WO2015107638A1 - プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置 - Google Patents

プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置 Download PDF

Info

Publication number
WO2015107638A1
WO2015107638A1 PCT/JP2014/050601 JP2014050601W WO2015107638A1 WO 2015107638 A1 WO2015107638 A1 WO 2015107638A1 JP 2014050601 W JP2014050601 W JP 2014050601W WO 2015107638 A1 WO2015107638 A1 WO 2015107638A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
surface electrode
creeping discharge
gas flow
voltage
Prior art date
Application number
PCT/JP2014/050601
Other languages
English (en)
French (fr)
Inventor
一隆 富松
加藤 雅也
晴英 久保園
俊介 細川
小嶋 勝久
上田 泰稔
Original Assignee
三菱重工メカトロシステムズ株式会社
株式会社増田研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社, 株式会社増田研究所 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to JP2015557623A priority Critical patent/JP6165887B2/ja
Priority to PCT/JP2014/050601 priority patent/WO2015107638A1/ja
Publication of WO2015107638A1 publication Critical patent/WO2015107638A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2431Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/14Filtering means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers

Definitions

  • the present invention relates to a plasma generating device, a cleaning method of the plasma generating device, a particle charging device for charging particles contained in gas with ions, and a dust collecting device.
  • a deodorizing device or an air cleaning device using plasma decomposes odorous molecules, VOCs (volatile organic compounds) and the like to remove deodorizing and gaseous substances. Ozone and radicals are generated by the generation of plasma, and odor molecules, VOCs and the like come in contact with these and are decomposed.
  • the deodorizing device or the air purifying device is installed in, for example, a waste incineration site, a waste relay base, a human waste and sewage treatment facility, a septic tank, and various plants.
  • a creeping discharge method in which creeping discharge is generated on the surface of an insulator.
  • a creeping discharge is generated on the surface of the insulator by arranging the induction electrode and the discharge electrode with the insulator interposed therebetween and applying a high frequency voltage between the both electrodes.
  • dust collectors installed in power generation plants such as coal fired or heavy oil fired, flues such as incinerators, or devices downstream of devices that generate dust.
  • a filter is installed.
  • the bag filter uses a filter cloth to collect dust (particulate matter) contained in combustion exhaust gas and air.
  • a preliminary charging unit may be installed upstream of the gas flow with respect to the bag filter.
  • the pre-charging unit charges the dust in the gas with a positive or negative charge by corona discharge in a charging unit including a discharge electrode and a ground pole.
  • the charged dust is collected on the surface of the bag cloth of the subsequent stage, forming a charged dust layer. Since a charged dust layer is formed, fine particles invading the dust layer are attached to the coarse particles by electrostatic force. This reduces clogging of the bag filter and makes the dust layer porous. In addition, since coarse particles are easily sedimented at the time of backwashing, increase in pressure loss of the bag filter can be suppressed. Furthermore, since the fine particles adhere to the coarse particles by electrostatic force, the penetration of the fine particles in the bag filter is reduced, and the dust can be collected with high efficiency.
  • a creeping discharge type insulator and electrode are integrally formed by providing an induction electrode (internal electrode) inside a ceramic as an insulator and providing a discharge electrode (surface electrode) on the surface of the ceramic.
  • an induction electrode internal electrode
  • a discharge electrode surface electrode
  • the electrode size can not be increased. Therefore, in order to increase the size of the device, the number of electrodes has to be increased, resulting in a problem of increased cost.
  • the internal electrodes are formed on the ceramic and the ceramic is laminated, and the surface electrodes are further formed thereon, the structure becomes complicated and the cost increases.
  • Patent Document 1 discloses a technique for automatically cleaning the discharge portion with a cleaning solution to reduce the frequency of maintenance. However, since the surface remains wet only by cleaning and creeping discharge can not be performed, it was necessary to take measures such as applying a wind to dry.
  • the present invention has been made in view of such circumstances, and it is possible to reliably maintain the insulation state at the electrode to generate the discharge and to reduce the adhesion of the dust to the surface of the surface electrode. It is an object of the present invention to provide an apparatus, a cleaning method of a plasma generation apparatus, a particle charging apparatus and a dust collection apparatus.
  • a plasma generator of the present invention a cleaning method of a plasma generator, a particle charge device, and a dust collector adopt the following means. That is, the plasma generating apparatus according to the present invention is disposed orthogonal to the gas flow, and is provided in a cylindrical insulating portion having electrical insulation, and in close contact with the insulating portion inside the insulating portion. A voltage is applied between an internal electrode and a surface electrode closely attached without being integrated with the surface of the insulating portion and linearly or parallelly provided to the gas flow, the internal electrode and the surface electrode And a power supply unit for generating a creeping discharge on the boundary surface between the surface electrode and the insulating unit.
  • the internal electrode is provided in intimate contact with the insulating portion inside the insulating portion, and the surface electrode is provided in intimate contact with the surface of the insulating portion without being integrated. While being reliably insulated by the cylindrical insulating portion, creeping discharge can be stably generated on the boundary surface between the surface electrode and the insulating portion. Further, since the surface electrode is linearly or parallelly provided to the gas flow, the gas flow in the vicinity of the outer surface of the surface electrode and the insulating portion is rectified, and the surface electrode and the portion outside the insulating portion are also provided. Dust adhesion on the surface can be reduced.
  • the surface electrode is in close contact with the surface of the insulating portion without being integrated, the insulating portion at the time of temperature rise and creeping discharge, etc. is compared with the case where the surface electrode and the insulating portion are integrally formed.
  • the thermal expansion difference of the surface electrode can be alleviated.
  • the surface electrode may be spirally wound on the surface of the insulating portion.
  • the surface electrode is, for example, a coil spring, and a commercially available one can be used, and the surface electrode can be easily disposed in close contact with the insulating portion.
  • a heating power source unit for applying a voltage to both ends of the surface electrode, and a cleaning unit for supplying a liquid to the outer surface of the insulating unit and the surface electrode may be further included.
  • the liquid supplied from the cleaning unit can remove dust, reaction products, and the like attached to the outer surface of the insulating unit and the surface electrode.
  • the heating power supply unit when a voltage is applied to both ends of the surface electrode by the heating power supply unit, the temperature of the surface electrode is increased, the liquid remaining by cleaning the insulating portion and the surface electrode is evaporated, and the insulating portion and the surface electrode are dried.
  • the cleaning method of a plasma generating apparatus is the cleaning method of the plasma generating apparatus as described above, wherein the power supply unit applies a voltage between the internal electrode and the surface electrode to insulate the surface electrode and the insulation film. Generating a creeping discharge on the boundary surface with the part; and supplying the liquid to the outer surface of the insulating part and the surface electrode after stopping the generation of the creeping discharge; After the supply of the liquid is stopped, the heating power source applies a voltage to both ends of the surface electrode.
  • creeping discharge is stably generated at the boundary surface between the surface electrode and the insulating portion, and thereafter, dust or reaction attached to the outer surface of the insulating portion or the surface electrode by the liquid supplied from the cleaning portion Remove product etc. Further, after cleaning, the temperature of the surface electrode is raised by the heating power supply unit, the liquid remaining by the cleaning is evaporated, and the insulating portion and the surface electrode are dried.
  • the power supply unit applies a voltage, and the current value of the current flowing between the internal electrode and the surface electrode is measured;
  • the method may further include determining whether to continue applying the voltage based on the measured current value. As the current value, the peak value, the average value or the effective value, or a combination thereof is detected.
  • the current value of the current flowing between the internal electrode and the surface electrode is measured. Then, in accordance with the measured current value, it is determined whether or not the application of the voltage by the power supply unit is continued. For example, when the current value is within the predetermined range when the specified voltage is satisfied, it is determined that the cleaning and drying are properly performed, and when the current value is outside the predetermined range, the cleaning or Identify the lack of dryness.
  • a particle charging device comprises a creeping discharge electrode system which is disposed in two mutually opposing virtual planes parallel to a gas flow and which forms an alternating electric field between the two imaginary planes,
  • the electrode system is disposed orthogonal to the gas flow, and includes a tubular insulating portion having electrical insulation, an internal electrode provided in close contact with the insulating portion inside the insulating portion, and the insulating portion. It has a surface electrode closely attached without being integrated with the surface and linearly provided parallel or obliquely to the gas flow, and both the internal electrode and the surface electrode of the surface discharge electrode system are alternately changed.
  • the internal electrode is provided in intimate contact with the insulating portion inside the insulating portion, and the surface electrode is provided in intimate contact with the surface of the insulating portion without being integrated. While being reliably insulated by the cylindrical insulating portion, creeping discharge can be stably generated on the boundary surface between the surface electrode and the insulating portion. Further, since the surface electrode is provided linearly in parallel or obliquely to the gas flow, it is possible to rectify the gas flow in the vicinity of the creeping discharge electrode system and reduce dust adhesion on the surface of the creeping discharge electrode system. .
  • the gas flow is installed upstream of the creeping discharge electrode system in the imaginary plane, and the width in the direction orthogonal to the imaginary plane is substantially the same as the creeping discharge electrode system.
  • the method may further comprise a first rectifying member having a plane parallel to the gas flow.
  • the first rectifying member in the virtual plane parallel to the gas flow, is installed on the upstream side of the gas flow with respect to the creeping discharge electrode system, and the virtual member of the first rectifying member is The width in the direction orthogonal to the surface is substantially the same as that of the creeping discharge electrode system, and has a surface parallel to the gas flow.
  • the gas flow is rectified in the vicinity of the creeping discharge electrode system located downstream of the first rectifying member, and the flow velocity of the colliding gas flow can be reduced at an angle that promotes the wear of the surface electrode. It can reduce the wear of the electrode.
  • the gas flow is installed downstream of the creeping discharge electrode system in the imaginary plane, and the width in the direction orthogonal to the imaginary plane is substantially the same as the creeping discharge electrode system. You may further provide a 2nd rectification member.
  • the second rectifying member is disposed on the downstream side of the gas flow with respect to the creeping discharge electrode system in a virtual plane parallel to the gas flow, and the virtual current of the second rectifying member The width in the direction orthogonal to the surface is substantially the same as the creeping discharge electrode system.
  • the gas flow is rectified in the vicinity of the creeping discharge electrode system located upstream of the second rectifying member.
  • the first rectifying member and the second rectifying member have conductivity and be applied to the same voltage as the surface electrode.
  • the range in which the electric field is formed is the creeping discharge electrode
  • a more uniform electric field strength distribution is obtained in the space between the opposing rectifying members and the creeping discharge electrode system.
  • the range in which ions can be moved is expanded upstream and downstream of the surface discharge electrode system as compared with the case where the first rectifying member or the second rectifying member is not provided.
  • the second rectifying member even if the ions generated downstream from the creeping discharge electrode system flow due to the gas flow, the ions are directed toward the second rectifying member installed in the opposing virtual plane. Can be moved. Therefore, as compared with the case where the second rectifying member is not provided, the charging time can be extended, and the particles can be charged efficiently.
  • the surface electrode of one of the creeping discharge electrode systems may be formed only in a portion facing the other of the opposing creeping discharge electrode systems.
  • the creeping discharge electrode systems facing each other are installed, and an alternating electric field is formed between the facing creeping discharge electrode systems.
  • the surface electrode is formed only on the part of the one surface facing the other surface facing the other surface of the discharge electrode system, the discharge between the internal electrode and the surface electrode can be performed by the surface electrode of the one surface discharge.
  • the electric field is generated only at the portion facing the other surface of the opposing surface discharge electrode system among them and coincides with the formed alternating electric field. Therefore, since the discharge is not generated in the portion where the alternating electric field is not formed and only the necessary portion is discharged, power consumption can be reduced.
  • the dust collection apparatus which concerns on this invention is arrange
  • the present invention it is possible to reliably ensure the insulation state of the electrode, to generate the discharge, and to reduce the adhesion of dust to the surface of the surface electrode.
  • FIG. 12 is a cross-sectional view showing a boxer charger according to a third embodiment of the present invention, and is a cross-sectional view taken along line II-II of FIG. It is a graph which shows the relationship of the voltage applied to an internal electrode or a surface electrode, and time. It is a cross-sectional view which shows the boxer charger which concerns on 3rd Embodiment of this invention. It is a cross-sectional view which shows the boxer charger which concerns on 3rd Embodiment of this invention, and the shading between virtual surfaces represents current density distribution. It is a graph which shows the relationship of the voltage applied to an internal electrode or a surface electrode, and time.
  • the plasma generator 1 includes a main power supply unit 5, an insulator (insulation unit) 7, an internal electrode 8, a surface electrode 9 and the like.
  • the insulator 7, the internal electrode 8 and the surface electrode 9 constitute a creeping discharge electrode system.
  • the plasma generator 1 comprises one or more creeping discharge electrode systems.
  • the main power supply unit 5 is connected to the internal electrode 8 and the surface electrode 9 is grounded.
  • the main power supply unit 5 applies a high frequency high voltage to the internal electrode 8.
  • creeping discharge occurs on the boundary surface between the surface electrode 9 and the insulator 7.
  • ozone and radicals are generated by the generation of plasma, and odor molecules or VOCs contained in the gas stream come in contact with these and are decomposed.
  • the insulator 7 is made of, for example, a ceramic, is electrically insulating, and has a hollow cylindrical shape.
  • the insulator 7 is installed with the axial direction orthogonal to the gas flow.
  • the insulator 7 can suppress a manufacturing cost by using a commercially available ceramic tube.
  • the internal electrode 8 is disposed in parallel to the axis in close contact with the insulator 7.
  • the internal electrode 8 is a solid or hollow rod-like member made of metal, a metal fiber, an iron powder, or the like.
  • the surface electrode 9 is disposed on the surface of the insulator 7 without being constrained to the insulator 7 and in close contact with the insulator 7.
  • the surface electrode 9 is installed in the axial direction of one insulator 7.
  • the surface electrode 9 is formed linearly in parallel or obliquely to the gas flow.
  • the surface electrode 9 is formed in close contact with the surface of the insulator 7, for example, by winding a coil spring around the surface of the insulator 7 as shown in FIG. 2.
  • a commercially available coil spring can be used, and in that case, the manufacturing cost can be suppressed, and the upsizing of the plasma generator 1 is advantageous. Further, the coil spring can be easily disposed in close contact with the insulator 7.
  • the surface electrode 9 may be provided with conductive wires in a wave shape on the surface of the insulator 7 or, as shown in FIG. 4, may be provided with a plurality of ring members on the surface of the insulator 7. By electrically connecting each ring-shaped member, it is formed in close contact with the surface of the insulator 7.
  • the surface electrode 9 is formed in close contact with the surface of the plurality of insulators 7 by placing a conductive wire over the plurality of insulators 7. Further, as shown in FIGS. 6 and 7, for example, the surface electrode 9 is formed in close contact with the surface of the plurality of insulators 7 by placing a punching metal over the plurality of insulators 7. . When punching metal is applied, it is desirable that the through holes 9A formed in the metal plate be long in the gas flow direction. By these methods, the surface electrode 9 of each creeping discharge electrode system is disposed parallel to the gas flow across the plurality of insulators 7.
  • the surface electrode 9 is a material having high corrosion resistance. As a result, the number of times of replacement of the surface electrode 9 can be reduced without corrosion even in cleaning with a liquid such as water.
  • the surface electrode 9 is conductive and has an electrical resistivity to function as a heater (heating body). Thus, the surface electrode 9 is also used as a heater for drying the cleaning liquid, as described later.
  • the surface electrode 9 is made of titanium (electrical resistivity: 4.27 ⁇ 10 ⁇ 7 ⁇ m) or stainless steel (electrical resistivity: 7.2 ⁇ 10 -7 ⁇ m etc. is desirable.
  • the surface electrode 9 is a coil spring and is not restrained with respect to the insulator 7 as shown in FIG. 2, insulation during heating and surface discharge as compared with a conventional integral molded product of insulator and electrode The thermal expansion difference between the body 7 and the surface electrode 9 can be alleviated. Therefore, since the thermal expansion difference is relatively small, it is easier to increase the size of the plasma generation apparatus than conventional.
  • the surface electrode 9 As described above, by forming the surface electrode 9 on the surface of the insulator 7, the surface electrode 9 is linearly provided in parallel or obliquely to the gas flow. Thus, the surface electrode 9 can rectify the gas flow in the vicinity of the plasma generator 1 and reduce dust adhesion on the surface of the plasma generator 1.
  • the surface electrode 9 may be subjected to surface hardening treatment such as nitriding, or a conductive wear-resistant material may be applied to the surface. Thereby, the lifetime of surface electrode 9 etc. can be extended.
  • the internal electrode 8 is provided inside the insulator 7 in close contact with the insulating portion 7, and the surface electrode 9 is provided in close contact with the surface of the insulator 7.
  • the surface electrode 9 can generate creeping discharge on the boundary surface between the surface electrode 9 and the insulating portion 7 while being reliably insulated by the cylindrical insulator 7. Further, since the surface electrode 9 is linearly or parallelly provided to the gas flow, the gas flow in the vicinity of the plasma generating device 1 is rectified and dust adhesion on the surface of the plasma generating device 1 Can be reduced.
  • the plasma generator 2 includes the main power supply unit 5, the insulator (insulation unit) 7, the internal electrode 8, the surface electrode 9, and the like, and further includes the heating power supply unit 14. .
  • the main power supply unit 5, the internal electrode 8 and the surface electrode 9 constitute a discharge circuit, and the discharge circuit is provided with the switch SW1.
  • the heating power supply unit 14 and the surface electrode 9 constitute a heating circuit, and the heating circuit is provided with the switch SW2.
  • the insulator 7, the internal electrode 8 and the surface electrode 9 constitute a creeping discharge electrode system. In the example shown in FIG. 8 and FIG.
  • each creeping discharge electrode system is connected in series, in parallel, or in series-parallel with the main power supply unit 5 or the heating power supply unit 14.
  • a cleaning nozzle 13 is provided in the vicinity of the surface electrode 9, and a cleaning liquid is jetted from the cleaning nozzle 13 to the surface electrode 9. Thereby, dust attached to the surface electrode 9 and reaction products such as ammonium nitrate can be removed.
  • one cleaning nozzle 13 is provided for one creeping discharge electrode system, but a plurality of cleaning nozzles may be provided.
  • the surface electrode 9 is connected to the heating power supply unit 14 at both ends, that is, the upper end disposed on the upper portion of the insulator 7 and the lower end disposed on the lower portion of the insulator 7.
  • the heating power supply unit 14 applies an alternating voltage or a direct current voltage to the surface electrode 9.
  • a voltage is applied to the surface electrode 9
  • the temperature of the surface electrode 9 rises.
  • the cleaning liquid remaining after the cleaning of the insulator 7 and the surface electrode 9 can be evaporated to dry the insulator 7 and the surface electrode 9.
  • the surface electrode 9 is disposed on the surface of the insulator 7. Therefore, for example, when the cross section has a circular shape like a coil spring, the cleaning solution tends to remain particularly in the vicinity of the contact portion between the surface electrode 9 and the insulator 7. Therefore, since the surface electrode 9 itself becomes a heating body, it is easier to dry the remaining cleaning liquid as compared to the case of heating with a heater or the like from a position separated from the surface electrode 9.
  • the switch SW2 of the heating circuit is turned off, the switch SW1 of the discharging circuit is turned on, and the heating of the surface electrode 9 is stopped. Apply high frequency high voltage. Thereby, a creeping discharge is generated on the boundary surface between the surface electrode 9 and the insulator 7, and the odor molecules or the VOC contained in the gas flow can be decomposed. During this time, deodorization of the gas stream and removal of gaseous substances become possible.
  • the switch SW2 of the heating circuit is turned ON, the switch SW1 of the discharging circuit is turned OFF, a voltage is applied to the surface electrode 9, and the temperature of the surface electrode 9 is raised. Thereby, the cleaning liquid adhering to the surface electrode 9 and the insulator 7 can be dried by the cleaning processing.
  • the plasma generation device 9 is operated by sequentially repeating the deodorizing process, the removal process of the gaseous substance, the cleaning process and the drying process described above. These operations may be performed by sequence control.
  • the determination of whether or not cleaning and heating of the surface electrode 9 and the insulator 7 will be described.
  • the determination of availability is made by using a voltage / current measuring device installed in the main power supply unit 5. After a predetermined time has elapsed from the drying process, the switch SW1 of the discharge circuit is turned on to apply a high frequency high voltage to the internal electrode 8. Then, when the specified voltage is satisfied, it is determined whether the current value is within a predetermined range. When the current value (peak value, average value or effective value, or a combination thereof) is within a predetermined range, it is determined that cleaning and drying are properly performed, and application of high frequency high voltage is continued.
  • the current value peak value, average value or effective value, or a combination thereof
  • the main power supply unit 5 may be adjusted to flow low-current electricity between the internal electrode 8 and the surface electrode 9 to evaporate remaining moisture by dielectric heating. Then, after the drying is completed, the high frequency high voltage is applied.
  • the surface electrode 9 as a heating body, it is possible to dry the water such as the cleaning liquid remaining on the surface of the surface electrode 9 or the insulator 7. As a result, concentration of charge during creeping discharge can be prevented.
  • the cross section has a circular shape, as in the case of the coil spring, the cleaning solution tends to remain in the vicinity of the contact portion between the surface electrode 9 and the insulator 7, but the surface electrode 9 itself becomes a heating body Drying can be performed more reliably.
  • the cleaning and heating determination on the surface electrode 9 and the insulator 7 it is possible to ensure that the surface electrode 9 and the insulator 7 are appropriately cleaned and dried, and the automatic operation is continued for a long time. It is possible to In addition, it is also possible to quickly determine the time when maintenance is required, as compared to the case where the possibility determination is not performed.
  • the dust collector is installed in a power plant such as coal fired or heavy oil fired, a flue such as an incinerator, or the downstream of a device that generates dust.
  • a bag filter is installed in the dust collecting apparatus, and the bag filter uses a filter cloth to collect dust (particulate matter) contained in combustion exhaust gas and air.
  • the boxer charger generates an alternating electric field between the electrodes facing each other and generates a corona discharge in the vicinity of the electrodes.
  • the boxer charger has high charging ability because it can charge dust from both sides of the electric field, and the electric field periodically alternates, so even if dust adheres to the electrode, charge is accumulated in the dust layer. It is possible to prevent the occurrence of the reverse ionization phenomenon.
  • This embodiment is made in view of such a situation, and an object of the present invention is to provide a particle charging device and a dust collecting device capable of reliably maintaining an insulation state in an electrode and generating a discharge. I assume.
  • the dust collector is installed in a power plant such as coal fired or heavy oil fired, a flue such as an incinerator, or the downstream of a device that generates dust.
  • the dust collecting apparatus includes a bag filter for collecting dust (particulate matter) contained in combustion exhaust gas and air, a boxer charger as a precharging unit, and the like.
  • the boxer charger is installed upstream of the gas flow with respect to the bag filter.
  • the boxer charger 15 has a first arm 11A and a second arm 11B facing each other, a main power supply unit 5, and an excitation power supply unit 6.
  • the first arm 11A and the second arm 11B are also simply referred to as "arms 11".
  • Each arm 11 includes a plurality of creeping discharge electrode systems 16, an upstream rectifier (first rectifier) 3, a downstream rectifier (second rectifier) 4, and a frame member 10.
  • the first arm 11A and the second arm 11B are connected to the common main power supply unit 5, and are connected to different excitation power supply units 6, respectively.
  • the boxer charger 15 forms an alternating electric field between the creeping discharge electrode system 16 of the first arm 11A and the creeping discharge electrode system 16 of the second arm 11B facing each other, and the surface electrode 9 of the creeping discharge electrode system 16 A creeping discharge is generated on the boundary surface between the insulator 7 and the insulator 7.
  • virtual planes 21 and 22 passing through the center of the arm 11 are set.
  • the virtual planes 21 and 22 are parallel to the gas flow and are opposite to and parallel to each other.
  • the first arm 11 ⁇ / b> A is installed in the virtual plane 21, and the second arm 11 ⁇ / b> B is installed in the virtual plane 22.
  • the components of the arm 11 are installed in the virtual surfaces 21 and 22 in the order of the upstream rectifier 3, the plurality of creeping discharge electrode systems 16, and the downstream rectifier 4 from the upstream side of the gas flow.
  • the gas flow refers to a linear gas flow supplied to the inside of the boxer charger 15.
  • the creeping discharge electrode system 16 is, as shown in FIG. 12, formed of an insulator (insulation part) 7, an internal electrode 8, a surface electrode 9, and the like.
  • the insulator 7 is made of, for example, a ceramic, is electrically insulating, and has a hollow cylindrical shape.
  • the insulator 7 is installed orthogonal to the gas flow.
  • the internal electrode 8 is disposed in parallel to the axis in close contact with the insulator 7.
  • the internal electrode 8 is a solid or hollow rod-like member made of metal, a metal fiber, an iron powder, or the like.
  • a surface electrode 9 is disposed on the surface of the insulator 7 in close contact with the insulator 7.
  • the surface electrode 9 may be disposed in the axial direction of one insulator 7 or may be disposed parallel to the gas flow across the plurality of insulators 7. The installation method of the surface electrode 9 will be described later.
  • the surface electrode 9 is formed linearly in parallel or obliquely to the gas flow. Thereby, the surface electrode 9 can rectify gas flow in the vicinity of the creeping discharge electrode system 16 and reduce dust adhesion on the surface of the creeping discharge electrode system 16.
  • the plurality of creeping discharge electrode systems 16 in one arm 11 are disposed at an interval of d or less, where d is the outer diameter of the creeping discharge electrode system 16 including the surface electrodes 9. Since the creeping discharge electrode systems 16 are not separated too much, the plurality of creeping discharge electrode systems 16 act as one integrated electrode.
  • the upstream rectifying body 3 is a cylindrical member having an oval cross section, and is installed on the upstream side of the creeping discharge electrode system 16 in the virtual surfaces 21 and 22 described above.
  • the upstream rectifying body 3 is disposed parallel to the axial direction of the creeping discharge electrode system 16, and the upstream rectifying body 3 has a length such as to hide and prevent the creeping discharge electrode system 16 from the gas flow, as shown in FIG.
  • the oval shape of the cross section of the upstream side rectifying body 3 is such that the width in the direction orthogonal to the virtual surfaces 21 and 22 is substantially the same as the outer diameter d of the creeping discharge electrode system 16.
  • the length of the flat surface in the gas flow direction parallel to the gas flow is equal to or greater than the outer diameter d of the surface discharge electrode system 16.
  • the creeping discharge electrode system 16 adjacent to the upstream rectifying body 3 and the upstream rectifying body 3 is installed at an interval equal to or less than the outer diameter d of the creeping discharge electrode system 16.
  • the gas flow is rectified in the vicinity of the creeping discharge electrode system 16 located on the downstream side of the upstream rectifying body 3 as compared to the case where the upstream rectifying body 3 is not installed. (Note that the difference in flow is confirmed by simulation).
  • the upstream rectifying body 3 can be installed, the flow velocity of the colliding gas flow can be reduced at an angle that promotes the wear of the surface electrode 9, so that the wear of the surface electrode 9 can be reduced.
  • the upstream rectifying body 3 is a conductive member made of, for example, carbon steel or SUS, and the same voltage as the surface electrode 9 of the surface discharge electrode system 16 is applied thereto.
  • the downstream side rectifying body 4 is a hollow or solid cylindrical member having a circular cross section, and is installed on the downstream side of the creeping discharge electrode system 16 in the above-described imaginary plane.
  • the downstream side rectifier 4 is installed in parallel with the axial direction of the creeping discharge electrode system 16, and the length of the downstream side rectifier 4 is substantially the same as the upstream side rectifier 3.
  • the outer diameter of the downstream side rectifier 4 is substantially the same as the outer diameter d of the surface discharge electrode system 16.
  • the creeping discharge electrode system 16 adjacent to the downstream rectifying body 4 and the upstream rectifying body 4 is installed at an interval equal to or less than the outer diameter d of the creeping discharge electrode system 16.
  • the downstream side rectifying body 4 By installing the downstream side rectifying body 4, the gas flow is rectified in the vicinity of the creeping discharge electrode system 16 located upstream of the downstream side rectifying body 4 as compared with the case where the downstream side rectifying body 4 is not installed. (Note that the difference in flow is confirmed by simulation).
  • the downstream side rectifying body 4 is a conductive member made of, for example, carbon steel or SUS, and the same voltage as the surface electrode 9 of the surface discharge electrode system 16 is applied.
  • the gas in the vicinity of the creeping discharge electrode system 16 is arranged.
  • the flow is rectified, and in particular, it is possible to reduce the flow velocity of the gas flow incident on the surface electrode 9 at an angle of 45 ° with respect to the virtual surfaces 21 and 22 which is the most severe angle under wear conditions. As a result, the wear on the surface electrode 9 can be reduced, and the life can be extended.
  • the surface electrode 9, the upstream rectifying body 3 and the downstream rectifying body 4 may be subjected to surface hardening treatment such as nitriding, or a conductive wear resistant material may be applied to the surface. Thereby, the lifetime of surface electrode 9 etc. can be extended. Further, in the case of the upstream side straightening body 3, it is possible to easily extend the life by installing the plate-like member (sacrifice material) further on the upstream side.
  • the upstream rectifying body 3, the plurality of creeping discharge electrode systems 16 and the downstream rectifying body 4 are fixed by the frame members 10 at the upper and lower portions respectively, whereby the upstream rectifying body 3 and the plurality of creeping surfaces
  • the discharge electrode system 16 and the downstream side rectifier 4 are integrated.
  • the frame member 10 is a conductive member, and is electrically connected to the surface electrode 9 of the creeping discharge electrode system 16, the upstream rectifier 3 and the downstream rectifier 4. Therefore, when applying a voltage to the surface electrode 9 of the surface discharge electrode system 16, it becomes easy to apply the same voltage to the upstream rectifier 3 and the downstream rectifier 4. Further, since the integrated structure is provided, the manufacture of the boxer charger 15 is facilitated.
  • the main power supply unit 5 applies the same alternating voltage to the surface electrodes 9, the upstream rectifiers 3 and the downstream rectifiers 4 of the plurality of creeping discharge electrode systems 16 present on the same virtual surfaces 21 and 22. Further, the main power supply unit 5 applies the same alternating voltage also to the excitation power supply unit 6. As shown in FIG. 13, an alternating voltage (Vcharage in FIG. 13) is applied to the surface 16 of the first arm 11A and the surface discharge electrode 16 of the second arm 11B at a timing shifted by half a wavelength as shown in FIG. Then, an alternating electric field is formed between the two virtual surfaces 21 and 22.
  • the excitation power supply unit 6 further superimposes an alternating voltage (excitation voltage) of a higher frequency than the main power supply unit 5 intermittently (for example, every half cycle of the alternating voltage applied by the main power supply unit 5) to the internal electrode 8 intermittently (for example Vextation in FIG.
  • the internal electrode 8 is applied with a voltage superimposed by the main power supply unit 5 and the excitation power supply unit 6.
  • creeping discharge occurs on the boundary surface between the surface electrode 9 and the insulator 7.
  • the excitation voltage is increased, the strength of the creeping discharge is increased, and the effect of removing the dust adhering to the creeping discharge electrode system 16 is enhanced.
  • the plasma generated by the creeping discharge contains positive ions, and the positive ions are opposed to each other by the action of the electric field. It is pulled out in the direction of the electrode system 16. Then, the dust (particles) transported by the gas flow is charged by the extracted positive ions.
  • the excitation voltage is superimposed on the negative polarity of the main power supply voltage, negative ions are extracted, and dust (particles) is charged by the extracted negative ions. Either polarity of the positive electrode and the negative electrode may be selected.
  • the upstream side rectifier 3 and the downstream side rectifier 4 are also set to the same potential as the surface electrode 9 by the main power supply 5, uniform intensity distribution is also provided upstream and downstream of the creeping discharge electrode system 16 An alternating electric field is formed. Therefore, as compared with the case where the first rectifying member 3 and the second rectifying member 4 are not provided, the range in which the ions can be moved is expanded upstream and downstream of the surface discharge electrode system 16. Further, even when the ions generated downstream of the creeping discharge electrode system 16 flow due to the gas flow, as shown by arrow D in FIG.
  • the downstream side rectifier 4 installed in the opposing virtual surface The ions can be moved to the That is, since the downstream side rectifying body 4 serves as a receiver of ions, the charging time becomes longer compared to the case where the downstream side rectifying body 4 is not installed, particles can be efficiently charged, and the performance of the boxer charger 15 is improved. Improve.
  • the surface electrode 9 disposed on the surface of the insulator 7 will be described.
  • the surface electrode 9 is formed, for example, by winding a coil spring around the surface of the insulator 7 as shown in FIG. 2 or placing conductive wires in a wavelike manner on the surface of the insulator 7 as shown in FIG. , And in close contact with the surface of the insulator 7.
  • the surface electrode 9 has a plurality of ring-shaped members disposed on the surface of the insulator 7 and is in close contact with the surface of the insulator 7 by electrically connecting the ring-shaped members. It is formed.
  • the surface electrode 9 of each creeping discharge electrode system 16 is installed in the axial direction of one insulator 7.
  • the surface electrodes 9 formed on the insulators 7 are electrically connected to each other.
  • the surface electrode 9 is formed in close contact along the surface of the plurality of insulators 7 by placing a conductive wire over the plurality of insulators 7 as shown in FIG. 5, for example. Furthermore, as shown in FIGS. 6 and 7, the surface electrode 9 is formed in close contact with the surface of the plurality of insulators 7 by placing a punching metal over the plurality of insulators 7, for example. . When punching metal is applied, it is desirable that the through holes 9A formed in the metal plate be long in the gas flow direction. By these methods, the surface electrode 9 of each creeping discharge electrode system 16 is disposed parallel to the gas flow across the plurality of insulators 7.
  • the surface electrode 9 As described above, by forming the surface electrode 9 on the surface of the insulator 7, the surface electrode 9 is linearly provided in parallel or obliquely to the gas flow. Thereby, the surface electrode 9 can rectify gas flow in the vicinity of the creeping discharge electrode system 16 and reduce dust adhesion on the surface of the creeping discharge electrode system 16.
  • the front surface electrode 9 is formed only on the surface of each insulator 7 at a portion facing the other opposing surface discharge electrode system 16.
  • a surface electrode is provided on a 90 ° portion around the insulator 7 facing the other opposing creeping discharge electrode system 16 9 is formed.
  • creeping discharge electrode systems 16 located on the virtual surface 21 and the virtual surface 22 and facing each other are installed, and an alternating electric field is formed between the facing creeping discharge electrode systems 16.
  • the current density distribution formed in the alternating electric field is as shown in FIG. FIG. 15 shows a state in which the surface discharge electrode system 16 of the first arm 11A is discharging, and the darker part is the part where the current density is high. From this result, the portion of the surface discharge electrode system 16 of the first arm 11A facing the surface discharge electrode system 16 of the opposing second arm 11B has a high current density, and the surface discharge electrode system adjacent to each other in the first arm 11A It can be seen that the current density is low during 16 seconds.
  • the creeping discharge is generated at the boundary surface between the surface electrode 9 and the insulating portion 7.
  • the boundary between the surface electrode 9 and the insulating portion 7 The creeping discharge on the surface occurs only in the portion of one surface discharge discharge electrode system 16 facing the other surface discharge discharge electrode system 16 that is opposed. Therefore, the portion where ions are generated by the creeping discharge coincides with the portion where the current density of the alternating electric field is high. That is, since creeping discharge is not generated in a portion where the current density of the alternating electric field is low, and only necessary portions are creeped, power consumption can be reduced in the present embodiment.
  • the internal electrode 8 is provided inside the insulator 7 in close contact with the insulating portion 7, and the surface electrode 9 is provided in close contact with the surface of the insulator 7.
  • the surface electrode 9 can generate creeping discharge on the boundary surface between the surface electrode 9 and the insulating portion 7 while being reliably insulated by the cylindrical insulator 7.
  • the surface electrode 9 is provided linearly or parallel to the gas flow, the gas flow in the vicinity of the surface discharge electrode system 16 is rectified, and the surface of the surface discharge electrode system 16 is formed. Dust adhesion can be reduced.
  • the upstream side rectifier 3 and the downstream side rectifier 4 are respectively installed on the upstream side and the downstream side of the gas flow with respect to the surface discharge electrode system 16. Therefore, the gas flow is rectified in the vicinity of the creeping discharge electrode system 16, and the flow velocity of the colliding gas flow can be reduced at an angle that promotes the wear of the surface electrode 9, thereby reducing the wear of the surface electrode 9.
  • an alternating voltage is applied to the internal electrode 8 and the surface electrode 9 by the main power supply unit 5 and the excitation voltage is superimposed on the internal electrode 8 by the excitation power supply unit 6. It is not limited to the example.
  • the excitation voltage may be superimposed on the surface electrode 9 by the excitation power supply unit 6.
  • the excitation voltage is applied with the positive (+) polarity of the alternating voltage by the main power supply unit 5
  • the present invention is not limited to this example.
  • the excitation voltage is applied with either positive (+) or negative (-) polarity.
  • FIG. 16 shows the case where the alternating voltage by the main power supply unit 5 and the alternating voltage by the excitation power supply unit 6 are rectangular waves.
  • Plasma generator Upstream rectifier (first rectifier) 4 Downstream rectifier (second rectifier) 5 Main power supply unit (power supply unit) 6 Excitation power supply 7 Insulator (insulator) 8 internal electrode 9 surface electrode 13 cleaning nozzle 14 heating power source unit 15 boxer charger (particle charging device) 16 Creeping discharge system

Abstract

電極における絶縁状態を確実に確保して放電を発生させ、表面電極表面へのダストの付着を低減することが可能なプラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置を提供することを目的とする。プラズマ発生装置(1)は、ガス流れに対して直交して設置され、電気的絶縁性を有する筒状の絶縁体(7)と、絶縁体(7)内部に絶縁体(7)に密着して設けられた内部電極(8)と、絶縁体(7)の表面と一体化せずに密着し、ガス流れに対して平行又は斜めに線状に設けられた表面電極(9)と、内部電極(8)と表面電極(9)との間に電圧を印加して、表面電極(9)と絶縁体(7)との境界表面に沿面放電を発生させる主電源部(5)とを備える。

Description

プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置
 本発明は、プラズマ発生装置、プラズマ発生装置の洗浄方法、ガス中に含まれる粒子をイオンによって荷電する粒子荷電装置及び集塵装置に関するものである。
 プラズマを用いた脱臭装置又は空気清浄装置は、臭気分子やVOC(揮発性有機化合物)等を分解することにより、脱臭やガス状物質の除去をする。プラズマの発生によってオゾンやラジカルが生成され、臭気分子又はVOC等はこれらと接触し分解される。脱臭装置又は空気清浄装置は、例えば、ごみ焼却場、ごみ中継基地、し尿・汚水処理設備や浄化槽、各種プラントに設置される。
 プラズマ発生方法としては、絶縁体表面に沿面放電を発生させる沿面放電方式が知られている。絶縁体を挟んで誘導電極と放電電極を配置し、両電極間に高周波電圧を印加することで、沿面放電が絶縁体表面に発生する。
 また、石炭焚き若しくは重油焚き等の発電プラント、又は焼却炉などの煙道や、粉塵を発生させる装置の後流に設置される集塵装置が知られており、集塵装置には、例えばバグフィルタが設置される。バグフィルタは、濾布を用いて燃焼排ガスや空気中に含まれるダスト(粒子状物質)を集塵する。集塵装置において、バグフィルタに対してガス流れの上流側に、予備荷電部が設置されることがある。
 予備荷電部は、放電極とアース極を備える帯電部において、コロナ放電によってガス中のダストに正又は負の電荷を与えて、ダストを帯電させる。帯電したダストは、後段のバグフィルタの濾布表面に捕集され、帯電したダスト層を形成する。帯電したダスト層が形成されることから、ダスト層内に侵入する微細粒子が静電気力によって粗大粒子に付着される。これにより、バグフィルタの目詰まりが低減するとともに、ダスト層がポーラスとなる。また、逆洗時に粗大粒子が沈降しやすくなるため、バグフィルタの圧損上昇を抑制することができる。さらに、微細粒子が静電気力によって粗大粒子に付着するため、バグフィルタでの微細粒子の通り抜けが低減し、ダストを高効率に捕集することが可能になる。
 しかしながら、予備荷電部のアース極表面には、通常の電気集塵装置と同様にダストが捕集され、電極表面が汚れる。その対策としては、槌打装置などの適用が考えられる。しかし、特に、石炭焚きボイラの後流側に集塵装置を設置した場合、石炭の燃焼によって発生するダストの電気抵抗率が高いため、電気的付着力が大きく、完全な除去は困難である。ダストが堆積したアース極では、逆電離現象が発生しやすい。逆電離現象が発生すると、逆極性のイオンが予備荷電部内に放出されるため、ダスト帯電能力が大幅に低下するという問題があった。
 そこで、予備荷電部として、例えば特許文献2に示すようなボクサーチャージャと呼ばれる粒子荷電装置が用いられる場合がある。
日本国特開平9-154931号公報 日本国特公昭58-902号公報
 従来、沿面放電方式の絶縁体と電極は、絶縁体としてのセラミックの内部に誘導電極(内部電極)を設け、セラミックの表面に放電電極(表面電極)を設けて一体成形されている。しかし、セラミックは、還元雰囲気で焼成する必要があるため、電極サイズを大きくできない。そのため、装置の大型化のためには電極の数を増やさなければならず、コストが高くなるという問題があった。また、セラミック上に内部電極を形成した上にセラミックを積層し、さらにその上に表面電極を形成する構造としているため、構造が複雑になり、さらにコストが高くなるという問題があった。
 また、セラミック表面の放電電極は、臭気ガスやガス状物質を含むガス流れ上に設置されるため、ダストの付着のおそれがある。さらに、アンモニアが存在する環境下では、プラズマによって硝酸アンモニウム等の反応生成物が生成され、電極表面を覆ってしまう。電極表面がダストや反応生成物で覆われた場合、沿面放電が妨げられる。上記特許文献1では、放電部を洗浄液で自動的に洗浄し、メンテナンスの頻度を低減する技術が開示されている。ただし、洗浄しただけでは表面が濡れたままとなり、沿面放電ができないため、風を当てて乾かす等の対策が必要であった。
 本発明は、このような事情に鑑みてなされたものであって、電極における絶縁状態を確実に確保して放電を発生させ、表面電極表面へのダストの付着を低減することが可能なプラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置を提供することを目的とする。
 上記課題を解決するために、本発明のプラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置は以下の手段を採用する。
 すなわち、本発明に係るプラズマ発生装置は、ガス流れに対して直交して設置され、電気的絶縁性を有する筒状の絶縁部と、前記絶縁部内部に前記絶縁部に密着して設けられた内部電極と、前記絶縁部の表面と一体化せずに密着し、前記ガス流れに対して平行又は斜めに線状に設けられた表面電極と、前記内部電極と前記表面電極との間に電圧を印加して、前記表面電極と前記絶縁部との境界表面に沿面放電を発生させる電源部とを備える。
 この構成によれば、内部電極は絶縁部内部に絶縁部に密着して設けられ、表面電極は絶縁部の表面に一体化せずに密着して設けられることから、内部電極と表面電極は、筒状の絶縁部によって確実に絶縁されながら、表面電極と絶縁部との境界表面で安定的に沿面放電を発生させることができる。また、表面電極は、ガス流れに対して平行又は斜めに線状に設けられていることから、表面電極と絶縁部の外表面近傍におけるガス流れを整流化すると共に、表面電極や絶縁部の外表面のダスト付着を低減できる。さらに、表面電極は、絶縁部の表面と一体化せずに密着していることから、表面電極と絶縁部が一体成形された場合に比べて、温度上昇時や沿面放電時等における絶縁部と表面電極の熱伸び差を緩和できる。
 上記発明において、前記表面電極は、前記絶縁部の表面に螺旋状に巻回されてもよい。
 この構成によれば、表面電極は、例えばコイルスプリングであって、市販されているものを利用でき、絶縁部に対して密着するように配置しやすい。
 上記発明において、前記表面電極の両端に電圧を印加する加熱用電源部と、前記絶縁部及び前記表面電極の外表面に対して液体を供給する洗浄部とを更に備えてもよい。
 この構成によれば、洗浄部から供給される液体によって、絶縁部や表面電極の外表面に付着したダストや反応生成物等を除去できる。また、加熱用電源部によって表面電極の両端に電圧がされると、表面電極の温度が上昇し、絶縁部や表面電極の洗浄により残存した液体を蒸発させ、絶縁部や表面電極を乾燥させることができる。
 本発明に係るプラズマ発生装置の洗浄方法は、上記のプラズマ発生装置の洗浄方法であって、前記電源部が前記内部電極と前記表面電極との間に電圧を印加して、前記表面電極と絶縁部との境界表面に沿面放電を発生させるステップと、前記沿面放電の発生を停止させた後、前記洗浄部が前記絶縁部及び前記表面電極の外表面に対して液体を供給するステップと、前記液体の供給を停止させた後、前記加熱用電源部が前記表面電極の両端に電圧を印加するステップとを含む。
 この構成によれば、表面電極と絶縁部との境界表面で安定的に沿面放電を発生させ、その後、洗浄部から供給される液体によって、絶縁部や表面電極の外表面に付着したダストや反応生成物等を除去する。また、洗浄後は、加熱用電源部によって、表面電極の温度を上昇させ、洗浄により残存した液体を蒸発させ、絶縁部や表面電極を乾燥させる。
 上記発明において、前記加熱用電源部による電圧印加を停止させた後、前記電源部が電圧を印加し、前記内部電極と前記表面電極との間を流れる電流の電流値を測定するステップと、前記測定された電流値に基づいて、前記電圧の印加を継続するか否かを判断するステップとを更に含んでもよい。電流値としては、そのピーク値、平均値若しくは実効値、又はこれらの組み合わせを検出するものとする。
 この構成によれば、洗浄処理及び乾燥処理が終了した後、電源部によって電圧が印加されるとき、内部電極と前記表面電極との間を流れる電流の電流値が測定される。そして、測定された電流値に応じて、電源部による電圧の印加を継続するか否かが判断される。例えば、規定の電圧を満たしている場合において、電流値が所定の範囲内にあるとき、洗浄及び乾燥が適正に実施されたと認定し、電流値が所定の範囲を逸脱しているとき、洗浄又は乾燥が不足していると認定する。
 本発明に係る粒子荷電装置は、ガス流れに対して平行な互いに対向する二つの仮想面内にそれぞれ設置され前記二つの仮想面間に交番電界を形成する沿面放電電極系を備え、前記沿面放電電極系は、前記ガス流れに対して直交して設置され、電気的絶縁性を有する筒状の絶縁部と、前記絶縁部内部に絶縁部に密着して設けられる内部電極と、前記絶縁部の表面と一体化せずに密着し、前記ガス流れに対して平行又は斜めに線状に設けられた表面電極とを有し、前記沿面放電電極系の前記内部電極と前記表面電極の両方に交番電圧を印加する主電源部と、前記内部電極と前記表面電極との間に励起電圧を更に印加して、前記表面電極と前記絶縁部との境界表面に沿面放電を発生させる励起電源部とを更に備える。
 この構成によれば、内部電極は絶縁部内部に絶縁部に密着して設けられ、表面電極は絶縁部の表面に一体化せずに密着して設けられることから、内部電極と表面電極は、筒状の絶縁部によって確実に絶縁されながら、表面電極と絶縁部との境界表面で安定的に沿面放電を発生させることができる。また、表面電極は、ガス流れに対して平行又は斜めに線状に設けられていることから、沿面放電電極系近傍におけるガス流れを整流化すると共に、沿面放電電極系表面のダスト付着を低減できる。
 上記発明において、前記仮想面内にて前記沿面放電電極系に対して前記ガス流れの上流側に設置され、前記仮想面に対して直交する方向の幅は前記沿面放電電極系と略同一であり、前記ガス流れに対して平行な面を有する第1整流化部材を更に備えてもよい。
 この構成によれば、ガス流れに対して平行な仮想面内において、第1整流化部材が沿面放電電極系に対してガス流れの上流側に設置されており、第1整流化部材の前記仮想面に対して直交する方向の幅は沿面放電電極系と略同一であって、ガス流れに対して平行な面を有する。その結果、第1整流化部材の下流側に位置する沿面放電電極系の近傍で、ガス流れが整流化され、表面電極の磨耗を促進する角度で衝突するガス流れの流速を低減できることから、表面電極の摩耗を減らせる。
 上記発明において、前記仮想面内にて前記沿面放電電極系に対して前記ガス流れの下流側に設置され、前記仮想面に対して直交する方向の幅は前記沿面放電電極系と略同一である第2整流化部材を更に備えてもよい。
 この構成によれば、ガス流れに対して平行な仮想面内において、第2整流化部材が沿面放電電極系に対してガス流れの下流側に設置されており、第2整流化部材の前記仮想面に対して直交する方向の幅は沿面放電電極系と略同一である。その結果、第2整流化部材の上流側に位置する沿面放電電極系の近傍で、ガス流れが整流化される。
 上記発明において、前記第1整流化部材及び第2整流化部材は、導電性を有し、表面電極と同一の電圧に印加されることが望ましい。
 この構成によれば、第1整流化部材及び第2整流化部材は、沿面放電電極系とともに互いに対向する二つの仮想面間に交番電界を形成することから、電界を形成する範囲が沿面放電電極系のみならず、第1整流化部材及び第2整流化部材の範囲まで広がるため、対向する整流化部材・沿面放電電極系どうしの間の空間で、より均一化された電界強度分布を得ることができる。したがって、第1整流化部材又は第2整流化部材が設置されない場合に比べて、沿面放電電極系の上流及び下流において、イオンを移動させられる範囲が広がることになる。更に、第2整流化部材に関しては、ガス流れによって、沿面放電電極系よりも下流に生成されたイオンが流れた場合でも、対向する仮想面内に設置された第2整流化部材のほうにイオンを移動させることができる。したがって、第2整流化部材が設置されない場合に比べて、帯電時間を長くすることができるため、粒子を効率良く荷電させることができる。
 上記発明において、一方の前記沿面放電電極系の前記表面電極は、対向する他方の前記沿面放電電極系に面する部分にのみ形成されてもよい。
 この構成によれば、互いに対向する沿面放電電極系が設置され、対向する沿面放電電極系間に交番電界が形成される。一方の沿面放電電極系のうち対向する他方の沿面放電電極系に面する部分にのみ表面電極が形成されているとき、内部電極と表面電極との間の放電は、一方の沿面放電電極系のうち対向する他方の沿面放電電極系に面する部分にのみ生じ、形成される交番電界と一致する。したがって、交番電界が形成されない部分では放電を発生させず、必要な部分のみ放電させていることから、消費電力を低減できる。
 また、本発明に係る集塵装置は、バグフィルタと、前記バグフィルタに対して前記ガス流れの上流側に配置される。
 本発明によれば、電極における絶縁状態を確実に確保して放電を発生させ、表面電極の表面へのダストの付着を低減することができる。
本発明の第1実施形態に係るプラズマ発生装置を示す構成図である。 沿面放電電極系を示す斜視図である。 沿面放電電極系を示す斜視図である。 沿面放電電極系を示す斜視図である。 沿面放電電極系を示す斜視図である。 沿面放電電極系を示す横断面図である。 沿面放電電極系を示す側面図である。 本発明の第2実施形態に係るプラズマ発生装置を示す構成図である。 本発明の第2実施形態に係るプラズマ発生装置を示す構成図である。 本実施形態に係るプラズマ発生装置2の運転方法及び洗浄・乾燥方法を示すタイムチャートである。 本発明の第3実施形態に係るボクサーチャージャを示す側面図である。 本発明の第3実施形態に係るボクサーチャージャを示す横断面図であり、図11のII-II線で切断した断面図である。 内部電極又は表面電極に印加される電圧と時間の関係を示すグラフである。 本発明の第3実施形態に係るボクサーチャージャを示す横断面図である。 本発明の第3実施形態に係るボクサーチャージャを示す横断面図であり、仮想面間の濃淡は電流密度分布を表している。 内部電極又は表面電極に印加される電圧と時間の関係を示すグラフである。
 以下に、本発明に係る実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態に係るプラズマ発生装置1について、図1~図7を用いて説明する。
 プラズマ発生装置1は、図1に示すように、主電源部5と、絶縁体(絶縁部)7と、内部電極8と、表面電極9などを備える。絶縁体7、内部電極8及び表面電極9は、沿面放電電極系を構成する。プラズマ発生装置1は、1つ又は複数の沿面放電電極系を備える。
 主電源部5は内部電極8と接続され、表面電極9は接地されている。主電源部5は、高周波高電圧を内部電極8に印加する。内部電極8に電圧が印加されると、表面電極9と絶縁体7との境界表面に沿面放電が発生する。これにより、プラズマの発生によってオゾンやラジカルが生成され、ガス流れに含まれる臭気分子又はVOC等がこれらと接触し分解される。
 絶縁体7は、例えばセラミックス製であって電気的絶縁性を有し、中空の円筒形状である。絶縁体7は、軸線方向がガス流れに対して直交して設置される。絶縁体7は、市販のセラミックスチューブを用いることによって、製造コストを抑制できる。
 絶縁体7の軸線を通過する中空部分には、絶縁体7に密着して内部電極8が軸線に対して平行に設置される。内部電極8は、金属製の中実若しくは中空の棒状部材、金属繊維又は鉄粉などである。
 絶縁体7の表面には、絶縁体7に対して拘束させずに、かつ、絶縁体7に密着して表面電極9が設置される。表面電極9は、1本の絶縁体7の軸線方向に設置される。
 表面電極9は、ガス流れに対して平行又は斜めに線状に形成される。表面電極9は、例えば、図2に示すように、コイルスプリングを絶縁体7の表面に巻きつけることによって、絶縁体7の表面に密着して形成される。コイルスプリングは、市販されているものを利用でき、その場合、製造コストを抑制でき、プラズマ発生装置1の大型化に利点がある。また、コイルスプリングは絶縁体7に対して密着するように配置しやすい。
 また、表面電極9は、図3に示すように、絶縁体7の表面に波状に導電線を設置したり、図4に示すように、絶縁体7の表面に複数のリング状部材を設置し、各リング状部材を電気的に接続することによって、絶縁体7の表面に密着して形成される。
 さらに、表面電極9は、例えば図5に示すように、導電線を複数本の絶縁体7にわたって設置することによって、複数本の絶縁体7の表面に沿って密着して形成される。また、表面電極9は、例えば図6及び図7に示すように、パンチングメタルを複数本の絶縁体7にわたって設置することによって、複数本の絶縁体7の表面に沿って密着して形成される。パンチングメタルを適用する場合、金属板に形成される貫通孔9Aは、ガス流れの方向に長いことが望ましい。これらの方法により、各沿面放電電極系の表面電極9は、複数本の絶縁体7にわたってガス流れに対して平行に設置される。
 表面電極9は、耐腐食性が高い材質である。これにより、水等の液体による洗浄に対しても腐食することなく、表面電極9の交換回数を低減できる。また、表面電極9は、導電性があり、かつ、ヒータ(加熱体)として機能するための電気抵抗率を有する。これにより、表面電極9は、後述するとおり、洗浄液を乾燥させるためのヒータとしても使用される。具体的には、表面電極9は、耐腐食性を有しつつ銅の10倍以上の電気抵抗率を有するチタン(電気抵抗率:4.27×10-7Ωm)、又は、ステンレス(電気抵抗率:7.2×10-7Ωm)などが望ましい。
 表面電極9が図2に示すように、コイルスプリングであって絶縁体7に対して拘束されていない場合、従来の絶縁体と電極の一体成形品に比べて、加熱時や沿面放電時における絶縁体7と表面電極9の熱伸び差を緩和できる。したがって、熱伸び差が比較的小さいことから、従来よりもプラズマ発生装置の大型化を図ることが容易となる。
 上述したとおり絶縁体7の表面に表面電極9が形成されることによって、表面電極9は、ガス流れに対して平行又は斜めに線状に設けられる。これにより、表面電極9は、プラズマ発生装置1の近傍におけるガス流れを整流化すると共に、プラズマ発生装置1の表面のダスト付着を低減できる。
 なお、表面電極9には、窒化等の表面硬化処理を施したり、導電性の耐磨耗性材料を表面に適用したりしてもよい。これにより、表面電極9などの寿命を延長することができる。
 以上、本実施形態によれば、内部電極8は絶縁体7の内部に絶縁部7に密着して設けられ、表面電極9は絶縁体7の表面に密着して設けられることから、内部電極8と表面電極9は、筒状の絶縁体7によって確実に絶縁されながら、表面電極9と絶縁部7との境界表面で沿面放電を発生させることができる。また、表面電極9は、ガス流れに対して平行又は斜めに線状に設けられていることから、プラズマ発生装置1の近傍におけるガス流れを整流化すると共に、プラズマ発生装置1の表面のダスト付着を低減できる。
[第2実施形態]
 次に、本発明の第2実施形態に係るプラズマ発生装置2について、図8及び図9を用いて説明する。
 プラズマ発生装置2は、第1実施形態と同様に、主電源部5と、絶縁体(絶縁部)7と、内部電極8と、表面電極9などを備え、さらに、加熱用電源部14を備える。主電源部5、内部電極8及び表面電極9によって放電用回路が構成され、放電用回路にはスイッチSW1が設けられる。加熱用電源部14及び表面電極9によって加熱用回路が構成され、加熱用回路にはスイッチSW2が設けられる。絶縁体7、内部電極8及び表面電極9は、沿面放電電極系を構成する。図8及び図9で示した例では、沿面放電電極系は1本であるが、複数本でもよい。複数本の場合、各沿面放電電極系は、主電源部5又は加熱用電源部14に対し、直列、並列、又は直並列に接続される。
 表面電極9の近傍には、洗浄ノズル13が設けられ、洗浄ノズル13から洗浄液が表面電極9に対して噴出される。これにより、表面電極9に付着したダストや、硝酸アンモニウム等の反応生成物を除去できる。図8及び図9で示した例では、洗浄ノズル13は、1本の沿面放電電極系に対して、1個設置されているが、複数個設置されてもよい。
 表面電極9は、両端、すなわち絶縁体7の上部に配置された上端と、絶縁体7の下部に配置された下端とが、加熱用電源部14と接続される。加熱用電源部14は、交流電圧又は直流電圧を表面電極9に印加する。表面電極9に電圧が印加されると、表面電極9の温度が上昇する。これにより、絶縁体7や表面電極9の洗浄により残存した洗浄液を蒸発させ、絶縁体7や表面電極9を乾燥させることができる。その結果、水分が介在することによる沿面放電時の荷電の集中を防止できる。
 表面電極9は、絶縁体7の表面に設置されている。そのため、例えばコイルスプリングのような断面が円形状を有する場合、特に表面電極9と絶縁体7の接触部分の近傍に洗浄液が残存しやすい。したがって、表面電極9そのものが加熱体となることによって、表面電極9から離隔した位置からヒータ等によって加熱する場合に比べて、残存した洗浄液を乾燥させやすい。
 次に、図8~図10を参照して、本実施形態に係るプラズマ発生装置2の運転方法及び洗浄・乾燥方法について説明する。
 起動時は、まず、図9に示すように、加熱用回路のスイッチSW2をONにし、放電用回路のスイッチSW1をOFFにして、表面電極9に電圧を印加し表面電極9の温度を上昇させる。これにより、結露等によって表面電極9と絶縁体7に付着していた水分を乾燥できる。
 乾燥処理が所定時間経過した後、図8に示すように、加熱用回路のスイッチSW2をOFFにし、放電用回路のスイッチSW1をONにして、表面電極9の加熱を停止し、内部電極8に高周波高電圧を印加する。これにより、表面電極9と絶縁体7との境界表面に沿面放電が発生し、ガス流れに含まれる臭気分子又はVOC等を分解できる。この間、ガス流れの脱臭やガス状物質の除去が可能となる。
 脱臭やガス状物質の除去を継続すると、表面電極9や絶縁体7の表面にダストが付着したり、反応生成物によって表面電極9の表面が覆われたりする。脱臭やガス流れの除去の実行期間が所定時間経過した後、加熱用回路のスイッチSW2と放電用回路のスイッチSW1の両方をOFFにする。そして、洗浄ノズル13から洗浄液を表面電極9に対して噴出させ、表面電極9及び絶縁体7に付着したダストや反応生成物を除去する。洗浄処理が所定時間経過した後、洗浄液の噴出を停止し、加熱用回路のスイッチと放電用回路のスイッチの両方をOFFにしたまま、所定時間放置する。これにより、表面電極9や絶縁体7の表面に残存した洗浄液をある程度取り除くことができる。
 このような水切り期間を経た後、加熱用回路のスイッチSW2をONにし、放電用回路のスイッチSW1をOFFにして、表面電極9に電圧を印加し表面電極9の温度を上昇させる。これにより、洗浄処理によって表面電極9と絶縁体7に付着していた洗浄液を乾燥できる。その後は、上述した脱臭やガス状物質の除去処理、洗浄処理及び乾燥処理を順次繰り返してプラズマ発生装置9を運転させる。これらの運転は、シーケンス制御によって実行されるようにしてもよい。
 次に、表面電極9及び絶縁体7の洗浄及び加熱の可否判定について説明する。
 可否の判断は、主電源部5に設置されている電圧・電流計測器を使用する。
 乾燥処理が所定時間経過した後、放電用回路のスイッチSW1をONにして、内部電極8に高周波高電圧を印加する。そして、規定の電圧を満たしている場合、電流値が予め定められた範囲内にあるか否かを判断する。電流値(ピーク値、平均値若しくは実効値、又はこれらの組み合わせ)が所定の範囲内にあるとき、洗浄及び乾燥が適正に実施されたと認定して、高周波高電圧の印加を継続する。
 一方、規定の電圧を満たしている場合において、電流値(ピーク値、平均値若しくは実効値、又はこれらの組み合わせ)が所定の範囲を逸脱しているとき、洗浄又は乾燥が不足していると認定して、高周波高電圧の印加を停止する。洗浄が不足している場合、再度洗浄処理と乾燥処理を実施する。乾燥が不足している場合、加熱用電源部14によって電圧を印加して乾燥処理を再開する。乾燥処理を再開する場合、主電源部5を調整して低電流の電気を内部電極8と表面電極9の間に流し、誘電加熱によって、残存した水分を蒸発させてもよい。そして、乾燥が完了した後、高周波高電圧の印加を実施する。
 なお、高周波高電圧の印加が所定時間以上実行されないで、洗浄処理又は乾燥処理に繰り返し移行する場合は、何らかの不具合が生じていると認定して、警告を通知することで、管理者等が迅速にメンテナンスの用意をしたりメンテナンスを開始することができる。
 以上、本実施形態によれば、表面電極9を加熱体として使用することで、表面電極9や絶縁体7の表面に残存した洗浄液等の水分を乾燥させることができる。その結果、沿面放電時の荷電の集中を防止できる。表面電極9がコイルスプリングの場合のように、断面が円形状を有する場合、表面電極9と絶縁体7の接触部分の近傍に洗浄液が残存しやすいが、表面電極9そのものが加熱体となることによって、より確実に乾燥を行うことができる。
 また、表面電極9及び絶縁体7の洗浄及び加熱の可否判定を行うことで、表面電極9及び絶縁体7が適切に洗浄や乾燥が実行されたことを担保でき、自動運転を長時間にわたって継続することが可能となる。また、可否判定を行わない場合に比べて、メンテナンスが必要な時期を迅速に判断することもできる。
 集塵装置は、石炭焚き若しくは重油焚き等の発電プラント、又は焼却炉などの煙道や、粉塵を発生させる装置の後流に設置される。集塵装置には、一例としてバグフィルタが設置され、バグフィルタは、濾布を用いて燃焼排ガスや空気中に含まれるダスト(粒子状物質)を集塵する。
[第3実施形態]
 次に、本発明の第3実施形態に係る粒子荷電装置、及び、本実施形態に係る粒子荷電装置を備える集塵装置について説明する。
<本実施形態が解決しようとする課題>
 ボクサーチャージャは、互いに対向する電極間に交番電界を形成し、かつ、電極近傍でコロナ放電を発生させる。ボクサーチャージャは、電界の両側からダストの帯電が可能であるため、高い帯電能力を有し、電界が周期的に交番するため、電極にダストが付着しても当該ダスト層への電荷の蓄積がなく、逆電離現象の発生を防止できる。
 しかし、例えばガス流速5m/s以上のダスト雰囲気下では、ダスト等による電極の磨耗が生じて、放電が発生しにくくなり、帯電性能が低下する。また、特許文献1で開示されているように、電極を構成する主電界形成用電極とコロナ電極が二つのコイルスプリングを組み合わせた形状を有する場合、主電界形成用電極とコロナ電極を接触させないで、絶縁状態を確実に確保することが困難であった。
 本実施形態は、このような事情に鑑みてなされたものであって、電極における絶縁状態を確実に確保して放電を発生させることが可能な粒子荷電装置及び集塵装置を提供することを目的とする。
<本実施形態の構成及び作用効果>
 集塵装置は、石炭焚き若しくは重油焚き等の発電プラント、又は焼却炉などの煙道や、粉塵を発生させる装置の後流に設置され。集塵装置は、燃焼排ガスや空気中に含まれるダスト(粒子状物質)を集塵するバグフィルタと、予備荷電部としてのボクサーチャージャなどを備える。集塵装置において、ボクサーチャージャは、バグフィルタに対してガス流れの上流側に設置される。
 ボクサーチャージャ15は、図11に示すように、互いに対向する第1アーム11A及び第2アーム11Bと、主電源部5と、励起電源部6とを有する。以下、第1アーム11Aと第2アーム11Bは、単に「アーム11」ともいう。各アーム11は、複数本の沿面放電電極系16と、上流側整流体(第1整流化部材)3と、下流側整流体(第2整流化部材)4と、枠材10を備える。第1アーム11Aと第2アーム11Bは、共通する主電源部5に接続され、かつ、それぞれ異なる励起電源部6に接続される。ボクサーチャージャ15は、互いに対向する第1アーム11Aの沿面放電電極系16と第2アーム11Bの沿面放電電極系16との間に交番電界を形成し、かつ、沿面放電電極系16の表面電極9と絶縁体7との境界表面に沿面放電を発生させる。
 ボクサーチャージャ15の内部、すなわち第1アーム11Aと第2アーム11Bとの間には、図12に示すように、ガスが流通する。ここで、説明の便宜上、アーム11の中心部を通過する仮想面21,22を設定する。仮想面21,22は、ガス流れに対して平行であり、互いに対向し平行である。仮想面21内に第1アーム11Aが設置され、仮想面22内に第2アーム11Bが設置される。アーム11の各構成要素は、仮想面21,22内において、ガス流れの上流側から、上流側整流体3、複数本の沿面放電電極系16、下流側整流体4の順に設置される。なお、ここでのガス流れとは、ボクサーチャージャ15の内部に供給される直線状のガスの流れをいう。
 各アーム11において、沿面放電電極系16は、1本のみ設置されてもよいが、通常帯電時間を長くして帯電効率を向上させることを考慮して複数本設置される。沿面放電電極系16は、図12に示すように、絶縁体(絶縁部)7と、内部電極8と、表面電極9などから形成される。
 絶縁体7は、例えばセラミックス製であって電気的絶縁性を有し、中空の円筒形状である。絶縁体7は、ガス流れに対して直交して設置される。
 絶縁体7の軸線を通過する中空部分には、絶縁体7に密着して内部電極8が軸線に対して平行に設置される。内部電極8は、金属製の中実又は中空の棒状部材、金属繊維又は鉄粉などである。絶縁体7の表面には、絶縁体7に密着して表面電極9が設置される。表面電極9は、1本の絶縁体7の軸線方向に設置されてもよいし、複数本の絶縁体7にわたってガス流れに対して平行に設置されてもよい。表面電極9の設置方法については後述する。
 表面電極9は、ガス流れに対して平行又は斜めに線状に形成される。これにより、表面電極9は、沿面放電電極系16の近傍におけるガス流れを整流化すると共に、沿面放電電極系16の表面のダスト付着を低減できる。
 一つのアーム11における複数本の沿面放電電極系16は、表面電極9を含む沿面放電電極系16の外径をdとしたとき、d以下の間隔で設置される。沿面放電電極系16間が離れすぎていないことによって、複数本の沿面放電電極系16が一体化された一つの電極であるように作用する。すなわち、沿面放電電極系16が筒形状で形成され複数本組み合わされることによって、ボクサーチャージャ15の帯電時間の増加に寄与し、発電プラント又は焼却炉などの煙道等のガス流速に対応して必要な帯電時間を満たす仕様のボクサーチャージャ15を製作できる。更に、一つのアーム11における沿面放電電極系16間が離れすぎていないことによって、下流側の沿面放電電極系16の近傍で、ガス流れが整流化され、表面電極9の磨耗を促進する角度で衝突するガス流れの流速を低減できることから、表面電極9の摩耗を減らせる。
 上流側整流体3は、横断面が長円形状の筒状部材であり、上述した仮想面21,22内にて、沿面放電電極系16の上流側に設置される。上流側整流体3は、沿面放電電極系16の軸線方向と平行に設置され、上流側整流体3は、図11に示すように、ガス流れから沿面放電電極系16を隠して防ぐような長さを有する。また、上流側整流体3の横断面の長円形状は、図12に示すように、仮想面21,22に対して直交する方向の幅が沿面放電電極系16の外径dとほぼ同一であり、ガス流れに対して平行な平面のガス流れ方向の長さが沿面放電電極系16の外径d以上である。
 上流側整流体3と上流側整流体3に隣接する沿面放電電極系16は、沿面放電電極系16の外径d以下の間隔で設置される。
 上流側整流体3が設置されることによって、上流側整流体3が設置されない場合に比べて、上流側整流体3の下流側に位置する沿面放電電極系16の近傍で、ガス流れが整流化される(なお、流れの相違は、シミュレーションによって確認されている)。また、上流側整流体3が設置されることによって、表面電極9の磨耗を促進する角度で衝突するガス流れの流速を低減できることから、表面電極9の摩耗を減らせる。
 上流側整流体3は、例えば炭素鋼製又はSUS製の導電性部材であり、沿面放電電極系16の表面電極9と同一の電圧が印加される。
 下流側整流体4は、横断面が円形状の中空又は中実の筒状部材であり、上述した仮想面内にて、沿面放電電極系16の下流側に設置される。下流側整流体4は、沿面放電電極系16の軸線方向と平行に設置され、下流側整流体4の長さは、上流側整流体3とほぼ同一である。下流側整流体4の外径は、沿面放電電極系16の外径dとほぼ同一である。
 下流側整流体4と上流側整流体4に隣接する沿面放電電極系16は、沿面放電電極系16の外径d以下の間隔で設置される。
 下流側整流体4が設置されることによって、下流側整流体4が設置されない場合に比べて、下流側整流体4の上流側に位置する沿面放電電極系16の近傍で、ガス流れが整流化される(なお、流れの相違は、シミュレーションによって確認されている)。
 下流側整流体4は、例えば炭素鋼製又はSUS製の導電性部材であり、沿面放電電極系16の表面電極9と同一の電圧が印加される。
 上述したとおり、一つのアーム11において、上流側整流体3、複数本の沿面放電電極系16、下流側整流体4の順に間隔を設けて配置することで、沿面放電電極系16近傍でのガス流れが整流化され、特に、最も磨耗条件が厳しい角度である、仮想面21,22に対して45°の角度で表面電極9に入射するガス流れの流速を低減できる。その結果、表面電極9での磨耗を減らして、長寿命化を図ることができる。
 なお、表面電極9、上流側整流体3及び下流側整流体4には、窒化等の表面硬化処理を施したり、導電性の耐磨耗性材料を表面に適用したりしてもよい。これにより、表面電極9などの寿命を延長することができる。また、上流側整流体3の場合、板状部材(犠牲材)を更に上流側に設置することによって、簡易に長寿命化を図ることもできる。
 上流側整流体3、複数本の沿面放電電極系16及び下流側整流体4は、上部及び下部のそれぞれで枠材10によって固定されており、これにより、上流側整流体3、複数本の沿面放電電極系16及び下流側整流体4が一体化される。枠材10は、導電性の部材であり、沿面放電電極系16の表面電極9、上流側整流体3及び下流側整流体4と電気的に接続される。したがって、沿面放電電極系16の表面電極9に電圧を印加する際、上流側整流体3と下流側整流体4にも同一の電圧を印加しやすくなる。また、一体化構造となることから、ボクサーチャージャ15の製作が容易になる。
 以下、例として表面電極9と内部電極8の両方に交番電圧を印加し、内部電極8に更に励起電圧を重畳する場合について記載する。なお、内部電極8ではなく、表面電極9のほうに励起電圧を重畳してもよい。
 主電源部5は、同一の仮想面21,22に存在する複数本の沿面放電電極系16の表面電極9、上流側整流体3及び下流側整流体4に同一の交番電圧を印加する。また、主電源部5は、励起電源部6にも同一の交番電圧を印加する。第1アーム11Aの沿面放電電極系16と第2アーム11Bの沿面放電電極系16は、図13に示すように、半波長ずれたタイミングで交番電圧(図13中のVcharage)が印加されることから、二つの仮想面21,22間には交番電界が形成される。
 励起電源部6は、内部電極8に断続的に(例えば主電源部5が印加する交番電圧の半周期ごとに)、主電源部5よりも高周波の交番電圧(励起電圧)を更に重畳する(図13中のVextation)。これにより、内部電極8は、主電源部5と励起電源部6によって重畳された電圧が印加される。そして、表面電極9と絶縁体7との境界表面に沿面放電が発生する。励起電圧を上昇させると、沿面放電の強度が増加し、沿面放電電極系16に付着したダストを払い落とす効果を高める。
 図13の場合、励起電圧は主電源電圧の正極性に重畳されているため、沿面放電によって発生したプラズマに正イオンが含まれることになり、当該正イオンは電界の作用によって、対面する沿面放電電極系16の方向へ引き出される。そして、ガス流れによって搬送されたダスト(粒子)が、引き出された正イオンによって荷電される。なお、励起電圧を主電源電圧の負極性に重畳すると、負イオンが引き出されることになり、ダスト(粒子)が、引き出された負イオンによって荷電される。正極と負極のどちらの極性を選択しても良い。
 上流側整流体3及び下流側整流体4も、主電源部5によって、表面電極9と同電位とされることから、沿面放電電極系16よりも上流側及び下流側にも均一な強度分布を有する交番電界が形成される。したがって、第1整流化部材3及び第2整流化部材4が設置されない場合に比べて、沿面放電電極系16の上流及び下流において、イオンを移動させることが可能な範囲が広がることになる。また、ガス流れによって、沿面放電電極系16よりも下流に生成されたイオンが流れた場合でも、図12の矢印Dに示すように、対向する仮想面内に設置された下流側整流体4のほうにイオンを移動させることができる。すなわち、下流側整流体4がイオンの受け手となるため、下流側整流体4が設置されない場合に比べて帯電時間を長くなるため、粒子を効率良く荷電させることができ、ボクサーチャージャ15の性能を向上させる。
 次に、絶縁体7の表面に設置される表面電極9について説明する。
 表面電極9は、例えば、図2に示すように、コイルスプリングを絶縁体7の表面に巻きつけたり、図3に示すように、絶縁体7の表面に波状に導電線を設置したりすることによって、絶縁体7の表面に密着して形成される。また、表面電極9は、図4に示すように、絶縁体7の表面に複数のリング状部材を設置し、各リング状部材を電気的に接続することによって、絶縁体7の表面に密着して形成される。
 これらの方法により、各沿面放電電極系16の表面電極9は、1本の絶縁体7の軸線方向に設置される。ボクサーチャージャ15が複数本の沿面放電電極系16を有する場合、各絶縁体7上に形成された表面電極9は互いに電気的に接続される。
 また、表面電極9は、例えば図5に示すように、導電線を複数本の絶縁体7にわたって設置することによって、複数本の絶縁体7の表面に沿って密着して形成される。さらに、表面電極9は、例えば図6及び図7に示すように、パンチングメタルを複数本の絶縁体7にわたって設置することによって、複数本の絶縁体7の表面に沿って密着して形成される。パンチングメタルを適用する場合、金属板に形成される貫通孔9Aは、ガス流れの方向に長いことが望ましい。これらの方法により、各沿面放電電極系16の表面電極9は、複数本の絶縁体7にわたってガス流れに対して平行に設置される。
 上述したとおり絶縁体7の表面に表面電極9が形成されることによって、表面電極9は、ガス流れに対して平行又は斜めに線状に設けられる。これにより、表面電極9は、沿面放電電極系16の近傍におけるガス流れを整流化すると共に、沿面放電電極系16の表面のダスト付着を低減できる。
 さらに、表面電極9は、図14に示すように、各絶縁体7の表面において、対向する他方の沿面放電電極系16に面する部分にのみ形成される。例えば、仮想面21に位置する沿面放電電極系16の絶縁体7の表面のうち、対向する他方の沿面放電電極系16に面している、絶縁体7の周囲の90°の部分に表面電極9が形成される。
 本実施形態に係るボクサーチャージャ15では、仮想面21と仮想面22にそれぞれ位置し互いに対向する沿面放電電極系16が設置され、対向する沿面放電電極系16間に交番電界が形成される。ここで、交番電界に形成される電流密度分布は図15に示すようになる。図15は、第1アーム11Aの沿面放電電極系16が放電しているときの状態であり、色が濃い部分が、電流密度が高い箇所である。この結果より、第1アーム11Aの沿面放電電極系16のうち対向する第2アーム11Bの沿面放電電極系16に面する部分は電流密度が高く、第1アーム11Aにおいて隣接し合う沿面放電電極系16間は電流密度が低いことが分かる。
 沿面放電は、表面電極9と絶縁部7との境界表面で発生する。本実施形態では、一方の沿面放電電極系16のうち対向する他方の沿面放電電極系16に面する部分にのみ表面電極9が形成されていることから、表面電極9と絶縁部7との境界表面の沿面放電は、一方の沿面放電電極系16のうち対向する他方の沿面放電電極系16に面する部分のみに生じる。そのため、沿面放電によってイオンが生成される部分は、交番電界の電流密度が高い部分と一致する。すなわち、交番電界の電流密度が低い部分では沿面放電を発生させず、必要な部分のみ沿面放電させていることから、本実施形態では、消費電力を低減できる。
 以上、本実施形態によれば、内部電極8は絶縁体7の内部に絶縁部7に密着して設けられ、表面電極9は絶縁体7の表面に密着して設けられることから、内部電極8と表面電極9は、筒状の絶縁体7によって確実に絶縁されながら、表面電極9と絶縁部7との境界表面で沿面放電を発生させることができる。また、表面電極9は、ガス流れに対して平行又は斜めに線状に設けられていることから、沿面放電電極系16の近傍におけるガス流れを整流化すると共に、沿面放電電極系16の表面のダスト付着を低減できる。
 また、ガス流れに対して平行な仮想面内において、上流側整流体3及び下流側整流体4が沿面放電電極系16に対してガス流れの上流側及び下流側にそれぞれ設置されている。したがって、沿面放電電極系16の近傍で、ガス流れが整流化され、表面電極9の磨耗を促進する角度で衝突するガス流れの流速を低減できることから、表面電極9の摩耗を減らせる。
 なお、上記実施形態では、内部電極8と表面電極9に主電源部5によって交番電圧を印加し、内部電極8に励起電源部6によって励起電圧を重畳する場合について説明したが、本発明はこの例に限定されない。例えば、表面電極9に励起電源部6によって励起電圧を重畳してもよい。
 また、上記実施形態では、図13に示すように、主電源部5による交流電圧が正(+)の極性で励起電圧を印加する場合について説明したが、本発明はこの例に限定されない。励起電圧は、正(+)又は負(-)のいずれかの極性で印加される。
 さらに、上記実施形態では、主電源部5による交番電圧及び励起電源部6による交番電圧が正弦波である場合について説明したが、少なくともいずれか一方が例えば矩形波などその他の任意波形の交番電圧でもよい。図16は、主電源部5による交番電圧と励起電源部6による交番電圧が矩形波である場合について示している。
1,2 プラズマ発生装置
3 上流側整流体(第1整流化部材)
4 下流側整流体(第2整流化部材)
5 主電源部(電源部)
6 励起電源部
7 絶縁体(絶縁部)
8 内部電極
9 表面電極
13 洗浄ノズル
14 加熱用電源部
15 ボクサーチャージャ(粒子荷電装置)
16 沿面放電電極系
 

Claims (11)

  1.  ガス流れに対して直交して設置され、電気的絶縁性を有する筒状の絶縁部と、
     前記絶縁部内部に前記絶縁部に密着して設けられた内部電極と、
     前記絶縁部の表面と一体化せずに密着し、前記ガス流れに対して平行又は斜めに線状に設けられた表面電極と、
     前記内部電極と前記表面電極との間に電圧を印加して、前記表面電極と前記絶縁部との境界表面に沿面放電を発生させる電源部と
    を備えるプラズマ発生装置。
  2.  前記表面電極は、前記絶縁部の表面に螺旋状に巻回される請求項1に記載のプラズマ発生装置。
  3.  前記表面電極の両端に電圧を印加する加熱用電源部と、
     前記絶縁部及び前記表面電極の外表面に対して液体を供給する洗浄部と、
    を更に備える請求項1又は2に記載のプラズマ発生装置。
  4.  請求項3に記載のプラズマ発生装置の洗浄方法であって、
     前記電源部が前記内部電極と前記表面電極との間に電圧を印加して、前記表面電極と絶縁部との境界表面に沿面放電を発生させるステップと、
     前記沿面放電の発生を停止させた後、前記洗浄部が前記絶縁部及び前記表面電極の外表面に対して液体を供給するステップと、
     前記液体の供給を停止させた後、前記加熱用電源部が前記表面電極の両端に電圧を印加するステップと
    を含むプラズマ発生装置の洗浄方法。
  5.  前記加熱用電源部による電圧印加を停止させた後、
     前記電源部が電圧を印加して、前記内部電極と前記表面電極との間を流れる電流の電流値を測定するステップと、
     前記測定された電流値に基づいて、前記電圧の印加を継続するか否かを判断するステップと
    を更に含む請求項4に記載のプラズマ発生装置の洗浄方法。
  6.  ガス流れに対して平行な互いに対向する二つの仮想面内にそれぞれ設置され前記二つの仮想面間に交番電界を形成する沿面放電電極系を備え、
     前記沿面放電電極系は、
     前記ガス流れに対して直交して設置され、電気的絶縁性を有する筒状の絶縁部と、
     前記絶縁部内部に絶縁部に密着して設けられる内部電極と、
     前記絶縁部の表面と一体化せずに密着し、前記ガス流れに対して平行又は斜めに線状に設けられた表面電極と、
    を有し、
     前記沿面放電電極系の前記内部電極と前記表面電極の両方に交番電圧を印加する主電源部と、
     前記内部電極と前記表面電極との間に励起電圧を更に印加して、前記表面電極と前記絶縁部との境界表面に沿面放電を発生させる励起電源部とを更に備える粒子荷電装置。
  7.  前記仮想面内にて前記沿面放電電極系に対して前記ガス流れの上流側に設置され、前記仮想面に対して直交する方向の幅は前記沿面放電電極系と略同一であり、前記ガス流れに対して平行な面を有する第1整流化部材を更に備える請求項6に記載の粒子荷電装置。
  8.  前記仮想面内にて前記沿面放電電極系に対して前記ガス流れの下流側に設置され、前記仮想面に対して直交する方向の幅は前記沿面放電電極系と略同一である第2整流化部材を更に備える請求項7に記載の粒子荷電装置。
  9.  前記第1整流化部材及び第2整流化部材は、導電性を有し、表面電極と同一の電圧に印加される請求項8に記載の粒子荷電装置。
  10.  一方の前記沿面放電電極系の前記表面電極は、対向する他方の前記沿面放電電極系に面する部分にのみ形成される請求項6から9のいずれか1項に記載の粒子荷電装置。
  11.  バグフィルタと、前記バグフィルタに対して前記ガス流れの上流側に配置される請求項6から10のいずれか1項に記載の粒子荷電装置とを備える集塵装置。
PCT/JP2014/050601 2014-01-15 2014-01-15 プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置 WO2015107638A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015557623A JP6165887B2 (ja) 2014-01-15 2014-01-15 プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置
PCT/JP2014/050601 WO2015107638A1 (ja) 2014-01-15 2014-01-15 プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050601 WO2015107638A1 (ja) 2014-01-15 2014-01-15 プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置

Publications (1)

Publication Number Publication Date
WO2015107638A1 true WO2015107638A1 (ja) 2015-07-23

Family

ID=53542559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050601 WO2015107638A1 (ja) 2014-01-15 2014-01-15 プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置

Country Status (2)

Country Link
JP (1) JP6165887B2 (ja)
WO (1) WO2015107638A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102024678B1 (ko) * 2019-01-10 2019-09-25 고두수 농축산용 플라즈마 발생장치
CN112543541A (zh) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 交互式电场的气体放电装置
JP7383087B1 (ja) 2022-07-15 2023-11-17 日本特殊陶業株式会社 オゾン発生器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099554A (zh) * 2020-07-14 2020-12-18 国网安徽省电力有限公司检修分公司 用于冲洗高压输电线路绝缘子的控制方法及系统
KR102356614B1 (ko) * 2021-05-25 2022-02-08 주식회사 케이메카 세척 기능이 있는 플라즈마 악취제거장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58902B2 (ja) * 1979-12-07 1983-01-08 増田 閃一 粒子荷電装置用電極
JPH10244183A (ja) * 1997-03-06 1998-09-14 Mitsubishi Heavy Ind Ltd 電気集塵装置及びその逆洗掃気方法
WO2011152357A1 (ja) * 2010-06-02 2011-12-08 三菱重工メカトロシステムズ株式会社 集塵装置の運転方法及び集塵装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58902B2 (ja) * 1979-12-07 1983-01-08 増田 閃一 粒子荷電装置用電極
JPH10244183A (ja) * 1997-03-06 1998-09-14 Mitsubishi Heavy Ind Ltd 電気集塵装置及びその逆洗掃気方法
WO2011152357A1 (ja) * 2010-06-02 2011-12-08 三菱重工メカトロシステムズ株式会社 集塵装置の運転方法及び集塵装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102024678B1 (ko) * 2019-01-10 2019-09-25 고두수 농축산용 플라즈마 발생장치
CN112543541A (zh) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 交互式电场的气体放电装置
JP7383087B1 (ja) 2022-07-15 2023-11-17 日本特殊陶業株式会社 オゾン発生器

Also Published As

Publication number Publication date
JPWO2015107638A1 (ja) 2017-03-23
JP6165887B2 (ja) 2017-07-19

Similar Documents

Publication Publication Date Title
WO2015107638A1 (ja) プラズマ発生装置、プラズマ発生装置の洗浄方法、粒子荷電装置及び集塵装置
CN1232355C (zh) 集尘装置及空调装置
CN109290057B (zh) 用于清洁静电除尘器的方法及装置
EP2922636B1 (en) Electrofilter for the purification of smoke from in particular minor straw boilers
US20090274592A1 (en) Plasma-based air purification device including carbon pre-filter and/or self-cleaning electrodes
KR101373720B1 (ko) 활성탄 섬유필터를 이용하는 전기집진기
US8236094B2 (en) Exhaust gas purifying device
KR101453499B1 (ko) 에지 코팅형 집진판이 구비된 탄소섬유를 이용한 전기집진기
CN105689138A (zh) 一种具有多层圆柱电极的湿式电除尘器
EP2868384B1 (en) Wet electric dust-collecting device and exhaust gas treatment method
WO2008038349A1 (fr) collecteur de poussière électrique, électrode de décharge, procédé de fabrication de l'électrode de décharge, ET PROCÉDÉ DE FABRICATION D'aiguille de décharge
Kim et al. Fine particle removal by a two-stage electrostatic precipitator with multiple ion-injection-type prechargers
JP2010075864A (ja) 電気集塵機
CN103657851A (zh) 带凝并电场的静电式油烟净化装置
CN108212536A (zh) 方法及设备
KR20100093808A (ko) 탄소섬유를 이용한 2단 전기집진기
JP2008006371A (ja) 集塵装置
US10799884B2 (en) Wet electrostatic precipitator and method of treating an exhaust
KR101064487B1 (ko) 탄소섬유 직물을 이용한 전기집진기
JP2007021380A (ja) 粒子充填層集塵装置
CN212068206U (zh) 防水卷材车间的沥青成型烟气处理系统
JP2002159879A (ja) 湿式電気集塵装置及びこれを備えた排ガス処理システム
KR20100093807A (ko) 탄소섬유를 이용한 1단 전기집진기
JP2010188221A (ja) 有刺放電線及びこれを用いた湿式電気集塵機
JP2013123692A (ja) 集塵装置及び集塵方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879124

Country of ref document: EP

Kind code of ref document: A1