基本モードを与える電気長をLe31、放射素子31の基本モードの共振周波数fにおける給電素子37または放射素子31上での波長をλとして、Le37が、(3/8)・λ以下であり、かつ、Le31が、放射素子31の共振の基本モードがダイポールモードである場合、(3/8)・λ以上(5/8)・λ以下であり、放射素子31の共振の基本モードがループモードである場合、(7/8)・λ以上(9/8)・λ以下であり、放射素子31の共振の基本モードがモノポールモードの場合、(1/8)・λ以上(3/8)・λ以下であることが好ましい。 Further, the electrical length giving the fundamental mode of resonance of the feeding element 37 is Le37, the electrical length giving the fundamental mode of resonance of the radiating element 31 is Le31, and the feeding element 37 or the radiating element at the resonance frequency f 1 of the fundamental mode of the radiating element 31 When the wavelength on 31 is λ, Le37 is (3/8) · λ or less, and Le31 is (3/8) · λ when the fundamental mode of resonance of the radiating element 31 is a dipole mode. When (5/8) · λ or less and the fundamental mode of resonance of the radiating element 31 is a loop mode, (7/8) · λ or more and (9/8) · λ or less, When the fundamental mode of resonance is the monopole mode, it is preferably (1/8) · λ or more and (3/8) · λ or less.
 また、外縁部71が放射素子31に沿うようにグランドプレーン70が形成されているので、給電素子37は、外縁部71との相互作用により、給電素子37とグランドプレーン70上に、共振電流(分布)を形成することができ、放射素子31と共鳴して電磁界結合する。そのため、給電素子37の電気長Le37の下限値は特になく、給電素子37が放射素子31と物理的に電磁界結合できる程度の長さであればよい。 In addition, since the ground plane 70 is formed so that the outer edge portion 71 is along the radiating element 31, the feeding element 37 has a resonance current (on the feeding element 37 and the ground plane 70 due to the interaction with the outer edge portion 71. Distribution) and resonate with the radiating element 31 to be electromagnetically coupled. For this reason, there is no particular lower limit value for the electrical length Le37 of the power feeding element 37, as long as the power feeding element 37 can be physically electromagnetically coupled to the radiating element 31.
 また、前記Le37は、給電素子37の形状に自由度を与えたい場合には、(1/8)・λ以上(3/8)・λ以下がより好ましく、(3/16)・λ以上(5/16)・λ以下が特に好ましい。Le37がこの範囲内であれば、給電素子37が放射素子31の設計周波数(共振周波数f)にて良好に共振するため、グランドプレーン70に依存せずに給電素子37と放射素子31とが共鳴して良好な電磁界結合が得られ好ましい。 The Le 37 is more preferably (1/8) · λ or more and (3/8) · λ or less, and (3/16) · λ or more (when it is desired to give the shape of the power feeding element 37 a degree of freedom. 5/16) · λ or less is particularly preferable. If Le 37 is within this range, the feeding element 37 resonates well at the design frequency (resonance frequency f 1 ) of the radiating element 31, so that the feeding element 37 and the radiating element 31 do not depend on the ground plane 70. It is preferable because good electromagnetic field coupling is obtained by resonance.
 また、アンテナ装置1を小型化するためには、給電素子37の前記Le37は、(1/4)・λ未満がより好ましく、(1/8)・λ以下が特に好ましい。 In order to reduce the size of the antenna device 1, the Le 37 of the feed element 37 is more preferably less than (1/4) · λ, and particularly preferably (1/8) · λ or less.
 なお、電磁界結合が実現しているとは整合が取れているということを意味している。また、この場合、給電素子37が放射素子31の共振周波数fに合わせて電気長を設計する必要がなく、給電素子37を放射導体として自由に設計することが可能になるため、アンテナ装置1の多周波化を容易に実現できる。 Note that the fact that electromagnetic field coupling is realized means that matching is achieved. Further, in this case, since it is not necessary for the feeding element 37 to design the electrical length in accordance with the resonance frequency f of the radiating element 31, it is possible to freely design the feeding element 37 as a radiating conductor. Multi-frequency can be easily realized.
 なお給電素子37の物理的な長さL37は、整合回路などを含んでいない場合、放射素子の基本モードの共振周波数における真空中の電波の波長をλとして、実装される環境による波長短縮効果の短縮率をkとしたとき、λg1=λ・kによって決定される。ここでkは、給電素子37の環境の実効比誘電率(εr1)および実効比透磁率(μr1)などの給電素子が設けられた誘電体基材等の媒質(環境)の比誘電率、比透磁率、および厚み、共振周波数などから算出される値である。すなわち、L37は、(3/8)・λg1以下である。なお、短縮率は上記の物性から算出してもよいし、実測により求めても良い。例えば、短縮率を測定したい環境に設置された対象となる素子の共振周波数を測定し、任意の周波数ごとの短縮率が既知である環境において同じ素子の共振周波数を測定し、これらの共振周波数の差から短縮率を算出してもよい。 The physical length L37 of the feeding element 37 is a wavelength shortening effect depending on the mounting environment, where λ 0 is the wavelength of the radio wave in the vacuum at the resonance frequency of the fundamental mode of the radiating element when a matching circuit or the like is not included. when the fractional shortening was k 1, it is determined by λ g1 = λ 0 · k 1 . Here, k 1 is a relative dielectric constant of a medium (environment) such as a dielectric substrate provided with a feeding element such as an effective relative dielectric constant (ε r1 ) and an effective relative permeability (μ r1 ) of the environment of the feeding element 37. It is a value calculated from the rate, relative permeability, thickness, resonance frequency, and the like. That is, L37 is (3/8) · λ g1 or less. The shortening rate may be calculated from the above physical properties or may be obtained by actual measurement. For example, the resonance frequency of the target element installed in the environment where the shortening rate is to be measured is measured, and the resonance frequency of the same element is measured in an environment where the shortening rate for each arbitrary frequency is known. The shortening rate may be calculated from the difference.
 給電素子37の物理的な長さL37は、Le37を与える物理的な長さであり、その他の要素を含まない理想的な場合、Le37と等しい。給電素子37が、整合回路などを含む場合、L37は、ゼロを超え、Le37以下が好ましい。L37はインダクタ等の整合回路を利用することにより短く(サイズを小さく)することが可能である。 The physical length L37 of the power feeding element 37 is a physical length that gives Le37, and is equal to Le37 in an ideal case that does not include other elements. When the power feeding element 37 includes a matching circuit or the like, L37 is preferably greater than zero and less than or equal to Le37. L37 can be shortened (size reduced) by using a matching circuit such as an inductor.
 また、前記Le31は、放射素子31の共振の基本モードがダイポールモード(放射素子31の両端が開放端であるような線状の導体)である場合、(3/8)・λ以上(5/8)・λ以下が好ましく、(7/16)・λ以上(9/16)・λ以下がより好ましく、(15/32)・λ以上(17/32)・λ以下が特に好ましい。また、高次モードを考慮すると、前記Le31は、(3/8)・λ・m以上(5/8)・λ・m以下が好ましく、(7/16)・λ・m以上(9/16)・λ・m以下がより好ましく、(15/32)・λ・m以上(17/32)・λ・m以下が特に好ましい。ただし、mは高次モードのモード数であり、自然数である。mは1~5の整数が好ましく、1~3の整数が特に好ましい。m=1の場合は基本モードである。Le31がこの範囲内であれば、放射素子31が充分に放射導体として機能し、アンテナ装置1の効率が良く好ましい。 In addition, when the fundamental mode of resonance of the radiating element 31 is a dipole mode (a linear conductor in which both ends of the radiating element 31 are open ends), the Le31 is (3/8) · λ or more (5 / 8) · λ or less is preferable, (7/16) · λ or more (9/16) · λ or less is more preferable, and (15/32) · λ or more (17/32) · λ or less is particularly preferable. In consideration of higher order modes, the Le31 is preferably (3/8) · λ · m or more and (5/8) · λ · m or less, and (7/16) · λ · m or more (9/16). ) · Λ · m or less, more preferably (15/32) · λ · m or more and (17/32) · λ · m or less. However, m is the number of modes in the higher order mode and is a natural number. m is preferably an integer of 1 to 5, particularly preferably an integer of 1 to 3. When m = 1, it is a basic mode. If Le31 is within this range, the radiating element 31 sufficiently functions as a radiating conductor, and the efficiency of the antenna device 1 is preferable.
 また同様に、放射素子31の共振の基本モードがループモード(放射素子31がループ状の導体)である場合、前記Le31は、(7/8)・λ以上(9/8)・λ以下が好ましく、(15/16)・λ以上(17/16)・λ以下がより好ましく、(31/32)・λ以上(33/32)・λ以下が特に好ましい。また、高次モードについては、前記Le31は、(7/8)・λ・m以上(9/8)・λ・m以下が好ましく、(15/16)・λ・m以上(17/16)・λ・m以下がより好ましく、(31/32)・λ・m以上(33/32)・λ・m以下が特に好ましい。Le31がこの範囲内であれば、放射素子31が充分に放射導体として機能し、アンテナ装置1の効率が良く好ましい。 Similarly, when the fundamental mode of resonance of the radiating element 31 is a loop mode (the radiating element 31 is a loop-shaped conductor), the Le31 is (7/8) · λ or more and (9/8) · λ or less. It is preferably (15/16) · λ or more and (17/16) · λ or less, more preferably (31/32) · λ or more and (33/32) · λ or less. For the higher order mode, the Le31 is preferably (7/8) · λ · m or more and (9/8) · λ · m or less, and (15/16) · λ · m or more (17/16). Λ · m or less is more preferable, and (31/32) · λ · m or more and (33/32) · λ · m or less is particularly preferable. If Le31 is within this range, the radiating element 31 sufficiently functions as a radiating conductor, and the efficiency of the antenna device 1 is preferable.
 また同様に、放射素子31の共振の基本モードがモノポールモード(放射素子31が、給電点38のグランド基準に接続され、開放端を有する)である場合、前記Le31は、(1/8)・λ以上(3/8)・λ以下が好ましく、(3/16)・λ以上(5/16)・λ以下がより好ましく、(7/32)・λ以上(9/32)・λ以下が特に好ましい。Le31がこの範囲内であれば、放射素子31が充分に放射導体として機能し、アンテナ装置1の効率が良く好ましい。 Similarly, when the fundamental mode of resonance of the radiating element 31 is a monopole mode (the radiating element 31 is connected to the ground reference of the feeding point 38 and has an open end), the Le31 is (1/8) Λ or more (3/8) · λ or less is preferred, (3/16) · λ or more (5/16) · λ or less is more preferred, (7/32) · λ or more (9/32) · λ or less Is particularly preferred. If Le31 is within this range, the radiating element 31 sufficiently functions as a radiating conductor, and the efficiency of the antenna device 1 is preferable.
 なお放射素子31の物理的な長さL31は、放射素子の基本モードの共振周波数における真空中の電波の波長をλとして、実装される環境による短縮効果の短縮率をkとしたとき、λg2=λ・kによって決定される。ここでkは、放射素子31の環境の実効比誘電率(εr2)および実効比透磁率(μr2)などの放射素子が設けられた誘電体基材等の媒質(環境)の比誘電率、比透磁率、および厚み、共振周波数などから算出される値である。すなわち、L31は、放射素子31の共振の基本モードがダイポールモードである場合、(1/2)・λg2であることが理想的である。放射素子31の長さL31は、好ましくは、(1/4)・λg2以上(5/8)・λg2以下であり、さらに好ましくは、(3/8)・λg2以上である。L31は、放射素子31の共振の基本モードがループモードである場合、(7/8)・λg2以上(9/8)・λg2以下である。L31は、放射素子31の共振の基本モードがモノポールモードである場合、(1/8)・λg2以上(3/8)・λg2以下である。 The physical length L31 of the radiating element 31 is set such that the wavelength of the radio wave in vacuum at the resonance frequency of the fundamental mode of the radiating element is λ 0 and the shortening rate of the shortening effect depending on the mounted environment is k 2 It is determined by λ g2 = λ 0 · k 2 . Here, k 2 is a relative dielectric constant of a medium (environment) such as a dielectric substrate provided with a radiating element such as an effective relative permittivity (ε r2 ) and an effective relative permeability (μ r2 ) of the environment of the radiating element 31. It is a value calculated from the rate, relative permeability, thickness, resonance frequency, and the like. That is, L31 is ideally (1/2) · λg2 when the fundamental mode of resonance of the radiating element 31 is a dipole mode. The length L31 of the radiating element 31 is preferably (1/4) · λ g2 or more and (5/8) · λ g2 or less, and more preferably (3/8) · λ g2 or more. L31 is (7/8) · λ g2 or more and (9/8) · λ g2 or less when the fundamental mode of resonance of the radiating element 31 is the loop mode. L31 is (1/8) · λ g2 or more and (3/8) · λ g2 or less when the fundamental mode of resonance of the radiating element 31 is the monopole mode.
 放射素子31の物理的な長さL31は、Le31を与える物理的な長さであり、その他の要素を含まない理想的な場合、Le31と等しい。L31は、インダクタ等の整合回路を利用することにより短くしたとしても、ゼロを超え、Le31以下が好ましく、Le31の0.4倍以上1倍以下が特に好ましい。放射素子31の長さL31をこのような長さに調整することによって、放射素子31の動作利得を向上させる点で有利である。 The physical length L31 of the radiating element 31 is a physical length that gives Le31, and is equal to Le31 in an ideal case that does not include other elements. Even if L31 is shortened by using a matching circuit such as an inductor, it exceeds zero, preferably Le31 or less, and particularly preferably 0.4 times or more and 1 time or less of Le31. Adjusting the length L31 of the radiating element 31 to such a length is advantageous in that the operating gain of the radiating element 31 is improved.
 また、図示のように給電素子37とグランドプレーン70の外縁部71との相互作用を利用できる場合において、給電素子37を放射導体として機能させてもよい。放射素子31は、給電素子37によって給電部36で非接触に電磁界結合で給電されることにより、例えば、λ/2ダイポールアンテナとして機能する放射導体である。一方、給電素子37は、放射素子31に対して給電可能な線状の給電導体であるが、給電点38で給電されることにより、モノポールアンテナ(例えば、λ/4モノポールアンテナ)として機能することも可能な放射導体である。放射素子31の共振周波数をf、給電素子37の共振周波数をfと設定し、給電素子37の長さを周波数fで共振するモノポールアンテナとして調整すれば、給電素子37の放射機能を利用することができ、アンテナ装置1の多周波化を容易に実現できる。 In addition, when the interaction between the power feeding element 37 and the outer edge portion 71 of the ground plane 70 can be used as illustrated, the power feeding element 37 may function as a radiation conductor. The radiating element 31 is a radiating conductor that functions as, for example, a λ / 2 dipole antenna by being fed by the feeding element 37 in a non-contact manner through electromagnetic coupling by the feeding portion 36. On the other hand, the feed element 37 is a linear feed conductor that can feed power to the radiating element 31, and functions as a monopole antenna (for example, a λ / 4 monopole antenna) by being fed at a feed point 38. It is a radiation conductor that can also be used. When the resonance frequency of the radiating element 31 is set to f 1 , the resonance frequency of the feeding element 37 is set to f 2, and the length of the feeding element 37 is adjusted as a monopole antenna that resonates at the frequency f 2 , the radiating function of the feeding element 37 is achieved. Therefore, it is possible to easily realize the multi-frequency of the antenna device 1.
 給電素子37の放射機能を利用したときの物理的な長さL37は、整合回路などを含んでいない場合、給電素子37の共振周波数fにおける真空中の電波の波長をλとして、実装される環境による短縮効果の短縮率をkとしたとき、λg3=λ・kによって決定される。ここでkは、給電素子37の環境の実効比誘電率(εr1)および実効比透磁率(μr1)などの給電素子37が設けられた誘電体基材等の媒質(環境)の比誘電率、比透磁率、および厚み、共振周波数などから算出される値である。すなわち、L37は、(1/8)・λg3以下(3/8)・λg3以下であり、好ましくは、(3/16)・λg3以上(5/16)・λg3以下である。 When the radiation function of the feed element 37 is used, the physical length L37 is mounted with the wavelength of the radio wave in vacuum at the resonance frequency f 2 of the feed element 37 being λ 1 when a matching circuit or the like is not included. Λ g3 = λ 1 · k 1 where k 1 is the shortening rate of the shortening effect due to the environment. Here, k 1 is a ratio of a medium (environment) such as a dielectric substrate provided with the power feeding element 37 such as an effective relative dielectric constant (ε r1 ) and an effective relative magnetic permeability (μ r1 ) of the environment of the power feeding element 37. It is a value calculated from dielectric constant, relative permeability, thickness, resonance frequency, and the like. That is, L37 is (1/8) · λ g3 or less (3/8) · λ g3 or less, preferably (3/16) · λ g3 or more (5/16) · λ g3 or less.
 なお、一つの給電素子37で複数の放射素子に給電してもよい。複数の放射素子を利用することにより、マルチバンド化、ワイドバンド化、指向性制御等の実施が容易となる。また、複数のアンテナ装置1が一つの無線装置に搭載されてもよい。 Note that a plurality of radiating elements may be fed by one feeding element 37. By using a plurality of radiating elements, implementation of multiband, wideband, directivity control, etc. becomes easy. A plurality of antenna devices 1 may be mounted on one wireless device.
 また、給電素子37と放射素子31とグランドプレーン70のうちの少なくとも二つは、互いに異なる高さに配置された部分を有する導体でもよいし、互いに同じ高さに配置された部分を有する導体でもよい。 Further, at least two of the feeding element 37, the radiating element 31, and the ground plane 70 may be conductors having portions arranged at different heights, or conductors having portions arranged at the same height. Good.
 給電素子37は、基板25の放射素子31に対向する側の表面に配置されている。しかしながら、給電素子37は、基板25の放射素子31に対向する側とは反対側の表面に配置されてもよいし、基板25の側面に配置されてもよいし、基板25の内部に配置されてもよいし、基板25以外の部材に配置されてもよい。 The feeding element 37 is disposed on the surface of the substrate 25 on the side facing the radiating element 31. However, the power feeding element 37 may be disposed on the surface of the substrate 25 opposite to the side facing the radiation element 31, may be disposed on the side surface of the substrate 25, or is disposed inside the substrate 25. Alternatively, it may be disposed on a member other than the substrate 25.
 グランドプレーン70は、基板25の放射素子31に対向する側とは反対側の表面に配置されている。しかしながら、グランドプレーン70は、基板25の放射素子31に対向する側の表面に配置されてもよいし、基板25の側面に配置されてもよいし、基板25の内部に配置されてもよいし、基板25以外の部材に配置されてもよい。 The ground plane 70 is disposed on the surface of the substrate 25 opposite to the side facing the radiating element 31. However, the ground plane 70 may be disposed on the surface of the substrate 25 on the side facing the radiating element 31, may be disposed on the side surface of the substrate 25, or may be disposed inside the substrate 25. Further, it may be disposed on a member other than the substrate 25.
 基板25は、給電素子37と、給電点38と、給電点38のグランド基準であるグランドプレーン70とを有している。また、基板25は、給電点38に接続されるストリップ導体27を備えた伝送線路を有している。ストリップ導体27は、例えば、グランドプレーン70との間に基板25を挟むように基板25の表面に形成された信号線である。 The substrate 25 includes a feeding element 37, a feeding point 38, and a ground plane 70 that is a ground reference of the feeding point 38. The substrate 25 has a transmission line including a strip conductor 27 connected to the feeding point 38. The strip conductor 27 is a signal line formed on the surface of the substrate 25 so that the substrate 25 is sandwiched between the strip conductor 27 and the ground plane 70, for example.
 放射素子31は、給電素子37から離れて配置され、例えば図示のように、基板25から距離L68離れて基板25に対向する基板26に設けられている。放射素子31は、基板26の給電素子37に対向する側の表面に配置されている。しかしながら、放射素子31は、基板26の給電素子37に対向する側とは反対側の表面に配置されてもよいし、基板26の側面に配置されてもよいし、基板26以外の部材に配置されてもよい。 The radiating element 31 is disposed away from the power feeding element 37 and is provided on the substrate 26 facing the substrate 25 at a distance L68 from the substrate 25 as shown in the figure, for example. The radiating element 31 is disposed on the surface of the substrate 26 on the side facing the power feeding element 37. However, the radiating element 31 may be disposed on the surface of the substrate 26 opposite to the side facing the power feeding element 37, may be disposed on the side surface of the substrate 26, or disposed on a member other than the substrate 26. May be.
 基板25又は基板26は、例えば、XY平面に平行に配置され、誘電体、磁性体、又は誘電体と磁性体との混合物を基材とする基板である。誘電体の具体例として、樹脂、ガラス、ガラスセラミックス、LTCC(Low Temperature Co-Fired Ceramics)、アルミナなどが挙げられる。誘電体と磁性体との混合物の具体例として、FeやNi、Coなどの遷移元素、SmやNdなどの希土類元素を含む金属あるいは酸化物のいずれかを有していればよく、例えば、六方晶系フェライト、スピネル系フェライト(Mn-Zn系フェライト、Ni-Zn系フェライトなど)、ガーネット系フェライト、パーマロイ、センダスト(登録商標)などが挙げられる。 The substrate 25 or the substrate 26 is, for example, a substrate that is arranged in parallel to the XY plane and uses a dielectric, a magnetic material, or a mixture of a dielectric and a magnetic material as a base material. Specific examples of the dielectric include resin, glass, glass ceramics, LTCC (Low Temperature Co-Fired Ceramics), and alumina. As a specific example of a mixture of a dielectric and a magnetic material, it is sufficient to have either a transition element such as Fe, Ni, or Co, or a metal or oxide containing a rare earth element such as Sm or Nd. Examples thereof include crystal ferrite, spinel ferrite (Mn—Zn ferrite, Ni—Zn ferrite, etc.), garnet ferrite, permalloy, and Sendust (registered trademark).
 アンテナ装置1がディスプレイを有する携帯無線装置に搭載される場合、基板26は、例えば、ディスプレイの画像表示面を全面的に覆うカバーガラスであってもよいし、基板25が固定される筐体(特には、底面、側面など)であってもよいし,携帯無線装置に構成される構成部品(特にはチップ部品や射出成形等により形成される部品,例えばMID(Molded Interconect Device),フレキシブル基板,バッテリーなど)であってもよい。カバーガラスは、透明又はディスプレイに表示される画像をユーザが視認可能な程度に半透明な誘電体基板であって、ディスプレイの上に積層配置された平板状の部材である。 When the antenna device 1 is mounted on a portable wireless device having a display, the substrate 26 may be, for example, a cover glass that covers the entire image display surface of the display, or a housing ( In particular, it may be a bottom surface, a side surface, etc., or a component (particularly a chip component or a component formed by injection molding, for example, a MID (Molded Interconnect Device), a flexible substrate, etc. Battery, etc.). The cover glass is a dielectric substrate that is transparent or translucent enough to allow a user to visually recognize an image displayed on the display, and is a flat plate-like member that is laminated on the display.
 放射素子31がカバーガラスの表面に設けられる場合、放射素子31は、銅や銀などの導体ペーストをカバーガラスの表面に塗って焼成して形成されるとよい。このときの導体ペーストとして、カバーガラスに利用される化学強化ガラスの強化が鈍らない程度の温度で焼成できる低温焼成可能な導体ペーストを利用するとよい。また、酸化による導体の劣化を防ぐために、メッキなどを施してもよい。また、カバーガラスには加飾印刷が施されていてもよく、加飾印刷された部分に導体が形成されていてもよい。また、配線などを隠す目的でカバーガラスの周縁に黒色隠蔽膜が形成されている場合、放射素子31が黒色隠蔽膜上に形成されてもよい。 When the radiating element 31 is provided on the surface of the cover glass, the radiating element 31 may be formed by applying a conductive paste such as copper or silver on the surface of the cover glass and baking it. As the conductor paste at this time, a conductor paste that can be fired at a low temperature that can be fired at a temperature at which the strengthening of the chemically strengthened glass used for the cover glass is not dulled may be used. Further, plating or the like may be applied to prevent deterioration of the conductor due to oxidation. Further, the cover glass may be subjected to decorative printing, and a conductor may be formed on the decorative printed portion. Further, when a black masking film is formed on the periphery of the cover glass for the purpose of concealing the wiring or the like, the radiating element 31 may be formed on the black masking film.
 以上、アンテナ装置及び無線装置を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。 Although the antenna device and the wireless device have been described above by way of the embodiment, the present invention is not limited to the above embodiment. Various modifications and improvements such as combinations and substitutions with some or all of the other embodiments are possible within the scope of the present invention.
 例えば、アンテナは、直線的に延びる線状の導体部分のみを含むものに限らず、曲がった導体部分を含むものでもよい。例えば、L字状の導体部分を含むものでもよいし、メアンダ形状の導体部分を含むものでもよいし、途中で分岐した導体部分を含むものでもよい。 For example, the antenna is not limited to a linear conductor portion that extends linearly, but may include a bent conductor portion. For example, an L-shaped conductor portion may be included, a meander-shaped conductor portion may be included, or a conductor portion branched in the middle may be included.
 また、給電素子に、スタブを設けてもよいし、整合回路を設けてもよい。これにより、給電素子が基板に占める面積を減らすことができる。 Moreover, a stub may be provided in the power feeding element, or a matching circuit may be provided. Thereby, the area which a feed element occupies for a board | substrate can be reduced.
 本国際出願は、2014年1月20日に出願した日本国特許出願第2014-008168号に基づく優先権を主張するものであり、日本国特許出願第2014-008168号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2014-008168 filed on January 20, 2014, and the entire contents of Japanese Patent Application No. 2014-008168 are incorporated herein by reference. Incorporated into.
1 アンテナ装置
25,26 基板
27 ストリップ導体
28 マイクロストリップライン
31 放射素子
33 中央部
34,35 端部
36 給電部
37 給電素子
38 給電点
70 グランドプレーン
71 外縁部
100 無線装置

 
DESCRIPTION OF SYMBOLS 1 Antenna apparatus 25,26 Board | substrate 27 Strip conductor 28 Microstrip line 31 Radiation element 33 Center part 34,35 End part 36 Feed part 37 Feed element 38 Feed point 70 Ground plane 71 Outer edge part 100 Radio apparatus

Claims (8)

  1.  給電点に接続された給電素子と、
     前記給電素子から離れて配置され、前記給電素子と電磁界結合することにより給電されて放射導体として機能する放射素子とを備え、
     前記放射素子は、前記給電素子から給電される給電部を有し、
     前記放射素子の基本モードの共振周波数における真空中の波長をλとする場合、
     前記給電部と前記給電点のグランド基準との最短距離は、0.0034λ以上0.21λ以下である、アンテナ装置。
    A feed element connected to the feed point;
    A radiating element that is arranged away from the feeding element and that is fed by electromagnetic coupling with the feeding element and functions as a radiation conductor;
    The radiating element has a power feeding part fed from the power feeding element,
    When the wavelength in vacuum at the resonance frequency of the fundamental mode of the radiating element is λ 0 ,
    The shortest distance between the ground reference of the feed point and the feed section is 0.0034Ramuda 0 or 0.21Ramuda 0 or less, the antenna device.
  2.  前記放射素子のシート抵抗をRとするとき、前記最短距離が、0.0152×R 0.5229以上である、請求項1に記載のアンテナ装置。 The antenna device according to claim 1, wherein when the sheet resistance of the radiating element is R S , the shortest distance is 0.0152 × R S 0.5229 or more.
  3.  前記給電素子の共振の基本モードを与える電気長をLe37、前記放射素子の共振の基本モードを与える電気長をLe31、前記放射素子の基本モードの共振周波数における前記給電素子または前記放射素子上での波長をλとして、Le37が、(3/8)・λ以下であり、かつ、Le31が、前記放射素子の共振の基本モードがダイポールモードである場合、(3/8)・λ以上(5/8)・λ以下であり、前記放射素子の共振の基本モードがループモードである場合、(7/8)・λ以上(9/8)・λ以下であり、前記放射素子の共振の基本モードがモノポールモードである場合、(1/8)・λ以上(3/8)・λ以下である、請求項1又は2に記載のアンテナ装置。 The electrical length giving the fundamental mode of resonance of the feeding element is Le37, the electrical length giving the fundamental mode of resonance of the radiating element is Le31, and the feeding element or the radiating element at the resonance frequency of the fundamental mode of the radiating element is When the wavelength is λ and Le37 is (3/8) · λ or less, and Le31 is the dipole mode of the fundamental mode of resonance of the radiating element, (3/8) · λ or more (5 / 8) When the fundamental mode of resonance of the radiating element is a loop mode, the fundamental mode of resonance of the radiating element is (7/8) · λ or more and (9/8) · λ or less. 3 is an antenna device according to claim 1, wherein in the monopole mode, the frequency is (1/8) · λ or more and (3/8) · λ or less.
  4.  前記放射素子の基本モードの共振周波数における真空中の波長をλとする場合、
     前記給電素子と前記放射素子との最短距離が、0.2×λ以下である、請求項1から3のいずれか一項に記載のアンテナ装置。
    When the wavelength in vacuum at the resonance frequency of the fundamental mode of the radiating element is λ 0 ,
    4. The antenna device according to claim 1, wherein a shortest distance between the feeding element and the radiating element is 0.2 × λ 0 or less. 5.
  5.  前記放射素子は、前記給電素子からの給電を受ける給電部を有し、
     前記給電部は、前記放射素子の基本モードの共振周波数における最も低いインピーダンスになる部分以外に位置する、請求項1から4のいずれか一項に記載のアンテナ装置。
    The radiating element has a power feeding unit that receives power from the power feeding element,
    5. The antenna device according to claim 1, wherein the power feeding unit is located at a portion other than a portion having the lowest impedance at a resonance frequency of a fundamental mode of the radiating element.
  6.  前記放射素子は、前記給電素子からの給電を受ける給電部を有し、
     前記給電部は、前記放射素子の基本モードの共振周波数における最も低いインピーダンスになる部分から、ダイポールモードの場合は、前記放射素子の全長の1/8以上の距離、モノポールモードの場合は、前記放射素子の全長の1/4以上の距離を離した部位に、ループモードの場合は、前記放射素子の基本モードの共振周波数における最も低いインピーダンスになる部分から前記放射素子のループの内周側の周長の1/16以下の距離を離した範囲内の部位に位置する、請求項1から5のいずれか一項に記載のアンテナ装置。
    The radiating element has a power feeding unit that receives power from the power feeding element,
    The feeding portion is a distance that is the lowest impedance at the resonance frequency of the fundamental mode of the radiating element, in the case of the dipole mode, a distance of 1/8 or more of the total length of the radiating element, in the case of the monopole mode, In the case of the loop mode at a site separated by a distance of ¼ or more of the entire length of the radiating element, in the inner peripheral side of the loop of the radiating element from the portion having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element. The antenna device according to any one of claims 1 to 5, wherein the antenna device is located at a site within a range separated by 1/16 or less of the circumference.
  7.  前記給電素子と前記放射素子とが最短距離で並走する距離は、ダイポールモードの場合は、前記放射素子の長さの3/8以下であり、ループモードの場合は、前記放射素子のループの内周側の周長の3/16以下であり、モノポールモードの場合は、前記放射素子の長さの3/4以下である、請求項1から6のいずれか一項に記載のアンテナ装置。 The distance that the feeding element and the radiating element run in parallel at the shortest distance is 3/8 or less of the length of the radiating element in the dipole mode, and the loop length of the radiating element in the loop mode. The antenna device according to any one of claims 1 to 6, wherein the antenna device has a circumference of 3/16 or less of the inner circumference, and is 3/4 or less of the length of the radiating element in the case of the monopole mode. .
  8.  請求項1から7のいずれか一項に記載のアンテナ装置を備える無線装置。

     
    A radio | wireless apparatus provided with the antenna apparatus as described in any one of Claim 1 to 7.

PCT/JP2015/050665 2014-01-20 2015-01-13 Antenna device and radio apparatus provided therewith WO2015108033A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015557831A JP6436100B2 (en) 2014-01-20 2015-01-13 ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
CN201580003237.8A CN105849974B (en) 2014-01-20 2015-01-13 Antenna assembly and the wireless device for having the antenna assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014008168 2014-01-20
JP2014-008168 2014-01-20

Publications (1)

Publication Number Publication Date
WO2015108033A1 true WO2015108033A1 (en) 2015-07-23

Family

ID=53542922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050665 WO2015108033A1 (en) 2014-01-20 2015-01-13 Antenna device and radio apparatus provided therewith

Country Status (4)

Country Link
JP (1) JP6436100B2 (en)
CN (1) CN105849974B (en)
TW (1) TW201533970A (en)
WO (1) WO2015108033A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038549A1 (en) * 2015-09-01 2017-03-09 旭硝子株式会社 Antenna structure and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283786A3 (en) * 2018-03-16 2024-02-28 Agc Inc. Antenna unit, window glass equipped with antenna unit, and matching body
JP6969531B2 (en) * 2018-10-10 2021-11-24 オムロン株式会社 Electronics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205028A (en) * 1998-01-13 1999-07-30 Mitsumi Electric Co Ltd Power feeding method for loop antenna
JP2001244715A (en) * 2000-02-28 2001-09-07 Sony Corp Antenna system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342856B1 (en) * 1998-01-13 2002-01-29 Mitsumi Electric Co., Ltd. Method of feeding flat antenna, and flat antenna
JP4189306B2 (en) * 2003-12-04 2008-12-03 株式会社ヨコオ Dielectric antenna and electric device having communication function using the same
JP5274801B2 (en) * 2007-08-30 2013-08-28 京セラ株式会社 Mobile device
JP5825069B2 (en) * 2011-11-21 2015-12-02 富士通株式会社 Antenna device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205028A (en) * 1998-01-13 1999-07-30 Mitsumi Electric Co Ltd Power feeding method for loop antenna
JP2001244715A (en) * 2000-02-28 2001-09-07 Sony Corp Antenna system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038549A1 (en) * 2015-09-01 2017-03-09 旭硝子株式会社 Antenna structure and electronic device

Also Published As

Publication number Publication date
JP6436100B2 (en) 2018-12-12
TW201533970A (en) 2015-09-01
CN105849974A (en) 2016-08-10
JPWO2015108033A1 (en) 2017-03-23
CN105849974B (en) 2019-03-01

Similar Documents

Publication Publication Date Title
JP6819753B2 (en) Antenna device and wireless device
KR101948466B1 (en) A wireless portable electronic device having a conductive body functioning as a radiator
US9905919B2 (en) Antenna, antenna device, and wireless device
JP5686221B2 (en) ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
TWI686009B (en) Multi-antenna and wireless device with it
US20160301127A1 (en) Mobile radio device
JP6468200B2 (en) Antenna directivity control system and radio apparatus including the same
KR20060042232A (en) Reverse f-shaped antenna
US10283869B2 (en) MIMO antenna and wireless device
JP6436100B2 (en) ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
WO2014203976A1 (en) Antenna and wireless device provided therewith
JP6233319B2 (en) Multiband antenna and radio apparatus
WO2014203967A1 (en) Antenna device and wireless device provided therewith
CN107658556B (en) Wireless communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737572

Country of ref document: EP

Kind code of ref document: A1