WO2015103924A1 - 混合动力车辆及其空调系统 - Google Patents

混合动力车辆及其空调系统 Download PDF

Info

Publication number
WO2015103924A1
WO2015103924A1 PCT/CN2014/094692 CN2014094692W WO2015103924A1 WO 2015103924 A1 WO2015103924 A1 WO 2015103924A1 CN 2014094692 W CN2014094692 W CN 2014094692W WO 2015103924 A1 WO2015103924 A1 WO 2015103924A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary power
heating device
air conditioning
engine
conditioning system
Prior art date
Application number
PCT/CN2014/094692
Other languages
English (en)
French (fr)
Inventor
李书福
Original Assignee
浙江吉利汽车研究院有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利汽车研究院有限公司, 浙江吉利控股集团有限公司 filed Critical 浙江吉利汽车研究院有限公司
Priority to JP2016544375A priority Critical patent/JP6313455B2/ja
Priority to EP14877615.6A priority patent/EP3093171B1/en
Priority to US15/110,562 priority patent/US9604631B2/en
Publication of WO2015103924A1 publication Critical patent/WO2015103924A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/034Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the cooling liquid of the propulsion plant and from an electric heating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • B60W2710/305Auxiliary equipments target power to auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/43Control of engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/51Driving or powering of engine accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/87Auxiliary drives
    • B60Y2400/88Air conditioners, e.g. compressor drives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to hybrid vehicles, particularly tandem hybrid vehicles and their air conditioning systems.
  • the air conditioning system in the vehicle can adjust the air temperature inside the cabin, which has an important influence on the driving experience such as somatosensory comfort.
  • the air conditioning system can generally include a refrigeration section and a heating section.
  • one type of heating is the use of a water heating device that utilizes the residual heat of the vehicle's engine during operation to heat the air.
  • a warm air core for heat exchange is usually provided in the cooling water circulation circuit of the engine to heat the air to be sent into the passenger compartment.
  • Another method of heating is to use an electric heating device that uses electrical energy to generate heat and heat the air.
  • water heaters especially when the vehicle is cold-started, it is necessary to run the engine for a long time before the cooling water can rise to a suitable working temperature. During this time, passengers may need to endure the cold. The unfavorable experience brought.
  • a high-power electric heater of about 2kw such as a PTC heater
  • PTC heater a high-power electric heater
  • a mechanical compressor is typically used in the refrigeration section of an air conditioning system, which is typically driven directly by the engine of the vehicle.
  • the engine is not always in operation.
  • the engine typically only starts when the SOC value of the power battery reaches a low threshold or when the engine is forced to start due to power demand.
  • the engine is often set to automatically stop or idle stop mode for energy savings. In the automatic stop mode, when the vehicle is idling, the engine can automatically stop running. After a certain period of time, the engine is automatically started.
  • the present applicant has proposed a power system for a tandem hybrid vehicle in the Chinese Patent Application No. 20131046791, the entire disclosure of which is incorporated herein by reference.
  • the present invention achieves unexpected technical effects based on the powertrain of the tandem hybrid vehicle of the application.
  • an air conditioning system for a hybrid vehicle for supplying a desired flow of hot air to a cabin of the hybrid vehicle.
  • the air conditioning system includes:
  • An electric heating device having an electric heating element for receiving electrical energy from a power supply circuit of the hybrid vehicle and converting it into thermal energy by the electric heating element to heat an air flow to be supplied into the vehicle compartment;
  • a water heating device having a heat exchange element for receiving circulating cooling water from a cooling circuit of an engine of the hybrid vehicle, and transferring heat of the circulating cooling water to the supply to be supplied by the heat exchange element The air flow inside the compartment;
  • a temperature sensor for detecting a temperature of the cooling water of the circulating cooling water
  • An air conditioning controller configured to selectively turn the electric heating device on and off according to the temperature of the cooling water detected by the temperature sensor when the hot air flow is supplied to the car a water heating device; wherein the electric heating device is turned on and the water heating device is turned off if the cooling water temperature is lower than a predetermined temperature threshold, in a case where the cooling water temperature is higher than the predetermined temperature threshold The electric heating device is turned off and the water heating device is turned on.
  • an air conditioning system for a series hybrid vehicle for selectively supplying a required hot air flow to a cabin of the series hybrid vehicle. Or a stream of cold air.
  • the series hybrid vehicle includes a power system for driving a vehicle, the power system including:
  • a main power unit consisting of a power battery and a traction motor
  • each of the auxiliary power units independently receiving fuel from a fuel source, converting chemical energy in the fuel into electrical energy output to a common current bus; and each of the auxiliary power units includes a An engine that converts chemical energy in the fuel into mechanical energy and a generator that converts mechanical energy of the engine into electrical energy; and
  • a power controller for controlling operation of an engine of each of the plurality of auxiliary power units according to a predetermined control strategy
  • the air conditioning system includes:
  • An electric heating device having an electric heating element for receiving electrical energy from a common current bus of the series hybrid vehicle and converting it into thermal energy by the electric heating element to heat a supply to be supplied to the vehicle compartment Air flow
  • a water heating device having a heat exchange element for respectively receiving circulating cooling water from a corresponding plurality of cooling circuits of a corresponding plurality of engines of the plurality of auxiliary power units, and cooling the cycle by the heat exchange element The heat of the water is transferred to the flow of air to be supplied into the passenger compartment;
  • a temperature sensor disposed on each of the cooling circuits for detecting a temperature of the cooling water of the circulating cooling water in the corresponding cooling circuit
  • An air conditioning controller configured to selectively turn the electric heating device on and off according to the temperature of the cooling water detected by the temperature sensor when the hot air flow is supplied to the car a water heating device; wherein, in a case where at least a predetermined number of cooling circuits in the plurality of cooling circuits reach a predetermined temperature threshold, the water heating device is turned on and the electric heating device is turned off; Electric heating device.
  • the plurality of cooling circuits are respectively provided with switching elements for selectively opening or closing water supply to the water heating device; the air conditioning controller is further configured to pass through the water heating device The switching element is controlled such that the water heating device receives only circulating cooling water from a cooling circuit corresponding to the temperature of the cooling water reaching the predetermined temperature threshold.
  • the air conditioning controller is further configured to turn off the water heating device when the electric heating device is turned on.
  • the predetermined number is one, or the predetermined number is about one third or about half of the total number of the plurality of cooling circuits.
  • the air conditioning system further includes:
  • each selected auxiliary power unit having a normal operating mode and a forced operating mode; in the normal operating mode, the power controller is based on the predetermined
  • a control strategy selectively controls engine operation or shutdown of the selected auxiliary power unit, in which the power controller controls the engine of the selected auxiliary power unit to begin or continue to operate without allowing Downtime;
  • a mechanical compressor for refrigeration which is mechanically coupled to and driven by an engine of the selected auxiliary power unit;
  • the air conditioning controller is further configured to send an activation command to the power controller when the cold air flow needs to be provided to the car; wherein the power controller causes the activation command to be received
  • the selected auxiliary power unit enters a forced mode of operation.
  • the air conditioning controller is further configured to send a deactivation command to the power controller when the cold air flow is not required to be provided to the car; wherein the power controller receives the The selected auxiliary power unit is caused to enter the normal operating mode when the command is deactivated.
  • the number of parts is one.
  • a tandem hybrid vehicle including a power system for driving a vehicle and an air conditioning system for adjusting a cabin temperature;
  • the power system includes:
  • a main power unit consisting of a power battery and a traction motor
  • each of the auxiliary power units independently receiving fuel from a fuel source, converting chemical energy in the fuel into electrical energy output to a common current bus; and each of the auxiliary power units includes a An engine that converts chemical energy in the fuel into mechanical energy and a generator that converts mechanical energy of the engine into electrical energy; and
  • a power controller for controlling operation of an engine of each of the plurality of auxiliary power units according to a predetermined control strategy; wherein a portion of the plurality of auxiliary power units of the plurality of auxiliary power units have normal operation a mode and a forced mode of operation; in the normal mode of operation, the power controller selectively controls engine operation or shutdown of the selected auxiliary power unit in accordance with a predetermined control strategy, in the forced mode of operation, The power controller controls the engine of the selected auxiliary power unit to start running or continuously running without allowing the machine to stop;
  • the air conditioning system includes:
  • An air conditioning controller configured to transmit an activation command to the power controller when the mechanical compressor is in operation; wherein the power controller causes the selected auxiliary power unit upon receiving the activation command Enter the forced work mode.
  • the air conditioning controller is further configured to send a disable command to the power controller when the mechanical compressor is not required to operate; wherein the power controller receives the disable command The selected auxiliary power unit is caused to enter the normal mode of operation.
  • the number of parts is one.
  • the heating part of the air conditioning system according to the present invention can quickly reduce the power consumption of the whole vehicle while satisfying the heat supply demand, thereby ensuring the cruising range of the vehicle and avoiding the deep power loss of the power battery, and protecting the power.
  • the battery extends its life.
  • the refrigerating portion of the air conditioning system according to the present invention can timely meet the cooling demand of the vehicle and at the same time achieve energy saving without increasing the cost.
  • the air conditioning system according to the present invention is particularly suitable for a series hybrid vehicle having a plurality of auxiliary power units.
  • FIG. 1 is a schematic conceptual diagram of a heating portion of an air conditioning system for a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 2 is an air conditioning system applied to a series hybrid vehicle having a plurality of auxiliary power units, in accordance with another embodiment of the present invention.
  • the air conditioning system may include an air conditioning controller 110, an electric heating device 120, a water heating device 130, and a temperature sensor 140.
  • the electric heating device 120 may have an electric heating element connected to a power supply circuit of the hybrid vehicle, by which electrical energy from the power supply circuit is converted into thermal energy for heating to be supplied to Air flow inside the cabin.
  • the electrical heating element can be, for example, a PTC heating element or other type of electrical heating element known to those skilled in the art.
  • the electrical heating device 120 can have a switching element 121 for controlling its operational state, which can be an electrical or electromagnetically controlled switch for opening or closing a power supply path to the electrical heating element.
  • the water heating device 130 may receive circulating cooling water from a cooling circuit of an engine of the hybrid vehicle, the heat exchange element of which may be coupled to a cooling circuit of an engine of the hybrid vehicle.
  • the heat exchange element can be, for example, a warm air core or other type of heat exchange element known to those skilled in the art.
  • the water heating device 120 may have a switching element 131 for controlling its operating state.
  • the switching element 131 may be a solenoid valve or other controlled valve disposed on a branch where the heat exchange element is located in the cooling circuit of the engine to selectively open or close the cooling circuit to the water heating device under the control of the air conditioning controller 110. 120 water supply.
  • the temperature sensor 140 is configured to detect a cooling water temperature of the circulating cooling water in the cooling circuit of the engine, and may provide the detected cooling water temperature value to the air conditioning controller 110 so as to be the air conditioning controller 110 as described below. Control operations provide control parameters.
  • the electric heating device 120 and the water heating device 130 described above may each have or have other means for sharing the flow of hot air provided to the passenger compartment, such as a blower or the like.
  • the more detailed structure and arrangement of each of the electric heating device 120 and the water heating device 130 are well known to those skilled in the art and will not be described herein.
  • the air conditioning controller 110 may be based on the cooling water detected by the temperature sensor 140 when it is required to provide a hot air flow to the car according to the manual operation of the passenger (manual air conditioning) or based on the automatic judgment of the air temperature in the car (automatic air conditioning). At the temperature, the electric heating device 120 and/or the water heating device 130 are selectively turned on or off by the switching elements 121 and 131.
  • the control strategy of the air conditioning controller 110 according to the present invention to the electric heating device 120 and the water heating device 130 in accordance with the cooling water temperature will be described in detail hereinafter.
  • the air conditioning controller 110 when the cooling water temperature is lower than the predetermined temperature threshold, the air conditioning controller 110 turns on the electric heating device 120; and when the cooling water temperature is higher than the predetermined temperature threshold, the air conditioning controller 110 turns off the electric heating device 120 and turns on the water Heating device 130.
  • the predetermined temperature threshold may be selected such that the water heating device 130 can independently satisfy the temperature of the cooling water when heating the cabin, for example, may be 80 degrees Celsius or other suitable temperature.
  • the cooling water temperature is below a predetermined temperature threshold, it indicates The temperature of the circulating cooling water of the engine is also insufficient to enable the water heating device 130 to independently meet the heating demand. Therefore, by turning on the electric heating device 120 at this time, the advantage of the heating speed of the electric heating device 120 can be utilized to quickly meet the heat supply demand.
  • the electric heating device 120 is turned off in time, and the water heating device 120 is turned on, and only the residual heat of the circulating cooling water is used to heat the air. This can immediately reduce the power consumption of the vehicle, which not only ensures the cruising range of the vehicle, but also avoids the deep loss of power of the power battery, protects the power battery and prolongs its service life.
  • the air conditioning controller 110 may take various control strategies for the water heating device 130 when the cooling water temperature is below a predetermined temperature threshold.
  • the water heating device 130 is turned off when the cooling water temperature is below a predetermined temperature threshold.
  • the circulating cooling water of the engine may not dissipate heat through the water heating device 130, which helps the circulating cooling water of the engine to warm up to the predetermined temperature threshold more quickly, thereby shortening the working time of the electric heating device 120 and reducing Power consumption.
  • the opening of the water heating device 130 can also be maintained while the cooling water temperature is below a predetermined temperature threshold.
  • the electric heating device 120 and the water heating device 130 can be operated simultaneously, and the air is heated by simultaneously utilizing the electric energy and the residual heat in the circulating cooling water heating process. Although this can further speed up the heating of the air, it will prolong the heating time of the circulating cooling water, so that the electric heating device 120 needs to work longer.
  • the air conditioning system shown in FIG. 1 and the above description of the air conditioning system only relate to the heating portion of the air conditioner, and the heating portion can be combined with any suitable air conditioning refrigeration portion existing in the prior art. Use together.
  • the applicant has proposed a power system of a series hybrid vehicle in the Chinese Patent Application No. 201310467918.2, which employs a plurality of independently controllable auxiliary power units (APUs).
  • APUs independently controllable auxiliary power units
  • Such a solution greatly reduces the power requirements for each auxiliary power unit, making its power system suitable for use with alternative fuels of lower energy density than conventional gasoline or diesel, and is suitable for engines operating in auxiliary power units.
  • the emission is effectively reduced, fuel economy is improved, and the powertrain of the series hybrid vehicle is compensated.
  • the problem of relatively low energy conversion efficiency In the current application, the Applicant has found that an air conditioning system according to the present invention can have more significant advantages based on the powertrain of such a series hybrid vehicle.
  • the series hybrid vehicle may have a main power unit composed of a power battery 30 and a traction motor 40.
  • the power battery 30 is electrically connected to a common current bus and receives power from a common current bus for charging or discharging through a common current bus.
  • Traction motor 40 is electrically coupled to a common current bus and receives electrical energy from a common current bus and converts it into mechanical power that is transmitted to the vehicle's driveline 50 to drive vehicle operation.
  • the series hybrid vehicle may also have a plurality of auxiliary power units (APUs) 20.
  • Each of the auxiliary power units 20 can independently receive fuel from the fuel source 10, converting chemical energy in the fuel into electrical energy output to a common current bus.
  • the number of auxiliary power units 20 may be two or more, preferably three or more, and more preferably six or eight.
  • the structure and performance characteristics of each auxiliary power unit 20 may be the same, and the rated power of the output may be selected according to the power demand of the entire vehicle and the number of auxiliary power units, generally 10-30 kW, preferably 20 kW.
  • Each of the auxiliary power units 20 may include an engine that converts chemical energy in the fuel into mechanical energy and a generator that converts mechanical energy of the engine into electrical energy (not separately shown in FIG. 2).
  • the power selection of the engine can be selected based on the power requirements of the respective auxiliary power unit 20.
  • the auxiliary power unit 20 may have an energy conversion efficiency of about 80-88%, and if the auxiliary power unit 20 has a rated output power of 18 kW, a suitable engine may be selected among engines having a rated output power of about 21-23 kW.
  • the fuel provided by the fuel source 10 may be selected from the group consisting of liquefied natural gas, compressed natural gas, synthetic oil, methanol, ethanol, esterified vegetable oil, and dimethyl ether, and more preferably liquefied natural gas.
  • the power controller 61 can control the operation of the engine and generator and the power battery 30 and the traction motor 40 in each of the auxiliary power units 20 based on a predetermined control strategy.
  • a predetermined control strategy In FIG. 2, for the sake of clarity of illustration, the connection relationship between the power controller 61 and each controlled unit is indicated by a chain line.
  • the power controller 61 is preferably implemented by a vehicle controller (VCU) of a series hybrid vehicle.
  • VCU vehicle controller
  • one or some of the auxiliary power units 20 may be independently activated and/or shut down by the power controller 61, and the engine of each of the auxiliary power units 20 may be operated in an optimal working power range as much as possible. It closely follows the power requirements of the vehicle, and at the same time effectively compensates for the low energy density of the alternative fuel by reducing the fuel consumption per unit mileage.
  • the powertrain of the tandem hybrid vehicle may also include other sensors, clutches, electrical converters, and other electrical and/or mechanical components, more details may be referenced.
  • Chinese Patent Application No. 201310467918.2 which is incorporated herein in its entirety.
  • the air conditioning system according to the present invention can be implemented in the powertrain of the tandem hybrid vehicle to selectively supply a desired flow of hot air or cold air into the cabin.
  • An air conditioning system according to an embodiment of the present invention may include an air conditioning controller 210, an electric heating device 220, and a water heating device 230.
  • the electric heating device 220 and the water heating device 230 may be substantially the same as the electric heating device 120 and the water heating device 130 shown in FIG. 1, respectively.
  • each auxiliary power unit 20 flowing through the water heating device 230 is indicated by a broken line with an arrow.
  • the temperature sensor 140 and the switching elements 121 and 131 as shown in FIG. 1 are not shown in FIG.
  • the temperature sensor 140 and the switching element 131 as shown in FIG. 1 can be respectively disposed in the engine cooling circuit of each auxiliary power unit 20 shown in FIG. 2, and are disposed at the electric heating device 220 of FIG. Switching element 121 shown in 1.
  • the temperature sensor 140 can be used to detect the temperature of the circulating cooling water in the engine cooling circuit of the corresponding auxiliary power unit 20, and the switching element 131 can be selectively controlled by the air conditioning controller 210. Turning on or off the water supply to the water heating device 230 of the engine cooling circuit corresponding to the auxiliary power unit 20, and the switching element 121 can selectively open or close between the electric heating device 220 and the common current bus under the control of the air conditioning controller 210. Power supply circuit.
  • the electric heating device 220 can be connected to and receive electrical energy from a common current bus of the series hybrid vehicle, and is electrically received by the electric heating device 220.
  • the electrical heating element converts electrical energy into thermal energy to heat the flow of air to be supplied into the passenger compartment.
  • the electrical heating element can be, for example, a PTC heating element or other type of electrical heating element known to those skilled in the art.
  • the water heating device 230 in FIG. 2 is to receive circulating cooling water in a corresponding plurality of cooling circuits of a plurality of engines corresponding to the plurality of auxiliary power units 20, respectively, and The heat exchange element therein transfers heat of the circulating cooling water to the air flow to be supplied into the passenger compartment.
  • a temperature sensor (not shown) provided on each cooling circuit can detect the cooling water temperature of the circulating cooling water in the corresponding cooling circuit, and can provide the detected cooling water temperature value to the air conditioning controller. 210, thereby providing control parameters for the control operation of the air conditioning controller 210 as described below.
  • the air conditioning controller 210 can select by using the switching elements 121 and 131 as shown in FIG. 1 according to the cooling water temperature of each cooling circuit detected by the temperature sensor 140.
  • the electric heating device 220 and/or the water heating device 230 are turned on or off.
  • the water heating device 230 is turned on and the electric heating device 220 is turned off if the temperature of the cooling water in at least a predetermined number of cooling circuits in the plurality of cooling circuits reaches a predetermined temperature threshold, and the electric heating device 220 is turned on.
  • the predetermined temperature threshold and the predetermined number may be set in accordance with whether the water heating device 230 can independently satisfy the requirement of heating the passenger compartment.
  • the predetermined temperature threshold can be, for example, 80 degrees Celsius or other suitable temperature.
  • the rated power of each auxiliary power unit 20 can be approximately a conventional series hybrid with the same power demand. 1/n of the rated power of a single auxiliary power unit in the vehicle, where n is the total number of auxiliary power units 20.
  • the power of each auxiliary power unit 20 is small. It is conceivable that when there are more such as 6 or even 8 auxiliary power units 20 in the series hybrid vehicle, and only the temperature of the circulating cooling water in one cooling circuit reaches a predetermined temperature threshold of, for example, 80 degrees Celsius, The amount of heat that the circulating cooling water in the cooling circuit can provide may not be sufficient to meet the heating needs of the entire vehicle.
  • the predetermined number of cooling circuits that reach a predetermined temperature threshold can be set to about one-third or about one-half of the total number of all cooling circuits, such an arrangement can be as economical as possible while achieving sufficient heating. Energy consumption. In fact, in the case where each engine of all auxiliary power units has substantially the same power, this is equivalent to engine cooling of the auxiliary power unit of about one-third or more than half of the total power of the engines of all the auxiliary power units. The temperature of the circulating cooling water in the circuit reaches a predetermined temperature threshold.
  • the predetermined number when there are two or three auxiliary power units 20 in the series hybrid vehicle, the predetermined number may be one; when there are 4-6 auxiliary power units 20 in the series hybrid vehicle, the reservation The number can be two or three, preferably two; when the tandem hybrid vehicle When there are eight auxiliary power units 20 in the middle, the predetermined number is preferably three.
  • the water heating device 230 is not enough to meet the heating demand independently, so that the electric heating device 220 is turned on, and the heating heating device 120 is utilized to quickly satisfy the heating demand.
  • the water heating device 230 is sufficient to independently satisfy the heating demand, thereby turning on the water heating device 230 and turning off the electric heating device 220, and only using the residual heat of the circulating cooling water to heat the air. This can immediately reduce the power consumption of the vehicle, which not only ensures the cruising range of the vehicle, but also avoids the deep loss of power of the power battery, protects the power battery and prolongs its service life.
  • the control modulator 210 preferably turns off the water heating device 230 when the electric heating device 220 is in operation or in an on state. At this time, the circulating cooling water of the engine of each auxiliary power unit 20 may not dissipate heat through the water heating device 230, which helps the circulating cooling water of the engine to warm up to the predetermined temperature threshold more quickly, so that the electric heating device 220 can be shortened. Working hours, reducing power consumption.
  • the air conditioning controller 210 can turn off those cooling circuits whose cooling water temperature reaches a predetermined temperature threshold, for example, by controlling the switching element 131, and turn off those cooling circuits where the cooling water temperature does not reach the predetermined temperature threshold. This can cause the water heating device 230 to receive only the circulating cooling water from the cooling circuit corresponding to the cooling water temperature reaching the predetermined temperature threshold, so as to prevent the circulating cooling water having a low temperature in the remaining cold going circuits from adversely affecting the heating.
  • the air conditioning system according to the present invention allows a part of the auxiliary power units of the plurality of auxiliary power units 20 to operate when the water heating device 230 is used to heat, while the other auxiliary power units can be shut down.
  • the single engine usually has to be integrally located when using a water heating device for heating. Working status.
  • the air conditioning system according to the present invention can save energy while meeting heating demand.
  • the air conditioning system may also include a mechanical air conditioning compressor 250 for refrigeration.
  • the air conditioner compressor 250 may be mechanically coupled to and driven by an engine of a selected one of the plurality of auxiliary power units 20.
  • the selected auxiliary power unit 20' can have There are normal working mode and forced working mode.
  • the power controller 61 selectively controls engine operation or shutdown of the selected auxiliary power unit 20' in accordance with a predetermined control strategy.
  • the power controller 61 controls the engine of the selected auxiliary power unit 20' to begin or continue to operate without allowing shutdown.
  • the air conditioner controller 210 may The power controller 61 sends an enable command.
  • the power controller 61 upon receiving the activation command, causes the selected auxiliary power unit 20' to enter the forced mode of operation.
  • the power controller 61 finds that the engine of the selected auxiliary power unit 20' is in the stop state when receiving the activation command, the engine of the selected auxiliary power unit 20' is forced to start running, and the air conditioner is compressed by the engine.
  • Machine 250 operates.
  • the power controller 61 finds that the engine of the selected auxiliary power unit 20' is already in the running state upon receiving the activation command, the engine of the selected auxiliary power unit 20' is kept in its running state, ignoring other such as The shutdown requirement of the control strategy based on the power demand, that is, the engine shutdown of the selected auxiliary power unit 20' is not allowed.
  • the air conditioner controller 210 may send a deactivation command to the power controller 61 when there is no need to provide a flow of cold air to the car or when the air conditioner compressor 250 is not required to operate.
  • the power controller 61 receives the deactivation command, the selected auxiliary power unit 20' is caused to enter the normal operation mode.
  • the engine of the selected auxiliary power unit 20' can perform an automatic shutdown or an idle stop in response to other predetermined control strategies, such as based on power demand.
  • the air conditioning system according to the present invention can forcibly operate the engine of the selected auxiliary power unit 20' and use it as a drive source of the air conditioner compressor 250 when the air conditioner compressor 250 is used for cooling, since the selected auxiliary power unit 20 does not occur. 'The engine is stopped and cooling cannot be achieved.
  • a lower cost mechanical air conditioner compressor can be used; on the other hand, while the selected auxiliary power unit 20' is in a forced operation mode, the other auxiliary power unit 20 can remain Automated or idle stop is performed in accordance with other predetermined control strategies, such as based on power demand. This saves energy while achieving a satisfactory cooling effect.
  • the output power of the engines in each of the auxiliary power units 20 of the series hybrid vehicle may be, for example, about 18 kW, and the single selected auxiliary power unit 20' is already sufficient to drive the air conditioner compressor 250.
  • the single selected auxiliary power unit 20' is already sufficient to drive the air conditioner compressor 250.
  • a single auxiliary power unit 20 The power of the engine is insufficient to drive the air conditioner compressor 250, and more but not all of the auxiliary power unit 20 may be used as the selected auxiliary power unit 20' to simultaneously drive the air conditioner compressor 250.
  • the air conditioning system of Fig. 2 includes both the heating portion and the refrigerating portion according to the present invention
  • the heating portion and the refrigerating portion of the air conditioning system according to the present invention can be independently implemented and operated. That is, in some embodiments, the heating portion of the air conditioning system described above may be separately employed, while the refrigerating portion employs other schemes than the present invention; in other embodiments, the foregoing may be employed separately.
  • the refrigerating portion of the air conditioning system, while the heating portion employs other solutions than the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种混合动力车辆及其空调系统,该空调系统的制热部分可以具有电加热装置(120,220)和水加热装置(130,230),并且根据发动机冷却水的温度在低于预定温度阈值的情况下开启电加热装置(120,220)并关闭水加热装置(130,230),在高于预定温度阈值的情况下关闭电加热装置(120,220)和所述水加热装置(130,230)。该空调系统的制冷部分可以包括机械式压缩机以及多个辅助动力单元中的一部分选定辅助动力单元(20),在需要提供冷空气流时由空调控制器(110,210)向动力控制器(61)发送一启用指令,使得选定辅助动力单元(20)进入到强制工作模式。该空调系统可以在迅速地供热的同时减少整车的用电消耗,还可以低成本实现较好的制冷效果并同时节约能耗。该空调系统特别适合于具有多个辅助动力单元的串联式混合动力车辆。

Description

混合动力车辆及其空调系统 技术领域
本发明涉及混合动力车辆尤其是串联式混合动力车辆及其空调系统。
背景技术
现在已经有同时具有内燃机发动机和电动机的混合动力车辆。内燃发动机利用通过燃烧诸如汽油的燃料来提供机械能,该机械能可以用来直接驱动车辆,也可以利用发电机转换成电能后再驱动车辆或为动力电池充电。电动机可以利用动力电池或发电机提供的电能来驱动车辆。对于混合动力车辆,通过对发动机的优化控制,可以使其一直以最高的效率运行,从而实现低污染和节能。
车辆中的空调系统可以调节车厢内的空气温度,其对体感舒适度等驾驶体验有重要影响。空调系统通常可以包括制冷部分和制热部分。
对于混合动力车辆,一种制热方式是使用水加热装置,其利用车辆发动机在运行时的余热来加热空气。为此,通常在发动机的冷却水循环回路中设置用于换热的暖风芯体,以加热要送入车厢内的空气。另一种制热方式是使用电加热装置,其利用电能来产生热量并加热空气。对于采用水加热装置的车辆,尤其是在车辆冷车启动的情况下,需要在发动机运行较长时间后才能使得冷却水上升到适合的工作温度,乘客在这段时间内就可能需要忍受寒冷所带来的不利体验。对于采用电加热装置的车辆,为了达到乘客要求的取暖效果,通常会采用2kw左右的大功率电加热器,如PTC加热器。这样的电加热器虽然可以快速加热空气,但是其长时间的工作会严重影响整车的续航里程;并且,大功率电加热器耗电过快,易引起动力电池深度亏电,缩短其使用寿命。
空调系统中的制冷部分一般会使用到机械式压缩机,其通常由车辆的发动机来直接驱动。但是,对于混合动力车辆,其发动机并不总是处于工作状态。例如,对于串联式的强混合动力车辆,通常只有当动力电池的SOC值达到低门限值或因动力需求需要强制启动发动机时发动机才会启动。对于中混和弱混的混合动力车辆,常常为了节能而为发动机设置自动停机或者说怠速停机模式。在自动停机模式下,当车辆怠速时,发动机可以自动停止运转, 经过一定的时间后再自动启动发动机。这虽然可以实现发动机的燃烧经济性,但这对由发动机驱动的压缩机的工作是不利的,可能会出现需要压缩机运行但是作为其驱动源的发动机不工作的情况。为此,现有的一种解决方案是在需要压缩机运行时强制发动机工作,但在某些情形下,特别是在驻车时,发动机的工作仅是为了驱动压缩机,这显然会不经济地增加能耗。另一种解决方案是提供电驱动的或者电/机械驱动的压缩机,但这样的压缩机的成本会显著高于常规机械式压缩机的成本。
此外,本申请人在中国专利申请No.201310467918.2中提出了一种串联式混合动力车辆的动力系统,在此将该申请的全文引入作为参考。下文将会发现,基于该申请中的串联式混合动力车辆的动力系统,本发明可以获得预料不到的技术效果。
发明内容
本发明的目的在于改善混合动力车辆尤其是串联式混合动力车辆的空调系统。
按照本发明的一个方面,提供了一种用于混合动力车辆的空调系统,用于向所述混合动力车辆的车厢内供给所需的热空气流。该空调系统包括:
具有电加热元件的电加热装置,用于接收来自所述混合动力车辆的供电电路的电能,并由所述电加热元件将其转换成热能,以加热将要供给至所述车厢内的空气流;
具有热交换元件的水加热装置,用于接收来自所述混合动力车辆的发动机的冷却回路中的循环冷却水,并由所述热交换元件将所述循环冷却水的热量传递至将要供给至所述车厢内的空气流;
温度传感器,用于检测所述循环冷却水的冷却水温度;
空调控制器,其配置成在向所述车厢提供所述热空气流时,根据所述温度传感器所检测到的所述冷却水温度选择性地开启或关闭所述电加热装置和/或所述水加热装置;其中,在所述冷却水温度低于预定温度阈值的情况下开启所述电加热装置并关闭所述水加热装置,在所述冷却水温度高于所述预定温度阈值的情况下关闭所述电加热装置并开启所述水加热装置。
按照本发明的另一方面,提供了一种用于串联式混合动力车辆的空调系统,用于选择性地向所述串联式混合动力车辆的车厢内供给所需的热空气流 或冷空气流。所述串联式混合动力车辆包括用于驱动车辆的动力系统,所述动力系统包括:
由动力电池和牵引电机构成的主动力单元;
多个辅助动力单元,每个所述辅助动力单元各自独立地从一燃料源接收燃料,将燃料中的化学能转化为电能输出到公共电流总线;并且,每个所述辅助动力单元包括将所述燃料中的化学能转化为机械能的发动机和将所述发动机的机械能转换为电能的发电机;和
动力控制器,用于根据预定控制策略控制所述多个辅助动力单元中每一辅助动力单元的发动机的工作;
所述空调系统包括:
具有电加热元件的电加热装置,用于接收来自所述串联式混合动力车辆的公共电流总线的电能,并由所述电加热元件将其转换成热能,以加热将要供给至所述车厢内的空气流;
具有热交换元件的水加热装置,用于分别接收来自所述多个辅助动力单元的对应多个发动机的对应多个冷却回路中的循环冷却水,并由所述热交换元件将所述循环冷却水的热量传递至将要供给至所述车厢内的空气流;
在每一冷却回路上设置的温度传感器,用于检测对应冷却回路中的所述循环冷却水的冷却水温度;
空调控制器,其配置成在向所述车厢提供所述热空气流时,根据所述温度传感器所检测到的所述冷却水温度选择性地开启或关闭所述电加热装置和/或所述水加热装置;其中,在所述多个冷却回路中至少预定数量的冷却回路中的冷却水温度达到预定温度阈值的情况下开启所述水加热装置并关闭所述电加热装置,否则开启所述电加热装置。
可选地,所述多个冷却回路分别设有用于选择性地开启或关闭向所述水加热装置供水的开关元件;所述空调控制器还配置成在开启所述水加热装置的情况下通过控制所述开关元件使得所述水加热装置仅接收来自所述冷却水温度达到所述预定温度阈值所对应的冷却回路的循环冷却水。
可选地,所述空调控制器还配置成在开启所述电加热装置时关闭所述水加热装置。
可选地,所述预定数量为一个,或者,所述预定数量为所述多个冷却回路的总数量的约三分之一或约一半。
可选地,所述空调系统还包括:
所述多个辅助动力单元中一部分数量的选定辅助动力单元,每一选定辅助动力单元具有普通工作模式和强制工作模式;在所述普通工作模式下,所述动力控制器根据所述预定控制策略选择性地控制所述选定辅助动力单元的发动机运行或停机,在所述强制工作模式下,所述动力控制器控制所述选定辅助动力单元的发动机开始运行或持续运行而不允许停机;和
用于制冷的机械式压缩机,其与所述选定辅助动力单元的发动机机械传动连接并由其驱动运行;
其中,所述空调控制器还配置成在需要向所述车厢提供所述冷空气流时向所述动力控制器发送一启用指令;其中,所述动力控制器在接收到所述启用指令时使得所述选定辅助动力单元进入到强制工作模式。
可选地,所述空调控制器还配置成在不需要向所述车厢提供所述冷空气流时向所述动力控制器发送一停用指令;其中,所述动力控制器在接收到所述停用指令时使得所述选定辅助动力单元进入到所述普通工作模式。
可选地,所述一部分数量为一个。
按照本发明的又一方面,提供了一种串联式混合动力车辆,包括用于驱动车辆的动力系统和用于调节车厢温度的空调系统;
所述动力系统包括:
由动力电池和牵引电机构成的主动力单元;
多个辅助动力单元,每个所述辅助动力单元各自独立地从一燃料源接收燃料,将燃料中的化学能转化为电能输出到公共电流总线;并且,每个所述辅助动力单元包括将所述燃料中的化学能转化为机械能的发动机和将所述发动机的机械能转换为电能的发电机;和
动力控制器,用于根据预定控制策略控制所述多个辅助动力单元中每一辅助动力单元的发动机的工作;其中,所述多个辅助动力单元中一部分数量的选定辅助动力单元具有普通工作模式和强制工作模式;在所述普通工作模式下,所述动力控制器根据预定控制策略选择性地控制所述选定辅助动力单元的发动机运行或停机,在所述强制工作模式下,所述动力控制器控制所述选定辅助动力单元的发动机开始运行或持续运行而不允许停机;
所述空调系统包括:
机械式压缩机,其与所述选定辅助动力单元的发动机机械传动连接并由 其驱动运行;
空调控制器,其配置成需要所述机械式压缩机工作时向所述动力控制器发送一启用指令;其中,所述动力控制器在接收到所述启用指令时使得所述选定辅助动力单元进入到强制工作模式。
可选地,所述空调控制器还配置成在不需要所述机械式压缩机工作时向所述动力控制器发送一停用指令;其中,所述动力控制器在接收到所述停用指令时使得所述选定辅助动力单元进入到所述普通工作模式。
可选地,所述一部分数量为一个。
按照本发明的空调系统的制热部分可以在迅速地满足供热的需求的同时减少整车的用电消耗,既保证了车辆的续航里程,又避免引起动力电池的深度亏电,保护了动力电池并延长了其使用寿命。按照本发明的空调系统的制冷部分可以在不提高成本的情况下及时满足车辆的制冷需求并同时实现节约能耗。按照本发明的空调系统特别适合于具有多个辅助动力单元的串联式混合动力车辆。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。附图中:
图1是根据本发明一个实施例的用于混合动力车辆的空调系统的制热部分的示意性原理图;和
图2是根据本发明的另一个实施例的空调系统,其应用于具有多个辅助动力单元的串联式混合动力车辆。
具体实施方式
图1示出了按照本发明一个实施例的用于混合动力车辆的空调系统的制热部分,用于向混合动力车辆的车厢内供给所需的热空气流。该空调系统可以包括空调控制器110、电加热装置120、水加热装置130和温度传感器140。
电加热装置120可以具有连接至混合动力车辆的供电电路中的电加热元件,由该电加热元件将来自供电电路的电能转换成热能,以加热将要供给至 车厢内的空气流。该电加热元件例如可以是本领域技术人员所熟知的PTC加热元件或其它类型的电加热元件。该电加热装置120可以具有用于控制其工作状态的开关元件121,该开关元件121可以是用于断开或闭合通向电加热元件的供电通路的电或电磁控制的开关。
水加热装置130可以接收来自所述混合动力车辆的发动机的冷却回路中的循环冷却水,其热交换元件可以连接在混合动力车辆的发动机的冷却回路中。当冷却回路中的循环冷却水流经该热交换元件时,通过换热的方式将循环冷却水的热量传递给要加热的空气,从而向车厢提供热的空气流。该热交换元件例如可以是本领域技术人员所熟知的暖风芯体或其它类型的热交换元件。该水加热装置120可以具有用于控制其工作状态的开关元件131。该开关元件131可以是设置在发动机的冷却回路中热交换元件所在的支路上的电磁阀或其它受控阀门,以便在空调控制器110的控制下选择性地开启或关闭冷却回路向水加热装置120的供水。
温度传感器140用于检测发动机的冷却回路中的循环冷却水的冷却水温度,并可以将所检测到的冷却水温度值提供给空调控制器110,从而如下文所述那样为空调控制器110的控制操作提供控制参数。
需要理解的是,尽管未示出,前文所述的电加热装置120和水加热装置130还可以分别具有或者具有共用的用于向车厢提供的热空气流的其它设备,如鼓风机等。电加热装置120和水加热装置130各自更详细的结构和布置是本领域技术人员所熟知的,在此不再赘述。
当根据乘客的手动操作(手动空调)或者根据对车厢内的空气温度的自动判断(自动空调),需要向车厢提供热空气流时,空调控制器110可以根据温度传感器140所检测到的冷却水温度,利用开关元件121和131选择性地开启或关闭电加热装置120和/或水加热装置130。在下文中将详细描述按照本发明的空调控制器110根据冷却水温度对电加热装置120和水加热装置130的控制策略。
具体地,当冷却水温度低于预定温度阈值时,空调控制器110开启电加热装置120;并且,当冷却水温度高于该预定温度阈值时,空调控制器110关闭电加热装置120并开启水加热装置130。该预定温度阈值可以选择为水加热装置130能够独立满足对车厢的供热时冷却水的温度,例如可以为80摄氏度或其它合适的温度。这样,当冷却水温度低于预定温度阈值时,表明 发动机的循环冷却水的温度还不足以使得水加热装置130能够独立满足供热需求。因此,在此时开启电加热装置120,可以利用电加热装置120加热速度快的优势,迅速地满足供热的需求。当冷却水温度高于预定温度阈值时,表明发动机的循环冷却水的温度已经使得水加热装置130足以独立满足供热需求。因此,在此时及时关闭电加热装置120,并开启水加热装置120,仅利用循环冷却水的余热来加热空气。这可以立即减少整车的用电消耗,既保证了车辆的续航里程,又避免引起动力电池的深度亏电,保护了动力电池并延长了其使用寿命。
此外,当冷却水温度低于预定温度阈值时,空调控制器110对于水加热装置130可以采取多种控制策略。在一个实施例中,当冷却水温度低于预定温度阈值时,关闭水加热装置130。此时,发动机的循环冷却水可以不流经水加热装置130散热,这有助于发动机的循环冷却水较快速地升温到该预定温度阈值,从而可以缩短电加热装置120的工作时间,减小电量消耗。在另一个实施例中,在冷却水温度低于预定温度阈值的情况下也可以同时保持水加热装置130的开启。在这种情况下,在循环冷却水升温到该预定温度阈值之前,可以使得电加热装置120和水加热装置130同时工作,通过同时利用电能以及循环冷却水升温过程中的余热来加热空气。这虽然可以进一步加快对空气的加热速度,但是却会延长循环冷却水的升温时间,从而需要电加热装置120工作更长时间。
对于上文以及下文中所提及的“开启”和“关闭”,不应当将其理解为是局限于“开启”或“关闭”的动作,而是还应包括“开启”或“关闭”的状态。
需要理解的是,图1所示的空调系统以及上文对该空调系统的描述仅涉及了空调的制热部分,该制热部分可以与现有技术中已有的任何适合的空调制冷部分组合在一起使用。
本申请人在中国专利申请No.201310467918.2中提出了一种串联式混合动力车辆的动力系统,该动力系统采用了多个独立可控的辅助动力单元(APU)。这样的方案大大降低了对每个辅助动力单元的功率要求,使得其动力系统适于使用能量密度较低的代用燃料而不使用传统的汽油或柴油,并且适于辅助动力单元中的发动机工作于处于油耗同排放都很低的工况区域,有效地减少了排放,提高了燃料经济性,弥补了串联式混合动力车辆动力系 统能量转化效率相对较低的问题。在当前申请中,本申请人发现,基于这样的串联式混合动力车辆的动力系统,按照本发明的空调系统可以具有更明显的优势。
如图2所示,该串联式混合动力车辆可以具有由动力电池30和牵引电机40构成的主动力单元。动力电池30电连接到公共电流总线,并从公共电流总线接收电能进行充电或通过公共电流总线进行放电。牵引电机40电连接到公共电流总线,并从公共电流总线接收电能,并将其转换为机械能传递给车辆的传动系50,从而驱动车辆运行。
该串联式混合动力车辆还可以具有多个辅助动力单元(APU)20。每个辅助动力单元20可以各自独立地从燃料源10接收燃料,将燃料中的化学能转化为电能输出到公共电流总线。辅助动力单元20的数量可以为2个以上,优选在3个以上,更优选地为6个或8个。每个辅助动力单元20的结构和性能特性可以相同,其输出的额定功率可根据整车的功率需求以及辅助动力单元的数量选择,一般为10-30kw,优选为20kw。每个辅助动力单元20可包括将燃料中的化学能转化为机械能的发动机和将发动机的机械能转换为电能的发电机(在图2中未分别单独示出)。发动机的功率选择可根据相应辅助动力单元20的功率需求进行选择。例如,辅助动力单元20的能量转换效率可为大约80-88%,如果辅助动力单元20额定输出功率为18kw,那么可在大约21-23kw额定输出功率的发动机中选择适用的发动机。燃料源10提供的燃料可以选自液化天然气、压缩天然气、合成油、甲醇、乙醇、酯化植物油和二甲醚构成的组中,更优选地为液化天然气。
动力控制器61可以基于预定的控制策略来控制每个辅助动力单元20中的发动机和发电机以及动力电池30和牵引电机40的工作。在图2中,为了图示的清楚,用点划线表示动力控制器61与各受控单元的连接关系。动力控制器61优选可由串联式混合动力车辆的整车控制器(VCU)来实现。在车辆运行过程中,可以通过动力控制器61独立启动和/或关停某个或某些辅助动力单元20,可以尽可能地使得每个辅助动力单元20的发动机工作于最佳工况功率区间,很好地跟随车辆的功率要求,同时通过单位里程燃料消耗量的降低有效弥补了代用燃料能量密度较低的问题。
尽管未示出,该串联式混合动力车辆的动力系统还可以包括其它传感器、离合器、电转换装置以及其它电和/或机械元件,更多的细节可以参考 在此全文引入的中国专利申请No.201310467918.2。
在该串联式混合动力车辆的动力系统可以中实现按照本发明的空调系统,以便选择性地向车厢内供给所需的热空气流或冷空气流。如图2所示的按照本发明一个实施例的空调系统,与图1类似地,可以包括空调控制器210、电加热装置220和水加热装置230。其中,电加热装置220和水加热装置230可以分别与图1所示的电加热装置120和水加热装置130基本相同。
在图2中,用带箭头的虚线表示各个辅助动力单元20的流经水加热装置230的发动机冷却回路。为了图示的清楚,在图2中未画出如图1中所示的温度传感器140以及开关元件121和131。但是可以理解,可以在图2所示的各辅助动力单元20的发动机冷却回路中分别设置如图1所示的温度传感器140以及开关元件131,并在图2的电加热装置220处设置如图1所示的开关元件121。这样,结合图1和图2可知,温度传感器140可以用来探测对应的辅助动力单元20的发动机冷却回路中的循环冷却水的温度,开关元件131可以在空调控制器210的控制下选择性地开启或关闭对应辅助动力单元20的发动机冷却回路向水加热装置230的供水,而开关元件121可以空调控制器210的控制下选择性地断开或闭合电加热装置220与公共电流总线之间的供电电路。
如图2所示,与图1中的电加热装置120类似地,该电加热装置220可以连接至该串联式混合动力车辆的公共电流总线并从其接收电能,并由该电加热装置220中的电加热元件将电能转换成热能,以加热将要供给至车厢内的空气流。该电加热元件例如可以是本领域技术人员所熟知的PTC加热元件或其它类型的电加热元件。
与图1中的水加热装置130不同的是,图2中的水加热装置230要分别接收来自多个辅助动力单元20的对应多个发动机的对应多个冷却回路中的循环冷却水,并由其中的热交换元件将循环冷却水的热量传递至将要供给至车厢内的空气流。
如前所述,在每一冷却回路上设置的未示出的温度传感器可以检测对应冷却回路中的循环冷却水的冷却水温度,并可以将所检测到的冷却水温度值提供给空调控制器210,从而如下文所述那样为空调控制器210的控制操作提供控制参数。
当根据乘客的手动操作(手动空调)或者根据对车厢内的空气温度的自 动判断(自动空调),需要向车厢提供热空气流时,空调控制器210可以根据温度传感器140所检测到的各个冷却回路的冷却水温度,利用如图1所示的开关元件121和131选择性地开启或关闭电加热装置220和/或水加热装置230。
具体地,按照本发明,在多个冷却回路中至少预定数量的冷却回路中的冷却水温度达到预定温度阈值的情况下开启水加热装置230并关闭电加热装置220,否则开启电加热装置220。该预定温度阈值和预定数量可以按照水加热装置230是否能够独立满足对车厢的供热这一要求进行设置。该预定温度阈值例如可以为80摄氏度或其它合适的温度。当某个冷却回路中的冷却水温度达到该预定温度阈值时,表明该冷却回路中的循环冷却水的温度达到了水加热装置230的工作温度。
但是,需要理解的是,在图2所示的具有多个辅助动力单元20的串联式混合动力车辆中,每个辅助动力单元20的额定功率大致可为具有相同功率需求的传统串联式混合动力车辆中的单个辅助动力单元的额定功率的1/n,其中n为辅助动力单元20的总数量。这样,每个辅助动力单元20的功率较小。可以设想,当该串联式混合动力车辆中具有较多的诸如6个甚至8个辅助动力单元20,而只有一个冷却回路中的循环冷却水的温度达到了例如80摄氏度的预定温度阈值时,该冷却回路中的循环冷却水能提供的热量可能尚不足以满足整个车辆的供热需求。在这样的情况下,需要等待有更多冷却回路中的循环冷却水的温度达到该预定温度阈值时才单独由水加热装置230来供热。本申请的发明人发现,达到预定温度阈值的冷却回路的预定数量可以设置为所有冷却回路的总数量的大约三分之一或大约一半,这样的设置可以在实现充分供热的同时尽可能节约能耗。实际上,在所有辅助动力单元的各个发动机具有基本相同功率的情况下,这等同于占所有辅助动力单元的发动机的总功率的约三分之一或约一半功率以上的辅助动力单元的发动机冷却回路中的循环冷却水的温度达到了预定温度阈值。由于冷却回路的总数量以及该预定数量均是离散的自然数,因此,这里的“大约”或“约”表示所设置的该预定数量(向上或向下)接近总数量的该预定比例即可。例如,当该串联式混合动力车辆中具有2个或3个辅助动力单元20时,该预定数量可以为一个;当该串联式混合动力车辆中具有4-6个辅助动力单元20时,该预定数量可以为两个或三个,优选为两个;当该串联式混合动力车辆 中具有8个辅助动力单元20时,该预定数量最好为三个。
这样,根据上文对预定数量和预定温度阈值的设置,当冷却回路中的循环冷却水的温度不符合“所有冷却回路中至少预定数量的冷却回路中的冷却水温度达到预定温度阈值”这一条件时,表明此时水加热装置230尚不足以独立满足供热需求,从而开启电加热装置220,利用电加热装置120加热速度快的优势,迅速地满足供热的需求。当满足上述条件时,则表明水加热装置230足以独立满足供热需求,从而开启水加热装置230并关闭电加热装置220,仅利用循环冷却水的余热来加热空气。这可以立即减少整车的用电消耗,既保证了车辆的续航里程,又避免引起动力电池的深度亏电,保护了动力电池并延长了其使用寿命。
当电加热装置220在工作时或者说处于开启状态时,控制调制器210最好关闭水加热装置230。此时,各个辅助动力单元20的发动机的循环冷却水可以不流经水加热装置230散热,这有助于发动机的循环冷却水较快速地升温到该预定温度阈值,从而可以缩短电加热装置220的工作时间,减小电量消耗。
当水加热装置230开始工作时,空调控制器210可以例如通过控制开关元件131打开冷却水温度达到预定温度阈值的那些冷却回路,而关断那些冷却水温度未达到预定温度阈值的冷却回路。这样可以使得水加热装置230仅接收来自冷却水温度达到预定温度阈值对应的冷却回路的循环冷却水,以避免其余冷去回路中温度不高的循环冷却水对供热产生不利的效果。
至此,已经参照图2描述了按照本发明的空调系统的制热部分。按照本发明的空调系统在使用水加热装置230制热时,允许多个辅助动力单元20中的一部分辅助动力单元工作,而其它辅助动力单元可以停机。而现有技术中的具有单台发动机(其功率基本等同于本发明的所有辅助动力单元的功率总和)的混合动力车辆,在使用水加热装置制热时,该单台发动机通常必须整体上处于工作状态。相比较,按照本发明的空调系统可以在满足供热需求的同时更节约能耗。
下面将继续参考图2继续描述按照本发明的空调系统的制冷部分。如图2所示,该空调系统还可以包括用于制冷的机械式空调压缩机250。该空调压缩机250可以与该多个辅助动力单元20中的一个选定辅助动力单元20’的发动机机械传动连接,并由其驱动运行。该选定辅助动力单元20’可以具 有普通工作模式和强制工作模式。在普通工作模式下,动力控制器61根据预定控制策略选择性地控制该选定辅助动力单元20’的发动机运行或停机。在强制工作模式下,该动力控制器61控制该选定辅助动力单元20’的发动机开始运行或持续运行而不允许停机。
当根据乘客的手动操作(手动空调)或者根据对车厢内的空气温度的自动判断(自动空调),需要向车厢提供冷空气流时或者说需要空调压缩机250工作时,空调控制器210可以向动力控制器61发送一启用指令。动力控制器61在接收到该启用指令后则使得该选定辅助动力单元20’进入到强制工作模式。这样,当动力控制器61在接收到该启用指令时发现该选定辅助动力单元20’的发动机处于停机状态,则强制该选定辅助动力单元20’的发动机开始运行,并由发动机带动空调压缩机250运行。当动力控制器61在接收到该启用指令时发现该选定辅助动力单元20’的发动机已经处于运行状态,则保持该选定辅助动力单元20’的发动机保持在其运行状态,而忽略其它例如基于动力需求的控制策略的停机要求,也就是说,不允许该选定辅助动力单元20’的发动机停机。
当不需要向车厢提供冷空气流时或者说不需要空调压缩机250工作时,空调控制器210可以向动力控制器61发送一停用指令。当动力控制器61接收到该停用指令时,则使得该选定辅助动力单元20’进入到普通工作模式。这样,该选定辅助动力单元20’的发动机可以响应其它例如基于动力需求的预定控制策略而进行自动停机或者说怠速停机。
按照本发明的空调系统在使用空调压缩机250进行制冷时,可以强制该选定辅助动力单元20’的发动机运行并作为空调压缩机250的驱动源,不会出现因为该选定辅助动力单元20’的发动机停机而无法实现制冷的情况。按照本发明的空调系统,一方面,可以使用成本较低的机械式空调压缩机;另一方面,在该选定辅助动力单元20’处于强制工作模式的同时,其它的辅助动力单元20可以依然按照其它的例如基于动力需求的预定控制策略进行自动停机或者说怠速停机。这样就可以在实现令人满意的制冷效果的同时节约能耗。
如前文所述,该串联式混合动力车辆的各辅助动力单元20中的发动机的输出功率可以在例如18kw左右,单个的选定辅助动力单元20’已经足以驱动该空调压缩机250。当然,在其它实施例中,如果单个辅助动力单元20 的发动机的功率不足以驱动该空调压缩机250,也可以使用更多个但不是全部辅助动力单元20作为选定辅助动力单元20’来同时驱动该空调压缩机250。
应当理解,虽然图2中的空调系统同时包含了按照本发明的制热部分和制冷部分,按照本发明的空调系统的制热部分和制冷部分可以独立实现并工作。也就是说,在一些实施例中,可以单独采用前文所述的空调系统的制热部分,而制冷部分采用不同于本发明的其它方案;在另一些实施例中,可以单独采用前文所述的空调系统的制冷部分,而制热部分采用不同于本发明的其它方案。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (12)

  1. 一种用于混合动力车辆的空调系统,用于向所述混合动力车辆的车厢内供给所需的热空气流,包括:
    具有电加热元件的电加热装置,用于接收来自所述混合动力车辆的供电电路的电能,并由所述电加热元件将其转换成热能,以加热将要供给至所述车厢内的空气流;
    具有热交换元件的水加热装置,用于接收来自所述混合动力车辆的发动机的冷却回路中的循环冷却水,并由所述热交换元件将所述循环冷却水的热量传递至将要供给至所述车厢内的空气流;
    温度传感器,用于检测所述循环冷却水的冷却水温度;和
    空调控制器,其配置成在向所述车厢提供所述热空气流时,根据所述温度传感器所检测到的所述冷却水温度选择性地开启或关闭所述电加热装置和/或所述水加热装置;其中,在所述冷却水温度低于预定温度阈值的情况下开启所述电加热装置并关闭所述水加热装置,在所述冷却水温度高于所述预定温度阈值的情况下关闭所述电加热装置并开启所述水加热装置。
  2. 一种用于串联式混合动力车辆的空调系统,用于选择性地向所述串联式混合动力车辆的车厢内供给所需的热空气流或冷空气流,所述串联式混合动力车辆包括用于驱动车辆的动力系统,所述动力系统包括:
    由动力电池和牵引电机构成的主动力单元;
    多个辅助动力单元,每个所述辅助动力单元各自独立地从一燃料源接收燃料,将燃料中的化学能转化为电能输出到公共电流总线;并且,每个所述辅助动力单元包括将所述燃料中的化学能转化为机械能的发动机和将所述发动机的机械能转换为电能的发电机;和
    动力控制器,用于根据预定控制策略控制所述多个辅助动力单元中每一辅助动力单元的发动机的工作;
    所述空调系统包括:
    具有电加热元件的电加热装置,用于接收来自所述串联式混合动力车辆的公共电流总线的电能,并由所述电加热元件将其转换成热能,以加热将要供给至所述车厢内的空气流;
    具有热交换元件的水加热装置,用于分别接收来自所述多个辅助动力单 元的对应多个发动机的对应多个冷却回路中的循环冷却水,并由所述热交换元件将所述循环冷却水的热量传递至将要供给至所述车厢内的空气流;
    在每一冷却回路上设置的温度传感器,用于检测对应冷却回路中的所述循环冷却水的冷却水温度;
    空调控制器,其配置成在向所述车厢提供所述热空气流时,根据所述温度传感器所检测到的所述冷却水温度选择性地开启或关闭所述电加热装置和/或所述水加热装置;其中,在所述多个冷却回路中至少预定数量的冷却回路中的冷却水温度达到预定温度阈值的情况下开启所述水加热装置并关闭所述电加热装置,否则开启所述电加热装置。
  3. 根据权利要求2所述的空调系统,其中,所述多个冷却回路分别设有用于选择性地开启或关闭向所述水加热装置供水的开关元件;
    所述空调控制器还配置成在开启所述水加热装置的情况下通过控制所述开关元件使得所述水加热装置仅接收来自所述冷却水温度达到所述预定温度阈值所对应的冷却回路的循环冷却水。
  4. 根据权利要求2-3中任一项所述的空调系统,其中,所述空调控制器还配置成在开启所述电加热装置时关闭所述水加热装置。
  5. 根据权利要求2-4中任一项所述的空调系统,其中,所述预定数量为一个。
  6. 根据权利要求2-4中任一项所述的空调系统,其中,所述预定数量为所述多个冷却回路的总数量的约三分之一或约一半。
  7. 根据权利要求2-6中任一项所述的空调系统,还包括:
    所述多个辅助动力单元中一部分数量的选定辅助动力单元,每一选定辅助动力单元具有普通工作模式和强制工作模式;在所述普通工作模式下,所述动力控制器根据所述预定控制策略选择性地控制所述选定辅助动力单元的发动机运行或停机,在所述强制工作模式下,所述动力控制器控制所述选定辅助动力单元的发动机开始运行或持续运行而不允许停机;和
    用于制冷的机械式压缩机,其与所述选定辅助动力单元的发动机机械传动连接并由其驱动运行;
    其中,所述空调控制器还配置成在需要向所述车厢提供所述冷空气流时向所述动力控制器发送一启用指令;其中,所述动力控制器在接收到所述启用指令时使得所述选定辅助动力单元进入到所述强制工作模式。
  8. 根据权利要求7所述的空调系统,其中,所述空调控制器还配置成在不需要向所述车厢提供所述冷空气流时向所述动力控制器发送一停用指令;其中,所述动力控制器在接收到所述停用指令时使得所述选定辅助动力单元进入到所述普通工作模式。
  9. 根据权利要求7或8所述的空调系统,其中,所述一部分数量为一个。
  10. 一种串联式混合动力车辆,包括用于驱动车辆的动力系统和用于调节车厢温度的空调系统;
    所述动力系统包括:
    由动力电池和牵引电机构成的主动力单元;
    多个辅助动力单元,每个所述辅助动力单元各自独立地从一燃料源接收燃料,将燃料中的化学能转化为电能输出到公共电流总线;并且,每个所述辅助动力单元包括将所述燃料中的化学能转化为机械能的发动机和将所述发动机的机械能转换为电能的发电机;和
    动力控制器,用于根据预定控制策略控制所述多个辅助动力单元中每一辅助动力单元的发动机的工作;其中,所述多个辅助动力单元中一部分数量的选定辅助动力单元具有普通工作模式和强制工作模式;在所述普通工作模式下,所述动力控制器根据预定控制策略选择性地控制所述选定辅助动力单元的发动机运行或停机,在所述强制工作模式下,所述动力控制器控制所述选定辅助动力单元的发动机开始运行或持续运行而不允许停机;
    所述空调系统包括:
    机械式压缩机,其与所述选定辅助动力单元的发动机机械传动连接并由其驱动运行;
    空调控制器,其配置成需要所述机械式压缩机工作时向所述动力控制器发送一启用指令;其中,所述动力控制器在接收到所述启用指令时使得所述选定辅助动力单元进入到所述强制工作模式。
  11. 根据权利要求10所述的串联式混合动力车辆,其中,所述空调控制器还配置成在不需要所述机械式压缩机工作时向所述动力控制器发送一停用指令;其中,所述动力控制器在接收到所述停用指令时使得所述选定辅助动力单元进入到所述普通工作模式。
  12. 根据权利要求10或11所述的串联式混合动力车辆,其中,所述一部分数量为一个。
PCT/CN2014/094692 2014-01-09 2014-12-23 混合动力车辆及其空调系统 WO2015103924A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016544375A JP6313455B2 (ja) 2014-01-09 2014-12-23 ハイブリッド車両およびその空調システム
EP14877615.6A EP3093171B1 (en) 2014-01-09 2014-12-23 Hybrid vehicle and air-conditioning system thereof
US15/110,562 US9604631B2 (en) 2014-01-09 2014-12-23 Hybrid vehicle and air-conditioning system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410010869.4A CN103786549B (zh) 2014-01-09 2014-01-09 混合动力车辆及其空调系统
CN201410010869.4 2014-01-09

Publications (1)

Publication Number Publication Date
WO2015103924A1 true WO2015103924A1 (zh) 2015-07-16

Family

ID=50662791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094692 WO2015103924A1 (zh) 2014-01-09 2014-12-23 混合动力车辆及其空调系统

Country Status (5)

Country Link
US (1) US9604631B2 (zh)
EP (1) EP3093171B1 (zh)
JP (1) JP6313455B2 (zh)
CN (1) CN103786549B (zh)
WO (1) WO2015103924A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103552459B (zh) 2013-10-09 2016-04-27 浙江吉利控股集团有限公司 串联式混合动力车辆的动力系统
CN103786549B (zh) * 2014-01-09 2017-12-08 浙江吉利控股集团有限公司 混合动力车辆及其空调系统
US10532751B2 (en) * 2015-01-13 2020-01-14 Mitsubishi Electric Corporation Air-conditioning device for vehicle
JP6414471B2 (ja) * 2015-01-13 2018-10-31 株式会社デンソー 車両空調制御装置
KR20170012770A (ko) * 2015-07-23 2017-02-03 현대자동차주식회사 하이브리드 차량의 난방 시스템 및 그 제어방법
AU2016320527B2 (en) * 2015-09-09 2021-09-02 Fisher & Paykel Healthcare Limited Zone heating for respiratory circuits
FR3048260B1 (fr) * 2016-02-29 2020-03-06 Renault S.A.S Systeme de commande d'un moyen de regulation thermique d'un circuit de refroidissement d'un moteur d'un vehicule automobile et procede de commande dudit systeme de commande
JP6508421B2 (ja) * 2016-04-25 2019-05-08 株式会社デンソー 空調制御装置および車両制御システム
US11220160B2 (en) * 2016-09-09 2022-01-11 Terex Usa, Llc System and method for idle mitigation on a utility truck with an electrically isolated hydraulically controlled aerial work platform
CN107116990B (zh) * 2017-03-21 2019-09-03 中国第一汽车股份有限公司 插电式混合动力轿车暖风系统的控制方法
KR102444663B1 (ko) * 2017-11-07 2022-09-19 현대자동차주식회사 하이브리드 자동차 및 그를 위한 난방 제어 방법
US11493967B2 (en) * 2018-06-01 2022-11-08 Interdigital Madison Patent Holdings, Sas Thermal shutdown with hysteresis
JP7119698B2 (ja) * 2018-07-24 2022-08-17 株式会社デンソー 車両用空調装置
CN110838756A (zh) * 2019-11-04 2020-02-25 成都仙德科技有限公司 一种便携式声能空调自动供电源切换方法
CN112339614B (zh) * 2020-10-27 2024-03-22 浙江大学 一种适用于燃料电池汽车热系统的协同管理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283829A (ja) * 2006-04-13 2007-11-01 Toyota Motor Corp 車両用空調装置
CN202145036U (zh) * 2011-07-01 2012-02-15 浙江盾安机械有限公司 电动车用热泵式冷暖空调系统
CN102434310A (zh) * 2011-11-29 2012-05-02 南京航空航天大学 内燃机-斯特林机联合循环的混合动力系统
CN103213473A (zh) * 2013-04-17 2013-07-24 安徽江淮汽车股份有限公司 一种混合动力车的水电两用加热系统和控制方法
CN103786549A (zh) * 2014-01-09 2014-05-14 浙江吉利控股集团有限公司 混合动力车辆及其空调系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950752A (en) * 1997-11-21 1999-09-14 Lockheed Martin Corp. Heating system for a hybrid electric vehicle
DE59808905D1 (de) * 1998-04-07 2003-08-07 Swatch Group Man Services Ag B Einrichtung zur Kühlung von Antriebseinheiten und zur Innenraumbeheizung eines Hybridfahrzeuges
US6484830B1 (en) * 2000-04-26 2002-11-26 Bowling Green State University Hybrid electric vehicle
KR100440157B1 (ko) * 2002-06-25 2004-07-12 현대자동차주식회사 모터 직결형 차량의 하이브리드 에어컨 시스템 제어장치및 방법
JP2004155264A (ja) * 2002-11-05 2004-06-03 Denso Corp 車両用空調装置
US7380586B2 (en) * 2004-05-10 2008-06-03 Bsst Llc Climate control system for hybrid vehicles using thermoelectric devices
CN1899863A (zh) * 2005-07-18 2007-01-24 王春刚 一种无油水源汽车空调系统
JP2008168699A (ja) * 2007-01-10 2008-07-24 Toyota Motor Corp ハイブリッド車両の制御装置
JP4321594B2 (ja) * 2007-01-17 2009-08-26 株式会社デンソー 車両用空調装置
US8376070B2 (en) * 2009-01-29 2013-02-19 General Electric Company Modular auxiliary power unit assembly for an electric vehicle
DE102010046028A1 (de) * 2009-09-22 2011-04-07 Denso Corporation, Kariya-City Klimaanlage für Fahrzeug
JP5521963B2 (ja) * 2010-10-06 2014-06-18 株式会社デンソー 車両用空調装置
CN202046309U (zh) * 2011-04-22 2011-11-23 浙江吉利汽车研究院有限公司 一种混合动力汽车的空调系统
CN102837619A (zh) * 2011-06-22 2012-12-26 荣成中大汽车有限公司 一种电动汽车的增程、空调系统
CN102529642B (zh) * 2012-01-09 2015-07-01 重庆长安汽车股份有限公司 一种用于增程式电动车的空调供热系统的控制方法
JP5982850B2 (ja) * 2012-02-13 2016-08-31 株式会社デンソー ハイブリッド車両の制御装置
CN103552459B (zh) 2013-10-09 2016-04-27 浙江吉利控股集团有限公司 串联式混合动力车辆的动力系统
US10336158B2 (en) * 2013-12-30 2019-07-02 Ford Global Technologies, Llc Method and system for heating a vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283829A (ja) * 2006-04-13 2007-11-01 Toyota Motor Corp 車両用空調装置
CN202145036U (zh) * 2011-07-01 2012-02-15 浙江盾安机械有限公司 电动车用热泵式冷暖空调系统
CN102434310A (zh) * 2011-11-29 2012-05-02 南京航空航天大学 内燃机-斯特林机联合循环的混合动力系统
CN103213473A (zh) * 2013-04-17 2013-07-24 安徽江淮汽车股份有限公司 一种混合动力车的水电两用加热系统和控制方法
CN103786549A (zh) * 2014-01-09 2014-05-14 浙江吉利控股集团有限公司 混合动力车辆及其空调系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3093171A4

Also Published As

Publication number Publication date
EP3093171B1 (en) 2019-05-15
US20160339900A1 (en) 2016-11-24
JP6313455B2 (ja) 2018-04-18
JP2017507827A (ja) 2017-03-23
CN103786549B (zh) 2017-12-08
EP3093171A1 (en) 2016-11-16
CN103786549A (zh) 2014-05-14
EP3093171A4 (en) 2017-08-02
US9604631B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
WO2015103924A1 (zh) 混合动力车辆及其空调系统
CN106335387B (zh) 预调节电动车辆
KR101189581B1 (ko) 냉각수 폐열을 이용하는 연료전지 자동차의 난방 제어 방법
JP5593087B2 (ja) 電気自動車の空気調和装置とその制御方法
US9960461B2 (en) System and method for temperature control of multi-battery systems
CN108281735B (zh) 一种电动汽车电池保温系统及其方法
CN108340753B (zh) 用于控制电动车辆内的电动加热装置的系统和方法
US20130269911A1 (en) Thermal management system and related methods for vehicle having electric traction motor and range extending device
CN102529642B (zh) 一种用于增程式电动车的空调供热系统的控制方法
CN101817302A (zh) 插电式混合动力电动车辆的热量利用系统
KR102257214B1 (ko) 액체 냉각재 전달 회로를 포함하는 하이브리드 전기 차량을 위한 냉각 시스템을 작동시키기 위한 방법
CN110198851B (zh) 用于操作包括液体冷却剂传递回路的混合动力电动车辆冷却系统的方法
KR20120051826A (ko) 냉각수 폐열을 이용하는 연료전지 자동차의 난방시스템
EP2890574A1 (en) Method and vehicle for operating a vehicle air conditioning system
CN102101426A (zh) 汽车空调及其控制方法
US20140136087A1 (en) Vehicle control apparatus
CN108340748B (zh) 车辆的控制方法、装置及车辆
CN208803925U (zh) 铁路移动发电装备用油箱总成
KR20120094567A (ko) 전기자동차의 폐열 난방 시스템
CN112012864A (zh) 一种多工作模式机车的预热系统及其控制方法
CN101927680A (zh) 一种电动汽车燃油加热系统
KR20070059407A (ko) Hev용 공조 시스템과 이를 이용한 난방 제어방법
CN110758062A (zh) 一种氢能汽车fcu散热器风扇控制方法
CN219789950U (zh) 一种用于增程式电动叉车的热管线
KR101593240B1 (ko) 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544375

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014877615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15110562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE