WO2015099596A1 - A method of locking a planetary gearing when driving a vehicle - Google Patents
A method of locking a planetary gearing when driving a vehicle Download PDFInfo
- Publication number
- WO2015099596A1 WO2015099596A1 PCT/SE2014/051566 SE2014051566W WO2015099596A1 WO 2015099596 A1 WO2015099596 A1 WO 2015099596A1 SE 2014051566 W SE2014051566 W SE 2014051566W WO 2015099596 A1 WO2015099596 A1 WO 2015099596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- planetary gear
- vehicle
- electrical machine
- output shaft
- power unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000003981 vehicle Substances 0.000 claims description 73
- 238000002485 combustion reaction Methods 0.000 claims description 58
- 238000004590 computer program Methods 0.000 claims description 18
- 238000004146 energy storage Methods 0.000 claims description 18
- 238000013500 data storage Methods 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 abstract description 3
- 239000000306 component Substances 0.000 description 16
- 230000001276 controlling effect Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- 239000000543 intermediate Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241001417495 Serranidae Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 244000221110 common millet Species 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 230000009193 crawling Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/02—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/24—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/28—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/34—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the absence of energy storing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
- B60K6/365—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/46—Series type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
- B60W10/115—Stepped gearings with planetary gears
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/12—Conjoint control of vehicle sub-units of different type or different function including control of differentials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/30—Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/20—Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/30—Control strategies involving selection of transmission gear ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18027—Drive off, accelerating from standstill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/181—Preparing for stopping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
- B60W30/18127—Regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/188—Controlling power parameters of the driveline, e.g. determining the required power
- B60W30/1886—Controlling power supply to auxiliary devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/042—Introducing corrections for particular operating conditions for stopping the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3005—Details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/72—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
- F16H3/727—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
- F16H3/728—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/12—Differentials
- B60W2510/125—Locking status
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/40—Torque distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/02—Clutches
- B60W2710/021—Clutch engagement state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0644—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/081—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/1038—Output speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/105—Output torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/12—Differentials
- B60W2710/125—Locking status
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/24—Energy storage means
- B60W2710/242—Energy storage means for electrical energy
- B60W2710/248—Current for loading or unloading
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/30—Auxiliary equipments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/30—Auxiliary equipments
- B60W2710/305—Auxiliary equipments target power to auxiliaries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/40—Torque distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/92—Hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/18—Propelling the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/18—Propelling the vehicle
- B60Y2300/18008—Propelling the vehicle related to particular drive situations
- B60Y2300/18025—Drive off, accelerating from standstill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/18—Propelling the vehicle
- B60Y2300/18008—Propelling the vehicle related to particular drive situations
- B60Y2300/18091—Preparing for stopping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/18—Propelling the vehicle
- B60Y2300/188—Controlling power parameters of the driveline, e.g. determining the required power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/18—Propelling the vehicle
- B60Y2300/19—Improvement of gear change, e.g. synchronisation or smoothing gear shift
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/43—Control of engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/60—Control of electric machines, e.g. problems related to electric motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/70—Control of gearings
- B60Y2300/78—Power split
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/80—Control of differentials
- B60Y2300/84—Differential locking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/70—Gearings
- B60Y2400/73—Planetary gearings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/909—Gearing
- Y10S903/91—Orbital, e.g. planetary gears
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/93—Conjoint control of different elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/945—Characterized by control of gearing, e.g. control of transmission ratio
Definitions
- the present invention relates to a method for the control of a vehicle according to the preamble to claim 1 .
- the invention is particularly, but not exclusively, focused on the performance of such a method in motor vehicles in the form of wheeled commercial vehicles, especially heavy goods vehicles, such as trucks and buses.
- the invention thus relates to a method carried out in a purely electrically powered vehicle or a hybrid vehicle, which, generally, is a vehicle that may be powered by a primary engine, e.g. a combustion engine, and a secondary engine, such as at least one electrical machine.
- a primary engine e.g. a combustion engine
- a secondary engine such as at least one electrical machine.
- the vehicle is suitably, but for the purposes of the present invention not necessarily, equipped with means for storage of electric energy, such as a battery or a capacitor for storage of electric energy, and control equipment to control the flow of electric energy between the means and the electrical machine.
- the electrical machine(s) may in such a case alternately operate as an engine or as a generator, depending on the vehicle's operating mode.
- the electrical machine When the vehicle decelerates, the electrical machine generates energy that may be stored, and the stored electric energy is used later for e.g. operation of the vehicle.
- a conventional clutch mechanism where a combustion engine is comprised in the drive system's power unit configuration , disconnecting the gearbox's input shaft from the combustion engine during a shifting process in the gearbox, entails disadvan- tages, such as heating of the clutch mechanism's plates, which results in an increased fuel consumption and wear of the clutch plates.
- disadvan- tages such as heating of the clutch mechanism's plates, which results in an increased fuel consumption and wear of the clutch plates.
- a conventional clutch mechanism is also relatively heavy and costly. It also occupies a relatively large space in the vehicle. Friction losses also arise at the use of a hydraulic converter/torque converter commonly used in automatic transmission.
- the objective of the present invention is to show a method of the type defined above, which is in line with the above-mentioned endeavour. This objective is achieved according to the invention by providing a method according to the enclosed claim 1 .
- Having a drive system in a vehicle with a power unit configura- tion including a second electrical machine opens up a possibility for an improved behaviour in a range of operational situations, compared to prior art drive systems lacking such a design of the power unit configuration.
- Such an operational situation occurs where a vehicle is driven with the first locking means in a release position , i .e. with a so-called open planet, and where such locking means must be moved to the locked position, as this is preferable in the operational situation prevailing in the vehicle.
- this may be achieved in an advantageous manner by controlling the first electrical machine, throughout the course of the method, to achieve the requested torque to be transferred from the power unit configuration to the second output shaft of the planetary gear, while the rotational speed of a part of the power unit configuration impacting the input shaft of the planetary gear is controlled towards the rotational speed of the planetary gear's output shaft, and the first locking means are subsequently moved to the locked position, when the input and output shaft of the planetary gear have substantially the same, or the same, rotational speed .
- said second electrical machine is the part of the power unit configuration whose rotational speed is controlled in step b) .
- control of a vehicle is implemented with a power unit configuration comprising a combustion engine
- control of the combustion engine's engine speed is implemented with an output shaft of the combustion engine, connected with the second electrical ma- chine's rotor or the second electrical machine, towards the rotational speed of the second output shaft of the planetary gear.
- control of a vehicle is implemented with a drive system further comprising a second locking means that may be moved between a position in which the combustion engine's output shaft is locked together with the second electrical machine's rotor and said first compo- nent, and a release position in which the combustion engine's output shaft is disconnected from the second electrical machine's rotor and said first component, and is allowed to rotate independently of these.
- a second locking means may be moved between a position in which the combustion engine's output shaft is locked together with the second electrical machine's rotor and said first compo- nent, and a release position in which the combustion engine's output shaft is disconnected from the second electrical machine's rotor and said first component, and is allowed to rotate independently of these.
- the output shaft of the combustion engine is connected with the second electrical machine's rotor at the start of the method, and in step b) the engine speed of the combustion engine and/or the second electrical machine is controlled towards the rotational speed of the second output shaft of the planetary gear.
- said second locking means is in a release position at the start of the method, and in step b) the engine speed of the second electrical machine is controlled towards the rotational speed of the second output shaft of the planetary gear. Accordingly, at the occurrence of a combustion engine in the power unit configuration, the planetary gear's input rotational speed may be brought towards the rotational speed of the planetary gear's output shaft even in case said second locking means are in a release position, i .e. the combustion engine's output shaft is disconnected from the first component of the planetary gear.
- a vehicle which has a power unit configuration comprising at least one electric energy storage means, arranged for exchange of electric power between the latter and the first and second electrical machine, is controlled.
- a power unit configuration comprising at least one electric energy storage means, arranged for exchange of electric power between the latter and the first and second electrical machine, is controlled.
- the possibilities for said exchange of electric power may be used, when controlling the power unit configuration towards a requested synchronous rotational speed .
- Electric energy storage means as used in this document means an energy storage means with an electrical interface in relation to the first and second electrical machine of the drive system, but storage of energy does not have to be electrical .
- This entails that in addition to an electrical battery and capacitor, for example flywheels, other mechanical means and means for building up pressure, e.g. pneumatic or hydraulic means, may be considered .
- the method comprises a step d) , performed in parallel with step b) , of con- trolling electrical output to/from electrical auxiliary units and/or loads and/or electric energy storage means, if included in the power unit configuration, in the vehicle through control of the second electrical machine.
- electric auxiliary aggregates and loads such as a servo control device, may accordingly both consu me and produce electric power.
- said control of power is implemented in such a way that power balance is achieved, wherein free selection, within the limitations generally specified for the drive system, of charge current to or discharge current from said electric energy storage means, if included in the power unit configuration, and/or electric auxiliary units and/or loads occurs in accordance with the prevailing operational situation in the vehicle.
- power balance means that it is pos- sible, within the general limitations specified for the drive system, to freely select the charge current to, or the discharge current from the energy storage means, if applicable, and/or electric auxiliary units, and/or loads in the vehicle at existing operating modes, which is naturally very advantageous at the control to- wards torque balance in the planetary gear, since this may be selected in the manner being most advantageous in each specific case.
- the maintenance of power balance is temporarily waived while step d) is implemented. This may be because the combustion engine is not able to build up torque quickly enough to meet the output requirement, or because the latter is greater than what the combustion engine is able to provide.
- the abandonment of the objective of maintaining power balance entails that the electric energy storage means must deliver a current to the first electrical machine, and/or the electric auxiliary unit, and/or loads in the vehicle, which is usually possible, if not desirable.
- the method is implemented in a vehicle with a said drive system, wherein the planetary gear's sun wheel is said first component, and the ring gear is said third component.
- the method is implemented in a vehicle with a gearbox having an input shaft, which is connected with said second output shaft in the planetary gear.
- the shift of said first locking means from a locked position to a release position may be achieved without any torque interruption , and with a potential for the driver of the vehicle to maintain or change the torque transmitted by the power unit configuration to the vehicle's power- train .
- the invention also relates to a computer program with the features listed in claim 1 3, a computer program product with the features listed in claim 1 4, and an electronic control device with the features listed in claim 1 5.
- Fig. 1 is a very simplified view of a powertrain in a vehicle that may be equipped with a drive system for the performance of a method according to the invention
- Fig. 2 is a more detailed, but still simplified view of a part of said drive system, is a simplified view, illustrating the general structure of a drive system in a vehicle, for which a method according to one embodiment of the invention is carried out
- Fig. 4 is a simplified view, illustrating the general structure of another drive system in a vehicle, for which a method according to one embodiment of the invention is carried out
- Fig. 5 is a simplified view, illustrating the general structure of another drive system in a vehicle, for which a method according to one embodiment of the invention is carried out
- Fig. 6 is a flow chart showing a method according to one embodi ment of the invention, and is a fundamental diagram of an electronic control device for implementation of one or several methods according to the invention.
- Fig. 1 shows a powertrain for a heavy goods vehicle 1 .
- the pow- ertrain comprises a combustion engine 2, a power transmission 3 in the form of for example a speed gearbox, a continuously variable transmission (CVT) , or a direct transmission, a nu mber of driving shafts 4 and driving wheels 5.
- CVT continuously variable transmission
- Fig. 2 shows a part of the components in the intermediate section 6 in more detail , more specifically those which also occur in prior art drive systems, such as the one according to SE 536 329.
- the combustion engine 2 is equipped with an output shaft 2a, and the gearbox 3 with an input shaft 3a, in the intermediate section 6.
- the output shaft 2a of the combustion engine is coaxially arranged in relation to the input shaft 3a of the gearbox.
- the combustion engine's output shaft 2a and the input shaft 3a of the gearbox are rotatably arranged around a common rotation axis 7.
- the intermediate section 6 comprises a house 8, enclosing a first electrical machine 9 and a planetary gear.
- the electrical machine 9 comprises, in a customary manner, a stator 9a and a rotor 9b.
- the stator 9a comprises a stator- core, which is fixed in a suitable manner on the inside of the house 8.
- the stator core comprises the stator's windings.
- the first electrical machine 9 is adapted, under certain operating circumstances, to use stored electrical energy to supply driving force to the input shaft 3a of the gearbox, and , under other operating conditions, to use the kinetic energy of the input shaft 3 of the gearbox to extract and store electric energy.
- the planetary gear is arranged substantially radially inside of the electrical machine's stator 9a and rotor 9b.
- the planetary gear comprises, in a customary manner, a sun wheel 1 0, a ring gear 1 1 and a planetary wheel carrier 1 2.
- the planetary wheel carrier 1 2 supports a nu mber of cogwheels 1 3, which are rotatably arranged in a radial space between the teeth of the sun wheel 1 0 and the ring gear 1 1 .
- the sun wheel 1 0 is fixed on a peripheral surface of the combustion engine's output shaft 2a.
- the sun wheel 1 0 and the combustion engine's output shaft 2a rotate as one unit with a first rotational speed n ⁇
- the planetary wheel carrier 1 2 comprises an attachment section 1 2a, which is attached on a peripheral surface of the input shaft 3a of the gearbox with the help of a splines-joint 1 4. With the help of this joint, the planetary wheel carrier 1 2 and the gearbox's input shaft 3a may rotate as one unit with a second rotational speed n 2 .
- the ring gear 1 1 comprises an external peripheral surface on which the rotor 9b is fixedly mounted.
- the rotor 9b and the ring gear 1 1 constitute one rotatable unit which rotates at a third rotational speed n 3 .
- the drive system comprises a first locking means, since the combustion engine's output shaft 2a is equipped with a shiftable clutch element 1 5.
- the clutch element 1 5 is mounted on the combustion engine's output shaft 2a with the help of a splines- joint 1 6.
- the clutch element 1 5 is in this case arranged in a twist- fast manner on the combustion engine's output shaft 2a, and is shiftably arranged in an axial direction on the combustion engine's output shaft 2a.
- the clutch element 1 5 comprises a clutch section 1 5a, which is connectible with a clutch section 1 2b in the planetary wheel carrier 1 2.
- a schematically displayed shifting element 1 7 is adapted to shift the clutch element 1 5 between a first position where the clutch sections 1 5a, 1 2b are not in engagement with each other, corresponding to a release position in the first locking means, and a second position where the clutch sections 1 5a, 1 2b are in engagement with each other, corresponding to a locked position of the first locking means.
- the combustion engine's output shaft 2a and the gearbox's input shaft 3a will be locked together, and accordingly these and the electrical machine's rotor will rotate at the same rotational speed. This state may be referred to as a locked planet.
- the locking mechanism may also advantageously have the design described in the Swedish patent application SE 536 559, and comprise a sleeve equipped with first splines, which in the release position engage with second splines on a first component of the planetary gear, and which in the locked position engage with third splines on a second component of the planetary gear.
- the first component is preferably the planetary wheel carrier, and the second component is the sun wheel .
- the locking mechanism may then be adapted like an annular sleeve, enclosing the planetary wheel carrier substantially concentrically.
- the locking means may also be made of a suitable type of friction clutch.
- An electronic control device 1 8 is adapted to control the shifting element 1 7.
- the control device 1 8 is also adapted to determine the occasions on which the electrical machine should operate as an engine, and the occasions on which it should operate as a generator. In order to so determine, the control unit 1 8 may re- ceive up to date information relating to suitable operating parameters.
- the control device 1 8 may be a computer with software for this purpose.
- the control device 1 8 controls a schematically displayed control equipment 1 9, which controls the flow of electric energy between a hybrid battery 20 and the stator windings 9a of the electrical machine. On occasions where the electrical machine 9 operates as an engine, stored electric energy is supplied from the hybrid battery 20 to the stator 9a. On occasions where the electrical machine operates as a generator electric energy is supplied from the stator 9a to the hybrid battery 20.
- the hybrid battery 20 delivers and stores electric energy with a voltage in the range of 300-900 Volt. Since the intermediate section 6 between the combustion engine 2 and the gearbox 3 in the vehicle is limited , the electrical machine 9 and the planetary gear must constitute a compact unit.
- the planetary gear's components 1 0, 1 1 , 1 2 are arranged substantially radially inside the electrical machine's stator 9a.
- the rotor 9b of the electrical machine, the ring gear 1 1 of the planetary gear, the combustion engine's output shaft 2a and the input shaft 3a of the gearbox are here ro- tatably arranged around a common rotation axis 5. With such an embodiment the electrical machine 9 and the planetary gear occupy a relatively small area.
- the vehicle 1 is equipped with an engine control function 21 , with which the engine speed and/or torque of the combustion engine 2 may be controlled.
- the control device 1 8 accordingly has the possibility of activating the engine control function 21 and of creating a substantially zero torque state in the gearbox 3 at engagement and disengagement of gears in the gearbox 3.
- the drive system may, instead of being controlled by one single control device 1 8, be controlled by several different control devices.
- the drive system also has a second electrical machine 30 with a stator 31 , with stator windings and a rotor 32 which is connected with the output shaft 2a of the combustion engine.
- a second locking means 33 which may have a similar design as the first locking means 34, illustrated in more detail in Fig. 2, is adapted to separate, in a release position , a first part 35 of the combustion engine's output shaft, arranged nearest the combustion engine, from a second part 36 thereof, connected with the sun wheel 1 0 of the planetary gear, so that the second electrical machine's rotor 32 and the sun wheel 1 0 are allowed to rotate independently of the first section 35 of the combustion engine's output shaft.
- the second lock- ing means may be moved to a locked position, in which both the parts 35, 36 of the combustion engine's output shaft are locked together, and accordingly the first part 35 is locked together with the second electrical machine's rotor.
- the control device 1 8 is adapted to control fuel supply to the combustion engine 2 and to control exchange of electric energy between, the first electrical machine 9 and the second electrical machine 30 on the one hand , and, on the other hand, electric energy storage means, if applicable, such as batteries and electric auxiliary units and loads in the vehicle, such as servo control devices, pumps, cool- ing units and similar.
- the power unit configuration is controlled towards a torque balance between the components that are locked together, i .e. the planetary wheel carrier 1 2 and the sun wheel 1 0, via the first locking means 34e.
- torque balance is achieved when the following relation between the torques applied is met for the example configuration displayed in Fig. 3 :
- Tice is torque applied to the combustion engine's output shaft
- T e m2 is torque applied via the second electrical machine's stator to its rotor
- T e m i is torque applied via the first electrical machine's stator to its rotor
- Z s is the number of teeth on the sun wheel
- Z r is the nu mber of teeth on the ring gear. Accordingly, torque balance relates to the state where a torque acts on a ring gear arranged in the planetary gear, representing the product of the torque acting on the planetary wheel carrier of the planetary gear and the gear ratio of the planetary gear, while simultaneously a torque acts on the planetary gear's sun wheel , representing the product of the torque acting on the planetary wheel carrier and (1 minus the planetary gear's gear ratio) .
- said first locking means 34 does not transfer any torque between the components of the planetary gear. Once torque balance has been achieved , the first locking means 34 may easily be moved to the release position, so that the planetary gear's components are no longer locked together.
- the first electrical machine 9 is controlled to achieve the requested torque to be transmitted to the planetary gear's output shaft, i .e. the input shaft 3a of the gearbox, while the engine speed of either the combustion engine 2 or the second electrical machine 30 is controlled to bring the rotational speed of the planetary gear's input shaft 2a towards the rota- tional speed of its output shaft 3a, so that, subsequently, the first locking means 34 may be moved to the locked position when substantially the same, or the same, rotational speed has been achieved in the input shaft 2a and the output shaft 3a of the planetary gear.
- the inventive method facilitates a transition of the first locking means from the locked position to the release position, without any torque interruption in the vehicle's power- train , and with freedom for the vehicle's driver, cruise control or other torque controlling function in the vehicle to determine and change the power-train torque during the method .
- a great advantage of a drive system according to Fig. 3, with or without the second locking means, is the potential for continuous electric power supply by the electric units in all operating modes, with the combustion engine connected in a steady state. This is normally not achieved with hybrid solutions having only one electrical machine.
- said electric unit is supplied by substantially distributing the requested electrical output to the electric auxiliary aggregates and the electric loads of the vehicle between the electrical ma- chines.
- the first electrical machine When the first locking means is open, the first electrical machine will determine the torque in the power-train.
- the engine speed of the combustion engine is controlled to an operational point, which is selected by minimising the losses of the combustion en- gine together with losses of the electrical machine and the inverter.
- the second electrical machine is then used to balance the output for potential energy storage means, electrical aggregates and the first electrical machine. It is a great strength that the power supply of the electrical aggregates may also take place, even if the vehicle is not equipped with an electrical energy stor- age system .
- the supply may also take place continuously during all types of up- and down-shifts, during crawling , start-off and braking. All driving modes, except electrical driving and brake regeneration, may be implemented without any electrical storage means or with a defective energy storage means.
- the voltage of the second electrical machine In operating modes, with or without a defective electrical energy storage means, the voltage of the second electrical machine normally will be controlled to maintain the correct voltage level on the DC-link (supply voltage to the two inverters connected to the stators of the electrical machines) . It is also conceivable that the voltage of the first electrical machine may be controlled in some cases. Voltage control is a "mode" of the inverter, where a voltage is requested from the inverter. The inverter then controls the electrical machine's torque in such a way that the requested voltage is maintained on the inverter's supply side.
- Fig. 4 shows, in a si mplified way, a drive system, which differs from the one according to Fig . 3, since the combustion engine 2 is permanently connected with the second electrical machine's rotor 32, while Fig . 5 shows, in a simplified way, a drive system which entirely lacks a combustion engine.
- Fig. 6 illustrates a flow chart of a method according to one embodi ment of the present invention , implemented in a vehicle with a drive system of the type displayed in Figs 3-5. It is assu med that the vehicle is driven with the first locking means in a release position.
- the method is then started in a first step by control- ling the first electrical machine to achieve a requested power- train torque, and this step Si is performed throughout the method.
- a second step S 2 the rotational speed of one part of the power unit configuration, acting on the planetary gear's input shaft, is controlled towards and up to reaching the rotational speed of the planetary gear's output shaft.
- a third step S 3 the question is asked whether the rotational speed of the planetary gear's input and output shaft is the same, or substantially the same, and if the answer to this questions is "yes", the first locking means is moved to a locked position in step S 4 , via control of the shifting element 17 in the embodiment according to Fig.2.
- Computer program code for implementation of a method according to the invention is suitably included in a computer program, which is loadable into the internal memory of a computer, such as the internal memory of an electronic control device of a vehicle.
- a computer program is suitably provided via a computer program product, comprising a data storage medium readable by an electronic control device, which data storage medium has the computer program stored thereon.
- Said data storage medium is e.g. an optical data storage medium in the form of a CD-ROM, a DVD, etc., a magnetic data storage medium in the form of a hard disk drive, a diskette, a cassette, etc., or a Flash memory or a ROM, PROM, EPROM or EEPROM type memory.
- Fig. 7 very schematically illustrates an electronic control device 18, comprising execution means 37, such as a central processor unit (CPU), for the execution of computer software.
- the execution means 37 communicates with a memory 38, e.g. a RAM memory, via a data bus 39.
- the control device 18 also comprises a durable data storage medium 40, e.g. in the form of a Flash memory or a ROM , P ROM , EPROM or E EPROM type memory.
- the execution means 37 communicates with the data storage means 40 via the data bus 39.
- a computer program comprising computer program code for the implementation of a method according to the invention is stored on the data storage maxim m 40.
- the inventive method may be carried out in a vehi- cle with a power unit configuration lacking a combustion engine, i .e. which is powered purely electrically by the two electrical machines.
- the power unit configuration must have at least one electric energy storage, but where there is a combustion engine, it is not necessary for the power unit configuration to have such an electric energy storage.
- the inventive method could be carried out in a vehicle with a drive system, which has the planetary gear's ring gear as said first component and the sun wheel as said third component, which means that the first electrical machine's rotor would be connected with the planetary gear's sun wheel and the second electrical machine's rotor and the combustion engine, if applicable, would be connected with the planetary gear's ring gear instead of with the sun wheel .
- the planetary gear's output shaft for transmission of torque for the vehicle's propulsion is connected with the planetary wheel carrier.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Arrangement Of Transmissions (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/106,823 US9963138B2 (en) | 2013-12-23 | 2014-12-23 | Method of locking a planetary gearing when driving a vehicle |
KR1020167019470A KR101794890B1 (en) | 2013-12-23 | 2014-12-23 | A method of locking a planetary gearing when driving a vehicle |
EP14874842.9A EP3086967A4 (en) | 2013-12-23 | 2014-12-23 | A method of locking a planetary gearing when driving a vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1351574-7 | 2013-12-23 | ||
SE1351574 | 2013-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015099596A1 true WO2015099596A1 (en) | 2015-07-02 |
Family
ID=53479308
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2014/051569 WO2015099599A1 (en) | 2013-12-23 | 2014-12-23 | A method of braking a vehicle towards stop |
PCT/SE2014/051566 WO2015099596A1 (en) | 2013-12-23 | 2014-12-23 | A method of locking a planetary gearing when driving a vehicle |
PCT/SE2014/051567 WO2015099597A1 (en) | 2013-12-23 | 2014-12-23 | A method of turning off a combustion engine of a driving vehicle |
PCT/SE2014/051568 WO2015099598A1 (en) | 2013-12-23 | 2014-12-23 | A method of starting a vehicle with power balance |
PCT/SE2014/051571 WO2015099601A1 (en) | 2013-12-23 | 2014-12-23 | A method of starting a combustion engine of a driving vehicle |
PCT/SE2014/051573 WO2015099602A1 (en) | 2013-12-23 | 2014-12-23 | A traction system for a vehicle |
PCT/SE2014/051570 WO2015099600A1 (en) | 2013-12-23 | 2014-12-23 | A method of supplying electrical appliances of a vehicle |
PCT/SE2014/051565 WO2015099595A1 (en) | 2013-12-23 | 2014-12-23 | A method of unlocking a planetary gearing when driving a vehicle |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2014/051569 WO2015099599A1 (en) | 2013-12-23 | 2014-12-23 | A method of braking a vehicle towards stop |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2014/051567 WO2015099597A1 (en) | 2013-12-23 | 2014-12-23 | A method of turning off a combustion engine of a driving vehicle |
PCT/SE2014/051568 WO2015099598A1 (en) | 2013-12-23 | 2014-12-23 | A method of starting a vehicle with power balance |
PCT/SE2014/051571 WO2015099601A1 (en) | 2013-12-23 | 2014-12-23 | A method of starting a combustion engine of a driving vehicle |
PCT/SE2014/051573 WO2015099602A1 (en) | 2013-12-23 | 2014-12-23 | A traction system for a vehicle |
PCT/SE2014/051570 WO2015099600A1 (en) | 2013-12-23 | 2014-12-23 | A method of supplying electrical appliances of a vehicle |
PCT/SE2014/051565 WO2015099595A1 (en) | 2013-12-23 | 2014-12-23 | A method of unlocking a planetary gearing when driving a vehicle |
Country Status (5)
Country | Link |
---|---|
US (8) | US10023172B2 (en) |
EP (8) | EP3086971B1 (en) |
KR (8) | KR101794893B1 (en) |
SE (7) | SE1451655A1 (en) |
WO (8) | WO2015099599A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017095297A1 (en) * | 2015-12-01 | 2017-06-08 | Scania Cv Ab | A method for gear shifting in a gearbox, a gearbox and a vehicle |
CN108327496A (en) * | 2017-01-19 | 2018-07-27 | 郑州宇通客车股份有限公司 | A kind of bi-motor pure electric drive system and the electric vehicle using the system |
DE102019119696A1 (en) | 2019-07-22 | 2020-07-09 | Schaeffler Technologies AG & Co. KG | Powertrain |
CN112105536A (en) * | 2018-05-09 | 2020-12-18 | 标致雪铁龙汽车股份有限公司 | Method for managing the drive of a hybrid motor vehicle |
CN113002592A (en) * | 2021-03-30 | 2021-06-22 | 卡斯柯信号(成都)有限公司 | General processing method for train route approaching locking logic |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE538118C2 (en) * | 2014-05-30 | 2016-03-08 | Scania Cv Ab | Control of a vehicle's driveline based on a time derivative for dynamic torque |
SE538656C2 (en) * | 2014-10-30 | 2016-10-11 | Scania Cv Ab | Method and system for switching from a first power supply path to a second power supply path |
US9937916B2 (en) * | 2015-07-21 | 2018-04-10 | Ford Global Technologies, Llc | Methods and system for reducing transmission shifting |
DE102015221779A1 (en) | 2015-11-06 | 2017-05-11 | Bayerische Motoren Werke Aktiengesellschaft | Hybrid drive for a hybrid vehicle |
SE540453C2 (en) | 2016-04-21 | 2018-09-18 | Scania Cv Ab | A Coupling Arrangement for a Gearbox |
SE540452C2 (en) | 2016-04-29 | 2018-09-18 | Scania Cv Ab | A Method of Controlling a Coupling Arrangement in a Gearbox |
CN106740048B (en) * | 2017-02-09 | 2020-10-02 | 重庆青山工业有限责任公司 | Power system of hybrid electric vehicle |
US10479345B2 (en) * | 2017-08-10 | 2019-11-19 | GM Global Technology Operations LLC | Method of decoupling input and output torque for engine speed control and hybrid powertrain utilizing same |
JP2019050706A (en) * | 2017-09-12 | 2019-03-28 | アイシン精機株式会社 | Drive unit for electric vehicle |
CN109866598A (en) * | 2017-12-05 | 2019-06-11 | 吉利汽车研究院(宁波)有限公司 | A kind of mixed dynamic power drive unit of automobile |
IT201800001308A1 (en) * | 2018-01-18 | 2019-07-18 | Soma Aurelio | Hybrid work vehicle with CVT gearbox |
CN108749552B (en) * | 2018-05-14 | 2019-11-12 | 浙江吉利控股集团有限公司 | Automobile hybrid power speed changer |
JP7284831B2 (en) * | 2019-04-12 | 2023-05-31 | ウェイチャイ パワー カンパニー リミテッド | Hybrid system control method and control system |
EP3750733B1 (en) * | 2019-06-13 | 2023-07-26 | Dana Italia S.r.L. | Dual motor electric driveline |
KR20210094184A (en) | 2020-01-20 | 2021-07-29 | 삼성전자주식회사 | Analog digital converter |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0552140A1 (en) * | 1992-01-16 | 1993-07-21 | AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List | Drive device |
JPH07135701A (en) * | 1993-11-10 | 1995-05-23 | Aqueous Res:Kk | Hybrid type car |
EP1145896A1 (en) * | 1999-01-13 | 2001-10-17 | Toyota Jidosha Kabushiki Kaisha | Power output device, hybrid vehicle, and method of controlling them |
FR2832356A1 (en) * | 2001-11-16 | 2003-05-23 | Timothee Biel | Hybrid drive motor vehicle has epicyclic planetary gear train connected to motor-brake |
EP2436546A1 (en) * | 2009-05-25 | 2012-04-04 | UD Trucks Corporation | Power transmitting mechanism for hybrid vehicle |
WO2013002707A1 (en) * | 2011-06-27 | 2013-01-03 | Scania Cv Ab | Powertrain for a vehicle and method for controlling a powertrain |
US20130102429A1 (en) * | 2011-10-21 | 2013-04-25 | Zf Friedrichshafen Ag | Method for operating a drive train of a hybrid vehicle |
US20130316865A1 (en) * | 2010-12-29 | 2013-11-28 | Jörgen Engström | Powertrain for a vehicle |
Family Cites Families (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2857535B2 (en) | 1992-05-19 | 1999-02-17 | 株式会社エクォス・リサーチ | Hybrid vehicle |
US5508574A (en) | 1994-11-23 | 1996-04-16 | Vlock; Alexander | Vehicle transmission system with variable speed drive |
US5801499A (en) | 1995-07-11 | 1998-09-01 | Aisin Aw Co., Ltd. | Control system for a vehicular drive unit |
JP3047792B2 (en) | 1995-10-18 | 2000-06-05 | トヨタ自動車株式会社 | Hybrid drive |
JP3456329B2 (en) | 1995-12-08 | 2003-10-14 | アイシン・エィ・ダブリュ株式会社 | Control device for vehicle drive unit |
JP3775012B2 (en) | 1997-08-29 | 2006-05-17 | アイシン・エィ・ダブリュ株式会社 | Hybrid drive device for vehicle |
JPH11270668A (en) * | 1998-03-20 | 1999-10-05 | Nissan Motor Co Ltd | Drive control device for hybrid vehicle |
JP3494008B2 (en) | 1998-05-07 | 2004-02-03 | トヨタ自動車株式会社 | Power output device and control method thereof |
FR2781727B1 (en) * | 1998-07-28 | 2000-12-29 | Renault | HYBRID DRIVE GROUP COMPRISING TWO ELECTRIC MACHINES |
DE19841829C2 (en) | 1998-09-12 | 2001-12-13 | Daimler Chrysler Ag | Hybrid drive, especially for vehicles |
US6554088B2 (en) | 1998-09-14 | 2003-04-29 | Paice Corporation | Hybrid vehicles |
DE10018926A1 (en) | 1999-04-26 | 2000-11-02 | Luk Lamellen & Kupplungsbau | Drive train, especially for motor vehicle, has at least one gearbox component that implements transmission function mounted radially within rotor |
JP2001268719A (en) * | 2000-03-23 | 2001-09-28 | Toyota Motor Corp | Battery charging controller for hybrid vehicle |
US6579201B2 (en) | 2000-08-22 | 2003-06-17 | New Venture Gear, Inc. | Electric hybrid four-wheel drive vehicle |
JP3852321B2 (en) | 2001-10-22 | 2006-11-29 | トヨタ自動車株式会社 | HV drive structure and method with cranking support torque increasing means |
EP1319546B1 (en) | 2001-12-12 | 2004-09-29 | Siemens Aktiengesellschaft | Drive train for vehicle with internal combustion engine, starter-generator and manual shift transmission |
US7070530B2 (en) | 2003-08-26 | 2006-07-04 | The Timken Company | Method and apparatus for power flow management in electro-mechanical transmissions |
JP3858898B2 (en) | 2004-02-13 | 2006-12-20 | 日産自動車株式会社 | Mode change control device for hybrid transmission |
JP4320649B2 (en) | 2005-06-14 | 2009-08-26 | トヨタ自動車株式会社 | Control device for vehicle drive device |
DE102005035824A1 (en) | 2005-07-30 | 2007-02-01 | Renk Ag | Hybrid drive for a motor vehicle |
EP1762452A3 (en) | 2005-09-08 | 2009-05-27 | Nissan Motor Co., Ltd. | Engine starting control device and method |
US7416501B2 (en) * | 2005-12-22 | 2008-08-26 | General Motors Corporation | Single range electrically variable transmission with lockup clutch and method of operation |
FR2899548B1 (en) | 2006-04-05 | 2009-04-17 | Peugeot Citroen Automobiles Sa | POWER TRANSMISSION METHOD |
DE102006028602A1 (en) | 2006-06-22 | 2007-12-27 | Zf Friedrichshafen Ag | Method for controlling a motor vehicle drive train |
JP4203828B2 (en) | 2006-07-10 | 2009-01-07 | アイシン・エィ・ダブリュ株式会社 | Hybrid drive device |
JP4805387B2 (en) | 2006-08-02 | 2011-11-02 | マック トラックス インコーポレイテッド | Vehicle output management system, vehicle output management method, and vehicle output management system mounting method |
US20080081734A1 (en) | 2006-09-29 | 2008-04-03 | Caterpillar Inc. | Power system |
DE102006054405B4 (en) | 2006-11-18 | 2018-10-25 | Zf Friedrichshafen Ag | Electrodynamic starting element and method for controlling an electrodynamic starting element |
JP4179378B2 (en) * | 2007-01-04 | 2008-11-12 | トヨタ自動車株式会社 | VEHICLE DRIVE CONTROL DEVICE AND VEHICLE |
DE102007004458A1 (en) | 2007-01-30 | 2008-07-31 | Zf Friedrichshafen Ag | Hybrid drive arrangement for vehicle with drive section, has combustion engine and two electrical machines, which are operated as motor and generator, and brake is provided for producing supporting moment |
DE102007004464A1 (en) | 2007-01-30 | 2008-07-31 | Zf Friedrichshafen Ag | Hybrid drive arrangement for vehicle, has two electric machines which are used as motor and as generator and electric machine is connected with gear and gearbox has variable transmission is arranged in force flow manner behind planetary |
US8403807B2 (en) | 2007-04-20 | 2013-03-26 | Toyota Jidosha Kabushiki Kaisha | Control device for vehicular power transmitting apparatus |
US7463968B2 (en) | 2007-05-03 | 2008-12-09 | Gl Global Technology Operations, Inc. | Method and apparatus to control engine stop for a hybrid powertrain system |
US7828693B2 (en) | 2007-06-20 | 2010-11-09 | Ford Global Technologies, Llc | Negative driveline torque control incorporating transmission state selection for a hybrid vehicle |
JP4998164B2 (en) | 2007-09-14 | 2012-08-15 | トヨタ自動車株式会社 | Control device for vehicle power transmission device |
US8596390B2 (en) * | 2007-12-05 | 2013-12-03 | Ford Global Technologies, Llc | Torque control for hybrid electric vehicle speed control operation |
US8182391B2 (en) | 2008-05-21 | 2012-05-22 | GM Global Technology Operations LLC | Electric torque converter for a powertrain and method of operating a vehicle |
US8500589B2 (en) * | 2008-08-07 | 2013-08-06 | Ford Global Technologies, Llc | Hybrid electric vehicle powertrain with an enhanced all-electric drive mode |
US20100099532A1 (en) | 2008-10-20 | 2010-04-22 | Cashen Wilhelm A | Hybrid drive method and apparatus |
DE102009000970A1 (en) | 2009-02-18 | 2010-08-19 | Zf Friedrichshafen Ag | Method for operating a drive train |
US8469859B2 (en) | 2009-04-16 | 2013-06-25 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for hybrid vehicle |
JP5362840B2 (en) | 2009-10-13 | 2013-12-11 | 本田技研工業株式会社 | Hybrid vehicle |
WO2011070390A1 (en) | 2009-12-08 | 2011-06-16 | Renault Trucks | Method for controlling operation of a hybrid automotive vehicle and vehicle adapted to such a method |
US9441708B2 (en) | 2010-12-10 | 2016-09-13 | Means Industries, Inc. | High-efficiency drive system including a transmission for a hybrid electric vehicle |
DE112011104811B4 (en) | 2011-01-31 | 2023-03-02 | Suzuki Motor Corporation | Regenerative control device and method and hybrid motor vehicle |
JP5435304B2 (en) | 2011-03-25 | 2014-03-05 | アイシン・エィ・ダブリュ株式会社 | Vehicle drive device |
JP5435305B2 (en) * | 2011-03-25 | 2014-03-05 | アイシン・エィ・ダブリュ株式会社 | Vehicle drive device |
SE536048C2 (en) | 2011-06-27 | 2013-04-16 | Scania Cv Ab | Drive device for a vehicle and method for controlling such a drive |
DE102011085199A1 (en) | 2011-10-26 | 2013-05-02 | Zf Friedrichshafen Ag | Device for a powertrain of a hybrid vehicle, drive train and method for operating the same |
CN104203691A (en) * | 2012-03-21 | 2014-12-10 | 丰田自动车株式会社 | Drive control device for hybrid vehicle |
CN104203700A (en) * | 2012-03-26 | 2014-12-10 | 丰田自动车株式会社 | Drive control device for hybrid vehicle |
EP2832609A1 (en) * | 2012-03-26 | 2015-02-04 | Toyota Jidosha Kabushiki Kaisha | Drive control device for hybrid vehicle |
SE1200394A1 (en) | 2012-06-27 | 2013-12-28 | Scania Cv Ab | Drive system and procedure for operating a vehicle |
SE538472C2 (en) | 2012-06-27 | 2016-07-12 | Scania Cv Ab | Control of locking means in planetary gear by means of an electric machine |
SE1250702A1 (en) | 2012-06-27 | 2013-12-28 | Scania Cv Ab | Procedure for changing the gear of a vehicle |
SE536664C2 (en) | 2012-06-27 | 2014-05-06 | Scania Cv Ab | Procedure for braking a vehicle |
SE536663C2 (en) | 2012-06-27 | 2014-05-06 | Scania Cv Ab | Procedure for braking a vehicle |
SE536641C2 (en) | 2012-06-27 | 2014-04-22 | Scania Cv Ab | Process for controlling a vehicle's drive system, drive system, computer program, computer software product and vehicle |
SE1250720A1 (en) | 2012-06-27 | 2013-12-28 | Scania Cv Ab | Procedure for changing the gear of a vehicle |
SE538352C2 (en) | 2012-06-27 | 2016-05-24 | Scania Cv Ab | Drive system and method for determining the torque of an internal combustion engine of a hybrid vehicle |
SE1250717A1 (en) | 2012-06-27 | 2013-12-28 | Scania Cv Ab | Drive system and procedure for operating a vehicle |
SE1250711A1 (en) | 2012-06-27 | 2013-12-28 | Scania Cv Ab | Procedure for starting combustion engine |
SE536559C2 (en) | 2012-06-27 | 2014-02-18 | Scania Cv Ab | Drive device for a vehicle, vehicle comprising such a driving device and method for controlling such a driving device |
SE1250716A1 (en) | 2012-06-27 | 2013-12-28 | Scania Cv Ab | Procedure for driving away a vehicle |
SE536640C2 (en) | 2012-06-27 | 2014-04-22 | Scania Cv Ab | Process for controlling a vehicle's drive system, drive system, computer program, computer software product and vehicle |
SE538161C2 (en) | 2012-06-27 | 2016-03-22 | Scania Cv Ab | Drive system and procedure for operating a vehicle |
SE536627C2 (en) | 2012-06-27 | 2014-04-08 | Scania Cv Ab | Procedure for accelerating a hybrid vehicle |
US9580065B2 (en) | 2012-07-17 | 2017-02-28 | Altigreen Propulsion Labs Private Limited | Dual-structured electric drive and power system for hybrid vehicles |
US9188201B2 (en) | 2012-08-17 | 2015-11-17 | Fca Us Llc | Single input and single-output hybrid system |
DE102012220828A1 (en) | 2012-11-15 | 2014-05-15 | Zf Friedrichshafen Ag | Method for operating a drive unit for a hybrid vehicle |
FR2998531B1 (en) | 2012-11-26 | 2016-03-18 | Renault Sas | METHOD AND SYSTEM FOR CONTROLLING A HYBRID VEHICLE WITH INDEPENDENT REVERSE ELECTRIC MOTORS |
US8979694B2 (en) * | 2013-02-22 | 2015-03-17 | GM Global Technology Operations LLC | Hybrid vehicle with power-split and parallel hybrid transmission and method of controlling same |
KR101500363B1 (en) | 2013-07-01 | 2015-03-16 | 현대자동차 주식회사 | Power transmission system of hybrid electric vehicle |
KR101500356B1 (en) | 2013-07-01 | 2015-03-09 | 현대자동차 주식회사 | Power transmission system of hybrid electric vehicle |
KR101459466B1 (en) | 2013-07-17 | 2014-11-07 | 현대자동차 주식회사 | Power transmission system of hybrid electric vehicle |
US9623004B2 (en) | 2013-08-02 | 2017-04-18 | Humanetics Corporation | Administration of a therapeutic amount of genistein to mitigate erectile dysfunction resulting from radiation therapy for prostate cancer only throughout a defined administration period commencing shortly before and concluding after radiation therapy |
JP6003843B2 (en) | 2013-08-08 | 2016-10-05 | トヨタ自動車株式会社 | Control device for hybrid vehicle |
JP6060850B2 (en) | 2013-08-09 | 2017-01-18 | トヨタ自動車株式会社 | Control device for hybrid vehicle |
JP2015107674A (en) | 2013-12-03 | 2015-06-11 | トヨタ自動車株式会社 | Hybrid vehicle |
DE112014005375B4 (en) | 2013-12-23 | 2023-07-27 | Scania Cv Ab | Method for controlling a drive system of a vehicle, drive system, computer program product and vehicle |
EP3086965B1 (en) * | 2013-12-23 | 2019-08-07 | Scania CV AB | Propulsion system for a vehicle |
WO2016108457A1 (en) * | 2015-01-04 | 2016-07-07 | 김의한 | Hybrid transmission having fixed gear shift stage |
US9643481B2 (en) | 2015-05-20 | 2017-05-09 | Ford Global Technologies, Llc | Multi-mode powersplit hybrid transmission |
-
2014
- 2014-12-23 EP EP14875577.0A patent/EP3086971B1/en active Active
- 2014-12-23 EP EP14874998.9A patent/EP3086969B1/en active Active
- 2014-12-23 KR KR1020167019642A patent/KR101794893B1/en active IP Right Grant
- 2014-12-23 WO PCT/SE2014/051569 patent/WO2015099599A1/en active Application Filing
- 2014-12-23 KR KR1020167019840A patent/KR101794895B1/en active IP Right Grant
- 2014-12-23 SE SE1451655A patent/SE1451655A1/en not_active Application Discontinuation
- 2014-12-23 EP EP14875326.2A patent/EP3086970B1/en active Active
- 2014-12-23 EP EP14873634.1A patent/EP3086964B1/en active Active
- 2014-12-23 KR KR1020167019470A patent/KR101794890B1/en active IP Right Grant
- 2014-12-23 WO PCT/SE2014/051566 patent/WO2015099596A1/en active Application Filing
- 2014-12-23 US US15/106,821 patent/US10023172B2/en active Active
- 2014-12-23 KR KR1020167019640A patent/KR101794891B1/en active IP Right Grant
- 2014-12-23 US US15/106,823 patent/US9963138B2/en active Active
- 2014-12-23 US US15/106,808 patent/US9771059B2/en active Active
- 2014-12-23 WO PCT/SE2014/051567 patent/WO2015099597A1/en active Application Filing
- 2014-12-23 WO PCT/SE2014/051568 patent/WO2015099598A1/en active Application Filing
- 2014-12-23 SE SE1451650A patent/SE1451650A1/en not_active Application Discontinuation
- 2014-12-23 US US15/106,818 patent/US9981650B2/en active Active
- 2014-12-23 WO PCT/SE2014/051571 patent/WO2015099601A1/en active Application Filing
- 2014-12-23 US US15/106,787 patent/US10099676B2/en active Active
- 2014-12-23 KR KR1020167019839A patent/KR101794894B1/en active IP Right Grant
- 2014-12-23 WO PCT/SE2014/051573 patent/WO2015099602A1/en active Application Filing
- 2014-12-23 US US15/106,824 patent/US10081348B2/en active Active
- 2014-12-23 SE SE1451656A patent/SE1451656A1/en not_active Application Discontinuation
- 2014-12-23 KR KR1020167019641A patent/KR101794892B1/en active IP Right Grant
- 2014-12-23 SE SE1451653A patent/SE539481C2/en unknown
- 2014-12-23 SE SE1451654A patent/SE1451654A1/en not_active Application Discontinuation
- 2014-12-23 EP EP14873406.4A patent/EP3086963A4/en active Pending
- 2014-12-23 WO PCT/SE2014/051570 patent/WO2015099600A1/en active Application Filing
- 2014-12-23 SE SE1451652A patent/SE539482C2/en unknown
- 2014-12-23 EP EP14874707.4A patent/EP3086989A4/en not_active Ceased
- 2014-12-23 EP EP14874842.9A patent/EP3086967A4/en not_active Ceased
- 2014-12-23 WO PCT/SE2014/051565 patent/WO2015099595A1/en active Application Filing
- 2014-12-23 US US15/106,811 patent/US10279796B2/en active Active
- 2014-12-23 EP EP14874674.6A patent/EP3086966B1/en active Active
- 2014-12-23 KR KR1020167019971A patent/KR101794896B1/en active IP Right Grant
- 2014-12-23 KR KR1020167019467A patent/KR101794889B1/en active IP Right Grant
- 2014-12-23 US US15/106,815 patent/US10618509B2/en active Active
- 2014-12-23 SE SE1451651A patent/SE1451651A1/en not_active Application Discontinuation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0552140A1 (en) * | 1992-01-16 | 1993-07-21 | AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List | Drive device |
JPH07135701A (en) * | 1993-11-10 | 1995-05-23 | Aqueous Res:Kk | Hybrid type car |
EP1145896A1 (en) * | 1999-01-13 | 2001-10-17 | Toyota Jidosha Kabushiki Kaisha | Power output device, hybrid vehicle, and method of controlling them |
FR2832356A1 (en) * | 2001-11-16 | 2003-05-23 | Timothee Biel | Hybrid drive motor vehicle has epicyclic planetary gear train connected to motor-brake |
EP2436546A1 (en) * | 2009-05-25 | 2012-04-04 | UD Trucks Corporation | Power transmitting mechanism for hybrid vehicle |
US20130316865A1 (en) * | 2010-12-29 | 2013-11-28 | Jörgen Engström | Powertrain for a vehicle |
WO2013002707A1 (en) * | 2011-06-27 | 2013-01-03 | Scania Cv Ab | Powertrain for a vehicle and method for controlling a powertrain |
US20130102429A1 (en) * | 2011-10-21 | 2013-04-25 | Zf Friedrichshafen Ag | Method for operating a drive train of a hybrid vehicle |
Non-Patent Citations (1)
Title |
---|
See also references of EP3086967A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017095297A1 (en) * | 2015-12-01 | 2017-06-08 | Scania Cv Ab | A method for gear shifting in a gearbox, a gearbox and a vehicle |
CN108327496A (en) * | 2017-01-19 | 2018-07-27 | 郑州宇通客车股份有限公司 | A kind of bi-motor pure electric drive system and the electric vehicle using the system |
CN108327496B (en) * | 2017-01-19 | 2023-08-18 | 宇通客车股份有限公司 | Dual-motor pure electric driving system and electric automobile using same |
CN112105536A (en) * | 2018-05-09 | 2020-12-18 | 标致雪铁龙汽车股份有限公司 | Method for managing the drive of a hybrid motor vehicle |
CN112105536B (en) * | 2018-05-09 | 2024-05-31 | 标致雪铁龙汽车股份有限公司 | Method for managing the drive of a hybrid motor vehicle |
DE102019119696A1 (en) | 2019-07-22 | 2020-07-09 | Schaeffler Technologies AG & Co. KG | Powertrain |
CN113002592A (en) * | 2021-03-30 | 2021-06-22 | 卡斯柯信号(成都)有限公司 | General processing method for train route approaching locking logic |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9963138B2 (en) | Method of locking a planetary gearing when driving a vehicle | |
EP3310605B1 (en) | A method for gear shifting in a hybrid vehicle | |
EP3086965B1 (en) | Propulsion system for a vehicle | |
EP3310606B1 (en) | A method for gear shifting in a hybrid vehicle | |
EP2867083B1 (en) | Method for simultaneous control of torque from combustion engine and electric machine in a hybrid vehicle | |
US9771062B2 (en) | Method for braking a vehicle | |
EP3086968B1 (en) | Propulsion system for a vehicle | |
US10246082B2 (en) | Propulsion system for a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874842 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014874842 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014874842 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15106823 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016014631 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167019470 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016014631 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160621 |