WO2015106218A1 - Oxygen supply with carbon dioxide scrubber for emergency use - Google Patents
Oxygen supply with carbon dioxide scrubber for emergency use Download PDFInfo
- Publication number
- WO2015106218A1 WO2015106218A1 PCT/US2015/011058 US2015011058W WO2015106218A1 WO 2015106218 A1 WO2015106218 A1 WO 2015106218A1 US 2015011058 W US2015011058 W US 2015011058W WO 2015106218 A1 WO2015106218 A1 WO 2015106218A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pouch
- oxygen
- supply system
- oxygen supply
- oxygen mask
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B19/00—Cartridges with absorbing substances for respiratory apparatus
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B18/00—Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
- A62B18/02—Masks
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B7/00—Respiratory apparatus
- A62B7/10—Respiratory apparatus with filter elements
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B7/00—Respiratory apparatus
- A62B7/14—Respiratory apparatus for high-altitude aircraft
Definitions
- the present invention is generally directed to providing an oxygen supply to a station operator during an emergency
- the present invention provides an oxygen supply system for a station operator, comprising an oxygen mask for being operably connected to an oxygen cylinder; a pouch operably connected to the oxygen mask; carbon dioxide scrubber disposed inside the pouch; a first one-way valve operably connected between the oxygen mask and the pouch for allowing one-way flow of gases exhaled by the operator from the oxygen mask to the pouch; and a second one-way valve operably connected between the oxygen mask and the pouch for allowing one-way flow of gases from the pouch to the operator.
- the present invention also provides an oxygen mask,
- a cup for sealing attachment over a user' s mouth and nose comprising a cup for sealing attachment over a user' s mouth and nose, the cup being connected to an oxygen supply for breathing by the user; a pouch operably connected to the cup; carbon dioxide scrubber disposed inside the pouch; a first one-way valve operably connected between the cup and the pouch for allowing one-way flow of gases exhaled by the user to the pouch; and a second one-way valve operably connected between the cup and the pouch for allowing one-way flow of gases from the pouch to the cup.
- Fig. 1 shows a schematic diagram of a layout of an oxygen supply in an aircraft.
- Fig. 2 is a schematic flow diagram showing an open circuit supplementary oxygen supply for decompression.
- Fig. 3 is a schematic flow diagram showing an open circuit 100% oxygen supply for use during decompression, smoke or other emergencies .
- Fig. 4 is a schematic flow diagram showing a closed circuit oxygen supply using carbon dioxide scrubber for use during decompression, smoke or other emergencies in accordance with the present invention.
- Fig. 5 is a schematic diagram of another embodiment of a closed circuit oxygen supply using carbon dioxide scrubber for use during decompression, smoke or other emergencies in
- Fig. 6 is perspective view of an oxygen mask made in accordance with the present invention.
- Fig. 7 is a perspective of another embodiment of an oxygen mask made in accordance with the present invention.
- Fig. 8 is a perspective view of an inflated pouch with carbon dioxide scrubber made in accordance with the present invention .
- Fig. 9 is the pouch shown in Fig. 8 in a folded position for stowage.
- Fig. 10 is a cross-sectional view taken along line 10-10 in Fig. 8.
- Fig. 11 is a schematic side elevational view of a cockpit showing the oxygen mask of Fig. 6 in use by a pilot during an emergency .
- FIG. 1 a conventional oxygen supply system 2 for an aircraft cockpit is shown.
- An oxygen tank 4 supplies oxygen through low-pressure tubings 6 to a pilot oxygen mask 8 and a co-pilot oxygen mask 10 stowed in respective consoles 12 when not in use.
- Each console 12 has an oxygen flow indicator 14 when oxygen is flowing to the oxygen masks.
- An oxygen pressure gauge 16 is connected to the oxygen tank 4 via high pressure tubing 18. The gauge 16 provides information to the pilot or co-pilot on the amount oxygen remaining in the tank 4.
- a ground service panel 20 with a filler valve 22 and a gauge 24 is provided for ground servicing of the oxygen tank 4.
- the oxygen supply system 2 during use is schematically disclosed for the pilot oxygen mask 8, although the diagrams are equally applicable to the co-pilot oxygen mask 10. Accordingly, it should be understood that the following description is also applicable to the co-pilot oxygen mask 10.
- the discharge rate from the oxygen tank 4 is set at lower than 100% oxygen level through a standard regulator on the oxygen mask when ambient air 9 is usable for breathing for the pilot. Unabsorbed oxygen by the lungs, air and carbon dioxide are exhaled by the pilot to the outside at 11.
- the discharge rate from the oxygen tank 4 is set at 100% oxygen so that the pilot breathes in 100% oxygen from the oxygen tank 4 through the oxygen mask 8. This setting is used when ambient air is contaminated with smoke or otherwise not fit for breathing.
- the oxygen rate of discharge is regulated through the regulator on the oxygen mask.
- Unabsorbed oxygen by the lungs and carbon dioxide are exhaled by the pilot to the outside at 11.
- the remaining oxygen in the tank 4 is monitored through the oxygen pressure gauge 16.
- the oxygen tank 4 provides 100% oxygen to the operator through the oxygen mask 8.
- the operator exhales unabsorbed oxygen and carbon dioxide to a pouch 26 containing carbon dioxide scrubber, such as LiOH, through a one-way valve 28.
- the unabsorbed oxygen and carbon dioxide exhaled by the operator will accumulate inside the pouch 26.
- the carbon dioxide scrubber will absorb the carbon dioxide and thus reduce the amount of carbon dioxide in the gas inside the pouch 26.
- the unabsorbed exhaled oxygen is advantageously collected in the pouch 26.
- the pouch 26 initially will be in a folded position. As the operator exhales into the pouch 26, pressure will build up inside to inflate the pouch.
- a relief valve 32 may be provided to relieve pressure buildup within the pouch 26.
- the oxygen tank 4 may be set at a lower rate of discharge than at the 100% oxygen setting when the pouch 26 is inflated and full of exhaled gases.
- the oxygen collected in the pouch 26 is then used to supplement the reduced oxygen rate from the tank 4.
- the valve 30 would be opened in the direction indicated by the arrows to allow the operator to breathe in the oxygen collected in the pouch 26.
- the oxygen from the oxygen tank 4 mixes with the oxygen from the pouch 26 to provide sufficient oxygen to the operator.
- the one-way valve 30 may be incorporated in the oxygen mask and may be controlled by the operator.
- the system 24 advantageously extends the duration during which oxygen is supplied by the oxygen tank 4 with little weight penalty to the aircraft.
- a one-way bypass valve 34 may be provided upstream of the one-way valve 28, between the mask 8 and the pouch 26. Normally the valve 34 is closed to the outside through an outlet 35 so that the gases from the
- valve 34 open to the outside through the outlet 35, the operator can breathe out both to the outside and into the pouch 26.
- the valve 34 is advantageously open to the outside in the direction shown by the arrow to prevent the operator from breathing in the outside air in case the air is not suitable for breathing. With the valve 34 open to the outside and depending on the pressure within the pouch 26, the operator' s exhaled breathe will either flow entirely to the outside through the outlet 35 or portions will flow to the outside and portions will be collected inside the pouch 26.
- Opening the valve 34 to the outside may be desired when the operator detects some backpressure from the pouch 26 that causes the operator to exert more lung pressure to breathe out.
- the valve 34 may also be opened in case the valve 28 gets blocked or fails in the closed position.
- the valve 34 is operable by the operator.
- the valve 34 may also be connected directly to the mask 8.
- an oxygen mask 38 made in accordance with the present invention is disclosed.
- the oxygen mask 38 includes a harness 40 to secure the oxygen mask to the
- a viewing window 42 made of transparent material allows operator to see through the oxygen mask 38.
- a cup 44 sealingly covers the operator's mouth and nose from the outside air.
- a flexible tubing 46 in communication with the interior of the cup 44 connects to the oxygen tank supply line from the tank 4 to provide oxygen to the operator.
- a control knob 48 is used to control the flow of oxygen to the oxygen mask 38.
- a microphone cord 50 may be provided for communication purposes.
- the oxygen mask 38 without the pouch 26 is standard construction .
- the pouch 26 is operably connected to the cup 44 such that the exhaled gases are collected by the pouch 26 and the gases from the pouch 26 can be inhaled when desired.
- a control knob 52 is used to open or close the valve 34 to the outside through an outlet 53. When the valve 34 is closed to the outside, gas flow is directed toward the valve 28 into the pouch 26. When the valve 34 is open, gas flow is allowed to the outside through the outlet 53 while at the same time allowing flow through the valve 28 into to the pouch 26.
- the valve 34 may be omitted, in which case the control knob 52 is not provided.
- a relief valve 60 provides pressure relief for the pouch 26.
- a carbon dioxide sensor 61 may be provided to warn the operator of carbon dioxide buildup inside the pouch 26.
- the sensor 61 may include a LED indicator that turns on when an unacceptable amount of carbon dioxide is detected.
- the carbon dioxide sensor can be disposed adjacent the relief valve 60 to detect the amount of carbon dioxide as the gas passes though the valve. In the absence of a carbon dioxide sensor, the provision of an oxygen sensor within or in conjunction with the pouch 26 to warn the user of oxygen depletion is desirable.
- Such sensors are readily available, for example, from National Draeger
- a control knob 54 is used to open the normally closed one- way valve 30 to allow gas flow from the pouch 26 to the
- the knob 54 is operated to open the valve 30 when the operator desires to start breathing from the pouch 26.
- FIG. 7 another embodiment of an oxygen mask 56 is disclosed.
- the oxygen mask 56 is similar to the oxygen mask 38 except that the viewing window 42 is not provided.
- a harness 58 is provided to sealingly attach the cup 44 over the operator's mouth and nose.
- the oxygen mask 56 without the pouch 26 is standard construction.
- the pouch 26 is operably connected to the cup 44 as described with the oxygen mask 38.
- passageways 59 and 63 are connected to the cup 44 such that the interior space within the cup 44 communicates with the passageways 59 and 63.
- the exhaled breath flows through passageway 63 and collected within the pouch 26.
- gases from the pouch 26 flows through the passageway 59, if the valve 30 is open, and mixes with the oxygen supplied through the tubing 46 inside the cup 44.
- the pouch 26 can be made in any shape when fully inflated, such as bottle-shaped (as shown) , spherical, cylindrical, pear- shaped, banana-shaped, water-drop shaped, etc., dictated only by the need to extend the oxygen supply from the tank 4.
- the pouch 26 may be prepared from gas-impermeable film, which is foldable, as shown in Fig. 9, for stowage.
- the pouch 26 is inflatable to its maximum volume during use, as shown in Fig. 8, and
- carbon dioxide scrubbers 62 in powder form are disposed on the interior of the pouch 26 for contact with the carbon dioxide gas inside the pouch.
- the carbon dioxide scrubber may be encased in semi-permeable
- the membrane 64 in the form of packets 65 disposed around and attached to the interior sidewall 66 of the pouch 26.
- the packets 65 are attached to the interior surface of the pouch in any convenient means, including, for example, adhesive bonding to the sidewalls of the pouch.
- Multiple packets 65 of the carbon dioxide absorber can be conveniently applied on the interior of the pouch in rows and columns with free spaces 68 between each packet 65. Disposing the carbon dioxide scrubbers in packets 65 advantageously allow for folding of the pouch 26 when in stowage.
- the free spaces 68 between packets advantageously provide flexibility to the pouch 26 for folding for stowage.
- carbon dioxide scrubber A wide variety of carbon dioxide scrubber can be used, including, for example, alkali metal hydroxides and oxides, and sodium carbonate. Of these, the lithium and sodium salts are preferred, and lithium hydroxide in particulate form is
- carbon dioxide scrubber in liquid or gel form can be used.
- the membrane 64 preferably has average pore size of about from 10 to 100 microns. This pore size permits contact of the gas and moisture within the pouch with the carbon dioxide scrubber, but prevents the smaller particles of the carbon dioxide scrubber from escaping into the breathing portion of the pouch.
- the carbon dioxide scrubber is disposed on the interior of the pouch, to bring the carbon dioxide scrubber in contact with the gas within the pouch.
- the semi-permeable membrane 64 simultaneously prevents direct inhalation of dust from the carbon dioxide scrubber while permitting contact with the gas inside the pouch.
- materials can be used, including, for example, various thermoplastic fabrics such as that commercially
- the carbon dioxide scrubber permits maximum utilization of the available oxygen within the pouch.
- a quantity of about from 50 to 500 grams, and preferably about from 75 to 150 grams, of carbon dioxide scrubber may be used.
- About from 3 to 4 grams of lithium hydroxide are required for removal of carbon dioxide during each minute of closed circuit breathing in an environment of substantially pure oxygen.
- the carbon dioxide scrubber permits utilization of
- Carbon dioxide scrubbers used with breathing apparatuses are disclosed in U.S. Pat. Nos .4 , 627 , 431 ; 4,998,529 and
- a substantially gas-impermeable film is used for the pouch 26 and can include a wide variety of polymeric films, such as polyethylene, polypropylene, polyethylene terephthalate, nylon, polyvinyl chloride, polyurethane, fluoropolymers and polyimides. Heat resistant films are preferred for this application, of which polyimide films are particularly desirable.
- the exterior surface of the polymeric films used for the present devices can be metalized for further heat reflectivity, using metalizing techniques well known in the art.
- the size of the pouch 26 should provide an interior capacity to provide the operator with a sufficient volume of air which, in conjunction with the carbon dioxide scrubber, provides a self-contained air supply that enables comfortable and safe breathing, depending not only on the volume of oxygen or air contained within the pouch but the level of activity of the operator.
- the oxygen mask 38 is shown in use inside an aircraft cockpit 70 by a pilot during an emergency requiring use of the oxygen supply of the aircraft.
- the oxygen mask 38 is connected to the oxygen supply system 2.
- the pilot exhales into the pouch 26 to capture the unabsorbed oxygen from his lungs.
- the pilot may regulate the oxygen flow from the system 2 to less than 100% and use the exhaled oxygen from the pouch 26, with the carbon dioxide scrubber reducing the carbon dioxide of the rebreathed gas.
- the pilot advantageously extends the useful life of the oxygen supply in the tank 4.
- the system of the present invention advantageously provides a station operator with a lightweight device that extends the duration of a limited oxygen supply for several minutes.
- the lightweight construction and simplicity of operation makes the invention particularly useful for airline crew, eliminating the weight and encumbrance of additional oxygen tanks or other complicated systems.
- the pouch 26 can be safely stored with the oxygen mask for extended periods of time without deterioration of their operating capabilities. However, it is preferred to store the pouch 26 in a sealed container to insulate it from changes in the environmental conditions.
- the present invention makes more effective use of the oxygen tank 4 currently in place on commercial aircraft for decompression protection. Moreover, the present invention does not require a pump or pressure source for operation of the carbon dioxide absorber once the pouch has been filled.
- the oxygen supply system is shown in the context of an aircraft, the invention can be used in other similar environments where an operator in a station requires access to oxygen during a smoke emergency. Examples of operator stations are a submarine control station, a nuclear power plant control room, an oil rig or any other critical or military environments where the need exists for an operator to continue to operate in case of a smoke emergency, such as when smoke or other
- particulate matter invades the operator station and prevents the operator from breathing the ambient air. Accordingly, where the operator is in a station that requires the operator to continue to man his station, the operator must have access to an oxygen supply in case smoke invades the operator station.
Landscapes
- Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- General Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
Abstract
An oxygen supply system for a station operator, comprising an oxygen mask for being operably connected to an oxygen cylinder; a pouch operably connected to the oxygen mask; carbon dioxide scrubber disposed inside the pouch; a first one-way valve operably connected between the oxygen mask and the pouch for allowing one-way flow of gases exhaled by the operator from the oxygen mask to the pouch; and a second one-way valve operably connected between the oxygen mask and the pouch for allowing one-way flow of gases from the pouch to the operator.
Description
OXYGEN SUPPLY WITH CARBON DIOXIDE SCRUBBER FOR EMERGENCY USE
RELATED APPLICATION
This is a nonprovisional application of provisional application serial No. 61/926,740, filed 01/13/2014, the
priority of which is hereby claimed and the disclosure of which is hereby incorporated by reference. FIELD OF THE INVENTION
The present invention is generally directed to providing an oxygen supply to a station operator during an emergency
requiring the use of the oxygen supply and in particular to a lightweight system for extending the oxygen supply normally provided onboard aircrafts for crewmembers .
SUMMARY OF THE INVENTION
The present invention provides an oxygen supply system for a station operator, comprising an oxygen mask for being operably connected to an oxygen cylinder; a pouch operably connected to the oxygen mask; carbon dioxide scrubber disposed inside the pouch; a first one-way valve operably connected between the
oxygen mask and the pouch for allowing one-way flow of gases exhaled by the operator from the oxygen mask to the pouch; and a second one-way valve operably connected between the oxygen mask and the pouch for allowing one-way flow of gases from the pouch to the operator.
The present invention also provides an oxygen mask,
comprising a cup for sealing attachment over a user' s mouth and nose, the cup being connected to an oxygen supply for breathing by the user; a pouch operably connected to the cup; carbon dioxide scrubber disposed inside the pouch; a first one-way valve operably connected between the cup and the pouch for allowing one-way flow of gases exhaled by the user to the pouch; and a second one-way valve operably connected between the cup and the pouch for allowing one-way flow of gases from the pouch to the cup.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows a schematic diagram of a layout of an oxygen supply in an aircraft.
Fig. 2 is a schematic flow diagram showing an open circuit supplementary oxygen supply for decompression.
Fig. 3 is a schematic flow diagram showing an open circuit 100% oxygen supply for use during decompression, smoke or other emergencies .
Fig. 4 is a schematic flow diagram showing a closed circuit oxygen supply using carbon dioxide scrubber for use during decompression, smoke or other emergencies in accordance with the present invention.
Fig. 5 is a schematic diagram of another embodiment of a closed circuit oxygen supply using carbon dioxide scrubber for use during decompression, smoke or other emergencies in
accordance with the present invention.
Fig. 6 is perspective view of an oxygen mask made in accordance with the present invention.
Fig. 7 is a perspective of another embodiment of an oxygen mask made in accordance with the present invention.
Fig. 8 is a perspective view of an inflated pouch with carbon dioxide scrubber made in accordance with the present invention .
Fig. 9 is the pouch shown in Fig. 8 in a folded position for stowage.
Fig. 10 is a cross-sectional view taken along line 10-10 in Fig. 8.
Fig. 11 is a schematic side elevational view of a cockpit showing the oxygen mask of Fig. 6 in use by a pilot during an emergency .
DETAILED DESCRIPTION OF THE INVENTION
Referring to Fig. 1, a conventional oxygen supply system 2 for an aircraft cockpit is shown. An oxygen tank 4 supplies oxygen through low-pressure tubings 6 to a pilot oxygen mask 8 and a co-pilot oxygen mask 10 stowed in respective consoles 12 when not in use. Each console 12 has an oxygen flow indicator 14 when oxygen is flowing to the oxygen masks. An oxygen pressure gauge 16 is connected to the oxygen tank 4 via high pressure tubing 18. The gauge 16 provides information to the pilot or co-pilot on the amount oxygen remaining in the tank 4. A ground service panel 20 with a filler valve 22 and a gauge 24 is provided for ground servicing of the oxygen tank 4.
Referring to Figs. 2 and 3, the oxygen supply system 2 during use is schematically disclosed for the pilot oxygen mask 8, although the diagrams are equally applicable to the co-pilot oxygen mask 10. Accordingly, it should be understood that the following description is also applicable to the co-pilot oxygen mask 10.
Referring to Fig. 2, the discharge rate from the oxygen tank 4 is set at lower than 100% oxygen level through a standard regulator on the oxygen mask when ambient air 9 is usable for breathing for the pilot. Unabsorbed oxygen by the lungs, air and carbon dioxide are exhaled by the pilot to the outside at 11.
Referring to Fig. 3, the discharge rate from the oxygen tank 4 is set at 100% oxygen so that the pilot breathes in 100% oxygen from the oxygen tank 4 through the oxygen mask 8. This setting is used when ambient air is contaminated with smoke or otherwise not fit for breathing. The oxygen rate of discharge is regulated through the regulator on the oxygen mask.
Unabsorbed oxygen by the lungs and carbon dioxide are exhaled by the pilot to the outside at 11. The remaining oxygen in the tank 4 is monitored through the oxygen pressure gauge 16.
Referring to Fig. 4, an oxygen supply system 24 made in accordance with the present invention for a station operator, such as a pilot or co-pilot in an aircraft cockpit, is
disclosed. The oxygen tank 4 provides 100% oxygen to the operator through the oxygen mask 8. The operator exhales unabsorbed oxygen and carbon dioxide to a pouch 26 containing carbon dioxide scrubber, such as LiOH, through a one-way valve
28. The unabsorbed oxygen and carbon dioxide exhaled by the operator will accumulate inside the pouch 26. The carbon dioxide scrubber will absorb the carbon dioxide and thus reduce the amount of carbon dioxide in the gas inside the pouch 26. Instead of the unabsorbed oxygen being exhaled to the outside environment, the unabsorbed exhaled oxygen is advantageously collected in the pouch 26. The pouch 26 initially will be in a folded position. As the operator exhales into the pouch 26, pressure will build up inside to inflate the pouch.
Once the oxygen supply 4 is getting nearly used up, the operator will open a one-way valve 30 to allow the accumulated oxygen in the pouch 26 to flow to the oxygen mask 8. In this configuration, the valve 30 is normally closed until manually opened by the operator. Instead of the unabsorbed oxygen being exhaled to the environment and being wasted, it is allowed to accumulate inside the pouch 26. A relief valve 32 may be provided to relieve pressure buildup within the pouch 26.
Preferably, the oxygen tank 4 may be set at a lower rate of discharge than at the 100% oxygen setting when the pouch 26 is inflated and full of exhaled gases. The oxygen collected in the pouch 26 is then used to supplement the reduced oxygen rate from the tank 4. In this mode of operation, the valve 30 would be
opened in the direction indicated by the arrows to allow the operator to breathe in the oxygen collected in the pouch 26. The oxygen from the oxygen tank 4 mixes with the oxygen from the pouch 26 to provide sufficient oxygen to the operator.
The one-way valve 30 may be incorporated in the oxygen mask and may be controlled by the operator.
In either way of operation, allowing the oxygen tank 4 to nearly run out before using the oxygen in the pouch 26, or mixing the oxygen from the tank 4 with the oxygen from the pouch 26, the system 24 advantageously extends the duration during which oxygen is supplied by the oxygen tank 4 with little weight penalty to the aircraft.
Referring to Fig. 5, a one-way bypass valve 34 may be provided upstream of the one-way valve 28, between the mask 8 and the pouch 26. Normally the valve 34 is closed to the outside through an outlet 35 so that the gases from the
operator' s exhalation are directed to and collected in the pouch 26. However, with the valve 34 open to the outside through the outlet 35, the operator can breathe out both to the outside and into the pouch 26. The valve 34 is advantageously open to the outside in the direction shown by the arrow to prevent the operator from breathing in the outside air in case the air is
not suitable for breathing. With the valve 34 open to the outside and depending on the pressure within the pouch 26, the operator' s exhaled breathe will either flow entirely to the outside through the outlet 35 or portions will flow to the outside and portions will be collected inside the pouch 26.
Opening the valve 34 to the outside may be desired when the operator detects some backpressure from the pouch 26 that causes the operator to exert more lung pressure to breathe out. The valve 34 may also be opened in case the valve 28 gets blocked or fails in the closed position. The valve 34 is operable by the operator. The valve 34 may also be connected directly to the mask 8.
Referring to Fig. 6, an oxygen mask 38 made in accordance with the present invention is disclosed. The oxygen mask 38 includes a harness 40 to secure the oxygen mask to the
operator's head. A viewing window 42 made of transparent material allows operator to see through the oxygen mask 38. A cup 44 sealingly covers the operator's mouth and nose from the outside air. A flexible tubing 46 in communication with the interior of the cup 44 connects to the oxygen tank supply line from the tank 4 to provide oxygen to the operator. A control knob 48 is used to control the flow of oxygen to the oxygen mask
38. A microphone cord 50 may be provided for communication purposes. The oxygen mask 38 without the pouch 26 is standard construction .
The pouch 26 is operably connected to the cup 44 such that the exhaled gases are collected by the pouch 26 and the gases from the pouch 26 can be inhaled when desired. A control knob 52 is used to open or close the valve 34 to the outside through an outlet 53. When the valve 34 is closed to the outside, gas flow is directed toward the valve 28 into the pouch 26. When the valve 34 is open, gas flow is allowed to the outside through the outlet 53 while at the same time allowing flow through the valve 28 into to the pouch 26. The valve 34 may be omitted, in which case the control knob 52 is not provided. A relief valve 60 provides pressure relief for the pouch 26.
A carbon dioxide sensor 61 may be provided to warn the operator of carbon dioxide buildup inside the pouch 26. The sensor 61 may include a LED indicator that turns on when an unacceptable amount of carbon dioxide is detected. The carbon dioxide sensor can be disposed adjacent the relief valve 60 to detect the amount of carbon dioxide as the gas passes though the valve. In the absence of a carbon dioxide sensor, the provision of an oxygen sensor within or in conjunction with the pouch 26
to warn the user of oxygen depletion is desirable. Such sensors are readily available, for example, from National Draeger
Company or the Sierra Monitoring Corporation of California.
A control knob 54 is used to open the normally closed one- way valve 30 to allow gas flow from the pouch 26 to the
operator. The knob 54 is operated to open the valve 30 when the operator desires to start breathing from the pouch 26.
Referring to Fig. 7, another embodiment of an oxygen mask 56 is disclosed. The oxygen mask 56 is similar to the oxygen mask 38 except that the viewing window 42 is not provided. A harness 58 is provided to sealingly attach the cup 44 over the operator's mouth and nose. The oxygen mask 56 without the pouch 26 is standard construction. The pouch 26 is operably connected to the cup 44 as described with the oxygen mask 38.
Referring to Fig. 8, passageways 59 and 63 are connected to the cup 44 such that the interior space within the cup 44 communicates with the passageways 59 and 63. When the operator exhales, the exhaled breath flows through passageway 63 and collected within the pouch 26. When the operator inhales, gases from the pouch 26 flows through the passageway 59, if the valve 30 is open, and mixes with the oxygen supplied through the tubing 46 inside the cup 44.
The pouch 26 can be made in any shape when fully inflated, such as bottle-shaped (as shown) , spherical, cylindrical, pear- shaped, banana-shaped, water-drop shaped, etc., dictated only by the need to extend the oxygen supply from the tank 4. The pouch 26 may be prepared from gas-impermeable film, which is foldable, as shown in Fig. 9, for stowage. The pouch 26 is inflatable to its maximum volume during use, as shown in Fig. 8, and
deflatable and foldable for stowage, as shown in Fig. 9.
Referring to Figs. 8 and 10, carbon dioxide scrubbers 62 in powder form are disposed on the interior of the pouch 26 for contact with the carbon dioxide gas inside the pouch. The carbon dioxide scrubber may be encased in semi-permeable
membrane 64 in the form of packets 65 disposed around and attached to the interior sidewall 66 of the pouch 26. The packets 65 are attached to the interior surface of the pouch in any convenient means, including, for example, adhesive bonding to the sidewalls of the pouch. Multiple packets 65 of the carbon dioxide absorber can be conveniently applied on the interior of the pouch in rows and columns with free spaces 68 between each packet 65. Disposing the carbon dioxide scrubbers in packets 65 advantageously allow for folding of the pouch 26 when in stowage. The free spaces 68 between packets
advantageously provide flexibility to the pouch 26 for folding for stowage.
A wide variety of carbon dioxide scrubber can be used, including, for example, alkali metal hydroxides and oxides, and sodium carbonate. Of these, the lithium and sodium salts are preferred, and lithium hydroxide in particulate form is
particularly preferred. In addition, carbon dioxide scrubber in liquid or gel form can be used.
The membrane 64 preferably has average pore size of about from 10 to 100 microns. This pore size permits contact of the gas and moisture within the pouch with the carbon dioxide scrubber, but prevents the smaller particles of the carbon dioxide scrubber from escaping into the breathing portion of the pouch. The carbon dioxide scrubber is disposed on the interior of the pouch, to bring the carbon dioxide scrubber in contact with the gas within the pouch.
The semi-permeable membrane 64 simultaneously prevents direct inhalation of dust from the carbon dioxide scrubber while permitting contact with the gas inside the pouch. A wide variety of materials can be used, including, for example, various thermoplastic fabrics such as that commercially
available from W.L Gore and Associates as "Goretex" expanded
fluoropolymer fabric, HEPA Filters and spunbonded materials such as Tyvek (registered trademark) , spunbounded fabric and Santora spunbonded fabric. Another particularly desirable semi¬ permeable membrane for use in the present invention is the product available from Foss Manufacturing Company as OAM-465 fabric. Still another commercially available product is that attainable from Garlock Corporation as Garlock expanded
fluoropolymer film.
The carbon dioxide scrubber permits maximum utilization of the available oxygen within the pouch. As an example, a quantity of about from 50 to 500 grams, and preferably about from 75 to 150 grams, of carbon dioxide scrubber may be used. About from 3 to 4 grams of lithium hydroxide are required for removal of carbon dioxide during each minute of closed circuit breathing in an environment of substantially pure oxygen.
The carbon dioxide scrubber permits utilization of
available oxygen supply to a far greater extent than would be possible without the carbon dioxide scrubber.
Carbon dioxide scrubbers used with breathing apparatuses are disclosed in U.S. Pat. Nos .4 , 627 , 431 ; 4,998,529 and
4,683,880, which are all incorporated herein by reference.
A substantially gas-impermeable film is used for the pouch 26 and can include a wide variety of polymeric films, such as polyethylene, polypropylene, polyethylene terephthalate, nylon, polyvinyl chloride, polyurethane, fluoropolymers and polyimides. Heat resistant films are preferred for this application, of which polyimide films are particularly desirable. The exterior surface of the polymeric films used for the present devices can be metalized for further heat reflectivity, using metalizing techniques well known in the art.
In general, the size of the pouch 26 should provide an interior capacity to provide the operator with a sufficient volume of air which, in conjunction with the carbon dioxide scrubber, provides a self-contained air supply that enables comfortable and safe breathing, depending not only on the volume of oxygen or air contained within the pouch but the level of activity of the operator.
Referring to Fig. 11, the oxygen mask 38 is shown in use inside an aircraft cockpit 70 by a pilot during an emergency requiring use of the oxygen supply of the aircraft. The oxygen mask 38 is connected to the oxygen supply system 2. The pilot exhales into the pouch 26 to capture the unabsorbed oxygen from his lungs. The pilot may regulate the oxygen flow from the
system 2 to less than 100% and use the exhaled oxygen from the pouch 26, with the carbon dioxide scrubber reducing the carbon dioxide of the rebreathed gas. By reducing the oxygen flow to less than 100%, the pilot advantageously extends the useful life of the oxygen supply in the tank 4.
The system of the present invention advantageously provides a station operator with a lightweight device that extends the duration of a limited oxygen supply for several minutes. The lightweight construction and simplicity of operation makes the invention particularly useful for airline crew, eliminating the weight and encumbrance of additional oxygen tanks or other complicated systems. The pouch 26 can be safely stored with the oxygen mask for extended periods of time without deterioration of their operating capabilities. However, it is preferred to store the pouch 26 in a sealed container to insulate it from changes in the environmental conditions.
The present invention makes more effective use of the oxygen tank 4 currently in place on commercial aircraft for decompression protection. Moreover, the present invention does not require a pump or pressure source for operation of the carbon dioxide absorber once the pouch has been filled.
Although the oxygen supply system is shown in the context of an aircraft, the invention can be used in other similar environments where an operator in a station requires access to oxygen during a smoke emergency. Examples of operator stations are a submarine control station, a nuclear power plant control room, an oil rig or any other critical or military environments where the need exists for an operator to continue to operate in case of a smoke emergency, such as when smoke or other
particulate matter invades the operator station and prevents the operator from breathing the ambient air. Accordingly, where the operator is in a station that requires the operator to continue to man his station, the operator must have access to an oxygen supply in case smoke invades the operator station.
While this invention has been described as having preferred design, it is understood that it is capable of further
modification, uses and/or adaptations following in general the principle of the invention and including such departures from the present disclosure as come within known or customary
practice in the art to which the invention pertains, and as may be applied to the essential features set forth, and fall within the scope of the invention or the limits of the appended claims.
Claims
1. An oxygen supply system for a station operator, comprising :
a) an oxygen mask for being operably connected to an oxygen cylinder;
b) a pouch operably connected to the oxygen mask;
c) carbon dioxide scrubber disposed inside the pouch;
d) a first one-way valve operably connected between the oxygen mask and the pouch for allowing one-way flow of gases exhaled by the operator from the oxygen mask to the pouch; and e) a second one-way valve operably connected between the oxygen mask and the pouch for allowing one-way flow of gases from the pouch to the oxygen mask.
2. The oxygen supply system as in claim 1, wherein the oxygen mask includes a viewing window.
3. The oxygen supply system as in claim 1, wherein the pouch is foldable.
4. The oxygen supply system as in claim 1, wherein the pouch is bottle-shaped when fully inflated.
5. The oxygen supply system as in claim 1, wherein the carbon scrubber is distributed in packets attached to an inside surface of the pouch.
6. The oxygen supply system as in claim 5, wherein the packets are arranged in rows with space between the packets.
7. The oxygen supply system as in claim 1, and further comprising :
a) a bypass one-way valve operably connected to the oxygen mask; and
b) the bypass one-way valve is normally closed to the outside .
8. The oxygen supply system as in claim 7, wherein the bypass one-way valve is operable to an open position to the outside to divert exhaled gas from the operator to the outside.
9. The oxygen supply system as in claim 1, wherein the second one-way valve includes a closed position for blocking flow from the pouch to the oxygen mask and an open position for allowing flow from the pouch to the oxygen mask.
10. The oxygen supply system as in claim 1, wherein the pouch includes a carbon dioxide sensor.
11. The oxygen supply system as in claim 1, wherein the oxygen mask includes a control knob for varying the amount of oxygen provided to the operator.
12. The oxygen supply system as in claim 1, wherein the carbon dioxide scrubber includes lithium hydroxide.
13. An oxygen mask, comprising:
a) a cup for sealing attachment over a user' s mouth and nose, the cup for being connected to an oxygen supply for breathing by the user;
b) a pouch operably connected to the cup;
c) carbon dioxide scrubber disposed inside the pouch;
d) a first one-way valve operably connected between the cup and the pouch for allowing one-way flow of gases exhaled by the user to the pouch; and
e) a second one-way valve operably connected between the cup and the pouch for allowing one-way flow of gases from the pouch to the cup.
14. The oxygen mask as in claim 13, wherein the pouch is foldable .
15. The oxygen mask as in claim 13, wherein the pouch is bottle-shaped when fully inflated.
16. The oxygen mask as in claim 1, wherein the carbon scrubber is distributed in packets attached to an inside surface of the pouch.
17. The oxygen mask as in claim 16, wherein the packets are arranged in rows with space between the packets.
18. The oxygen mask as in claim 13, and further
comprising :
a) a bypass one-way valve operably connected to the cup; and
b) the bypass one-way valve is normally closed to the outside and open toward the pouch.
19. The oxygen supply system as in claim 18, wherein the bypass one-way valve is operable to an open position to the outside to divert exhaled gas flow from user to the outside.
20. The oxygen supply system as in claim 13, wherein the second one-way valve is operable to a closed position prevent gas flow from the pouch to the user and an open position for allowing gas flow from the pouch to the user.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15735386.3A EP3094384B1 (en) | 2014-01-13 | 2015-01-12 | Oxygen supply with carbon dioxide scrubber for emergency use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461926740P | 2014-01-13 | 2014-01-13 | |
US61/926,740 | 2014-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015106218A1 true WO2015106218A1 (en) | 2015-07-16 |
Family
ID=53524405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/011058 WO2015106218A1 (en) | 2014-01-13 | 2015-01-12 | Oxygen supply with carbon dioxide scrubber for emergency use |
Country Status (3)
Country | Link |
---|---|
US (1) | US9956440B2 (en) |
EP (1) | EP3094384B1 (en) |
WO (1) | WO2015106218A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD864811S1 (en) * | 2014-10-13 | 2019-10-29 | Gulfstream Aerospace Corporation | Set of window shades and visor rails for aircraft cockpit |
USD871290S1 (en) | 2014-10-13 | 2019-12-31 | Gulfstream Aerospace Corporation | Flight deck with surface ornamentation |
TWI683631B (en) * | 2019-06-18 | 2020-02-01 | 林明賢 | Hydrogen Oxygen Breathing Mask |
WO2021118660A2 (en) * | 2019-09-04 | 2021-06-17 | Infinity Fuel Cell And Hydrogen, Inc. | Hybrid o2/h2 regenerative fuel cell system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604416A (en) * | 1969-04-28 | 1971-09-14 | Universal Oil Prod Co | Emergency oxygen system |
US4154234A (en) | 1976-05-24 | 1979-05-15 | Midori Anzen Company, Ltd. | Breathing bag system for closed circuit breathing apparatus |
EP0453926B1 (en) * | 1990-04-23 | 1996-07-10 | Environmental Support Systems, Inc. | Disposable carbon dioxide absorber |
JP3921295B2 (en) * | 1998-04-06 | 2007-05-30 | 日本炭酸瓦斯株式会社 | Respiratory protection |
EP2014335A1 (en) | 2007-07-09 | 2009-01-14 | Air For Life Ltd. | Protected breathing device |
US20110277768A1 (en) | 2009-09-30 | 2011-11-17 | Hill Michael T | Emergency Breathing Apparatus |
US8272381B2 (en) * | 2009-03-25 | 2012-09-25 | Johnson Charles L | Closed circuit rebreather |
US8302603B1 (en) * | 2007-03-22 | 2012-11-06 | Weber David W | Aircrew rebreather system |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1625419A (en) * | 1922-08-12 | 1927-04-19 | Mine Safety Appliances Co | Breathing apparatus |
US3577988A (en) * | 1969-02-03 | 1971-05-11 | Agonic Engineering Inc | Dual canister recirculator |
US3976063A (en) * | 1974-09-16 | 1976-08-24 | The Bendix Corporation | Escape breathing apparatus |
US3942524A (en) * | 1974-11-08 | 1976-03-09 | The United States Of America As Represented By The Secretary Of The Interior | Emergency breather apparatus |
US4164218A (en) * | 1977-12-09 | 1979-08-14 | Midori Anzen Company, Ltd. | Personal escape breathing apparatus |
CA1127351A (en) * | 1978-03-25 | 1982-07-13 | Yoshimasa Nakagawa | Head and face protecting hood |
US4502876A (en) * | 1984-01-03 | 1985-03-05 | Behnke Jr Albert R | Cartridge for use in rebreathing apparatus |
US5222479A (en) * | 1984-07-20 | 1993-06-29 | Auergesellschaft Gmbh | Oxygen self-rescuer apparatus |
US4917081A (en) * | 1985-08-05 | 1990-04-17 | Respirator Research, Ltd. | Portable emergency breathing apparatus |
DE3700458A1 (en) * | 1987-01-09 | 1988-07-21 | Draegerwerk Ag | RESPIRATORY DEVICE WITH REGENERATION OF BREATHING AIR |
US5056512A (en) * | 1989-06-06 | 1991-10-15 | E. I. Du Pont De Nemours And Company | Multilayered hood with elastomeric neck seal |
US5165399A (en) * | 1988-08-04 | 1992-11-24 | E. I. Du Pont De Nemours And Company | CO2 absorption means |
US5165394A (en) * | 1988-08-04 | 1992-11-24 | E. I. Du Pont De Nemours And Company | Emergency life support unit |
DE4011222C1 (en) * | 1990-04-06 | 1991-09-26 | Draegerwerk Ag, 2400 Luebeck, De | |
USH1360H (en) * | 1991-04-24 | 1994-10-04 | The United States Of America, As Represented By The Secretary Of The Army | Lightweight protective gas mask and hood |
US5360002A (en) * | 1991-05-13 | 1994-11-01 | Smith Charles A | Single patient use disposable carbon dioxide absorber |
US6340024B1 (en) * | 1993-01-07 | 2002-01-22 | Dme Corporation | Protective hood and oral/nasal mask |
JP3480114B2 (en) * | 1995-04-20 | 2003-12-15 | 株式会社菊池製作所 | Oxygen respirator |
DE19832000C1 (en) * | 1998-07-16 | 1999-11-04 | Draeger Aerospace Gmbh | Hood for use in burning and contaminated environments |
US20070163591A1 (en) * | 2006-01-13 | 2007-07-19 | Ross Julian T | Method and system for providing breathable air in a closed circuit |
US7814904B2 (en) * | 2006-11-03 | 2010-10-19 | Tmr-E, Llc | Protective hood structural attachment system |
US8678001B2 (en) * | 2010-08-27 | 2014-03-25 | Breatheator Vest Systems Llc | Wearable rebreathing apparatus |
-
2015
- 2015-01-12 US US14/594,967 patent/US9956440B2/en active Active
- 2015-01-12 WO PCT/US2015/011058 patent/WO2015106218A1/en active Application Filing
- 2015-01-12 EP EP15735386.3A patent/EP3094384B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604416A (en) * | 1969-04-28 | 1971-09-14 | Universal Oil Prod Co | Emergency oxygen system |
US4154234A (en) | 1976-05-24 | 1979-05-15 | Midori Anzen Company, Ltd. | Breathing bag system for closed circuit breathing apparatus |
EP0453926B1 (en) * | 1990-04-23 | 1996-07-10 | Environmental Support Systems, Inc. | Disposable carbon dioxide absorber |
JP3921295B2 (en) * | 1998-04-06 | 2007-05-30 | 日本炭酸瓦斯株式会社 | Respiratory protection |
US8302603B1 (en) * | 2007-03-22 | 2012-11-06 | Weber David W | Aircrew rebreather system |
EP2014335A1 (en) | 2007-07-09 | 2009-01-14 | Air For Life Ltd. | Protected breathing device |
US8272381B2 (en) * | 2009-03-25 | 2012-09-25 | Johnson Charles L | Closed circuit rebreather |
US20110277768A1 (en) | 2009-09-30 | 2011-11-17 | Hill Michael T | Emergency Breathing Apparatus |
Also Published As
Publication number | Publication date |
---|---|
US9956440B2 (en) | 2018-05-01 |
US20150202472A1 (en) | 2015-07-23 |
EP3094384A4 (en) | 2017-07-19 |
EP3094384B1 (en) | 2019-03-20 |
EP3094384A1 (en) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0194657B1 (en) | Protective hood with co2 absorbent | |
US3208449A (en) | Compact walk-around rebreathing device | |
US9956440B2 (en) | Oxygen supply with carbon dioxide scrubber for emergency use | |
EP0070317B1 (en) | Life support system and method of providing fresh air to enclosed areas | |
JP2009527302A (en) | Breathing apparatus | |
US20140261406A1 (en) | Safety vest floatation system with oxygen supply | |
JP6067847B2 (en) | Emergency oxygen device for aircraft restroom | |
JP2016019747A (en) | Emergency breathing apparatus | |
GB2453134A (en) | Compact filter mask | |
US6279571B1 (en) | Emergency breathing apparatus | |
EP2679281B1 (en) | Emergency oxygen supply mask and emergency oxygen supply arrangement adapted for rescuing a passenger of an aircraft in an emergency situation, method of rescuing a passenger of an aircraft in an emergency situation | |
US4998529A (en) | Decompression and toxic fume protection apparatus | |
GB2233905A (en) | Emergency escape breathing apparatus | |
US20220266066A1 (en) | Ventilation apparatus for aircraft | |
EP0197641B1 (en) | Decompression and toxic fume protection apparatus | |
Gradwell et al. | Oxygen systems, pressure cabin and clothing | |
CA2893287C (en) | Improved protective breathing apparatus inhalation duct | |
GB2189152A (en) | Emergency escape breathing apparatus | |
CN212700126U (en) | Oxygen-carbon dioxide self-breathing balancing device | |
EP0327643A1 (en) | Protective hood and oral-nasal mask | |
EP0301732A2 (en) | Breathing apparatus | |
Werjefelt et al. | Protective hood with CO 2 absorbent | |
CN111167038A (en) | Device for supplying a user with breathing gas | |
Lovett | Project Engineer-Military Breathing Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15735386 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015735386 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015735386 Country of ref document: EP |