WO2015105040A1 - ポリテトラフルオロエチレン多孔質膜の製造方法、防水通気部材の製造方法及びエアフィルタ濾材の製造方法 - Google Patents

ポリテトラフルオロエチレン多孔質膜の製造方法、防水通気部材の製造方法及びエアフィルタ濾材の製造方法 Download PDF

Info

Publication number
WO2015105040A1
WO2015105040A1 PCT/JP2015/000019 JP2015000019W WO2015105040A1 WO 2015105040 A1 WO2015105040 A1 WO 2015105040A1 JP 2015000019 W JP2015000019 W JP 2015000019W WO 2015105040 A1 WO2015105040 A1 WO 2015105040A1
Authority
WO
WIPO (PCT)
Prior art keywords
polytetrafluoroethylene
sheet
porous membrane
ptfe
liquid lubricant
Prior art date
Application number
PCT/JP2015/000019
Other languages
English (en)
French (fr)
Inventor
志穂 内山
誠治 鮎澤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/110,633 priority Critical patent/US20160325235A1/en
Priority to CN201580004101.9A priority patent/CN105899285A/zh
Priority to KR1020167021147A priority patent/KR20160104714A/ko
Priority to EP15735234.5A priority patent/EP3093065A1/en
Publication of WO2015105040A1 publication Critical patent/WO2015105040A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • B01D46/543Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/146Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly transversely to the direction of feed and then parallel thereto
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/04Hydrophobization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a method for producing a polytetrafluoroethylene (PTFE) porous membrane, a method for producing a waterproof ventilation member using the PTFE porous membrane, and a method for producing an air filter medium in which the PTFE porous membrane is used for a collection layer.
  • PTFE polytetrafluoroethylene
  • a porous PTFE membrane is obtained by extruding and molding a mixture obtained by mixing PTFE fine powder and a liquid lubricant as an extrusion aid, and rolling the resulting molded body into a sheet and rolling it.
  • the liquid lubricant is removed from the PTFE sheet, and the PTFE sheet from which the liquid lubricant has been removed is stretched to make it porous.
  • Openings may be provided in the housings of electronic devices and lighting devices.
  • an electronic device acoustic energy propagates between an acoustic transducer such as a microphone or a speaker housed inside the housing and the outside of the housing through the opening.
  • an acoustic transducer such as a microphone or a speaker housed inside the housing and the outside of the housing through the opening.
  • air that expands due to heat generated by the light emitter is discharged to the outside through the opening.
  • a small electronic device typified by a mobile phone and a vehicle lighting device typified by a headlamp of an automobile may be required to have high waterproof properties, so that it is necessary to prevent water from entering from the opening. For this reason, the waterproof ventilation member which has both water resistance and air permeability is arrange
  • Patent Document 1 includes a step of extruding a mixture containing PTFE fine powder having a standard specific gravity of 2.19 or less and a liquid lubricant into a sheet shape using a flat die to obtain a PTFE sheet, and the PTFE sheet in its longitudinal direction.
  • a method for producing a PTFE porous membrane comprising a step of stretching a PTFE sheet in each of the longitudinal direction and the width direction to make it porous. According to this production method, it is possible to obtain a PTFE porous membrane with improved both water resistance and air permeability.
  • an object of the present invention is to provide a method for producing a PTFE porous membrane suitable for suppressing stretching unevenness of the PTFE porous membrane. Moreover, the objective of this invention is providing the manufacturing method of the waterproof ventilation member provided with the PTFE porous membrane by which the stretching nonuniformity was suppressed, and the manufacturing method of an air filter medium.
  • suppression of stretching unevenness can be achieved by adjusting the temperature of the PTFE sheet to 19 ° C. or higher when stretching the PTFE sheet from which the liquid lubricant has been removed in the width direction.
  • the present invention A process A for obtaining a PTFE sheet by extruding a mixture containing PTFE fine powder and a liquid lubricant into a sheet; and Step B, rolling the PTFE sheet through a pair of rolls along the longitudinal direction of the sheet, which is the extrusion direction in Step A; Heating the PTFE sheet at a temperature of less than 19 ° C. to a temperature of 19 ° C. or higher; Step D for stretching the rolled PTFE sheet at a temperature of 19 ° C.
  • Step E for removing the liquid lubricant from the PTFE sheet stretched in Step D;
  • a step F in which the PTFE sheet from which the liquid lubricant has been removed in the step E is stretched in each of the longitudinal direction and the width direction of the sheet to obtain a PTFE porous membrane;
  • a method for producing a PTFE porous membrane comprising:
  • a method for manufacturing a waterproof ventilation member comprising a step of connecting a fixing member to a connection region surrounding the ventilation region of the PTFE porous membrane.
  • a method for manufacturing a waterproof ventilation member which further includes a manufacturing method as a step of preparing the PTFE porous membrane.
  • Another aspect of the present invention is a method for producing an air filter medium comprising a step of joining a PTFE porous membrane and a breathable support material, the method for producing a PTFE porous membrane according to the present invention, Provided is a method for producing an air filter medium, which is further included as a step of preparing a PTFE porous membrane.
  • the present invention uneven stretching of the PTFE porous membrane can be suppressed. According to the present invention, it is possible to stably mass-produce a PTFE porous membrane having improved water resistance and air permeability.
  • a mixture containing PTFE fine powder and a liquid lubricant is extruded into a sheet shape using a flat die (T die) (step A).
  • the PTFE sheet extruded from the die is rolled by passing between a pair of rolls along the longitudinal direction (MD, machine flow direction, same as the extrusion direction in step A) (step B).
  • Process B is preferably performed while maintaining the length of the PTFE sheet in the width direction.
  • the PTFE sheet is stretched only in the longitudinal direction.
  • this rolling is performed by passing the PTFE sheet between the pair of rolling rolls while pulling the PTFE sheet with a pulling roll disposed downstream of the pair of rolling rolls in the sheet flow direction.
  • the rotational speed of the pulling roll is set slightly higher than the rotational speed of the rolling roll, the PTFE sheet is rolled in the longitudinal direction while keeping the length in the width direction constant.
  • the temperature of the rolled PTFE sheet is affected by the temperature of the roll and the atmosphere, it may be lower than 19 ° C., which is the phase transition point of PTFE.
  • the temperature of the PTFE sheet is so low, the film thickness distribution in the width direction of the obtained PTFE porous film becomes large.
  • the PTFE sheet at a temperature of less than 19 ° C. is heated to a temperature of 19 ° C. or more (step C). That is, in Step C, the PTFE sheet at a temperature lower than the phase transition point of PTFE is heated so as to have a temperature equal to or higher than the phase transition point of PTFE. However, it is preferable to heat the PTFE sheet so as to be less than the boiling point of the liquid lubricant to be used, for example, less than 200 ° C.
  • the step C is preferably performed immediately before the step D. However, as long as the temperature of the PTFE sheet drawn in the process D is 19 ° C. or higher, the process C may be performed at any stage after the process A. Step C may be performed before step B, for example.
  • a PTFE sheet at a temperature of 19 ° C. or higher is stretched in the width direction (step D).
  • the PTFE sheet is sequentially stretched in a state containing the liquid lubricant in the longitudinal direction and the width direction.
  • the temperature of the PTFE sheet may be 19 ° C. or higher while stretching is started.
  • the subsequent steps E and F are basically performed in the same manner as in the past. Specifically, first, the liquid lubricant is removed by heating the PTFE sheet (step E). Subsequently, the PTFE sheet is stretched in the longitudinal direction and the width direction to produce a PTFE porous membrane (step F). It is preferable to implement the process F at the temperature below the melting point of PTFE. Thereafter, the porous PTFE membrane may be heated to a temperature equal to or higher than the melting point of PTFE and baked (step G).
  • the draw ratio is appropriately adjusted so as to obtain desired characteristics.
  • the stretched surface ratio calculated by the product of the stretch ratio in the longitudinal direction and the stretch ratio in the width direction is appropriately adjusted according to the use of the PTFE porous membrane.
  • the stretched surface magnification is suitably 4 times or more and less than 500 times, for example.
  • the stretched surface magnification is 16 times or more and 140 times or less, particularly 30 times or more and 140 times or less, and in some cases 50 times or more and 140 times or less.
  • the stretched surface magnification may be 16 times or more and less than 30 times.
  • the stretch ratio is 150 to 700 times.
  • Standard specific gravity is also referred to as SSG, and is a specific gravity defined by the measurement method stipulated in Japanese Industrial Standard (JIS) K6892, and is known to have a negative correlation with the average molecular weight.
  • JIS Japanese Industrial Standard
  • Asahi Fluoropolymers' full-on CD-123 has a standard specific gravity of 2.155 and an average molecular weight of 12 million.
  • the company's full-on CD-145 has a standard specific gravity of 2.165 and an average molecular weight of 8 million.
  • the standard specific gravity is 2.20 and the average molecular weight is 2 million.
  • the mixing ratio of the PTFE fine powder and the liquid lubricant in the step A is preferably 5 to 50 parts by mass, particularly 5 to 30 parts by mass with respect to 100 parts by mass of the PTFE fine powder.
  • the liquid lubricant conventionally used hydrocarbon oils such as liquid paraffin and naphtha may be used. In the present invention, it is not necessary to add a large amount of liquid lubricant.
  • a flat die is used to extrude the mixture containing PTFE fine powder.
  • the flat die examples include a straight manifold type T die, a coat hanger type T die, and a fish tail type T die. Since the extrusion molding in step A is not a melt extrusion molding but an extrusion molding of a paste mixed with an auxiliary agent, the viscosity of the mixture to be extruded is high. For this reason, use of a fishtail type T die (fishtail die) is suitable among the above dies.
  • the thickness of the PTFE sheet extruded in step A is suitably 0.5 to 5.0 mm, particularly 1.2 to 2.0 mm.
  • step B the PTFE sheet is rolled in a state containing a liquid lubricant, and the PTFE sheet is stretched thinner than during extrusion to make the thickness uniform.
  • This rolling can be performed, for example, as a process in which the length in the width direction of the PTFE sheet does not change.
  • the rolling in the process B is a process of stretching the PTFE sheet only in the longitudinal direction.
  • the rolling in the process B is performed by passing the PTFE sheet between the pair of rolling rolls while pulling the PTFE sheet with a pulling roll disposed downstream of the pair of rolling rolls in the sheet flow direction. It is preferable to carry out by rolling. At this time, if the rotational speed of the pulling roll is set slightly higher than the rotational speed of the rolling roll, the PTFE sheet is stretched in the longitudinal direction while keeping the length in the width direction constant.
  • the rolling of the PTFE sheet in step B is preferably performed so that the length in the width direction after rolling relative to the length in the width direction before rolling is in the range of 90 to 110%, preferably 95 to 105%. .
  • the sheet is rolled “while maintaining the length in the width direction”.
  • the thickness of the PTFE sheet after rolling is 50 to 2000 ⁇ m, particularly 100 to 900 ⁇ m.
  • the thickness of the PTFE sheet is preferably 70% or less, for example, 5 to 60%, compared with the thickness before rolling.
  • the thickness of the PTFE sheet in step B may be 30% or less, for example, 10 to 15%, compared with the thickness before rolling.
  • the rolling in the process B needs to be performed in a state where the liquid lubricant is held on the PTFE sheet. For this reason, it implements, keeping the temperature of a PTFE sheet below the boiling point (200 degreeC) of a liquid lubricant.
  • the liquid lubricant may cause the temperature of the PTFE sheet to be lower than the ambient temperature due to heat of vaporization.
  • the temperature of the PTFE sheet that has been rolled and expanded in surface area it is not uncommon for the temperature of the PTFE sheet that has been rolled and expanded in surface area to be less than 19 ° C.
  • step C the temperature of the rolled PTFE sheet is heated to 19 ° C. or higher, preferably 25 ° C. or higher, more preferably 30 ° C. or higher. However, it is preferable to heat the PTFE sheet so that the temperature is less than 200 ° C, preferably less than 150 ° C, more preferably less than 100 ° C. There is no restriction
  • the PTFE sheet may be heated using a heater such as an infrared heater, or may be heated in a thermostatic chamber or a processing chamber maintained at a predetermined temperature.
  • step D the PTFE sheet is stretched in the width direction in a state containing the liquid lubricant.
  • This stretching may be performed using a tenter that has been conventionally used for stretching in the width direction.
  • the stretching ratio in step D is suitably 1.2 to 10 times, particularly 2.0 to 8.0 times, and in some cases 5.0 to 8.0 times. If the draw ratio is too low, it is difficult to sufficiently change the film structure. On the other hand, when this draw ratio is too high, strength reduction in the longitudinal direction and film thickness nonuniformity may occur.
  • step D since it is necessary to carry out in a state where the liquid lubricant is held on the PTFE sheet, it is carried out while keeping the temperature of the PTFE sheet below the boiling point (200 ° C.) of the liquid lubricant. For example, it is preferable to carry out while keeping the temperature of the PTFE sheet at 100 ° C. or lower, preferably 60 ° C. or lower, and in some cases 40 ° C. or lower.
  • step E the liquid lubricant is removed from the PTFE sheet stretched in the width direction.
  • This step may be performed as usual by drying the PTFE sheet, specifically by maintaining the PTFE sheet containing the liquid lubricant at a temperature suitable for removing the liquid lubricant.
  • the temperature suitable for drying is about 100 to 300 ° C.
  • step F the PTFE sheet from which the liquid lubricant has been removed is successively stretched in the longitudinal direction and the width direction to become porous.
  • the stretching in the longitudinal direction and the width direction may be carried out by a roll stretching method using a difference in the rotation speed of a roll and a tenter stretching method using a tenter, respectively, as usual. Either stretching in the longitudinal direction or stretching in the width direction may be performed first.
  • step F has a great influence on the membrane structure and membrane properties of the obtained PTFE porous membrane. What is necessary is just to set the draw ratio in the process F suitably suitably according to a desired film
  • the stretching ratio in the longitudinal direction is usually 2 to 50 times, particularly 4 to 20 times, and the stretching ratio in the width direction is usually 3 to 70 times, particularly 4 to 30 times. Is preferred.
  • the stretching ratio in the longitudinal direction is usually 5 to 30 times, particularly 10 to 20 times, and the stretching ratio in the width direction is 10 to 40 times, particularly A ratio of 20 to 30 times is preferable.
  • the stretched plane magnification is preferably 250 times or more, particularly preferably 300 times or more in order to reduce the pressure loss, and 700 times or less in order to prevent a significant reduction in the collection efficiency. In particular, 600 times or less is preferable.
  • the preferred stretched plane magnification for the PTFE porous membrane for the air filter medium is 300 times or more and 700 times or less.
  • the stretching in step F is preferably performed at a temperature lower than the melting point (327 ° C.) of PTFE, for example, 60 to 300 ° C., particularly 110 to 150 ° C. Formation of fine fibrils is promoted by stretching in step F.
  • step G the porous PTFE membrane is heated to a temperature equal to or higher than the melting point of PTFE.
  • This heating step is generally referred to as “firing” and brings about an improvement in the strength of the PTFE porous sheet.
  • the firing temperature is suitably 327 to 460 ° C.
  • the film thickness of the PTFE porous membrane according to the present invention is not particularly limited, but is preferably 1 ⁇ m to 300 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m.
  • the thickness of the PTFE porous membrane is preferably 5 to 15 ⁇ m, more preferably 7 to 13 ⁇ m, for example, 8 to 12 ⁇ m.
  • the PTFE porous membrane according to the present invention may have characteristics suitable as a waterproof breathable membrane.
  • a waterproof ventilation member according to the present invention will be described with reference to the drawings.
  • the 1A and 1B includes a PTFE porous membrane 1 and a fixing member 2 for fixing the PTFE porous membrane 1 to a casing that should ensure ventilation.
  • the fixing member 2 is connected to the PTFE porous membrane 1 in a connection region 4 surrounding the ventilation region 3 of the PTFE porous membrane 1.
  • the surface of the fixing member 2 opposite to the surface connected to the PTFE porous membrane 1 is joined to the surface of the housing so as to surround the opening provided in the housing, and the PTFE porous membrane 1 is attached to the housing. To fix. In this state, the air permeability of the housing is ensured by the air passing through the opening of the housing and the membrane 1 in the ventilation region 3, and the water resistance of the PTFE porous membrane 1 prevents water from entering the housing.
  • the ring-shaped fixing member 2 is used, but the shape of the fixing member 2 is not limited to the ring shape.
  • 1A and 1B is a double-sided tape, but the shape of the fixing member 2 is not limited to the tape shape.
  • the fixing member 2 a resin member molded so as to be fitted into the opening of the housing may be used.
  • the waterproof ventilation member shown in FIG. 2 includes a plurality of fixing members 2 a and 2 b together with the PTFE porous membrane 1.
  • the fixing members 2a and 2b have a ring shape when observed from a direction orthogonal to the membrane surface, as with the fixing member 2 (see FIGS. 1A and B), and both main surfaces of the PTFE porous membrane 1 In FIG.
  • This waterproof ventilation member is suitable for use inside a housing of an electronic device, for example.
  • the fixing member 2a is joined to a device (for example, a speaker) disposed inside the casing
  • the fixing member 2b is joined to the inner surface of the casing so as to surround the opening of the casing.
  • the PTFE porous membrane according to the present invention may have characteristics suitable as a collection layer for an air filter. According to the present invention, it is also possible to provide a PTFE porous membrane having an improved PF value while preventing a large decrease in the average fibril diameter (average fiber diameter). That is, according to the present invention, the average fiber diameter is 55 nm or more, further 57 nm or more, particularly 58 nm or more, and in some cases 60 nm or more, for example 55 to 83 nm, particularly 55 to 80 nm, while maintaining a PF value of 36 or more, Can provide a porous PTFE membrane that is improved to 37 or more, particularly 38 or more, and in some cases 40 or more. A PTFE porous membrane having a large average fiber diameter is advantageous in maintaining strength.
  • CE is a collection efficiency, and is determined by a value measured using dioctyl phthalate having a particle diameter of 0.10 to 0.20 ⁇ m under a condition of a permeation flow rate of 5.3 cm / sec.
  • PL is a pressure loss, and is determined by a value measured under the condition of a permeation flow rate of 5.3 cm / sec.
  • the present invention 99.999% or more (displayed in a form using a continuous number of 9 and 5N or more), 99.9999% (6N) or more, especially 99.99999% (7N) or more.
  • 6N 99.9999%
  • 7N 99.99999%
  • This laminating step may be performed by joining the PTFE porous membrane and the breathable support material according to a conventionally performed method.
  • the fiber constituting the breathable support material is a thermoplastic resin, specifically, polyolefin (for example, polyethylene (PE), polypropylene (PP)), polyester (for example, polyethylene terephthalate (PET)), polyamide, or a composite material thereof. What was comprised is preferable.
  • breathable support material woven fabric, non-woven fabric, felt or the like can be used, but non-woven fabric is frequently used.
  • a typical nonwoven fabric known as a preferable breathable support material is composed of a composite fiber having a core-sheath structure, and the melting point of the core component (for example, PET) is higher than the melting point of the sheath component (for example, PE).
  • This nonwoven fabric is suitable for thermal lamination in which the sheath component is melted and joined to the PTFE porous membrane.
  • the lamination of the PTFE porous membrane and the breathable support material can be carried out by an adhesive laminate or the like in addition to the above-mentioned thermal lamination.
  • an adhesive laminate for example, use of a hot melt type adhesive is appropriate.
  • the laminated structure of the PTFE porous membrane and the air-permeable support material is not particularly limited, but has a configuration in which at least one layer of air-permeable support material is disposed on both sides of the PTFE porous membrane (typically, the air-permeable material). It is preferable to use a three-layer structure of porous support material / PTFE porous membrane / breathable support material). However, if necessary, a configuration using two layers of PTFE porous membrane (for example, a five-layer configuration of breathable support material / PTFE porous membrane / breathable support material / PTFE porous membrane / breathable support material), etc. It is good.
  • a configuration in which a breathable support material having a small diameter is used as a prefilter (for example, from the upstream side of the airflow, the breathable support material (prefilter) / breathable support material / PTFE porous membrane / breathable support). It is also possible to employ a four-layer construction of materials.
  • the air filter medium is also pleated by a known method.
  • the pleating process is performed by, for example, using a reciprocating processing machine to fold the filter medium into a continuous W shape with mountain fold lines and valley fold lines set alternately and in parallel on the surface of the filter medium.
  • the pleated air filter medium may be referred to as an air filter pack.
  • a spacer may be disposed to maintain a pleated shape.
  • a resin string called a bead is often used.
  • the bead is moved along a direction orthogonal to the mountain fold (valley fold) line (a direction that goes over the valley and crosses the valley), and preferably a plurality of beads move along this direction while maintaining a predetermined interval.
  • the beads are preferably arranged on both the front and back surfaces of the filter medium.
  • the bead is typically formed by melting and applying a resin such as polyamide or polyolefin.
  • the pleated air filter medium (air filter pack) is processed into an air filter unit by supporting the peripheral edge with a frame (support frame) as necessary.
  • a frame a metal or resin member is used depending on the use of the air filter.
  • the filter medium may be fixed to the frame at the same time as the frame is molded by an injection molding method.
  • FIG. 4 shows an example of the air filter unit.
  • the air filter unit 30 includes a pleated air filter medium 10 and a frame 20 that fixes an outer edge of the air filter medium 10.
  • Example 1 A mixture was obtained by uniformly mixing 19 parts by weight of a liquid lubricant (Isopar) with 100 parts by weight of PTFE fine powder ("Polyflon F-104" manufactured by Daikin, SSG 2.171). The mixture was then extruded into a sheet using an extruder equipped with a fishtail die. The extruded PTFE sheet had a thickness of 1.5 mm and a width of 20 cm.
  • a liquid lubricant Isopar
  • PTFE fine powder Polyflon F-104" manufactured by Daikin, SSG 2.171
  • the PTFE sheet was rolled by passing between a pair of metal rolling rolls. This rolling was carried out while pulling the PTFE sheet in the longitudinal direction using a roll disposed on the downstream side of the rolling roll so that the length in the width direction of the PTFE sheet was maintained before and after rolling.
  • the thickness of the PTFE sheet obtained by rolling was 200 ⁇ m.
  • the temperature of the rolled PTFE sheet was 5 to 10 ° C.
  • the rolled PTFE sheet was heated to a temperature of 19 ° C. or higher. Specifically, the rolled PTFE sheet was heated at a speed of 7 m / min through an apparatus set at 100 ° C. so that the sheet temperature was 50 ° C.
  • the PTFE sheet at 40 ° C. was stretched 4 times in the width direction while containing the liquid lubricant. Thereafter, the stretched PTFE sheet was maintained at 150 ° C. to remove the liquid lubricant.
  • the PTFE sheet from which the liquid lubricant has been removed is stretched 12 times in the longitudinal direction at a stretching temperature of 280 ° C. by a roll stretching method, and further 30 times in the width direction at a stretching temperature of 110 ° C. by a tenter stretching method. Stretched to obtain an unsintered PTFE porous membrane.
  • the drawing surface magnification of the drawing carried out after removing the liquid lubricant is 360 times.
  • the unsintered PTFE porous membrane was fired at 400 ° C. using a hot air generating furnace to obtain a band-like PTFE porous membrane.
  • the PTFE porous membrane was made of two core-sheathed non-woven fabrics (weight per unit area 30 g / m 2 , core component PET, sheath component PE, apparent density 0.158 g / cm 2 , embossed area ratio 15%, thickness 0. 19 mm) and heat-laminated by passing between a pair of rolls heated to 180 ° C. to obtain a three-layer air filter medium (long filter medium having a width of 780 mm and a length of 200 m). It was.
  • the obtained air filter medium was subjected to pleating (mountain height (pleat width) 50 mm, number of peaks 186).
  • the pleated air filter medium was cut, and the periphery thereof was joined to a metal support frame using an adhesive to obtain an air filter unit (size: 610 mm ⁇ 610 mm, thickness 65 mm).
  • Example 1 Comparative Example 1 Except that the rolled PTFE sheet was heated to a temperature of 19 ° C. or higher, and the PTFE porous material was the same as in Example 1 except that the rolled PTFE sheet was stretched in the width direction at a temperature of 5 to 10 ° C. A membrane was prepared.
  • Comparative Example 2 A porous PTFE membrane was produced in the same manner as in Comparative Example 1 except that the blending amount of the liquid lubricant (Isopar) was 17 parts by weight.
  • the thickness of the obtained PTFE porous membrane was examined. Specifically, using a dial gauge with a scale of 0.001 mm and a probe outer diameter of 10 mm, the PTFE porous membrane at the left end, the center and the right end in the longitudinal direction of the PTFE porous membrane is shown. The thickness was examined. The results of measuring the thickness of the porous PTFE membranes of Example 1 and Comparative Examples 1 and 2 are shown in FIG.
  • Example 1 when the PTFE sheet from which the liquid lubricant was removed was stretched in the width direction, the thickness of the obtained PTFE porous film was almost the same depending on the position in the width direction, and stretching unevenness did not occur.
  • Comparative Examples 1 and 2 when the PTFE sheet from which the liquid lubricant was removed was stretched in the width direction, the thickness at the center of the obtained PTFE porous membrane was such that the left end and the right end of the PTFE porous membrane were Stretching unevenness occurred, which was thicker than the thickness at the part.
  • the PTFE porous membrane according to the present invention is useful as a waterproof permeation member, an air filter medium, and also as a material that improves the level of selective permeation in other applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

 PTFEファインパウダーと液状潤滑剤とを含む混合物をシート状に押し出し、PTFEシートを得る工程Aと、PTFEシートをその長手方向に沿って1対のロールの間を通過させて圧延する工程Bと、圧延したPTFEシートを19℃以上の温度になるように加熱する工程Cと、19℃以上の温度にある圧延されたPTFEシートをその幅方向に延伸する工程Dと、PTFEシートから液状潤滑剤を除去する工程Eと、液状潤滑剤を除去したPTFEシートをその長手方向及び幅方向のそれぞれについて延伸して多孔化する工程Fと、を具備する方法とする。

Description

ポリテトラフルオロエチレン多孔質膜の製造方法、防水通気部材の製造方法及びエアフィルタ濾材の製造方法
 本発明は、ポリテトラフルオロエチレン(PTFE)多孔質膜の製造方法、PTFE多孔質膜が用いられる防水通気部材の製造方法、及びPTFE多孔質膜が捕集層に用いられるエアフィルタ濾材の製造方法に関する。
 一般に、PTFE多孔質膜は、PTFEファインパウダーと押出助剤である液状潤滑剤とを混合して得た混合物を押し出して成形し、得られた成形体をシート状に圧延し、圧延して得たPTFEシートから液状潤滑剤を除去し、液状潤滑剤を除去したPTFEシートを延伸して多孔化することにより、製造される。
 電子機器及び照明機器の筐体には開口部が設けられることがある。電子機器においては、開口部を通じ、筐体の内部に収容されたマイクロフォン、スピーカーなどの音響トランスデューサと筐体の外部との間を音響エネルギーが伝搬する。照明機器の筐体においては、開口部を通じ、発光体の発熱により膨張する空気が外部へと排出される。携帯電話に代表される小型の電子機器、及び自動車のヘッドランプに代表される車両用照明機器には高い防水性が求められることがあるから、開口部からの水の侵入を防ぐ必要がある。このため、これらの機器の筐体の開口部には、耐水性と通気性とを兼ね備えた防水通気部材が配置されることが多い。
 防水通気部材用のPTFE多孔質膜の性能は、耐水性及び通気性を指標として評価されるが、これら2つの特性はいわゆるトレードオフの関係にある。このため、耐水性及び通気性の双方に優れた防水通気部材を提供する試みが提案されている。
 特許文献1には、標準比重が2.19以下のPTFEファインパウダーと液状潤滑剤とを含む混合物を、フラットダイを用いてシート状に押し出し、PTFEシートを得る工程と、PTFEシートをその長手方向に沿って1対のロールの間を通過させて圧延する工程と、圧延したPTFEシートをその幅方向に延伸する工程と、PTFEシートから液状潤滑剤を除去する工程と、液状潤滑剤を除去したPTFEシートをその長手方向及び幅方向のそれぞれについて延伸して多孔化する工程と、を備えたPTFE多孔質膜の製造方法が提案されている。この製造方法によれば、耐水性及び通気性の両方が改善されたPTFE多孔質膜を得ることが可能である。
特開2013-253214号公報
 しかし、特許文献1に開示された製造方法では、液状潤滑剤を除去したPTFEシートを幅方向に延伸したとき、得られたPTFE多孔質膜の厚みが幅方向の位置によって異なることがある。この延伸ムラが大きくなると、PTFE多孔質膜の耐水性又は通気性が局所的に低下するおそれがある。
 本発明は、このような事情に鑑み、PTFE多孔質膜の延伸ムラの抑制に適したPTFE多孔質膜の製造方法を提供することを目的とする。また、本発明の目的は、延伸ムラが抑制されたPTFE多孔質膜を備えた防水通気部材の製造方法及びエアフィルタ濾材の製造方法を提供することにある。
 本発明者らの検討によると、延伸ムラの抑制は、液状潤滑剤を除去したPTFEシートを幅方向に延伸するとき、PTFEシートの温度を19℃以上に調整することにより達成できる。
 本発明は、
 PTFEファインパウダーと液状潤滑剤とを含む混合物をシート状に押し出し、PTFEシートを得る工程Aと、
 前記PTFEシートを、前記工程Aにおける押し出し方向である前記シートの長手方向に沿って1対のロールの間を通過させて圧延する工程Bと、
 19℃未満の温度にある前記PTFEシートを、19℃以上の温度になるように加熱する工程Cと、
 19℃以上の温度にある圧延された前記PTFEシートを、前記シートの長手方向に直交する幅方向に延伸する工程Dと、
 前記工程Dにおいて延伸されたPTFEシートから前記液状潤滑剤を除去する工程Eと、
 前記工程Eにおいて前記液状潤滑剤が除去されたPTFEシートを、当該シートの長手方向及び幅方向のそれぞれについて延伸して、PTFE多孔質膜を得る工程Fと、
を具備するPTFE多孔質膜の製造方法、を提供する。
 本発明は、その別の側面から、PTFE多孔質膜の通気領域を囲む接続領域に固定用部材を接続する工程を具備する防水通気部材の製造方法であって、本発明によるPTFE多孔質膜の製造方法を、前記PTFE多孔質膜を準備する工程としてさらに含む、防水通気部材の製造方法、を提供する。
 本発明は、また別の側面から、PTFE多孔質膜と通気性支持材とを接合する工程を具備するエアフィルタ濾材の製造方法であって、本発明によるPTFE多孔質膜の製造方法を、前記PTFE多孔質膜を準備する工程としてさらに含む、エアフィルタ濾材の製造方法を提供する。
 本発明によれば、PTFE多孔質膜の延伸ムラを抑制することができる。本発明によれば、耐水性及び通気性が改善されたPTFE多孔質膜を安定して量産することが可能になる。
本発明による防水通気部材の一形態を示す断面図である。 本発明による防水通気部材の一形態を示す背面図である。 本発明による防水通気部材の別の一形態を示す断面図である。 本発明によるPTFE多孔質膜及び従来のPTFE多孔質膜について、液状潤滑剤を除去したPTFEシートを幅方向について延伸したとき、PTFE多孔質膜の幅方向の各位置における厚みを示すグラフである。 エアフィルタユニットの一例を示す斜視図である。
 以下、本発明の実施形態について説明する。
 本実施形態のPTFE多孔質膜の製造方法では、PTFEファインパウダーと液状潤滑剤とを含む混合物がフラットダイ(Tダイ)を用いてシート状に押し出される(工程A)。
 次いで、ダイから押し出されたPTFEシートが、その長手方向(MD、機械流れ方向、工程Aにおける押し出し方向に同じ)に沿って一対のロールの間を通過させて圧延される(工程B)。
 工程Bは、幅方向についてのPTFEシートの長さを維持しながら行うことが好ましい。この場合、PTFEシートはその長手方向のみに引き延ばされることになる。この圧延は、具体的には、一対の圧延ロールよりもシート流れ方向の下流側に配置した引っ張りロールによりPTFEシートを引っ張りながら、そのPTFEシートを当該一対の圧延ロールの間を通過させて圧延することにより、実施することができる。このとき、引っ張りロールの回転速度を圧延ロールの回転速度よりもやや高く設定すると、PTFEシートがその幅方向の長さを一定に保ちながらその長手方向に圧延される。圧延されたPTFEシートの温度は、ロール及び雰囲気の温度に影響を受けるが、PTFEの相転移点である19℃を下回ることがある。しかし、PTFEシートの温度がこの程度に低いと、得られるPTFE多孔質膜の幅方向における膜厚分布が大きくなる。
 そこで、19℃未満の温度にあるPTFEシートを、19℃以上の温度になるように加熱する(工程C)。すなわち、工程Cでは、PTFEの相転移点未満の温度にあるPTFEシートが、PTFEの相転移点以上の温度になるように加熱される。ただし、PTFEシートは、用いる液状潤滑剤の沸点未満、例えば、200℃未満となるように加熱することが好ましい。工程Cは、工程Dの直前に実施することが好ましい。ただし、工程Dにおいて延伸されるPTFEシートの温度が19℃以上である限り、工程Cは、工程Aの後のいずれかの段階で実施してもよい。工程Cは、例えば、工程Bの前に実施しても構わない。
 引き続き、19℃以上の温度にあるPTFEシートがその幅方向に延伸される(工程D)。この延伸により、PTFEシートは、長手方向及び幅方向について、液状潤滑剤を含んだ状態で順次引き伸ばされることになる。工程Dにおいては、延伸が開始される間においてPTFEシートの温度が19℃以上であればよい。
 この後の工程E及びFは、基本的に、従来と同様に実施される。具体的には、まず、PTFEシートを加熱することにより液状潤滑剤が除去される(工程E)。引き続き、PTFEシートがその長手方向及び幅方向に延伸され、PTFE多孔質膜が製造される(工程F)。工程Fは、PTFEの融点未満の温度で実施することが好ましい。その後、PTFE多孔質膜は、PTFEの融点以上の温度に加熱され、焼成されてもよい(工程G)。
 従来から実施されてきたように、工程Fにおいては、所望の特性が得られるように延伸倍率は適宜調整される。長手方向についての延伸倍率と幅方向についての延伸倍率との積により算出される延伸面倍率は、PTFE多孔質膜の用途に応じて適宜調整される。防水通気部材として供する場合、延伸面倍率は、例えば4倍以上500倍未満が適切である。通気性と耐水性とを両立させるためには、延伸面倍率を16倍以上140倍以下、特に30倍以上140倍以下、場合によっては50倍以上140倍以下とすることが好ましい。ただし、高い通気性が要求されない場合には、延伸面倍率を16倍以上30倍未満としてもよい。一方、エアフィルタ濾材の捕集層として供する場合、延伸面倍率は150倍以上700倍以下が適切である。
 原料としては、標準比重が2.19以下、特に2.16以下、であるPTFEファインパウダーを使用することが好ましい。標準比重(standard specific gravity)は、SSGとも称され、日本工業規格(JIS)K6892に規定される測定法により規定される比重であって、平均分子量と負の相関を示す傾向があることが知られている(標準比重が小さいほど平均分子量は大きくなる)。例えば、旭フロロポリマーズ社製フルオンCD-123は、標準比重2.155、平均分子量1200万、同社製フルオンCD-145は、標準比重2.165、平均分子量800万、同社製フルオンCD-1は、標準比重2.20、平均分子量200万である。
 以下、本発明の製造方法を構成する各工程をより詳細に説明する。
 工程AにおけるPTFEファインパウダーと液状潤滑剤との混合比は、例えばPTFEファインパウダー100質量部に対し、液状潤滑剤5~50質量部、特に5~30質量部が好適である。液状潤滑剤としては、従来から使用されてきた炭化水素油、例えば流動パラフィン、ナフサなどを使用すればよい。本発明においては、液状潤滑剤を多量に配合する必要はない。
 工程Aでは、PTFEファインパウダーを含む混合物の押し出しにフラットダイが用いられる。フラットダイ(Tダイ)としては、ストレートマニホールド型Tダイ、コートハンガー型Tダイ、フィッシュテール型Tダイが挙げられる。工程Aにおける押出成形は、熔融物の押出成形ではなく、助剤を混合したペーストの押出成形であるため、押し出すべき混合物の粘度が高い。このため、上記のダイの中では、フィッシュテール型Tダイ(フィッシュテールダイ)の使用が適している。
 工程Aにおいて押し出すPTFEシートの厚さは、0.5~5.0mm、特に1.2~2.0mmが適切である。
 工程Bでは、PTFEシートが液状潤滑剤を含んだ状態で圧延され、PTFEシートが押出時よりも薄く引き延ばされ、厚さが均一化される。この圧延は、例えば、PTFEシートの幅方向の長さが変化しないプロセスとして実施することができる。この場合、工程Bにおける圧延は、PTFEシートをその長手方向のみに引き延ばすプロセスである。
 工程Bにおける圧延は、具体的には、1対の圧延ロールよりもシート流れ方向の下流側に配置した引っ張りロールによりPTFEシートを引っ張りながら、そのPTFEシートを当該1対の圧延ロールの間を通過させて圧延することにより、実施することが好ましい。このとき、引っ張りロールの回転速度を圧延ロールの回転速度よりもやや高く設定すると、PTFEシートがその幅方向の長さを一定に保ちながらその長手方向に延伸される。
 工程BにおけるPTFEシートの圧延は、圧延前の幅方向の長さに対する圧延後の幅方向の長さが90~110%、好ましくは95~105%の範囲となるように、実施することが好ましい。本明細書では、幅方向の長さの変化が上記範囲内にある場合に、「幅方向の長さを維持しながら」圧延したものとする。
 工程Bにおいては、圧延後のPTFEシートの厚さを、50~2000μm、特に100~900μmとすることが好ましい。また、工程Bでは、PTFEシートの厚さを、圧延前の厚さと比較して、70%以下、例えば5~60%とすることが好ましい。工程BにおけるPTFEシートの厚さは、圧延前の厚さと比較して、30%以下、例えば10~15%としてもよい。
 工程Bにおける圧延は、PTFEシートに液状潤滑剤が保持された状態で実施する必要がある。このため、PTFEシートの温度を、液状潤滑剤の沸点(200℃)未満に保ちながら実施する。液状潤滑剤は、その気化熱によりPTFEシートの温度を雰囲気温度よりも低下させることがある。用いるロールの温度及び雰囲気温度によるが、圧延され、表面積が拡大したPTFEシートの温度が、19℃未満となることは珍しくない。
 工程Cでは、圧延されたPTFEシートの温度を、19℃以上、好ましくは25℃以上、より好ましくは30℃以上になるように加熱する。ただし、PTFEシートの温度は、200℃未満、好ましくは150℃未満、より好ましくは100℃未満になるように加熱することが好ましい。PTFEシートを加熱する方法に制限はない。PTFEシートは、赤外線ヒータ等のヒータを用いて加熱してもよいし、所定温度に保持された恒温槽や処理室で温めてもよい。
 工程Dでは、PTFEシートが液状潤滑剤を含んだ状態でその幅方向に延伸される。この延伸は、従来から幅方向への延伸に多用されてきたテンターを用いて実施するとよい。工程Dにおける延伸倍率は、1.2~10倍、特に2.0~8.0倍、場合によっては5.0~8.0倍が適当である。この延伸倍率が低すぎると、膜構造を十分に変化させることが難しくなる。他方、この延伸倍率が高すぎると、長手方向における強度低下や膜厚の不均一化が生じることがある。
 工程Dにおいても、PTFEシートに液状潤滑剤が保持された状態で実施する必要があるため、PTFEシートの温度を、液状潤滑剤の沸点(200℃)未満に保ちながら実施する。例えば、PTFEシートの温度を、100℃以下、好ましくは60℃以下、場合によっては40℃以下、に保ちながら実施することが好ましい。
 工程Eでは、幅方向に延伸したPTFEシートから液状潤滑剤が除去される。この工程は、従来どおり、PTFEシートを乾燥させることにより、具体的には液状潤滑剤を含むPTFEシートを液状潤滑剤の除去に適した温度に維持することにより、実施するとよい。乾燥に適した温度は100~300℃程度である。
 工程Fでは、液状潤滑剤を除去したPTFEシートがその長手方向及び幅方向に逐次延伸されて多孔化する。長手方向及び幅方向への延伸には、従来どおり、それぞれ、ロールの回転速度の相違を利用するロール延伸法、テンターを用いるテンター延伸法により実施するとよい。長手方向への延伸と幅方向への延伸とはいずれを先に実施しても構わない。
 工程Fにおける延伸倍率は、得られるPTFE多孔質膜の膜構造及び膜特性に大きな影響を与える。工程Fにおける延伸倍率は、所望の膜特性に応じて、適宜、適切に設定すればよい。
 適切な延伸倍率は、工程Eに至るまでの各工程における圧延、延伸などの条件に応じて変化するため、その好ましい範囲を一律に述べるのは難しい。防水通気部材として供する場合、通常は、その長手方向への延伸倍率については2~50倍、特に4~20倍が、その幅方向への延伸倍率については3~70倍、特に4~30倍が好適である。エアフィルタ濾材の捕集層として供する場合、通常は、その長手方向への延伸倍率については5~30倍、特に10~20倍が、その幅方向への延伸倍率については10~40倍、特に20~30倍が好適である。長手方向への延伸(縦延伸)の倍率と幅方向への延伸(横延伸)とを積算して求められる倍率、すなわち延伸面倍率の好ましい範囲は上記に例示したとおりである。エアフィルタ濾材の捕集層として供する場合、延伸面倍率は、圧力損失を低下させるために、250倍以上、特に300倍以上が好ましく、捕集効率の大幅な低下を防ぐために、700倍以下、特に600倍以下が好ましい。エアフィルタ濾材用のPTFE多孔質膜についての好ましい延伸面倍率は、300倍以上700倍以下である。
 工程Fにおける延伸は、PTFEの融点(327℃)未満の温度、例えば60~300℃、特に110~150℃で実施することが好ましい。工程Fにおける延伸により細いフィブリルの生成が促進される。
 工程Gでは、PTFE多孔質膜がPTFEの融点以上の温度に加熱される。この加熱工程は、一般に「焼成」と呼ばれ、PTFE多孔質シートの強度の向上をもたらす。焼成温度は327~460℃が適切である。
 本発明によるPTFE多孔質膜の膜厚は、特に制限されないが、1μm~300μm、さらには2μm~50μmが好適である。特にエアフィルタの捕集層として供する場合、PTFE多孔質膜の膜厚は、5~15μm、さらには7~13μmが好適であり、例えば8~12μmとしてもよい。
 本発明によるPTFE多孔質膜は防水通気膜として適した特性を有しうる。以下、図面を参照しながら、本発明による防水通気部材の実施形態について説明する。
 図1A及びBに示す防水通気部材は、PTFE多孔質膜1と、通気を確保するべき筐体にPTFE多孔質膜1を固定するための固定用部材2とを備えている。固定用部材2は、PTFE多孔質膜1の通気領域3を囲む接続領域4においてPTFE多孔質膜1に接続されている。固定用部材2のPTFE多孔質膜1に接続された面と反対側の面は、筐体に設けられた開口部を囲むように筐体の表面に接合され、筐体にPTFE多孔質膜1を固定する。この状態で、筐体の開口部及び通気領域3内の膜1を通過する空気によって筐体の通気性が確保され、PTFE多孔質膜1の耐水性によって筐体への水の侵入が防止される。
 図1A及びBではリング形状の固定用部材2が用いられているが、固定用部材2の形状がリング形状に限られるわけではない。また、図1A及びBに示した固定用部材2は両面テープであるが、固定用部材2の形状がテープ形状に限られるわけでもない。固定用部材2として、筐体の開口に嵌合可能に成形された樹脂部材を用いてもよい。
 図2に示す防水通気部材は、PTFE多孔質膜1とともに、複数の固定用部材2a,2bを備えている。固定用部材2a,2bは、固定用部材2(図1A及びB参照)と同様、膜面に直交する方向から観察したときにリング状の形状を有し、PTFE多孔質膜1の両主面において通気領域3を囲んでいる。この防水通気部材は、例えば電子機器の筐体の内部における使用に適している。この場合、例えば、固定用部材2aは筐体内部に配置される機器(例えばスピーカ)に接合され、固定用部材2bは筐体の開口部を囲むように筐体の内面に接合される。
 また、本発明によるPTFE多孔質膜はエアフィルタの捕集層として適した特性を有しうる。本発明によれば、フィブリルの平均径(平均繊維径)の大きな低下を防ぎながらPF値を向上させたPTFE多孔質膜を提供することもできる。すなわち、本発明によれば、平均繊維径を55nm以上、さらには57nm以上、特に58nm以上、場合によっては60nm以上、例えば55~83nm、特に55~80nmに保ちながら、PF値を36以上、さらには37以上、特に38以上、場合によっては40以上にまで向上させたPTFE多孔質膜を提供できる。平均繊維径が大きいPTFE多孔質膜は、強度の保持に有利である。
 なお、PF値は、
 PF値={-log(PT(%)/100)/(PL(Pa)/9.8)}×100
で与えられる値である。この式におけるPTは、透過率であって、PT(%)=100-CE(%)により定められる。CEは、捕集効率であって、粒子径0.10~0.20μmのジオクチルフタレートを用いて透過流速5.3cm/秒の条件で測定したときの値により定められる。PLは、圧力損失であって、透過流速5.3cm/秒の条件で測定したときの値により定められる。
 また、本発明によれば、99.999%以上(9が連続する個数を用いる形式により表示して5N以上)、さらには99.9999%(6N)以上、特に99.99999%(7N)以上、とりわけ99.999999%(8N)以上、の捕集効率を有するPTFE多孔質膜を提供することが可能である。この程度に高い捕集効率を有しつつ、本発明のPTFE多孔質膜は、例えば220Pa以下、場合によっては200Pa以下の圧力損失を同時に示すことができる。
 得られたPTFE多孔質膜をエアフィルタ用濾材として使用するためには、通気性支持材と積層することが望ましい。この積層工程は、従来から実施されてきた方法に従って、PTFE多孔質膜と通気性支持材とを接合することにより実施すればよい。
 通気性支持材を構成する繊維は、熱可塑性樹脂、具体的にはポリオレフィン(例えばポリエチレン(PE)、ポリプロピレン(PP))、ポリエステル(例えばポリエチレンテレフタレート(PET))、ポリアミド、あるいはこれらの複合材から構成されたものが好ましい。
 通気性支持材としては、織布、不織布、フェルトなどを使用することができるが、不織布が多用されている。好ましい通気性支持材として知られている代表的な不織布は、芯鞘構造を有する複合繊維からなり、芯成分(例えばPET)の融点が鞘成分(例えばPE)の融点よりも高いものである。この不織布は、鞘成分を溶融させてPTFE多孔質膜と接合させる熱ラミネートに適している。
 PTFE多孔質膜と通気性支持材との積層は、上述の熱ラミネートに加え、接着剤ラミネートなどによって実施することもできる。接着剤ラミネートでは、例えばホットメルトタイプの接着剤の使用が適当である。
 PTFE多孔質膜と通気性支持材との積層構造は、特に限定されるわけではないが、PTFE多孔質膜の両面に少なくとも1層の通気性支持材を配置した構成(典型的には、通気性支持材/PTFE多孔質膜/通気性支持材の3層構成)とすることが好ましい。ただし、必要に応じ、2層のPTFE多孔質膜を用いた構成(例えば、通気性支持材/PTFE多孔質膜/通気性支持材/PTFE多孔質膜/通気性支持材の5層構成)などとしてもよい。また、用途によっては、径が細い通気性支持材をプレフィルタとして使用する構成(例えば、気流上流側から、通気性支持材(プレフィルタ)/通気性支持材/PTFE多孔質膜/通気性支持材の4層構成)を採用することも可能である。
 通常、エアフィルタ濾材は、これも公知の手法によってプリーツ加工される。プリーツ加工は、例えばレシプロ式の加工機を用いて、交互かつ平行に濾材の表面上に設定された山折り線及び谷折り線で濾材を連続したW字状に折り込むことにより、実施される。プリーツ加工されたエアフィルタ濾材は、エアフィルタパックと呼ばれることがある。エアフィルタパックには、プリーツ加工された形状を維持するためにスペーサーが配置されることがある。スペーサーとしては、ビードと呼ばれる樹脂の紐状体がよく用いられる。ビードは、山折り(谷折り)線に直交する方向(山を越え谷を渡って進む方向)に沿って、好ましくは複数本のビードが所定の間隔を保持しつつこの方向に沿って進むように、濾材上に配置される。ビードは、好ましくは濾材の表裏面双方の上に配置される。ビードは、典型的には、ポリアミド、ポリオレフィンなどの樹脂を熔融して塗布することにより形成される。
 プリーツ加工されたエアフィルタ濾材(エアフィルタパック)は、必要に応じ、その周縁部を枠体(支持枠)により支持して、エアフィルタユニットへと加工される。枠体としては、エアフィルタの用途などに応じ、金属製又は樹脂製の部材が用いられる。樹脂製の枠体を用いる場合には、射出成形法により枠体を成形すると同時にこの枠体に濾材を固定してもよい。図4にエアフィルタユニットの一例を示す。エアフィルタユニット30は、プリーツ加工されたエアフィルタ濾材10と、エアフィルタ濾材10の外縁部を固定する枠体20とを含む。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明が以下の実施例に限定されるわけではない。
 (実施例1)
 PTFEファインパウダー(ダイキン社製「ポリフロンF-104」、SSG2.171)100重量部に液状潤滑剤(アイソパー)19重量部を均一に混合して混合物を得た。次いで、この混合物を、フィッシュテールダイを装着した押出機を用いてシート状に押し出した。押し出したPTFEシートの厚みは1.5mm、幅は20cmであった。
 さらに、PTFEシートを1対の金属圧延ロールの間を通過させて圧延した。この圧延は、圧延の前後においてPTFEシートの幅方向の長さが維持されるように、圧延ロールの下流側に配置したロールを用いてPTFEシートをその長手方向に引っ張りながら実施した。圧延して得たPTFEシートの厚みは、200μmであった。圧延したPTFEシートの温度は、5~10℃であった。
 次いで、圧延したPTFEシートを、19℃以上の温度になるように加熱した。詳細には、圧延したPTFEシートを、100℃に設定した装置の中を速度7m/minで通過させることによって、シートの温度が50℃になるように加熱した。
 引き続き、テンターを用い、40℃の状態にあるPTFEシートを、液状潤滑剤を含んだままの状態でその幅方向に4倍に延伸した。その後、延伸したPTFEシートを150℃に保持して液状潤滑剤を除去した。
 次いで、液状潤滑剤を除去したPTFEシートを、ロール延伸法により280℃の延伸温度でその長手方向に12倍に延伸し、さらにテンター延伸法により110℃の延伸温度でその幅方向に30倍に延伸し、未焼成PTFE多孔質膜を得た。液状潤滑剤を除去してから実施した延伸の延伸面倍率は360倍である。
 最後に、未焼成PTFE多孔質膜を、熱風発生炉を用いて400℃で焼成し、帯状のPTFE多孔質膜を得た。
 上記PTFE多孔質膜を、2枚の芯鞘構造の不繊布(目付量30g/m2、芯成分PET、鞘成分PE、見掛け密度0.158g/cm2、エンボス面積比率15%、厚み0.19mm)で挟持し、これを180℃に加熱された1対のロール間を通過させることにより熱ラミネートして、3層構造のエアフィルタ濾材(幅780mm、長さ200mの長尺濾材)を得た。
 次いで、得られたエアフィルタ濾材にプリーツ加工(山高さ(プリーツ幅)50mm、山数186)を施した。プリーツ加工されたエアフィルタ濾材を切断し、その周縁部を金属製の支持枠に接着剤を用いて接合し、エアフィルタユニット(大きさ:610mm×610mm、厚さ65mm)を得た。
 (比較例1)
 圧延したPTFEシートを19℃以上の温度になるように加熱せず、圧延したPTFEシートの温度が5~10℃の状態で幅方向に延伸した以外は実施例1と同様にして、PTFE多孔質膜を作製した。
 (比較例2)
 液状潤滑剤(アイソパー)の配合量を17重量部とした以外は比較例1と同様にして、PTFE多孔質膜を作製した。
 実施例1、比較例1及び2のPTFE多孔質膜につき、液状潤滑剤を除去したPTFEシートを幅方向に延伸したとき、得られたPTFE多孔質膜の厚みを調べた。詳細には、目量0.001mm、測定子外径10mmのダイヤルゲージを用いて、PTFE多孔質膜の長手方向に向かって左側の端部、中央部及び右側の端部におけるPTFE多孔質膜の厚みを調べた。実施例1、比較例1及び2のPTFE多孔質膜の厚みを測定した結果を図3に示す。
 実施例1では、液状潤滑剤を除去したPTFEシートを幅方向に延伸したとき、得られたPTFE多孔質膜の厚みが幅方向の位置によってほぼ同じであり、延伸ムラが発生しなかった。比較例1及び2では、液状潤滑剤を除去したPTFEシートを幅方向に延伸したとき、得られたPTFE多孔質膜の中央部における厚みが、PTFE多孔質膜の左側の端部及び右側の端部における厚みよりも厚く、延伸ムラが発生した。
 本発明によるPTFE多孔質膜は、防水通気部材、エアフィルタ濾材、さらにはその他の用途において選択的透過のレベル向上をもたらすものとして有用である。

Claims (9)

  1.  ポリテトラフルオロエチレンファインパウダーと液状潤滑剤とを含む混合物をシート状に押し出し、ポリテトラフルオロエチレンシートを得る工程Aと、
     前記ポリテトラフルオロエチレンシートを、前記工程Aにおける押し出し方向である前記シートの長手方向に沿って1対のロールの間を通過させて圧延する工程Bと、
     19℃未満の温度にある前記ポリテトラフルオロエチレンシートを、19℃以上の温度になるように加熱する工程Cと、
     19℃以上の温度にある圧延された前記ポリテトラフルオロエチレンシートを、前記シートの長手方向に直交する幅方向に延伸する工程Dと、
     前記工程Dにおいて延伸されたポリテトラフルオロエチレンシートから前記液状潤滑剤を除去する工程Eと、
     前記工程Eにおいて前記液状潤滑剤が除去されたポリテトラフルオロエチレンシートを、当該シートの長手方向及び幅方向のそれぞれについて延伸して、ポリテトラフルオロエチレン多孔質膜を得る工程Fと、
    を具備するポリテトラフルオロエチレン多孔質膜の製造方法。
  2.  前記ポリテトラフルオロエチレン多孔質膜をポリテトラフルオロエチレンの融点以上の温度で焼成する工程Gをさらに具備する、請求項1に記載のポリテトラフルオロエチレン多孔質膜の製造方法。
  3.  前記工程Bにおいて、前記ポリテトラフルオロエチレンシートの前記幅方向についての長さを維持しながら前記ポリテトラフルオロエチレンシートを圧延する、請求項1に記載のポリテトラフルオロエチレン多孔質膜の製造方法。
  4.  前記ポリテトラフルオロエチレンファインパウダーの標準比重が2.19以下である、請求項1に記載のポリテトラフルオロエチレン多孔質膜の製造方法。
  5.  前記混合物における前記ポリテトラフルオロエチレンファインパウダーと前記液状潤滑剤との混合比を、前記ポリテトラフルオロエチレンファインパウダー100質量部に対し、前記液状潤滑剤5~50質量部の範囲とする、請求項1に記載のポリテトラフルオロエチレン多孔質膜の製造方法。
  6.  前記工程Aにおいて、前記混合物をフィッシュテールダイを用いてシート状に押し出し、前記ポリテトラフルオロエチレンシートを得る、請求項1に記載のポリテトラフルオロエチレン多孔質膜の製造方法。
  7.  前記工程Eにおいて、前記長手方向の延伸倍率と前記幅方向の延伸倍率との積を4倍以上500倍以下とする、請求項1に記載のポリテトラフルオロエチレン多孔質膜の製造方法。
  8.  ポリテトラフルオロエチレン多孔質膜の通気領域を囲む接続領域に固定用部材を接続する工程を具備する防水通気部材の製造方法であって、
     請求項1に記載の製造方法を、前記ポリテトラフルオロエチレン多孔質膜を準備する工程としてさらに含む、防水通気部材の製造方法。
  9.  ポリテトラフルオロエチレン多孔質膜と通気性支持材とを接合する工程を具備するエアフィルタ濾材の製造方法であって、
     請求項1に記載の製造方法を、前記ポリテトラフルオロエチレン多孔質膜を準備する工程としてさらに含む、エアフィルタ濾材の製造方法。
     
PCT/JP2015/000019 2014-01-10 2015-01-06 ポリテトラフルオロエチレン多孔質膜の製造方法、防水通気部材の製造方法及びエアフィルタ濾材の製造方法 WO2015105040A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/110,633 US20160325235A1 (en) 2014-01-10 2015-01-06 Method for producing porous polytetrafluoroethylene membrane, method for producing waterproof gas-permeable member, and method for producing air filter medium
CN201580004101.9A CN105899285A (zh) 2014-01-10 2015-01-06 聚四氟乙烯多孔膜的制造方法、防水透气构件的制造方法和空气过滤器过滤介质的制造方法
KR1020167021147A KR20160104714A (ko) 2014-01-10 2015-01-06 폴리테트라플루오로에틸렌 다공질막의 제조 방법, 방수 통기 부재의 제조 방법 및 에어 필터 여과재의 제조 방법
EP15735234.5A EP3093065A1 (en) 2014-01-10 2015-01-06 Production method for polytetrafluoroethylene porous film, production method for waterproof air-permeable member, and production method for air filter filtering medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014003597A JP2015131266A (ja) 2014-01-10 2014-01-10 ポリテトラフルオロエチレン多孔質膜の製造方法、防水通気部材の製造方法及びエアフィルタ濾材の製造方法
JP2014-003597 2014-01-10

Publications (1)

Publication Number Publication Date
WO2015105040A1 true WO2015105040A1 (ja) 2015-07-16

Family

ID=53523870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000019 WO2015105040A1 (ja) 2014-01-10 2015-01-06 ポリテトラフルオロエチレン多孔質膜の製造方法、防水通気部材の製造方法及びエアフィルタ濾材の製造方法

Country Status (6)

Country Link
US (1) US20160325235A1 (ja)
EP (1) EP3093065A1 (ja)
JP (1) JP2015131266A (ja)
KR (1) KR20160104714A (ja)
CN (1) CN105899285A (ja)
WO (1) WO2015105040A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498428B (zh) * 2013-09-25 2016-08-17 江苏泛亚微透科技股份有限公司 交通声屏障用高吸声组合材料及其制备方法
JP6920042B2 (ja) * 2016-09-30 2021-08-18 日東電工株式会社 エアフィルタ濾材、エアフィルタパック及びエアフィルタユニット
KR20190062168A (ko) * 2017-11-28 2019-06-05 주식회사 엘지화학 불소계 수지 다공성 막의 제조방법
WO2019107746A1 (ko) * 2017-11-28 2019-06-06 주식회사 엘지화학 불소계 수지 다공성 막의 제조방법
US20220105452A1 (en) 2018-12-28 2022-04-07 Nitto Denko Corporation Filter pleat pack and air filter unit
CN115230131B (zh) * 2022-09-19 2022-11-29 四川省众望科希盟科技有限公司 提高膨体聚四氟乙烯薄膜均匀度的双向拉伸装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937798B1 (ja) * 1970-10-31 1974-10-12
JP2003176374A (ja) * 2001-09-13 2003-06-24 Nitto Denko Corp ポリテトラフルオロエチレン多孔質膜の製造方法および製造装置
EP1775100A1 (en) * 2005-10-12 2007-04-18 Singtex Industrial Co., Ltd. Manufacturing method of uniaxially drawn porous polytetrafluoroethylene membrane
JP2012192348A (ja) * 2011-03-16 2012-10-11 Fujifilm Corp 結晶性ポリマー微孔性膜及びその製造方法、並びに濾過用フィルタ
JP2013253214A (ja) 2011-07-05 2013-12-19 Nitto Denko Corp ポリテトラフルオロエチレン多孔質膜の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049589A (en) * 1973-03-19 1977-09-20 Sumitomo Electric Industries, Ltd. Porous films of polytetrafluoroethylene and process for producing said films
JPS53134066A (en) * 1977-04-27 1978-11-22 Nitto Electric Ind Co Ltd Manufacture of polytetrafluoroethylene laminate
CN100427661C (zh) * 2006-09-22 2008-10-22 江苏雪亮电器机械有限公司 送纱器
CN102274694B (zh) * 2010-06-08 2013-08-07 吕晓龙 一种聚四氟乙烯分离膜制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937798B1 (ja) * 1970-10-31 1974-10-12
JP2003176374A (ja) * 2001-09-13 2003-06-24 Nitto Denko Corp ポリテトラフルオロエチレン多孔質膜の製造方法および製造装置
EP1775100A1 (en) * 2005-10-12 2007-04-18 Singtex Industrial Co., Ltd. Manufacturing method of uniaxially drawn porous polytetrafluoroethylene membrane
JP2012192348A (ja) * 2011-03-16 2012-10-11 Fujifilm Corp 結晶性ポリマー微孔性膜及びその製造方法、並びに濾過用フィルタ
JP2013253214A (ja) 2011-07-05 2013-12-19 Nitto Denko Corp ポリテトラフルオロエチレン多孔質膜の製造方法

Also Published As

Publication number Publication date
JP2015131266A (ja) 2015-07-23
US20160325235A1 (en) 2016-11-10
KR20160104714A (ko) 2016-09-05
CN105899285A (zh) 2016-08-24
EP3093065A1 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5985278B2 (ja) ポリテトラフルオロエチレン多孔質膜およびエアフィルタ濾材
JP5985279B2 (ja) ポリテトラフルオロエチレン多孔質膜の製造方法
WO2015105040A1 (ja) ポリテトラフルオロエチレン多孔質膜の製造方法、防水通気部材の製造方法及びエアフィルタ濾材の製造方法
JP5985277B2 (ja) ポリテトラフルオロエチレン多孔質膜および防水通気部材
JP2005177641A (ja) エアフィルタユニットおよびその製造方法、並びにエアフィルタユニット集合体
TW201446323A (zh) 空氣過濾器濾材之製造方法、空氣過濾器濾材及空氣過濾器包
JP2014069115A (ja) フィルター用ろ材およびその製造方法
JP2008137009A (ja) エアフィルタユニットおよびその製造方法、並びにエアフィルタユニット集合体
JP5148187B2 (ja) ポリテトラフルオロエチレン多孔質膜の製造方法、巻回体、ならびに、フィルタ用濾材およびその製造方法
JP2006061808A (ja) マスク用通気フィルタ濾材
JP2007111697A (ja) エアフィルタ用ろ材
US20230356152A1 (en) Air filter medium, filter pleat pack, and air filter unit
WO2022065517A1 (ja) エアフィルタ濾材、フィルタプリーツパック及びエアフィルタユニット
JP5602213B2 (ja) 巻回体およびフィルタ用濾材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15110633

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167021147

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015735234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015735234

Country of ref document: EP