WO2015099038A1 - Optical system, optical device, and manufacturing method for optical system - Google Patents

Optical system, optical device, and manufacturing method for optical system Download PDF

Info

Publication number
WO2015099038A1
WO2015099038A1 PCT/JP2014/084308 JP2014084308W WO2015099038A1 WO 2015099038 A1 WO2015099038 A1 WO 2015099038A1 JP 2014084308 W JP2014084308 W JP 2014084308W WO 2015099038 A1 WO2015099038 A1 WO 2015099038A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
conditional expression
present application
Prior art date
Application number
PCT/JP2014/084308
Other languages
French (fr)
Japanese (ja)
Inventor
哲史 三輪
俊典 武
一政 田中
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013269193A external-priority patent/JP6405630B2/en
Priority claimed from JP2013269192A external-priority patent/JP6405629B2/en
Priority claimed from JP2014004195A external-priority patent/JP6364778B2/en
Priority claimed from JP2014004196A external-priority patent/JP6543883B2/en
Priority claimed from JP2014099624A external-priority patent/JP6435635B2/en
Priority claimed from JP2014099623A external-priority patent/JP6394054B2/en
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2015099038A1 publication Critical patent/WO2015099038A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Definitions

  • the present invention relates to an optical system, an optical apparatus, and an optical system manufacturing method.
  • the conventional optical system as described above has a problem that the performance is not sufficiently improved.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an optical system, an optical device, and a method for manufacturing the optical system having good optical performance.
  • the first aspect of the present invention is: In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, By moving the second lens group along the optical axis, focusing from an object at infinity to an object at a short distance, An optical system characterized by satisfying the following conditional expression is provided. 0.10 ⁇ f / f12 ⁇ 0.55 However, f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • the second aspect of the present invention is An optical apparatus having the optical system according to the first aspect of the present invention is provided.
  • the third aspect of the present invention is: A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
  • the optical system satisfies the following conditional expression, An optical system manufacturing method is provided in which focusing from an object at infinity to an object at a short distance is performed by moving the second lens group along an optical axis. 0.10 ⁇ f / f12 ⁇ 0.55 However, f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • the fourth aspect of the present invention is In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, By moving the second lens group along the optical axis, focusing from an object at infinity to an object at a short distance,
  • the second lens group has at least three lenses;
  • An optical system characterized by satisfying the following conditional expression is provided. 0.10 ⁇ f / f12 ⁇ 0.85
  • f Focal length of the optical system
  • f12 Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • the fifth aspect of the present invention is An optical apparatus comprising the optical system according to the fourth aspect of the present invention is provided.
  • the sixth aspect of the present invention is A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
  • the second lens group includes at least three lenses;
  • the optical system satisfies the following conditional expression, An optical system manufacturing method is provided in which focusing from an object at infinity to an object at a short distance is performed by moving the second lens group along an optical axis. 0.10 ⁇ f / f12 ⁇ 0.85 However, f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • the seventh aspect of the present invention is In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, When focusing from an object at infinity to a near object, the second lens group moves along the optical axis; A part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis; An optical system characterized by satisfying the following conditional expression is provided. ⁇ 1.60 ⁇ r ⁇ (1- ⁇ s) ⁇ 0.85 However, ⁇ s: lateral magnification of the shift lens group ⁇ r: lateral magnification of all lenses located on the image side of the shift lens group
  • the eighth aspect of the present invention provides An optical apparatus having the optical system according to the seventh aspect of the present invention is provided.
  • the ninth aspect of the present invention A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
  • the second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance;
  • a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis;
  • Provided is a method for manufacturing an optical system, characterized in that the optical system satisfies the following conditional expression. ⁇ 1.60 ⁇ r ⁇ (1- ⁇ s) ⁇ 0.85
  • ⁇ s lateral magnification of the shift lens group
  • ⁇ r lateral magnification of all lenses located on the image side of the shift lens group
  • the tenth aspect of the present invention provides In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
  • the third lens group includes, in order from the object side, a 3a lens group and a 3b lens group, When focusing from an object at infinity to a near object, the second lens group moves along the optical axis;
  • the third lens group moves as a shift lens group so as to include a component in a direction perpendicular to the optical axis,
  • An optical system characterized by satisfying the following conditional expression is provided.
  • fF Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity
  • fR Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity
  • the eleventh aspect of the present invention provides An optical apparatus having the optical system according to the tenth aspect of the present invention is provided.
  • the twelfth aspect of the present invention provides A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
  • the third lens group has a 3a lens group and a 3b lens group in order from the object side,
  • the second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance;
  • the third lens group is moved so as to include a component in a direction orthogonal to the optical axis as a shift lens group,
  • Provided is a method for manufacturing an optical system, characterized in that the optical system satisfies the following conditional expression.
  • fF Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity
  • fR Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity
  • the seventh to ninth aspects of the present invention it is possible to provide an optical system, an optical apparatus, and a method for manufacturing the optical system that correct various aberrations satisfactorily and suppress deterioration of optical performance during lens shift.
  • FIG. 1 is a sectional view showing a lens arrangement at the time of focusing on an object at infinity in an optical system according to a first example common to the first to eighth embodiments of the present application.
  • 2A and 2B are graphs showing various aberrations when the optical system according to the first example of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 3 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to the first example of the present application.
  • FIG. 4 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a second example common to the first to eighth embodiments of the present application.
  • FIG. 5A and 5B are graphs showing various aberrations when the optical system according to Example 2 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 6 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the second example of the present application.
  • FIG. 7 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a third example common to the first to eighth embodiments of the present application.
  • 8A and 8B are graphs showing various aberrations when the optical system according to Example 3 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 9 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to the third example of the present application.
  • FIG. 10 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fourth example common to the first to eighth embodiments of the present application.
  • 11A and 11B are graphs showing various aberrations when the optical system according to Example 4 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 12 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the fourth example of the present application.
  • FIG. 10 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fourth example common to the first to eighth embodiments of the present application.
  • 11A and 11B are graphs showing various aberrations
  • FIG. 13 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fifth example common to the first to eighth embodiments of the present application.
  • FIGS. 14A and 14B are graphs showing various aberrations when the optical system according to Example 5 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 15 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to Example 5 of the present application.
  • FIG. 16 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a sixth example common to the first to eighth embodiments of the present application.
  • FIGS. 17A and 17B are graphs showing various aberrations when the optical system according to Example 6 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 18 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to Example 6 of the present application.
  • FIG. 19 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a seventh example common to the third to sixth embodiments of the present application.
  • 20A and 20B are graphs showing various aberrations when the optical system according to Example 7 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 18 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to Example 6 of the present application.
  • FIG. 19 is a cross-sectional view showing a lens arrangement at the time of focusing
  • FIG. 21 is a coma aberration diagram when the lens shift is performed at the time of focusing on an object at infinity of the optical system according to Example 7 of the present application.
  • FIG. 22 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to an eighth example common to the third to sixth embodiments of the present application.
  • FIGS. 23A and 23B are graphs showing various aberrations when the optical system according to Example 8 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 24 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the eighth example of the present application.
  • FIG. 25 is a cross-sectional view showing the lens arrangement at the time of focusing on an object at infinity in the optical system according to Example 9 common to Embodiments 3 to 6 of the present application.
  • FIGS. 26A and 26B are graphs showing various aberrations when the optical system according to Example 9 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 27 is a coma aberration diagram when the lens shifts at the time of focusing on an object at infinity of the optical system according to Example 9 of the present application.
  • FIG. 28 is a diagram showing a configuration of a camera including an optical system according to the first to eighth embodiments of the present application.
  • FIG. 29 is a diagram showing an outline of a method of manufacturing an optical system according to the fifth embodiment of the present application.
  • FIG. 30 shows an example of a state in which light rays incident on the optical system according to the first embodiment of the present application are reflected by the first reflecting surface and the second reflecting surface to form ghosts and flares on the image surface.
  • FIG. 31 is an explanatory view showing an example of the layer structure of the antireflection film of the fifth to eighth embodiments of the present application.
  • FIG. 32 is a graph showing the spectral characteristics of the antireflection films of the fifth to eighth embodiments of the present application.
  • FIG. 33 is a graph showing the spectral characteristics of the antireflection film according to modifications of the fifth to eighth embodiments of the present application.
  • FIG. 34 is a graph showing the incident angle dependence of the spectral characteristic of the antireflection film according to the modification of the fifth to eighth embodiments of the present application.
  • FIG. 35 is a graph showing the spectral characteristics of the antireflection film prepared by the prior art.
  • FIG. 36 is a graph showing the incident angle dependence of the spectral characteristics of the antireflection film prepared by the conventional technique.
  • FIG. 37 is a diagram showing an outline of a method of manufacturing an optical system according to the sixth embodiment of the present application.
  • FIG. 38 is a diagram showing an outline of the method of manufacturing the optical system according to the first embodiment of the present application.
  • FIG. 39 is a diagram showing an outline of a method for manufacturing an optical system according to the second embodiment of the present application.
  • FIG. 40 is a diagram showing an outline of the manufacturing method of the optical system according to the third embodiment of the present application.
  • FIG. 41 is a diagram showing an outline of a method of manufacturing an optical system according to the fourth embodiment of the present application.
  • FIG. 42 is a diagram showing an outline of the method of manufacturing the optical system according to the seventh embodiment of the present application.
  • FIG. 43 is a diagram showing an outline of the manufacturing method of the optical system according to the eighth embodiment of the present application.
  • the optical system according to the first embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • the optical system according to the first embodiment of the present application includes, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. And a third lens group.
  • the optical system according to the first embodiment of the present application can achieve both miniaturization and high performance while having a large focal length.
  • the optical system according to the first embodiment of the present application performs focusing from an infinitely distant object to a close object by moving the second lens group along the optical axis.
  • the second lens group can be driven by a relatively small motor unit.
  • Conditional expression (1-1) defines the combined refractive power of the first lens group and the second lens group.
  • the optical system according to the first embodiment of the present application can satisfactorily correct lateral chromatic aberration by satisfying conditional expression (1-1). Further, the light emitted from the second lens group becomes convergent light. For this reason, since the second lens group can be arranged on the image side and the first lens group can be arranged on the image side accordingly, the entire length of the optical system according to the first embodiment of the present application. Can be reduced. In addition, the lateral chromatic aberration can be corrected satisfactorily.
  • conditional expression (1-1) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration.
  • the corresponding value of the conditional expression (1-1) of the optical system according to the first embodiment of the present application is lower than the lower limit value, the light emitted from the second lens group becomes parallel light.
  • the overall length of the optical system according to the embodiment is increased. Therefore, if it is attempted to shorten the overall length of the optical system according to the first embodiment of the present application, it becomes difficult to correct coma.
  • the first lens group has at least one positive lens that satisfies the following conditional expression (1-2).
  • ⁇ d1p Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the first lens group
  • Conditional expression (1-2) defines the Abbe number of the glass material of the positive lens in the first lens group.
  • the optical system according to the first embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (1-2).
  • conditional expression (1-2) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (1-2) of the optical system according to the first embodiment of the present application is less than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group includes a plurality of positive lenses
  • the positive lens arranged closest to the object among the plurality of positive lenses is the following conditional expression: It is desirable to satisfy (1-3). (1-3) 80 ⁇ d1pf ⁇ 110 However, ⁇ d1pf: Abbe number with respect to the d-line (wavelength 587.6 nm) of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
  • Conditional expression (1-3) defines the Abbe number of the glass material of the positive lens arranged closest to the object among the plurality of positive lenses in the first lens group.
  • the optical system according to the first embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (1-3).
  • conditional expression (1-3) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (1-3) of the optical system according to the first embodiment of the present application is below the lower limit value, it will be difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group includes at least one negative lens that satisfies the following conditional expression (1-4).
  • nd1n refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the first lens group
  • Conditional expression (1-4) defines the refractive index of the glass material of the negative lens in the first lens group.
  • the optical system according to the first embodiment of the present application can satisfactorily correct coma and curvature of field while reducing the weight by satisfying conditional expression (1-4).
  • conditional expression (1-4) of the optical system according to the first embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field.
  • the optical system according to the first embodiment of the present application moves so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis.
  • the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, It is desirable that the third lens unit is composed of a third lens unit having positive refractive power, and the third lens unit moves so as to include a component in a direction orthogonal to the optical axis.
  • image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem.
  • the diameter of the 3b lens group can be reduced, the mechanical unit for driving the 3b lens group during vibration isolation can be reduced in size.
  • the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side.
  • the cemented lens is more preferably arranged on the most image side in the first lens group.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the following conditional expression (1-5) is satisfied. (1-5) 0.30 ⁇ TL1a / TL1 ⁇ 0.70 However, TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
  • Conditional expression (1-5) defines the length of the first lens group with respect to the length of the first lens group.
  • the optical system according to the first embodiment of the present application can satisfactorily correct the coma aberration while reducing the weight by satisfying conditional expression (1-5).
  • the weight of the first lens group increases. Therefore, for example, if a glass material having a small refractive index is used for the negative lens in the first lens group in order to reduce the weight, it becomes difficult to correct curvature of field.
  • conditional expression (1-5) of the optical system according to the first embodiment of the present application when the corresponding value of the conditional expression (1-5) of the optical system according to the first embodiment of the present application is less than the lower limit value, it becomes difficult to correct the coma aberration.
  • the first-a lens group includes a positive lens, a positive lens, and a negative lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the first embodiment of the present application.
  • the first lens group has a protective filter glass on the most object side.
  • the protective filter glass is a lens having substantially no refractive power, and the focal length thereof is preferably 10 times or more the focal length of the optical system according to the first embodiment of the present application.
  • the optical system according to the first embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
  • the first-b lens group includes a negative lens and a positive lens in order from the object side. With this configuration, it is possible to satisfactorily correct variations in spherical aberration when focusing on a short-distance object.
  • the first b lens group includes only a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the first embodiment of the present application.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group has a positive lens that satisfies the following conditional expression (1-6): . (1-6) 70 ⁇ d1bp ⁇ 110 However, ⁇ d1bp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1b lens group
  • Conditional expression (1-6) defines the Abbe number of the glass material of the positive lens in the 1b lens group.
  • the optical system according to the first embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (1-6).
  • conditional expression (1-6) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (1-6) of the optical system according to the first embodiment of the present application is less than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the second lens group has two negative lens components.
  • the “lens component” refers to a cemented lens or a single lens formed by cementing two or more lenses.
  • the second lens group may have a negative lens, a positive lens, and a negative lens in order from the object side.
  • the second lens group may include a positive lens, a negative lens, and a negative lens in order from the object side.
  • the second lens group includes a positive lens that satisfies the following conditional expression (1-7).
  • (1-7) 15 ⁇ d2p ⁇ 30
  • ⁇ d2p Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the second lens group
  • Conditional expression (1-7) defines the Abbe number of the glass material of the positive lens in the second lens group.
  • the optical system according to the first embodiment of the present application can satisfactorily correct lateral chromatic aberration and axial chromatic aberration by satisfying conditional expression (1-7).
  • conditional expression (1-7) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration.
  • the second lens group is used to prevent the transmittance of light having a short wavelength from decreasing.
  • the optical apparatus includes the optical system according to the first embodiment having the above-described configuration. Thereby, an optical device having a small size and good optical performance can be realized.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. And a third lens group, wherein the optical system satisfies the following conditional expression (1-1), and the second lens group is moved along the optical axis. It is characterized in that focusing from an object at infinity to an object at a short distance is performed. Thereby, an optical system having a small size and good optical performance can be manufactured. (1-1) 0.10 ⁇ f / f12 ⁇ 0.55 However, f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • the optical system according to the second embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. And focusing from an object at infinity to a near object by moving the second lens group along the optical axis, and the second lens group has at least three lenses
  • the following conditional expression (2-1) is satisfied.
  • (2-1) 0.10 ⁇ f / f12 ⁇ 0.85
  • f Focal length of the optical system
  • f12 Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • the optical system according to the second embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. And a third lens group.
  • the optical system according to the second embodiment of the present application can achieve both miniaturization and high performance while having a large focal length.
  • the optical system according to the second embodiment of the present application performs focusing from an object at infinity to a near object by moving the second lens group along the optical axis.
  • the second lens group can be driven by a relatively small motor unit.
  • the second lens group has at least three lenses. With this configuration, coma can be corrected well.
  • Conditional expression (2-1) defines the combined refractive power of the first lens group and the second lens group.
  • the optical system according to the second embodiment of the present application can satisfactorily correct lateral chromatic aberration by satisfying conditional expression (2-1). Further, the light emitted from the second lens group becomes convergent light. For this reason, since the second lens group can be disposed more on the image side, and accordingly, the first lens group can also be disposed on the image side, the total length of the optical system according to the second embodiment of the present application. Can be reduced. In addition, the lateral chromatic aberration can be corrected satisfactorily.
  • conditional expression (2-1) of the optical system according to the second embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration.
  • the corresponding value of the conditional expression (2-1) of the optical system according to the second embodiment of the present application is less than the lower limit value, the light emitted from the second lens group becomes parallel light.
  • the overall length of the optical system according to the embodiment increases. Therefore, if it is attempted to shorten the overall length of the optical system according to the second embodiment of the present application, it becomes difficult to correct coma.
  • the second lens group includes a negative lens, a positive lens, and a negative lens in order from the object side, or a positive lens in order from the object side. And a negative lens and a negative lens are more preferable. In these configurations, it is most preferable to join a positive lens and a negative lens. With the above configuration, coma aberration can be corrected more favorably.
  • the second lens group includes at least one negative lens that satisfies the following conditional expression (2-2).
  • nd2n refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the second lens group
  • Conditional expression (2-2) defines the refractive index of the glass material of the negative lens in the second lens group.
  • conditional expression (2-2) of the optical system according to the second embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the second lens group increases. Therefore, if the specific gravity of other lenses in the second lens group is reduced in order to reduce the weight of the optical system according to the second embodiment of the present application, it becomes difficult to correct coma.
  • conditional expression (2-2) of the optical system according to the second embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field.
  • the second lens group includes a positive lens that satisfies the following conditional expression (2-3).
  • (2-3) 15 ⁇ d2p ⁇ 30
  • ⁇ d2p Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the second lens group
  • Conditional expression (2-3) defines the Abbe number of the glass material of the positive lens in the second lens group.
  • the optical system according to the second embodiment of the present application can satisfactorily correct lateral chromatic aberration and axial chromatic aberration by satisfying conditional expression (2-3).
  • conditional expression (2-3) of the optical system according to the second embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration.
  • the first lens group has at least one positive lens that satisfies the following conditional expression (2-4).
  • ⁇ d1p Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the first lens group
  • Conditional expression (2-4) defines the Abbe number of the glass material of the positive lens in the first lens group.
  • the optical system according to the second embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (2-4).
  • conditional expression (2-4) of the optical system according to the second embodiment of the present application exceeds the upper limit, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (2-4) of the optical system according to the second embodiment of the present application is less than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group includes a plurality of positive lenses
  • the positive lens arranged closest to the object among the plurality of positive lenses is represented by the following conditional expression: It is desirable to satisfy (2-5). (2-5) 80 ⁇ d1pf ⁇ 110 However, ⁇ d1pf: Abbe number with respect to the d-line (wavelength 587.6 nm) of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
  • Conditional expression (2-5) defines the Abbe number of the glass material of the positive lens arranged closest to the object among the plurality of positive lenses in the first lens group.
  • the optical system according to the second embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (2-5).
  • conditional expression (2-5) of the optical system according to the second embodiment of the present application exceeds the upper limit, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (2-5) of the optical system according to the second embodiment of the present application is lower than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group includes at least one negative lens that satisfies the following conditional expression (2-6).
  • (2-6) 1.50 ⁇ nd1n ⁇ 1.75
  • nd1n refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the first lens group
  • Conditional expression (2-6) defines the refractive index of the glass material of the negative lens in the first lens group.
  • the optical system according to the second embodiment of the present application can satisfactorily correct coma and curvature of field while reducing the weight by satisfying conditional expression (2-6).
  • conditional expression (2-6) of the optical system according to the second embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field.
  • the optical system according to the second embodiment of the present application moves so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis.
  • the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, It is desirable that the third lens unit is composed of a third lens unit having positive refractive power, and the third lens unit moves so as to include a component in a direction orthogonal to the optical axis.
  • image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem.
  • the diameter of the 3b lens group can be reduced, the mechanical unit for driving the 3b lens group during vibration isolation can be reduced in size.
  • the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side.
  • the cemented lens is more preferably arranged on the most image side in the first lens group.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the following conditional expression (2-7) is satisfied. (2-7) 0.30 ⁇ TL1a / TL1 ⁇ 0.70 However, TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
  • Conditional expression (2-7) defines the length of the first lens group with respect to the length of the first lens group.
  • the optical system according to the second embodiment of the present application can satisfactorily correct coma aberration while reducing the weight by satisfying conditional expression (2-7).
  • the weight of the first lens group increases. Therefore, for example, if a glass material having a small refractive index is used for the negative lens in the first lens group in order to reduce the weight, it becomes difficult to correct curvature of field.
  • conditional expression (2-7) of the optical system according to the second embodiment of the present application is less than the lower limit value, it becomes difficult to correct coma.
  • the first-a lens group includes a positive lens, a positive lens, and a negative lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the second embodiment of the present application.
  • the first lens group has a protective filter glass on the most object side.
  • the protective filter glass is a lens having substantially no refractive power, and the focal length thereof is preferably 10 times or more the focal length of the optical system according to the second embodiment of the present application.
  • the optical system according to the second embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
  • the first-b lens group includes a negative lens and a positive lens in order from the object side. With this configuration, it is possible to satisfactorily correct variations in spherical aberration when focusing on a short-distance object.
  • the first-b lens group includes only a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the second embodiment of the present application.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group has a positive lens that satisfies the following conditional expression (2-8): . (2-8) 70 ⁇ d1bp ⁇ 110 However, ⁇ d1bp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1b lens group
  • Conditional expression (2-8) defines the Abbe number of the glass material of the positive lens in the 1b lens group.
  • the optical system according to the second embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (2-8).
  • conditional expression (2-8) of the optical system according to the second embodiment of the present application exceeds the upper limit, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (2-8) of the optical system according to the second embodiment of the present application is less than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the optical apparatus of the present application is characterized by including the optical system according to the second embodiment having the above-described configuration. Thereby, an optical device having a small size and good optical performance can be realized.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the second lens group is moved along the optical axis to focus from an object at infinity to an object at a short distance.
  • an optical system having a small size and good optical performance can be manufactured.
  • (2-1) 0.10 ⁇ f / f12 ⁇ 0.85
  • f Focal length of the optical system
  • f12 Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • the optical system according to the third embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • the second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance, and a part of the third lens group is orthogonal to the optical axis as a shift lens group.
  • (3-1) is satisfied. (3-1) -1.60 ⁇ r ⁇ (1- ⁇ s) ⁇ 0.85
  • ⁇ s lateral magnification of the shift lens group
  • ⁇ r lateral magnification of all lenses located on the image side of the shift lens group
  • the optical system according to the third embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power.
  • a second lens group that moves along the optical axis during focusing from an object at infinity to an object at a short distance, and a part of the third lens group serves as a shift lens group. It moves so as to include a component in a direction orthogonal to the optical axis.
  • the optical system according to the third embodiment of the present application moves so that a part of the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group.
  • Conditional expression (3-1) defines an appropriate range of the so-called blur coefficient, which is the amount of movement of the shift lens group in the direction orthogonal to the optical axis with respect to the amount of movement in the direction orthogonal to the optical axis. It is.
  • the optical system according to the third embodiment of the present application can satisfactorily correct spherical aberration, coma aberration, and field curvature by satisfying conditional expression (3-1), and suppress deterioration of optical performance during lens shift. be able to.
  • conditional expression (3-1) of the optical system according to the third embodiment of the present application exceeds the upper limit value, the image movement amount relative to the movement amount of the shift lens group becomes relatively small. This is not preferable because spherical aberration and coma are insufficiently corrected.
  • conditional expression (3-1) of the optical system according to the third embodiment of the present application is less than the lower limit value, the amount of movement of the image with respect to the amount of movement of the shift lens group becomes too large. This is not preferable because coma aberration and field curvature are deteriorated.
  • the third lens group includes a 3a lens group, a 3b lens group, and a 3c lens group in order from the object side. It is desirable for the lens group to move so as to include a component in a direction orthogonal to the optical axis as the shift lens group. With this configuration, it is possible to correct spherical aberration and coma with the 3a lens group, and it is possible to correct spherical aberration with the 3c lens group. Therefore, spherical aberration and coma aberration can be corrected well in the entire third lens group. In addition, since the third lens group is a shift lens group, it is possible to suppress deterioration in optical performance during lens shift.
  • the third lens group includes, in order from the object side, a 3a lens group, a 3b lens group, and a 3c lens group. It is desirable that the lens group includes a positive lens and a negative lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 3a lens group, and it is possible to further improve the performance of the optical system according to the third embodiment of the present application. In particular, it is more desirable that the 3a lens group has a positive refractive power.
  • the shift lens group includes a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side.
  • the third lens group includes, in order from the object side, a 3a lens group, a 3b lens group, and a 3c lens group. It is desirable to have an aperture stop on the object side or image side of the lens group.
  • the refractive power arrangement of the optical system according to the third embodiment of the present application in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, By approaching the symmetrical type of the third lens group having positive refractive power, it is possible to satisfactorily correct field curvature and distortion. Thereby, the optical system according to the third embodiment of the present application can achieve higher performance.
  • the third lens group includes a 3a lens group, a 3b lens group, and a 3c lens group in order from the object side. It is desirable that the lens group moves as the shift lens group so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (3-2). (3-2) -0.45 ⁇ f3a / f3bc ⁇ 0.40 However, f3a: focal length of the 3a lens group f3bc: combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
  • Conditional expression (3-2) defines an appropriate range of the ratio between the focal length of the 3a lens group and the combined focal length of the 3b lens group and the 3c lens group as the shift lens group.
  • the optical system according to the third embodiment of the present application can satisfactorily correct the spherical aberration, the coma aberration, and the fluctuation of the coma aberration at the time of lens shift by satisfying the conditional expression (3-2). As a result, the optical system according to the third embodiment of the present application can suppress deterioration in optical performance during lens shift while further improving performance.
  • the refractive power of the 3a lens group becomes relatively small and is generated by the 3a lens group alone. Spherical aberration and coma are undercorrected. Further, the refractive powers of the shift lens group and the third c lens group become relatively large. For this reason, fluctuations in coma cannot be suppressed during lens shift, and high optical performance cannot be obtained.
  • the refractive power of the 3a lens group becomes relatively large, and the 3a lens group alone A large amount of spherical aberration and coma occur. Further, the refractive powers of the shift lens group and the third c lens group become relatively small. For this reason, coma is insufficiently corrected during lens shift.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the first lens group has the negative lens closest to the image side.
  • the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the following conditional expression (3-3) is satisfied. (3-3) 1.40 ⁇ f1a / f1b ⁇ 2.05 However, f1a: focal length of the 1a lens group f1b: focal length of the 1b lens group
  • Conditional expression (3-3) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group.
  • the optical system according to the third embodiment of the present application can satisfactorily correct the spherical aberration and the coma generated in the single lens unit 1a by satisfying conditional expression (3-3). Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma are undercorrected.
  • the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance.
  • conditional expression (3-3) of the optical system according to the third embodiment of the present application when the corresponding value of the conditional expression (3-3) of the optical system according to the third embodiment of the present application is below the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b
  • the air gap with the lens group is the largest of the air gaps in the first lens group
  • the first a lens group is in order from the object side, protective glass, positive lens, positive lens, and negative lens. It is desirable to be composed of With this configuration, spherical aberration can be favorably corrected in the 1a lens group. Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b
  • An air gap with the lens group is the largest of the air gaps in the first lens group
  • the first b lens group includes, in order from the object side, a negative meniscus lens and a positive lens with a convex surface facing the object side. It is desirable that the lens is composed of a cemented lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 1b lens group. Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b
  • the air gap with the lens group is the largest of the air gaps in the first lens group
  • the first a lens group has at least one positive lens that satisfies the following conditional expression (3-4): It is desirable. (3-4) 90 ⁇ dp However, ⁇ dp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1a lens group
  • Conditional expression (3-4) defines the Abbe number of the glass material of the positive lens in the 1a lens group.
  • the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the image side among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (3-5).
  • ndn Refractive index with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged on the most image side among the plurality of negative lenses in the second lens group
  • Conditional expression (3-5) defines the refractive index of the glass material of the negative lens arranged closest to the image among the plurality of negative lenses in the second lens group.
  • the optical system according to the third embodiment of the present application can satisfy the conditional expression (3-5) to suppress the occurrence of lateral chromatic aberration in the second lens unit alone.
  • the second lens group includes a plurality of negative lenses
  • the negative lens arranged closest to the object among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (3-6). (3-6) 49.7 ⁇ dn However, ⁇ dn: Abbe number with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
  • Conditional expression (3-6) defines the Abbe number of the glass material of the negative lens disposed closest to the object among the plurality of negative lenses in the second lens group.
  • the optical system according to the third embodiment of the present application can suppress occurrence of longitudinal chromatic aberration in the second lens unit alone by satisfying conditional expression (3-6).
  • the optical system according to the third embodiment of the present application satisfies the following conditional expression (3-7).
  • (3-7) -3.00 ⁇ f1 / f2 ⁇ -2.00
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • Conditional expression (3-7) defines an appropriate range of the focal length ratio between the first lens group and the second lens group.
  • conditional expression (3-7) the optical system according to the third embodiment of the present application suppresses fluctuations in coma during focusing, and suppresses occurrence of spherical aberration in the first lens unit alone. be able to. As a result, the optical system according to the third embodiment of the present application can achieve higher performance.
  • the refractive power of the first lens group becomes relatively small.
  • the first lens group cannot contribute to reducing the tele ratio, that is, the value obtained by dividing the total length of the optical system according to the third embodiment of the present application by the focal length, and the optical system according to the third embodiment of the present application.
  • the total length of will increase.
  • the refractive power of the second lens group becomes relatively large, fluctuations in coma aberration cannot be suppressed during focusing, and high optical performance cannot be obtained.
  • it is more preferable to set the upper limit of conditional expression (3-7) to ⁇ 2.15.
  • it is more preferable to set the upper limit value of conditional expression (3-7) to ⁇ 2.30.
  • the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs.
  • the refractive power of the second lens group becomes relatively small, and the amount of movement of the second lens group at the time of focusing becomes great.
  • the second lens group includes, in order from the object side, a negative lens having a concave surface facing the image side, and a cemented lens of a positive lens and a negative lens. It is desirable that With this configuration, coma can be favorably corrected in the second lens group. Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the optical system according to the third embodiment of the present application satisfies the following conditional expression (3-8).
  • (3-8) 0.10 ⁇ f / f12 ⁇ 0.85
  • f Focal length of the optical system
  • f12 Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • Conditional expression (3-8) defines an appropriate range of the ratio between the focal length of the optical system according to the third embodiment of the present application and the combined focal length of the first lens group and the second lens group.
  • the optical system according to the third embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration generated in the first lens group and the second lens group by satisfying conditional expression (3-8). .
  • conditional expression (3-8) As a result, the optical system according to the third embodiment of the present application can achieve higher performance.
  • the refractive power of the first lens group and the second lens group becomes relatively large, and the first lens This is not preferable because coma aberration is greatly generated in the first lens group and the second lens group.
  • the corresponding value of the conditional expression (3-8) of the optical system according to the third embodiment of the present application is lower than the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small, and the first This is not preferable because the lateral chromatic aberration generated in the first lens group and the second lens group is insufficiently corrected.
  • the optical apparatus according to the present application includes the optical system according to the third embodiment having the above-described configuration. Thereby, it is possible to realize an optical device that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the optical system according to the fourth embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • the third lens group includes a 3a lens group and a 3b lens group in order from the object side, and the second lens is in focus when focusing from an infinite object to a short distance object.
  • the group moves along the optical axis
  • the 3b lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (4-1): And (4-1) 1.70 ⁇
  • fF Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity
  • fR Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
  • the optical system according to the fourth embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power.
  • a third lens group, and the third lens group has a 3a lens group and a 3b lens group in order from the object side, and when focusing from an infinite object to a short distance object, The second lens group moves along the optical axis.
  • the optical system according to the fourth embodiment of the present application moves, that is, shifts the lens, so that the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group.
  • Conditional expression (4-1) indicates that the combined focal length from the first lens group to the 3a lens group and the combined focal length of all the lenses located on the image side of the 3b lens group and the 3b lens group are It defines an appropriate range of ratios. If there is no lens on the image side of the 3b lens group, the corresponding value of the conditional expression (4-1) is calculated as “fR: focal length of the 3b lens group”.
  • the corresponding value of the conditional expression (4-1) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, the combined refractive power from the first lens group to the 3a lens group becomes relatively small. This is not preferable because spherical aberration and coma aberration generated from the first lens group to the 3a lens group become insufficiently corrected.
  • the corresponding value of the conditional expression (4-1) of the optical system according to the fourth embodiment of the present application is below the lower limit value, the combined refractive power from the first lens group to the 3a lens group becomes relatively large. . Accordingly, a large amount of coma aberration is generated from the first lens group to the 3a lens group, which is not preferable.
  • the optical system according to the fourth embodiment of the present application satisfies the following conditional expression (4-2).
  • (4-2) -1.60 ⁇ r ⁇ (1- ⁇ s) ⁇ 0.85
  • ⁇ s lateral magnification of the shift lens group
  • ⁇ r lateral magnification of all lenses located on the image side of the shift lens group
  • Conditional expression (4-2) defines an appropriate range of the so-called blur coefficient, which is the amount of movement of the shift lens group in the direction orthogonal to the optical axis with respect to the amount of movement in the direction orthogonal to the optical axis. It is.
  • the optical system according to the fourth embodiment of the present application can satisfactorily correct spherical aberration, coma aberration, and field curvature by satisfying conditional expression (4-2), and suppress deterioration of optical performance during lens shift. be able to.
  • conditional expression (4-2) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, the image movement amount relative to the movement amount of the shift lens group becomes relatively small. This is not preferable because spherical aberration and coma are insufficiently corrected.
  • conditional expression (4-2) of the optical system according to the fourth embodiment of the present application is lower than the lower limit value, the moving amount of the image with respect to the moving amount of the shift lens group becomes too large. This is not preferable because coma aberration and field curvature are deteriorated.
  • the third lens group is composed of a positive lens and a negative lens.
  • the 3a lens group has a positive refractive power.
  • the third lens group is composed of a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side.
  • the optical system according to the fourth embodiment of the present application has an aperture stop on the object side or the image side of the 3a lens group.
  • the refractive power arrangement of the optical system according to the fourth embodiment of the present application in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, By approaching the symmetrical type of the third lens group having positive refractive power, it is possible to satisfactorily correct field curvature and distortion. Thereby, the optical system according to the fourth embodiment of the present application can be further improved in performance.
  • the third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group. It is desirable that the conditional expression (4-3) is satisfied. (4-3) -0.45 ⁇ f3a / f3bc ⁇ 0.40
  • f3a focal length of the 3a lens group
  • f3bc combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
  • Conditional expression (4-3) defines an appropriate range of the ratio between the focal length of the 3a lens group and the combined focal length of the 3b lens group and the 3c lens group.
  • the optical system according to the fourth embodiment of the present application can satisfactorily correct the spherical aberration, the coma aberration, and the fluctuation of the coma aberration during the lens shift by satisfying the conditional expression (4-3). Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration in optical performance during lens shift while further improving performance.
  • the refractive power of the 3a lens group becomes relatively small, and the 3a lens group alone is generated. Spherical aberration and coma are undercorrected. Further, the refractive power of the third b lens group and the third c lens group becomes relatively large. For this reason, fluctuations in coma cannot be suppressed during lens shift, and high optical performance cannot be obtained.
  • the refractive power of the 3a lens group becomes relatively large, and the 3a lens group alone A large amount of spherical aberration and coma occur. Further, the refractive power of the third b lens group and the third c lens group becomes relatively small. For this reason, coma is insufficiently corrected during lens shift.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the first lens group has the negative lens closest to the image side.
  • the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group and the following conditional expression (4-4) is satisfied.
  • (4-4) 1.40 ⁇ f1a / f1b ⁇ 2.05
  • f1a focal length of the 1a lens group
  • f1b focal length of the 1b lens group
  • Conditional expression (4-4) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group.
  • the optical system according to the fourth embodiment of the present application can satisfactorily correct spherical aberration and coma generated in the first lens group alone by satisfying conditional expression (4-4). Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma are undercorrected.
  • the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance.
  • conditional expression (4-4) of the optical system according to the fourth embodiment of the present application when the corresponding value of the conditional expression (4-4) of the optical system according to the fourth embodiment of the present application is below the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b
  • the air gap with the lens group is the largest of the air gaps in the first lens group
  • the first a lens group is in order from the object side, protective glass, positive lens, positive lens, and negative lens. It is desirable to be composed of With this configuration, spherical aberration can be favorably corrected in the 1a lens group. Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b
  • An air gap with the lens group is the largest of the air gaps in the first lens group
  • the first b lens group includes, in order from the object side, a negative meniscus lens and a positive lens with a convex surface facing the object side. It is desirable that the lens is composed of a cemented lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 1b lens group. Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b
  • the air gap with the lens group is the largest of the air gaps in the first lens group
  • the first a lens group has at least one positive lens that satisfies the following conditional expression (4-5) It is desirable.
  • (4-5) 90 ⁇ dp
  • ⁇ dp Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1a lens group
  • Conditional expression (4-5) defines the Abbe number of the glass material of the positive lens in the 1a lens group.
  • the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the image side among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (4-6).
  • ndn Refractive index with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged on the most image side among the plurality of negative lenses in the second lens group
  • Conditional expression (4-6) defines the refractive index of the glass material of the negative lens disposed closest to the image side among the plurality of negative lenses in the second lens group.
  • the optical system according to the fourth embodiment of the present application can satisfy the conditional expression (4-6) and suppress the occurrence of lateral chromatic aberration in the second lens unit alone.
  • the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the object among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (4-7).
  • (4-7) 49.7 ⁇ dn
  • ⁇ dn Abbe number with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
  • Conditional expression (4-7) defines the Abbe number of the glass material of the negative lens disposed closest to the object among the plurality of negative lenses in the second lens group.
  • the optical system according to the fourth embodiment of the present application can suppress the occurrence of longitudinal chromatic aberration in the second lens unit alone by satisfying conditional expression (4-7).
  • the optical system according to the fourth embodiment of the present application satisfies the following conditional expression (4-8). (4-8) -3.00 ⁇ f1 / f2 ⁇ -2.00
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • Conditional expression (4-8) defines an appropriate range of the focal length ratio between the first lens group and the second lens group.
  • the optical system according to the fourth embodiment of the present application satisfies the conditional expression (4-8), thereby suppressing fluctuations in coma during focusing and suppressing occurrence of spherical aberration in the first lens unit alone. be able to. As a result, the optical system according to the fourth embodiment of the present application can achieve higher performance.
  • the refractive power of the first lens group becomes relatively small.
  • the first lens group cannot contribute to reducing the tele ratio, that is, the value obtained by dividing the total length of the optical system according to the fourth embodiment of the present application by the focal length, and the optical system according to the fourth embodiment of the present application.
  • the total length of will increase.
  • the refractive power of the second lens group becomes relatively large, fluctuations in coma aberration cannot be suppressed during focusing, and high optical performance cannot be obtained.
  • the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs.
  • the refractive power of the second lens group becomes relatively small, and the amount of movement of the second lens group at the time of focusing becomes great.
  • the second lens group includes, in order from the object side, a negative lens having a concave surface directed toward the image side, and a cemented lens of the positive lens and the negative lens. It is desirable that With this configuration, coma can be favorably corrected in the second lens group. Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the optical system according to the fourth embodiment of the present application satisfies the following conditional expression (4-9).
  • (4-9) 0.10 ⁇ f / f12 ⁇ 0.85
  • f Focal length of the optical system
  • f12 Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • Conditional expression (4-9) defines an appropriate range of the ratio between the focal length of the optical system according to the fourth embodiment of the present application and the combined focal length of the first lens group and the second lens group.
  • the optical system according to the fourth embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration generated in the first lens group and the second lens group by satisfying conditional expression (4-9). .
  • conditional expression (4-9) As a result, the optical system according to the fourth embodiment of the present application can achieve higher performance.
  • the refractive power of the first lens group and the second lens group becomes relatively large, and the first lens This is not preferable because coma aberration is greatly generated in the first lens group and the second lens group.
  • the corresponding value of the conditional expression (4-9) of the optical system according to the fourth embodiment of the present application is less than the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small, and the first This is not preferable because the lateral chromatic aberration generated in the first lens group and the second lens group is insufficiently corrected.
  • the third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group. It is desirable. With this configuration, it is possible to correct spherical aberration and coma with the 3a lens group, and it is possible to correct spherical aberration with the 3c lens group. Therefore, spherical aberration and coma aberration can be corrected well in the entire third lens group. In addition, since at least a part of the third lens group is a shift lens group, it is possible to suppress deterioration in optical performance during lens shift.
  • the optical apparatus according to the present application includes the optical system according to the fourth embodiment having the above-described configuration. As a result, it is possible to realize an optical device that is compact and has excellent optical performance by satisfactorily correcting various aberrations.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the second lens group is moved along the optical axis
  • the third b lens group is moved as a shift lens group so as to include a component in a direction perpendicular to the optical axis,
  • the optical system satisfies the following conditional expression (4-1).
  • the optical system according to the fifth embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is subjected to a wet process.
  • the third lens group includes a 3a lens group and a 3b lens group in order from the object side, from an infinite object to a close object.
  • the second lens group moves along the optical axis
  • the third b lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis, and the following conditional expression (5- 1) is satisfied.
  • (5-1) 1.70 ⁇
  • fF Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity
  • fR Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
  • the optical system according to the fifth embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power.
  • a third lens group, and the third lens group has a 3a lens group and a 3b lens group in order from the object side, and when focusing from an infinite object to a short distance object, The second lens group moves along the optical axis.
  • the optical system according to the fifth embodiment of the present application moves, that is, shifts the lens, so that the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group.
  • Conditional expression (5-1) indicates that the combined focal length from the first lens group to the 3a lens group and the combined focal length of all the lenses located on the image side of the 3b lens group and the 3b lens group are It defines an appropriate range of ratios. If no lens is present on the image side of the 3b lens group, the corresponding value of the conditional expression (5-1) is calculated as “fR: focal length of the 3b lens group”.
  • conditional expression (5-1) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, the combined refractive power from the first lens group to the 3a lens group becomes relatively small. This is not preferable because spherical aberration and coma aberration generated from the first lens group to the 3a lens group become insufficiently corrected.
  • the corresponding value of the conditional expression (5-1) of the optical system according to the fifth embodiment of the present application is below the lower limit value, the combined refractive power from the first lens group to the 3a lens group becomes relatively large. . Accordingly, a large amount of coma aberration is generated from the first lens group to the 3a lens group, which is not preferable.
  • an antireflection film is provided on at least one of the optical surfaces in the first lens group, the second lens group, and the third lens group,
  • the antireflection film includes at least one layer formed by a wet process.
  • the antireflection film is a multilayer film
  • the layer formed by using the wet process is the most surface side of the layers constituting the multilayer film.
  • a layer is desirable.
  • the optical surface provided with the antireflection film is a concave lens surface when viewed from the image surface side.
  • reflected light tends to be generated on a concave lens surface as viewed from the image plane side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side is an image surface side lens surface of the lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the second lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side is an object side lens surface of the lens in the third lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the third lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side is the image surface side lens surface of the fourth lens from the object side in the third lens group. It is desirable. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the optical surface provided with the antireflection film is a concave lens surface when viewed from the object side.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the object side is the object-side lens surface of the lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the object side is an image surface side lens surface of the lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the object side is the object-side lens surface of the lens in the second lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the antireflection film in the optical system according to the fifth embodiment of the present application is not limited to a wet process, and may be formed by a dry process or the like.
  • the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained.
  • the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
  • the optical system according to the fifth embodiment of the present application satisfies the following conditional expression (5-2).
  • (5-2) -1.60 ⁇ r ⁇ (1- ⁇ s) ⁇ 0.85
  • ⁇ s lateral magnification of the shift lens group
  • ⁇ r lateral magnification of all lenses located on the image side of the shift lens group
  • Conditional expression (5-2) defines an appropriate range of the so-called blur coefficient, which is the amount of movement of the shift lens group in the direction orthogonal to the optical axis with respect to the amount of movement in the direction orthogonal to the optical axis. It is.
  • the optical system according to the fifth embodiment of the present application can satisfactorily correct spherical aberration, coma aberration, and field curvature by satisfying conditional expression (5-2), and suppress deterioration of optical performance during lens shift. be able to.
  • conditional expression (5-2) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, the image movement amount relative to the movement amount of the shift lens group becomes relatively small. This is not preferable because spherical aberration and coma are insufficiently corrected.
  • conditional expression (5-2) of the optical system according to the fifth embodiment of the present application is less than the lower limit value, the amount of movement of the image with respect to the amount of movement of the shift lens group becomes too large. This is not preferable because coma aberration and field curvature are deteriorated.
  • the third lens group is composed of a positive lens and a negative lens.
  • the 3a lens group has a positive refractive power.
  • the third lens group is composed of a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side.
  • the optical system according to the fifth embodiment of the present application has an aperture stop on the object side or the image side of the 3a lens group.
  • the refractive power arrangement of the optical system according to the fifth embodiment of the present application in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, By approaching the symmetrical type of the third lens group having positive refractive power, it is possible to satisfactorily correct field curvature and distortion. Thereby, the optical system according to the fifth embodiment of the present application can be further improved in performance.
  • the third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group. It is desirable that the conditional expression (5-3) is satisfied. (5-3) -0.45 ⁇ f3a / f3bc ⁇ 0.40 However, f3a: focal length of the 3a lens group f3bc: combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
  • Conditional expression (5-3) defines an appropriate range of the ratio between the focal length of the 3a lens group and the combined focal length of the 3b lens group and the 3c lens group.
  • the optical system according to the fifth embodiment of the present application can satisfactorily correct the spherical aberration, the coma aberration, and the fluctuation of the coma aberration at the time of lens shift by satisfying the conditional expression (5-3). Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance during lens shift while further improving the performance.
  • the refractive power of the 3a lens group becomes relatively small and is generated by the 3a lens group alone. Spherical aberration and coma are undercorrected. Further, the refractive power of the third b lens group and the third c lens group becomes relatively large. For this reason, fluctuations in coma cannot be suppressed during lens shift, and high optical performance cannot be obtained.
  • the refractive power of the 3a lens group becomes relatively large, and the 3a lens group alone A large amount of spherical aberration and coma occur. Further, the refractive power of the third b lens group and the third c lens group becomes relatively small. For this reason, coma is insufficiently corrected during lens shift.
  • the first lens group includes, in order from the object side, a first-a lens group and a first-b lens group.
  • the first-a lens group and the first-b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the first lens group has the negative lens closest to the image side.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the following conditional expression (5-4) is satisfied.
  • (5-4) 1.40 ⁇ f1a / f1b ⁇ 2.05
  • f1a focal length of the 1a lens group
  • f1b focal length of the 1b lens group
  • Conditional expression (5-4) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group.
  • the optical system according to the fifth embodiment of the present application can satisfactorily correct the spherical aberration and the coma generated in the single lens unit 1a by satisfying conditional expression (5-4). Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma are undercorrected.
  • the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance.
  • conditional expression (5-4) of the optical system according to the fifth embodiment of the present application when the corresponding value of the conditional expression (5-4) of the optical system according to the fifth embodiment of the present application is below the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur.
  • the first lens group includes, in order from the object side, a first-a lens group and a first-b lens group.
  • the first-a lens group and the first-b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group is in order from the object side, protective glass, positive lens, positive lens, and negative lens. It is desirable to be composed of With this configuration, spherical aberration can be favorably corrected in the 1a lens group. Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first-a lens group and a first-b lens group.
  • the first-a lens group and the first-b An air gap with the lens group is the largest of the air gaps in the first lens group
  • the first b lens group includes, in order from the object side, a negative meniscus lens and a positive lens with a convex surface facing the object side. It is desirable that the lens is composed of a cemented lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 1b lens group. Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first-a lens group and a first-b lens group.
  • the first-a lens group and the first-b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group has at least one positive lens that satisfies the following conditional expression (5-5) It is desirable.
  • (5-5) 90 ⁇ dp
  • ⁇ dp Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1a lens group
  • Conditional expression (5-5) defines the Abbe number of the glass material of the positive lens in the 1a lens group.
  • the optical system according to the fifth embodiment of the present application can suppress occurrence of longitudinal chromatic aberration and lateral chromatic aberration in the first lens unit alone by satisfying conditional expression (5-5).
  • the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the image side among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (5-6).
  • ndn Refractive index with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged on the most image side among the plurality of negative lenses in the second lens group
  • Conditional expression (5-6) defines the refractive index of the glass material of the negative lens arranged closest to the image among the plurality of negative lenses in the second lens group.
  • the optical system according to the fifth embodiment of the present application can suppress the occurrence of lateral chromatic aberration in the second lens unit alone by satisfying conditional expression (5-6).
  • the second lens group includes a plurality of negative lenses
  • the negative lens arranged closest to the object among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (5-7). (5-7) 49.7 ⁇ dn However, ⁇ dn: Abbe number with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
  • Conditional expression (5-7) defines the Abbe number of the glass material of the negative lens disposed closest to the object among the plurality of negative lenses in the second lens group.
  • the optical system according to the fifth embodiment of the present application can suppress the occurrence of longitudinal chromatic aberration in the second lens unit alone by satisfying conditional expression (5-7).
  • the optical system according to the fifth embodiment of the present application satisfies the following conditional expression (5-8). (5-8) -3.00 ⁇ f1 / f2 ⁇ -2.00
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • Conditional expression (5-8) defines an appropriate range of the focal length ratio between the first lens group and the second lens group.
  • the refractive power of the first lens group becomes relatively small.
  • the first lens group cannot contribute to reducing the tele ratio, that is, the value obtained by dividing the total length of the optical system according to the fifth embodiment of the present application by the focal length, and the optical system according to the fifth embodiment of the present application.
  • the total length of will increase.
  • the refractive power of the second lens group becomes relatively large, fluctuations in coma aberration cannot be suppressed during focusing, and high optical performance cannot be obtained.
  • the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs.
  • the refractive power of the second lens group becomes relatively small, and the amount of movement of the second lens group at the time of focusing becomes great.
  • the second lens group includes, in order from the object side, a negative lens having a concave surface facing the image side, and a cemented lens of a positive lens and a negative lens. It is desirable that With this configuration, coma can be favorably corrected in the second lens group. Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
  • the optical system according to the fifth embodiment of the present application satisfies the following conditional expression (5-9).
  • (5-9) 0.10 ⁇ f / f12 ⁇ 0.85
  • f Focal length of the optical system
  • f12 Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • Conditional expression (5-9) defines an appropriate range of the ratio between the focal length of the optical system according to the fifth embodiment of the present application and the combined focal length of the first lens group and the second lens group.
  • the optical system according to the fifth embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration generated in the first lens group and the second lens group by satisfying conditional expression (5-9). .
  • conditional expression (5-9) As a result, the optical system according to the fifth embodiment of the present application can achieve higher performance.
  • the refractive power of the first lens group and the second lens group becomes relatively large, and the first lens This is not preferable because coma aberration is greatly generated in the first lens group and the second lens group.
  • the corresponding value of the conditional expression (5-9) of the optical system according to the fifth embodiment of the present application is less than the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small, and the first This is not preferable because the lateral chromatic aberration generated in the first lens group and the second lens group is insufficiently corrected.
  • the third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group. It is desirable. With this configuration, it is possible to correct spherical aberration and coma with the 3a lens group, and it is possible to correct spherical aberration with the 3c lens group. Therefore, spherical aberration and coma aberration can be corrected well in the entire third lens group. In addition, since at least a part of the third lens group is a shift lens group, it is possible to suppress deterioration in optical performance during lens shift.
  • the optical apparatus according to the present application includes the optical system according to the fifth embodiment having the above-described configuration. As a result, it is possible to realize an optical device that is compact and has excellent optical performance by satisfactorily correcting various aberrations.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the antireflection film includes at least one layer formed by a wet process
  • the third lens group includes a 3a lens group and a 3b lens group in order from the object side, and is infinite.
  • the second lens group is moved along the optical axis at the time of focusing from a far object to a short distance object
  • the third b lens group includes a component in a direction orthogonal to the optical axis as a shift lens group.
  • the optical system according to the sixth embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is subjected to a wet process.
  • the second lens group moves along the optical axis during focusing from an object at infinity to a near object, and a part of the third lens group
  • the shift lens unit moves so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (6-1).
  • (6-1) ⁇ 1.60 ⁇ r ⁇ (1- ⁇ s) ⁇ 0.85
  • ⁇ s lateral magnification of the shift lens group
  • ⁇ r lateral magnification of all lenses located on the image side of the shift lens group
  • the optical system according to the sixth embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power.
  • a second lens group that moves along the optical axis during focusing from an object at infinity to an object at a short distance, and a part of the third lens group serves as a shift lens group. It moves so as to include a component in a direction orthogonal to the optical axis.
  • the optical system according to the sixth embodiment of the present application moves so that a part of the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group.
  • Conditional expression (6-1) defines an appropriate range of the so-called blur coefficient, which is the amount of movement in the direction perpendicular to the optical axis of the image with respect to the amount of movement of the shift lens group in the direction perpendicular to the optical axis. It is.
  • conditional expression (6-1) the optical system according to the sixth embodiment of the present application can satisfactorily correct spherical aberration, coma aberration, and field curvature, and suppress deterioration in optical performance during lens shift. be able to.
  • the moving amount of the image with respect to the moving amount of the shift lens group becomes relatively small. This is not preferable because spherical aberration and coma are insufficiently corrected.
  • conditional expression (6-1) of the optical system according to the sixth embodiment of the present application is less than the lower limit value, the amount of movement of the image with respect to the amount of movement of the shift lens group becomes too large. This is not preferable because coma aberration and field curvature are deteriorated.
  • an antireflection film is provided on at least one of the optical surfaces in the first lens group, the second lens group, and the third lens group,
  • the antireflection film includes at least one layer formed by a wet process.
  • the antireflection film is a multilayer film
  • the layer formed by using the wet process is the most surface side of the layers constituting the multilayer film.
  • a layer is desirable.
  • the optical surface provided with the antireflection film is a concave lens surface when viewed from the image surface side.
  • reflected light tends to be generated on a concave lens surface as viewed from the image plane side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side is an image surface side lens surface of the lens in the second lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface as viewed from the image surface side be an object side lens surface of a lens in the third lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the third lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side is the image surface side lens surface of the fourth lens from the object side in the third lens group. It is desirable. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the optical surface provided with the antireflection film is a concave lens surface when viewed from the object side.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the object side is an object-side lens surface of the lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface as viewed from the object side is an image surface side lens surface of the lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the object side is the object-side lens surface of the lens in the second lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the antireflection film in the optical system according to the sixth embodiment of the present application is not limited to a wet process, and may be formed by a dry process or the like.
  • the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained.
  • the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
  • the third lens group includes, in order from the object side, a third a lens group, a third b lens group, and a third c lens group, and the third b It is desirable for the lens group to move so as to include a component in a direction orthogonal to the optical axis as the shift lens group.
  • the lens group it is possible to correct spherical aberration and coma with the 3a lens group, and it is possible to correct spherical aberration with the 3c lens group. Therefore, spherical aberration and coma aberration can be corrected well in the entire third lens group.
  • the third lens group is a shift lens group, it is possible to suppress deterioration in optical performance during lens shift.
  • the third lens group includes a 3a lens group, a 3b lens group, and a 3c lens group in order from the object side. It is desirable that the lens group includes a positive lens and a negative lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 3a lens group, and it is possible to further improve the performance of the optical system according to the sixth embodiment of the present application. In particular, it is more desirable that the 3a lens group has a positive refractive power.
  • the shift lens group includes a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side.
  • the third lens group includes a 3a lens group, a 3b lens group, and a 3c lens group in order from the object side. It is desirable to have an aperture stop on the object side or image side of the lens group.
  • the refractive power arrangement of the optical system according to the sixth embodiment of the present application in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, By approaching the symmetrical type of the third lens group having positive refractive power, it is possible to satisfactorily correct field curvature and distortion. Thereby, the optical system according to the sixth embodiment of the present application can be further improved in performance.
  • the third lens group includes, in order from the object side, a third a lens group, a third b lens group, and a third c lens group, and the third b It is desirable that the lens group moves as the shift lens group so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (6-2). (6-2) -0.45 ⁇ f3a / f3bc ⁇ 0.40
  • f3a focal length of the 3a lens group
  • f3bc combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
  • Conditional expression (6-2) defines an appropriate range of the ratio between the focal length of the 3a lens group and the combined focal length of the 3b lens group and the 3c lens group as the shift lens group.
  • the optical system according to the sixth embodiment of the present application can satisfactorily correct the spherical aberration, the coma aberration, and the fluctuation of the coma aberration at the time of lens shift by satisfying the conditional expression (6-2). Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration in optical performance during lens shift while further improving performance.
  • conditional expression (6-2) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, the refractive power of the 3a lens group becomes relatively small, and the 3a lens group alone is generated. Spherical aberration and coma are undercorrected. Further, the refractive powers of the shift lens group and the third c lens group become relatively large. For this reason, fluctuations in coma cannot be suppressed during lens shift, and high optical performance cannot be obtained.
  • conditional expression (6-2) of the optical system according to the sixth embodiment of the present application when the corresponding value of the conditional expression (6-2) of the optical system according to the sixth embodiment of the present application is below the lower limit value, the refractive power of the 3a lens group becomes relatively large, and the 3a lens group alone A large amount of spherical aberration and coma occur. Further, the refractive powers of the shift lens group and the third c lens group become relatively small. For this reason, coma is insufficiently corrected during lens shift.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the first lens group has the negative lens closest to the image side.
  • the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the following conditional expression (6-3) is satisfied.
  • (6-3) 1.40 ⁇ f1a / f1b ⁇ 2.05
  • f1a focal length of the 1a lens group
  • f1b focal length of the 1b lens group
  • Conditional expression (6-3) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group.
  • the optical system according to the sixth embodiment of the present application can satisfactorily correct the spherical aberration and the coma aberration generated in the single lens unit 1a by satisfying conditional expression (6-3). Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • conditional expression (6-3) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma are undercorrected.
  • the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance.
  • conditional expression (6-3) of the optical system according to the sixth embodiment of the present application when the corresponding value of the conditional expression (6-3) of the optical system according to the sixth embodiment of the present application is less than the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens
  • the air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group is in order from the object side, protective glass, positive lens, positive lens, and negative lens. It is desirable to be composed of With this configuration, spherical aberration can be favorably corrected in the 1a lens group. Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens
  • An air gap with the lens group is the largest of the air gaps in the first lens group
  • the first b lens group includes, in order from the object side, a negative meniscus lens and a positive lens with a convex surface facing the object side. It is desirable that the lens is composed of a cemented lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 1b lens group. Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group.
  • the first a lens group and the first b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group has at least one positive lens that satisfies the following conditional expression (6-4): It is desirable.
  • ⁇ dp Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1a lens group
  • Conditional expression (6-4) defines the Abbe number of the glass material of the positive lens in the 1a lens group.
  • the optical system according to the sixth embodiment of the present application can suppress occurrence of longitudinal chromatic aberration and lateral chromatic aberration in the first lens unit alone by satisfying conditional expression (6-4).
  • conditional expression (6-4) of the optical system according to the sixth embodiment of the present application is lower than the lower limit value, axial chromatic aberration and lateral chromatic aberration are greatly generated in the first lens unit alone, and This is not preferable because the optical performance of the optical system according to the embodiment is deteriorated.
  • the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the image side among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (6-5). (6-5) ndn ⁇ 1.65 However, ndn: Refractive index with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged on the most image side among the plurality of negative lenses in the second lens group
  • Conditional expression (6-5) defines the refractive index of the glass material of the negative lens disposed closest to the image among the plurality of negative lenses in the second lens group.
  • the optical system according to the sixth embodiment of the present application can satisfy the conditional expression (6-5) and suppress the occurrence of lateral chromatic aberration in the second lens unit alone.
  • the second lens group includes a plurality of negative lenses
  • the negative lens arranged closest to the object among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (6-6).
  • (6-6) 49.7 ⁇ dn
  • ⁇ dn Abbe number with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
  • Conditional expression (6-6) defines the Abbe number of the glass material of the negative lens disposed closest to the object among the plurality of negative lenses in the second lens group.
  • the optical system according to the sixth embodiment of the present application can suppress the occurrence of longitudinal chromatic aberration in the second lens unit alone by satisfying conditional expression (6-6).
  • the optical system according to the sixth embodiment of the present application satisfies the following conditional expression (6-7). (6-7) -3.00 ⁇ f1 / f2 ⁇ -2.00
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • Conditional expression (6-7) defines an appropriate range of the focal length ratio between the first lens group and the second lens group.
  • the optical system according to the sixth embodiment of the present application satisfies the conditional expression (6-7), thereby suppressing fluctuations in coma during focusing and suppressing occurrence of spherical aberration in the first lens unit alone. be able to. Thereby, the optical system according to the sixth embodiment of the present application can achieve higher performance.
  • the refractive power of the first lens group becomes relatively small.
  • the first lens group cannot contribute to reducing the tele ratio, that is, the value obtained by dividing the total length of the optical system according to the sixth embodiment of the present application by the focal length, and the optical system according to the sixth embodiment of the present application.
  • the total length of will increase.
  • the refractive power of the second lens group becomes relatively large, fluctuations in coma aberration cannot be suppressed during focusing, and high optical performance cannot be obtained.
  • the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs.
  • the refractive power of the second lens group becomes relatively small, and the amount of movement of the second lens group at the time of focusing becomes great.
  • the second lens group includes, in order from the object side, a negative lens having a concave surface directed toward the image side, and a cemented lens of a positive lens and a negative lens. It is desirable that With this configuration, coma can be favorably corrected in the second lens group. Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
  • the optical system according to the sixth embodiment of the present application satisfies the following conditional expression (6-8).
  • (6-8) 0.10 ⁇ f / f12 ⁇ 0.85
  • f Focal length of the optical system
  • f12 Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  • Conditional expression (6-8) defines an appropriate range of the ratio between the focal length of the optical system according to the sixth embodiment of the present application and the combined focal length of the first lens group and the second lens group.
  • the optical system according to the sixth embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration generated in the first lens group and the second lens group by satisfying conditional expression (6-8). . Thereby, the optical system according to the sixth embodiment of the present application can achieve higher performance.
  • conditional expression (6-8) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group and the second lens group becomes relatively large, and the first lens This is not preferable because coma aberration is greatly generated in the first lens group and the second lens group.
  • the corresponding value of the conditional expression (6-8) of the optical system according to the sixth embodiment of the present application is below the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small, and the first This is not preferable because the lateral chromatic aberration generated in the first lens group and the second lens group is insufficiently corrected.
  • the optical apparatus according to the present application includes the optical system according to the sixth embodiment having the above-described configuration. Thereby, it is possible to realize an optical device that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the antireflection film includes at least one layer formed by using a wet process
  • the second lens group moves along the optical axis when focusing from an object at infinity to a near object
  • a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis
  • the optical system satisfies the following conditional expression (6-1): It is characterized by.
  • the optical system according to the seventh embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is subjected to a wet process.
  • At least one layer formed by using the lens, and moving the second lens group along the optical axis performs focusing from an object at infinity to an object at a short distance.
  • the optical system according to the seventh embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. And a third lens group. With this configuration, the optical system according to the seventh embodiment of the present application can achieve both miniaturization and high performance while having a large focal length.
  • the optical system according to the seventh embodiment of the present application performs focusing from an object at infinity to a near object by moving the second lens group along the optical axis.
  • the second lens group can be driven by a relatively small motor unit.
  • Conditional expression (7-1) defines the combined refractive power of the first lens group and the second lens group.
  • the optical system according to the seventh embodiment of the present application can satisfactorily correct lateral chromatic aberration by satisfying conditional expression (7-1). Further, the light emitted from the second lens group becomes convergent light. For this reason, the second lens group can be disposed on the image side, and the first lens group can be disposed on the image side accordingly. Accordingly, the entire length of the optical system according to the seventh embodiment of the present application. Can be reduced. In addition, the lateral chromatic aberration can be corrected satisfactorily.
  • conditional expression (7-1) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration.
  • the corresponding value of the conditional expression (7-1) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, the light emitted from the second lens group becomes parallel light.
  • the overall length of the optical system according to the embodiment is increased. Therefore, if it is attempted to shorten the overall length of the optical system according to the seventh embodiment of the present application, it will be difficult to correct coma.
  • an antireflection film is provided on at least one of the optical surfaces in the first lens group, the second lens group, and the third lens group,
  • the antireflection film includes at least one layer formed by a wet process.
  • the antireflection film is a multilayer film
  • the layer formed by using the wet process is the most surface side of the layers constituting the multilayer film.
  • a layer is desirable.
  • the optical surface provided with the antireflection film is a concave lens surface when viewed from the image surface side.
  • reflected light tends to be generated on a concave lens surface as viewed from the image plane side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the second lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side is an object side lens surface of a lens in the third lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side be an image surface side lens surface of a lens in the third lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side is the image surface side lens surface of the fourth lens from the object side in the third lens group. It is desirable. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the optical surface provided with the antireflection film is a concave lens surface when viewed from the object side.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the object side is an object side lens surface of the lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the object side is an image surface side lens surface of the lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the object side is an object side lens surface of the lens in the second lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the antireflection film in the optical system according to the seventh embodiment of the present application is not limited to a wet process, and may be formed by a dry process or the like.
  • the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained.
  • the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
  • the first lens group has at least one positive lens that satisfies the following conditional expression (7-2).
  • (7-2) 80 ⁇ d1p ⁇ 110
  • ⁇ d1p Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the first lens group
  • Conditional expression (7-2) defines the Abbe number of the glass material of the positive lens in the first lens group.
  • the optical system according to the seventh embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (7-2).
  • conditional expression (7-2) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (7-2) of the optical system according to the seventh embodiment of the present application is less than the lower limit value, it will be difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group includes a plurality of positive lenses
  • the positive lens arranged closest to the object among the plurality of positive lenses is represented by the following conditional expression: It is desirable to satisfy (7-3). (7-3) 80 ⁇ d1pf ⁇ 110 However, ⁇ d1pf: Abbe number with respect to the d-line (wavelength 587.6 nm) of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
  • Conditional expression (7-3) defines the Abbe number of the glass material of the positive lens disposed closest to the object among the plurality of positive lenses in the first lens group.
  • the optical system according to the seventh embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (7-3).
  • conditional expression (7-3) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (7-3) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, it will be difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group has at least one negative lens satisfying the following conditional expression (7-4).
  • (7-4) 1.50 ⁇ nd1n ⁇ 1.75
  • nd1n refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the first lens group
  • Conditional expression (7-4) defines the refractive index of the glass material of the negative lens in the first lens group.
  • conditional expression (7-4) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the first lens group increases. Therefore, if the specific gravity of other lenses in the first lens group is reduced in order to reduce the weight of the optical system according to the seventh embodiment of the present application, it becomes difficult to correct coma.
  • conditional expression (7-4) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, it becomes difficult to correct the curvature of field.
  • the optical system according to the seventh embodiment of the present application it is preferable that at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis.
  • the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, It is desirable that the third lens unit is composed of a third lens unit having positive refractive power, and the third lens unit moves so as to include a component in a direction orthogonal to the optical axis.
  • image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem.
  • the diameter of the 3b lens group can be reduced, the mechanical unit for driving the 3b lens group during vibration isolation can be reduced in size.
  • the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side.
  • the cemented lens is more preferably arranged on the most image side in the first lens group.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group and the following conditional expression (7-5) is satisfied. (7-5) 0.30 ⁇ TL1a / TL1 ⁇ 0.70 However, TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
  • Conditional expression (7-5) defines the length of the first lens group with respect to the length of the first lens group.
  • the optical system according to the seventh embodiment of the present application can satisfactorily correct the coma aberration while reducing the weight by satisfying conditional expression (7-5).
  • the weight of the first lens group increases. Therefore, for example, if a glass material having a small refractive index is used for the negative lens in the first lens group in order to reduce the weight, it becomes difficult to correct curvature of field.
  • conditional expression (7-5) of the optical system according to the seventh embodiment of the present application when the corresponding value of the conditional expression (7-5) of the optical system according to the seventh embodiment of the present application is less than the lower limit value, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-5) to 0.35. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (7-5) to 0.40.
  • the 1a lens group includes a positive lens, a positive lens, and a negative lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the seventh embodiment of the present application.
  • the first lens group has a protective filter glass on the most object side.
  • the protective filter glass is a lens having substantially no refractive power, and the focal length thereof is preferably 10 times or more the focal length of the optical system according to the seventh embodiment of the present application.
  • the optical system according to the seventh embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
  • the first-b lens group includes a negative lens and a positive lens in order from the object side. With this configuration, it is possible to satisfactorily correct variations in spherical aberration when focusing on a short-distance object.
  • the first b lens group includes only a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the seventh embodiment of the present application.
  • the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group has a positive lens that satisfies the following conditional expression (7-6). . (7-6) 70 ⁇ d1bp ⁇ 110 However, ⁇ d1bp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1b lens group
  • Conditional expression (7-6) defines the Abbe number of the glass material of the positive lens in the 1b lens group.
  • the optical system according to the seventh embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (7-6).
  • conditional expression (7-6) of the optical system according to the seventh embodiment of the present application exceeds the upper limit, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-6) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-6) to 100.
  • conditional expression (7-6) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the second lens group has two negative lens components.
  • the “lens component” refers to a cemented lens or a single lens formed by cementing two or more lenses.
  • the second lens group may include a negative lens, a positive lens, and a negative lens in order from the object side.
  • the second lens group may include a positive lens, a negative lens, and a negative lens in order from the object side.
  • the second lens group includes a positive lens that satisfies the following conditional expression (7-7).
  • (7-7) 15 ⁇ d2p ⁇ 30
  • ⁇ d2p Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the second lens group
  • Conditional expression (7-7) defines the Abbe number of the glass material of the positive lens in the second lens group.
  • the optical system according to the seventh embodiment of the present application can satisfactorily correct lateral chromatic aberration and axial chromatic aberration by satisfying conditional expression (7-7).
  • conditional expression (7-7) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration.
  • conditional expression (7-7) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, in order to prevent the transmittance of light having a short wavelength from decreasing.
  • the optical apparatus according to the present application includes the optical system according to the seventh embodiment having the above-described configuration. Thereby, an optical device having a small size and good optical performance can be realized.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the antireflection film includes at least one layer formed by a wet process, the optical system satisfies the following conditional expression (7-1), and the second lens group is moved along the optical axis. It is characterized in that focusing from an object at infinity to a near object is performed by moving the object.
  • the optical system according to the eighth embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is subjected to a wet process. Including at least one layer formed by using the second lens group to move from the object at infinity to the near object by moving the second lens group along the optical axis.
  • the optical system according to the eighth embodiment of the present application includes, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. And a third lens group. With this configuration, the optical system according to the eighth embodiment of the present application can achieve both miniaturization and high performance while having a large focal length.
  • the optical system according to the eighth embodiment of the present application performs focusing from an infinitely distant object to a close object by moving the second lens group along the optical axis.
  • the second lens group can be driven by a relatively small motor unit.
  • the second lens group includes at least three lenses. With this configuration, coma can be corrected well.
  • Conditional expression (8-1) defines the combined refractive power of the first lens group and the second lens group.
  • the optical system according to the eighth embodiment of the present application can satisfactorily correct lateral chromatic aberration by satisfying conditional expression (8-1). Further, the light emitted from the second lens group becomes convergent light. For this reason, since the second lens group can be arranged on the image side, and the first lens group can be arranged on the image side accordingly, the entire length of the optical system according to the eighth embodiment of the present application. Can be reduced. In addition, the lateral chromatic aberration can be corrected satisfactorily.
  • conditional expression (8-1) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration.
  • the corresponding value of the conditional expression (8-1) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, the light emitted from the second lens group becomes parallel light.
  • the overall length of the optical system according to the embodiment is increased. Therefore, if it is attempted to shorten the overall length of the optical system according to the eighth embodiment of the present application, it becomes difficult to correct coma.
  • an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group,
  • the antireflection film includes at least one layer formed by a wet process.
  • the antireflection film is a multilayer film
  • the layer formed by using the wet process is the most surface side of the layers constituting the multilayer film.
  • a layer is desirable.
  • the optical surface provided with the antireflection film is a concave lens surface when viewed from the image surface side.
  • reflected light tends to be generated on a concave lens surface as viewed from the image plane side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface when viewed from the image surface side be an image surface side lens surface of a lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side is an image surface side lens surface of a lens in the second lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side be an object side lens surface of a lens in the third lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side be an image surface side lens surface of a lens in the third lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the image surface side is the image surface side lens surface of the fourth lens from the object side in the third lens group. It is desirable. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the optical surface provided with the antireflection film is a concave lens surface when viewed from the object side.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the object side is an object side lens surface of the lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the object side is an image surface side lens surface of a lens in the first lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the concave lens surface viewed from the object side is an object side lens surface of a lens in the second lens group.
  • reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
  • the antireflection film in the optical system according to the eighth embodiment of the present application is not limited to a wet process, and may be formed by a dry process or the like.
  • the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained.
  • the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
  • the second lens group includes a negative lens, a positive lens, and a negative lens in order from the object side, or a positive lens in order from the object side. And a negative lens and a negative lens are more preferable. In these configurations, it is most preferable to join a positive lens and a negative lens. With the above configuration, coma aberration can be corrected more favorably.
  • the second lens group includes at least one negative lens that satisfies the following conditional expression (8-2).
  • (8-2) 1.45 ⁇ nd2n ⁇ 1.65
  • nd2n refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the second lens group
  • Conditional expression (8-2) defines the refractive index of the glass material of the negative lens in the second lens group.
  • conditional expression (8-2) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the second lens group increases. Therefore, if the specific gravity of other lenses in the second lens group is reduced in order to reduce the weight of the optical system according to the eighth embodiment of the present application, it will be difficult to correct coma.
  • conditional expression (8-2) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field.
  • the second lens group includes a positive lens that satisfies the following conditional expression (8-3). (8-3) 15 ⁇ d2p ⁇ 30 However, ⁇ d2p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the second lens group
  • Conditional expression (8-3) defines the Abbe number of the glass material of the positive lens in the second lens group.
  • the optical system according to the eighth embodiment of the present application can satisfactorily correct lateral chromatic aberration and axial chromatic aberration by satisfying conditional expression (8-3).
  • conditional expression (8-3) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration.
  • conditional expression (8-3) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, in order to prevent the transmittance of light having a short wavelength from decreasing.
  • the first lens group has at least one positive lens that satisfies the following conditional expression (8-4).
  • (8-4) 80 ⁇ d1p ⁇ 110 However, ⁇ d1p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the first lens group
  • Conditional expression (8-4) defines the Abbe number of the glass material of the positive lens in the first lens group.
  • the optical system according to the eighth embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (8-4).
  • conditional expression (8-4) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (8-4) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, it will be difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group includes a plurality of positive lenses
  • the positive lens arranged closest to the object among the plurality of positive lenses is represented by the following conditional expression: It is desirable to satisfy (8-5). (8-5) 80 ⁇ d1pf ⁇ 110 However, ⁇ d1pf: Abbe number with respect to the d-line (wavelength 587.6 nm) of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
  • Conditional expression (8-5) defines the Abbe number of the glass material of the positive lens disposed closest to the object among the plurality of positive lenses in the first lens group.
  • the optical system according to the eighth embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (8-5).
  • conditional expression (8-5) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected.
  • conditional expression (8-5) of the optical system according to the eighth embodiment of the present application when the corresponding value of the conditional expression (8-5) of the optical system according to the eighth embodiment of the present application is lower than the lower limit value, it becomes difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group has at least one negative lens satisfying the following conditional expression (8-6).
  • (8-6) 1.50 ⁇ nd1n ⁇ 1.75
  • nd1n refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the first lens group
  • Conditional expression (8-6) defines the refractive index of the glass material of the negative lens in the first lens group.
  • the optical system according to the eighth embodiment of the present application can satisfactorily correct coma and curvature of field while reducing the weight by satisfying conditional expression (8-6).
  • conditional expression (8-6) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field.
  • the optical system according to the eighth embodiment of the present application it is preferable that at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis.
  • the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, It is desirable that the third lens unit is composed of a third lens unit having positive refractive power, and the third lens unit moves so as to include a component in a direction orthogonal to the optical axis.
  • image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem.
  • the diameter of the 3b lens group can be reduced, the mechanical unit for driving the 3b lens group during vibration isolation can be reduced in size.
  • the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side.
  • the cemented lens is more preferably arranged on the most image side in the first lens group.
  • the first lens group includes, in order from the object side, a first a lens group and a first b lens group.
  • the first a lens group and the first b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the following conditional expression (8-7) is satisfied.
  • (8-7) 0.30 ⁇ TL1a / TL1 ⁇ 0.70
  • TL1a length along the optical axis of the first lens group
  • TL1 length along the optical axis of the first lens group
  • Conditional expression (8-7) defines the length of the first lens group with respect to the length of the first lens group.
  • the weight of the first lens group increases. Therefore, for example, if a glass material having a small refractive index is used for the negative lens in the first lens group in order to reduce the weight, it becomes difficult to correct curvature of field.
  • conditional expression (8-7) of the optical system according to the eighth embodiment of the present application when the corresponding value of the conditional expression (8-7) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-7) to 0.35. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-7) to 0.40.
  • the first-a lens group includes a positive lens, a positive lens, and a negative lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the eighth embodiment of the present application.
  • the first lens group has a protective filter glass on the most object side.
  • the protective filter glass is a lens having substantially no refractive power, and its focal length is preferably 10 times or more of the focal length of the optical system according to the eighth embodiment of the present application.
  • the optical system according to the eighth embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
  • the first-b lens group includes a negative lens and a positive lens in order from the object side.
  • the 1b lens group includes only a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the eighth embodiment of the present application.
  • the first lens group includes, in order from the object side, a first a lens group and a first b lens group.
  • the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group has a positive lens that satisfies the following conditional expression (8-8). . (8-8) 70 ⁇ d1bp ⁇ 110 However, ⁇ d1bp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1b lens group
  • Conditional expression (8-8) defines the Abbe number of the glass material of the positive lens in the 1b lens group.
  • the optical system according to the eighth embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (8-8).
  • conditional expression (8-8) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-8) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-8) to 100.
  • conditional expression (8-8) of the optical system according to the eighth embodiment of the present application when the corresponding value of the conditional expression (8-8) of the optical system according to the eighth embodiment of the present application is lower than the lower limit value, it becomes difficult to correct axial chromatic aberration and lateral chromatic aberration.
  • the optical apparatus according to the present application includes the optical system according to the eighth embodiment having the above-described configuration. Thereby, an optical device having a small size and good optical performance can be realized.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the antireflection film includes at least one layer formed by a wet process
  • the second lens group includes at least three lenses
  • the optical system has the following conditional expression (8-1) And the second lens group is moved along the optical axis to focus from an object at infinity to an object at close distance.
  • FIG. 1 is a sectional view showing a lens arrangement at the time of focusing on an object at infinity in an optical system according to a first example common to the first to eighth embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
  • the third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
  • the optical system according to this example includes an object of the image side lens surface (surface number 24) of the biconcave negative lens L34 of the third lens group G3 and the biconvex positive lens L36 of the third lens group G3.
  • An antireflection film described later is formed on the side lens surface (surface number 27).
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3b in the third lens group G3 is shifted so as to include a component in a direction orthogonal to the optical axis as a shift lens group, that is, an anti-vibration lens group. .
  • an image sensor (not shown) constituted by a CCD, a CMOS, or the like is disposed. The same applies to each embodiment described later.
  • Table 1 below lists values of specifications of the optical system according to the present example.
  • f indicates the focal length
  • Bf indicates the back focus, that is, the distance on the optical axis between the filter FL and the image plane I.
  • m is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface spacing (the space between the nth surface (n is an integer) and the (n + 1) th surface)
  • nd is d.
  • the refractive index for the line (wavelength 587.6 nm) and ⁇ d indicate the Abbe number for the d line (wavelength 587.6 nm), respectively.
  • OP represents the object plane
  • variable represents the variable surface interval
  • S represents the aperture stop S
  • I represents the image plane I.
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is “°”)
  • Y is the image height
  • TL is the total length of the optical system according to the present embodiment, that is, from the first surface to the image surface I.
  • a distance on the optical axis, dn indicates a variable distance between the nth surface and the (n + 1) th surface.
  • represents the photographing magnification
  • d0 represents the distance from the object to the first surface.
  • [Lens Group Data] indicates the start surface ST and focal length f of each lens group.
  • [Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression of the optical system according to the present example.
  • the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIG. 3 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the first example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 3 is 1.40 mm.
  • FNO represents an F number
  • Y represents an image height
  • d indicates the aberration at the d-line (wavelength 587.6 nm)
  • g indicates the aberration at the g-line (wavelength 435.8 nm).
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the coma aberration diagram shows coma aberration at each image height Y. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 30 is a diagram illustrating an example of a state in which light rays incident on the optical system according to the present embodiment are reflected by the first reflecting surface and the second reflecting surface to form ghosts and flares on the image plane I. is there.
  • a part of the light beam BM is an object side lens surface (surface number 27, 27) of the biconvex positive lens L36 in the third lens group G3.
  • the optical system according to the present embodiment suppresses the generation of reflected light by effectively forming ghosts and flares by forming an antireflection film corresponding to light rays having a wide incident angle in a wide wavelength range on the lens surface. Can be reduced.
  • FIG. 4 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a second example common to the first to eighth embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
  • the third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
  • an antireflection film described later is formed on the image surface side lens surface (surface number 24) of the biconcave negative lens L34 of the third lens group G3.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
  • Table 2 below lists values of specifications of the optical system according to the present example.
  • FIGS. 5A and 5B are graphs showing various aberrations when the optical system according to Example 2 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 6 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the second example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 6 is 1.40 mm. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 7 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a third example common to the first to eighth embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, and a cemented negative lens composed of a positive meniscus lens L22 having a concave surface directed toward the object side and a biconcave negative lens L23. Consists of.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
  • the third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
  • an antireflection film described later is formed on the image surface side lens surface (surface number 11) of the positive meniscus lens L15 of the first lens group G1.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
  • Table 3 below lists values of specifications of the optical system according to the present example.
  • FIG. 8A and 8B are graphs showing various aberrations when the optical system according to Example 3 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 9 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the third example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group is 1.43 mm. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 10 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fourth example common to the first to eighth embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, and a cemented negative lens composed of a positive meniscus lens L22 having a concave surface directed toward the object side and a biconcave negative lens L23. Consists of.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
  • the third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
  • an antireflection film described later is formed on the image surface side lens surface (surface number 13) of the negative meniscus lens L21 of the second lens group G2.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
  • Table 4 below lists values of specifications of the optical system according to the present example.
  • FIG. 11A and 11B are graphs showing various aberrations when the optical system according to Example 4 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 12 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the fourth example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 12 is 1.43 mm. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 13 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fifth example common to the first to eighth embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
  • the third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
  • the optical system according to this example includes an object of the image side lens surface (surface number 6) of the biconvex positive lens L12 of the first lens group G1 and the biconcave negative lens L13 of the first lens group G1.
  • An antireflection film described later is formed on the side lens surface (surface number 7).
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
  • Table 5 lists values of specifications of the optical system according to the present example.
  • FIGS. 14A and 14B are graphs showing various aberrations when the optical system according to Example 5 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 15 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to Example 5 of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 15 is 1.68 mm. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 16 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a sixth example common to the first to eighth embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a positive meniscus lens L22 having a concave surface facing the object side, and a negative meniscus lens L23 having a concave surface facing the object side. It consists of a cemented negative lens.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third lens group G3b includes, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface directed toward the object side and a biconcave negative lens L34, and a negative meniscus lens L35 having a convex surface directed toward the object side.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
  • an antireflection film described later is formed on the object side lens surface (surface number 14) of the positive meniscus lens L22 of the second lens group G2.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
  • Table 6 lists values of specifications of the optical system according to the present example.
  • FIGS. 17A and 17B are graphs showing various aberrations when the optical system according to Example 6 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 18 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the sixth example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 18 is 1.35 mm. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 19 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a seventh example common to the third to sixth embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third lens group G3b includes, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface directed toward the object side and a biconcave negative lens L34, and a negative meniscus lens L35 having a convex surface directed toward the object side.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
  • the optical system according to this example includes an object of the image side lens surface (surface number 24) of the biconcave negative lens L34 of the third lens group G3 and the biconvex positive lens L36 of the third lens group G3.
  • An antireflection film described later is formed on the side lens surface (surface number 27).
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
  • Table 7 lists values of specifications of the optical system according to the present example.
  • FIG. 20A and 20B are graphs showing various aberrations when the optical system according to Example 7 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 21 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the seventh example of the present application. Note that the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 21 is 1.35 mm. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 22 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to an eighth example common to the third to sixth embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third lens group G3b is composed of, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface directed toward the object side and a biconcave negative lens L34, and a biconcave negative lens L35.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
  • the optical system according to this example includes an object of the image side lens surface (surface number 6) of the biconvex positive lens L12 of the first lens group G1 and the biconcave negative lens L13 of the first lens group G1.
  • An antireflection film described later is formed on the side lens surface (surface number 7).
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
  • Table 8 below provides values of specifications of the optical system according to the present example.
  • FIGS. 23A and 23B are graphs showing various aberrations when the optical system according to Example 8 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 24 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the eighth example of the present application. Note that the shift amount in the direction perpendicular to the optical axis of the shift lens group in FIG. 24 is 1.35 mm. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 25 is a cross-sectional view showing the lens arrangement at the time of focusing on an object at infinity in the optical system according to Example 9 common to Embodiments 3 to 6 of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
  • the third lens group G3b includes, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface directed toward the object side and a biconcave negative lens L34, and a negative meniscus lens L35 having a convex surface directed toward the object side.
  • the third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, a cemented lens of a biconvex positive lens L37, and a negative meniscus lens L38 having a concave surface facing the object side.
  • an antireflection film described later is formed on the object side lens surface (surface number 14) of the positive meniscus lens L22 of the second lens group G2.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed with respect to the image plane I during focusing.
  • the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
  • the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
  • Table 9 below provides values of specifications of the optical system according to the present example.
  • FIGS. 26A and 26B are graphs showing various aberrations when the optical system according to Example 9 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 27 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to Example 9 of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 27 is 1.35 mm. From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
  • FIG. 31 is a diagram illustrating an example of a film configuration of an antireflection film.
  • the antireflection film 101 is composed of seven layers and is formed on the optical surface of the optical member 102 such as a lens.
  • the first layer 101a is formed of aluminum oxide deposited by a vacuum deposition method.
  • a second layer 101b made of a mixture of titanium oxide and zirconium oxide deposited by a vacuum deposition method is further formed on the first layer 101a.
  • a third layer 101c made of aluminum oxide deposited by a vacuum deposition method is formed on the second layer 101b, and titanium oxide and zirconium oxide deposited by a vacuum deposition method are formed on the third layer 101c.
  • a fourth layer 101d made of the mixture is formed.
  • a fifth layer 101e made of aluminum oxide deposited by vacuum deposition is formed on the fourth layer 101d, and titanium oxide and zirconium oxide deposited by vacuum deposition on the fifth layer 101e.
  • a sixth layer 101f made of the mixture is formed.
  • a seventh layer 101g made of a mixture of magnesium fluoride and silica is formed by a wet process to form the antireflection film 101 of this embodiment.
  • a sol-gel method which is a kind of wet process is used.
  • the sol-gel method is a method in which a sol obtained by mixing raw materials is made into a non-flowable gel by hydrolysis / polycondensation reaction, etc., and the gel is heated and decomposed to obtain a product.
  • a film can be formed by applying an optical thin film material sol on the optical surface of an optical member and forming a gel film by drying and solidifying.
  • the wet process is not limited to the sol-gel method, and a method of obtaining a solid film without going through a gel state may be used.
  • the first layer 101a to the sixth layer 101f of the antireflection film 101 are formed by electron beam evaporation which is a dry process, and the seventh layer 101g which is the uppermost layer is prepared by a hydrofluoric acid / magnesium acetate method. It is formed by the following procedure by a wet process using the prepared sol solution.
  • an aluminum oxide layer that becomes the first layer 101a, a titanium oxide-zirconium oxide mixed layer that becomes the second layer 101b, a third layer on the optical surface of the optical member 102 that is a lens film formation surface in advance by using a vacuum evaporation apparatus An aluminum oxide layer to be the layer 101c, a titanium oxide-zirconium oxide mixed layer to be the fourth layer 101d, an aluminum oxide layer to be the fifth layer 101e, and a titanium oxide-zirconium oxide mixed layer to be the sixth layer 101f are formed in this order.
  • the sol solution used for this film formation is used for film formation after mixing raw materials and subjecting it to high temperature and pressure aging treatment at 140 ° C. for 24 hours in an autoclave.
  • the optical member 102 is completed by heat treatment at 160 ° C. for 1 hour in the air after the seventh layer 101g is formed.
  • the seventh layer 101g is formed by depositing particles having a size of several nm to several tens of nm leaving a void.
  • optical performance of the optical member having the antireflection film 101 formed in this way will be described using the spectral characteristics shown in FIG.
  • the lens which is an optical member having the antireflection film according to the fifth to eighth embodiments of the present application is formed under the conditions shown in Table 10 below.
  • Table 10 shows that the reference wavelength is ⁇ and the refractive index of the optical member as the substrate is 1.62, 1.74, and 1.85, the layers 101a (first layer) to 101g (seventh layer) of the antireflection film 101.
  • the optical film thickness of each layer is determined.
  • aluminum oxide is represented by Al2O3
  • a mixture of titanium oxide and zirconium oxide is represented by ZrO2 + TiO2
  • a mixture of magnesium fluoride and silica is represented by MgF2 + SiO2.
  • N represents the refractive index
  • D represents the optical film thickness.
  • FIG. 32 shows spectral characteristics when a light beam is vertically incident on an optical member in which the reference wavelength ⁇ is 550 nm in Table 10 and the optical film thickness of each layer of the antireflection film 101 is designed.
  • the optical member having the antireflection film 101 designed with the reference wavelength ⁇ of 550 nm can suppress the reflectance to 0.2% or less over the entire wavelength range of 420 nm to 720 nm. Further, even in the optical member having the antireflection film 101 in which each optical film thickness is designed with the reference wavelength ⁇ as d line (wavelength 587.6 nm) in Table 10, the spectral characteristics are hardly affected, and the reference shown in FIG. Spectral characteristics substantially equivalent to those when the wavelength ⁇ is 550 nm.
  • This antireflection film consists of five layers, and similarly to Table 10, the optical film thickness of each layer with respect to the reference wavelength ⁇ is designed under the conditions shown in Table 11 below.
  • the above-described sol-gel method is used for forming the fifth layer.
  • FIG. 33 shows the spectral characteristics when light rays are perpendicularly incident on an optical member having an antireflection film in which the optical film thickness is designed with the refractive index of the substrate being 1.52 and the reference wavelength ⁇ being 550 nm in Table 11. Yes. From FIG. 33, it can be seen that the antireflection film of this modification has a reflectance of 0.2% or less over the entire wavelength range of 420 nm to 720 nm. In Table 11, even an optical member having an antireflection film whose optical film thickness is designed with the reference wavelength ⁇ as the d-line (wavelength 587.6 nm) hardly affects the spectral characteristics, and the spectral characteristics shown in FIG. Has almost the same characteristics.
  • FIG. 34 shows the spectral characteristics when the incident angle of the light beam to the optical member having the spectral characteristics shown in FIG. 33 is 30, 45, and 60 degrees, respectively. 33 and 34 do not show the spectral characteristics of the optical member having the antireflection film whose refractive index of the substrate shown in Table 11 is 1.46, but the refractive index of the substrate is almost equal to 1.52. Needless to say, it has the following spectral characteristics.
  • FIG. 35 shows an example of an antireflection film formed only by a dry process such as a conventional vacuum deposition method.
  • FIG. 36 shows spectral characteristics when a light beam is perpendicularly incident on an optical member designed with an antireflection film configured under the conditions shown in Table 12 below with a refractive index of 1.52 of the same substrate as in Table 11.
  • FIG. 36 shows the spectral characteristics when the incident angles of the light rays to the optical member having the spectral characteristics shown in FIG. 35 are 30, 45, and 60 degrees, respectively.
  • the antireflection films according to the fifth to eighth embodiments have a lower reflectance at any incident angle and a lower reflectance in a wider band.
  • the antireflection film corresponding to the refractive index of the substrate of 1.62 on the image surface side lens surface of the biconcave negative lens L34. 101 (see Table 11), and an antireflection film (see Table 11) corresponding to a refractive index of the substrate of 1.74 is used on the object-side lens surface of the biconvex positive lens L36.
  • the amount of reflected light can be reduced, and ghost and flare can be reduced.
  • an antireflection film 101 (see Table 11) having a substrate refractive index of 1.62 on the lens surface on the image plane side of the lens L34, reflected light from each lens surface can be reduced, and ghost and flare can be reduced. can do.
  • the antireflection film 101 see Table 10
  • the reflected light from each lens surface can be reduced, and ghost and flare can be reduced.
  • the antireflection film 101 see Table 11
  • the reflected light from each lens surface can be reduced, and ghost and flare can be reduced.
  • the amount of reflected light can be reduced, and ghost and flare can be reduced.
  • an antireflection film 101 see Table 11
  • reflected light from each lens surface can be reduced, and ghost and flare can be reduced.
  • the optical systems according to the examples of the fourth and fifth embodiments have an angle of view of 4 to 9 degrees, and can suppress deterioration of optical performance during lens shift.
  • it has a field angle of 4 to 9 degrees, is small and light, corrects various aberrations satisfactorily, and optically shifts the lens. It is possible to realize an optical system that suppresses deterioration in performance.
  • each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be appropriately adopted as long as the optical performance of the optical system according to the first to eighth embodiments of the present application is not impaired.
  • the present application is not limited to this, and optical elements of other group configurations (for example, the fourth group and the fifth group)
  • a system can also be constructed. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the optical system according to the first to eighth embodiments of the present application may be used.
  • the optical system according to each of the above embodiments includes the protective filter glass on the most object side in the first lens group, the optical system may be configured without this.
  • the optical systems according to the first to eighth embodiments of the present application include a part of a lens group, an entire lens group, or a plurality of lens groups in order to perform focusing from an object at infinity to a near object.
  • the focusing lens group may be moved in the optical axis direction.
  • Such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor.
  • either the entire lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, Or it can also be set as the structure which shake-proofs by carrying out rotational movement (oscillation) to the in-plane direction containing an optical axis.
  • the lens surface of the lens constituting the optical system according to the first to eighth embodiments of the present application may be a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop is disposed in the vicinity of the object side of the third lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. It is good also as composition to do.
  • an antireflection film having a high transmittance in a wide wavelength region may be applied to the lens surface of the lens constituting the optical system according to the first to eighth embodiments of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • FIG. 28 is a diagram showing a configuration of a camera including an optical system according to the first to eighth embodiments of the present application.
  • the camera 1 is a lens-interchangeable digital single-lens reflex camera provided with the optical system according to the first embodiment as the photographing lens 2.
  • light from an object (not shown) that is a subject is collected by the photographing lens 2 and imaged on the focusing screen 4 via the quick return mirror 3.
  • the light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6.
  • the photographer can observe the subject image as an erect image through the eyepiece 6.
  • the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • the optical system according to the first example mounted on the camera 1 as the photographing lens 2 is small as described above, and has excellent optical performance by satisfactorily correcting various aberrations. That is, the camera 1 can achieve downsizing and high performance. Even if a camera having the optical system according to the second to ninth embodiments mounted as the taking lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the optical system according to each of the above embodiments is mounted on a camera having a configuration that does not include the quick return mirror 3, the same effect as the camera 1 can be obtained.
  • FIG. 38 is a diagram showing an outline of the method of manufacturing the optical system according to the first embodiment of the present application.
  • the optical system manufacturing method according to the first embodiment of the present application shown in FIG. 38 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S11 and S12.
  • Step S11 First to third lens groups are prepared so that the optical system satisfies the following conditional expression (1-1), and each lens group is sequentially arranged in the lens barrel from the object side. (1-1) 0.10 ⁇ f / f12 ⁇ 0.55 However, f: Focal length of optical system f12: Composite focal length of first lens group and second lens group at the time of focusing on an object at infinity
  • Step S12 By providing a known moving mechanism, the second lens group is moved along the optical axis, thereby focusing from an object at infinity to an object at a short distance.
  • FIG. 39 is a diagram showing an outline of a method for manufacturing an optical system according to the second embodiment of the present application.
  • the optical system manufacturing method according to the second embodiment of the present application shown in FIG. 39 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S21 to S23.
  • Step S21 The second lens group has at least three lenses.
  • Step S22 First to third lens groups are prepared so that the optical system satisfies the following conditional expression (2-1), and each lens group is sequentially arranged in the barrel from the object side. (2-1) 0.10 ⁇ f / f12 ⁇ 0.85 However, f: Focal length of optical system f12: Composite focal length of first lens group and second lens group at the time of focusing on an object at infinity
  • Step S23 By providing a known moving mechanism, the second lens group is moved along the optical axis so as to focus from an object at infinity to a near object.
  • FIG. 40 is a diagram showing an outline of the manufacturing method of the optical system according to the third embodiment of the present application.
  • the optical system manufacturing method according to the third embodiment of the present application shown in FIG. 40 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S31 to S33.
  • Step S31 First to third lens groups are prepared, and each lens group is sequentially arranged in the lens barrel from the object side. Then, by providing a known moving mechanism, the second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance.
  • Step S32 By providing a known moving mechanism, a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
  • Step S33 The optical system is made to satisfy the following conditional expression (3-1). (3-1) -1.60 ⁇ r ⁇ (1- ⁇ s) ⁇ 0.85 However, ⁇ s: lateral magnification of shift lens group ⁇ r: lateral magnification of all lenses located on the image side of the shift lens group
  • optical system manufacturing method it is possible to manufacture an optical system that corrects various aberrations satisfactorily and suppresses deterioration in optical performance during lens shift.
  • FIG. 41 is a diagram showing an outline of a method of manufacturing an optical system according to the fourth embodiment of the present application.
  • the manufacturing method of the optical system according to the fourth embodiment of the present application shown in FIG. 41 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S41 to S44.
  • Step S41 First to third lens groups are prepared, and the third lens group has a 3a lens group and a 3b lens group in order from the object side. Then, each lens group is arranged in the lens barrel in order from the object side.
  • Step S42 By providing a known moving mechanism, the second lens group is moved along the optical axis when focusing from an object at infinity to an object at a short distance.
  • Step S43 By providing a known moving mechanism, the 3b lens group is moved as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
  • Step S44 The optical system is made to satisfy the following conditional expression (4-1). (4-1) 1.70 ⁇
  • FIG. 29 is a diagram showing an outline of a method of manufacturing an optical system according to the fifth embodiment of the present application.
  • the optical system manufacturing method according to the fifth embodiment shown in FIG. 29 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method for manufacturing an optical system having a third lens group having refractive power, which includes the following steps S51 to S55.
  • Step S51 First to third lens groups are prepared, and an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is wet. At least one layer formed using the process is included, and each lens group is arranged in the lens barrel in order from the object side.
  • Step S52 The third lens group has a 3a lens group and a 3b lens group in order from the object side.
  • Step S53 By providing a known moving mechanism, the second lens group is moved along the optical axis when focusing from an object at infinity to an object at a short distance.
  • Step S54 By providing a known moving mechanism, the 3b lens group is moved as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
  • Step S55 The optical system is made to satisfy the following conditional expression (5-1).
  • (5-1) 1.70 ⁇
  • fF Combined focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity
  • fR All the positions located on the image side from the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Synthetic focal length of the lens
  • FIG. 37 is a diagram showing an outline of a method of manufacturing an optical system according to the sixth embodiment of the present application.
  • the optical system manufacturing method according to the sixth embodiment of the present application shown in FIG. 37 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S61 to S64.
  • Step S61 First to third lens groups are prepared, and an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is wet. At least one layer formed using the process is included, and each lens group is arranged in the lens barrel in order from the object side.
  • Step S62 By providing a known moving mechanism, the second lens group is moved along the optical axis when focusing from an object at infinity to an object at a short distance.
  • Step S63 By providing a known moving mechanism, a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
  • Step S64 The optical system is made to satisfy the following conditional expression (6-1). (6-1) ⁇ 1.60 ⁇ r ⁇ (1- ⁇ s) ⁇ 0.85 However, ⁇ s: lateral magnification of shift lens group ⁇ r: lateral magnification of all lenses located on the image side of the shift lens group
  • an optical system that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
  • FIG. 42 is a diagram showing an outline of the method of manufacturing the optical system according to the seventh embodiment of the present application.
  • the optical system manufacturing method according to the seventh embodiment of the present application shown in FIG. 42 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S71 to S73.
  • Step S71 An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film has at least one layer formed using a wet process.
  • Each lens group is arranged in the lens barrel in order from the object side.
  • Step S72 First to third lens groups are prepared so that the optical system satisfies the following conditional expression (7-1). (7-1) 0.10 ⁇ f / f12 ⁇ 0.55 However, f: Focal length of optical system f12: Composite focal length of first lens group and second lens group at the time of focusing on an object at infinity
  • Step S73 By providing a known moving mechanism, the second lens group is moved along the optical axis, thereby focusing from an object at infinity to an object at a short distance.
  • optical system manufacturing method According to the optical system manufacturing method according to the seventh embodiment of the present application, it is possible to manufacture an optical system that is small and has good optical performance.
  • FIG. 43 is a diagram showing an outline of the manufacturing method of the optical system according to the eighth embodiment of the present application.
  • the optical system manufacturing method according to the eighth embodiment of the present application shown in FIG. 43 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S81 to S84.
  • Step S81 An antireflection film is provided on at least one of the optical surfaces in the first lens group, the second lens group, and the third lens group, and the antireflection film has at least one layer formed by using a wet process.
  • Each lens group is arranged in the lens barrel in order from the object side.
  • Step S82 The second lens group has at least three lenses.
  • Step S84 By providing a known moving mechanism, the second lens group is moved along the optical axis so as to focus from an object at infinity to an object at short distance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

In the present invention, the following are provided in order from the object side: a first lens group (G1) having a positive refractive power; a second lens group (G2) having a negative refractive power; and a third lens group having a positive refractive power. Focusing from an infinite object to a near object is carried out by causing the second lens group (G2) to move along the light axis, and a prescribed conditional formula is satisfied. Due to this configuration, provided are the following: an optical system that is small and has favorable optical characteristics; an optical device; and a manufacturing method for the optical system.

Description

光学系、光学装置、光学系の製造方法OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
 本発明は、光学系、光学装置、光学系の製造方法に関する。 The present invention relates to an optical system, an optical apparatus, and an optical system manufacturing method.
 従来、写真用カメラや電子スチルカメラ等には、焦点距離の大きな光学系として、テレフォトタイプでインナーフォーカス式の光学系が多く用いられている。例えば、特開2008-164997号公報を参照。 Conventionally, in photo cameras and electronic still cameras, telephoto type inner focus optical systems are often used as optical systems having a large focal length. For example, see Japanese Patent Application Laid-Open No. 2008-164997.
特開2008-164997号公報JP 2008-164997 A
 しかしながら、上述のような従来の光学系は、高性能化が十分に図られていないという問題があった。 However, the conventional optical system as described above has a problem that the performance is not sufficiently improved.
 そこで本発明は上記問題点に鑑みてなされたものであり、良好な光学性能を備えた光学系、光学装置及び光学系の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide an optical system, an optical device, and a method for manufacturing the optical system having good optical performance.
 上記課題を解決するために本発明の第1態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
 前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行い、
 以下の条件式を満足することを特徴とする光学系を提供する。
0.10<f/f12<0.55
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
In order to solve the above problems, the first aspect of the present invention is:
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
By moving the second lens group along the optical axis, focusing from an object at infinity to an object at a short distance,
An optical system characterized by satisfying the following conditional expression is provided.
0.10 <f / f12 <0.55
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 また本発明の第2態様は、
 本発明の第1態様に係る光学系を有することを特徴とする光学装置を提供する。
The second aspect of the present invention is
An optical apparatus having the optical system according to the first aspect of the present invention is provided.
 また本発明の第3態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
 前記光学系が以下の条件式を満足するようにし、
 前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにすることを特徴とする光学系の製造方法を提供する。
0.10<f/f12<0.55
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
The third aspect of the present invention is:
A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. ,
The optical system satisfies the following conditional expression,
An optical system manufacturing method is provided in which focusing from an object at infinity to an object at a short distance is performed by moving the second lens group along an optical axis.
0.10 <f / f12 <0.55
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 また本発明の第4態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
 前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行い、
 前記第2レンズ群が、少なくとも3枚のレンズを有し、
 以下の条件式を満足することを特徴とする光学系を提供する。
0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
The fourth aspect of the present invention is
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
By moving the second lens group along the optical axis, focusing from an object at infinity to an object at a short distance,
The second lens group has at least three lenses;
An optical system characterized by satisfying the following conditional expression is provided.
0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 また本発明の第5態様は、
 本発明の第4態様に係る光学系を有することを特徴とする光学装置を提供する。
The fifth aspect of the present invention is
An optical apparatus comprising the optical system according to the fourth aspect of the present invention is provided.
 また本発明の第6態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
 前記第2レンズ群が、少なくとも3枚のレンズを有するようにし、
 前記光学系が以下の条件式を満足するようにし、
 前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにすることを特徴とする光学系の製造方法を提供する。
0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
The sixth aspect of the present invention is
A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. ,
The second lens group includes at least three lenses;
The optical system satisfies the following conditional expression,
An optical system manufacturing method is provided in which focusing from an object at infinity to an object at a short distance is performed by moving the second lens group along an optical axis.
0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 また本発明の第7態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
 無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、
 前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、
 以下の条件式を満足することを特徴とする光学系を提供する。
-1.60<βr×(1-βs)<-0.85
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
The seventh aspect of the present invention is
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
When focusing from an object at infinity to a near object, the second lens group moves along the optical axis;
A part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis;
An optical system characterized by satisfying the following conditional expression is provided.
−1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 また本発明の第8態様は、
 本発明の第7態様に係る光学系を有することを特徴とする光学装置を提供する。
The eighth aspect of the present invention provides
An optical apparatus having the optical system according to the seventh aspect of the present invention is provided.
 また本発明の第9態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
 無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、
 前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、
 前記光学系が以下の条件式を満足するようにすることを特徴とする光学系の製造方法を提供する。
-1.60<βr×(1-βs)<-0.85
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
The ninth aspect of the present invention
A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. ,
The second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance;
A part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis;
Provided is a method for manufacturing an optical system, characterized in that the optical system satisfies the following conditional expression.
−1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 また本発明の第10態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
 前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有し、
 無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、
 前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、
 以下の条件式を満足することを特徴とする光学系を提供する。
1.70<|fR/fF|<5.00
 ただし、
fF:無限遠物体合焦時の前記第1レンズ群から前記第3aレンズ群までの合成焦点距離
fR:無限遠物体合焦時の前記第3bレンズ群と前記第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
The tenth aspect of the present invention provides
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side, a 3a lens group and a 3b lens group,
When focusing from an object at infinity to a near object, the second lens group moves along the optical axis;
The third lens group moves as a shift lens group so as to include a component in a direction perpendicular to the optical axis,
An optical system characterized by satisfying the following conditional expression is provided.
1.70 <| fR / fF | <5.00
However,
fF: Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
 また本発明の第11態様は、
 本発明の第10態様に係る光学系を有することを特徴とする光学装置を提供する。
The eleventh aspect of the present invention provides
An optical apparatus having the optical system according to the tenth aspect of the present invention is provided.
 また本発明の第12態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
 前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有するようにし、
 無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、
 前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、
 前記光学系が以下の条件式を満足するようにすることを特徴とする光学系の製造方法を提供する。
1.70<|fR/fF|<5.00
 ただし、
fF:無限遠物体合焦時の前記第1レンズ群から前記第3aレンズ群までの合成焦点距離
fR:無限遠物体合焦時の前記第3bレンズ群と前記第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
The twelfth aspect of the present invention provides
A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. ,
The third lens group has a 3a lens group and a 3b lens group in order from the object side,
The second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance;
The third lens group is moved so as to include a component in a direction orthogonal to the optical axis as a shift lens group,
Provided is a method for manufacturing an optical system, characterized in that the optical system satisfies the following conditional expression.
1.70 <| fR / fF | <5.00
However,
fF: Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
 本発明の第1~3態様によれば、小型で良好な光学性能を備えた光学系、光学装置及び光学系の製造方法を提供することができる。 According to the first to third aspects of the present invention, it is possible to provide an optical system, an optical device, and a method for manufacturing the optical system that are small and have good optical performance.
 本発明の第4~6態様によれば、小型で良好な光学性能を備えた光学系、光学装置及び光学系の製造方法を提供することができる。 According to the fourth to sixth aspects of the present invention, it is possible to provide an optical system, an optical device, and a method for manufacturing the optical system that are small and have good optical performance.
 本発明の第7~9態様によれば、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学系、光学装置及び光学系の製造方法を提供することができる。 According to the seventh to ninth aspects of the present invention, it is possible to provide an optical system, an optical apparatus, and a method for manufacturing the optical system that correct various aberrations satisfactorily and suppress deterioration of optical performance during lens shift.
 本発明の第10~12態様によれば、小型で、諸収差を良好に補正し優れた光学性能を有する光学系、光学装置及び光学系の製造方法を提供することができる。 According to the tenth to twelfth aspects of the present invention, it is possible to provide an optical system, an optical apparatus, and an optical system manufacturing method that are small in size, correct various aberrations, and have excellent optical performance.
図1は、本願の第1~8実施形態に共通の第1実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 1 is a sectional view showing a lens arrangement at the time of focusing on an object at infinity in an optical system according to a first example common to the first to eighth embodiments of the present application. 図2A、及び図2Bはそれぞれ、本願の第1実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。2A and 2B are graphs showing various aberrations when the optical system according to the first example of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図3は、本願の第1実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 3 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to the first example of the present application. 図4は、本願の第1~8実施形態に共通の第2実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 4 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a second example common to the first to eighth embodiments of the present application. 図5A、及び図5Bはそれぞれ、本願の第2実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。FIGS. 5A and 5B are graphs showing various aberrations when the optical system according to Example 2 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図6は、本願の第2実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 6 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the second example of the present application. 図7は、本願の第1~8実施形態に共通の第3実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 7 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a third example common to the first to eighth embodiments of the present application. 図8A、及び図8Bはそれぞれ、本願の第3実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。8A and 8B are graphs showing various aberrations when the optical system according to Example 3 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図9は、本願の第3実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 9 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to the third example of the present application. 図10は、本願の第1~8実施形態に共通の第4実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 10 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fourth example common to the first to eighth embodiments of the present application. 図11A、及び図11Bはそれぞれ、本願の第4実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。11A and 11B are graphs showing various aberrations when the optical system according to Example 4 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図12は、本願の第4実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 12 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the fourth example of the present application. 図13は、本願の第1~8実施形態に共通の第5実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 13 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fifth example common to the first to eighth embodiments of the present application. 図14A、及び図14Bはそれぞれ、本願の第5実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。FIGS. 14A and 14B are graphs showing various aberrations when the optical system according to Example 5 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図15は、本願の第5実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 15 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to Example 5 of the present application. 図16は、本願の第1~8実施形態に共通の第6実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 16 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a sixth example common to the first to eighth embodiments of the present application. 図17A、及び図17Bはそれぞれ、本願の第6実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。FIGS. 17A and 17B are graphs showing various aberrations when the optical system according to Example 6 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図18は、本願の第6実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 18 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to Example 6 of the present application. 図19は、本願の第3~6実施形態に共通の第7実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 19 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a seventh example common to the third to sixth embodiments of the present application. 図20A、及び図20Bはそれぞれ、本願の第7実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。20A and 20B are graphs showing various aberrations when the optical system according to Example 7 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図21は、本願の第7実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 21 is a coma aberration diagram when the lens shift is performed at the time of focusing on an object at infinity of the optical system according to Example 7 of the present application. 図22は、本願の第3~6実施形態に共通の第8実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 22 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to an eighth example common to the third to sixth embodiments of the present application. 図23A、及び図23Bはそれぞれ、本願の第8実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。FIGS. 23A and 23B are graphs showing various aberrations when the optical system according to Example 8 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図24は、本願の第8実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 24 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the eighth example of the present application. 図25は、本願の第3~6実施形態に共通の第9実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 25 is a cross-sectional view showing the lens arrangement at the time of focusing on an object at infinity in the optical system according to Example 9 common to Embodiments 3 to 6 of the present application. 図26A、及び図26Bはそれぞれ、本願の第9実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。FIGS. 26A and 26B are graphs showing various aberrations when the optical system according to Example 9 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図27は、本願の第9実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。FIG. 27 is a coma aberration diagram when the lens shifts at the time of focusing on an object at infinity of the optical system according to Example 9 of the present application. 図28は、本願の第1~8実施形態に係る光学系を備えたカメラの構成を示す図である。FIG. 28 is a diagram showing a configuration of a camera including an optical system according to the first to eighth embodiments of the present application. 図29は、本願の第5実施形態に係る光学系の製造方法の概略を示す図である。FIG. 29 is a diagram showing an outline of a method of manufacturing an optical system according to the fifth embodiment of the present application. 図30は、本願の第1実施例に係る光学系に入射した光線が第1番目の反射面と第2番目の反射面で反射して像面にゴーストやフレアを形成する様子の一例を示す図である。FIG. 30 shows an example of a state in which light rays incident on the optical system according to the first embodiment of the present application are reflected by the first reflecting surface and the second reflecting surface to form ghosts and flares on the image surface. FIG. 図31は、本願の第5~8実施形態の反射防止膜の層構造の一例を示す説明図である。FIG. 31 is an explanatory view showing an example of the layer structure of the antireflection film of the fifth to eighth embodiments of the present application. 図32は、本願の第5~8実施形態の反射防止膜の分光特性を示すグラフである。FIG. 32 is a graph showing the spectral characteristics of the antireflection films of the fifth to eighth embodiments of the present application. 図33は、本願の第5~8実施形態の変形例に係る反射防止膜の分光特性を示すグラフである。FIG. 33 is a graph showing the spectral characteristics of the antireflection film according to modifications of the fifth to eighth embodiments of the present application. 図34は、本願の第5~8実施形態の変形例に係る反射防止膜の分光特性の入射角度依存性を示すグラフである。FIG. 34 is a graph showing the incident angle dependence of the spectral characteristic of the antireflection film according to the modification of the fifth to eighth embodiments of the present application. 図35は、従来技術で作成した反射防止膜の分光特性を示すグラフである。FIG. 35 is a graph showing the spectral characteristics of the antireflection film prepared by the prior art. 図36は、従来技術で作成した反射防止膜の分光特性の入射角度依存性を示すグラフである。FIG. 36 is a graph showing the incident angle dependence of the spectral characteristics of the antireflection film prepared by the conventional technique. 図37は、本願の第6実施形態に係る光学系の製造方法の概略を示す図である。FIG. 37 is a diagram showing an outline of a method of manufacturing an optical system according to the sixth embodiment of the present application. 図38は、本願の第1実施形態に係る光学系の製造方法の概略を示す図である。FIG. 38 is a diagram showing an outline of the method of manufacturing the optical system according to the first embodiment of the present application. 図39は、本願の第2実施形態に係る光学系の製造方法の概略を示す図である。FIG. 39 is a diagram showing an outline of a method for manufacturing an optical system according to the second embodiment of the present application. 図40は、本願の第3実施形態に係る光学系の製造方法の概略を示す図である。FIG. 40 is a diagram showing an outline of the manufacturing method of the optical system according to the third embodiment of the present application. 図41は、本願の第4実施形態に係る光学系の製造方法の概略を示す図である。FIG. 41 is a diagram showing an outline of a method of manufacturing an optical system according to the fourth embodiment of the present application. 図42は、本願の第7実施形態に係る光学系の製造方法の概略を示す図である。FIG. 42 is a diagram showing an outline of the method of manufacturing the optical system according to the seventh embodiment of the present application. 図43は、本願の第8実施形態に係る光学系の製造方法の概略を示す図である。FIG. 43 is a diagram showing an outline of the manufacturing method of the optical system according to the eighth embodiment of the present application.
 以下、本願の第1実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第1実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行い、以下の条件式(1-1)を満足することを特徴とする。
(1-1) 0.10<f/f12<0.55
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
Hereinafter, the optical system, the optical device, and the method for manufacturing the optical system according to the first embodiment of the present application will be described.
The optical system according to the first embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. And focusing from an object at infinity to a near object by moving the second lens group along the optical axis, and satisfying the following conditional expression (1-1): And
(1-1) 0.10 <f / f12 <0.55
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 上記のように本願の第1実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有している。この構成により、本願の第1実施形態に係る光学系は大きな焦点距離を有しながら小型化と高性能化とを両立することができる。 As described above, the optical system according to the first embodiment of the present application includes, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. And a third lens group. With this configuration, the optical system according to the first embodiment of the present application can achieve both miniaturization and high performance while having a large focal length.
 また、上記のように本願の第1実施形態に係る光学系は、第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行う。この構成により、比較的小型のモーターユニットによって第2レンズ群を駆動することが可能となる。 Also, as described above, the optical system according to the first embodiment of the present application performs focusing from an infinitely distant object to a close object by moving the second lens group along the optical axis. With this configuration, the second lens group can be driven by a relatively small motor unit.
 条件式(1-1)は、第1レンズ群と第2レンズ群との合成屈折力を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-1)を満足することにより、倍率色収差を良好に補正することができる。また、第2レンズ群から射出される光が収束光となる。このため、第2レンズ群をより像側に配置することができ、これに伴って第1レンズ群もより像側に配置することができるため、本願の第1実施形態に係る光学系の全長を小さくすることができる。また、倍率色収差を良好に補正することができる。 Conditional expression (1-1) defines the combined refractive power of the first lens group and the second lens group. The optical system according to the first embodiment of the present application can satisfactorily correct lateral chromatic aberration by satisfying conditional expression (1-1). Further, the light emitted from the second lens group becomes convergent light. For this reason, since the second lens group can be arranged on the image side and the first lens group can be arranged on the image side accordingly, the entire length of the optical system according to the first embodiment of the present application. Can be reduced. In addition, the lateral chromatic aberration can be corrected satisfactorily.
 本願の第1実施形態に係る光学系の条件式(1-1)の対応値が上限値を上回ると、倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-1)の上限値を0.54とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-1)の上限値を0.53とすることがより好ましい。 If the corresponding value of the conditional expression (1-1) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-1) to 0.54. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-1) to 0.53.
 一方、本願の第1実施形態に係る光学系の条件式(1-1)の対応値が下限値を下回ると、第2レンズ群から射出される光が平行光となるため、本願の第1実施形態に係る光学系の全長が大きくなる。そこで、本願の第1実施形態に係る光学系の全長の短縮化を図ろうとすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-1)の下限値を0.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-1)の下限値を0.30とすることがより好ましい。
 以上の構成により、小型で良好な光学性能を備えた光学系を実現することができる。
On the other hand, when the corresponding value of the conditional expression (1-1) of the optical system according to the first embodiment of the present application is lower than the lower limit value, the light emitted from the second lens group becomes parallel light. The overall length of the optical system according to the embodiment is increased. Therefore, if it is attempted to shorten the overall length of the optical system according to the first embodiment of the present application, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-1) to 0.20. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-1) to 0.30.
With the above configuration, an optical system having a small size and good optical performance can be realized.
 また、本願の第1実施形態に係る光学系は、前記第1レンズ群が以下の条件式(1-2)を満足する少なくとも1枚の正レンズを有することが望ましい。
(1-2) 80<νd1p<110
 ただし、
νd1p:前記第1レンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the first embodiment of the present application, it is desirable that the first lens group has at least one positive lens that satisfies the following conditional expression (1-2).
(1-2) 80 <νd1p <110
However,
νd1p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the first lens group
 条件式(1-2)は、第1レンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-2)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (1-2) defines the Abbe number of the glass material of the positive lens in the first lens group. The optical system according to the first embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (1-2).
 本願の第1実施形態に係る光学系の条件式(1-2)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(1-2)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-2)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (1-2) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-2) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-2) to 100.
 一方、本願の第1実施形態に係る光学系の条件式(1-2)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-2)の下限値を85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-2)の下限値を90とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (1-2) of the optical system according to the first embodiment of the present application is less than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-2) to 85. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-2) to 90.
 また、本願の第1実施形態に係る光学系は、前記第1レンズ群が複数の正レンズを有し、前記複数の正レンズのうちで最も物体側に配置された正レンズが以下の条件式(1-3)を満足することが望ましい。
(1-3) 80<νd1pf<110
 ただし、
νd1pf:前記第1レンズ群中の前記複数の正レンズのうちで最も物体側に配置された前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
Further, in the optical system according to the first embodiment of the present application, the first lens group includes a plurality of positive lenses, and the positive lens arranged closest to the object among the plurality of positive lenses is the following conditional expression: It is desirable to satisfy (1-3).
(1-3) 80 <νd1pf <110
However,
νd1pf: Abbe number with respect to the d-line (wavelength 587.6 nm) of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
 条件式(1-3)は、第1レンズ群中の複数の正レンズうちで最も物体側に配置された正レンズの硝材のアッベ数を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-3)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (1-3) defines the Abbe number of the glass material of the positive lens arranged closest to the object among the plurality of positive lenses in the first lens group. The optical system according to the first embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (1-3).
 本願の第1実施形態に係る光学系の条件式(1-3)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(1-3)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-3)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (1-3) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-3) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-3) to 100.
 一方、本願の第1実施形態に係る光学系の条件式(1-3)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-3)の下限値を85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-3)の下限値を90とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (1-3) of the optical system according to the first embodiment of the present application is below the lower limit value, it will be difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-3) to 85. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-3) to 90.
 また、本願の第1実施形態に係る光学系は、前記第1レンズ群が以下の条件式(1-4)を満足する少なくとも1枚の負レンズを有することが望ましい。
(1-4) 1.50<nd1n<1.75
 ただし、
nd1n:前記第1レンズ群中の前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the first embodiment of the present application, it is preferable that the first lens group includes at least one negative lens that satisfies the following conditional expression (1-4).
(1-4) 1.50 <nd1n <1.75
However,
nd1n: refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the first lens group
 条件式(1-4)は、第1レンズ群中の負レンズの硝材の屈折率を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-4)を満足することにより、軽量化を図りながら、コマ収差や像面湾曲を良好に補正することができる。 Conditional expression (1-4) defines the refractive index of the glass material of the negative lens in the first lens group. The optical system according to the first embodiment of the present application can satisfactorily correct coma and curvature of field while reducing the weight by satisfying conditional expression (1-4).
 本願の第1実施形態に係る光学系の条件式(1-4)の対応値が上限値を上回ると、前記第1レンズ群中の前記負レンズの硝材の比重が大きくなる。そこで、本願の第1実施形態に係る光学系の軽量化のために第1レンズ群中の他のレンズの比重を小さくすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-4)の上限値を1.70とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-4)の上限値を1.65とすることがより好ましい。 When the corresponding value of the conditional expression (1-4) of the optical system according to the first embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the first lens group increases. Therefore, if the specific gravity of other lenses in the first lens group is reduced in order to reduce the weight of the optical system according to the first embodiment of the present application, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-4) to 1.70. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-4) to 1.65.
 一方、本願の第1実施形態に係る光学系の条件式(1-4)の対応値が下限値を下回ると、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-4)の下限値を1.55とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-4)の下限値を1.60とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (1-4) of the optical system according to the first embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-4) to 1.55. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-4) to 1.60.
 また、本願の第1実施形態に係る光学系は、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができ、さらに防振時の偏芯収差の発生を問題ないレベルまで抑えることができる。 In addition, it is desirable that the optical system according to the first embodiment of the present application moves so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis. With this configuration, image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem.
 また、本願の第1実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、正の屈折力を有する第3aレンズ群と、負の屈折力を有する第3bレンズ群と、正の屈折力を有する第3cレンズ群とから構成され、前記第3bレンズ群が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができ、さらに防振時の偏芯収差の発生を問題ないレベルまで抑えることができる。また、第3bレンズ群を小径化できるので、防振時に第3bレンズ群を駆動するためのメカユニットを小型化することもできる。 In the optical system according to the first embodiment of the present application, the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, It is desirable that the third lens unit is composed of a third lens unit having positive refractive power, and the third lens unit moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem. In addition, since the diameter of the 3b lens group can be reduced, the mechanical unit for driving the 3b lens group during vibration isolation can be reduced in size.
 また、本願の第1実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、負レンズと正レンズとの接合レンズを有することが望ましい。この構成により、偏芯収差を良好に補正することができる。なお、当該接合レンズは、前記第1レンズ群中の最も像側に配置することがより好ましい。 In the optical system according to the first embodiment of the present application, it is preferable that the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, the decentration aberration can be corrected satisfactorily. The cemented lens is more preferably arranged on the most image side in the first lens group.
 また、本願の第1実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(1-5)を満足することが望ましい。
(1-5) 0.30<TL1a/TL1<0.70
 ただし、
TL1a:前記第1aレンズ群の光軸に沿った長さ
TL1:前記第1レンズ群の光軸に沿った長さ
In the optical system according to the first embodiment of the present application, the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the following conditional expression (1-5) is satisfied.
(1-5) 0.30 <TL1a / TL1 <0.70
However,
TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
 条件式(1-5)は、第1レンズ群の長さに対する第1aレンズ群の長さを規定するものである。本願の第1実施形態に係る光学系は、条件式(1-5)を満足することにより、軽量化を図りながら、コマ収差を良好に補正することができる。 Conditional expression (1-5) defines the length of the first lens group with respect to the length of the first lens group. The optical system according to the first embodiment of the present application can satisfactorily correct the coma aberration while reducing the weight by satisfying conditional expression (1-5).
 本願の第1実施形態に係る光学系の条件式(1-5)の対応値が上限値を上回ると、第1レンズ群の重量が増大してしまう。そこで、軽量化のために、例えば第1レンズ群中の負レンズに屈折率の小さな硝材を採用すれば、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-5)の上限値を0.60とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-5)の上限値を0.50とすることがより好ましい。 When the corresponding value of the conditional expression (1-5) of the optical system according to the first embodiment of the present application exceeds the upper limit value, the weight of the first lens group increases. Therefore, for example, if a glass material having a small refractive index is used for the negative lens in the first lens group in order to reduce the weight, it becomes difficult to correct curvature of field. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-5) to 0.60. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-5) to 0.50.
 一方、本願の第1実施形態に係る光学系の条件式(1-5)の対応値が下限値を下回ると、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-5)の下限値を0.35とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-5)の下限値を0.40とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (1-5) of the optical system according to the first embodiment of the present application is less than the lower limit value, it becomes difficult to correct the coma aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-5) to 0.35. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-5) to 0.40.
 なお、本願の第1実施形態に係る光学系は、前記第1aレンズ群が、物体側から順に、正レンズと、正レンズと、負レンズとからなることが好ましい。この構成により、本願の第1実施形態に係る光学系の軽量化を図ることができる。
 また、本願の第1実施形態に係る光学系は、前記第1aレンズ群が、最も物体側に保護フィルタガラスを有することが好ましい。保護フィルタガラスは、実質的に屈折力を有しないレンズであって、その焦点距離が本願の第1実施形態に係る光学系の焦点距離の10倍以上であることが好ましい。特に、本願の第1実施形態に係る光学系は、保護フィルタガラスが物体側に凸面を向けた負メニスカス形状であることが好ましい。この構成により、ゴーストを良好にカットすることができる。
 また、本願の第1実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、負レンズと、正レンズを有することが望ましい。この構成により、近距離物体合焦時に球面収差の変動を良好に補正することができる。特に、本願の第1実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、負レンズと正レンズとの接合レンズのみからなることが好ましい。この構成により、本願の第1実施形態に係る光学系の軽量化を図ることができる。
In the optical system according to the first embodiment of the present application, it is preferable that the first-a lens group includes a positive lens, a positive lens, and a negative lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the first embodiment of the present application.
In the optical system according to the first embodiment of the present application, it is preferable that the first lens group has a protective filter glass on the most object side. The protective filter glass is a lens having substantially no refractive power, and the focal length thereof is preferably 10 times or more the focal length of the optical system according to the first embodiment of the present application. In particular, the optical system according to the first embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
In the optical system according to the first embodiment of the present application, it is preferable that the first-b lens group includes a negative lens and a positive lens in order from the object side. With this configuration, it is possible to satisfactorily correct variations in spherical aberration when focusing on a short-distance object. In particular, in the optical system according to the first embodiment of the present application, it is preferable that the first b lens group includes only a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the first embodiment of the present application.
 また、本願の第1実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1bレンズ群が、以下の条件式(1-6)を満足する正レンズを有することが望ましい。
(1-6) 70<νd1bp<110
 ただし、
νd1bp:前記第1bレンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the first embodiment of the present application, the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group has a positive lens that satisfies the following conditional expression (1-6): .
(1-6) 70 <νd1bp <110
However,
νd1bp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1b lens group
 条件式(1-6)は、第1bレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-6)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (1-6) defines the Abbe number of the glass material of the positive lens in the 1b lens group. The optical system according to the first embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (1-6).
 本願の第1実施形態に係る光学系の条件式(1-6)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(1-6)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-6)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (1-6) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-6) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-6) to 100.
 一方、本願の第1実施形態に係る光学系の条件式(1-6)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-6)の下限値を75とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-6)の下限値を80とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (1-6) of the optical system according to the first embodiment of the present application is less than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-6) to 75. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-6) to 80.
 また、本願の第1実施形態に係る光学系は、前記第2レンズ群が、2つの負レンズ成分を有することが望ましい。この構成により、コマ収差を良好に補正することができる。ここで、本願において「レンズ成分」とは、2枚以上のレンズを接合してなる接合レンズ、或いは単レンズをいう。
 なお、本願の第1実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、負レンズと、正レンズと、負レンズとを有する構成としてもよい。また、前記第2レンズ群が、物体側から順に、正レンズと、負レンズと、負レンズとを有する構成としてもよい。これらの構成により、コマ収差を良好に補正することができる。
In the optical system according to the first embodiment of the present application, it is preferable that the second lens group has two negative lens components. With this configuration, coma can be corrected well. Here, in the present application, the “lens component” refers to a cemented lens or a single lens formed by cementing two or more lenses.
In the optical system according to the first embodiment of the present application, the second lens group may have a negative lens, a positive lens, and a negative lens in order from the object side. The second lens group may include a positive lens, a negative lens, and a negative lens in order from the object side. With these configurations, coma can be corrected well.
 また、本願の第1実施形態に係る光学系は、前記第2レンズ群が以下の条件式(1-7)を満足する正レンズを有することが望ましい。
(1-7) 15<νd2p<30
 ただし、
νd2p:前記第2レンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the first embodiment of the present application, it is preferable that the second lens group includes a positive lens that satisfies the following conditional expression (1-7).
(1-7) 15 <νd2p <30
However,
νd2p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the second lens group
 条件式(1-7)は、第2レンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-7)を満足することにより、倍率色収差や軸上色収差を良好に補正することができる。 Conditional expression (1-7) defines the Abbe number of the glass material of the positive lens in the second lens group. The optical system according to the first embodiment of the present application can satisfactorily correct lateral chromatic aberration and axial chromatic aberration by satisfying conditional expression (1-7).
 本願の第1実施形態に係る光学系の条件式(1-7)の対応値が上限値を上回ると、倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-7)の上限値を27とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-7)の上限値を25とすることがより好ましい。 If the corresponding value of the conditional expression (1-7) of the optical system according to the first embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (1-7) to 27. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-7) to 25.
 一方、本願の第1実施形態に係る光学系の条件式(1-7)の対応値が下限値を下回ると、短波長の光の透過率が低下することを防ぐため、第2レンズ群よりも像側に位置するレンズ群に分散の大きな硝材からなるレンズを用いることができなくなってしまう。このため、軸上色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(1-7)の下限値を16とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-7)の下限値を17とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (1-7) of the optical system according to the first embodiment of the present application is lower than the lower limit value, the second lens group is used to prevent the transmittance of light having a short wavelength from decreasing. However, it becomes impossible to use a lens made of a glass material having a large dispersion in the lens group located on the image side. This makes it difficult to correct axial chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1-7) to 16. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1-7) to 17.
 本願の光学装置は、上述した構成の第1実施形態に係る光学系を有することを特徴とする。これにより、小型で良好な光学性能を備えた光学装置を実現することができる。 The optical apparatus according to the present application includes the optical system according to the first embodiment having the above-described configuration. Thereby, an optical device having a small size and good optical performance can be realized.
 本願の第1実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記光学系が以下の条件式(1-1)を満足するようにし、前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにすることを特徴とする。これにより、小型で良好な光学性能を備えた光学系を製造することができる。
(1-1) 0.10<f/f12<0.55
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
The optical system manufacturing method according to the first embodiment of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. And a third lens group, wherein the optical system satisfies the following conditional expression (1-1), and the second lens group is moved along the optical axis. It is characterized in that focusing from an object at infinity to an object at a short distance is performed. Thereby, an optical system having a small size and good optical performance can be manufactured.
(1-1) 0.10 <f / f12 <0.55
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 以下、本願の第2実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第2実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行い、前記第2レンズ群が、少なくとも3枚のレンズを有し、以下の条件式(2-1)を満足することを特徴とする。
(2-1) 0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
Hereinafter, an optical system, an optical device, and an optical system manufacturing method according to the second embodiment of the present application will be described.
The optical system according to the second embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. And focusing from an object at infinity to a near object by moving the second lens group along the optical axis, and the second lens group has at least three lenses The following conditional expression (2-1) is satisfied.
(2-1) 0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 上記のように本願の第2実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有している。この構成により、本願の第2実施形態に係る光学系は大きな焦点距離を有しながら小型化と高性能化とを両立することができる。 As described above, the optical system according to the second embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. And a third lens group. With this configuration, the optical system according to the second embodiment of the present application can achieve both miniaturization and high performance while having a large focal length.
 また、上記のように本願の第2実施形態に係る光学系は、第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行う。この構成により、比較的小型のモーターユニットをよって第2レンズ群を駆動することが可能となる。
 また、上記のように本願の第2実施形態に係る光学系は、第2レンズ群が少なくとも3枚のレンズを有する。この構成により、コマ収差を良好に補正することができる。
In addition, as described above, the optical system according to the second embodiment of the present application performs focusing from an object at infinity to a near object by moving the second lens group along the optical axis. With this configuration, the second lens group can be driven by a relatively small motor unit.
As described above, in the optical system according to the second embodiment of the present application, the second lens group has at least three lenses. With this configuration, coma can be corrected well.
 条件式(2-1)は、第1レンズ群と第2レンズ群との合成屈折力を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-1)を満足することにより、倍率色収差を良好に補正することができる。また、第2レンズ群から射出される光が収束光となる。このため、第2レンズ群をより像側に配置することができ、これに伴って第1レンズ群もより像側に配置することができるため、本願の第2実施形態に係る光学系の全長を小さくすることができる。また、倍率色収差を良好に補正することができる。 Conditional expression (2-1) defines the combined refractive power of the first lens group and the second lens group. The optical system according to the second embodiment of the present application can satisfactorily correct lateral chromatic aberration by satisfying conditional expression (2-1). Further, the light emitted from the second lens group becomes convergent light. For this reason, since the second lens group can be disposed more on the image side, and accordingly, the first lens group can also be disposed on the image side, the total length of the optical system according to the second embodiment of the present application. Can be reduced. In addition, the lateral chromatic aberration can be corrected satisfactorily.
 本願の第2実施形態に係る光学系の条件式(2-1)の対応値が上限値を上回ると、倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-1)の上限値を0.80とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-1)の上限値を0.75とすることがより好ましい。 If the corresponding value of conditional expression (2-1) of the optical system according to the second embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (2-1) to 0.80. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-1) to 0.75.
 一方、本願の第2実施形態に係る光学系の条件式(2-1)の対応値が下限値を下回ると、第2レンズ群から射出される光が平行光となるため、本願の第2実施形態に係る光学系の全長が大きくなる。そこで、本願の第2実施形態に係る光学系の全長の短縮化を図ろうとすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-1)の下限値を0.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-1)の下限値を0.30とすることがより好ましい。
 以上の構成により、小型で良好な光学性能を備えた光学系を実現することができる。
On the other hand, when the corresponding value of the conditional expression (2-1) of the optical system according to the second embodiment of the present application is less than the lower limit value, the light emitted from the second lens group becomes parallel light. The overall length of the optical system according to the embodiment increases. Therefore, if it is attempted to shorten the overall length of the optical system according to the second embodiment of the present application, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-1) to 0.20. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-1) to 0.30.
With the above configuration, an optical system having a small size and good optical performance can be realized.
 また、本願の第2実施形態に係る光学系は、前記第2レンズ群中の前記少なくとも3枚のレンズのうち、少なくとも2枚が負レンズであることが望ましい。この構成により、コマ収差を良好に補正することができる。
 なお、本願の第2実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、負レンズと、正レンズと、負レンズとを有する構成、又は、物体側から順に、正レンズと、負レンズと、負レンズとを有する構成とすることがより好ましい。また、これらの構成において、正レンズと負レンズとを接合することが最も好ましい。以上の構成により、コマ収差をより良好に補正することができる。
In the optical system according to the second embodiment of the present application, it is preferable that at least two of the at least three lenses in the second lens group are negative lenses. With this configuration, coma can be corrected well.
In the optical system according to the second embodiment of the present application, the second lens group includes a negative lens, a positive lens, and a negative lens in order from the object side, or a positive lens in order from the object side. And a negative lens and a negative lens are more preferable. In these configurations, it is most preferable to join a positive lens and a negative lens. With the above configuration, coma aberration can be corrected more favorably.
 また、本願の第2実施形態に係る光学系は、前記第2レンズ群が以下の条件式(2-2)を満足する少なくとも1枚の負レンズを有することが望ましい。
(2-2) 1.45<nd2n<1.65
 ただし、
nd2n:前記第2レンズ群中の前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the second embodiment of the present application, it is preferable that the second lens group includes at least one negative lens that satisfies the following conditional expression (2-2).
(2-2) 1.45 <nd2n <1.65
However,
nd2n: refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the second lens group
 条件式(2-2)は、第2レンズ群中の負レンズの硝材の屈折率を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-2)を満足することにより、合焦レンズ群である第2レンズ群の軽量化を図りながら、コマ収差や像面湾曲を良好に補正することができる。 Conditional expression (2-2) defines the refractive index of the glass material of the negative lens in the second lens group. By satisfying conditional expression (2-2), the optical system according to the second embodiment of the present application achieves good coma and curvature of field while reducing the weight of the second lens group that is the focusing lens group. Can be corrected.
 本願の第2実施形態に係る光学系の条件式(2-2)の対応値が上限値を上回ると、前記第2レンズ群中の前記負レンズの硝材の比重が大きくなる。そこで、本願の第2実施形態に係る光学系の軽量化のために第2レンズ群中の他のレンズの比重を小さくすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-2)の上限値を1.64とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-2)の上限値を1.63とすることがより好ましい。 When the corresponding value of the conditional expression (2-2) of the optical system according to the second embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the second lens group increases. Therefore, if the specific gravity of other lenses in the second lens group is reduced in order to reduce the weight of the optical system according to the second embodiment of the present application, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-2) to 1.64. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (2-2) to 1.63.
 一方、本願の第2実施形態に係る光学系の条件式(2-2)の対応値が下限値を下回ると、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-2)の下限値を1.48とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-2)の下限値を1.50とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (2-2) of the optical system according to the second embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-2) to 1.48. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-2) to 1.50.
 また、本願の第2実施形態に係る光学系は、前記第2レンズ群が以下の条件式(2-3)を満足する正レンズを有することが望ましい。
(2-3) 15<νd2p<30
 ただし、
νd2p:前記第2レンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the second embodiment of the present application, it is preferable that the second lens group includes a positive lens that satisfies the following conditional expression (2-3).
(2-3) 15 <νd2p <30
However,
νd2p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the second lens group
 条件式(2-3)は、第2レンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-3)を満足することにより、倍率色収差や軸上色収差を良好に補正することができる。 Conditional expression (2-3) defines the Abbe number of the glass material of the positive lens in the second lens group. The optical system according to the second embodiment of the present application can satisfactorily correct lateral chromatic aberration and axial chromatic aberration by satisfying conditional expression (2-3).
 本願の第2実施形態に係る光学系の条件式(2-3)の対応値が上限値を上回ると、倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-3)の上限値を27とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-3)の上限値を25とすることがより好ましい。 If the corresponding value of the conditional expression (2-3) of the optical system according to the second embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-3) to 27. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-3) to 25.
 一方、本願の第2実施形態に係る光学系の条件式(2-3)の対応値が下限値を下回ると、短波長の光の透過率が低下することを防ぐため、第2レンズ群よりも像側に位置するレンズ群に分散の大きな硝材からなるレンズを用いることができなくなってしまう。このため、軸上色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-3)の下限値を16とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-3)の下限値を17とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (2-3) of the optical system according to the second embodiment of the present application is less than the lower limit value, in order to prevent the transmittance of light having a short wavelength from decreasing, However, it becomes impossible to use a lens made of a glass material having a large dispersion in the lens group located on the image side. This makes it difficult to correct axial chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2-3) to 16. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-3) to 17.
 また、本願の第2実施形態に係る光学系は、前記第1レンズ群が以下の条件式(2-4)を満足する少なくとも1枚の正レンズを有することが望ましい。
(2-4) 80<νd1p<110
 ただし、
νd1p:前記第1レンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the second embodiment of the present application, it is preferable that the first lens group has at least one positive lens that satisfies the following conditional expression (2-4).
(2-4) 80 <νd1p <110
However,
νd1p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the first lens group
 条件式(2-4)は、第1レンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-4)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (2-4) defines the Abbe number of the glass material of the positive lens in the first lens group. The optical system according to the second embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (2-4).
 本願の第2実施形態に係る光学系の条件式(2-4)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2-4)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-4)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (2-4) of the optical system according to the second embodiment of the present application exceeds the upper limit, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-4) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-4) to 100.
 一方、本願の第2実施形態に係る光学系の条件式(2-4)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-4)の下限値を85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-4)の下限値を90とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (2-4) of the optical system according to the second embodiment of the present application is less than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2-4) to 85. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-4) to 90.
 また、本願の第2実施形態に係る光学系は、前記第1レンズ群が複数の正レンズを有し、前記複数の正レンズのうちで最も物体側に配置された正レンズが以下の条件式(2-5)を満足することが望ましい。
(2-5) 80<νd1pf<110
 ただし、
νd1pf:前記第1レンズ群中の前記複数の正レンズのうちで最も物体側に配置された前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the second embodiment of the present application, the first lens group includes a plurality of positive lenses, and the positive lens arranged closest to the object among the plurality of positive lenses is represented by the following conditional expression: It is desirable to satisfy (2-5).
(2-5) 80 <νd1pf <110
However,
νd1pf: Abbe number with respect to the d-line (wavelength 587.6 nm) of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
 条件式(2-5)は、第1レンズ群中の複数の正レンズうちで最も物体側に配置された正レンズの硝材のアッベ数を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-5)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (2-5) defines the Abbe number of the glass material of the positive lens arranged closest to the object among the plurality of positive lenses in the first lens group. The optical system according to the second embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (2-5).
 本願の第2実施形態に係る光学系の条件式(2-5)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2-5)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-5)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (2-5) of the optical system according to the second embodiment of the present application exceeds the upper limit, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-5) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-5) to 100.
 一方、本願の第2実施形態に係る光学系の条件式(2-5)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-5)の下限値を85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-5)の下限値を90とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (2-5) of the optical system according to the second embodiment of the present application is lower than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-5) to 85. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-5) to 90.
 また、本願の第2実施形態に係る光学系は、前記第1レンズ群が以下の条件式(2-6)を満足する少なくとも1枚の負レンズを有することが望ましい。
(2-6) 1.50<nd1n<1.75
 ただし、
nd1n:前記第1レンズ群中の前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the second embodiment of the present application, it is preferable that the first lens group includes at least one negative lens that satisfies the following conditional expression (2-6).
(2-6) 1.50 <nd1n <1.75
However,
nd1n: refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the first lens group
 条件式(2-6)は、第1レンズ群中の負レンズの硝材の屈折率を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-6)を満足することにより、軽量化を図りながら、コマ収差や像面湾曲を良好に補正することができる。 Conditional expression (2-6) defines the refractive index of the glass material of the negative lens in the first lens group. The optical system according to the second embodiment of the present application can satisfactorily correct coma and curvature of field while reducing the weight by satisfying conditional expression (2-6).
 本願の第2実施形態に係る光学系の条件式(2-6)の対応値が上限値を上回ると、前記第1レンズ群中の前記負レンズの硝材の比重が大きくなる。そこで、本願の第2実施形態に係る光学系の軽量化のために第1レンズ群中の他のレンズの比重を小さくすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-6)の上限値を1.70とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-6)の上限値を1.65とすることがより好ましい。 When the corresponding value of the conditional expression (2-6) of the optical system according to the second embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the first lens group increases. Therefore, if the specific gravity of other lenses in the first lens group is reduced in order to reduce the weight of the optical system according to the second embodiment of the present application, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-6) to 1.70. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-6) to 1.65.
 一方、本願の第2実施形態に係る光学系の条件式(2-6)の対応値が下限値を下回ると、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-6)の下限値を1.55とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-6)の下限値を1.60とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (2-6) of the optical system according to the second embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-6) to 1.55. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2-6) to 1.60.
 また、本願の第2実施形態に係る光学系は、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができ、さらに防振時の偏芯収差の発生を問題ないレベルまで抑えることができる。 In addition, it is desirable that the optical system according to the second embodiment of the present application moves so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis. With this configuration, image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem.
 また、本願の第2実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、正の屈折力を有する第3aレンズ群と、負の屈折力を有する第3bレンズ群と、正の屈折力を有する第3cレンズ群とから構成され、前記第3bレンズ群が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができ、さらに防振時の偏芯収差の発生を問題ないレベルまで抑えることができる。また、第3bレンズ群を小径化できるので、防振時に第3bレンズ群を駆動するためのメカユニットを小型化することもできる。 In the optical system according to the second embodiment of the present application, the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, It is desirable that the third lens unit is composed of a third lens unit having positive refractive power, and the third lens unit moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem. In addition, since the diameter of the 3b lens group can be reduced, the mechanical unit for driving the 3b lens group during vibration isolation can be reduced in size.
 また、本願の第2実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、負レンズと正レンズとの接合レンズを有することが望ましい。この構成により、偏芯収差を良好に補正することができる。なお、当該接合レンズは、前記第1レンズ群中の最も像側に配置することがより好ましい。 In the optical system according to the second embodiment of the present application, it is desirable that the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, the decentration aberration can be corrected satisfactorily. The cemented lens is more preferably arranged on the most image side in the first lens group.
 また、本願の第2実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(2-7)を満足することが望ましい。
(2-7) 0.30<TL1a/TL1<0.70
 ただし、
TL1a:前記第1aレンズ群の光軸に沿った長さ
TL1:前記第1レンズ群の光軸に沿った長さ
In the optical system according to the second embodiment of the present application, the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the following conditional expression (2-7) is satisfied.
(2-7) 0.30 <TL1a / TL1 <0.70
However,
TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
 条件式(2-7)は、第1レンズ群の長さに対する第1aレンズ群の長さを規定するものである。本願の第2実施形態に係る光学系は、条件式(2-7)を満足することにより、軽量化を図りながら、コマ収差を良好に補正することができる。 Conditional expression (2-7) defines the length of the first lens group with respect to the length of the first lens group. The optical system according to the second embodiment of the present application can satisfactorily correct coma aberration while reducing the weight by satisfying conditional expression (2-7).
 本願の第2実施形態に係る光学系の条件式(2-7)の対応値が上限値を上回ると、第1レンズ群の重量が増大してしまう。そこで、軽量化のために、例えば第1レンズ群中の負レンズに屈折率の小さな硝材を採用すれば、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-7)の上限値を0.60とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-7)の上限値を0.50とすることがより好ましい。 When the corresponding value of the conditional expression (2-7) of the optical system according to the second embodiment of the present application exceeds the upper limit value, the weight of the first lens group increases. Therefore, for example, if a glass material having a small refractive index is used for the negative lens in the first lens group in order to reduce the weight, it becomes difficult to correct curvature of field. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-7) to 0.60. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-7) to 0.50.
 一方、本願の第2実施形態に係る光学系の条件式(2-7)の対応値が下限値を下回ると、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-7)の下限値を0.35とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-7)の下限値を0.40とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (2-7) of the optical system according to the second embodiment of the present application is less than the lower limit value, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2-7) to 0.35. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-7) to 0.40.
 なお、本願の第2実施形態に係る光学系は、前記第1aレンズ群が、物体側から順に、正レンズと、正レンズと、負レンズとからなることが好ましい。この構成により、本願の第2実施形態に係る光学系の軽量化を図ることができる。
 また、本願の第2実施形態に係る光学系は、前記第1aレンズ群が、最も物体側に保護フィルタガラスを有することが好ましい。保護フィルタガラスは、実質的に屈折力を有しないレンズであって、その焦点距離が本願の第2実施形態に係る光学系の焦点距離の10倍以上であることが好ましい。特に、本願の第2実施形態に係る光学系は、保護フィルタガラスが物体側に凸面を向けた負メニスカス形状であることが好ましい。この構成により、ゴーストを良好にカットすることができる。
 また、本願の第2実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、負レンズと、正レンズを有することが望ましい。この構成により、近距離物体合焦時に球面収差の変動を良好に補正することができる。特に、本願の第2実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、負レンズと正レンズとの接合レンズのみからなることが好ましい。この構成により、本願の第2実施形態に係る光学系の軽量化を図ることができる。
In the optical system according to the second embodiment of the present application, it is preferable that the first-a lens group includes a positive lens, a positive lens, and a negative lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the second embodiment of the present application.
In the optical system according to the second embodiment of the present application, it is preferable that the first lens group has a protective filter glass on the most object side. The protective filter glass is a lens having substantially no refractive power, and the focal length thereof is preferably 10 times or more the focal length of the optical system according to the second embodiment of the present application. In particular, the optical system according to the second embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
In the optical system according to the second embodiment of the present application, it is preferable that the first-b lens group includes a negative lens and a positive lens in order from the object side. With this configuration, it is possible to satisfactorily correct variations in spherical aberration when focusing on a short-distance object. In particular, in the optical system according to the second embodiment of the present application, it is preferable that the first-b lens group includes only a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the second embodiment of the present application.
 また、本願の第2実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1bレンズ群が、以下の条件式(2-8)を満足する正レンズを有することが望ましい。
(2-8) 70<νd1bp<110
 ただし、
νd1bp:前記第1bレンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the second embodiment of the present application, the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group has a positive lens that satisfies the following conditional expression (2-8): .
(2-8) 70 <νd1bp <110
However,
νd1bp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1b lens group
 条件式(2-8)は、第1bレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-8)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (2-8) defines the Abbe number of the glass material of the positive lens in the 1b lens group. The optical system according to the second embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (2-8).
 本願の第2実施形態に係る光学系の条件式(2-8)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2-8)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-8)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (2-8) of the optical system according to the second embodiment of the present application exceeds the upper limit, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-8) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-8) to 100.
 一方、本願の第2実施形態に係る光学系の条件式(2-8)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(2-8)の下限値を75とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-8)の下限値を80とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (2-8) of the optical system according to the second embodiment of the present application is less than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-8) to 75. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-8) to 80.
 本願の光学装置は、上述した構成の第2実施形態に係る光学系を有することを特徴する。これにより、小型で良好な光学性能を備えた光学装置を実現することができる。 The optical apparatus of the present application is characterized by including the optical system according to the second embodiment having the above-described configuration. Thereby, an optical device having a small size and good optical performance can be realized.
 本願の第2実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第2レンズ群が、少なくとも3枚のレンズを有するようにし、前記光学系が以下の条件式(2-1)を満足するようにし、前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにすることを特徴とする。これにより、小型で良好な光学性能を備えた光学系を製造することができる。
(2-1) 0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
The optical system manufacturing method according to the second embodiment of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method of manufacturing an optical system having a third lens group, wherein the second lens group has at least three lenses, and the optical system satisfies the following conditional expression (2-1): In addition, the second lens group is moved along the optical axis to focus from an object at infinity to an object at a short distance. Thereby, an optical system having a small size and good optical performance can be manufactured.
(2-1) 0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 以下、本願の第3実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第3実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、以下の条件式(3-1)を満足することを特徴とする。
(3-1) -1.60<βr×(1-βs)<-0.85
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
Hereinafter, an optical system, an optical device, and an optical system manufacturing method according to the third embodiment of the present application will be described.
The optical system according to the third embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. The second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance, and a part of the third lens group is orthogonal to the optical axis as a shift lens group. And the following conditional expression (3-1) is satisfied.
(3-1) -1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 上記のように本願の第3実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動する。この構成により、本願の第3実施形態に係る光学系は小型軽量化と優れた結像性能を達成することができる。 As described above, the optical system according to the third embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. A second lens group that moves along the optical axis during focusing from an object at infinity to an object at a short distance, and a part of the third lens group serves as a shift lens group. It moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, the optical system according to the third embodiment of the present application can achieve a reduction in size and weight and excellent imaging performance.
 また、上記のように本願の第3実施形態に係る光学系は、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動する。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができる。 In addition, as described above, the optical system according to the third embodiment of the present application moves so that a part of the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group. With this configuration, it is possible to correct image blur due to camera shake or the like, that is, to perform image stabilization.
 条件式(3-1)は、シフトレンズ群の光軸と直交する方向への移動量に対する像の光軸と直交する方向への移動量である、所謂ブレ係数の適切な範囲を規定するものである。本願の第3実施形態に係る光学系は、条件式(3-1)を満足することにより、球面収差、コマ収差及び像面湾曲を良好に補正でき、レンズシフト時の光学性能の劣化を抑えることができる。 Conditional expression (3-1) defines an appropriate range of the so-called blur coefficient, which is the amount of movement of the shift lens group in the direction orthogonal to the optical axis with respect to the amount of movement in the direction orthogonal to the optical axis. It is. The optical system according to the third embodiment of the present application can satisfactorily correct spherical aberration, coma aberration, and field curvature by satisfying conditional expression (3-1), and suppress deterioration of optical performance during lens shift. be able to.
 本願の第3実施形態に係る光学系の条件式(3-1)の対応値が上限値を上回ると、シフトレンズ群の移動量に対する像の移動量が相対的に小さくなる。これにより、球面収差とコマ収差が補正不足になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(3-1)の上限値を-0.95とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-1)の上限値を-1.00とすることがより好ましい。 When the corresponding value of the conditional expression (3-1) of the optical system according to the third embodiment of the present application exceeds the upper limit value, the image movement amount relative to the movement amount of the shift lens group becomes relatively small. This is not preferable because spherical aberration and coma are insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-1) to −0.95. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (3-1) to -1.00.
 一方、本願の第3実施形態に係る光学系の条件式(3-1)の対応値が下限値を下回ると、シフトレンズ群の移動量に対する像の移動量が大きくなり過ぎる。これにより、コマ収差と像面湾曲が悪化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(3-1)の下限値を-1.55とすることがより好ましい。
 以上の構成により、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学系を実現することができる。
On the other hand, when the corresponding value of conditional expression (3-1) of the optical system according to the third embodiment of the present application is less than the lower limit value, the amount of movement of the image with respect to the amount of movement of the shift lens group becomes too large. This is not preferable because coma aberration and field curvature are deteriorated. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-1) to −1.55.
With the configuration described above, it is possible to realize an optical system that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
 また、本願の第3実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、前記第3bレンズ群が前記シフトレンズ群として光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、第3aレンズ群で球面収差とコマ収差を補正することができ、第3cレンズ群で球面収差を補正することができる。したがって、第3レンズ群全体において球面収差とコマ収差を良好に補正することができる。また、第3bレンズ群をシフトレンズ群としたことで、レンズシフト時の光学性能の劣化を抑えることができる。 In the optical system according to the third embodiment of the present application, the third lens group includes a 3a lens group, a 3b lens group, and a 3c lens group in order from the object side. It is desirable for the lens group to move so as to include a component in a direction orthogonal to the optical axis as the shift lens group. With this configuration, it is possible to correct spherical aberration and coma with the 3a lens group, and it is possible to correct spherical aberration with the 3c lens group. Therefore, spherical aberration and coma aberration can be corrected well in the entire third lens group. In addition, since the third lens group is a shift lens group, it is possible to suppress deterioration in optical performance during lens shift.
 また、本願の第3実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、前記第3aレンズ群が正レンズと負レンズとから構成されていることが望ましい。この構成により、第3aレンズ群において球面収差とコマ収差を良好に補正でき、本願の第3実施形態に係る光学系のさらなる高性能化を図ることができる。特に、前記第3aレンズ群が正の屈折力を有する構成とすることがより望ましい。 In the optical system according to the third embodiment of the present application, the third lens group includes, in order from the object side, a 3a lens group, a 3b lens group, and a 3c lens group. It is desirable that the lens group includes a positive lens and a negative lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 3a lens group, and it is possible to further improve the performance of the optical system according to the third embodiment of the present application. In particular, it is more desirable that the 3a lens group has a positive refractive power.
 また、本願の第3実施形態に係る光学系は、前記シフトレンズ群が、物体側から順に、正レンズと負レンズとの接合レンズと、負レンズとから構成されていることが望ましい。この構成により、シフトレンズ群において球面収差を良好に補正することができ、第3レンズ群全体において球面収差とコマ収差を良好に補正することができる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の劣化をより良好に抑えることができる。 In the optical system according to the third embodiment of the present application, it is preferable that the shift lens group includes a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side. With this configuration, spherical aberration can be favorably corrected in the shift lens group, and spherical aberration and coma aberration can be favorably corrected in the entire third lens group. Thereby, the optical system according to the third embodiment of the present application can more effectively suppress the deterioration of the optical performance at the time of lens shift while further improving the performance.
 また、本願の第3実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、前記第3aレンズ群の物体側又は像側に開口絞りを有することが望ましい。この構成により、本願の第3実施形態に係る光学系の屈折力配置を、物体側から順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、開口絞り、正の屈折力を有する第3レンズ群という対称型に近付けて、像面湾曲と歪曲収差を良好に補正することができる。これにより、本願の第3実施形態に係る光学系はさらなる高性能化を図ることができる。 In the optical system according to the third embodiment of the present application, the third lens group includes, in order from the object side, a 3a lens group, a 3b lens group, and a 3c lens group. It is desirable to have an aperture stop on the object side or image side of the lens group. With this configuration, the refractive power arrangement of the optical system according to the third embodiment of the present application, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, By approaching the symmetrical type of the third lens group having positive refractive power, it is possible to satisfactorily correct field curvature and distortion. Thereby, the optical system according to the third embodiment of the present application can achieve higher performance.
 また、本願の第3実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、前記第3bレンズ群が前記シフトレンズ群として光軸と直交する方向の成分を含むように移動し、以下の条件式(3-2)を満足することが望ましい。
(3-2) -0.45<f3a/f3bc<0.40
 ただし、
f3a:前記第3aレンズ群の焦点距離
f3bc:無限遠物体合焦時の前記第3bレンズ群と前記第3cレンズ群の合成焦点距離
In the optical system according to the third embodiment of the present application, the third lens group includes a 3a lens group, a 3b lens group, and a 3c lens group in order from the object side. It is desirable that the lens group moves as the shift lens group so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (3-2).
(3-2) -0.45 <f3a / f3bc <0.40
However,
f3a: focal length of the 3a lens group f3bc: combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
 条件式(3-2)は、第3aレンズ群の焦点距離と、シフトレンズ群である第3bレンズ群と第3cレンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第3実施形態に係る光学系は、条件式(3-2)を満足することにより、球面収差とコマ収差、及びレンズシフト時のコマ収差の変動を良好に補正できる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の劣化を抑えることができる。 Conditional expression (3-2) defines an appropriate range of the ratio between the focal length of the 3a lens group and the combined focal length of the 3b lens group and the 3c lens group as the shift lens group. The optical system according to the third embodiment of the present application can satisfactorily correct the spherical aberration, the coma aberration, and the fluctuation of the coma aberration at the time of lens shift by satisfying the conditional expression (3-2). As a result, the optical system according to the third embodiment of the present application can suppress deterioration in optical performance during lens shift while further improving performance.
 本願の第3実施形態に係る光学系の条件式(3-2)の対応値が上限値を上回ると、第3aレンズ群の屈折力が相対的に小さくなり、第3aレンズ群単体で発生する球面収差とコマ収差が補正不足になってしまう。また、シフトレンズ群と第3cレンズ群の屈折力が相対的に大きくなる。このため、レンズシフト時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3-2)の上限値を0.35とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-2)の上限値を0.30とすることがより好ましい。 When the corresponding value of the conditional expression (3-2) of the optical system according to the third embodiment of the present application exceeds the upper limit value, the refractive power of the 3a lens group becomes relatively small and is generated by the 3a lens group alone. Spherical aberration and coma are undercorrected. Further, the refractive powers of the shift lens group and the third c lens group become relatively large. For this reason, fluctuations in coma cannot be suppressed during lens shift, and high optical performance cannot be obtained. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-2) to 0.35. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-2) to 0.30.
 一方、本願の第3実施形態に係る光学系の条件式(3-2)の対応値が下限値を下回ると、第3aレンズ群の屈折力が相対的に大きくなり、第3aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。また、シフトレンズ群と第3cレンズ群の屈折力が相対的に小さくなる。このため、レンズシフト時にコマ収差が補正不足になってしまう。なお、本願の効果をより確実にするために、条件式(3-2)の下限値を-0.40とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-2)の下限値を-0.35とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (3-2) of the optical system according to the third embodiment of the present application is less than the lower limit value, the refractive power of the 3a lens group becomes relatively large, and the 3a lens group alone A large amount of spherical aberration and coma occur. Further, the refractive powers of the shift lens group and the third c lens group become relatively small. For this reason, coma is insufficiently corrected during lens shift. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-2) to −0.40. In order to further secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (3-2) to −0.35.
 また、本願の第3実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が最も像側に負レンズを有することが望ましい。この構成により、第1レンズ群単体で球面収差が発生することを抑え、第1レンズ群全体において球面収差とコマ収差を良好に補正することができる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the third embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the first lens group has the negative lens closest to the image side. With this configuration, it is possible to suppress the occurrence of spherical aberration in the first lens unit alone, and to correct spherical aberration and coma well in the entire first lens unit. Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 また、本願の第3実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(3-3)を満足することが望ましい。
(3-3) 1.40<f1a/f1b<2.05
 ただし、
f1a:前記第1aレンズ群の焦点距離
f1b:前記第1bレンズ群の焦点距離
In the optical system according to the third embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the following conditional expression (3-3) is satisfied.
(3-3) 1.40 <f1a / f1b <2.05
However,
f1a: focal length of the 1a lens group f1b: focal length of the 1b lens group
 条件式(3-3)は、第1aレンズ群と第1bレンズ群の焦点距離比の適切な範囲を規定するものである。本願の第3実施形態に係る光学系は、条件式(3-3)を満足することにより、第1aレンズ群単体で発生する球面収差とコマ収差を良好に補正することができる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 Conditional expression (3-3) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group. The optical system according to the third embodiment of the present application can satisfactorily correct the spherical aberration and the coma generated in the single lens unit 1a by satisfying conditional expression (3-3). Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 本願の第3実施形態に係る光学系の条件式(3-3)の対応値が上限値を上回ると、第1aレンズ群の屈折力が相対的に小さくなり、第1aレンズ群単体で発生する球面収差とコマ収差が補正不足になってしまう。また、第1bレンズ群の屈折力が相対的に大きくなり、合焦時に球面収差の変動を抑えることができなくなるため、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3-3)の上限値を2.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-3)の上限値を1.95とすることがより好ましい。 When the corresponding value of the conditional expression (3-3) of the optical system according to the third embodiment of the present application exceeds the upper limit value, the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma are undercorrected. In addition, since the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (3-3) to 2.00. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-3) to 1.95.
 一方、本願の第3実施形態に係る光学系の条件式(3-3)の対応値が下限値を下回ると、第1aレンズ群の屈折力が相対的に大きくなり、第1aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。なお、本願の効果をより確実にするために、条件式(3-3)の下限値を1.45とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-3)の下限値を1.50とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (3-3) of the optical system according to the third embodiment of the present application is below the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-3) to 1.45. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-3) to 1.50.
 また、本願の第3実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が、物体側から順に、保護ガラスと、正レンズと、正レンズと、負レンズとから構成されていることが望ましい。この構成により、第1aレンズ群において球面収差を良好に補正することができる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the third embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group is in order from the object side, protective glass, positive lens, positive lens, and negative lens. It is desirable to be composed of With this configuration, spherical aberration can be favorably corrected in the 1a lens group. Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 また、本願の第3実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1bレンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズとの接合レンズで構成されていることが望ましい。この構成により、第1bレンズ群において球面収差とコマ収差を良好に補正することができる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the third embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b An air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group includes, in order from the object side, a negative meniscus lens and a positive lens with a convex surface facing the object side. It is desirable that the lens is composed of a cemented lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 1b lens group. Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 また、本願の第3実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が以下の条件式(3-4)を満足する少なくとも1枚の正レンズを有することが望ましい。
(3-4) 90<νdp
 ただし、
νdp:前記第1aレンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the third embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group has at least one positive lens that satisfies the following conditional expression (3-4): It is desirable.
(3-4) 90 <νdp
However,
νdp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1a lens group
 条件式(3-4)は、第1aレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第3実施形態に係る光学系は、条件式(3-4)を満足することにより、第1レンズ群単体で軸上色収差と倍率色収差が発生することを抑えることができる。 Conditional expression (3-4) defines the Abbe number of the glass material of the positive lens in the 1a lens group. By satisfying conditional expression (3-4), the optical system according to the third embodiment of the present application can suppress the occurrence of longitudinal chromatic aberration and lateral chromatic aberration in the first lens unit alone.
 本願の第3実施形態に係る光学系の条件式(3-4)の対応値が下限値を下回ると、第1レンズ群単体で軸上色収差と倍率色収差が多大に発生し、本願の第3実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (3-4) of the optical system according to the third embodiment of the present application is less than the lower limit value, axial chromatic aberration and lateral chromatic aberration are greatly generated in the first lens unit alone, and the third This is not preferable because the optical performance of the optical system according to the embodiment is deteriorated.
 また、本願の第3実施形態に係る光学系は、前記第2レンズ群が複数の負レンズを有し、前記複数の負レンズのうちで最も像側に配置された負レンズが以下の条件式(3-5)を満足することが望ましい。
(3-5) ndn<1.65
 ただし、
ndn:前記第2レンズ群中の前記複数の負レンズのうちで最も像側に配置された前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the third embodiment of the present application, the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the image side among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (3-5).
(3-5) ndn <1.65
However,
ndn: Refractive index with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged on the most image side among the plurality of negative lenses in the second lens group
 条件式(3-5)は、第2レンズ群中の複数の負レンズのうちで最も像側に配置された負レンズの硝材の屈折率を規定するものである。本願の第3実施形態に係る光学系は、条件式(3-5)を満足することにより、第2レンズ群単体で倍率色収差が発生することを抑えることができる。 Conditional expression (3-5) defines the refractive index of the glass material of the negative lens arranged closest to the image among the plurality of negative lenses in the second lens group. The optical system according to the third embodiment of the present application can satisfy the conditional expression (3-5) to suppress the occurrence of lateral chromatic aberration in the second lens unit alone.
 本願の第3実施形態に係る光学系の条件式(3-5)の対応値が上限値を上回ると、第2レンズ群単体で倍率色収差が多大に発生し、本願の第3実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (3-5) of the optical system according to the third embodiment of the present application exceeds the upper limit value, a large amount of chromatic aberration of magnification occurs in the second lens unit alone, and according to the third embodiment of the present application. This is not preferable because the optical performance of the optical system deteriorates.
 また、本願の第3実施形態に係る光学系は、前記第2レンズ群が複数の負レンズを有し、前記複数の負レンズのうちで最も物体側に配置された負レンズが以下の条件式(3-6)を満足することが望ましい。
(3-6) 49.7<νdn
 ただし、
νdn:前記第2レンズ群中の前記複数の負レンズのうちで最も物体側に配置された前記負レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the third embodiment of the present application, the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the object among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (3-6).
(3-6) 49.7 <νdn
However,
νdn: Abbe number with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
 条件式(3-6)は、第2レンズ群中の複数の負レンズのうちで最も物体側に配置された負レンズの硝材のアッベ数を規定するものである。本願の第3実施形態に係る光学系は、条件式(3-6)を満足することにより、第2レンズ群単体で軸上色収差が発生することを抑えることができる。 Conditional expression (3-6) defines the Abbe number of the glass material of the negative lens disposed closest to the object among the plurality of negative lenses in the second lens group. The optical system according to the third embodiment of the present application can suppress occurrence of longitudinal chromatic aberration in the second lens unit alone by satisfying conditional expression (3-6).
 本願の第3実施形態に係る光学系の条件式(3-6)の対応値が下限値を下回ると、第2レンズ群単体で軸上色収差が多大に発生し、本願の第3実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (3-6) of the optical system according to the third embodiment of the present application is less than the lower limit value, axial chromatic aberration is greatly generated in the second lens unit alone, and the third embodiment of the present application is applied. Since the optical performance of the optical system is deteriorated, it is not preferable.
 また、本願の第3実施形態に係る光学系は、以下の条件式(3-7)を満足することが望ましい。
(3-7) -3.00<f1/f2<-2.00
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
Further, it is desirable that the optical system according to the third embodiment of the present application satisfies the following conditional expression (3-7).
(3-7) -3.00 <f1 / f2 <-2.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
 条件式(3-7)は、第1レンズ群と第2レンズ群の焦点距離比の適切な範囲を規定するものである。本願の第3実施形態に係る光学系は、条件式(3-7)を満足することにより、合焦時にコマ収差の変動を抑え、また第1レンズ群単体で球面収差が発生することを抑えることができる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図ることができる。 Conditional expression (3-7) defines an appropriate range of the focal length ratio between the first lens group and the second lens group. By satisfying conditional expression (3-7), the optical system according to the third embodiment of the present application suppresses fluctuations in coma during focusing, and suppresses occurrence of spherical aberration in the first lens unit alone. be able to. As a result, the optical system according to the third embodiment of the present application can achieve higher performance.
 本願の第3実施形態に係る光学系の条件式(3-7)の対応値が上限値を上回ると、第1レンズ群の屈折力が相対的に小さくなる。このため、第1レンズ群がテレ比、即ち本願の第3実施形態に係る光学系の全長を焦点距離で割った値を小さくすることに寄与できなくなり、本願の第3実施形態に係る光学系の全長が大きくなってしまう。また、第2レンズ群の屈折力が相対的に大きくなるため、合焦時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3-7)の上限値を-2.15とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-7)の上限値を-2.30とすることがより好ましい。 When the corresponding value of the conditional expression (3-7) of the optical system according to the third embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group becomes relatively small. For this reason, the first lens group cannot contribute to reducing the tele ratio, that is, the value obtained by dividing the total length of the optical system according to the third embodiment of the present application by the focal length, and the optical system according to the third embodiment of the present application. The total length of will increase. In addition, since the refractive power of the second lens group becomes relatively large, fluctuations in coma aberration cannot be suppressed during focusing, and high optical performance cannot be obtained. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-7) to −2.15. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (3-7) to −2.30.
 一方、本願の第3実施形態に係る光学系の条件式(3-7)の対応値が下限値を下回ると、第1レンズ群の屈折力が相対的に大きくなり、第1レンズ群単体で球面収差が多大に発生してしまう。また、第2レンズ群の屈折力が相対的に小さくなり、合焦時の第2レンズ群の移動量が多大になってしまう。なお、本願の効果をより確実にするために、条件式(3-7)の下限値を-2.85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-7)の下限値を-2.70とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (3-7) of the optical system according to the third embodiment of the present application is lower than the lower limit value, the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs. In addition, the refractive power of the second lens group becomes relatively small, and the amount of movement of the second lens group at the time of focusing becomes great. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-7) to −2.85. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (3-7) to −2.70.
 また、本願の第3実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとから構成されていることが望ましい。この構成により、第2レンズ群においてコマ収差を良好に補正することができる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the third embodiment of the present application, the second lens group includes, in order from the object side, a negative lens having a concave surface facing the image side, and a cemented lens of a positive lens and a negative lens. It is desirable that With this configuration, coma can be favorably corrected in the second lens group. Thereby, the optical system according to the third embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 また、本願の第3実施形態に係る光学系は、以下の条件式(3-8)を満足することが望ましい。
(3-8) 0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
Further, it is desirable that the optical system according to the third embodiment of the present application satisfies the following conditional expression (3-8).
(3-8) 0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 条件式(3-8)は、本願の第3実施形態に係る光学系の焦点距離と第1レンズ群と第2レンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第3実施形態に係る光学系は、条件式(3-8)を満足することにより、第1レンズ群及び第2レンズ群で発生するコマ収差と倍率色収差を良好に補正することができる。これにより、本願の第3実施形態に係る光学系は、さらなる高性能化を図ることができる。 Conditional expression (3-8) defines an appropriate range of the ratio between the focal length of the optical system according to the third embodiment of the present application and the combined focal length of the first lens group and the second lens group. The optical system according to the third embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration generated in the first lens group and the second lens group by satisfying conditional expression (3-8). . As a result, the optical system according to the third embodiment of the present application can achieve higher performance.
 本願の第3実施形態に係る光学系の条件式(3-8)の対応値が上限値を上回ると、第1レンズ群と第2レンズ群の屈折力が相対的に大きくなり、第1レンズ群及び第2レンズ群でコマ収差が多大に発生してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(3-8)の上限値を0.55とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-8)の上限値を0.53とすることがより好ましい。 When the corresponding value of the conditional expression (3-8) of the optical system according to the third embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group and the second lens group becomes relatively large, and the first lens This is not preferable because coma aberration is greatly generated in the first lens group and the second lens group. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-8) to 0.55. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3-8) to 0.53.
 一方、本願の第3実施形態に係る光学系の条件式(3-8)の対応値が下限値を下回ると、第1レンズ群と第2レンズ群の屈折力が相対的に小さくなり、第1レンズ群及び第2レンズ群で発生する倍率色収差が補正不足になるため好ましくない。なお、本願の効果をより確実にするために、条件式(3-8)の下限値を0.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3-8)の下限値を0.30とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (3-8) of the optical system according to the third embodiment of the present application is lower than the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small, and the first This is not preferable because the lateral chromatic aberration generated in the first lens group and the second lens group is insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-8) to 0.20. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3-8) to 0.30.
 本願の光学装置は、上述した構成の第3実施形態に係る光学系を有することを特徴とする。これにより、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学装置を実現することができる。 The optical apparatus according to the present application includes the optical system according to the third embodiment having the above-described configuration. Thereby, it is possible to realize an optical device that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
 本願の第3実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、前記光学系が以下の条件式(3-1)を満足するようにすることを特徴とする。これにより、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学系を製造することができる。
(3-1) -1.60<βr×(1-βs)<-0.85
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
The optical system manufacturing method according to the third embodiment of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method of manufacturing an optical system having a third lens group, wherein the second lens group moves along an optical axis when focusing from an object at infinity to an object at a short distance, and the third lens group Is moved so as to include a component in a direction perpendicular to the optical axis as a shift lens group, and the optical system satisfies the following conditional expression (3-1). Accordingly, it is possible to manufacture an optical system that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
(3-1) -1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 以下、本願の第4実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第4実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有し、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、以下の条件式(4-1)を満足することを特徴とする。
(4-1) 1.70<|fR/fF|<5.00
 ただし、
fF:無限遠物体合焦時の前記第1レンズ群から前記第3aレンズ群までの合成焦点距離
fR:無限遠物体合焦時の前記第3bレンズ群と前記第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
Hereinafter, an optical system, an optical device, and an optical system manufacturing method according to the fourth embodiment of the present application will be described.
The optical system according to the fourth embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. The third lens group includes a 3a lens group and a 3b lens group in order from the object side, and the second lens is in focus when focusing from an infinite object to a short distance object. The group moves along the optical axis, and the 3b lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (4-1): And
(4-1) 1.70 <| fR / fF | <5.00
However,
fF: Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
 上記のように本願の第4実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有し、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動する。この構成により、本願の第4実施形態に係る光学系は小型軽量化と優れた結像性能を達成することができる。 As described above, the optical system according to the fourth embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. A third lens group, and the third lens group has a 3a lens group and a 3b lens group in order from the object side, and when focusing from an infinite object to a short distance object, The second lens group moves along the optical axis. With this configuration, the optical system according to the fourth embodiment of the present application can achieve a reduction in size and weight and excellent imaging performance.
 また、上記のように本願の第4実施形態に係る光学系は、前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動、即ちレンズシフトする。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができる。 Also, as described above, the optical system according to the fourth embodiment of the present application moves, that is, shifts the lens, so that the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group. With this configuration, it is possible to correct image blur due to camera shake or the like, that is, to perform image stabilization.
 条件式(4-1)は、第1レンズ群から第3aレンズ群までの合成焦点距離と、第3bレンズ群と第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離との比の適切な範囲を規定するものである。なお、第3bレンズ群よりも像側にレンズが存在しない場合には、「fR:第3bレンズ群の焦点距離」として条件式(4-1)の対応値を計算するものとする。本願の第4実施形態に係る光学系は、条件式(4-1)を満足することにより、小型化を図りながら、球面収差とコマ収差を良好に補正でき、優れた結像性能を得ることができる。 Conditional expression (4-1) indicates that the combined focal length from the first lens group to the 3a lens group and the combined focal length of all the lenses located on the image side of the 3b lens group and the 3b lens group are It defines an appropriate range of ratios. If there is no lens on the image side of the 3b lens group, the corresponding value of the conditional expression (4-1) is calculated as “fR: focal length of the 3b lens group”. By satisfying conditional expression (4-1), the optical system according to the fourth embodiment of the present application can satisfactorily correct spherical aberration and coma aberration while achieving miniaturization, and obtain excellent imaging performance. Can do.
 本願の第4実施形態に係る光学系の条件式(4-1)の対応値が上限値を上回ると、第1レンズ群から第3aレンズ群までの合成屈折力が相対的に小さくなる。これにより、第1レンズ群から第3aレンズ群で発生する球面収差とコマ収差が補正不足になるため好ましくない。なお、本願の効果をより確実にするために、条件式(4-1)の上限値を4.75とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-1)の上限値を4.25とすることがより好ましい。 When the corresponding value of the conditional expression (4-1) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, the combined refractive power from the first lens group to the 3a lens group becomes relatively small. This is not preferable because spherical aberration and coma aberration generated from the first lens group to the 3a lens group become insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4-1) to 4.75. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4-1) to 4.25.
 一方、本願の第4実施形態に係る光学系の条件式(4-1)の対応値が下限値を下回ると、第1レンズ群から第3aレンズ群までの合成屈折力が相対的に大きくなる。これにより、第1レンズ群から第3aレンズ群でコマ収差が多大に発生してしまいため好ましくない。なお、本願の効果をより確実にするために、条件式(4-1)の下限値を1.71とすることがより好ましい。
 以上の構成により、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を実現することができる。
On the other hand, when the corresponding value of the conditional expression (4-1) of the optical system according to the fourth embodiment of the present application is below the lower limit value, the combined refractive power from the first lens group to the 3a lens group becomes relatively large. . Accordingly, a large amount of coma aberration is generated from the first lens group to the 3a lens group, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-1) to 1.71.
With the above configuration, it is possible to realize a compact optical system having excellent optical performance by correcting various aberrations.
 また、本願の第4実施形態に係る光学系は、以下の条件式(4-2)を満足することが望ましい。
(4-2) -1.60<βr×(1-βs)<-0.85
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
In addition, it is desirable that the optical system according to the fourth embodiment of the present application satisfies the following conditional expression (4-2).
(4-2) -1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 条件式(4-2)は、シフトレンズ群の光軸と直交する方向への移動量に対する像の光軸と直交する方向への移動量である、所謂ブレ係数の適切な範囲を規定するものである。本願の第4実施形態に係る光学系は、条件式(4-2)を満足することにより、球面収差、コマ収差及び像面湾曲を良好に補正でき、レンズシフト時の光学性能の劣化を抑えることができる。 Conditional expression (4-2) defines an appropriate range of the so-called blur coefficient, which is the amount of movement of the shift lens group in the direction orthogonal to the optical axis with respect to the amount of movement in the direction orthogonal to the optical axis. It is. The optical system according to the fourth embodiment of the present application can satisfactorily correct spherical aberration, coma aberration, and field curvature by satisfying conditional expression (4-2), and suppress deterioration of optical performance during lens shift. be able to.
 本願の第4実施形態に係る光学系の条件式(4-2)の対応値が上限値を上回ると、シフトレンズ群の移動量に対する像の移動量が相対的に小さくなる。これにより、球面収差とコマ収差が補正不足になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(4-2)の上限値を-0.95とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-2)の上限値を-1.00とすることがより好ましい。 When the corresponding value of the conditional expression (4-2) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, the image movement amount relative to the movement amount of the shift lens group becomes relatively small. This is not preferable because spherical aberration and coma are insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4-2) to −0.95. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4-2) to −1.00.
 一方、本願の第4実施形態に係る光学系の条件式(4-2)の対応値が下限値を下回ると、シフトレンズ群の移動量に対する像の移動量が大きくなり過ぎる。これにより、コマ収差と像面湾曲が悪化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(4-2)の下限値を-1.55とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (4-2) of the optical system according to the fourth embodiment of the present application is lower than the lower limit value, the moving amount of the image with respect to the moving amount of the shift lens group becomes too large. This is not preferable because coma aberration and field curvature are deteriorated. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (4-2) to −1.55.
 また、本願の第4実施形態に係る光学系は、前記第3aレンズ群が正レンズと負レンズとから構成されていることが望ましい。この構成により、第3aレンズ群において球面収差とコマ収差を良好に補正でき、本願の第4実施形態に係る光学系のさらなる高性能化を図ることができる。特に、前記第3aレンズ群が正の屈折力を有する構成とすることがより望ましい。 In the optical system according to the fourth embodiment of the present application, it is preferable that the third lens group is composed of a positive lens and a negative lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 3a lens group, and it is possible to further improve the performance of the optical system according to the fourth embodiment of the present application. In particular, it is more desirable that the 3a lens group has a positive refractive power.
 また、本願の第4実施形態に係る光学系は、前記第3bレンズ群が、物体側から順に、正レンズと負レンズとの接合レンズと、負レンズとから構成されていることが望ましい。この構成により、第3bレンズ群において球面収差を良好に補正することができ、第3レンズ群全体において球面収差とコマ収差を良好に補正することができる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の劣化をより良好に抑えることができる。 In the optical system according to the fourth embodiment of the present application, it is preferable that the third lens group is composed of a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side. With this configuration, spherical aberration can be favorably corrected in the third lens group, and spherical aberration and coma aberration can be favorably corrected in the entire third lens group. Thereby, the optical system according to the fourth embodiment of the present application can more effectively suppress the deterioration of the optical performance during the lens shift while further improving the performance.
 また、本願の第4実施形態に係る光学系は、前記第3aレンズ群の物体側又は像側に開口絞りを有することが望ましい。この構成により、本願の第4実施形態に係る光学系の屈折力配置を、物体側から順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、開口絞り、正の屈折力を有する第3レンズ群という対称型に近付けて、像面湾曲と歪曲収差を良好に補正することができる。これにより、本願の第4実施形態に係る光学系はさらなる高性能化を図ることができる。 In addition, it is desirable that the optical system according to the fourth embodiment of the present application has an aperture stop on the object side or the image side of the 3a lens group. With this configuration, the refractive power arrangement of the optical system according to the fourth embodiment of the present application, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, By approaching the symmetrical type of the third lens group having positive refractive power, it is possible to satisfactorily correct field curvature and distortion. Thereby, the optical system according to the fourth embodiment of the present application can be further improved in performance.
 また、本願の第4実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、前記第3aレンズ群と、前記第3bレンズ群と、第3cレンズ群とから構成され、以下の条件式(4-3)を満足することが望ましい。
(4-3) -0.45<f3a/f3bc<0.40
 ただし、
f3a:前記第3aレンズ群の焦点距離
f3bc:無限遠物体合焦時の前記第3bレンズ群と前記第3cレンズ群の合成焦点距離
In the optical system according to the fourth embodiment of the present application, the third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group. It is desirable that the conditional expression (4-3) is satisfied.
(4-3) -0.45 <f3a / f3bc <0.40
However,
f3a: focal length of the 3a lens group f3bc: combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
 条件式(4-3)は、第3aレンズ群の焦点距離と、第3bレンズ群と第3cレンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第4実施形態に係る光学系は、条件式(4-3)を満足することにより、球面収差とコマ収差、及びレンズシフト時のコマ収差の変動を良好に補正できる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の劣化を抑えることができる。 Conditional expression (4-3) defines an appropriate range of the ratio between the focal length of the 3a lens group and the combined focal length of the 3b lens group and the 3c lens group. The optical system according to the fourth embodiment of the present application can satisfactorily correct the spherical aberration, the coma aberration, and the fluctuation of the coma aberration during the lens shift by satisfying the conditional expression (4-3). Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration in optical performance during lens shift while further improving performance.
 本願の第4実施形態に係る光学系の条件式(4-3)の対応値が上限値を上回ると、第3aレンズ群の屈折力が相対的に小さくなり、第3aレンズ群単体で発生する球面収差とコマ収差が補正不足になってしまう。また、第3bレンズ群と第3cレンズ群の屈折力が相対的に大きくなる。このため、レンズシフト時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(4-3)の上限値を0.35とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-3)の上限値を0.30とすることがより好ましい。 When the corresponding value of the conditional expression (4-3) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, the refractive power of the 3a lens group becomes relatively small, and the 3a lens group alone is generated. Spherical aberration and coma are undercorrected. Further, the refractive power of the third b lens group and the third c lens group becomes relatively large. For this reason, fluctuations in coma cannot be suppressed during lens shift, and high optical performance cannot be obtained. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4-3) to 0.35. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4-3) to 0.30.
 一方、本願の第4実施形態に係る光学系の条件式(4-3)の対応値が下限値を下回ると、第3aレンズ群の屈折力が相対的に大きくなり、第3aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。また、第3bレンズ群と第3cレンズ群の屈折力が相対的に小さくなる。このため、レンズシフト時にコマ収差が補正不足になってしまう。なお、本願の効果をより確実にするために、条件式(4-3)の下限値を-0.40とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-3)の下限値を-0.35とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (4-3) of the optical system according to the fourth embodiment of the present application is below the lower limit value, the refractive power of the 3a lens group becomes relatively large, and the 3a lens group alone A large amount of spherical aberration and coma occur. Further, the refractive power of the third b lens group and the third c lens group becomes relatively small. For this reason, coma is insufficiently corrected during lens shift. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-3) to −0.40. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-3) to −0.35.
 また、本願の第4実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が最も像側に負レンズを有することが望ましい。この構成により、第1レンズ群単体で球面収差が発生することを抑え、第1レンズ群全体において球面収差とコマ収差を良好に補正することができる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the fourth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the first lens group has the negative lens closest to the image side. With this configuration, it is possible to suppress the occurrence of spherical aberration in the first lens unit alone, and to correct spherical aberration and coma well in the entire first lens unit. Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 また、本願の第4実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(4-4)を満足することが望ましい。
(4-4) 1.40<f1a/f1b<2.05
 ただし、
f1a:前記第1aレンズ群の焦点距離
f1b:前記第1bレンズ群の焦点距離
In the optical system according to the fourth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group and the following conditional expression (4-4) is satisfied.
(4-4) 1.40 <f1a / f1b <2.05
However,
f1a: focal length of the 1a lens group f1b: focal length of the 1b lens group
 条件式(4-4)は、第1aレンズ群と第1bレンズ群の焦点距離比の適切な範囲を規定するものである。本願の第4実施形態に係る光学系は、条件式(4-4)を満足することにより、第1aレンズ群単体で発生する球面収差とコマ収差を良好に補正することができる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 Conditional expression (4-4) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group. The optical system according to the fourth embodiment of the present application can satisfactorily correct spherical aberration and coma generated in the first lens group alone by satisfying conditional expression (4-4). Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 本願の第4実施形態に係る光学系の条件式(4-4)の対応値が上限値を上回ると、第1aレンズ群の屈折力が相対的に小さくなり、第1aレンズ群単体で発生する球面収差とコマ収差が補正不足になってしまう。また、第1bレンズ群の屈折力が相対的に大きくなり、合焦時に球面収差の変動を抑えることができなくなるため、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(4-4)の上限値を2.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-4)の上限値を1.95とすることがより好ましい。 When the corresponding value of the conditional expression (4-4) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma are undercorrected. In addition, since the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4-4) to 2.00. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4-4) to 1.95.
 一方、本願の第4実施形態に係る光学系の条件式(4-4)の対応値が下限値を下回ると、第1aレンズ群の屈折力が相対的に大きくなり、第1aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。なお、本願の効果をより確実にするために、条件式(4-4)の下限値を1.45とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-4)の下限値を1.50とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (4-4) of the optical system according to the fourth embodiment of the present application is below the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-4) to 1.45. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-4) to 1.50.
 また、本願の第4実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が、物体側から順に、保護ガラスと、正レンズと、正レンズと、負レンズとから構成されていることが望ましい。この構成により、第1aレンズ群において球面収差を良好に補正することができる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the fourth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group is in order from the object side, protective glass, positive lens, positive lens, and negative lens. It is desirable to be composed of With this configuration, spherical aberration can be favorably corrected in the 1a lens group. Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 また、本願の第4実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1bレンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズとの接合レンズで構成されていることが望ましい。この構成により、第1bレンズ群において球面収差とコマ収差を良好に補正することができる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the fourth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b An air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group includes, in order from the object side, a negative meniscus lens and a positive lens with a convex surface facing the object side. It is desirable that the lens is composed of a cemented lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 1b lens group. Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 また、本願の第4実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が以下の条件式(4-5)を満足する少なくとも1枚の正レンズを有することが望ましい。
(4-5) 90<νdp
 ただし、
νdp:前記第1aレンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the fourth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group has at least one positive lens that satisfies the following conditional expression (4-5) It is desirable.
(4-5) 90 <νdp
However,
νdp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1a lens group
 条件式(4-5)は、第1aレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第4実施形態に係る光学系は、条件式(4-5)を満足することにより、第1レンズ群単体で軸上色収差と倍率色収差が発生することを抑えることができる。 Conditional expression (4-5) defines the Abbe number of the glass material of the positive lens in the 1a lens group. By satisfying conditional expression (4-5), the optical system according to the fourth embodiment of the present application can suppress occurrence of longitudinal chromatic aberration and lateral chromatic aberration in the first lens unit alone.
 本願の第4実施形態に係る光学系の条件式(4-5)の対応値が下限値を下回ると、第1レンズ群単体で軸上色収差と倍率色収差が多大に発生し、本願の第4実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (4-5) of the optical system according to the fourth embodiment of the present application is lower than the lower limit value, axial chromatic aberration and lateral chromatic aberration are greatly generated in the first lens unit alone, and the fourth lens of the present application. This is not preferable because the optical performance of the optical system according to the embodiment is deteriorated.
 また、本願の第4実施形態に係る光学系は、前記第2レンズ群が複数の負レンズを有し、前記複数の負レンズのうちで最も像側に配置された負レンズが以下の条件式(4-6)を満足することが望ましい。
(4-6) ndn<1.65
 ただし、
ndn:前記第2レンズ群中の前記複数の負レンズのうちで最も像側に配置された前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the fourth embodiment of the present application, the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the image side among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (4-6).
(4-6) ndn <1.65
However,
ndn: Refractive index with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged on the most image side among the plurality of negative lenses in the second lens group
 条件式(4-6)は、第2レンズ群中の複数の負レンズのうちで最も像側に配置された負レンズの硝材の屈折率を規定するものである。本願の第4実施形態に係る光学系は、条件式(4-6)を満足することにより、第2レンズ群単体で倍率色収差が発生することを抑えることができる。 Conditional expression (4-6) defines the refractive index of the glass material of the negative lens disposed closest to the image side among the plurality of negative lenses in the second lens group. The optical system according to the fourth embodiment of the present application can satisfy the conditional expression (4-6) and suppress the occurrence of lateral chromatic aberration in the second lens unit alone.
 本願の第4実施形態に係る光学系の条件式(4-6)の対応値が上限値を上回ると、第2レンズ群単体で倍率色収差が多大に発生し、本願の第4実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 If the corresponding value of the conditional expression (4-6) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, a large amount of chromatic aberration of magnification occurs in the second lens unit alone, and according to the fourth embodiment of the present application. This is not preferable because the optical performance of the optical system deteriorates.
 また、本願の第4実施形態に係る光学系は、前記第2レンズ群が複数の負レンズを有し、前記複数の負レンズのうちで最も物体側に配置された負レンズが以下の条件式(4-7)を満足することが望ましい。
(4-7) 49.7<νdn
 ただし、
νdn:前記第2レンズ群中の前記複数の負レンズのうちで最も物体側に配置された前記負レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the fourth embodiment of the present application, the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the object among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (4-7).
(4-7) 49.7 <νdn
However,
νdn: Abbe number with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
 条件式(4-7)は、第2レンズ群中の複数の負レンズのうちで最も物体側に配置された負レンズの硝材のアッベ数を規定するものである。本願の第4実施形態に係る光学系は、条件式(4-7)を満足することにより、第2レンズ群単体で軸上色収差が発生することを抑えることができる。 Conditional expression (4-7) defines the Abbe number of the glass material of the negative lens disposed closest to the object among the plurality of negative lenses in the second lens group. The optical system according to the fourth embodiment of the present application can suppress the occurrence of longitudinal chromatic aberration in the second lens unit alone by satisfying conditional expression (4-7).
 本願の第4実施形態に係る光学系の条件式(4-7)の対応値が下限値を下回ると、第2レンズ群単体で軸上色収差が多大に発生し、本願の第4実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (4-7) of the optical system according to the fourth embodiment of the present application is less than the lower limit value, a large amount of axial chromatic aberration occurs in the second lens unit alone, and the fourth embodiment of the present application Since the optical performance of the optical system is deteriorated, it is not preferable.
 また、本願の第4実施形態に係る光学系は、以下の条件式(4-8)を満足することが望ましい。
(4-8) -3.00<f1/f2<-2.00
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
In addition, it is desirable that the optical system according to the fourth embodiment of the present application satisfies the following conditional expression (4-8).
(4-8) -3.00 <f1 / f2 <-2.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
 条件式(4-8)は、第1レンズ群と第2レンズ群の焦点距離比の適切な範囲を規定するものである。本願の第4実施形態に係る光学系は、条件式(4-8)を満足することにより、合焦時にコマ収差の変動を抑え、また第1レンズ群単体で球面収差が発生することを抑えることができる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図ることができる。 Conditional expression (4-8) defines an appropriate range of the focal length ratio between the first lens group and the second lens group. The optical system according to the fourth embodiment of the present application satisfies the conditional expression (4-8), thereby suppressing fluctuations in coma during focusing and suppressing occurrence of spherical aberration in the first lens unit alone. be able to. As a result, the optical system according to the fourth embodiment of the present application can achieve higher performance.
 本願の第4実施形態に係る光学系の条件式(4-8)の対応値が上限値を上回ると、第1レンズ群の屈折力が相対的に小さくなる。このため、第1レンズ群がテレ比、即ち本願の第4実施形態に係る光学系の全長を焦点距離で割った値を小さくすることに寄与できなくなり、本願の第4実施形態に係る光学系の全長が大きくなってしまう。また、第2レンズ群の屈折力が相対的に大きくなるため、合焦時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(4-8)の上限値を-2.15とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-8)の上限値を-2.30とすることがより好ましい。 When the corresponding value of the conditional expression (4-8) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group becomes relatively small. For this reason, the first lens group cannot contribute to reducing the tele ratio, that is, the value obtained by dividing the total length of the optical system according to the fourth embodiment of the present application by the focal length, and the optical system according to the fourth embodiment of the present application. The total length of will increase. In addition, since the refractive power of the second lens group becomes relatively large, fluctuations in coma aberration cannot be suppressed during focusing, and high optical performance cannot be obtained. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4-8) to −2.15. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (4-8) to −2.30.
 一方、本願の第4実施形態に係る光学系の条件式(4-8)の対応値が下限値を下回ると、第1レンズ群の屈折力が相対的に大きくなり、第1レンズ群単体で球面収差が多大に発生してしまう。また、第2レンズ群の屈折力が相対的に小さくなり、合焦時の第2レンズ群の移動量が多大になってしまう。なお、本願の効果をより確実にするために、条件式(4-8)の下限値を-2.85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-8)の下限値を-2.70とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (4-8) of the optical system according to the fourth embodiment of the present application is below the lower limit value, the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs. In addition, the refractive power of the second lens group becomes relatively small, and the amount of movement of the second lens group at the time of focusing becomes great. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-8) to −2.85. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (4-8) to −2.70.
 また、本願の第4実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとから構成されていることが望ましい。この構成により、第2レンズ群においてコマ収差を良好に補正することができる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the fourth embodiment of the present application, the second lens group includes, in order from the object side, a negative lens having a concave surface directed toward the image side, and a cemented lens of the positive lens and the negative lens. It is desirable that With this configuration, coma can be favorably corrected in the second lens group. Thereby, the optical system according to the fourth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 また、本願の第4実施形態に係る光学系は、以下の条件式(4-9)を満足することが望ましい。
(4-9) 0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
In addition, it is desirable that the optical system according to the fourth embodiment of the present application satisfies the following conditional expression (4-9).
(4-9) 0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 条件式(4-9)は、本願の第4実施形態に係る光学系の焦点距離と第1レンズ群と第2レンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第4実施形態に係る光学系は、条件式(4-9)を満足することにより、第1レンズ群及び第2レンズ群で発生するコマ収差と倍率色収差を良好に補正することができる。これにより、本願の第4実施形態に係る光学系は、さらなる高性能化を図ることができる。 Conditional expression (4-9) defines an appropriate range of the ratio between the focal length of the optical system according to the fourth embodiment of the present application and the combined focal length of the first lens group and the second lens group. The optical system according to the fourth embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration generated in the first lens group and the second lens group by satisfying conditional expression (4-9). . As a result, the optical system according to the fourth embodiment of the present application can achieve higher performance.
 本願の第4実施形態に係る光学系の条件式(4-9)の対応値が上限値を上回ると、第1レンズ群と第2レンズ群の屈折力が相対的に大きくなり、第1レンズ群及び第2レンズ群でコマ収差が多大に発生してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(4-9)の上限値を0.55とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-9)の上限値を0.53とすることがより好ましい。 When the corresponding value of the conditional expression (4-9) of the optical system according to the fourth embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group and the second lens group becomes relatively large, and the first lens This is not preferable because coma aberration is greatly generated in the first lens group and the second lens group. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4-9) to 0.55. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4-9) to 0.53.
 一方、本願の第4実施形態に係る光学系の条件式(4-9)の対応値が下限値を下回ると、第1レンズ群と第2レンズ群の屈折力が相対的に小さくなり、第1レンズ群及び第2レンズ群で発生する倍率色収差が補正不足になるため好ましくない。なお、本願の効果をより確実にするために、条件式(4-9)の下限値を0.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4-9)の下限値を0.30とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (4-9) of the optical system according to the fourth embodiment of the present application is less than the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small, and the first This is not preferable because the lateral chromatic aberration generated in the first lens group and the second lens group is insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-9) to 0.20. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4-9) to 0.30.
 また、本願の第4実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、前記第3aレンズ群と、前記第3bレンズ群と、第3cレンズ群とから構成されていることが望ましい。この構成により、第3aレンズ群で球面収差とコマ収差を補正することができ、第3cレンズ群で球面収差を補正することができる。したがって、第3レンズ群全体において球面収差とコマ収差を良好に補正することができる。また、第3bレンズ群の少なくとも一部をシフトレンズ群としたことで、レンズシフト時の光学性能の劣化を抑えることができる。 In the optical system according to the fourth embodiment of the present application, the third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group. It is desirable. With this configuration, it is possible to correct spherical aberration and coma with the 3a lens group, and it is possible to correct spherical aberration with the 3c lens group. Therefore, spherical aberration and coma aberration can be corrected well in the entire third lens group. In addition, since at least a part of the third lens group is a shift lens group, it is possible to suppress deterioration in optical performance during lens shift.
 本願の光学装置は、上述した構成の第4実施形態に係る光学系を有することを特徴とする。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学装置を実現することができる。 The optical apparatus according to the present application includes the optical system according to the fourth embodiment having the above-described configuration. As a result, it is possible to realize an optical device that is compact and has excellent optical performance by satisfactorily correcting various aberrations.
 本願の第4実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有するようにし、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、前記光学系が以下の条件式(4-1)を満足するようにすることを特徴とする。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を製造することができる。
(4-1) 1.70<|fR/fF|<5.00
 ただし、
fF:無限遠物体合焦時の前記第1レンズ群から前記第3aレンズ群までの合成焦点距離
fR:無限遠物体合焦時の前記第3bレンズ群と前記第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
The optical system manufacturing method according to the fourth embodiment of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method of manufacturing an optical system having a third lens group, wherein the third lens group includes, in order from the object side, a 3a lens group and a 3b lens group, and a short distance from an infinite object. When focusing on an object, the second lens group is moved along the optical axis, and the third b lens group is moved as a shift lens group so as to include a component in a direction perpendicular to the optical axis, The optical system satisfies the following conditional expression (4-1). As a result, it is possible to manufacture an optical system that is small in size and corrects various aberrations and has excellent optical performance.
(4-1) 1.70 <| fR / fF | <5.00
However,
fF: Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
 以下、本願の第5実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第5実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでおり、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有し、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、以下の条件式(5-1)を満足することを特徴とする。
(5-1) 1.70<|fR/fF|<5.00
 ただし、
fF:無限遠物体合焦時の前記第1レンズ群から前記第3aレンズ群までの合成焦点距離fR:無限遠物体合焦時の前記第3bレンズ群と前記第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
Hereinafter, an optical system, an optical device, and an optical system manufacturing method according to the fifth embodiment of the present application will be described.
The optical system according to the fifth embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is subjected to a wet process. The third lens group includes a 3a lens group and a 3b lens group in order from the object side, from an infinite object to a close object. At the time of focusing, the second lens group moves along the optical axis, and the third b lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis, and the following conditional expression (5- 1) is satisfied.
(5-1) 1.70 <| fR / fF | <5.00
However,
fF: Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
 上記のように本願の第5実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有し、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動する。この構成により、本願の第5実施形態に係る光学系は小型軽量化と優れた結像性能を達成することができる。 As described above, the optical system according to the fifth embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. A third lens group, and the third lens group has a 3a lens group and a 3b lens group in order from the object side, and when focusing from an infinite object to a short distance object, The second lens group moves along the optical axis. With this configuration, the optical system according to the fifth embodiment of the present application can achieve a reduction in size and weight and excellent imaging performance.
 また、上記のように本願の第5実施形態に係る光学系は、前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動、即ちレンズシフトする。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができる。 Also, as described above, the optical system according to the fifth embodiment of the present application moves, that is, shifts the lens, so that the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group. With this configuration, it is possible to correct image blur due to camera shake or the like, that is, to perform image stabilization.
 条件式(5-1)は、第1レンズ群から第3aレンズ群までの合成焦点距離と、第3bレンズ群と第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離との比の適切な範囲を規定するものである。なお、第3bレンズ群よりも像側にレンズが存在しない場合には、「fR:第3bレンズ群の焦点距離」として条件式(5-1)の対応値を計算するものとする。本願の第5実施形態に係る光学系は、条件式(5-1)を満足することにより、小型化を図りながら、球面収差とコマ収差を良好に補正でき、優れた結像性能を得ることができる。 Conditional expression (5-1) indicates that the combined focal length from the first lens group to the 3a lens group and the combined focal length of all the lenses located on the image side of the 3b lens group and the 3b lens group are It defines an appropriate range of ratios. If no lens is present on the image side of the 3b lens group, the corresponding value of the conditional expression (5-1) is calculated as “fR: focal length of the 3b lens group”. By satisfying conditional expression (5-1), the optical system according to the fifth embodiment of the present application can satisfactorily correct spherical aberration and coma aberration while achieving miniaturization, and obtain excellent imaging performance. Can do.
 本願の第5実施形態に係る光学系の条件式(5-1)の対応値が上限値を上回ると、第1レンズ群から第3aレンズ群までの合成屈折力が相対的に小さくなる。これにより、第1レンズ群から第3aレンズ群で発生する球面収差とコマ収差が補正不足になるため好ましくない。なお、本願の効果をより確実にするために、条件式(5-1)の上限値を4.75とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-1)の上限値を4.25とすることがより好ましい。 When the corresponding value of the conditional expression (5-1) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, the combined refractive power from the first lens group to the 3a lens group becomes relatively small. This is not preferable because spherical aberration and coma aberration generated from the first lens group to the 3a lens group become insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (5-1) to 4.75. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5-1) to 4.25.
 一方、本願の第5実施形態に係る光学系の条件式(5-1)の対応値が下限値を下回ると、第1レンズ群から第3aレンズ群までの合成屈折力が相対的に大きくなる。これにより、第1レンズ群から第3aレンズ群でコマ収差が多大に発生してしまいため好ましくない。なお、本願の効果をより確実にするために、条件式(5-1)の下限値を1.71とすることがより好ましい。
 以上の構成により、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を実現することができる。
On the other hand, when the corresponding value of the conditional expression (5-1) of the optical system according to the fifth embodiment of the present application is below the lower limit value, the combined refractive power from the first lens group to the 3a lens group becomes relatively large. . Accordingly, a large amount of coma aberration is generated from the first lens group to the 3a lens group, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-1) to 1.71.
With the above configuration, it is possible to realize a compact optical system having excellent optical performance by correcting various aberrations.
 また、本願の第5実施形態に係る光学系は、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいることを特徴とする。この構成により、本願の第5実施形態に係る光学系は、物体からの光が光学面で反射されることによって生じるゴーストやフレアをより低減させることができ、高い結像性能を達成することができる。 In the optical system according to the fifth embodiment of the present application, an antireflection film is provided on at least one of the optical surfaces in the first lens group, the second lens group, and the third lens group, The antireflection film includes at least one layer formed by a wet process. With this configuration, the optical system according to the fifth embodiment of the present application can further reduce ghosts and flares caused by reflection of light from an object on an optical surface, and achieve high imaging performance. it can.
 また、本願の第5実施形態に係る光学系は、前記反射防止膜は多層膜であり、前記ウェットプロセスを用いて形成された層は、前記多層膜を構成する層のうちの最も表面側の層であることが望ましい。この構成により、前記ウェットプロセスを用いて形成された層と空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。 Further, in the optical system according to the fifth embodiment of the present application, the antireflection film is a multilayer film, and the layer formed by using the wet process is the most surface side of the layers constituting the multilayer film. A layer is desirable. With this configuration, the refractive index difference between the layer formed using the wet process and air can be reduced, so that the reflection of light can be further reduced and ghosts and flares can be further reduced. Can do.
 また、本願の第5実施形態に係る光学系は、前記ウェットプロセスを用いて形成された層のd線(波長λ=587.6nm)に対する屈折率をndとしたとき、ndが1.30以下であることが望ましい。この構成により、前記ウェットプロセスを用いて形成された層と空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。 Further, in the optical system according to the fifth embodiment of the present application, when the refractive index with respect to the d line (wavelength λ = 587.6 nm) of the layer formed by using the wet process is nd, nd is 1.30 or less. It is desirable that With this configuration, the refractive index difference between the layer formed using the wet process and air can be reduced, so that the reflection of light can be further reduced and ghosts and flares can be further reduced. Can do.
 また、本願の第5実施形態に係る光学系は、前記反射防止膜が設けられた前記光学面は、像面側から見て凹形状のレンズ面であることが望ましい。第1レンズ群、第2レンズ群及び第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is preferable that the optical surface provided with the antireflection film is a concave lens surface when viewed from the image surface side. Of the optical surfaces in the first lens group, the second lens group, and the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image plane side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの像面側レンズ面であることが望ましい。第1レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is desirable that the concave lens surface viewed from the image surface side is an image surface side lens surface of the lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第2レンズ群内のレンズの像面側レンズ面であることが望ましい。第2レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the second lens group. Of the optical surfaces in the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内のレンズの物体側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is preferable that the concave lens surface viewed from the image surface side is an object side lens surface of the lens in the third lens group. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内のレンズの像面側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the third lens group. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内の物体側から4番目のレンズの像面側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, the concave lens surface viewed from the image surface side is the image surface side lens surface of the fourth lens from the object side in the third lens group. It is desirable. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記反射防止膜が設けられた前記光学面は、物体側から見て凹形状のレンズ面であることが望ましい。第1レンズ群及び第2レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is preferable that the optical surface provided with the antireflection film is a concave lens surface when viewed from the object side. Of the optical surfaces in the first lens group and the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの物体側レンズ面であることが望ましい。第1レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is desirable that the concave lens surface when viewed from the object side is the object-side lens surface of the lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの像面側レンズ面であることが望ましい。第1レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is desirable that the concave lens surface viewed from the object side is an image surface side lens surface of the lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第5実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第2レンズ群内のレンズの物体側レンズ面であることが望ましい。第2レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the fifth embodiment of the present application, it is desirable that the concave lens surface when viewed from the object side is the object-side lens surface of the lens in the second lens group. Of the optical surfaces in the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 なお、本願の第5実施形態に係る光学系における反射防止膜は、ウェットプロセスに限られず、ドライプロセス等によって形成してもよい。この場合、反射防止膜は屈折率が1.30以下となる層を少なくとも1層含むようにすることが好ましい。この構成により、反射防止膜をドライプロセス等によって形成した場合でも、反射防止膜をウェットプロセスによって形成した場合と同様の効果を得ることができる。なお、屈折率が1.30以下となる層は、多層膜を構成する層のうちの最も表面側の層であることが好ましい。 Note that the antireflection film in the optical system according to the fifth embodiment of the present application is not limited to a wet process, and may be formed by a dry process or the like. In this case, the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained. Note that the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
 また、本願の第5実施形態に係る光学系は、以下の条件式(5-2)を満足することが望ましい。
(5-2) -1.60<βr×(1-βs)<-0.85
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
Further, it is desirable that the optical system according to the fifth embodiment of the present application satisfies the following conditional expression (5-2).
(5-2) -1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 条件式(5-2)は、シフトレンズ群の光軸と直交する方向への移動量に対する像の光軸と直交する方向への移動量である、所謂ブレ係数の適切な範囲を規定するものである。本願の第5実施形態に係る光学系は、条件式(5-2)を満足することにより、球面収差、コマ収差及び像面湾曲を良好に補正でき、レンズシフト時の光学性能の劣化を抑えることができる。 Conditional expression (5-2) defines an appropriate range of the so-called blur coefficient, which is the amount of movement of the shift lens group in the direction orthogonal to the optical axis with respect to the amount of movement in the direction orthogonal to the optical axis. It is. The optical system according to the fifth embodiment of the present application can satisfactorily correct spherical aberration, coma aberration, and field curvature by satisfying conditional expression (5-2), and suppress deterioration of optical performance during lens shift. be able to.
 本願の第5実施形態に係る光学系の条件式(5-2)の対応値が上限値を上回ると、シフトレンズ群の移動量に対する像の移動量が相対的に小さくなる。これにより、球面収差とコマ収差が補正不足になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(5-2)の上限値を-0.95とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-2)の上限値を-1.00とすることがより好ましい。 When the corresponding value of the conditional expression (5-2) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, the image movement amount relative to the movement amount of the shift lens group becomes relatively small. This is not preferable because spherical aberration and coma are insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5-2) to −0.95. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (5-2) to -1.00.
 一方、本願の第5実施形態に係る光学系の条件式(5-2)の対応値が下限値を下回ると、シフトレンズ群の移動量に対する像の移動量が大きくなり過ぎる。これにより、コマ収差と像面湾曲が悪化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(5-2)の下限値を-1.55とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (5-2) of the optical system according to the fifth embodiment of the present application is less than the lower limit value, the amount of movement of the image with respect to the amount of movement of the shift lens group becomes too large. This is not preferable because coma aberration and field curvature are deteriorated. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-2) to −1.55.
 また、本願の第5実施形態に係る光学系は、前記第3aレンズ群が正レンズと負レンズとから構成されていることが望ましい。この構成により、第3aレンズ群において球面収差とコマ収差を良好に補正でき、本願の第5実施形態に係る光学系のさらなる高性能化を図ることができる。特に、前記第3aレンズ群が正の屈折力を有する構成とすることがより望ましい。 In the optical system according to the fifth embodiment of the present application, it is desirable that the third lens group is composed of a positive lens and a negative lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 3a lens group, and it is possible to further improve the performance of the optical system according to the fifth embodiment of the present application. In particular, it is more desirable that the 3a lens group has a positive refractive power.
 また、本願の第5実施形態に係る光学系は、前記第3bレンズ群が、物体側から順に、正レンズと負レンズとの接合レンズと、負レンズとから構成されていることが望ましい。この構成により、第3bレンズ群において球面収差を良好に補正することができ、第3レンズ群全体において球面収差とコマ収差を良好に補正することができる。これにより、本願の第5実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の劣化をより良好に抑えることができる。 In the optical system according to the fifth embodiment of the present application, it is desirable that the third lens group is composed of a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side. With this configuration, spherical aberration can be favorably corrected in the third lens group, and spherical aberration and coma aberration can be favorably corrected in the entire third lens group. Thereby, the optical system according to the fifth embodiment of the present application can more effectively suppress the deterioration of the optical performance during the lens shift while further improving the performance.
 また、本願の第5実施形態に係る光学系は、前記第3aレンズ群の物体側又は像側に開口絞りを有することが望ましい。この構成により、本願の第5実施形態に係る光学系の屈折力配置を、物体側から順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、開口絞り、正の屈折力を有する第3レンズ群という対称型に近付けて、像面湾曲と歪曲収差を良好に補正することができる。これにより、本願の第5実施形態に係る光学系はさらなる高性能化を図ることができる。 It is desirable that the optical system according to the fifth embodiment of the present application has an aperture stop on the object side or the image side of the 3a lens group. With this configuration, the refractive power arrangement of the optical system according to the fifth embodiment of the present application, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, By approaching the symmetrical type of the third lens group having positive refractive power, it is possible to satisfactorily correct field curvature and distortion. Thereby, the optical system according to the fifth embodiment of the present application can be further improved in performance.
 また、本願の第5実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、前記第3aレンズ群と、前記第3bレンズ群と、第3cレンズ群とから構成され、以下の条件式(5-3)を満足することが望ましい。
(5-3) -0.45<f3a/f3bc<0.40
 ただし、
f3a:前記第3aレンズ群の焦点距離
f3bc:無限遠物体合焦時の前記第3bレンズ群と前記第3cレンズ群の合成焦点距離
In the optical system according to the fifth embodiment of the present application, the third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group. It is desirable that the conditional expression (5-3) is satisfied.
(5-3) -0.45 <f3a / f3bc <0.40
However,
f3a: focal length of the 3a lens group f3bc: combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
 条件式(5-3)は、第3aレンズ群の焦点距離と、第3bレンズ群と第3cレンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第5実施形態に係る光学系は、条件式(5-3)を満足することにより、球面収差とコマ収差、及びレンズシフト時のコマ収差の変動を良好に補正できる。これにより、本願の第5実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の劣化を抑えることができる。 Conditional expression (5-3) defines an appropriate range of the ratio between the focal length of the 3a lens group and the combined focal length of the 3b lens group and the 3c lens group. The optical system according to the fifth embodiment of the present application can satisfactorily correct the spherical aberration, the coma aberration, and the fluctuation of the coma aberration at the time of lens shift by satisfying the conditional expression (5-3). Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance during lens shift while further improving the performance.
 本願の第5実施形態に係る光学系の条件式(5-3)の対応値が上限値を上回ると、第3aレンズ群の屈折力が相対的に小さくなり、第3aレンズ群単体で発生する球面収差とコマ収差が補正不足になってしまう。また、第3bレンズ群と第3cレンズ群の屈折力が相対的に大きくなる。このため、レンズシフト時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(5-3)の上限値を0.35とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-3)の上限値を0.30とすることがより好ましい。 When the corresponding value of the conditional expression (5-3) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, the refractive power of the 3a lens group becomes relatively small and is generated by the 3a lens group alone. Spherical aberration and coma are undercorrected. Further, the refractive power of the third b lens group and the third c lens group becomes relatively large. For this reason, fluctuations in coma cannot be suppressed during lens shift, and high optical performance cannot be obtained. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (5-3) to 0.35. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5-3) to 0.30.
 一方、本願の第5実施形態に係る光学系の条件式(5-3)の対応値が下限値を下回ると、第3aレンズ群の屈折力が相対的に大きくなり、第3aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。また、第3bレンズ群と第3cレンズ群の屈折力が相対的に小さくなる。このため、レンズシフト時にコマ収差が補正不足になってしまう。なお、本願の効果をより確実にするために、条件式(5-3)の下限値を-0.40とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-3)の下限値を-0.35とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (5-3) of the optical system according to the fifth embodiment of the present application is below the lower limit value, the refractive power of the 3a lens group becomes relatively large, and the 3a lens group alone A large amount of spherical aberration and coma occur. Further, the refractive power of the third b lens group and the third c lens group becomes relatively small. For this reason, coma is insufficiently corrected during lens shift. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-3) to −0.40. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-3) to −0.35.
 また、本願の第5実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が最も像側に負レンズを有することが望ましい。この構成により、第1レンズ群単体で球面収差が発生することを抑え、第1レンズ群全体において球面収差とコマ収差を良好に補正することができる。これにより、本願の第5実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the fifth embodiment of the present application, the first lens group includes, in order from the object side, a first-a lens group and a first-b lens group. The first-a lens group and the first-b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the first lens group has the negative lens closest to the image side. With this configuration, it is possible to suppress the occurrence of spherical aberration in the first lens unit alone, and to correct spherical aberration and coma well in the entire first lens unit. Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 また、本願の第5実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(5-4)を満足することが望ましい。
(5-4) 1.40<f1a/f1b<2.05
 ただし、
f1a:前記第1aレンズ群の焦点距離
f1b:前記第1bレンズ群の焦点距離
In the optical system according to the fifth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the following conditional expression (5-4) is satisfied.
(5-4) 1.40 <f1a / f1b <2.05
However,
f1a: focal length of the 1a lens group f1b: focal length of the 1b lens group
 条件式(5-4)は、第1aレンズ群と第1bレンズ群の焦点距離比の適切な範囲を規定するものである。本願の第5実施形態に係る光学系は、条件式(5-4)を満足することにより、第1aレンズ群単体で発生する球面収差とコマ収差を良好に補正することができる。これにより、本願の第5実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 Conditional expression (5-4) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group. The optical system according to the fifth embodiment of the present application can satisfactorily correct the spherical aberration and the coma generated in the single lens unit 1a by satisfying conditional expression (5-4). Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 本願の第5実施形態に係る光学系の条件式(5-4)の対応値が上限値を上回ると、第1aレンズ群の屈折力が相対的に小さくなり、第1aレンズ群単体で発生する球面収差とコマ収差が補正不足になってしまう。また、第1bレンズ群の屈折力が相対的に大きくなり、合焦時に球面収差の変動を抑えることができなくなるため、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(5-4)の上限値を2.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-4)の上限値を1.95とすることがより好ましい。 When the corresponding value of the conditional expression (5-4) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma are undercorrected. In addition, since the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5-4) to 2.00. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5-4) to 1.95.
 一方、本願の第5実施形態に係る光学系の条件式(5-4)の対応値が下限値を下回ると、第1aレンズ群の屈折力が相対的に大きくなり、第1aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。なお、本願の効果をより確実にするために、条件式(5-4)の下限値を1.45とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-4)の下限値を1.50とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (5-4) of the optical system according to the fifth embodiment of the present application is below the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-4) to 1.45. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-4) to 1.50.
 また、本願の第5実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が、物体側から順に、保護ガラスと、正レンズと、正レンズと、負レンズとから構成されていることが望ましい。この構成により、第1aレンズ群において球面収差を良好に補正することができる。これにより、本願の第5実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the fifth embodiment of the present application, the first lens group includes, in order from the object side, a first-a lens group and a first-b lens group. The first-a lens group and the first-b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group is in order from the object side, protective glass, positive lens, positive lens, and negative lens. It is desirable to be composed of With this configuration, spherical aberration can be favorably corrected in the 1a lens group. Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 また、本願の第5実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1bレンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズとの接合レンズで構成されていることが望ましい。この構成により、第1bレンズ群において球面収差とコマ収差を良好に補正することができる。これにより、本願の第5実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the fifth embodiment of the present application, the first lens group includes, in order from the object side, a first-a lens group and a first-b lens group. The first-a lens group and the first-b An air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group includes, in order from the object side, a negative meniscus lens and a positive lens with a convex surface facing the object side. It is desirable that the lens is composed of a cemented lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 1b lens group. Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 また、本願の第5実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が以下の条件式(5-5)を満足する少なくとも1枚の正レンズを有することが望ましい。
(5-5) 90<νdp
 ただし、
νdp:前記第1aレンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the fifth embodiment of the present application, the first lens group includes, in order from the object side, a first-a lens group and a first-b lens group. The first-a lens group and the first-b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group has at least one positive lens that satisfies the following conditional expression (5-5) It is desirable.
(5-5) 90 <νdp
However,
νdp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1a lens group
 条件式(5-5)は、第1aレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第5実施形態に係る光学系は、条件式(5-5)を満足することにより、第1レンズ群単体で軸上色収差と倍率色収差が発生することを抑えることができる。 Conditional expression (5-5) defines the Abbe number of the glass material of the positive lens in the 1a lens group. The optical system according to the fifth embodiment of the present application can suppress occurrence of longitudinal chromatic aberration and lateral chromatic aberration in the first lens unit alone by satisfying conditional expression (5-5).
 本願の第5実施形態に係る光学系の条件式(5-5)の対応値が下限値を下回ると、第1レンズ群単体で軸上色収差と倍率色収差が多大に発生し、本願の第5実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (5-5) of the optical system according to the fifth embodiment of the present application is lower than the lower limit value, a large amount of axial chromatic aberration and lateral chromatic aberration are generated in the first lens unit alone. This is not preferable because the optical performance of the optical system according to the embodiment is deteriorated.
 また、本願の第5実施形態に係る光学系は、前記第2レンズ群が複数の負レンズを有し、前記複数の負レンズのうちで最も像側に配置された負レンズが以下の条件式(5-6)を満足することが望ましい。
(5-6) ndn<1.65
 ただし、
ndn:前記第2レンズ群中の前記複数の負レンズのうちで最も像側に配置された前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the fifth embodiment of the present application, the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the image side among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (5-6).
(5-6) ndn <1.65
However,
ndn: Refractive index with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged on the most image side among the plurality of negative lenses in the second lens group
 条件式(5-6)は、第2レンズ群中の複数の負レンズのうちで最も像側に配置された負レンズの硝材の屈折率を規定するものである。本願の第5実施形態に係る光学系は、条件式(5-6)を満足することにより、第2レンズ群単体で倍率色収差が発生することを抑えることができる。 Conditional expression (5-6) defines the refractive index of the glass material of the negative lens arranged closest to the image among the plurality of negative lenses in the second lens group. The optical system according to the fifth embodiment of the present application can suppress the occurrence of lateral chromatic aberration in the second lens unit alone by satisfying conditional expression (5-6).
 本願の第5実施形態に係る光学系の条件式(5-6)の対応値が上限値を上回ると、第2レンズ群単体で倍率色収差が多大に発生し、本願の第5実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (5-6) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, a large amount of chromatic aberration of magnification occurs in the second lens unit alone, and according to the fifth embodiment of the present application. This is not preferable because the optical performance of the optical system deteriorates.
 また、本願の第5実施形態に係る光学系は、前記第2レンズ群が複数の負レンズを有し、前記複数の負レンズのうちで最も物体側に配置された負レンズが以下の条件式(5-7)を満足することが望ましい。
(5-7) 49.7<νdn
 ただし、
νdn:前記第2レンズ群中の前記複数の負レンズのうちで最も物体側に配置された前記負レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the fifth embodiment of the present application, the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the object among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (5-7).
(5-7) 49.7 <νdn
However,
νdn: Abbe number with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
 条件式(5-7)は、第2レンズ群中の複数の負レンズのうちで最も物体側に配置された負レンズの硝材のアッベ数を規定するものである。本願の第5実施形態に係る光学系は、条件式(5-7)を満足することにより、第2レンズ群単体で軸上色収差が発生することを抑えることができる。 Conditional expression (5-7) defines the Abbe number of the glass material of the negative lens disposed closest to the object among the plurality of negative lenses in the second lens group. The optical system according to the fifth embodiment of the present application can suppress the occurrence of longitudinal chromatic aberration in the second lens unit alone by satisfying conditional expression (5-7).
 本願の第5実施形態に係る光学系の条件式(5-7)の対応値が下限値を下回ると、第2レンズ群単体で軸上色収差が多大に発生し、本願の第5実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (5-7) of the optical system according to the fifth embodiment of the present application is less than the lower limit value, a large amount of axial chromatic aberration occurs in the second lens unit alone, and the fifth embodiment of the present application Since the optical performance of the optical system is deteriorated, it is not preferable.
 また、本願の第5実施形態に係る光学系は、以下の条件式(5-8)を満足することが望ましい。
(5-8) -3.00<f1/f2<-2.00
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
In addition, it is desirable that the optical system according to the fifth embodiment of the present application satisfies the following conditional expression (5-8).
(5-8) -3.00 <f1 / f2 <-2.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
 条件式(5-8)は、第1レンズ群と第2レンズ群の焦点距離比の適切な範囲を規定するものである。本願の第5実施形態に係る光学系は、条件式(5-8)を満足することにより、合焦時にコマ収差の変動を抑え、また第1レンズ群単体で球面収差が発生することを抑えることができる。これにより、本願の第5実施形態に係る光学系は、さらなる高性能化を図ることができる。 Conditional expression (5-8) defines an appropriate range of the focal length ratio between the first lens group and the second lens group. By satisfying conditional expression (5-8), the optical system according to the fifth embodiment of the present application suppresses fluctuations in coma during focusing and suppresses occurrence of spherical aberration in the first lens unit alone. be able to. Thereby, the optical system according to the fifth embodiment of the present application can achieve higher performance.
 本願の第5実施形態に係る光学系の条件式(5-8)の対応値が上限値を上回ると、第1レンズ群の屈折力が相対的に小さくなる。このため、第1レンズ群がテレ比、即ち本願の第5実施形態に係る光学系の全長を焦点距離で割った値を小さくすることに寄与できなくなり、本願の第5実施形態に係る光学系の全長が大きくなってしまう。また、第2レンズ群の屈折力が相対的に大きくなるため、合焦時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(5-8)の上限値を-2.15とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-8)の上限値を-2.30とすることがより好ましい。 When the corresponding value of the conditional expression (5-8) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group becomes relatively small. For this reason, the first lens group cannot contribute to reducing the tele ratio, that is, the value obtained by dividing the total length of the optical system according to the fifth embodiment of the present application by the focal length, and the optical system according to the fifth embodiment of the present application. The total length of will increase. In addition, since the refractive power of the second lens group becomes relatively large, fluctuations in coma aberration cannot be suppressed during focusing, and high optical performance cannot be obtained. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5-8) to −2.15. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (5-8) to −2.30.
 一方、本願の第5実施形態に係る光学系の条件式(5-8)の対応値が下限値を下回ると、第1レンズ群の屈折力が相対的に大きくなり、第1レンズ群単体で球面収差が多大に発生してしまう。また、第2レンズ群の屈折力が相対的に小さくなり、合焦時の第2レンズ群の移動量が多大になってしまう。なお、本願の効果をより確実にするために、条件式(5-8)の下限値を-2.85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-8)の下限値を-2.70とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (5-8) of the optical system according to the fifth embodiment of the present application is lower than the lower limit value, the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs. In addition, the refractive power of the second lens group becomes relatively small, and the amount of movement of the second lens group at the time of focusing becomes great. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-8) to −2.85. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (5-8) to −2.70.
 また、本願の第5実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとから構成されていることが望ましい。この構成により、第2レンズ群においてコマ収差を良好に補正することができる。これにより、本願の第5実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the fifth embodiment of the present application, the second lens group includes, in order from the object side, a negative lens having a concave surface facing the image side, and a cemented lens of a positive lens and a negative lens. It is desirable that With this configuration, coma can be favorably corrected in the second lens group. Thereby, the optical system according to the fifth embodiment of the present application can suppress deterioration of the optical performance at the time of focusing while further improving the performance.
 また、本願の第5実施形態に係る光学系は、以下の条件式(5-9)を満足することが望ましい。
(5-9) 0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
In addition, it is desirable that the optical system according to the fifth embodiment of the present application satisfies the following conditional expression (5-9).
(5-9) 0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 条件式(5-9)は、本願の第5実施形態に係る光学系の焦点距離と第1レンズ群と第2レンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第5実施形態に係る光学系は、条件式(5-9)を満足することにより、第1レンズ群及び第2レンズ群で発生するコマ収差と倍率色収差を良好に補正することができる。これにより本願の第5実施形態に係る光学系は、さらなる高性能化を図ることができる。 Conditional expression (5-9) defines an appropriate range of the ratio between the focal length of the optical system according to the fifth embodiment of the present application and the combined focal length of the first lens group and the second lens group. The optical system according to the fifth embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration generated in the first lens group and the second lens group by satisfying conditional expression (5-9). . As a result, the optical system according to the fifth embodiment of the present application can achieve higher performance.
 本願の第5実施形態に係る光学系の条件式(5-9)の対応値が上限値を上回ると、第1レンズ群と第2レンズ群の屈折力が相対的に大きくなり、第1レンズ群及び第2レンズ群でコマ収差が多大に発生してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(5-9)の上限値を0.55とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-9)の上限値を0.53とすることがより好ましい。 When the corresponding value of the conditional expression (5-9) of the optical system according to the fifth embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group and the second lens group becomes relatively large, and the first lens This is not preferable because coma aberration is greatly generated in the first lens group and the second lens group. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5-9) to 0.55. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5-9) to 0.53.
 一方、本願の第5実施形態に係る光学系の条件式(5-9)の対応値が下限値を下回ると、第1レンズ群と第2レンズ群の屈折力が相対的に小さくなり、第1レンズ群及び第2レンズ群で発生する倍率色収差が補正不足になるため好ましくない。なお、本願の効果をより確実にするために、条件式(5-9)の下限値を0.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5-9)の下限値を0.30とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (5-9) of the optical system according to the fifth embodiment of the present application is less than the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small, and the first This is not preferable because the lateral chromatic aberration generated in the first lens group and the second lens group is insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-9) to 0.20. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5-9) to 0.30.
 また、本願の第5実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、前記第3aレンズ群と、前記第3bレンズ群と、第3cレンズ群とから構成されていることが望ましい。この構成により、第3aレンズ群で球面収差とコマ収差を補正することができ、第3cレンズ群で球面収差を補正することができる。したがって、第3レンズ群全体において球面収差とコマ収差を良好に補正することができる。また、第3bレンズ群の少なくとも一部をシフトレンズ群としたことで、レンズシフト時の光学性能の劣化を抑えることができる。 In the optical system according to the fifth embodiment of the present application, the third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group. It is desirable. With this configuration, it is possible to correct spherical aberration and coma with the 3a lens group, and it is possible to correct spherical aberration with the 3c lens group. Therefore, spherical aberration and coma aberration can be corrected well in the entire third lens group. In addition, since at least a part of the third lens group is a shift lens group, it is possible to suppress deterioration in optical performance during lens shift.
 本願の光学装置は、上述した構成の第5実施形態に係る光学系を有することを特徴とする。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学装置を実現することができる。 The optical apparatus according to the present application includes the optical system according to the fifth embodiment having the above-described configuration. As a result, it is possible to realize an optical device that is compact and has excellent optical performance by satisfactorily correcting various aberrations.
 本願の第5実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設け、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むようにし、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有するようにし、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、前記光学系が以下の条件式(5-1)を満足するようにすることを特徴とする。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を製造することができる。
(5-1) 1.70<|fR/fF|<5.00
 ただし、
fF:無限遠物体合焦時の前記第1レンズ群から前記第3aレンズ群までの合成焦点距離fR:無限遠物体合焦時の前記第3bレンズ群と前記第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
The optical system manufacturing method according to the fifth embodiment of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method of manufacturing an optical system having a third lens group, wherein an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, The antireflection film includes at least one layer formed by a wet process, and the third lens group includes a 3a lens group and a 3b lens group in order from the object side, and is infinite. The second lens group is moved along the optical axis at the time of focusing from a far object to a short distance object, and the third b lens group includes a component in a direction orthogonal to the optical axis as a shift lens group. Move so that the optical system Characterized in that so as to satisfy under condition (5-1). As a result, it is possible to manufacture an optical system that is small in size and corrects various aberrations and has excellent optical performance.
(5-1) 1.70 <| fR / fF | <5.00
However,
fF: Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
 次に、本願の第6実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第6実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでおり、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、以下の条件式(6-1)を満足することを特徴とする。
(6-1) -1.60<βr×(1-βs)<-0.85
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
Next, an optical system, an optical device, and an optical system manufacturing method according to a sixth embodiment of the present application will be described.
The optical system according to the sixth embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is subjected to a wet process. The second lens group moves along the optical axis during focusing from an object at infinity to a near object, and a part of the third lens group The shift lens unit moves so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (6-1).
(6-1) −1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 上記のように本願の第6実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動する。この構成により、本願の第6実施形態に係る光学系は小型軽量化と優れた結像性能を達成することができる。 As described above, the optical system according to the sixth embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. A second lens group that moves along the optical axis during focusing from an object at infinity to an object at a short distance, and a part of the third lens group serves as a shift lens group. It moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, the optical system according to the sixth embodiment of the present application can achieve a reduction in size and weight and excellent imaging performance.
 また、上記のように本願の第6実施形態に係る光学系は、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動する。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができる。 Also, as described above, the optical system according to the sixth embodiment of the present application moves so that a part of the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group. With this configuration, it is possible to correct image blur due to camera shake or the like, that is, to perform image stabilization.
 条件式(6-1)は、シフトレンズ群の光軸と直交する方向への移動量に対する像の光軸と直交する方向への移動量である、所謂ブレ係数の適切な範囲を規定するものである。本願の第6実施形態に係る光学系は、条件式(6-1)を満足することにより、球面収差、コマ収差及び像面湾曲を良好に補正でき、レンズシフト時の光学性能の劣化を抑えることができる。 Conditional expression (6-1) defines an appropriate range of the so-called blur coefficient, which is the amount of movement in the direction perpendicular to the optical axis of the image with respect to the amount of movement of the shift lens group in the direction perpendicular to the optical axis. It is. By satisfying conditional expression (6-1), the optical system according to the sixth embodiment of the present application can satisfactorily correct spherical aberration, coma aberration, and field curvature, and suppress deterioration in optical performance during lens shift. be able to.
 本願の第6実施形態に係る光学系の条件式(6-1)の対応値が上限値を上回ると、シフトレンズ群の移動量に対する像の移動量が相対的に小さくなる。これにより、球面収差とコマ収差が補正不足になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(6-1)の上限値を-0.95とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-1)の上限値を-1.00とすることがより好ましい。 When the corresponding value of the conditional expression (6-1) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, the moving amount of the image with respect to the moving amount of the shift lens group becomes relatively small. This is not preferable because spherical aberration and coma are insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (6-1) to −0.95. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (6-1) to −1.00.
 一方、本願の第6実施形態に係る光学系の条件式(6-1)の対応値が下限値を下回ると、シフトレンズ群の移動量に対する像の移動量が大きくなり過ぎる。これにより、コマ収差と像面湾曲が悪化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(6-1)の下限値を-1.55とすることがより好ましい。
 以上の構成により、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学系を実現することができる。
On the other hand, when the corresponding value of conditional expression (6-1) of the optical system according to the sixth embodiment of the present application is less than the lower limit value, the amount of movement of the image with respect to the amount of movement of the shift lens group becomes too large. This is not preferable because coma aberration and field curvature are deteriorated. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6-1) to −1.55.
With the configuration described above, it is possible to realize an optical system that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
 また、本願の第6実施形態に係る光学系は、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいることを特徴とする。この構成により、本願の第6実施形態に係る光学系は、物体からの光が光学面で反射されることによって生じるゴーストやフレアをより低減させることができ、高い結像性能を達成することができる。 In the optical system according to the sixth embodiment of the present application, an antireflection film is provided on at least one of the optical surfaces in the first lens group, the second lens group, and the third lens group, The antireflection film includes at least one layer formed by a wet process. With this configuration, the optical system according to the sixth embodiment of the present application can further reduce ghosts and flares caused by reflection of light from an object on an optical surface, and achieve high imaging performance. it can.
 また、本願の第6実施形態に係る光学系は、前記反射防止膜は多層膜であり、前記ウェットプロセスを用いて形成された層は、前記多層膜を構成する層のうちの最も表面側の層であることが望ましい。この構成により、前記ウェットプロセスを用いて形成された層と空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。 Further, in the optical system according to the sixth embodiment of the present application, the antireflection film is a multilayer film, and the layer formed by using the wet process is the most surface side of the layers constituting the multilayer film. A layer is desirable. With this configuration, the refractive index difference between the layer formed using the wet process and air can be reduced, so that the reflection of light can be further reduced and ghosts and flares can be further reduced. Can do.
 また、本願の第6実施形態に係る光学系は、前記ウェットプロセスを用いて形成された層のd線(波長λ=587.6nm)に対する屈折率をndとしたとき、ndが1.30以下であることが望ましい。この構成により、前記ウェットプロセスを用いて形成された層と空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。 In the optical system according to the sixth embodiment of the present application, when the refractive index with respect to the d-line (wavelength λ = 587.6 nm) of the layer formed by using the wet process is nd, nd is 1.30 or less. It is desirable that With this configuration, the refractive index difference between the layer formed using the wet process and air can be reduced, so that the reflection of light can be further reduced and ghosts and flares can be further reduced. Can do.
 また、本願の第6実施形態に係る光学系は、前記反射防止膜が設けられた前記光学面は、像面側から見て凹形状のレンズ面であることが望ましい。第1レンズ群、第2レンズ群及び第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is preferable that the optical surface provided with the antireflection film is a concave lens surface when viewed from the image surface side. Of the optical surfaces in the first lens group, the second lens group, and the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image plane side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの像面側レンズ面であることが望ましい。第1レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第2レンズ群内のレンズの像面側レンズ面であることが望ましい。第2レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side is an image surface side lens surface of the lens in the second lens group. Of the optical surfaces in the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内のレンズの物体側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is preferable that the concave lens surface as viewed from the image surface side be an object side lens surface of a lens in the third lens group. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内のレンズの像面側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the third lens group. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内の物体側から4番目のレンズの像面側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, the concave lens surface viewed from the image surface side is the image surface side lens surface of the fourth lens from the object side in the third lens group. It is desirable. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記反射防止膜が設けられた前記光学面は、物体側から見て凹形状のレンズ面であることが望ましい。第1レンズ群及び第2レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is preferable that the optical surface provided with the antireflection film is a concave lens surface when viewed from the object side. Of the optical surfaces in the first lens group and the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの物体側レンズ面であることが望ましい。第1レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is desirable that the concave lens surface when viewed from the object side is an object-side lens surface of the lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの像面側レンズ面であることが望ましい。第1レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is desirable that the concave lens surface as viewed from the object side is an image surface side lens surface of the lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第6実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第2レンズ群内のレンズの物体側レンズ面であることが望ましい。第2レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the sixth embodiment of the present application, it is desirable that the concave lens surface when viewed from the object side is the object-side lens surface of the lens in the second lens group. Of the optical surfaces in the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 なお、本願の第6実施形態に係る光学系における反射防止膜は、ウェットプロセスに限られず、ドライプロセス等によって形成してもよい。この場合、反射防止膜は屈折率が1.30以下となる層を少なくとも1層含むようにすることが好ましい。この構成により、反射防止膜をドライプロセス等によって形成した場合でも、反射防止膜をウェットプロセスによって形成した場合と同様の効果を得ることができる。なお、屈折率が1.30以下となる層は、多層膜を構成する層のうちの最も表面側の層であることが好ましい。 Note that the antireflection film in the optical system according to the sixth embodiment of the present application is not limited to a wet process, and may be formed by a dry process or the like. In this case, the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained. Note that the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
 また、本願の第6実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、前記第3bレンズ群が前記シフトレンズ群として光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、第3aレンズ群で球面収差とコマ収差を補正することができ、第3cレンズ群で球面収差を補正することができる。したがって、第3レンズ群全体において球面収差とコマ収差を良好に補正することができる。また、第3bレンズ群をシフトレンズ群としたことで、レンズシフト時の光学性能の劣化を抑えることができる。 In the optical system according to the sixth embodiment of the present application, the third lens group includes, in order from the object side, a third a lens group, a third b lens group, and a third c lens group, and the third b It is desirable for the lens group to move so as to include a component in a direction orthogonal to the optical axis as the shift lens group. With this configuration, it is possible to correct spherical aberration and coma with the 3a lens group, and it is possible to correct spherical aberration with the 3c lens group. Therefore, spherical aberration and coma aberration can be corrected well in the entire third lens group. In addition, since the third lens group is a shift lens group, it is possible to suppress deterioration in optical performance during lens shift.
 また、本願の第6実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、前記第3aレンズ群が正レンズと負レンズとから構成されていることが望ましい。この構成により、第3aレンズ群において球面収差とコマ収差を良好に補正でき、本願の第6実施形態に係る光学系のさらなる高性能化を図ることができる。特に、前記第3aレンズ群が正の屈折力を有する構成とすることがより望ましい。 In the optical system according to the sixth embodiment of the present application, the third lens group includes a 3a lens group, a 3b lens group, and a 3c lens group in order from the object side. It is desirable that the lens group includes a positive lens and a negative lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 3a lens group, and it is possible to further improve the performance of the optical system according to the sixth embodiment of the present application. In particular, it is more desirable that the 3a lens group has a positive refractive power.
 また、本願の第6実施形態に係る光学系は、前記シフトレンズ群が、物体側から順に、正レンズと負レンズとの接合レンズと、負レンズとから構成されていることが望ましい。この構成により、シフトレンズ群において球面収差を良好に補正することができ、第3レンズ群全体において球面収差とコマ収差を良好に補正することができる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の劣化をより良好に抑えることができる。 In the optical system according to the sixth embodiment of the present application, it is desirable that the shift lens group includes a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side. With this configuration, spherical aberration can be favorably corrected in the shift lens group, and spherical aberration and coma aberration can be favorably corrected in the entire third lens group. Thereby, the optical system according to the sixth embodiment of the present application can more effectively suppress the deterioration of the optical performance at the time of lens shift while further improving the performance.
 また、本願の第6実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、前記第3aレンズ群の物体側又は像側に開口絞りを有することが望ましい。この構成により、本願の第6実施形態に係る光学系の屈折力配置を、物体側から順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、開口絞り、正の屈折力を有する第3レンズ群という対称型に近付けて、像面湾曲と歪曲収差を良好に補正することができる。これにより、本願の第6実施形態に係る光学系はさらなる高性能化を図ることができる。 In the optical system according to the sixth embodiment of the present application, the third lens group includes a 3a lens group, a 3b lens group, and a 3c lens group in order from the object side. It is desirable to have an aperture stop on the object side or image side of the lens group. With this configuration, the refractive power arrangement of the optical system according to the sixth embodiment of the present application, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, an aperture stop, By approaching the symmetrical type of the third lens group having positive refractive power, it is possible to satisfactorily correct field curvature and distortion. Thereby, the optical system according to the sixth embodiment of the present application can be further improved in performance.
 また、本願の第6実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、前記第3bレンズ群が前記シフトレンズ群として光軸と直交する方向の成分を含むように移動し、以下の条件式(6-2)を満足することが望ましい。
(6-2) -0.45<f3a/f3bc<0.40
 ただし、
f3a:前記第3aレンズ群の焦点距離
f3bc:無限遠物体合焦時の前記第3bレンズ群と前記第3cレンズ群の合成焦点距離
In the optical system according to the sixth embodiment of the present application, the third lens group includes, in order from the object side, a third a lens group, a third b lens group, and a third c lens group, and the third b It is desirable that the lens group moves as the shift lens group so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (6-2).
(6-2) -0.45 <f3a / f3bc <0.40
However,
f3a: focal length of the 3a lens group f3bc: combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
 条件式(6-2)は、第3aレンズ群の焦点距離と、シフトレンズ群である第3bレンズ群と第3cレンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第6実施形態に係る光学系は、条件式(6-2)を満足することにより、球面収差とコマ収差、及びレンズシフト時のコマ収差の変動を良好に補正できる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の劣化を抑えることができる。 Conditional expression (6-2) defines an appropriate range of the ratio between the focal length of the 3a lens group and the combined focal length of the 3b lens group and the 3c lens group as the shift lens group. The optical system according to the sixth embodiment of the present application can satisfactorily correct the spherical aberration, the coma aberration, and the fluctuation of the coma aberration at the time of lens shift by satisfying the conditional expression (6-2). Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration in optical performance during lens shift while further improving performance.
 本願の第6実施形態に係る光学系の条件式(6-2)の対応値が上限値を上回ると、第3aレンズ群の屈折力が相対的に小さくなり、第3aレンズ群単体で発生する球面収差とコマ収差が補正不足になってしまう。また、シフトレンズ群と第3cレンズ群の屈折力が相対的に大きくなる。このため、レンズシフト時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(6-2)の上限値を0.35とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-2)の上限値を0.30とすることがより好ましい。 When the corresponding value of the conditional expression (6-2) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, the refractive power of the 3a lens group becomes relatively small, and the 3a lens group alone is generated. Spherical aberration and coma are undercorrected. Further, the refractive powers of the shift lens group and the third c lens group become relatively large. For this reason, fluctuations in coma cannot be suppressed during lens shift, and high optical performance cannot be obtained. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (6-2) to 0.35. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (6-2) to 0.30.
 一方、本願の第6実施形態に係る光学系の条件式(6-2)の対応値が下限値を下回ると、第3aレンズ群の屈折力が相対的に大きくなり、第3aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。また、シフトレンズ群と第3cレンズ群の屈折力が相対的に小さくなる。このため、レンズシフト時にコマ収差が補正不足になってしまう。なお、本願の効果をより確実にするために、条件式(6-2)の下限値を-0.40とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-2)の下限値を-0.35とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (6-2) of the optical system according to the sixth embodiment of the present application is below the lower limit value, the refractive power of the 3a lens group becomes relatively large, and the 3a lens group alone A large amount of spherical aberration and coma occur. Further, the refractive powers of the shift lens group and the third c lens group become relatively small. For this reason, coma is insufficiently corrected during lens shift. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6-2) to −0.40. In order to further secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (6-2) to −0.35.
 また、本願の第6実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が最も像側に負レンズを有することが望ましい。この構成により、第1レンズ群単体で球面収差が発生することを抑え、第1レンズ群全体において球面収差とコマ収差を良好に補正することができる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the sixth embodiment of the present application, the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the first lens group has the negative lens closest to the image side. With this configuration, it is possible to suppress the occurrence of spherical aberration in the first lens unit alone, and to correct spherical aberration and coma well in the entire first lens unit. Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 また、本願の第6実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(6-3)を満足することが望ましい。
(6-3) 1.40<f1a/f1b<2.05
 ただし、
f1a:前記第1aレンズ群の焦点距離
f1b:前記第1bレンズ群の焦点距離
In the optical system according to the sixth embodiment of the present application, the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the following conditional expression (6-3) is satisfied.
(6-3) 1.40 <f1a / f1b <2.05
However,
f1a: focal length of the 1a lens group f1b: focal length of the 1b lens group
 条件式(6-3)は、第1aレンズ群と第1bレンズ群の焦点距離比の適切な範囲を規定するものである。本願の第6実施形態に係る光学系は、条件式(6-3)を満足することにより、第1aレンズ群単体で発生する球面収差とコマ収差を良好に補正することができる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 Conditional expression (6-3) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group. The optical system according to the sixth embodiment of the present application can satisfactorily correct the spherical aberration and the coma aberration generated in the single lens unit 1a by satisfying conditional expression (6-3). Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 本願の第6実施形態に係る光学系の条件式(6-3)の対応値が上限値を上回ると、第1aレンズ群の屈折力が相対的に小さくなり、第1aレンズ群単体で発生する球面収差とコマ収差が補正不足になってしまう。また、第1bレンズ群の屈折力が相対的に大きくなり、合焦時に球面収差の変動を抑えることができなくなるため、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(6-3)の上限値を2.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-3)の上限値を1.95とすることがより好ましい。 When the corresponding value of the conditional expression (6-3) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma are undercorrected. In addition, since the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6-3) to 2.00. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6-3) to 1.95.
 一方、本願の第6実施形態に係る光学系の条件式(6-3)の対応値が下限値を下回ると、第1aレンズ群の屈折力が相対的に大きくなり、第1aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。なお、本願の効果をより確実にするために、条件式(6-3)の下限値を1.45とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-3)の下限値を1.50とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (6-3) of the optical system according to the sixth embodiment of the present application is less than the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (6-3) to 1.45. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6-3) to 1.50.
 また、本願の第6実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が、物体側から順に、保護ガラスと、正レンズと、正レンズと、負レンズとから構成されていることが望ましい。この構成により、第1aレンズ群において球面収差を良好に補正することができる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the sixth embodiment of the present application, the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group is in order from the object side, protective glass, positive lens, positive lens, and negative lens. It is desirable to be composed of With this configuration, spherical aberration can be favorably corrected in the 1a lens group. Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 また、本願の第6実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1bレンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズとの接合レンズで構成されていることが望ましい。この構成により、第1bレンズ群において球面収差とコマ収差を良好に補正することができる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the sixth embodiment of the present application, the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and the 1a lens group and the 1b lens An air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group includes, in order from the object side, a negative meniscus lens and a positive lens with a convex surface facing the object side. It is desirable that the lens is composed of a cemented lens. With this configuration, it is possible to satisfactorily correct spherical aberration and coma in the 1b lens group. Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 また、本願の第6実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1aレンズ群が以下の条件式(6-4)を満足する少なくとも1枚の正レンズを有することが望ましい。
(6-4) 90<νdp
 ただし、
νdp:前記第1aレンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the sixth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group. The first a lens group and the first b The air gap with the lens group is the largest of the air gaps in the first lens group, and the first a lens group has at least one positive lens that satisfies the following conditional expression (6-4): It is desirable.
(6-4) 90 <νdp
However,
νdp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1a lens group
 条件式(6-4)は、第1aレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第6実施形態に係る光学系は、条件式(6-4)を満足することにより、第1レンズ群単体で軸上色収差と倍率色収差が発生することを抑えることができる。 Conditional expression (6-4) defines the Abbe number of the glass material of the positive lens in the 1a lens group. The optical system according to the sixth embodiment of the present application can suppress occurrence of longitudinal chromatic aberration and lateral chromatic aberration in the first lens unit alone by satisfying conditional expression (6-4).
 本願の第6実施形態に係る光学系の条件式(6-4)の対応値が下限値を下回ると、第1レンズ群単体で軸上色収差と倍率色収差が多大に発生し、本願の第6実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of conditional expression (6-4) of the optical system according to the sixth embodiment of the present application is lower than the lower limit value, axial chromatic aberration and lateral chromatic aberration are greatly generated in the first lens unit alone, and This is not preferable because the optical performance of the optical system according to the embodiment is deteriorated.
 また、本願の第6実施形態に係る光学系は、前記第2レンズ群が複数の負レンズを有し、前記複数の負レンズのうちで最も像側に配置された負レンズが以下の条件式(6-5)を満足することが望ましい。
(6-5) ndn<1.65
 ただし、
ndn:前記第2レンズ群中の前記複数の負レンズのうちで最も像側に配置された前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the sixth embodiment of the present application, the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the image side among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (6-5).
(6-5) ndn <1.65
However,
ndn: Refractive index with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged on the most image side among the plurality of negative lenses in the second lens group
 条件式(6-5)は、第2レンズ群中の複数の負レンズのうちで最も像側に配置された負レンズの硝材の屈折率を規定するものである。本願の第6実施形態に係る光学系は、条件式(6-5)を満足することにより、第2レンズ群単体で倍率色収差が発生することを抑えることができる。 Conditional expression (6-5) defines the refractive index of the glass material of the negative lens disposed closest to the image among the plurality of negative lenses in the second lens group. The optical system according to the sixth embodiment of the present application can satisfy the conditional expression (6-5) and suppress the occurrence of lateral chromatic aberration in the second lens unit alone.
 本願の第6実施形態に係る光学系の条件式(6-5)の対応値が上限値を上回ると、第2レンズ群単体で倍率色収差が多大に発生し、本願の第6実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (6-5) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, a large amount of chromatic aberration of magnification occurs in the second lens unit alone, and according to the sixth embodiment of the present application. This is not preferable because the optical performance of the optical system deteriorates.
 また、本願の第6実施形態に係る光学系は、前記第2レンズ群が複数の負レンズを有し、前記複数の負レンズのうちで最も物体側に配置された負レンズが以下の条件式(6-6)を満足することが望ましい。
(6-6) 49.7<νdn
 ただし、
νdn:前記第2レンズ群中の前記複数の負レンズのうちで最も物体側に配置された前記負レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the sixth embodiment of the present application, the second lens group includes a plurality of negative lenses, and the negative lens arranged closest to the object among the plurality of negative lenses is represented by the following conditional expression: It is desirable to satisfy (6-6).
(6-6) 49.7 <νdn
However,
νdn: Abbe number with respect to d-line (wavelength: 587.6 nm) of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
 条件式(6-6)は、第2レンズ群中の複数の負レンズのうちで最も物体側に配置された負レンズの硝材のアッベ数を規定するものである。本願の第6実施形態に係る光学系は、条件式(6-6)を満足することにより、第2レンズ群単体で軸上色収差が発生することを抑えることができる。 Conditional expression (6-6) defines the Abbe number of the glass material of the negative lens disposed closest to the object among the plurality of negative lenses in the second lens group. The optical system according to the sixth embodiment of the present application can suppress the occurrence of longitudinal chromatic aberration in the second lens unit alone by satisfying conditional expression (6-6).
 本願の第6実施形態に係る光学系の条件式(6-6)の対応値が下限値を下回ると、第2レンズ群単体で軸上色収差が多大に発生し、本願の第6実施形態に係る光学系の光学性能が悪化してしまうため好ましくない。 When the corresponding value of the conditional expression (6-6) of the optical system according to the sixth embodiment of the present application is lower than the lower limit value, axial chromatic aberration is greatly generated in the second lens unit alone, and the sixth embodiment of the present application is applied. Since the optical performance of the optical system is deteriorated, it is not preferable.
 また、本願の第6実施形態に係る光学系は、以下の条件式(6-7)を満足することが望ましい。
(6-7) -3.00<f1/f2<-2.00
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
Further, it is desirable that the optical system according to the sixth embodiment of the present application satisfies the following conditional expression (6-7).
(6-7) -3.00 <f1 / f2 <-2.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
 条件式(6-7)は、第1レンズ群と第2レンズ群の焦点距離比の適切な範囲を規定するものである。本願の第6実施形態に係る光学系は、条件式(6-7)を満足することにより、合焦時にコマ収差の変動を抑え、また第1レンズ群単体で球面収差が発生することを抑えることができる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図ることができる。 Conditional expression (6-7) defines an appropriate range of the focal length ratio between the first lens group and the second lens group. The optical system according to the sixth embodiment of the present application satisfies the conditional expression (6-7), thereby suppressing fluctuations in coma during focusing and suppressing occurrence of spherical aberration in the first lens unit alone. be able to. Thereby, the optical system according to the sixth embodiment of the present application can achieve higher performance.
 本願の第6実施形態に係る光学系の条件式(6-7)の対応値が上限値を上回ると、第1レンズ群の屈折力が相対的に小さくなる。このため、第1レンズ群がテレ比、即ち本願の第6実施形態に係る光学系の全長を焦点距離で割った値を小さくすることに寄与できなくなり、本願の第6実施形態に係る光学系の全長が大きくなってしまう。また、第2レンズ群の屈折力が相対的に大きくなるため、合焦時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(6-7)の上限値を-2.15とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-7)の上限値を-2.30とすることがより好ましい。 When the corresponding value of the conditional expression (6-7) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group becomes relatively small. For this reason, the first lens group cannot contribute to reducing the tele ratio, that is, the value obtained by dividing the total length of the optical system according to the sixth embodiment of the present application by the focal length, and the optical system according to the sixth embodiment of the present application. The total length of will increase. In addition, since the refractive power of the second lens group becomes relatively large, fluctuations in coma aberration cannot be suppressed during focusing, and high optical performance cannot be obtained. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6-7) to −2.15. In order to further secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (6-7) to −2.30.
 一方、本願の第6実施形態に係る光学系の条件式(6-7)の対応値が下限値を下回ると、第1レンズ群の屈折力が相対的に大きくなり、第1レンズ群単体で球面収差が多大に発生してしまう。また、第2レンズ群の屈折力が相対的に小さくなり、合焦時の第2レンズ群の移動量が多大になってしまう。なお、本願の効果をより確実にするために、条件式(6-7)の下限値を-2.85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-7)の下限値を-2.70とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (6-7) of the optical system according to the sixth embodiment of the present application is lower than the lower limit value, the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs. In addition, the refractive power of the second lens group becomes relatively small, and the amount of movement of the second lens group at the time of focusing becomes great. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6-7) to −2.85. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (6-7) to −2.70.
 また、本願の第6実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとから構成されていることが望ましい。この構成により、第2レンズ群においてコマ収差を良好に補正することができる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の劣化を抑えることができる。 In the optical system according to the sixth embodiment of the present application, the second lens group includes, in order from the object side, a negative lens having a concave surface directed toward the image side, and a cemented lens of a positive lens and a negative lens. It is desirable that With this configuration, coma can be favorably corrected in the second lens group. Thereby, the optical system according to the sixth embodiment of the present application can suppress deterioration of the optical performance during focusing while further improving the performance.
 また、本願の第6実施形態に係る光学系は、以下の条件式(6-8)を満足することが望ましい。
(6-8) 0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
In addition, it is desirable that the optical system according to the sixth embodiment of the present application satisfies the following conditional expression (6-8).
(6-8) 0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 条件式(6-8)は、本願の第6実施形態に係る光学系の焦点距離と第1レンズ群と第2レンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第6実施形態に係る光学系は、条件式(6-8)を満足することにより、第1レンズ群及び第2レンズ群で発生するコマ収差と倍率色収差を良好に補正することができる。これにより、本願の第6実施形態に係る光学系は、さらなる高性能化を図ることができる。 Conditional expression (6-8) defines an appropriate range of the ratio between the focal length of the optical system according to the sixth embodiment of the present application and the combined focal length of the first lens group and the second lens group. The optical system according to the sixth embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration generated in the first lens group and the second lens group by satisfying conditional expression (6-8). . Thereby, the optical system according to the sixth embodiment of the present application can achieve higher performance.
 本願の第6実施形態に係る光学系の条件式(6-8)の対応値が上限値を上回ると、第1レンズ群と第2レンズ群の屈折力が相対的に大きくなり、第1レンズ群及び第2レンズ群でコマ収差が多大に発生してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(6-8)の上限値を0.55とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-8)の上限値を0.53とすることがより好ましい。 When the corresponding value of the conditional expression (6-8) of the optical system according to the sixth embodiment of the present application exceeds the upper limit value, the refractive power of the first lens group and the second lens group becomes relatively large, and the first lens This is not preferable because coma aberration is greatly generated in the first lens group and the second lens group. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6-8) to 0.55. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6-8) to 0.53.
 一方、本願の第6実施形態に係る光学系の条件式(6-8)の対応値が下限値を下回ると、第1レンズ群と第2レンズ群の屈折力が相対的に小さくなり、第1レンズ群及び第2レンズ群で発生する倍率色収差が補正不足になるため好ましくない。なお、本願の効果をより確実にするために、条件式(6-8)の下限値を0.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6-8)の下限値を0.30とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (6-8) of the optical system according to the sixth embodiment of the present application is below the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small, and the first This is not preferable because the lateral chromatic aberration generated in the first lens group and the second lens group is insufficiently corrected. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6-8) to 0.20. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6-8) to 0.30.
 本願の光学装置は、上述した構成の第6実施形態に係る光学系を有することを特徴とする。これにより、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学装置を実現することができる。 The optical apparatus according to the present application includes the optical system according to the sixth embodiment having the above-described configuration. Thereby, it is possible to realize an optical device that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
 本願の第6実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設け、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むようにし、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、前記光学系が以下の条件式(6-1)を満足するようにすることを特徴とする。これにより、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学系を製造することができる。
(6-1) -1.60<βr×(1-βs)<-0.85
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
The optical system manufacturing method according to the sixth embodiment of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method of manufacturing an optical system having a third lens group, wherein an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, The antireflection film includes at least one layer formed by using a wet process, and the second lens group moves along the optical axis when focusing from an object at infinity to a near object, A part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis, and the optical system satisfies the following conditional expression (6-1): It is characterized by. Accordingly, it is possible to manufacture an optical system that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
(6-1) −1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 以下、本願の第7実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第7実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでおり、前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行い、以下の条件式(7-1)を満足することを特徴とする。
(7-1) 0.10<f/f12<0.55
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
Hereinafter, an optical system, an optical device, and an optical system manufacturing method according to the seventh embodiment of the present application will be described.
The optical system according to the seventh embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is subjected to a wet process. At least one layer formed by using the lens, and moving the second lens group along the optical axis performs focusing from an object at infinity to an object at a short distance. The following conditional expression (7− 1) is satisfied.
(7-1) 0.10 <f / f12 <0.55
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 上記のように本願の第7実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有している。この構成により、本願の第7実施形態に係る光学系は大きな焦点距離を有しながら小型化と高性能化とを両立することができる。 As described above, the optical system according to the seventh embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. And a third lens group. With this configuration, the optical system according to the seventh embodiment of the present application can achieve both miniaturization and high performance while having a large focal length.
 また、上記のように本願の第7実施形態に係る光学系は、第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行う。この構成により、比較的小型のモーターユニットによって第2レンズ群を駆動することが可能となる。 In addition, as described above, the optical system according to the seventh embodiment of the present application performs focusing from an object at infinity to a near object by moving the second lens group along the optical axis. With this configuration, the second lens group can be driven by a relatively small motor unit.
 条件式(7-1)は、第1レンズ群と第2レンズ群との合成屈折力を規定するものである。本願の第7実施形態に係る光学系は、条件式(7-1)を満足することにより、倍率色収差を良好に補正することができる。また、第2レンズ群から射出される光が収束光となる。このため、第2レンズ群をより像側に配置することができ、これに伴って第1レンズ群もより像側に配置することができるため、本願の第7実施形態に係る光学系の全長を小さくすることができる。また、倍率色収差を良好に補正することができる。 Conditional expression (7-1) defines the combined refractive power of the first lens group and the second lens group. The optical system according to the seventh embodiment of the present application can satisfactorily correct lateral chromatic aberration by satisfying conditional expression (7-1). Further, the light emitted from the second lens group becomes convergent light. For this reason, the second lens group can be disposed on the image side, and the first lens group can be disposed on the image side accordingly. Accordingly, the entire length of the optical system according to the seventh embodiment of the present application. Can be reduced. In addition, the lateral chromatic aberration can be corrected satisfactorily.
 本願の第7実施形態に係る光学系の条件式(7-1)の対応値が上限値を上回ると、倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-1)の上限値を0.54とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-1)の上限値を0.53とすることがより好ましい。 If the corresponding value of conditional expression (7-1) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-1) to 0.54. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-1) to 0.53.
 一方、本願の第7実施形態に係る光学系の条件式(7-1)の対応値が下限値を下回ると、第2レンズ群から射出される光が平行光となるため、本願の第7実施形態に係る光学系の全長が大きくなる。そこで、本願の第7実施形態に係る光学系の全長の短縮化を図ろうとすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-1)の下限値を0.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-1)の下限値を0.30とすることがより好ましい。
 以上の構成により、小型で良好な光学性能を備えた光学系を実現することができる。
On the other hand, when the corresponding value of the conditional expression (7-1) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, the light emitted from the second lens group becomes parallel light. The overall length of the optical system according to the embodiment is increased. Therefore, if it is attempted to shorten the overall length of the optical system according to the seventh embodiment of the present application, it will be difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (7-1) to 0.20. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-1) to 0.30.
With the above configuration, an optical system having a small size and good optical performance can be realized.
 また、本願の第7実施形態に係る光学系は、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいることを特徴とする。この構成により、本願の第7実施形態に係る光学系は、物体からの光が光学面で反射されることによって生じるゴーストやフレアをより低減させることができ、高い結像性能を達成することができる。 Further, in the optical system according to the seventh embodiment of the present application, an antireflection film is provided on at least one of the optical surfaces in the first lens group, the second lens group, and the third lens group, The antireflection film includes at least one layer formed by a wet process. With this configuration, the optical system according to the seventh embodiment of the present application can further reduce ghosts and flares caused by reflection of light from an object on an optical surface, and achieve high imaging performance. it can.
 また、本願の第7実施形態に係る光学系は、前記反射防止膜は多層膜であり、前記ウェットプロセスを用いて形成された層は、前記多層膜を構成する層のうちの最も表面側の層であることが望ましい。この構成により、前記ウェットプロセスを用いて形成された層と空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。 Further, in the optical system according to the seventh embodiment of the present application, the antireflection film is a multilayer film, and the layer formed by using the wet process is the most surface side of the layers constituting the multilayer film. A layer is desirable. With this configuration, the refractive index difference between the layer formed using the wet process and air can be reduced, so that the reflection of light can be further reduced and ghosts and flares can be further reduced. Can do.
 また、本願の第7実施形態に係る光学系は、前記ウェットプロセスを用いて形成された層のd線(波長λ=587.6nm)に対する屈折率をndとしたとき、ndが1.30以下であることが望ましい。この構成により、前記ウェットプロセスを用いて形成された層と空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。 Further, in the optical system according to the seventh embodiment of the present application, when the refractive index with respect to d line (wavelength λ = 587.6 nm) of the layer formed by using the wet process is nd, nd is 1.30 or less. It is desirable that With this configuration, the refractive index difference between the layer formed using the wet process and air can be reduced, so that the reflection of light can be further reduced and ghosts and flares can be further reduced. Can do.
 また、本願の第7実施形態に係る光学系は、前記反射防止膜が設けられた前記光学面は、像面側から見て凹形状のレンズ面であることが望ましい。第1レンズ群、第2レンズ群及び第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is preferable that the optical surface provided with the antireflection film is a concave lens surface when viewed from the image surface side. Of the optical surfaces in the first lens group, the second lens group, and the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image plane side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの像面側レンズ面であることが望ましい。第1レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第2レンズ群内のレンズの像面側レンズ面であることが望ましい。第2レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side is an image surface side lens surface of a lens in the second lens group. Of the optical surfaces in the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内のレンズの物体側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is preferable that the concave lens surface viewed from the image surface side is an object side lens surface of a lens in the third lens group. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内のレンズの像面側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side be an image surface side lens surface of a lens in the third lens group. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内の物体側から4番目のレンズの像面側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, the concave lens surface viewed from the image surface side is the image surface side lens surface of the fourth lens from the object side in the third lens group. It is desirable. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記反射防止膜が設けられた前記光学面は、物体側から見て凹形状のレンズ面であることが望ましい。第1レンズ群及び第2レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is preferable that the optical surface provided with the antireflection film is a concave lens surface when viewed from the object side. Of the optical surfaces in the first lens group and the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの物体側レンズ面であることが望ましい。第1レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is desirable that the concave lens surface when viewed from the object side is an object side lens surface of the lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの像面側レンズ面であることが望ましい。第1レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is desirable that the concave lens surface viewed from the object side is an image surface side lens surface of the lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第7実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第2レンズ群内のレンズの物体側レンズ面であることが望ましい。第2レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the seventh embodiment of the present application, it is desirable that the concave lens surface viewed from the object side is an object side lens surface of the lens in the second lens group. Of the optical surfaces in the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 なお、本願の第7実施形態に係る光学系における反射防止膜は、ウェットプロセスに限られず、ドライプロセス等によって形成してもよい。この場合、反射防止膜は屈折率が1.30以下となる層を少なくとも1層含むようにすることが好ましい。この構成により、反射防止膜をドライプロセス等によって形成した場合でも、反射防止膜をウェットプロセスによって形成した場合と同様の効果を得ることができる。なお、屈折率が1.30以下となる層は、多層膜を構成する層のうちの最も表面側の層であることが好ましい。 The antireflection film in the optical system according to the seventh embodiment of the present application is not limited to a wet process, and may be formed by a dry process or the like. In this case, the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained. Note that the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
 また、本願の第7実施形態に係る光学系は、前記第1レンズ群が以下の条件式(7-2)を満足する少なくとも1枚の正レンズを有することが望ましい。
(7-2) 80<νd1p<110
 ただし、
νd1p:前記第1レンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the seventh embodiment of the present application, it is preferable that the first lens group has at least one positive lens that satisfies the following conditional expression (7-2).
(7-2) 80 <νd1p <110
However,
νd1p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the first lens group
 条件式(7-2)は、第1レンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第7実施形態に係る光学系は、条件式(7-2)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (7-2) defines the Abbe number of the glass material of the positive lens in the first lens group. The optical system according to the seventh embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (7-2).
 本願の第7実施形態に係る光学系の条件式(7-2)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(7-2)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-2)の上限値を100とすることがより好ましい。 If the corresponding value of conditional expression (7-2) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-2) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-2) to 100.
 一方、本願の第7実施形態に係る光学系の条件式(7-2)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-2)の下限値を85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-2)の下限値を90とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (7-2) of the optical system according to the seventh embodiment of the present application is less than the lower limit value, it will be difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-2) to 85. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-2) to 90.
 また、本願の第7実施形態に係る光学系は、前記第1レンズ群が複数の正レンズを有し、前記複数の正レンズのうちで最も物体側に配置された正レンズが以下の条件式(7-3)を満足することが望ましい。
(7-3) 80<νd1pf<110
 ただし、
νd1pf:前記第1レンズ群中の前記複数の正レンズのうちで最も物体側に配置された前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
Further, in the optical system according to the seventh embodiment of the present application, the first lens group includes a plurality of positive lenses, and the positive lens arranged closest to the object among the plurality of positive lenses is represented by the following conditional expression: It is desirable to satisfy (7-3).
(7-3) 80 <νd1pf <110
However,
νd1pf: Abbe number with respect to the d-line (wavelength 587.6 nm) of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
 条件式(7-3)は、第1レンズ群中の複数の正レンズうちで最も物体側に配置された正レンズの硝材のアッベ数を規定するものである。本願の第7実施形態に係る光学系は、条件式(7-3)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (7-3) defines the Abbe number of the glass material of the positive lens disposed closest to the object among the plurality of positive lenses in the first lens group. The optical system according to the seventh embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (7-3).
 本願の第7実施形態に係る光学系の条件式(7-3)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(7-3)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-3)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (7-3) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-3) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-3) to 100.
 一方、本願の第7実施形態に係る光学系の条件式(7-3)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-3)の下限値を85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-3)の下限値を90とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (7-3) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, it will be difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (7-3) to 85. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-3) to 90.
 また、本願の第7実施形態に係る光学系は、前記第1レンズ群が以下の条件式(7-4)を満足する少なくとも1枚の負レンズを有することが望ましい。
(7-4) 1.50<nd1n<1.75
 ただし、
nd1n:前記第1レンズ群中の前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the seventh embodiment of the present application, it is preferable that the first lens group has at least one negative lens satisfying the following conditional expression (7-4).
(7-4) 1.50 <nd1n <1.75
However,
nd1n: refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the first lens group
 条件式(7-4)は、第1レンズ群中の負レンズの硝材の屈折率を規定するものである。本願の第7実施形態に係る光学系は、条件式(7-4)を満足することにより、軽量化を図りながら、コマ収差や像面湾曲を良好に補正することができる。 Conditional expression (7-4) defines the refractive index of the glass material of the negative lens in the first lens group. By satisfying conditional expression (7-4), the optical system according to the seventh embodiment of the present application can favorably correct coma and curvature of field while reducing the weight.
 本願の第7実施形態に係る光学系の条件式(7-4)の対応値が上限値を上回ると、前記第1レンズ群中の前記負レンズの硝材の比重が大きくなる。そこで、本願の第7実施形態に係る光学系の軽量化のために第1レンズ群中の他のレンズの比重を小さくすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-4)の上限値を1.70とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-4)の上限値を1.65とすることがより好ましい。 When the corresponding value of the conditional expression (7-4) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the first lens group increases. Therefore, if the specific gravity of other lenses in the first lens group is reduced in order to reduce the weight of the optical system according to the seventh embodiment of the present application, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (7-4) to 1.70. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-4) to 1.65.
 一方、本願の第7実施形態に係る光学系の条件式(7-4)の対応値が下限値を下回ると、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-4)の下限値を1.55とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-4)の下限値を1.60とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (7-4) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, it becomes difficult to correct the curvature of field. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (7-4) to 1.55. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (7-4) to 1.60.
 また、本願の第7実施形態に係る光学系は、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができ、さらに防振時の偏芯収差の発生を問題ないレベルまで抑えることができる。 In addition, in the optical system according to the seventh embodiment of the present application, it is preferable that at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem.
 また、本願の第7実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、正の屈折力を有する第3aレンズ群と、負の屈折力を有する第3bレンズ群と、正の屈折力を有する第3cレンズ群とから構成され、前記第3bレンズ群が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができ、さらに防振時の偏芯収差の発生を問題ないレベルまで抑えることができる。また、第3bレンズ群を小径化できるので、防振時に第3bレンズ群を駆動するためのメカユニットを小型化することもできる。 In the optical system according to the seventh embodiment of the present application, the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, It is desirable that the third lens unit is composed of a third lens unit having positive refractive power, and the third lens unit moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem. In addition, since the diameter of the 3b lens group can be reduced, the mechanical unit for driving the 3b lens group during vibration isolation can be reduced in size.
 また、本願の第7実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、負レンズと正レンズとの接合レンズを有することが望ましい。この構成により、偏芯収差を良好に補正することができる。なお、当該接合レンズは、前記第1レンズ群中の最も像側に配置することがより好ましい。 In the optical system according to the seventh embodiment of the present application, it is preferable that the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, the decentration aberration can be corrected satisfactorily. The cemented lens is more preferably arranged on the most image side in the first lens group.
 また、本願の第7実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(7-5)を満足することが望ましい。
(7-5) 0.30<TL1a/TL1<0.70
 ただし、
TL1a:前記第1aレンズ群の光軸に沿った長さ
TL1:前記第1レンズ群の光軸に沿った長さ
In the optical system according to the seventh embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group and the following conditional expression (7-5) is satisfied.
(7-5) 0.30 <TL1a / TL1 <0.70
However,
TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
 条件式(7-5)は、第1レンズ群の長さに対する第1aレンズ群の長さを規定するものである。本願の第7実施形態に係る光学系は、条件式(7-5)を満足することにより、軽量化を図りながら、コマ収差を良好に補正することができる。 Conditional expression (7-5) defines the length of the first lens group with respect to the length of the first lens group. The optical system according to the seventh embodiment of the present application can satisfactorily correct the coma aberration while reducing the weight by satisfying conditional expression (7-5).
 本願の第7実施形態に係る光学系の条件式(7-5)の対応値が上限値を上回ると、第1レンズ群の重量が増大してしまう。そこで、軽量化のために、例えば第1レンズ群中の負レンズに屈折率の小さな硝材を採用すれば、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-5)の上限値を0.60とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-5)の上限値を0.50とすることがより好ましい。 When the corresponding value of the conditional expression (7-5) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, the weight of the first lens group increases. Therefore, for example, if a glass material having a small refractive index is used for the negative lens in the first lens group in order to reduce the weight, it becomes difficult to correct curvature of field. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-5) to 0.60. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (7-5) to 0.50.
 一方、本願の第7実施形態に係る光学系の条件式(7-5)の対応値が下限値を下回ると、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-5)の下限値を0.35とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-5)の下限値を0.40とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (7-5) of the optical system according to the seventh embodiment of the present application is less than the lower limit value, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-5) to 0.35. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (7-5) to 0.40.
 なお、本願の第7実施形態に係る光学系は、前記第1aレンズ群が、物体側から順に、正レンズと、正レンズと、負レンズとからなることが好ましい。この構成により、本願の第7実施形態に係る光学系の軽量化を図ることができる。
 また、本願の第7実施形態に係る光学系は、前記第1aレンズ群が、最も物体側に保護フィルタガラスを有することが好ましい。保護フィルタガラスは、実質的に屈折力を有しないレンズであって、その焦点距離が本願の第7実施形態に係る光学系の焦点距離の10倍以上であることが好ましい。特に、本願の第7実施形態に係る光学系は、保護フィルタガラスが物体側に凸面を向けた負メニスカス形状であることが好ましい。この構成により、ゴーストを良好にカットすることができる。
 また、本願の第7実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、負レンズと、正レンズを有することが望ましい。この構成により、近距離物体合焦時に球面収差の変動を良好に補正することができる。特に、本願の第7実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、負レンズと正レンズとの接合レンズのみからなることが好ましい。この構成により、本願の第7実施形態に係る光学系の軽量化を図ることができる。
In the optical system according to the seventh embodiment of the present application, it is preferable that the 1a lens group includes a positive lens, a positive lens, and a negative lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the seventh embodiment of the present application.
In the optical system according to the seventh embodiment of the present application, it is preferable that the first lens group has a protective filter glass on the most object side. The protective filter glass is a lens having substantially no refractive power, and the focal length thereof is preferably 10 times or more the focal length of the optical system according to the seventh embodiment of the present application. In particular, the optical system according to the seventh embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
In the optical system according to the seventh embodiment of the present application, it is preferable that the first-b lens group includes a negative lens and a positive lens in order from the object side. With this configuration, it is possible to satisfactorily correct variations in spherical aberration when focusing on a short-distance object. In particular, in the optical system according to the seventh embodiment of the present application, it is preferable that the first b lens group includes only a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the seventh embodiment of the present application.
 また、本願の第7実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1bレンズ群が、以下の条件式(7-6)を満足する正レンズを有することが望ましい。
(7-6) 70<νd1bp<110
 ただし、
νd1bp:前記第1bレンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the seventh embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a 1b lens group, and the first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group has a positive lens that satisfies the following conditional expression (7-6). .
(7-6) 70 <νd1bp <110
However,
νd1bp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1b lens group
 条件式(7-6)は、第1bレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第7実施形態に係る光学系は、条件式(7-6)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (7-6) defines the Abbe number of the glass material of the positive lens in the 1b lens group. The optical system according to the seventh embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (7-6).
 本願の第7実施形態に係る光学系の条件式(7-6)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(7-6)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-6)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (7-6) of the optical system according to the seventh embodiment of the present application exceeds the upper limit, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-6) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-6) to 100.
 一方、本願の第7実施形態に係る光学系の条件式(7-6)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-6)の下限値を75とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-6)の下限値を80とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (7-6) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, it is difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-6) to 75. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-6) to 80.
 また、本願の第7実施形態に係る光学系は、前記第2レンズ群が、2つの負レンズ成分を有することが望ましい。この構成により、コマ収差を良好に補正することができる。ここで、本願の第7実施形態において「レンズ成分」とは、2枚以上のレンズを接合してなる接合レンズ、或いは単レンズをいう。
 なお、本願の第7実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、負レンズと、正レンズと、負レンズとを有する構成としてもよい。また、前記第2レンズ群が、物体側から順に、正レンズと、負レンズと、負レンズとを有する構成としてもよい。これらの構成により、コマ収差を良好に補正することができる。
In the optical system according to the seventh embodiment of the present application, it is desirable that the second lens group has two negative lens components. With this configuration, coma can be corrected well. Here, in the seventh embodiment of the present application, the “lens component” refers to a cemented lens or a single lens formed by cementing two or more lenses.
In the optical system according to the seventh embodiment of the present application, the second lens group may include a negative lens, a positive lens, and a negative lens in order from the object side. The second lens group may include a positive lens, a negative lens, and a negative lens in order from the object side. With these configurations, coma can be corrected well.
 また、本願の第7実施形態に係る光学系は、前記第2レンズ群が以下の条件式(7-7)を満足する正レンズを有することが望ましい。
(7-7) 15<νd2p<30
 ただし、
νd2p:前記第2レンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the seventh embodiment of the present application, it is preferable that the second lens group includes a positive lens that satisfies the following conditional expression (7-7).
(7-7) 15 <νd2p <30
However,
νd2p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the second lens group
 条件式(7-7)は、第2レンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第7実施形態に係る光学系は、条件式(7-7)を満足することにより、倍率色収差や軸上色収差を良好に補正することができる。 Conditional expression (7-7) defines the Abbe number of the glass material of the positive lens in the second lens group. The optical system according to the seventh embodiment of the present application can satisfactorily correct lateral chromatic aberration and axial chromatic aberration by satisfying conditional expression (7-7).
 本願の第7実施形態に係る光学系の条件式(7-7)の対応値が上限値を上回ると、倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-7)の上限値を27とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-7)の上限値を25とすることがより好ましい。 If the corresponding value of the conditional expression (7-7) of the optical system according to the seventh embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-7) to 27. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7-7) to 25.
 一方、本願の第7実施形態に係る光学系の条件式(7-7)の対応値が下限値を下回ると、短波長の光の透過率が低下することを防ぐため、第2レンズ群よりも像側に位置するレンズ群に分散の大きな硝材からなるレンズを用いることができなくなってしまう。このため、軸上色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(7-7)の下限値を16とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7-7)の下限値を17とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (7-7) of the optical system according to the seventh embodiment of the present application is lower than the lower limit value, in order to prevent the transmittance of light having a short wavelength from decreasing, However, it becomes impossible to use a lens made of a glass material having a large dispersion in the lens group located on the image side. This makes it difficult to correct axial chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (7-7) to 16. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7-7) to 17.
 本願の光学装置は、上述した構成の第7実施形態に係る光学系を有することを特徴とする。これにより、小型で良好な光学性能を備えた光学装置を実現することができる。 The optical apparatus according to the present application includes the optical system according to the seventh embodiment having the above-described configuration. Thereby, an optical device having a small size and good optical performance can be realized.
 本願の第7実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設け、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むようにし、前記光学系が以下の条件式(7-1)を満足するようにし、前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにすることを特徴とする。これにより、小型で良好な光学性能を備えた光学系を製造することができる。
(7-1) 0.10<f/f12<0.55
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
The optical system manufacturing method according to the seventh embodiment of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method of manufacturing an optical system having a third lens group, wherein an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, The antireflection film includes at least one layer formed by a wet process, the optical system satisfies the following conditional expression (7-1), and the second lens group is moved along the optical axis. It is characterized in that focusing from an object at infinity to a near object is performed by moving the object. Thereby, an optical system having a small size and good optical performance can be manufactured.
(7-1) 0.10 <f / f12 <0.55
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 次に、本願の第8実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第8実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでおり、前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行い、前記第2レンズ群が、少なくとも3枚のレンズを有し、以下の条件式(8-1)を満足することを特徴とする。
(8-1) 0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
Next, an optical system, an optical device, and an optical system manufacturing method according to the eighth embodiment of the present application will be described.
The optical system according to the eighth embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is subjected to a wet process. Including at least one layer formed by using the second lens group to move from the object at infinity to the near object by moving the second lens group along the optical axis. It has at least three lenses and satisfies the following conditional expression (8-1).
(8-1) 0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 上記のように本願の第8実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有している。この構成により、本願の第8実施形態に係る光学系は大きな焦点距離を有しながら小型化と高性能化とを両立することができる。 As described above, the optical system according to the eighth embodiment of the present application includes, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power. And a third lens group. With this configuration, the optical system according to the eighth embodiment of the present application can achieve both miniaturization and high performance while having a large focal length.
 また、上記のように本願の第8実施形態に係る光学系は、第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行う。この構成により、比較的小型のモーターユニットをよって第2レンズ群を駆動することが可能となる。
 また、上記のように本願の第8実施形態に係る光学系は、第2レンズ群が少なくとも3枚のレンズを有する。この構成により、コマ収差を良好に補正することができる。
Further, as described above, the optical system according to the eighth embodiment of the present application performs focusing from an infinitely distant object to a close object by moving the second lens group along the optical axis. With this configuration, the second lens group can be driven by a relatively small motor unit.
As described above, in the optical system according to the eighth embodiment of the present application, the second lens group includes at least three lenses. With this configuration, coma can be corrected well.
 条件式(8-1)は、第1レンズ群と第2レンズ群との合成屈折力を規定するものである。本願の第8実施形態に係る光学系は、条件式(8-1)を満足することにより、倍率色収差を良好に補正することができる。また、第2レンズ群から射出される光が収束光となる。このため、第2レンズ群をより像側に配置することができ、これに伴って第1レンズ群もより像側に配置することができるため、本願の第8実施形態に係る光学系の全長を小さくすることができる。また、倍率色収差を良好に補正することができる。 Conditional expression (8-1) defines the combined refractive power of the first lens group and the second lens group. The optical system according to the eighth embodiment of the present application can satisfactorily correct lateral chromatic aberration by satisfying conditional expression (8-1). Further, the light emitted from the second lens group becomes convergent light. For this reason, since the second lens group can be arranged on the image side, and the first lens group can be arranged on the image side accordingly, the entire length of the optical system according to the eighth embodiment of the present application. Can be reduced. In addition, the lateral chromatic aberration can be corrected satisfactorily.
 本願の第8実施形態に係る光学系の条件式(8-1)の対応値が上限値を上回ると、倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-1)の上限値を0.80とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-1)の上限値を0.75とすることがより好ましい。 If the corresponding value of conditional expression (8-1) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (8-1) to 0.80. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-1) to 0.75.
 一方、本願の第8実施形態に係る光学系の条件式(8-1)の対応値が下限値を下回ると、第2レンズ群から射出される光が平行光となるため、本願の第8実施形態に係る光学系の全長が大きくなる。そこで、本願の第8実施形態に係る光学系の全長の短縮化を図ろうとすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-1)の下限値を0.20とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-1)の下限値を0.30とすることがより好ましい。
 以上の構成により、小型で良好な光学性能を備えた光学系を実現することができる。
On the other hand, when the corresponding value of the conditional expression (8-1) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, the light emitted from the second lens group becomes parallel light. The overall length of the optical system according to the embodiment is increased. Therefore, if it is attempted to shorten the overall length of the optical system according to the eighth embodiment of the present application, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (8-1) to 0.20. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (8-1) to 0.30.
With the above configuration, an optical system having a small size and good optical performance can be realized.
 また、本願の第8実施形態に係る光学系は、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいることを特徴とする。この構成により、本願の第8実施形態に係る光学系は、物体からの光が光学面で反射されることによって生じるゴーストやフレアをより低減させることができ、高い結像性能を達成することができる。 In the optical system according to the eighth embodiment of the present application, an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, The antireflection film includes at least one layer formed by a wet process. With this configuration, the optical system according to the eighth embodiment of the present application can further reduce ghosts and flares caused by reflection of light from an object on an optical surface, and achieve high imaging performance. it can.
 また、本願の第8実施形態に係る光学系は、前記反射防止膜は多層膜であり、前記ウェットプロセスを用いて形成された層は、前記多層膜を構成する層のうちの最も表面側の層であることが望ましい。この構成により、前記ウェットプロセスを用いて形成された層と空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。 Further, in the optical system according to the eighth embodiment of the present application, the antireflection film is a multilayer film, and the layer formed by using the wet process is the most surface side of the layers constituting the multilayer film. A layer is desirable. With this configuration, the refractive index difference between the layer formed using the wet process and air can be reduced, so that the reflection of light can be further reduced and ghosts and flares can be further reduced. Can do.
 また、本願の第8実施形態に係る光学系は、前記ウェットプロセスを用いて形成された層のd線(波長λ=587.6nm)に対する屈折率をndとしたとき、ndが1.30以下であることが望ましい。この構成により、前記ウェットプロセスを用いて形成された層と空気との屈折率差を小さくすることができるため、光の反射をより小さくすることが可能になり、ゴーストやフレアをさらに低減させることができる。 Further, in the optical system according to the eighth embodiment of the present application, when the refractive index with respect to d line (wavelength λ = 587.6 nm) of the layer formed by using the wet process is nd, nd is 1.30 or less. It is desirable that With this configuration, the refractive index difference between the layer formed using the wet process and air can be reduced, so that the reflection of light can be further reduced and ghosts and flares can be further reduced. Can do.
 また、本願の第8実施形態に係る光学系は、前記反射防止膜が設けられた前記光学面は、像面側から見て凹形状のレンズ面であることが望ましい。第1レンズ群、第2レンズ群及び第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the optical surface provided with the antireflection film is a concave lens surface when viewed from the image surface side. Of the optical surfaces in the first lens group, the second lens group, and the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image plane side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの像面側レンズ面であることが望ましい。第1レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is desirable that the concave lens surface when viewed from the image surface side be an image surface side lens surface of a lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第2レンズ群内のレンズの像面側レンズ面であることが望ましい。第2レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the concave lens surface viewed from the image surface side is an image surface side lens surface of a lens in the second lens group. Of the optical surfaces in the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内のレンズの物体側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the concave lens surface viewed from the image surface side be an object side lens surface of a lens in the third lens group. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内のレンズの像面側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the concave lens surface viewed from the image surface side be an image surface side lens surface of a lens in the third lens group. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記像面側から見て凹形状のレンズ面は、前記第3レンズ群内の物体側から4番目のレンズの像面側レンズ面であることが望ましい。第3レンズ群における光学面のうち、像面側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, the concave lens surface viewed from the image surface side is the image surface side lens surface of the fourth lens from the object side in the third lens group. It is desirable. Of the optical surfaces in the third lens group, reflected light tends to be generated on a concave lens surface as viewed from the image surface side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記反射防止膜が設けられた前記光学面は、物体側から見て凹形状のレンズ面であることが望ましい。第1レンズ群及び第2レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the optical surface provided with the antireflection film is a concave lens surface when viewed from the object side. Of the optical surfaces in the first lens group and the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの物体側レンズ面であることが望ましい。第1レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the concave lens surface viewed from the object side is an object side lens surface of the lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第1レンズ群内のレンズの像面側レンズ面であることが望ましい。第1レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the concave lens surface viewed from the object side is an image surface side lens surface of a lens in the first lens group. Of the optical surfaces in the first lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 また、本願の第8実施形態に係る光学系は、前記物体側から見て凹形状のレンズ面は、前記第2レンズ群内のレンズの物体側レンズ面であることが望ましい。第2レンズ群における光学面のうち、物体側から見て凹形状のレンズ面では反射光が発生しやすい。このため、斯かるレンズ面に反射防止膜を形成することで、ゴーストやフレアを効果的に低減させることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the concave lens surface viewed from the object side is an object side lens surface of a lens in the second lens group. Of the optical surfaces in the second lens group, reflected light tends to be generated on a concave lens surface as viewed from the object side. For this reason, a ghost and flare can be effectively reduced by forming an antireflection film on such a lens surface.
 なお、本願の第8実施形態に係る光学系における反射防止膜は、ウェットプロセスに限られず、ドライプロセス等によって形成してもよい。この場合、反射防止膜は屈折率が1.30以下となる層を少なくとも1層含むようにすることが好ましい。この構成により、反射防止膜をドライプロセス等によって形成した場合でも、反射防止膜をウェットプロセスによって形成した場合と同様の効果を得ることができる。なお、屈折率が1.30以下となる層は、多層膜を構成する層のうちの最も表面側の層であることが好ましい。 Note that the antireflection film in the optical system according to the eighth embodiment of the present application is not limited to a wet process, and may be formed by a dry process or the like. In this case, the antireflection film preferably includes at least one layer having a refractive index of 1.30 or less. With this configuration, even when the antireflection film is formed by a dry process or the like, the same effect as when the antireflection film is formed by a wet process can be obtained. Note that the layer having a refractive index of 1.30 or less is preferably the outermost layer among the layers constituting the multilayer film.
 また、本願の第8実施形態に係る光学系は、前記第2レンズ群中の前記少なくとも3枚のレンズのうち、少なくとも2枚が負レンズであることが望ましい。この構成により、コマ収差を良好に補正することができる。
 なお、本願の第8実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、負レンズと、正レンズと、負レンズとを有する構成、又は、物体側から順に、正レンズと、負レンズと、負レンズとを有する構成とすることがより好ましい。また、これらの構成において、正レンズと負レンズとを接合することが最も好ましい。以上の構成により、コマ収差をより良好に補正することができる。
In the optical system according to the eighth embodiment of the present application, it is preferable that at least two of the at least three lenses in the second lens group are negative lenses. With this configuration, coma can be corrected well.
In the optical system according to the eighth embodiment of the present application, the second lens group includes a negative lens, a positive lens, and a negative lens in order from the object side, or a positive lens in order from the object side. And a negative lens and a negative lens are more preferable. In these configurations, it is most preferable to join a positive lens and a negative lens. With the above configuration, coma aberration can be corrected more favorably.
 また、本願の第8実施形態に係る光学系は、前記第2レンズ群が以下の条件式(8-2)を満足する少なくとも1枚の負レンズを有することが望ましい。
(8-2) 1.45<nd2n<1.65
 ただし、
nd2n:前記第2レンズ群中の前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the eighth embodiment of the present application, it is preferable that the second lens group includes at least one negative lens that satisfies the following conditional expression (8-2).
(8-2) 1.45 <nd2n <1.65
However,
nd2n: refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the second lens group
 条件式(8-2)は、第2レンズ群中の負レンズの硝材の屈折率を規定するものである。本願の第8実施形態に係る光学系は、条件式(8-2)を満足することにより、合焦レンズ群である第2レンズ群の軽量化を図りながら、コマ収差や像面湾曲を良好に補正することができる。 Conditional expression (8-2) defines the refractive index of the glass material of the negative lens in the second lens group. By satisfying conditional expression (8-2), the optical system according to the eighth embodiment of the present application achieves good coma and curvature of field while reducing the weight of the second lens group that is the focusing lens group. Can be corrected.
 本願の第8実施形態に係る光学系の条件式(8-2)の対応値が上限値を上回ると、前記第2レンズ群中の前記負レンズの硝材の比重が大きくなる。そこで、本願の第8実施形態に係る光学系の軽量化のために第2レンズ群中の他のレンズの比重を小さくすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-2)の上限値を1.64とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-2)の上限値を1.63とすることがより好ましい。 When the corresponding value of the conditional expression (8-2) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the second lens group increases. Therefore, if the specific gravity of other lenses in the second lens group is reduced in order to reduce the weight of the optical system according to the eighth embodiment of the present application, it will be difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-2) to 1.64. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (8-2) to 1.63.
 一方、本願の第8実施形態に係る光学系の条件式(8-2)の対応値が下限値を下回ると、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-2)の下限値を1.48とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-2)の下限値を1.50とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (8-2) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-2) to 1.48. In order to further secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (8-2) to 1.50.
 また、本願の第8実施形態に係る光学系は、前記第2レンズ群が以下の条件式(8-3)を満足する正レンズを有することが望ましい。
(8-3) 15<νd2p<30
 ただし、
νd2p:前記第2レンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the eighth embodiment of the present application, it is preferable that the second lens group includes a positive lens that satisfies the following conditional expression (8-3).
(8-3) 15 <νd2p <30
However,
νd2p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the second lens group
 条件式(8-3)は、第2レンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第8実施形態に係る光学系は、条件式(8-3)を満足することにより、倍率色収差や軸上色収差を良好に補正することができる。 Conditional expression (8-3) defines the Abbe number of the glass material of the positive lens in the second lens group. The optical system according to the eighth embodiment of the present application can satisfactorily correct lateral chromatic aberration and axial chromatic aberration by satisfying conditional expression (8-3).
 本願の第8実施形態に係る光学系の条件式(8-3)の対応値が上限値を上回ると、倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-3)の上限値を27とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-3)の上限値を25とすることがより好ましい。 If the corresponding value of the conditional expression (8-3) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it will be difficult to correct lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (8-3) to 27. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-3) to 25.
 一方、本願の第8実施形態に係る光学系の条件式(8-3)の対応値が下限値を下回ると、短波長の光の透過率が低下することを防ぐため、第2レンズ群よりも像側に位置するレンズ群に分散の大きな硝材からなるレンズを用いることができなくなってしまう。このため、軸上色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-3)の下限値を16とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-3)の下限値を17とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (8-3) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, in order to prevent the transmittance of light having a short wavelength from decreasing, However, it becomes impossible to use a lens made of a glass material having a large dispersion in the lens group located on the image side. This makes it difficult to correct axial chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (8-3) to 16. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-3) to 17.
 また、本願の第8実施形態に係る光学系は、前記第1レンズ群が以下の条件式(8-4)を満足する少なくとも1枚の正レンズを有することが望ましい。
(8-4) 80<νd1p<110
 ただし、
νd1p:前記第1レンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the eighth embodiment of the present application, it is desirable that the first lens group has at least one positive lens that satisfies the following conditional expression (8-4).
(8-4) 80 <νd1p <110
However,
νd1p: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the first lens group
 条件式(8-4)は、第1レンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第8実施形態に係る光学系は、条件式(8-4)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (8-4) defines the Abbe number of the glass material of the positive lens in the first lens group. The optical system according to the eighth embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (8-4).
 本願の第8実施形態に係る光学系の条件式(8-4)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(8-4)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-4)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (8-4) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (8-4) to 105. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-4) to 100.
 一方、本願の第8実施形態に係る光学系の条件式(8-4)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-4)の下限値を85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-4)の下限値を90とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (8-4) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, it will be difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-4) to 85. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-4) to 90.
 また、本願の第8実施形態に係る光学系は、前記第1レンズ群が複数の正レンズを有し、前記複数の正レンズのうちで最も物体側に配置された正レンズが以下の条件式(8-5)を満足することが望ましい。
(8-5) 80<νd1pf<110
 ただし、
νd1pf:前記第1レンズ群中の前記複数の正レンズのうちで最も物体側に配置された前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the eighth embodiment of the present application, the first lens group includes a plurality of positive lenses, and the positive lens arranged closest to the object among the plurality of positive lenses is represented by the following conditional expression: It is desirable to satisfy (8-5).
(8-5) 80 <νd1pf <110
However,
νd1pf: Abbe number with respect to the d-line (wavelength 587.6 nm) of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
 条件式(8-5)は、第1レンズ群中の複数の正レンズうちで最も物体側に配置された正レンズの硝材のアッベ数を規定するものである。本願の第8実施形態に係る光学系は、条件式(8-5)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (8-5) defines the Abbe number of the glass material of the positive lens disposed closest to the object among the plurality of positive lenses in the first lens group. The optical system according to the eighth embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (8-5).
 本願の第8実施形態に係る光学系の条件式(8-5)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(8-5)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-5)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (8-5) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-5) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-5) to 100.
 一方、本願の第8実施形態に係る光学系の条件式(8-5)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-5)の下限値を85とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-5)の下限値を90とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (8-5) of the optical system according to the eighth embodiment of the present application is lower than the lower limit value, it becomes difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-5) to 85. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-5) to 90.
 また、本願の第8実施形態に係る光学系は、前記第1レンズ群が以下の条件式(8-6)を満足する少なくとも1枚の負レンズを有することが望ましい。
(8-6) 1.50<nd1n<1.75
 ただし、
nd1n:前記第1レンズ群中の前記負レンズの硝材のd線(波長587.6nm)に対する屈折率
In the optical system according to the eighth embodiment of the present application, it is preferable that the first lens group has at least one negative lens satisfying the following conditional expression (8-6).
(8-6) 1.50 <nd1n <1.75
However,
nd1n: refractive index with respect to d-line (wavelength 587.6 nm) of the glass material of the negative lens in the first lens group
 条件式(8-6)は、第1レンズ群中の負レンズの硝材の屈折率を規定するものである。本願の第8実施形態に係る光学系は、条件式(8-6)を満足することにより、軽量化を図りながら、コマ収差や像面湾曲を良好に補正することができる。 Conditional expression (8-6) defines the refractive index of the glass material of the negative lens in the first lens group. The optical system according to the eighth embodiment of the present application can satisfactorily correct coma and curvature of field while reducing the weight by satisfying conditional expression (8-6).
 本願の第8実施形態に係る光学系の条件式(8-6)の対応値が上限値を上回ると、前記第1レンズ群中の前記負レンズの硝材の比重が大きくなる。そこで、本願の第8実施形態に係る光学系の軽量化のために第1レンズ群中の他のレンズの比重を小さくすれば、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-6)の上限値を1.70とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-6)の上限値を1.65とすることがより好ましい。 When the corresponding value of the conditional expression (8-6) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, the specific gravity of the glass material of the negative lens in the first lens group increases. Therefore, if the specific gravity of other lenses in the first lens group is reduced in order to reduce the weight of the optical system according to the eighth embodiment of the present application, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-6) to 1.70. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-6) to 1.65.
 一方、本願の第8実施形態に係る光学系の条件式(8-6)の対応値が下限値を下回ると、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-6)の下限値を1.55とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-6)の下限値を1.60とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (8-6) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, it becomes difficult to correct the curvature of field. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (8-6) to 1.55. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (8-6) to 1.60.
 また、本願の第8実施形態に係る光学系は、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができ、さらに防振時の偏芯収差の発生を問題ないレベルまで抑えることができる。 In addition, in the optical system according to the eighth embodiment of the present application, it is preferable that at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem.
 また、本願の第8実施形態に係る光学系は、前記第3レンズ群が、物体側から順に、正の屈折力を有する第3aレンズ群と、負の屈折力を有する第3bレンズ群と、正の屈折力を有する第3cレンズ群とから構成され、前記第3bレンズ群が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができ、さらに防振時の偏芯収差の発生を問題ないレベルまで抑えることができる。また、第3bレンズ群を小径化できるので、防振時に第3bレンズ群を駆動するためのメカユニットを小型化することもできる。 Further, in the optical system according to the eighth embodiment of the present application, the third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, It is desirable that the third lens unit is composed of a third lens unit having positive refractive power, and the third lens unit moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, image blur due to camera shake or the like can be corrected, that is, image stabilization can be performed, and the occurrence of decentration aberrations during image stabilization can be suppressed to a level where there is no problem. In addition, since the diameter of the 3b lens group can be reduced, the mechanical unit for driving the 3b lens group during vibration isolation can be reduced in size.
 また、本願の第8実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、負レンズと正レンズとの接合レンズを有することが望ましい。この構成により、偏芯収差を良好に補正することができる。なお、当該接合レンズは、前記第1レンズ群中の最も像側に配置することがより好ましい。 In the optical system according to the eighth embodiment of the present application, it is preferable that the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, the decentration aberration can be corrected satisfactorily. The cemented lens is more preferably arranged on the most image side in the first lens group.
 また、本願の第8実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(8-7)を満足することが望ましい。
(8-7) 0.30<TL1a/TL1<0.70
 ただし、
TL1a:前記第1aレンズ群の光軸に沿った長さ
TL1:前記第1レンズ群の光軸に沿った長さ
In the optical system according to the eighth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a first b lens group. The first a lens group and the first b It is desirable that the air gap with the lens group is the largest among the air gaps in the first lens group, and the following conditional expression (8-7) is satisfied.
(8-7) 0.30 <TL1a / TL1 <0.70
However,
TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
 条件式(8-7)は、第1レンズ群の長さに対する第1aレンズ群の長さを規定するものである。本願の第8実施形態に係る光学系は、条件式(8-7)を満足することにより、軽量化を図りながら、コマ収差を良好に補正することができる。 Conditional expression (8-7) defines the length of the first lens group with respect to the length of the first lens group. By satisfying conditional expression (8-7), the optical system according to the eighth embodiment of the present application can correct coma favorably while achieving weight reduction.
 本願の第8実施形態に係る光学系の条件式(8-7)の対応値が上限値を上回ると、第1レンズ群の重量が増大してしまう。そこで、軽量化のために、例えば第1レンズ群中の負レンズに屈折率の小さな硝材を採用すれば、像面湾曲を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-7)の上限値を0.60とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-7)の上限値を0.50とすることがより好ましい。 When the corresponding value of the conditional expression (8-7) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, the weight of the first lens group increases. Therefore, for example, if a glass material having a small refractive index is used for the negative lens in the first lens group in order to reduce the weight, it becomes difficult to correct curvature of field. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-7) to 0.60. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-7) to 0.50.
 一方、本願の第8実施形態に係る光学系の条件式(8-7)の対応値が下限値を下回ると、コマ収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-7)の下限値を0.35とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-7)の下限値を0.40とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (8-7) of the optical system according to the eighth embodiment of the present application is less than the lower limit value, it becomes difficult to correct coma. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-7) to 0.35. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-7) to 0.40.
 なお、本願の第8実施形態に係る光学系は、前記第1aレンズ群が、物体側から順に、正レンズと、正レンズと、負レンズとからなることが好ましい。この構成により、本願の第8実施形態に係る光学系の軽量化を図ることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the first-a lens group includes a positive lens, a positive lens, and a negative lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the eighth embodiment of the present application.
 また、本願の第8実施形態に係る光学系は、前記第1aレンズ群が、最も物体側に保護フィルタガラスを有することが好ましい。保護フィルタガラスは、実質的に屈折力を有しないレンズであって、その焦点距離が本願の第8実施形態に係る光学系の焦点距離の10倍以上であることが好ましい。特に、本願の第8実施形態に係る光学系は、保護フィルタガラスが物体側に凸面を向けた負メニスカス形状であることが好ましい。この構成により、ゴーストを良好にカットすることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the first lens group has a protective filter glass on the most object side. The protective filter glass is a lens having substantially no refractive power, and its focal length is preferably 10 times or more of the focal length of the optical system according to the eighth embodiment of the present application. In particular, the optical system according to the eighth embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
 また、本願の第8実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、負レンズと、正レンズを有することが望ましい。この構成により、近距離物体合焦時に球面収差の変動を良好に補正することができる。特に、本願の第8実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、負レンズと正レンズとの接合レンズのみからなることが好ましい。この構成により、本願の第8実施形態に係る光学系の軽量化を図ることができる。 In the optical system according to the eighth embodiment of the present application, it is preferable that the first-b lens group includes a negative lens and a positive lens in order from the object side. With this configuration, it is possible to satisfactorily correct variations in spherical aberration when focusing on a short-distance object. In particular, in the optical system according to the eighth embodiment of the present application, it is preferable that the 1b lens group includes only a cemented lens of a negative lens and a positive lens in order from the object side. With this configuration, it is possible to reduce the weight of the optical system according to the eighth embodiment of the present application.
 また、本願の第8実施形態に係る光学系は、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第1bレンズ群が、以下の条件式(8-8)を満足する正レンズを有することが望ましい。
(8-8) 70<νd1bp<110
 ただし、
νd1bp:前記第1bレンズ群中の前記正レンズの硝材のd線(波長587.6nm)に対するアッベ数
In the optical system according to the eighth embodiment of the present application, the first lens group includes, in order from the object side, a first a lens group and a first b lens group. The first a lens group and the first b It is desirable that the air gap with the lens group is the largest of the air gaps in the first lens group, and the first b lens group has a positive lens that satisfies the following conditional expression (8-8). .
(8-8) 70 <νd1bp <110
However,
νd1bp: Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the positive lens in the 1b lens group
 条件式(8-8)は、第1bレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第8実施形態に係る光学系は、条件式(8-8)を満足することにより、軸上色収差や倍率色収差を良好に補正することができる。 Conditional expression (8-8) defines the Abbe number of the glass material of the positive lens in the 1b lens group. The optical system according to the eighth embodiment of the present application can satisfactorily correct axial chromatic aberration and lateral chromatic aberration by satisfying conditional expression (8-8).
 本願の第8実施形態に係る光学系の条件式(8-8)の対応値が上限値を上回ると、軸上色収差や倍率色収差を過剰に補正してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(8-8)の上限値を105とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-8)の上限値を100とすることがより好ましい。 If the corresponding value of the conditional expression (8-8) of the optical system according to the eighth embodiment of the present application exceeds the upper limit value, it is not preferable because axial chromatic aberration and lateral chromatic aberration are excessively corrected. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-8) to 105. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8-8) to 100.
 一方、本願の第8実施形態に係る光学系の条件式(8-8)の対応値が下限値を下回ると、軸上色収差や倍率色収差を補正することが困難になってしまう。なお、本願の効果をより確実にするために、条件式(8-8)の下限値を75とすることがより好ましい。また、本願の効果をより確実にするために、条件式(8-8)の下限値を80とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (8-8) of the optical system according to the eighth embodiment of the present application is lower than the lower limit value, it becomes difficult to correct axial chromatic aberration and lateral chromatic aberration. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-8) to 75. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8-8) to 80.
 本願の光学装置は、上述した構成の第8実施形態に係る光学系を有することを特徴する。これにより、小型で良好な光学性能を備えた光学装置を実現することができる。 The optical apparatus according to the present application includes the optical system according to the eighth embodiment having the above-described configuration. Thereby, an optical device having a small size and good optical performance can be realized.
 本願の第8実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設け、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むようにし、前記第2レンズ群が、少なくとも3枚のレンズを有するようにし、前記光学系が以下の条件式(8-1)を満足するようにし、前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにすることを特徴とする。これにより、小型で良好な光学性能を備えた光学系を製造することができる。
(8-1) 0.10<f/f12<0.85
 ただし、
f:前記光学系の焦点距離
f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
The optical system manufacturing method according to the eighth embodiment of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method of manufacturing an optical system having a third lens group, wherein an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, The antireflection film includes at least one layer formed by a wet process, the second lens group includes at least three lenses, and the optical system has the following conditional expression (8-1) And the second lens group is moved along the optical axis to focus from an object at infinity to an object at close distance. Thereby, an optical system having a small size and good optical performance can be manufactured.
(8-1) 0.10 <f / f12 <0.85
However,
f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
 以下、本願の第1~8実施形態の数値実施例に係る光学系を添付図面に基づいて説明する。なお、第1~6実施例は第1~8実施形態に共通する実施例であり、第7~9実施例は第3~6実施形態に共通する実施例である。
(第1実施例)
 図1は、本願の第1~8実施形態に共通の第1実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
Hereinafter, optical systems according to numerical examples of the first to eighth embodiments of the present application will be described with reference to the accompanying drawings. The first to sixth examples are examples common to the first to eighth embodiments, and the seventh to ninth examples are examples common to the third to sixth embodiments.
(First embodiment)
FIG. 1 is a sectional view showing a lens arrangement at the time of focusing on an object at infinity in an optical system according to a first example common to the first to eighth embodiments of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、両凸形状の正レンズL33と両凹形状の負レンズL34との接合レンズと、両凹形状の負レンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
 本実施例に係る光学系は、第3レンズ群G3の両凹形状の負レンズL34の像面側レンズ面(面番号24)と、第3レンズ群G3の両凸形状の正レンズL36の物体側レンズ面(面番号27)に、後述する反射防止膜が形成されている。 The optical system according to this example includes an object of the image side lens surface (surface number 24) of the biconcave negative lens L34 of the third lens group G3 and the biconvex positive lens L36 of the third lens group G3. An antireflection film described later is formed on the side lens surface (surface number 27).
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群即ち防振レンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 なお、像面I上には、CCDやCMOS等で構成された不図示の撮像素子が配置される。これは後述する各実施例においても同様である。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present embodiment, the third lens group G3b in the third lens group G3 is shifted so as to include a component in a direction orthogonal to the optical axis as a shift lens group, that is, an anti-vibration lens group. .
On the image plane I, an image sensor (not shown) constituted by a CCD, a CMOS, or the like is disposed. The same applies to each embodiment described later.
 以下の表1に、本実施例に係る光学系の諸元の値を掲げる。
 表1において、fは焦点距離、Bfはバックフォーカス、即ちフィルタFLと像面Iとの光軸上の距離を示す。
 [面データ]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、可変は可変の面間隔、Sは開口絞りS、Iは像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。また、空気の屈折率nd=1.00000の記載は省略している。
Table 1 below lists values of specifications of the optical system according to the present example.
In Table 1, f indicates the focal length, and Bf indicates the back focus, that is, the distance on the optical axis between the filter FL and the image plane I.
In [Surface data], m is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface spacing (the space between the nth surface (n is an integer) and the (n + 1) th surface), and nd is d. The refractive index for the line (wavelength 587.6 nm) and νd indicate the Abbe number for the d line (wavelength 587.6 nm), respectively. Further, OP represents the object plane, variable represents the variable surface interval, S represents the aperture stop S, and I represents the image plane I. The radius of curvature r = ∞ indicates a plane. Further, the description of the refractive index nd of air = 1.0000 is omitted.
 [各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、TLは本実施例に係る光学系の全長、即ち第1面から像面Iまでの光軸上の距離、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、βは撮影倍率、d0は物体から第1面までの距離を示す。
 [レンズ群データ]には、各レンズ群の始面STと焦点距離fを示す。
 [条件式対応値]には、本実施例に係る光学系の各条件式の対応値を示す。
In [various data], FNO is the F number, 2ω is the angle of view (unit is “°”), Y is the image height, TL is the total length of the optical system according to the present embodiment, that is, from the first surface to the image surface I. A distance on the optical axis, dn, indicates a variable distance between the nth surface and the (n + 1) th surface. Here, β represents the photographing magnification, and d0 represents the distance from the object to the first surface.
[Lens Group Data] indicates the start surface ST and focal length f of each lens group.
[Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression of the optical system according to the present example.
 ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.
(表1)第1実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         208.5821   17.50   1.43385   95.25
   4       -1176.6338   45.00
   5         180.4147   18.00   1.43385   95.25
   6        -380.1711    3.00
   7        -348.9527    6.00   1.61266   44.46
   8         384.9936   90.00
   9          67.5463    4.00   1.79500   45.31
  10          46.6351   15.00   1.49782   82.57
  11        1089.9704    可変
 
  12       -1616.0869    2.50   1.77250   49.62
  13         118.0496    3.35
  14        -285.3999    3.50   1.84666   23.80
  15         -87.3702    2.40   1.51823   58.82
  16          63.6357    可変
 
  17(S)        ∞       2.00
 
  18          84.6009    8.00   1.48749   70.31
  19         -63.3175    0.60
  20         -66.2548    1.90   1.84666   23.80
  21        -116.1778    5.00
  22         433.7902    3.50   1.84666   23.80
  23        -123.0826    1.90   1.59319   67.90 
  24          51.3275    3.60
  25        -293.4310    1.90   1.75500   52.34
  26         110.9976    4.00
  27         130.2260    3.50   1.77250   49.62
  28        -326.0207    0.10
  29          67.6197    4.50   1.64000   60.20
  30        -391.1361    1.90   1.84666   23.80
  31         276.0025    9.00
 
  32            ∞       2.00   1.51680   63.88
  33            ∞       Bf
 
  I            ∞
 
[各種データ]
f              392.00
FNO            2.88
2ω              6.27
Y               21.60
TL            396.95
Bf             71.551
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         392.003            -0.173
d0                 ∞            2201.931
d11              19.530            34.930
d16              36.219            20.820
Bf              71.551            71.575
 
[レンズ群データ]
         ST          f
G1         1        179.9884
G2        12        -67.9431
G3        18        163.6612
 
[条件式対応値]
fF =322.0136
fR =-760.8459
f =392.0028
f1 =179.9884
f1a =355.6752
f1b =194.3600
f2 =-67.9431
f12 =1030.4247
f3a =125.9727
f3bc =-760.8459
νdp =95.25(L11), 95.25(L12)
ndn =1.51823
νdn = 58.82
βs =-4.8884
βr =-0.2490
 
(第1実施形態)
(1-1) f/f12 = 0.38
(1-2) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(1-3) νd1pf = 95.25
(1-4) nd1n = 1.61
(1-5) TL1a/TL1 = 0.47
(1-6) νd1bp = 82.57
(1-7) νd2p = 23.80
 
(第2実施形態)
(2-1) f/f12 = 0.38
(2-2) nd2n = 1.52
(2-3) νd2p = 23.80
(2-4) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(2-5) νd1pf = 95.25
(2-6) nd1n = 1.61
(2-7) TL1a/TL1 = 0.47
(2-8) νd1bp = 82.57
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.4664
(3-2) f3a/f3bc = -0.1656
(3-3) f1a/f1b = 1.8300
(3-4) νdp = 95.25(L11), 95.25(L12)
(3-5) ndn = 1.51823
(3-6) νdn = 58.82
(3-7) f1/f2 = -2.6491
(3-8) f/f12 = 0.3804
 
(第4実施形態)
(4-1) |fR/fF| = 2.3628
(4-2) βr×(1-βs) = -1.4664
(4-3) f3a/f3bc = -0.1656
(4-4) f1a/f1b = 1.8300
(4-5) νdp = 95.25(L11), 95.25(L12)
(4-6) ndn = 1.51823
(4-7) νdn = 58.82
(4-8) f1/f2 = -2.6491
(4-9) f/f12 = 0.3804
 
(第5実施形態)
(5-1) |fR/fF| = 2.3628
(5-2) βr×(1-βs) = -1.4664
(5-3) f3a/f3bc = -0.1656
(5-4) f1a/f1b = 1.8300
(5-5) νdp = 95.25(L11), 95.25(L12)
(5-6) ndn = 1.51823
(5-7) νdn = 58.82
(5-8) f1/f2 = -2.6491
(5-9) f/f12 = 0.3804
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.4664
(6-2) f3a/f3bc = -0.1656
(6-3) f1a/f1b = 1.8300
(6-4) νdp = 95.25(L11), 95.25(L12)
(6-5) ndn = 1.51823
(6-6) νdn = 58.82
(6-7) f1/f2 = -2.6491
(6-8) f/f12 = 0.3804
 
(第7実施形態)
(7-1) f/f12 = 0.38
(7-2) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(7-3) νd1pf = 95.25
(7-4) nd1n = 1.61
(7-5) TL1a/TL1 = 0.47
(7-6) νd1bp = 82.57
(7-7) νd2p = 23.80
 
(第8実施形態)
(8-1) f/f12 = 0.38
(8-2) nd2n = 1.52
(8-3) νd2p = 23.80
(8-4) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(8-5) νd1pf = 95.25
(8-6) nd1n = 1.61
(8-7) TL1a/TL1 = 0.47
(8-8) νd1bp = 82.57
 
(Table 1) First Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.00
3 208.5821 17.50 1.43385 95.25
4 -1176.6338 45.00
5 180.4147 18.00 1.43385 95.25
6 -380.1711 3.00
7 -348.9527 6.00 1.61266 44.46
8 384.9936 90.00
9 67.5463 4.00 1.79500 45.31
10 46.6351 15.00 1.49782 82.57
11 1089.9704 Variable
12 -1616.0869 2.50 1.77250 49.62
13 118.0496 3.35
14 -285.3999 3.50 1.84666 23.80
15 -87.3702 2.40 1.51823 58.82
16 63.6357 Variable
17 (S) ∞ 2.00

18 84.6009 8.00 1.48749 70.31
19 -63.3175 0.60
20 -66.2548 1.90 1.84666 23.80
21 -116.1778 5.00
22 433.7902 3.50 1.84666 23.80
23 -123.0826 1.90 1.59319 67.90
24 51.3275 3.60
25 -293.4310 1.90 1.75500 52.34
26 110.9976 4.00
27 130.2260 3.50 1.77250 49.62
28 -326.0207 0.10
29 67.6197 4.50 1.64000 60.20
30 -391.1361 1.90 1.84666 23.80
31 276.0025 9.00

32 ∞ 2.00 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 392.00
FNO 2.88
2ω 6.27
Y 21.60
TL 396.95
Bf 71.551

When focusing on an object at infinity When focusing on a near object f or β 392.003 -0.173
d0 ∞ 2201.931
d11 19.530 34.930
d16 36.219 20.820
Bf 71.551 71.575

[Lens group data]
ST f
G1 1 179.9884
G2 12 -67.9431
G3 18 163.6612

[Conditional expression values]
fF = 322.0136
fR = -760.8459
f = 392.0028
f1 = 179.9884
f1a = 355.6752
f1b = 194.3600
f2 = -67.9431
f12 = 1030.4247
f3a = 125.9727
f3bc = -760.8459
νdp = 95.25 (L11), 95.25 (L12)
ndn = 1.51823
νdn = 58.82
βs = -4.8884
βr = −0.2490

(First embodiment)
(1-1) f / f12 = 0.38
(1-2) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(1-3) νd1pf = 95.25
(1-4) nd1n = 1.61
(1-5) TL1a / TL1 = 0.47
(1-6) νd1bp = 82.57
(1-7) νd2p = 23.80

(Second Embodiment)
(2-1) f / f12 = 0.38
(2-2) nd2n = 1.52
(2-3) νd2p = 23.80
(2-4) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(2-5) νd1pf = 95.25
(2-6) nd1n = 1.61
(2-7) TL1a / TL1 = 0.47
(2-8) νd1bp = 82.57

(Third embodiment)
(3-1) βr × (1-βs) = − 1.4664
(3-2) f3a / f3bc = -0.1656
(3-3) f1a / f1b = 1.8300
(3-4) νdp = 95.25 (L11), 95.25 (L12)
(3-5) ndn = 1.51823
(3-6) νdn = 58.82
(3-7) f1 / f2 = -2.6491
(3-8) f / f12 = 0.3804

(Fourth embodiment)
(4-1) | fR / fF | = 2.3628
(4-2) βr × (1-βs) = − 1.4664
(4-3) f3a / f3bc = -0.1656
(4-4) f1a / f1b = 1.8300
(4-5) νdp = 95.25 (L11), 95.25 (L12)
(4-6) ndn = 1.51823
(4-7) νdn = 58.82
(4-8) f1 / f2 = -2.6491
(4-9) f / f12 = 0.3804

(Fifth embodiment)
(5-1) | fR / fF | = 2.3628
(5-2) βr × (1-βs) = − 1.4664
(5-3) f3a / f3bc = -0.1656
(5-4) f1a / f1b = 1.8300
(5-5) νdp = 95.25 (L11), 95.25 (L12)
(5-6) ndn = 1.51823
(5-7) νdn = 58.82
(5-8) f1 / f2 = -2.6491
(5-9) f / f12 = 0.3804

(Sixth embodiment)
(6-1) βr × (1-βs) = − 1.4664
(6-2) f3a / f3bc = -0.1656
(6-3) f1a / f1b = 1.8300
(6-4) νdp = 95.25 (L11), 95.25 (L12)
(6-5) ndn = 1.51823
(6-6) νdn = 58.82
(6-7) f1 / f2 = -2.6491
(6-8) f / f12 = 0.3804

(Seventh embodiment)
(7-1) f / f12 = 0.38
(7-2) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(7-3) νd1pf = 95.25
(7-4) nd1n = 1.61
(7-5) TL1a / TL1 = 0.47
(7-6) νd1bp = 82.57
(7-7) νd2p = 23.80

(Eighth embodiment)
(8-1) f / f12 = 0.38
(8-2) nd2n = 1.52
(8-3) νd2p = 23.80
(8-4) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(8-5) νd1pf = 95.25
(8-6) nd1n = 1.61
(8-7) TL1a / TL1 = 0.47
(8-8) νd1bp = 82.57
 図2A、及び図2Bはそれぞれ、本願の第1実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図3は、本願の第1実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図3におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.40mmである。
2A and 2B are graphs showing various aberrations when the optical system according to the first example of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 3 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the first example of the present application. The shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 3 is 1.40 mm.
 各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。コマ収差図は、各像高Yにおけるコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
In each aberration diagram, FNO represents an F number, and Y represents an image height. d indicates the aberration at the d-line (wavelength 587.6 nm), and g indicates the aberration at the g-line (wavelength 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The coma aberration diagram shows coma aberration at each image height Y. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
 ここで、本実施例に係る光学系においてゴーストやフレアが発生する原因について説明する。
 図30は、本実施例に係る光学系に入射した光線が第1番目の反射面と第2番目の反射面で反射して像面Iにゴーストやフレアを形成する様子の一例を示す図である。
 図30において、物体側からの光線BMが図示のように光学系に入射すると、光線BMの一部は第3レンズ群G3における両凸形状の正レンズL36の物体側レンズ面(面番号27、ゴーストやフレアとなる反射光が生じる第1番目の反射面)で反射され、さらに第3レンズ群G3における両凹形状の負レンズL34の像面側レンズ面(面番号24、ゴーストやフレアとなる反射光が生じる第2番目の反射面)で再度反射され、最終的に像面Iに到達してゴーストやフレアを発生させてしまう。なお、前記第1番目の反射面は像面側から見て凹形状のレンズ面、前記第2番目の反射面は像面側から見て凹形状のレンズ面である。
 そこで本実施例に係る光学系は、斯かるレンズ面に広い波長範囲で広い入射角の光線に対応した反射防止膜を形成することで、反射光の発生を抑え、ゴーストやフレアを効果的に低減させることができる。
Here, the cause of the occurrence of ghost and flare in the optical system according to the present embodiment will be described.
FIG. 30 is a diagram illustrating an example of a state in which light rays incident on the optical system according to the present embodiment are reflected by the first reflecting surface and the second reflecting surface to form ghosts and flares on the image plane I. is there.
In FIG. 30, when a light beam BM from the object side enters the optical system as shown, a part of the light beam BM is an object side lens surface (surface number 27, 27) of the biconvex positive lens L36 in the third lens group G3. It is reflected by the first reflecting surface where the reflected light that becomes ghost or flare is generated, and further the image side lens surface (surface number 24, ghost or flare) of the biconcave negative lens L34 in the third lens group G3. The second reflected surface where the reflected light is generated is reflected again, and finally reaches the image plane I to generate ghost and flare. The first reflecting surface is a concave lens surface when viewed from the image surface side, and the second reflecting surface is a concave lens surface when viewed from the image surface side.
Therefore, the optical system according to the present embodiment suppresses the generation of reflected light by effectively forming ghosts and flares by forming an antireflection film corresponding to light rays having a wide incident angle in a wide wavelength range on the lens surface. Can be reduced.
(第2実施例)
 図4は、本願の第1~8実施形態に共通の第2実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(Second embodiment)
FIG. 4 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a second example common to the first to eighth embodiments of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power. The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、両凸形状の正レンズL33と両凹形状の負レンズL34との接合レンズと、両凹形状の負レンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
 本実施例に係る光学系は、第3レンズ群G3の両凹形状の負レンズL34の像面側レンズ面(面番号24)に、後述する反射防止膜が形成されている。 In the optical system according to the present example, an antireflection film described later is formed on the image surface side lens surface (surface number 24) of the biconcave negative lens L34 of the third lens group G3.
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表2に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present example, the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
Table 2 below lists values of specifications of the optical system according to the present example.
(表2)第2実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         205.7091   17.50   1.43385   95.25
   4       -1134.8251   45.00
   5         173.6014   18.00   1.43385   95.25
   6        -417.4854    3.07
   7        -374.6983    6.00   1.61266   44.46
   8         347.6771   90.00
   9          66.1559    4.00   1.79500   45.31
  10          45.7808   15.00   1.49782   82.57
  11         874.9561    可変
 
  12       -2545.8867    2.50   1.77250   49.62
  13         114.9779    3.35
  14        -271.4306    3.50   1.84666   23.80
  15         -87.3926    2.40   1.51823   58.82
  16          63.5469    可変
 
  17(S)        ∞       2.00
 
  18          87.7161    7.60   1.48749   70.31
  19         -64.5076    1.20
  20         -66.7841    1.90   1.84666   23.80
  21        -116.0392    5.00
  22         325.4187    3.50   1.84666   23.80
  23        -134.7294    1.90   1.59319   67.90
  24          52.9625    3.60
  25        -331.8219    1.90   1.75500   52.34
  26          98.9972    4.00
  27         117.6253    3.50   1.77250   49.62
  28        -402.3365    0.10
  29          67.6197    4.50   1.64000   60.20
  30        -391.1361    1.90   1.84666   23.80
  31         264.8450    9.00
 
  32            ∞       2.00   1.51680   63.88
  33            ∞       Bf
 
  I            ∞
 
[各種データ]
f              391.99
FNO            2.88
2ω              6.29
Y               21.63
TL            397.00
Bf             71.300
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         391.991            -0.174
d0                 ∞            2203.000
d11              18.344            33.670
d16              37.438            22.112
Bf              71.300            71.300
 
[レンズ群データ]
         ST          f
G1         1        179.8867
G2        12        -67.1696
G3        18        160.1914
 
[条件式対応値]
fF =331.5552
fR =-976.6517
f =391.9914
f1 =179.8867
f1a =354.4332
f1b =193.1145
f2 =-67.1696
f12 =1088.5976
f3a =129.0469
f3bc =-976.6517
νdp =95.25(L11), 95.25(L12)
ndn =1.51823
νdn = 58.82
βs =-4.6800
βr =-0.2526
 
(第1実施形態)
(1-1) f/f12 = 0.36
(1-2) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(1-3) νd1pf = 95.25
(1-4) nd1n = 1.61
(1-5) TL1a/TL1 = 0.47
(1-6) νd1bp = 82.57
(1-7) νd2p = 23.80
 
(第2実施形態)
(2-1) f/f12 = 0.36
(2-2) nd2n = 1.52
(2-3) νd2p = 23.80
(2-4) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(2-5) νd1pf = 95.25
(2-6) nd1n = 1.61
(2-7) TL1a/TL1 = 0.47
(2-8) νd1bp = 82.57
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.4349
(3-2) f3a/f3bc = -0.1321
(3-3) f1a/f1b = 1.8354
(3-4) νdp = 95.25(L11), 95.25(L12)
(3-5) ndn = 1.51823
(3-6) νdn = 58.82
(3-7) f1/f2 = -2.6781
(3-8) f/f12 = 0.3601
 
(第4実施形態)
(4-1) |fR/fF| = 2.9457
(4-2) βr×(1-βs) = -1.4349
(4-3) f3a/f3bc = -0.1321
(4-4) f1a/f1b = 1.8354
(4-5) νdp = 95.25(L11), 95.25(L12)
(4-6) ndn = 1.51823
(4-7) νdn = 58.82
(4-8) f1/f2 = -2.6781
(4-9) f/f12 = 0.3601
 
(第5実施形態)
(5-1) |fR/fF| = 2.9457
(5-2) βr×(1-βs) = -1.4349
(5-3) f3a/f3bc = -0.1321
(5-4) f1a/f1b = 1.8354
(5-5) νdp = 95.25(L11), 95.25(L12)
(5-6) ndn = 1.51823
(5-7) νdn = 58.82
(5-8) f1/f2 = -2.6781
(5-9) f/f12 = 0.3601
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.4349
(6-2) f3a/f3bc = -0.1321
(6-3) f1a/f1b = 1.8354
(6-4) νdp = 95.25(L11), 95.25(L12)
(6-5) ndn = 1.51823
(6-6) νdn = 58.82
(6-7) f1/f2 = -2.6781
(6-8) f/f12 = 0.3601
 
(第7実施形態)
(7-1) f/f12 = 0.36
(7-2) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(7-3) νd1pf = 95.25
(7-4) nd1n = 1.61
(7-5) TL1a/TL1 = 0.47
(7-6) νd1bp = 82.57
(7-7) νd2p = 23.80
 
(第8実施形態)
(8-1) f/f12 = 0.36
(8-2) nd2n = 1.52
(8-3) νd2p = 23.80
(8-4) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(8-5) νd1pf = 95.25
(8-6) nd1n = 1.61
(8-7) TL1a/TL1 = 0.47
(8-8) νd1bp = 82.57
 
(Table 2) Second Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.00
3 205.7091 17.50 1.43385 95.25
4 -1134.8251 45.00
5 173.6014 18.00 1.43385 95.25
6 -417.4854 3.07
7 -374.6983 6.00 1.61266 44.46
8 347.6771 90.00
9 66.1559 4.00 1.79500 45.31
10 45.7808 15.00 1.49782 82.57
11 874.9561 Variable
12 -2545.8867 2.50 1.77250 49.62
13 114.9779 3.35
14 -271.4306 3.50 1.84666 23.80
15 -87.3926 2.40 1.51823 58.82
16 63.5469 Variable
17 (S) ∞ 2.00

18 87.7161 7.60 1.48749 70.31
19 -64.5076 1.20
20 -66.7841 1.90 1.84666 23.80
21 -116.0392 5.00
22 325.4187 3.50 1.84666 23.80
23 -134.7294 1.90 1.59319 67.90
24 52.9625 3.60
25 -331.8219 1.90 1.75500 52.34
26 98.9972 4.00
27 117.6253 3.50 1.77250 49.62
28 -402.3365 0.10
29 67.6197 4.50 1.64000 60.20
30 -391.1361 1.90 1.84666 23.80
31 264.8450 9.00

32 ∞ 2.00 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 391.99
FNO 2.88
2ω 6.29
Y 21.63
TL 397.00
Bf 71.300

When focusing on an object at infinity When focusing on a near object f or β 391.991 -0.174
d0 ∞ 2203.000
d11 18.344 33.670
d16 37.438 22.112
Bf 71.300 71.300

[Lens group data]
ST f
G1 1 179.8867
G2 12 -67.1696
G3 18 160.1914

[Conditional expression values]
fF = 331.5552
fR = -976.6517
f = 391.9914
f1 = 179.8867
f1a = 354.4332
f1b = 193.1145
f2 = -67.1696
f12 = 1088.5976
f3a = 129.0469
f3bc = -976.6517
νdp = 95.25 (L11), 95.25 (L12)
ndn = 1.51823
νdn = 58.82
βs = -4.6800
βr = −0.2526

(First embodiment)
(1-1) f / f12 = 0.36
(1-2) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(1-3) νd1pf = 95.25
(1-4) nd1n = 1.61
(1-5) TL1a / TL1 = 0.47
(1-6) νd1bp = 82.57
(1-7) νd2p = 23.80

(Second Embodiment)
(2-1) f / f12 = 0.36
(2-2) nd2n = 1.52
(2-3) νd2p = 23.80
(2-4) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(2-5) νd1pf = 95.25
(2-6) nd1n = 1.61
(2-7) TL1a / TL1 = 0.47
(2-8) νd1bp = 82.57

(Third embodiment)
(3-1) βr × (1-βs) = − 1.4349
(3-2) f3a / f3bc = -0.1321
(3-3) f1a / f1b = 1.8354
(3-4) νdp = 95.25 (L11), 95.25 (L12)
(3-5) ndn = 1.51823
(3-6) νdn = 58.82
(3-7) f1 / f2 = -2.6781
(3-8) f / f12 = 0.3601

(Fourth embodiment)
(4-1) | fR / fF | = 2.9457
(4-2) βr × (1-βs) = − 1.4349
(4-3) f3a / f3bc = -0.1321
(4-4) f1a / f1b = 1.8354
(4-5) νdp = 95.25 (L11), 95.25 (L12)
(4-6) ndn = 1.51823
(4-7) νdn = 58.82
(4-8) f1 / f2 = -2.6781
(4-9) f / f12 = 0.3601

(Fifth embodiment)
(5-1) | fR / fF | = 2.9457
(5-2) βr × (1-βs) = − 1.4349
(5-3) f3a / f3bc = -0.1321
(5-4) f1a / f1b = 1.8354
(5-5) νdp = 95.25 (L11), 95.25 (L12)
(5-6) ndn = 1.51823
(5-7) νdn = 58.82
(5-8) f1 / f2 = -2.6781
(5-9) f / f12 = 0.3601

(Sixth embodiment)
(6-1) βr × (1-βs) = − 1.4349
(6-2) f3a / f3bc = -0.1321
(6-3) f1a / f1b = 1.8354
(6-4) νdp = 95.25 (L11), 95.25 (L12)
(6-5) ndn = 1.51823
(6-6) νdn = 58.82
(6-7) f1 / f2 = -2.6781
(6-8) f / f12 = 0.3601

(Seventh embodiment)
(7-1) f / f12 = 0.36
(7-2) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(7-3) νd1pf = 95.25
(7-4) nd1n = 1.61
(7-5) TL1a / TL1 = 0.47
(7-6) νd1bp = 82.57
(7-7) νd2p = 23.80

(Eighth embodiment)
(8-1) f / f12 = 0.36
(8-2) nd2n = 1.52
(8-3) νd2p = 23.80
(8-4) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(8-5) νd1pf = 95.25
(8-6) nd1n = 1.61
(8-7) TL1a / TL1 = 0.47
(8-8) νd1bp = 82.57
 図5A、及び図5Bはそれぞれ、本願の第2実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図6は、本願の第2実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図6におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.40mmである。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
FIGS. 5A and 5B are graphs showing various aberrations when the optical system according to Example 2 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 6 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the second example of the present application. The shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 6 is 1.40 mm.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
(第3実施例)
 図7は、本願の第1~8実施形態に共通の第3実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(Third embodiment)
FIG. 7 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a third example common to the first to eighth embodiments of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, and a cemented negative lens composed of a positive meniscus lens L22 having a concave surface directed toward the object side and a biconcave negative lens L23. Consists of.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、両凸形状の正レンズL33と両凹形状の負レンズL34との接合レンズと、両凹形状の負レンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
 本実施例に係る光学系は、第1レンズ群G1の正メニスカスレンズL15の像面側レンズ面(面番号11)に、後述する反射防止膜が形成されている。 In the optical system according to the present example, an antireflection film described later is formed on the image surface side lens surface (surface number 11) of the positive meniscus lens L15 of the first lens group G1.
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表3に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present example, the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
Table 3 below lists values of specifications of the optical system according to the present example.
(表3)第3実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         207.0795   17.50   1.43384   95.26
   4       -1127.5309   44.90
   5         175.9698   18.00   1.43384   95.26
   6        -397.2708    3.07
   7        -360.2396    6.00   1.61266   44.46
   8         353.1837   90.00
   9          66.4844    4.00   1.79500   45.32
  10          45.9182   15.00   1.49782   82.54
  11        1114.1067    可変
 
  12        2992.5492    2.50   1.75500   52.34
  13         118.0399    3.35
  14        -241.6942    3.50   1.84668   23.83
  15         -86.4136    2.40   1.53996   59.52
  16          64.2643    可変
 
  17(S)        ∞       1.50
 
  18          90.0336    7.60   1.48749   70.43
  19         -63.8039    1.20
  20         -65.9768    1.90   1.84668   23.83
  21        -114.8763    5.00
  22         300.3587    3.50   1.84668   23.83
  23        -128.0558    1.90   1.59319   67.94
  24          53.9004    3.10
  25        -347.5421    1.90   1.75500   52.33
  26          94.5337    4.19
  27         118.3533    3.50   1.77250   49.68
  28        -384.3825    0.10
  29          67.4622    4.50   1.64000   60.14
  30        -340.4206    1.90   1.84668   23.83
  31         246.6417    6.50
 
  32            ∞       1.50   1.51680   63.88
  33            ∞       Bf
 
  I            ∞
 
[各種データ]
f              392.00
FNO            2.89
2ω              6.28
Y               21.63
TL            396.91
Bf             74.220
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         392.000            -0.173
d0                 ∞            2203.010
d11              18.503            33.773
d16              38.179            22.909
Bf              74.220            73.906
 
[レンズ群データ]
         ST          f
G1         1        179.1160
G2        12        -67.4099
G3        18        162.8784
 
[条件式対応値]
fF =332.9301
fR =-963.3744
f =392.0000
f1 =179.1160
f1a =358.2095
f1b =190.5264
f2 =-67.4099
f12 =1061.9447
f3a =131.3711
f3bc = -963.3744
νdp =95.26(L11), 95.26(L12)
ndn =1.53996
νdn = 59.52
βs =-4.9878
βr =-0.2361
 
(第1実施形態)
(1-1) f/f12 = 0.37
(1-2) νd1p = 95.26(L11), 95.26(L12), 82.54(L15)
(1-3) νd1pf = 95.26
(1-4) nd1n = 1.61
(1-5) TL1a/TL1 = 0.47
(1-6) νd1bp = 82.54
(1-7) νd2p = 23.83
 
(第2実施形態)
(2-1) f/f12 = 0.37
(2-2) nd2n = 1.54
(2-3) νd2p = 23.83
(2-4) νd1p = 95.26(L11), 95.26(L12), 82.54(L15)
(2-5) νd1pf = 95.26
(2-6) nd1n = 1.61
(2-7) TL1a/TL1 = 0.47
(2-8) νd1bp = 82.54
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.4135
(3-2) f3a/f3bc = -0.1364
(3-3) f1a/f1b = 1.8801
(3-4) νdp = 95.26(L11), 95.26(L12)
(3-5) ndn = 1.53996
(3-6) νdn = 59.52
(3-7) f1/f2 = -2.6571
(3-8) f/f12 = 0.3691
 
(第4実施形態)
(4-1) |fR/fF| = 2.8936
(4-2) βr×(1-βs) = -1.4135
(4-3) f3a/f3bc = -0.1364
(4-4) f1a/f1b = 1.8801
(4-5) νdp = 95.26(L11), 95.26(L12)
(4-6) ndn = 1.53996
(4-7) νdn = 59.52
(4-8) f1/f2 = -2.6571
(4-9) f/f12 = 0.3691
 
(第5実施形態)
(5-1) |fR/fF| = 2.8936
(5-2) βr×(1-βs) = -1.4135
(5-3) f3a/f3bc = -0.1364
(5-4) f1a/f1b = 1.8801
(5-5) νdp = 95.26(L11), 95.26(L12)
(5-6) ndn = 1.53996
(5-7) νdn = 59.52
(5-8) f1/f2 = -2.6571
(5-9) f/f12 = 0.3691
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.4135
(6-2) f3a/f3bc = -0.1364
(6-3) f1a/f1b = 1.8801
(6-4) νdp = 95.26(L11), 95.26(L12)
(6-5) ndn = 1.53996
(6-6) νdn = 59.52
(6-7) f1/f2 = -2.6571
(6-8) f/f12 = 0.3691
 
(第7実施形態)
(7-1) f/f12 = 0.37
(7-2) νd1p = 95.26(L11), 95.26(L12), 82.54(L15)
(7-3) νd1pf = 95.26
(7-4) nd1n = 1.61
(7-5) TL1a/TL1 = 0.47
(7-6) νd1bp = 82.54
(7-7) νd2p = 23.83
 
(第8実施形態)
(8-1) f/f12 = 0.37
(8-2) nd2n = 1.54
(8-3) νd2p = 23.83
(8-4) νd1p = 95.26(L11), 95.26(L12), 82.54(L15)
(8-5) νd1pf = 95.26
(8-6) nd1n = 1.61
(8-7) TL1a/TL1 = 0.47
(8-8) νd1bp = 82.54
 
(Table 3) Third Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.00
3 207.0795 17.50 1.43384 95.26
4 -1127.5309 44.90
5 175.9698 18.00 1.43384 95.26
6 -397.2708 3.07
7 -360.2396 6.00 1.61266 44.46
8 353.1837 90.00
9 66.4844 4.00 1.79500 45.32
10 45.9182 15.00 1.49782 82.54
11 1114.1067 Variable
12 2992.5492 2.50 1.75500 52.34
13 118.0399 3.35
14 -241.6942 3.50 1.84668 23.83
15 -86.4136 2.40 1.53996 59.52
16 64.2643 Variable
17 (S) ∞ 1.50

18 90.0336 7.60 1.48749 70.43
19 -63.8039 1.20
20 -65.9768 1.90 1.84668 23.83
21 -114.8763 5.00
22 300.3587 3.50 1.84668 23.83
23 -128.0558 1.90 1.59319 67.94
24 53.9004 3.10
25 -347.5421 1.90 1.75500 52.33
26 94.5337 4.19
27 118.3533 3.50 1.77250 49.68
28 -384.3825 0.10
29 67.4622 4.50 1.64000 60.14
30 -340.4206 1.90 1.84668 23.83
31 246.6417 6.50

32 ∞ 1.50 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 392.00
FNO 2.89
2ω 6.28
Y 21.63
TL 396.91
Bf 74.220

When focusing on an object at infinity When focusing on a near object f or β 392.000 -0.173
d0 ∞ 2203.010
d11 18.503 33.773
d16 38.179 22.909
Bf 74.220 73.906

[Lens group data]
ST f
G1 1 179.1160
G2 12 -67.4099
G3 18 162.8784

[Conditional expression values]
fF = 332.9301
fR = -963.3744
f = 392.0000
f1 = 179.1160
f1a = 358.2095
f1b = 190.5264
f2 = -67.4099
f12 = 1061.9447
f3a = 131.3711
f3bc = -963.3744
νdp = 95.26 (L11), 95.26 (L12)
ndn = 1.53996
νdn = 59.52
βs = -4.9878
βr = −0.2361

(First embodiment)
(1-1) f / f12 = 0.37
(1-2) νd1p = 95.26 (L11), 95.26 (L12), 82.54 (L15)
(1-3) νd1pf = 95.26
(1-4) nd1n = 1.61
(1-5) TL1a / TL1 = 0.47
(1-6) νd1bp = 82.54
(1-7) νd2p = 23.83

(Second Embodiment)
(2-1) f / f12 = 0.37
(2-2) nd2n = 1.54
(2-3) νd2p = 23.83
(2-4) νd1p = 95.26 (L11), 95.26 (L12), 82.54 (L15)
(2-5) νd1pf = 95.26
(2-6) nd1n = 1.61
(2-7) TL1a / TL1 = 0.47
(2-8) νd1bp = 82.54

(Third embodiment)
(3-1) βr × (1-βs) = − 1.4135
(3-2) f3a / f3bc = -0.1364
(3-3) f1a / f1b = 1.8801
(3-4) νdp = 95.26 (L11), 95.26 (L12)
(3-5) ndn = 1.53996
(3-6) νdn = 59.52
(3-7) f1 / f2 = -2.6571
(3-8) f / f12 = 0.3691

(Fourth embodiment)
(4-1) | fR / fF | = 2.8936
(4-2) βr × (1-βs) = − 1.4135
(4-3) f3a / f3bc = -0.1364
(4-4) f1a / f1b = 1.8801
(4-5) νdp = 95.26 (L11), 95.26 (L12)
(4-6) ndn = 1.53996
(4-7) νdn = 59.52
(4-8) f1 / f2 = -2.6571
(4-9) f / f12 = 0.3691

(Fifth embodiment)
(5-1) | fR / fF | = 2.8936
(5-2) βr × (1-βs) = − 1.4135
(5-3) f3a / f3bc = -0.1364
(5-4) f1a / f1b = 1.8801
(5-5) νdp = 95.26 (L11), 95.26 (L12)
(5-6) ndn = 1.53996
(5-7) νdn = 59.52
(5-8) f1 / f2 = -2.6571
(5-9) f / f12 = 0.3691

(Sixth embodiment)
(6-1) βr × (1-βs) = − 1.4135
(6-2) f3a / f3bc = -0.1364
(6-3) f1a / f1b = 1.8801
(6-4) νdp = 95.26 (L11), 95.26 (L12)
(6-5) ndn = 1.53996
(6-6) νdn = 59.52
(6-7) f1 / f2 = -2.6571
(6-8) f / f12 = 0.3691

(Seventh embodiment)
(7-1) f / f12 = 0.37
(7-2) νd1p = 95.26 (L11), 95.26 (L12), 82.54 (L15)
(7-3) νd1pf = 95.26
(7-4) nd1n = 1.61
(7-5) TL1a / TL1 = 0.47
(7-6) νd1bp = 82.54
(7-7) νd2p = 23.83

(Eighth embodiment)
(8-1) f / f12 = 0.37
(8-2) nd2n = 1.54
(8-3) νd2p = 23.83
(8-4) νd1p = 95.26 (L11), 95.26 (L12), 82.54 (L15)
(8-5) νd1pf = 95.26
(8-6) nd1n = 1.61
(8-7) TL1a / TL1 = 0.47
(8-8) νd1bp = 82.54
 図8A、及び図8Bはそれぞれ、本願の第3実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図9は、本願の第3実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.43mmである。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
8A and 8B are graphs showing various aberrations when the optical system according to Example 3 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 9 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the third example of the present application. In the figure, the shift amount in the direction orthogonal to the optical axis of the shift lens group is 1.43 mm.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
(第4実施例)
 図10は、本願の第1~8実施形態に共通の第4実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(Fourth embodiment)
FIG. 10 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fourth example common to the first to eighth embodiments of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, and a cemented negative lens composed of a positive meniscus lens L22 having a concave surface directed toward the object side and a biconcave negative lens L23. Consists of.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、両凸形状の正レンズL33と両凹形状の負レンズL34との接合レンズと、両凹形状の負レンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
 本実施例に係る光学系は、第2レンズ群G2の負メニスカスレンズL21の像面側レンズ面(面番号13)に、後述する反射防止膜が形成されている。 In the optical system according to the present example, an antireflection film described later is formed on the image surface side lens surface (surface number 13) of the negative meniscus lens L21 of the second lens group G2.
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表4に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present example, the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
Table 4 below lists values of specifications of the optical system according to the present example.
(表4)第4実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         210.9074   17.50   1.43384   95.26
   4       -1135.2477   44.90
   5         173.4175   18.00   1.43384   95.26
   6        -413.8140    3.07
   7        -375.4223    6.00   1.61266   44.46
   8         358.4435   90.00
   9          66.9574    4.00   1.79500   45.32
  10          46.1708   15.00   1.49782   82.54
  11        1030.2823    可変
 
  12       10236.2589    2.50   1.77250   49.68
  13         110.7581    3.35
  14        -289.4383    3.50   1.84668   23.83
  15         -96.1712    2.40   1.51680   63.88
  16          65.0724    可変
 
  17(S)        ∞       1.50
 
  18          86.8540    7.60   1.48749   70.43
  19         -62.9408    1.20
  20         -65.5511    1.90   1.84668   23.83
  21        -118.4244    5.00
  22         300.3217    3.50   1.84668   23.83
  23        -128.4546    1.90   1.59319   67.94
  24          53.9974    3.10
  25        -348.7023    1.90   1.75500   52.33
  26          93.3844    4.19
  27         119.2828    3.50   1.77250   49.68
  28        -375.3153    0.10
  29          68.1234    4.50   1.64000   60.14
  30        -426.6037    1.90   1.84668   23.83
  31         243.3294    6.50
 
  32            ∞       1.50   1.51680   63.88
  33            ∞       Bf
 
  I            ∞
 
[各種データ]
f              392.00
FNO            2.89
2ω              6.28
Y               21.63
TL            396.91
Bf             74.220
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         392.000            -0.174
d0                 ∞            2203.010
d11              18.503            33.773
d16              38.179            22.909
Bf              74.220            74.374
 
[レンズ群データ]
         ST          f
G1         1        179.5793
G2        12        -68.1638
G3        18        164.8495
 
[条件式対応値]
fF =330.4625
fR =-882.8393
f =392.0002
f1 =179.5793
f1a =354.4299
f1b =193.6583
f2 =-68.1638
f12 =1047.8286
f3a =131.2421
f3bc =-882.8393
νdp =95.26(L11), 95.26(L12)
ndn =1.51680
νdn = 63.88
βs =-5.0707
βr =-0.2339
 
(第1実施形態)
(1-1) f/f12 = 0.37
(1-2) νd1p = 95.26(L11), 95.26(L12), 82.54(L15)
(1-3) νd1pf = 95.26
(1-4) nd1n = 1.61
(1-5) TL1a/TL1 = 0.47
(1-6) νd1bp = 82.54
(1-7) νd2p = 23.83
 
(第2実施形態)
(2-1) f/f12 = 0.37
(2-2) nd2n = 1.52
(2-3) νd2p = 23.83
(2-4) νd1p = 95.26(L11), 95.26(L12), 82.54(L15)
(2-5) νd1pf = 95.26
(2-6) nd1n = 1.61
(2-7) TL1a/TL1 = 0.47
(2-8) νd1bp = 82.54
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.4202
(3-2) f3a/f3bc = -0.1487
(3-3) f1a/f1b = 1.8302
(3-4) νdp = 95.26(L11), 95.26(L12)
(3-5) ndn = 1.51680
(3-6) νdn = 63.88
(3-7) f1/f2 = -2.6345
(3-8) f/f12 = 0.3741
 
(第4実施形態)
(4-1) |fR/fF| = 2.6715
(4-2) βr×(1-βs) = -1.4202
(4-3) f3a/f3bc = -0.1487
(4-4) f1a/f1b = 1.8302
(4-5) νdp = 95.26(L11), 95.26(L12)
(4-6) ndn = 1.51680
(4-7) νdn = 63.88
(4-8) f1/f2 = -2.6345
(4-9) f/f12 = 0.3741
 
(第5実施形態)
(5-1) |fR/fF| = 2.6715
(5-2) βr×(1-βs) = -1.4202
(5-3) f3a/f3bc = -0.1487
(5-4) f1a/f1b = 1.8302
(5-5) νdp = 95.26(L11), 95.26(L12)
(5-6) ndn = 1.51680
(5-7) νdn = 63.88
(5-8) f1/f2 = -2.6345
(5-9) f/f12 = 0.3741
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.4202
(6-2) f3a/f3bc = -0.1487
(6-3) f1a/f1b = 1.8302
(6-4) νdp = 95.26(L11), 95.26(L12)
(6-5) ndn = 1.51680
(6-6) νdn = 63.88
(6-7) f1/f2 = -2.6345
(6-8) f/f12 = 0.3741
 
(第7実施形態)
(7-1) f/f12 = 0.37
(7-2) νd1p = 95.26(L11), 95.26(L12), 82.54(L15)
(7-3) νd1pf = 95.26
(7-4) nd1n = 1.61
(7-5) TL1a/TL1 = 0.47
(7-6) νd1bp = 82.54
(7-7) νd2p = 23.83
 
(第8実施形態)
(8-1) f/f12 = 0.37
(8-2) nd2n = 1.52
(8-3) νd2p = 23.83
(8-4) νd1p = 95.26(L11), 95.26(L12), 82.54(L15)
(8-5) νd1pf = 95.26
(8-6) nd1n = 1.61
(8-7) TL1a/TL1 = 0.47
(8-8) νd1bp = 82.54
 
(Table 4) Fourth Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.00
3 210.9074 17.50 1.43384 95.26
4 -1135.2477 44.90
5 173.4175 18.00 1.43384 95.26
6 -413.8140 3.07
7 -375.4223 6.00 1.61266 44.46
8 358.4435 90.00
9 66.9574 4.00 1.79500 45.32
10 46.1708 15.00 1.49782 82.54
11 1030.2823 Variable
12 10236.2589 2.50 1.77250 49.68
13 110.7581 3.35
14 -289.4383 3.50 1.84668 23.83
15 -96.1712 2.40 1.51680 63.88
16 65.0724 Variable
17 (S) ∞ 1.50

18 86.8540 7.60 1.48749 70.43
19 -62.9408 1.20
20 -65.5511 1.90 1.84668 23.83
21 -118.4244 5.00
22 300.3217 3.50 1.84668 23.83
23 -128.4546 1.90 1.59319 67.94
24 53.9974 3.10
25 -348.7023 1.90 1.75500 52.33
26 93.3844 4.19
27 119.2828 3.50 1.77250 49.68
28 -375.3153 0.10
29 68.1234 4.50 1.64000 60.14
30 -426.6037 1.90 1.84668 23.83
31 243.3294 6.50

32 ∞ 1.50 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 392.00
FNO 2.89
2ω 6.28
Y 21.63
TL 396.91
Bf 74.220

When focusing on an object at infinity When focusing on a near object f or β 392.000 -0.174
d0 ∞ 2203.010
d11 18.503 33.773
d16 38.179 22.909
Bf 74.220 74.374

[Lens group data]
ST f
G1 1 179.5793
G2 12 -68.1638
G3 18 164.8495

[Conditional expression values]
fF = 330.4625
fR = -882.8393
f = 392.0002
f1 = 179.5793
f1a = 354.4299
f1b = 193.6583
f2 = -68.1638
f12 = 1047.8286
f3a = 131.2421
f3bc = -882.8393
νdp = 95.26 (L11), 95.26 (L12)
ndn = 1.51680
νdn = 63.88
βs = -5.0707
βr = −0.2339

(First embodiment)
(1-1) f / f12 = 0.37
(1-2) νd1p = 95.26 (L11), 95.26 (L12), 82.54 (L15)
(1-3) νd1pf = 95.26
(1-4) nd1n = 1.61
(1-5) TL1a / TL1 = 0.47
(1-6) νd1bp = 82.54
(1-7) νd2p = 23.83

(Second Embodiment)
(2-1) f / f12 = 0.37
(2-2) nd2n = 1.52
(2-3) νd2p = 23.83
(2-4) νd1p = 95.26 (L11), 95.26 (L12), 82.54 (L15)
(2-5) νd1pf = 95.26
(2-6) nd1n = 1.61
(2-7) TL1a / TL1 = 0.47
(2-8) νd1bp = 82.54

(Third embodiment)
(3-1) βr × (1-βs) = − 1.4202
(3-2) f3a / f3bc = -0.1487
(3-3) f1a / f1b = 1.8302
(3-4) νdp = 95.26 (L11), 95.26 (L12)
(3-5) ndn = 1.51680
(3-6) νdn = 63.88
(3-7) f1 / f2 = -2.6345
(3-8) f / f12 = 0.3741

(Fourth embodiment)
(4-1) | fR / fF | = 2.6715
(4-2) βr × (1-βs) = − 1.4202
(4-3) f3a / f3bc = -0.1487
(4-4) f1a / f1b = 1.8302
(4-5) νdp = 95.26 (L11), 95.26 (L12)
(4-6) ndn = 1.51680
(4-7) νdn = 63.88
(4-8) f1 / f2 = -2.6345
(4-9) f / f12 = 0.3741

(Fifth embodiment)
(5-1) | fR / fF | = 2.6715
(5-2) βr × (1-βs) = − 1.4202
(5-3) f3a / f3bc = -0.1487
(5-4) f1a / f1b = 1.8302
(5-5) νdp = 95.26 (L11), 95.26 (L12)
(5-6) ndn = 1.51680
(5-7) νdn = 63.88
(5-8) f1 / f2 = -2.6345
(5-9) f / f12 = 0.3741

(Sixth embodiment)
(6-1) βr × (1-βs) = − 1.4202
(6-2) f3a / f3bc = -0.1487
(6-3) f1a / f1b = 1.8302
(6-4) νdp = 95.26 (L11), 95.26 (L12)
(6-5) ndn = 1.51680
(6-6) νdn = 63.88
(6-7) f1 / f2 = -2.6345
(6-8) f / f12 = 0.3741

(Seventh embodiment)
(7-1) f / f12 = 0.37
(7-2) νd1p = 95.26 (L11), 95.26 (L12), 82.54 (L15)
(7-3) νd1pf = 95.26
(7-4) nd1n = 1.61
(7-5) TL1a / TL1 = 0.47
(7-6) νd1bp = 82.54
(7-7) νd2p = 23.83

(Eighth embodiment)
(8-1) f / f12 = 0.37
(8-2) nd2n = 1.52
(8-3) νd2p = 23.83
(8-4) νd1p = 95.26 (L11), 95.26 (L12), 82.54 (L15)
(8-5) νd1pf = 95.26
(8-6) nd1n = 1.61
(8-7) TL1a / TL1 = 0.47
(8-8) νd1bp = 82.54
 図11A、及び図11Bはそれぞれ、本願の第4実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図12は、本願の第4実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図12におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.43mmである。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
11A and 11B are graphs showing various aberrations when the optical system according to Example 4 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 12 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the fourth example of the present application. The shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 12 is 1.43 mm.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
(第5実施例)
 図13は、本願の第1~8実施形態に共通の第5実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(5th Example)
FIG. 13 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fifth example common to the first to eighth embodiments of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、両凸形状の正レンズL33と両凹形状の負レンズL34との接合レンズと、両凹形状の負レンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third-b lens group G3b includes, in order from the object side, a cemented lens of a biconvex positive lens L33 and a biconcave negative lens L34, and a biconcave negative lens L35.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
 本実施例に係る光学系は、第1レンズ群G1の両凸形状の正レンズL12の像面側レンズ面(面番号6)と、第1レンズ群G1の両凹形状の負レンズL13の物体側レンズ面(面番号7)に、後述する反射防止膜が形成されている。 The optical system according to this example includes an object of the image side lens surface (surface number 6) of the biconvex positive lens L12 of the first lens group G1 and the biconcave negative lens L13 of the first lens group G1. An antireflection film described later is formed on the side lens surface (surface number 7).
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表5に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present example, the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
Table 5 below lists values of specifications of the optical system according to the present example.
(表5)第5実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         237.4785   15.50   1.43385   95.25
   4       -1507.8850   45.00
   5         198.3323   19.00   1.43385   95.25
   6        -342.1796    3.00
   7        -327.8324    6.00   1.61266   44.46
   8         772.9939   93.00
   9          70.7391    5.40   1.79952   42.09
  10          47.9832   16.00   1.49782   82.57
  11        1681.9346    可変
 
  12       -2709.1390    3.00   1.77250   49.62
  13         136.3998    3.50
  14        -487.1729    4.00   1.84666   23.80
  15        -108.0510    2.50   1.51742   52.20
  16          59.4298    可変
 
  17(S)        ∞       2.00
 
  18         228.1074    5.25   1.59319   67.90
  19         -85.4981    0.60
  20        -124.4314    1.90   2.00069   25.46
  21        -295.5719    3.85
  22         294.4912    3.30   1.84666   23.80
  23        -171.7558    1.90   1.59319   67.90
  24          54.4393    4.05
  25        -281.8305    1.90   1.69680   55.52
  26         152.6451    2.94
  27         104.2002    3.00   1.77250   49.62
  28       -1538.2155    0.10
  29          71.9218    4.80   1.57957   53.74
  30        -155.3605    1.90   1.84666   23.80
  31        1092.5548   11.00
 
  32            ∞       2.00   1.51680   63.88
  33            ∞       Bf
 
  I            ∞
 
[各種データ]
f              391.99
FNO            2.88
2ω              6.27
Y               21.60
TL            399.38
Bf             70.081
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         391.990            -0.172
d0                 ∞            2203.007
d11              16.500            31.900
d16              40.401            25.001
Bf              70.081            70.033
 
[レンズ群データ]
         ST          f
G1         1        177.7760
G2        12        -73.1720
G3        18        187.9179
 
[条件式対応値]
fF =393.5513
fR =1215.0131
f =391.9899
f1 =177.7760
f1a =340.8186
f1b =201.6693
f2 =-73.1720
f12 =774.8291
f3a =204.7509
f3bc =1215.0131
νdp =95.25(L11), 95.25(L12)
ndn =1.51742
νdn = 52.20
βs =-5.2108
βr =-0.1912
 
(第1実施形態)
(1-1) f/f12 = 0.51
(1-2) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(1-3) νd1pf = 95.25
(1-4) nd1n = 1.61
(1-5) TL1a/TL1 = 0.45
(1-6) νd1bp = 82.57
(1-7) νd2p = 23.80
 
(第2実施形態)
(2-1) f/f12 = 0.51
(2-2) nd2n = 1.52
(2-3) νd2p = 23.80
(2-4) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(2-5) νd1pf = 95.25
(2-6) nd1n = 1.61
(2-7) TL1a/TL1 = 0.45
(2-8) νd1bp = 82.57
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.1872
(3-2) f3a/f3bc = 0.1685
(3-3) f1a/f1b = 1.6900
(3-4) νdp = 95.25(L11), 95.25(L12)
(3-5) ndn = 1.51742
(3-6) νdn = 52.20
(3-7) f1/f2 = -2.4296
(3-8) f/f12 = 0.5059
 
(第4実施形態)
(4-1) |fR/fF| = 3.0873
(4-2) βr×(1-βs) = -1.1872
(4-3) f3a/f3bc = 0.1685
(4-4) f1a/f1b = 1.6900
(4-5) νdp = 95.25(L11), 95.25(L12)
(4-6) ndn = 1.51742
(4-7) νdn = 52.20
(4-8) f1/f2 = -2.4296
(4-9) f/f12 = 0.5059
 
(第5実施形態)
(5-1) |fR/fF| = 3.0873
(5-2) βr×(1-βs) = -1.1872
(5-3) f3a/f3bc = 0.1685
(5-4) f1a/f1b = 1.6900
(5-5) νdp = 95.25(L11), 95.25(L12)
(5-6) ndn = 1.51742
(5-7) νdn = 52.20
(5-8) f1/f2 = -2.4296
(5-9) f/f12 = 0.5059
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.1872
(6-2) f3a/f3bc = 0.1685
(6-3) f1a/f1b = 1.6900
(6-4) νdp = 95.25(L11), 95.25(L12)
(6-5) ndn = 1.51742
(6-6) νdn = 52.20
(6-7) f1/f2 = -2.4296
(6-8) f/f12 = 0.5059
 
(第7実施形態)
(7-1) f/f12 = 0.51
(7-2) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(7-3) νd1pf = 95.25
(7-4) nd1n = 1.61
(7-5) TL1a/TL1 = 0.45
(7-6) νd1bp = 82.57
(7-7) νd2p = 23.80
 
(第8実施形態)
(8-1) f/f12 = 0.51
(8-2) nd2n = 1.52
(8-3) νd2p = 23.80
(8-4) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(8-5) νd1pf = 95.25
(8-6) nd1n = 1.61
(8-7) TL1a/TL1 = 0.45
(8-8) νd1bp = 82.57
 
(Table 5) Fifth Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.00
3 237.4785 15.50 1.43385 95.25
4 -1507.8850 45.00
5 198.3323 19.00 1.43385 95.25
6 -342.1796 3.00
7 -327.8324 6.00 1.61266 44.46
8 772.9939 93.00
9 70.7391 5.40 1.79952 42.09
10 47.9832 16.00 1.49782 82.57
11 1681.9346 Variable
12 -2709.1390 3.00 1.77250 49.62
13 136.3998 3.50
14 -487.1729 4.00 1.84666 23.80
15 -108.0510 2.50 1.51742 52.20
16 59.4298 Variable
17 (S) ∞ 2.00

18 228.1074 5.25 1.59319 67.90
19 -85.4981 0.60
20 -124.4314 1.90 2.00069 25.46
21 -295.5719 3.85
22 294.4912 3.30 1.84666 23.80
23 -171.7558 1.90 1.59319 67.90
24 54.4393 4.05
25 -281.8305 1.90 1.69680 55.52
26 152.6451 2.94
27 104.2002 3.00 1.77250 49.62
28 -1538.2155 0.10
29 71.9218 4.80 1.57957 53.74
30 -155.3605 1.90 1.84666 23.80
31 1092.5548 11.00

32 ∞ 2.00 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 391.99
FNO 2.88
2ω 6.27
Y 21.60
TL 399.38
Bf 70.081

When focusing on an object at infinity When focusing on a near object f or β 391.990 -0.172
d0 ∞ 2203.007
d11 16.500 31.900
d16 40.401 25.001
Bf 70.081 70.033

[Lens group data]
ST f
G1 1 177.7760
G2 12 -73.1720
G3 18 187.9179

[Conditional expression values]
fF = 393.5513
fR = 1215.0131
f = 391.9899
f1 = 177.7760
f1a = 340.8186
f1b = 201.6693
f2 = -73.1720
f12 = 774.8291
f3a = 204.7509
f3bc = 1215.0131
νdp = 95.25 (L11), 95.25 (L12)
ndn = 1.51742
νdn = 52.20
βs = -5.2108
βr = −0.1912

(First embodiment)
(1-1) f / f12 = 0.51
(1-2) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(1-3) νd1pf = 95.25
(1-4) nd1n = 1.61
(1-5) TL1a / TL1 = 0.45
(1-6) νd1bp = 82.57
(1-7) νd2p = 23.80

(Second Embodiment)
(2-1) f / f12 = 0.51
(2-2) nd2n = 1.52
(2-3) νd2p = 23.80
(2-4) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(2-5) νd1pf = 95.25
(2-6) nd1n = 1.61
(2-7) TL1a / TL1 = 0.45
(2-8) νd1bp = 82.57

(Third embodiment)
(3-1) βr × (1-βs) =-1.1872
(3-2) f3a / f3bc = 0.1685
(3-3) f1a / f1b = 1.6900
(3-4) νdp = 95.25 (L11), 95.25 (L12)
(3-5) ndn = 1.51742
(3-6) νdn = 52.20
(3-7) f1 / f2 = -2.4296
(3-8) f / f12 = 0.5059

(Fourth embodiment)
(4-1) | fR / fF | = 3.0873
(4-2) βr × (1-βs) = − 1.1872
(4-3) f3a / f3bc = 0.1685
(4-4) f1a / f1b = 1.6900
(4-5) νdp = 95.25 (L11), 95.25 (L12)
(4-6) ndn = 1.51742
(4-7) νdn = 52.20
(4-8) f1 / f2 = -2.4296
(4-9) f / f12 = 0.5059

(Fifth embodiment)
(5-1) | fR / fF | = 3.0873
(5-2) βr × (1-βs) = − 1.1872
(5-3) f3a / f3bc = 0.1685
(5-4) f1a / f1b = 1.6900
(5-5) νdp = 95.25 (L11), 95.25 (L12)
(5-6) ndn = 1.51742
(5-7) νdn = 52.20
(5-8) f1 / f2 = -2.4296
(5-9) f / f12 = 0.5059

(Sixth embodiment)
(6-1) βr × (1-βs) =-1.1872
(6-2) f3a / f3bc = 0.1685
(6-3) f1a / f1b = 1.6900
(6-4) νdp = 95.25 (L11), 95.25 (L12)
(6-5) ndn = 1.51742
(6-6) νdn = 52.20
(6-7) f1 / f2 = -2.4296
(6-8) f / f12 = 0.5059

(Seventh embodiment)
(7-1) f / f12 = 0.51
(7-2) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(7-3) νd1pf = 95.25
(7-4) nd1n = 1.61
(7-5) TL1a / TL1 = 0.45
(7-6) νd1bp = 82.57
(7-7) νd2p = 23.80

(Eighth embodiment)
(8-1) f / f12 = 0.51
(8-2) nd2n = 1.52
(8-3) νd2p = 23.80
(8-4) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(8-5) νd1pf = 95.25
(8-6) nd1n = 1.61
(8-7) TL1a / TL1 = 0.45
(8-8) νd1bp = 82.57
 図14A、及び図14Bはそれぞれ、本願の第5実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図15は、本願の第5実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図15におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.68mmである。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
FIGS. 14A and 14B are graphs showing various aberrations when the optical system according to Example 5 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 15 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to Example 5 of the present application. The shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 15 is 1.68 mm.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
(第6実施例)
 図16は、本願の第1~8実施形態に共通の第6実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(Sixth embodiment)
FIG. 16 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a sixth example common to the first to eighth embodiments of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた正メニスカスレンズL22と物体側に凹面を向けた負メニスカスレンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a positive meniscus lens L22 having a concave surface facing the object side, and a negative meniscus lens L23 having a concave surface facing the object side. It consists of a cemented negative lens.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、物体側に凹面を向けた正メニスカスレンズL33と両凹形状の負レンズL34との接合レンズと、物体側に凸面を向けた負メニスカスレンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third lens group G3b includes, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface directed toward the object side and a biconcave negative lens L34, and a negative meniscus lens L35 having a convex surface directed toward the object side. Become.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
 本実施例に係る光学系は、第2レンズ群G2の正メニスカスレンズL22の物体側レンズ面(面番号14)に、後述する反射防止膜が形成されている。 In the optical system according to the present example, an antireflection film described later is formed on the object side lens surface (surface number 14) of the positive meniscus lens L22 of the second lens group G2.
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表6に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present example, the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
Table 6 below lists values of specifications of the optical system according to the present example.
(表6)第6実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.50
   3         217.9147   15.50   1.43385   95.25
   4       -2272.2650   45.00
   5         191.4672   18.50   1.43385   95.25
   6        -388.7337    3.24
   7        -366.9736    6.00   1.61266   44.46
   8         692.0557   90.02
   9          65.4296    5.20   1.80610   40.97
  10          45.0727   15.00   1.49782   82.57
  11         760.0090    可変
 
  12        2386.5723    2.50   1.81600   46.59
  13          64.7944    6.50
  14        -159.3202    4.50   1.80809   22.74
  15         -67.3666    2.00   1.61772   49.81
  16       -4529.1486    可変
 
  17(S)        ∞       2.00
 
  18         128.3829    8.00   1.59319   67.90
  19         -58.5025    0.60
  20         -58.7397    1.90   1.79504   28.69
  21        -122.7539    5.79
  22        -216.6393    3.30   1.84666   23.80
  23         -61.9303    1.90   1.59319   67.90
  24          59.0225    3.00
  25         728.9238    1.90   1.81600   46.59
  26          93.0674    4.00
  27         141.2086    3.00   1.77250   49.62
  28       -1505.6719    0.15
  29          69.4894    4.80   1.74320   49.26
  30        -136.7089    1.90   1.84666   23.80
  31         672.4408    9.00
 
  32            ∞       2.00   1.51680   63.88
  33            ∞       Bf
 
  I            ∞
 
[各種データ]
f              392.00
FNO            2.88
2ω              6.27
Y               21.60
TL            400.00
Bf             71.300
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         392.000            -0.173
d0                 ∞            2200.000
d11              17.463            31.763
d16              37.536            23.236
Bf              71.300            71.260
 
[レンズ群データ]
         ST          f
G1         1        172.5113
G2        12        -69.4949
G3        18        175.8293
 
[条件式対応値]
fF =315.0175
fR =-754.0300
f =391.9996
f1 =172.5113
f1a =329.5860
f1b =194.9749
f2 =-69.4949
f12 = 859.4613
f3a =130.1736
f3bc =-754.0300
νdp =95.25(L11), 95.25(L12)
ndn =1.61772
νdn = 49.81
βs =-4.6014
βr =-0.2704
 
(第1実施形態)
(1-1) f/f12 = 0.46
(1-2) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(1-3) νd1pf = 95.25
(1-4) nd1n = 1.61
(1-5) TL1a/TL1 = 0.46
(1-6) νd1bp = 82.57
(1-7) νd2p = 22.74
 
(第2実施形態)
(2-1) f/f12 = 0.46
(2-2) nd2n = 1.62
(2-3) νd2p = 22.74
(2-4) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(2-5) νd1pf = 95.25
(2-6) nd1n = 1.61
(2-7) TL1a/TL1 = 0.46
(2-8) νd1bp = 82.57
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.5148
(3-2) f3a/f3bc = -0.1726
(3-3) f1a/f1b = 1.6904
(3-4) νdp = 95.25(L11), 95.25(L12)
(3-5) ndn = 1.61772
(3-6) νdn = 49.81
(3-7) f1/f2 = -2.4824
(3-8) f/f12 = 0.4561
 
(第4実施形態)
(4-1) |fR/fF| = 2.3936
(4-2) βr×(1-βs) = -1.5148
(4-3) f3a/f3bc = -0.1726
(4-4) f1a/f1b = 1.6904
(4-5) νdp = 95.25(L11), 95.25(L12)
(4-6) ndn = 1.61772
(4-7) νdn = 49.81
(4-8) f1/f2 = -2.4824
(4-9) f/f12 = 0.4561
 
(第5実施形態)
(5-1) |fR/fF| = 2.3936
(5-2) βr×(1-βs) = -1.5148
(5-3) f3a/f3bc = -0.1726
(5-4) f1a/f1b = 1.6904
(5-5) νdp = 95.25(L11), 95.25(L12)
(5-6) ndn = 1.61772
(5-7) νdn = 49.81
(5-8) f1/f2 = -2.4824
(5-9) f/f12 = 0.4561
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.5148
(6-2) f3a/f3bc = -0.1726
(6-3) f1a/f1b = 1.6904
(6-4) νdp = 95.25(L11), 95.25(L12)
(6-5) ndn = 1.61772
(6-6) νdn = 49.81
(6-7) f1/f2 = -2.4824
(6-8) f/f12 = 0.4561
 
(第7実施形態)
(7-1) f/f12 = 0.46
(7-2) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(7-3) νd1pf = 95.25
(7-4) nd1n = 1.61
(7-5) TL1a/TL1 = 0.46
(7-6) νd1bp = 82.57
(7-7) νd2p = 22.74
 
(第8実施形態)
(8-1) f/f12 = 0.46
(8-2) nd2n = 1.62
(8-3) νd2p = 22.74
(8-4) νd1p = 95.25(L11), 95.25(L12), 82.57(L15)
(8-5) νd1pf = 95.25
(8-6) nd1n = 1.61
(8-7) TL1a/TL1 = 0.46
(8-8) νd1bp = 82.57
 
(Table 6) Sixth Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.50
3 217.9147 15.50 1.43385 95.25
4 -2272.2650 45.00
5 191.4672 18.50 1.43385 95.25
6 -388.7337 3.24
7 -366.9736 6.00 1.61266 44.46
8 692.0557 90.02
9 65.4296 5.20 1.80610 40.97
10 45.0727 15.00 1.49782 82.57
11 760.0090 Variable
12 2386.5723 2.50 1.81600 46.59
13 64.7944 6.50
14 -159.3202 4.50 1.80809 22.74
15 -67.3666 2.00 1.61772 49.81
16 -4529.1486 Variable
17 (S) ∞ 2.00

18 128.3829 8.00 1.59319 67.90
19 -58.5025 0.60
20 -58.7397 1.90 1.79504 28.69
21 -122.7539 5.79
22 -216.6393 3.30 1.84666 23.80
23 -61.9303 1.90 1.59319 67.90
24 59.0225 3.00
25 728.9238 1.90 1.81600 46.59
26 93.0674 4.00
27 141.2086 3.00 1.77250 49.62
28 -1505.6719 0.15
29 69.4894 4.80 1.74320 49.26
30 -136.7089 1.90 1.84666 23.80
31 672.4408 9.00

32 ∞ 2.00 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 392.00
FNO 2.88
2ω 6.27
Y 21.60
TL 400.00
Bf 71.300

When focusing on an object at infinity When focusing on a near object f or β 392.000 -0.173
d0 ∞ 2200.000
d11 17.463 31.763
d16 37.536 23.236
Bf 71.300 71.260

[Lens group data]
ST f
G1 1 172.5113
G2 12 -69.4949
G3 18 175.8293

[Conditional expression values]
fF = 315.0175
fR = -754.0300
f = 391.9996
f1 = 172.5113
f1a = 329.5860
f1b = 194.9749
f2 = -69.4949
f12 = 859.4613
f3a = 130.1736
f3bc = -754.0300
νdp = 95.25 (L11), 95.25 (L12)
ndn = 1.61772
νdn = 49.81
βs = -4.6014
βr = −0.2704

(First embodiment)
(1-1) f / f12 = 0.46
(1-2) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(1-3) νd1pf = 95.25
(1-4) nd1n = 1.61
(1-5) TL1a / TL1 = 0.46
(1-6) νd1bp = 82.57
(1-7) νd2p = 22.74

(Second Embodiment)
(2-1) f / f12 = 0.46
(2-2) nd2n = 1.62
(2-3) νd2p = 22.74
(2-4) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(2-5) νd1pf = 95.25
(2-6) nd1n = 1.61
(2-7) TL1a / TL1 = 0.46
(2-8) νd1bp = 82.57

(Third embodiment)
(3-1) βr × (1-βs) = − 1.5148
(3-2) f3a / f3bc = -0.1726
(3-3) f1a / f1b = 1.6904
(3-4) νdp = 95.25 (L11), 95.25 (L12)
(3-5) ndn = 1.61772
(3-6) νdn = 49.81
(3-7) f1 / f2 = -2.4824
(3-8) f / f12 = 0.4561

(Fourth embodiment)
(4-1) | fR / fF | = 2.3936
(4-2) βr × (1-βs) = − 1.5148
(4-3) f3a / f3bc = -0.1726
(4-4) f1a / f1b = 1.6904
(4-5) νdp = 95.25 (L11), 95.25 (L12)
(4-6) ndn = 1.61772
(4-7) νdn = 49.81
(4-8) f1 / f2 = -2.4824
(4-9) f / f12 = 0.4561

(Fifth embodiment)
(5-1) | fR / fF | = 2.3936
(5-2) βr × (1-βs) = − 1.5148
(5-3) f3a / f3bc = -0.1726
(5-4) f1a / f1b = 1.6904
(5-5) νdp = 95.25 (L11), 95.25 (L12)
(5-6) ndn = 1.61772
(5-7) νdn = 49.81
(5-8) f1 / f2 = -2.4824
(5-9) f / f12 = 0.4561

(Sixth embodiment)
(6-1) βr × (1-βs) = − 1.5148
(6-2) f3a / f3bc = -0.1726
(6-3) f1a / f1b = 1.6904
(6-4) νdp = 95.25 (L11), 95.25 (L12)
(6-5) ndn = 1.61772
(6-6) νdn = 49.81
(6-7) f1 / f2 = -2.4824
(6-8) f / f12 = 0.4561

(Seventh embodiment)
(7-1) f / f12 = 0.46
(7-2) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(7-3) νd1pf = 95.25
(7-4) nd1n = 1.61
(7-5) TL1a / TL1 = 0.46
(7-6) νd1bp = 82.57
(7-7) νd2p = 22.74

(Eighth embodiment)
(8-1) f / f12 = 0.46
(8-2) nd2n = 1.62
(8-3) νd2p = 22.74
(8-4) νd1p = 95.25 (L11), 95.25 (L12), 82.57 (L15)
(8-5) νd1pf = 95.25
(8-6) nd1n = 1.61
(8-7) TL1a / TL1 = 0.46
(8-8) νd1bp = 82.57
 図17A、及び図17Bはそれぞれ、本願の第6実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図18は、本願の第6実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図18におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.35mmである。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
FIGS. 17A and 17B are graphs showing various aberrations when the optical system according to Example 6 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 18 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the sixth example of the present application. The shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 18 is 1.35 mm.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
(第7実施例)
 図19は、本願の第3~6実施形態に共通の第7実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(Seventh embodiment)
FIG. 19 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a seventh example common to the third to sixth embodiments of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、物体側に凹面を向けた正メニスカスレンズL33と両凹形状の負レンズL34との接合レンズと、物体側に凸面を向けた負メニスカスレンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third lens group G3b includes, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface directed toward the object side and a biconcave negative lens L34, and a negative meniscus lens L35 having a convex surface directed toward the object side. Become.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
 本実施例に係る光学系は、第3レンズ群G3の両凹形状の負レンズL34の像面側レンズ面(面番号24)と、第3レンズ群G3の両凸形状の正レンズL36の物体側レンズ面(面番号27)に、後述する反射防止膜が形成されている。 The optical system according to this example includes an object of the image side lens surface (surface number 24) of the biconcave negative lens L34 of the third lens group G3 and the biconvex positive lens L36 of the third lens group G3. An antireflection film described later is formed on the side lens surface (surface number 27).
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表7に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present example, the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
Table 7 below lists values of specifications of the optical system according to the present example.
(表7)第7実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         205.8380   17.50   1.43385   95.25
   4       -3344.1817   45.00
   5         195.7037   18.50   1.43385   95.25
   6        -339.8777    3.00
   7        -326.8303    6.00   1.61266   44.46
   8         717.5240   90.00
   9          66.8199    5.00   1.79952   42.09
  10          45.8756   14.00   1.49782   82.57
  11         533.8513    可変
 
  12       -1418.6433    2.50   1.80100   34.92
  13          69.1598    5.00
  14        -669.4067    4.50   1.84666   23.80
  15         -70.8153    2.00   1.69680   55.52
  16         269.4654    可変
 
  17(S)        ∞       2.00
 
  18         111.8330    8.00   1.59319   67.90
  19         -67.7933    0.60
  20         -69.4674    1.90   1.79504   28.69
  21        -144.5287    7.60
  22        -307.1811    3.30   1.84666   23.80
  23         -70.7922    1.90   1.59319   67.90
  24          58.1065    3.00
  25        2403.0294    1.90   1.75500   52.34
  26          93.8065    4.00
  27         118.1336    3.00   1.77250   49.62
  28        -440.5940    0.10
  29          66.8592    4.80   1.77250   49.62
  30        -269.8337    1.90   1.84666   23.80
  31         146.9087    9.00
 
  32            ∞       2.00   1.51680   63.88
  33            ∞       Bf
 
  I            ∞
 
[各種データ]
f              392.00
FNO            2.93
2ω              6.27
Y               21.60
TL            400.89
Bf             71.811
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         391.998            -0.174
d0                 ∞            2203.000
d11              17.408            32.808
d16              37.666            22.266
Bf              71.811            71.696
 
[レンズ群データ]
         ST          f
G1         1        179.2995
G2        12        -71.1930
G3        18        172.8661
 
[条件式対応値]
fF =309.4988
fR =-531.9883
f =391.9977
f1 =179.2995
f1a =329.8985
f1b =210.3126
f2 =-71.1930
f12 =993.1645
f3a =123.9352
f3bc =-531.9883
νdp = 95.25(L11), 95.25(L12)
ndn =1.69680
νdn = 55.52
βs =-5.1022
βr =-0.2482
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.5148
(3-2) f3a/f3bc = -0.2330
(3-3) f1a/f1b = 1.5686
(3-4) νdp = 95.25(L11), 95.25(L12)
(3-5) ndn = 1.69680
(3-6) νdn = 55.52
(3-7) f1/f2 = -2.5185
(3-8) f/f12 = 0.3947
 
(第4実施形態)
(4-1) |fR/fF| = 1.7189
(4-2) βr×(1-βs) = -1.5148
(4-3) f3a/f3bc = -0.2330
(4-4) f1a/f1b = 1.5686
(4-5) νdp = 95.25(L11), 95.25(L12)
(4-6) ndn = 1.69680
(4-7) νdn = 55.52
(4-8) f1/f2 = -2.5185
(4-9) f/f12 = 0.3947
 
(第5実施形態)
(5-1) |fR/fF| = 1.7189
(5-2) βr×(1-βs) = -1.5148
(5-3) f3a/f3bc = -0.2330
(5-4) f1a/f1b = 1.5686
(5-5) νdp = 95.25(L11), 95.25(L12)
(5-6) ndn = 1.69680
(5-7) νdn = 55.52
(5-8) f1/f2 = -2.5185
(5-9) f/f12 = 0.3947
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.5148
(6-2) f3a/f3bc = -0.2330
(6-3) f1a/f1b = 1.5686
(6-4) νdp = 95.25(L11), 95.25(L12)
(6-5) ndn = 1.69680
(6-6) νdn = 55.52
(6-7) f1/f2 = -2.5185
(6-8) f/f12 = 0.3947
 
(Table 7) Seventh Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.00
3 205.8380 17.50 1.43385 95.25
4 -3344.1817 45.00
5 195.7037 18.50 1.43385 95.25
6 -339.8777 3.00
7 -326.8303 6.00 1.61266 44.46
8 717.5240 90.00
9 66.8199 5.00 1.79952 42.09
10 45.8756 14.00 1.49782 82.57
11 533.8513 Variable
12 -1418.6433 2.50 1.80100 34.92
13 69.1598 5.00
14 -669.4067 4.50 1.84666 23.80
15 -70.8153 2.00 1.69680 55.52
16 269.4654 Variable
17 (S) ∞ 2.00

18 111.8330 8.00 1.59319 67.90
19 -67.7933 0.60
20 -69.4674 1.90 1.79504 28.69
21 -144.5287 7.60
22 -307.1811 3.30 1.84666 23.80
23 -70.7922 1.90 1.59319 67.90
24 58.1065 3.00
25 2403.0294 1.90 1.75500 52.34
26 93.8065 4.00
27 118.1336 3.00 1.77250 49.62
28 -440.5940 0.10
29 66.8592 4.80 1.77250 49.62
30 -269.8337 1.90 1.84666 23.80
31 146.9087 9.00

32 ∞ 2.00 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 392.00
FNO 2.93
2ω 6.27
Y 21.60
TL 400.89
Bf 71.811

When focusing on an object at infinity When focusing on a near object f or β 391.998 -0.174
d0 ∞ 2203.000
d11 17.408 32.808
d16 37.666 22.266
Bf 71.811 71.696

[Lens group data]
ST f
G1 1 179.2995
G2 12 -71.1930
G3 18 172.8661

[Conditional expression values]
fF = 309.4988
fR = -531.9883
f = 391.9977
f1 = 179.2995
f1a = 329.8985
f1b = 210.3126
f2 = -71.1930
f12 = 993.1645
f3a = 123.9352
f3bc = -531.9883
νdp = 95.25 (L11), 95.25 (L12)
ndn = 1.69680
νdn = 55.52
βs = -5.1022
βr = −0.2482

(Third embodiment)
(3-1) βr × (1-βs) = − 1.5148
(3-2) f3a / f3bc = -0.2330
(3-3) f1a / f1b = 1.5686
(3-4) νdp = 95.25 (L11), 95.25 (L12)
(3-5) ndn = 1.69680
(3-6) νdn = 55.52
(3-7) f1 / f2 = -2.5185
(3-8) f / f12 = 0.3947

(Fourth embodiment)
(4-1) | fR / fF | = 1.7189
(4-2) βr × (1-βs) = − 1.5148
(4-3) f3a / f3bc = -0.2330
(4-4) f1a / f1b = 1.5686
(4-5) νdp = 95.25 (L11), 95.25 (L12)
(4-6) ndn = 1.69680
(4-7) νdn = 55.52
(4-8) f1 / f2 = -2.5185
(4-9) f / f12 = 0.3947

(Fifth embodiment)
(5-1) | fR / fF | = 1.7189
(5-2) βr × (1-βs) = − 1.5148
(5-3) f3a / f3bc = -0.2330
(5-4) f1a / f1b = 1.5686
(5-5) νdp = 95.25 (L11), 95.25 (L12)
(5-6) ndn = 1.69680
(5-7) νdn = 55.52
(5-8) f1 / f2 = -2.5185
(5-9) f / f12 = 0.3947

(Sixth embodiment)
(6-1) βr × (1-βs) = − 1.5148
(6-2) f3a / f3bc = -0.2330
(6-3) f1a / f1b = 1.5686
(6-4) νdp = 95.25 (L11), 95.25 (L12)
(6-5) ndn = 1.69680
(6-6) νdn = 55.52
(6-7) f1 / f2 = -2.5185
(6-8) f / f12 = 0.3947
 図20A、及び図20Bはそれぞれ、本願の第7実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図21は、本願の第7実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図21におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.35mmである。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
20A and 20B are graphs showing various aberrations when the optical system according to Example 7 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 21 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the seventh example of the present application. Note that the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 21 is 1.35 mm.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
(第8実施例)
 図22は、本願の第3~6実施形態に共通の第8実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(Eighth embodiment)
FIG. 22 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to an eighth example common to the third to sixth embodiments of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、物体側に凹面を向けた正メニスカスレンズL33と両凹形状の負レンズL34との接合レンズと、両凹形状の負レンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third lens group G3b is composed of, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface directed toward the object side and a biconcave negative lens L34, and a biconcave negative lens L35.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, and a cemented lens of a biconvex positive lens L37 and a biconcave negative lens L38.
 本実施例に係る光学系は、第1レンズ群G1の両凸形状の正レンズL12の像面側レンズ面(面番号6)と、第1レンズ群G1の両凹形状の負レンズL13の物体側レンズ面(面番号7)に、後述する反射防止膜が形成されている。 The optical system according to this example includes an object of the image side lens surface (surface number 6) of the biconvex positive lens L12 of the first lens group G1 and the biconcave negative lens L13 of the first lens group G1. An antireflection film described later is formed on the side lens surface (surface number 7).
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表8に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present example, the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
Table 8 below provides values of specifications of the optical system according to the present example.
(表8)第8実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.50
   3         232.9803   15.50   1.43385   95.25
   4       -1439.6122   45.00
   5         181.4353   18.50   1.43385   95.25
   6        -403.8411    3.27
   7        -381.3927    6.00   1.61266   44.46
   8         616.0014   91.44
   9          68.9182    5.40   1.80610   40.97
  10          47.0662   15.50   1.49782   82.57
  11         783.4341    可変
 
  12       -1054.8550    2.50   1.80100   34.92
  13          73.2883    5.00
  14       -1414.1001    4.50   1.84666   23.80
  15         -76.6008    2.00   1.69100   54.93
  16         209.5153    可変
 
  17(S)        ∞       2.00
 
  18         158.0460    8.00   1.59319   67.90
  19         -62.8829    0.60
  20         -64.4824    1.90   1.79504   28.69
  21        -131.7441    7.60
  22        -544.1422    3.30   1.84666   23.80
  23         -78.4731    1.90   1.59319   67.90
  24          60.2986    4.15
  25       -1406.4760    1.90   1.75500   52.34
  26          91.4315    4.00
  27          97.5172    3.00   1.77250   49.62
  28        -457.9700    0.50
  29          73.3485    4.80   1.74400   44.81
  30        -160.3113    1.90   1.84666   23.80
  31         190.4630    9.00
 
  32            ∞       2.00   1.51680   63.88
  33            ∞       Bf
 
  I            ∞
 
[各種データ]
f              392.00
FNO            2.88
2ω              6.28
Y               21.63
TL            400.00
Bf             71.30
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         392.000            -0.173
d0                 ∞            2200.000
d11              15.740            31.040
d16              35.300            20.000
Bf              71.300            71.300
 
[レンズ群データ]
         ST          f
G1         1        177.9658
G2        12        -72.7082
G3        18        181.1444
 
[条件式対応値]
fF =332.3433
fR =-1237.2508
f =392.0000
f1 =177.9658
f1a =326.9111
f1b =208.4317
f2 =-72.7082
f12 =870.7966
f3a =145.4495
f3bc =-1237.2508
νdp =95.25(L11), 95.25(L12)
ndn =1.69100
νdn = 54.93
βs =-3.8225
βr =-0.3086
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.4881
(3-2) f3a/f3bc = -0.1176
(3-3) f1a/f1b = 1.5684
(3-4) νdp = 95.25(L11), 95.25(L12)
(3-5) ndn = 1.69100
(3-6) νdn = 54.93
(3-7) f1/f2 = -2.4477
(3-8) f/f12 = 0.4502
 
(第4実施形態)
(4-1) |fR/fF| = 3.7228
(4-2) βr×(1-βs) = -1.4881
(4-3) f3a/f3bc = -0.1176
(4-4) f1a/f1b = 1.5684
(4-5) νdp = 95.25(L11), 95.25(L12)
(4-6) ndn = 1.69100
(4-7) νdn = 54.93
(4-8) f1/f2 = -2.4477
(4-9) f/f12 = 0.4502
 
(第5実施形態)
(5-1) |fR/fF| = 3.7228
(5-2) βr×(1-βs) = -1.4881
(5-3) f3a/f3bc = -0.1176
(5-4) f1a/f1b = 1.5684
(5-5) νdp = 95.25(L11), 95.25(L12)
(5-6) ndn = 1.69100
(5-7) νdn = 54.93
(5-8) f1/f2 = -2.4477
(5-9) f/f12 = 0.4502
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.4881
(6-2) f3a/f3bc = -0.1176
(6-3) f1a/f1b = 1.5684
(6-4) νdp = 95.25(L11), 95.25(L12)
(6-5) ndn = 1.69100
(6-6) νdn = 54.93
(6-7) f1/f2 = -2.4477
(6-8) f/f12 = 0.4502
 
(Table 8) Eighth Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.50
3 232.9803 15.50 1.43385 95.25
4 -1439.6122 45.00
5 181.4353 18.50 1.43385 95.25
6 -403.8411 3.27
7 -381.3927 6.00 1.61266 44.46
8 616.0014 91.44
9 68.9182 5.40 1.80610 40.97
10 47.0662 15.50 1.49782 82.57
11 783.4341 Variable
12 -1054.8550 2.50 1.80100 34.92
13 73.2883 5.00
14 -1414.1001 4.50 1.84666 23.80
15 -76.6008 2.00 1.69100 54.93
16 209.5153 Variable
17 (S) ∞ 2.00

18 158.0460 8.00 1.59319 67.90
19 -62.8829 0.60
20 -64.4824 1.90 1.79504 28.69
21 -131.7441 7.60
22 -544.1422 3.30 1.84666 23.80
23 -78.4731 1.90 1.59319 67.90
24 60.2986 4.15
25 -1406.4760 1.90 1.75500 52.34
26 91.4315 4.00
27 97.5172 3.00 1.77250 49.62
28 -457.9700 0.50
29 73.3485 4.80 1.74400 44.81
30 -160.3113 1.90 1.84666 23.80
31 190.4630 9.00

32 ∞ 2.00 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 392.00
FNO 2.88
2ω 6.28
Y 21.63
TL 400.00
Bf 71.30

When focusing on an object at infinity When focusing on a near object f or β 392.000 -0.173
d0 ∞ 2200.000
d11 15.740 31.040
d16 35.300 20.000
Bf 71.300 71.300

[Lens group data]
ST f
G1 1 177.9658
G2 12 -72.7082
G3 18 181.1444

[Conditional expression values]
fF = 332.3433
fR = -1237.2508
f = 392.0000
f1 = 177.9658
f1a = 326.9111
f1b = 208.4317
f2 = -72.7082
f12 = 870.7966
f3a = 145.4495
f3bc = -1237.2508
νdp = 95.25 (L11), 95.25 (L12)
ndn = 1.69100
νdn = 54.93
βs = -3.8225
βr = -0.3086

(Third embodiment)
(3-1) βr × (1-βs) =-1.4881
(3-2) f3a / f3bc = -0.1176
(3-3) f1a / f1b = 1.5684
(3-4) νdp = 95.25 (L11), 95.25 (L12)
(3-5) ndn = 1.69100
(3-6) νdn = 54.93
(3-7) f1 / f2 = -2.4477
(3-8) f / f12 = 0.4502

(Fourth embodiment)
(4-1) | fR / fF | = 3.7228
(4-2) βr × (1-βs) =-1.4881
(4-3) f3a / f3bc = -0.1176
(4-4) f1a / f1b = 1.5684
(4-5) νdp = 95.25 (L11), 95.25 (L12)
(4-6) ndn = 1.69100
(4-7) νdn = 54.93
(4-8) f1 / f2 = -2.4477
(4-9) f / f12 = 0.4502

(Fifth embodiment)
(5-1) | fR / fF | = 3.7228
(5-2) βr × (1-βs) =-1.4881
(5-3) f3a / f3bc = -0.1176
(5-4) f1a / f1b = 1.5684
(5-5) νdp = 95.25 (L11), 95.25 (L12)
(5-6) ndn = 1.69100
(5-7) νdn = 54.93
(5-8) f1 / f2 = -2.4477
(5-9) f / f12 = 0.4502

(Sixth embodiment)
(6-1) βr × (1-βs) =-1.4881
(6-2) f3a / f3bc = -0.1176
(6-3) f1a / f1b = 1.5684
(6-4) νdp = 95.25 (L11), 95.25 (L12)
(6-5) ndn = 1.69100
(6-6) νdn = 54.93
(6-7) f1 / f2 = -2.4477
(6-8) f / f12 = 0.4502
 図23A、及び図23Bはそれぞれ、本願の第8実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図24は、本願の第8実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図24におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.35mmである。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
FIGS. 23A and 23B are graphs showing various aberrations when the optical system according to Example 8 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 24 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the eighth example of the present application. Note that the shift amount in the direction perpendicular to the optical axis of the shift lens group in FIG. 24 is 1.35 mm.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
(第9実施例)
 図25は、本願の第3~6実施形態に共通の第9実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(Ninth embodiment)
FIG. 25 is a cross-sectional view showing the lens arrangement at the time of focusing on an object at infinity in the optical system according to Example 9 common to Embodiments 3 to 6 of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
The first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. The protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
The first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented negative lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3aレンズ群G3aと、負の屈折力を有する第3bレンズ群G3bと、正の屈折力を有する第3cレンズ群G3cとから構成されている。
 第3aレンズ群G3aは、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とからなる。
 第3bレンズ群G3bは、物体側から順に、物体側に凹面を向けた正メニスカスレンズL33と両凹形状の負レンズL34との接合レンズと、物体側に凸面を向けた負メニスカスレンズL35とからなる。
 第3cレンズ群G3cは、物体側から順に、両凸形状の正レンズL36と、両凸形状の正レンズL37と物体側に凹面を向けた負メニスカスレンズL38との接合レンズとからなる。
The third lens group G3 includes, in order from the object side, a third a lens group G3a having a positive refractive power, a third b lens group G3b having a negative refractive power, and a third c lens group G3c having a positive refractive power. It is composed of
The third-a lens group G3a is composed of, in order from the object side, a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side.
The third lens group G3b includes, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface directed toward the object side and a biconcave negative lens L34, and a negative meniscus lens L35 having a convex surface directed toward the object side. Become.
The third c lens group G3c includes, in order from the object side, a biconvex positive lens L36, a cemented lens of a biconvex positive lens L37, and a negative meniscus lens L38 having a concave surface facing the object side.
 本実施例に係る光学系は、第2レンズ群G2の正メニスカスレンズL22の物体側レンズ面(面番号14)に、後述する反射防止膜が形成されている。 In the optical system according to the present example, an antireflection film described later is formed on the object side lens surface (surface number 14) of the positive meniscus lens L22 of the second lens group G2.
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なお、合焦時、開口絞りSの位置は像面Iに対して固定である。また、本実施例に係る光学系の近距離物体合焦時の撮影距離は2.6mである。
 本実施例に係る光学系では、第3レンズ群G3における第3bレンズ群G3bをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表9に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. Note that the position of the aperture stop S is fixed with respect to the image plane I during focusing. In addition, the shooting distance of the optical system according to the present embodiment when focusing on a short-distance object is 2.6 m.
In the optical system according to the present example, the third lens group G3 in the third lens group G3 is shifted to include a component in a direction orthogonal to the optical axis as a shift lens group, thereby performing image stabilization.
Table 9 below provides values of specifications of the optical system according to the present example.
(表9)第9実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.50
   3         223.9540   15.50   1.43385   95.25
   4       -5879.6456   45.00
   5         188.6739   18.50   1.43385   95.25
   6        -344.9762    3.24
   7        -334.2849    6.00   1.61266   44.46
   8        1087.7540   90.02
   9          66.7379    5.20   1.80610   40.97
  10          45.7359   15.00   1.49782   82.57
  11         678.5295    可変
 
  12       -1447.2643    2.50   1.80100   34.92
  13          63.6827    5.00
  14        -302.0700    4.50   1.84666   23.80
  15         -62.4763    2.00   1.69100   54.93
  16         764.0825    可変
 
  17(S)        ∞   2.00
 
  18         125.7848    8.00   1.59319   67.90
  19         -59.6174    0.60
  20         -60.3570    1.90   1.79504   28.69
  21        -122.9210    5.79
  22        -208.0839    3.30   1.84666   23.80
  23         -61.6159    1.90   1.59319   67.90
  24          57.2685    3.00
  25         880.2836    1.90   1.81600   46.59
  26         100.1330    4.00
  27         123.7087    3.00   1.77250   49.62
  28        1021.0401    0.15
  29          75.9029    4.80   1.74320   49.26
  30        -107.4055    1.90   1.84666   23.80
  31       -5070.3090    9.00
 
  32           ∞        2.00   1.51680   63.88
  33           ∞        Bf
 
  I            ∞
 
[各種データ]
f              392.00
FNO            2.88
2ω              6.27
Y               21.60
TL            400.00
Bf             71.300
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         392.000            -0.173
d0                 ∞            2200.000
d11              17.726            32.026
d16              38.772            24.472
Bf              71.300            71.381
 
[レンズ群データ]
         ST          f
G1         1        172.5113
G2        12        -69.4949
G3        18        175.8293
 
[条件式対応値]
fF =308.6113
fR =-645.0699
f =391.9996
f1 =172.5113
f1a =318.0791
f1b =203.8595
f2 =-69.4949
f12 =859.4613
f3a =126.0854
f3bc =-645.0699
νdp =95.25(L11), 95.25(L12)
ndn =1.69100
νdn = 54.93
βs =-5.1901
βr =-0.2447
 
(第3実施形態)
(3-1) βr×(1-βs) = -1.5150
(3-2) f3a/f3bc = -0.1955
(3-3) f1a/f1b = 1.5603
(3-4) νdp = 95.25(L11), 95.25(L12)
(3-5) ndn = 1.69100
(3-6) νdn = 54.93
(3-7) f1/f2 = -2.4824
(3-8) f/f12 = 0.4561
 
(第4実施形態)
(4-1) |fR/fF| = 2.0902
(4-2) βr×(1-βs) = -1.5150
(4-3) f3a/f3bc = -0.1955
(4-4) f1a/f1b = 1.5603
(4-5) νdp = 95.25(L11), 95.25(L12)
(4-6) ndn = 1.69100
(4-7) νdn = 54.93
(4-8) f1/f2 = -2.4824
(4-9) f/f12 = 0.4561
 
(第5実施形態)
(5-1) |fR/fF| = 2.0902
(5-2) βr×(1-βs) = -1.5150
(5-3) f3a/f3bc = -0.1955
(5-4) f1a/f1b = 1.5603
(5-5) νdp = 95.25(L11), 95.25(L12)
(5-6) ndn = 1.69100
(5-7) νdn = 54.93
(5-8) f1/f2 = -2.4824
(5-9) f/f12 = 0.4561
 
(第6実施形態)
(6-1) βr×(1-βs) = -1.5150
(6-2) f3a/f3bc = -0.1955
(6-3) f1a/f1b = 1.5603
(6-4) νdp = 95.25(L11), 95.25(L12)
(6-5) ndn = 1.69100
(6-6) νdn = 54.93
(6-7) f1/f2 = -2.4824
(6-8) f/f12 = 0.4561
 
(Table 9) Ninth Example
[Surface data]
m r d nd νd
OP ∞ ∞

1 1200.3704 5.00 1.51680 63.88
2 1199.7897 1.50
3 223.9540 15.50 1.43385 95.25
4 -5879.6456 45.00
5 188.6739 18.50 1.43385 95.25
6 -344.9762 3.24
7 -334.2849 6.00 1.61266 44.46
8 1087.7540 90.02
9 66.7379 5.20 1.80610 40.97
10 45.7359 15.00 1.49782 82.57
11 678.5295 Variable
12 -1447.2643 2.50 1.80100 34.92
13 63.6827 5.00
14 -302.0700 4.50 1.84666 23.80
15 -62.4763 2.00 1.69100 54.93
16 764.0825 Variable
17 (S) ∞ 2.00

18 125.7848 8.00 1.59319 67.90
19 -59.6174 0.60
20 -60.3570 1.90 1.79504 28.69
21 -122.9210 5.79
22 -208.0839 3.30 1.84666 23.80
23 -61.6159 1.90 1.59319 67.90
24 57.2685 3.00
25 880.2836 1.90 1.81600 46.59
26 100.1330 4.00
27 123.7087 3.00 1.77250 49.62
28 1021.0401 0.15
29 75.9029 4.80 1.74320 49.26
30 -107.4055 1.90 1.84666 23.80
31 -5070.3090 9.00

32 ∞ 2.00 1.51680 63.88
33 ∞ Bf

I ∞

[Various data]
f 392.00
FNO 2.88
2ω 6.27
Y 21.60
TL 400.00
Bf 71.300

When focusing on an object at infinity When focusing on a near object f or β 392.000 -0.173
d0 ∞ 2200.000
d11 17.726 32.026
d16 38.772 24.472
Bf 71.300 71.381

[Lens group data]
ST f
G1 1 172.5113
G2 12 -69.4949
G3 18 175.8293

[Conditional expression values]
fF = 308.6113
fR = -645.0699
f = 391.9996
f1 = 172.5113
f1a = 318.0791
f1b = 203.8595
f2 = -69.4949
f12 = 859.4613
f3a = 126.0854
f3bc = -645.0699
νdp = 95.25 (L11), 95.25 (L12)
ndn = 1.69100
νdn = 54.93
βs = -5.1901
βr = −0.2447

(Third embodiment)
(3-1) βr × (1-βs) = − 1.5150
(3-2) f3a / f3bc = -0.1955
(3-3) f1a / f1b = 1.5603
(3-4) νdp = 95.25 (L11), 95.25 (L12)
(3-5) ndn = 1.69100
(3-6) νdn = 54.93
(3-7) f1 / f2 = -2.4824
(3-8) f / f12 = 0.4561

(Fourth embodiment)
(4-1) | fR / fF | = 2.0902
(4-2) βr × (1-βs) = − 1.5150
(4-3) f3a / f3bc = -0.1955
(4-4) f1a / f1b = 1.5603
(4-5) νdp = 95.25 (L11), 95.25 (L12)
(4-6) ndn = 1.69100
(4-7) νdn = 54.93
(4-8) f1 / f2 = -2.4824
(4-9) f / f12 = 0.4561

(Fifth embodiment)
(5-1) | fR / fF | = 2.0902
(5-2) βr × (1-βs) = − 1.5150
(5-3) f3a / f3bc = -0.1955
(5-4) f1a / f1b = 1.5603
(5-5) νdp = 95.25 (L11), 95.25 (L12)
(5-6) ndn = 1.69100
(5-7) νdn = 54.93
(5-8) f1 / f2 = -2.4824
(5-9) f / f12 = 0.4561

(Sixth embodiment)
(6-1) βr × (1-βs) = − 1.5150
(6-2) f3a / f3bc = -0.1955
(6-3) f1a / f1b = 1.5603
(6-4) νdp = 95.25 (L11), 95.25 (L12)
(6-5) ndn = 1.69100
(6-6) νdn = 54.93
(6-7) f1 / f2 = -2.4824
(6-8) f / f12 = 0.4561
 図26A、及び図26Bはそれぞれ、本願の第9実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図27は、本願の第9実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図27におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.35mmである。
 各収差図より、本実施例に係る光学系は諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
FIGS. 26A and 26B are graphs showing various aberrations when the optical system according to Example 9 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
FIG. 27 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to Example 9 of the present application. The shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 27 is 1.35 mm.
From the respective aberration diagrams, it can be seen that the optical system according to the present embodiment corrects various aberrations well and has excellent imaging performance, and also has excellent imaging performance during lens shift.
 ここで、本願の第5~8実施形態に係る光学系に用いられる反射防止膜(多層広帯域反射防止膜とも言う)について説明する。図31は、反射防止膜の膜構成の一例を示す図である。この反射防止膜101は7層からなり、レンズ等の光学部材102の光学面に形成される。第1層101aは真空蒸着法で蒸着された酸化アルミニウムで形成されている。また、この第1層101aの上に更に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第2層101bが形成される。さらに、この第2層101bの上に真空蒸着法で蒸着された酸化アルミニウムからなる第3層101cが形成され、この第3層101cの上に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第4層101dが形成される。またさらに、この第4層101dの上に真空蒸着法で蒸着された酸化アルミニウムからなる第5層101eが形成され、この第5層101eの上に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第6層101fが形成される。 Here, an antireflection film (also referred to as a multilayer broadband antireflection film) used in the optical system according to the fifth to eighth embodiments of the present application will be described. FIG. 31 is a diagram illustrating an example of a film configuration of an antireflection film. The antireflection film 101 is composed of seven layers and is formed on the optical surface of the optical member 102 such as a lens. The first layer 101a is formed of aluminum oxide deposited by a vacuum deposition method. Further, a second layer 101b made of a mixture of titanium oxide and zirconium oxide deposited by a vacuum deposition method is further formed on the first layer 101a. Further, a third layer 101c made of aluminum oxide deposited by a vacuum deposition method is formed on the second layer 101b, and titanium oxide and zirconium oxide deposited by a vacuum deposition method are formed on the third layer 101c. A fourth layer 101d made of the mixture is formed. Furthermore, a fifth layer 101e made of aluminum oxide deposited by vacuum deposition is formed on the fourth layer 101d, and titanium oxide and zirconium oxide deposited by vacuum deposition on the fifth layer 101e. A sixth layer 101f made of the mixture is formed.
 そして、このようにして形成された第6層101fの上に、ウェットプロセスによりフッ化マグネシウムとシリカの混合物からなる第7層101gが形成されて本実施形態の反射防止膜101が形成される。第7層101gの形成には、ウェットプロセスの一種であるゾル-ゲル法を用いている。ゾル-ゲル法とは、原料を混合することにより得られたゾルを、加水分解・重縮合反応などにより流動性のないゲルとし、このゲルを加熱・分解して生成物を得る方法であり、光学薄膜の作製においては、光学部材の光学面上に光学薄膜材料ゾルを塗布し、乾燥固化によりゲル膜とすることで膜を生成することができる。なお、ウェットプロセスとして、ゾル-ゲル法に限らず、ゲル状態を経ないで固体膜を得る方法を用いるようにしてもよい。 Then, on the sixth layer 101f thus formed, a seventh layer 101g made of a mixture of magnesium fluoride and silica is formed by a wet process to form the antireflection film 101 of this embodiment. For the formation of the seventh layer 101g, a sol-gel method which is a kind of wet process is used. The sol-gel method is a method in which a sol obtained by mixing raw materials is made into a non-flowable gel by hydrolysis / polycondensation reaction, etc., and the gel is heated and decomposed to obtain a product. In the production of an optical thin film, a film can be formed by applying an optical thin film material sol on the optical surface of an optical member and forming a gel film by drying and solidifying. The wet process is not limited to the sol-gel method, and a method of obtaining a solid film without going through a gel state may be used.
 このように、この反射防止膜101の第1層101a~第6層101fまではドライプロセスである電子ビーム蒸着により形成され、最上層である第7層101gは、フッ酸/酢酸マグネシウム法で調製したゾル液を用いるウェットプロセスにより以下の手順で形成されている。まず、予めレンズ成膜面である上述の光学部材102の光学面に真空蒸着装置を用いて第1層101aとなる酸化アルミニウム層、第2層101bとなる酸化チタン-酸化ジルコニウム混合層、第3層101cとなる酸化アルミニウム層、第4層101dとなる酸化チタン-酸化ジルコニウム混合層、第5層101eとなる酸化アルミニウム層、第6層101fとなる酸化チタン-酸化ジルコニウム混合層を順に形成する。そして、蒸着装置より光学部材102を取り出した後、フッ酸/酢酸マグネシウム法により調製したゾル液にシリコンアルコキシドを加えたものをスピンコート法により塗布することにより、第7層101gとなるフッ化マグネシウムとシリカの混合物からなる層を形成する。フッ酸/酢酸マグネシウム法によって調製される際の反応式を以下の式(a)に示す。 As described above, the first layer 101a to the sixth layer 101f of the antireflection film 101 are formed by electron beam evaporation which is a dry process, and the seventh layer 101g which is the uppermost layer is prepared by a hydrofluoric acid / magnesium acetate method. It is formed by the following procedure by a wet process using the prepared sol solution. First, an aluminum oxide layer that becomes the first layer 101a, a titanium oxide-zirconium oxide mixed layer that becomes the second layer 101b, a third layer on the optical surface of the optical member 102 that is a lens film formation surface in advance by using a vacuum evaporation apparatus, An aluminum oxide layer to be the layer 101c, a titanium oxide-zirconium oxide mixed layer to be the fourth layer 101d, an aluminum oxide layer to be the fifth layer 101e, and a titanium oxide-zirconium oxide mixed layer to be the sixth layer 101f are formed in this order. And after taking out the optical member 102 from a vapor deposition apparatus, the thing which added the silicon alkoxide to the sol liquid prepared by the hydrofluoric acid / magnesium acetate method is apply | coated by the spin coat method, The magnesium fluoride used as the 7th layer 101g A layer made of a mixture of silica and silica is formed. The reaction formula when prepared by the hydrofluoric acid / magnesium acetate method is shown in the following formula (a).
(a) 2HF+Mg(CH3COO)2 → MgF2+2CH3COOH (A) 2HF + Mg (CH3COO) 2 → MgF2 + 2CH3COOH
 この成膜に用いたゾル液は、原料混合後、オートクレーブで140℃、24時間高温加圧熟成処理を施した後、成膜に用いられる。この光学部材102は、第7層101gの成膜終了後、大気中で160℃、1時間加熱処理して完成される。このようなゾル-ゲル法を用いることにより、大きさが数nmから数十nmの粒子が空隙を残して堆積することにより第7層101gが形成される。 The sol solution used for this film formation is used for film formation after mixing raw materials and subjecting it to high temperature and pressure aging treatment at 140 ° C. for 24 hours in an autoclave. The optical member 102 is completed by heat treatment at 160 ° C. for 1 hour in the air after the seventh layer 101g is formed. By using such a sol-gel method, the seventh layer 101g is formed by depositing particles having a size of several nm to several tens of nm leaving a void.
 このようにして形成された反射防止膜101を有する光学部材の光学的性能について図32に示す分光特性を用いて説明する。 The optical performance of the optical member having the antireflection film 101 formed in this way will be described using the spectral characteristics shown in FIG.
 本願の第5~8実施形態に係る反射防止膜を有する光学部材であるレンズは、以下の表10に示す条件で形成されている。ここで表10は、基準波長をλとし、基板である光学部材の屈折率が1.62、1.74及び1.85について反射防止膜101の各層101a(第1層)~101g(第7層)の光学膜厚をそれぞれ求めたものである。なお、表10では、酸化アルミニウムをAl2O3、酸化チタンと酸化ジルコニウム混合物をZrO2+TiO2、フッ化マグネシウムとシリカの混合物をMgF2+SiO2とそれぞれ表している。また、表10~12において、Nは屈折率、Dは光学膜厚を示している。 The lens which is an optical member having the antireflection film according to the fifth to eighth embodiments of the present application is formed under the conditions shown in Table 10 below. Here, Table 10 shows that the reference wavelength is λ and the refractive index of the optical member as the substrate is 1.62, 1.74, and 1.85, the layers 101a (first layer) to 101g (seventh layer) of the antireflection film 101. The optical film thickness of each layer is determined. In Table 10, aluminum oxide is represented by Al2O3, a mixture of titanium oxide and zirconium oxide is represented by ZrO2 + TiO2, and a mixture of magnesium fluoride and silica is represented by MgF2 + SiO2. In Tables 10 to 12, N represents the refractive index and D represents the optical film thickness.
(表10)
            物質         N     D       D       D
    媒質    空気        1
    第7層  MgF2+SiO2  1.26  0.268λ  0.271λ  0.269λ
    第6層  ZrO2+TiO2  2.12  0.057λ  0.054λ  0.059λ
    第5層  Al2O3       1.65  0.171λ  0.178λ  0.162λ
    第4層  ZrO2+TiO2  2.12  0.127λ  0.13λ   0.158λ
    第3層  Al2O3       1.65  0.122λ  0.107λ  0.08λ
    第2層  ZrO2+TiO2  2.12  0.059λ  0.075λ  0.105λ
    第1層  Al2O3       1.65  0.257λ  0.03λ   0.03λ
    基板の屈折率              1.62     1.74     1.85
 
(Table 10)
Substance N D D D
Medium air 1
7th layer MgF2 + SiO2 1.26 0.268λ 0.271λ 0.269λ
6th layer ZrO2 + TiO2 2.12 0.057λ 0.054λ 0.059λ
5th layer Al2O3 1.65 0.171λ 0.178λ 0.162λ
4th layer ZrO2 + TiO2 2.12 0.127λ 0.13λ 0.158λ
3rd layer Al2O3 1.65 0.122λ 0.107λ 0.08λ
Second layer ZrO2 + TiO2 2.12 0.059λ 0.075λ 0.105λ
1st layer Al2O3 1.65 0.257λ 0.03λ 0.03λ
Refractive index of substrate 1.62 1.74 1.85
 図32は、表10において基準波長λを550nmとして反射防止膜101の各層の光学膜厚を設計した光学部材に光線が垂直入射する時の分光特性を表している。 FIG. 32 shows spectral characteristics when a light beam is vertically incident on an optical member in which the reference wavelength λ is 550 nm in Table 10 and the optical film thickness of each layer of the antireflection film 101 is designed.
 図32から、基準波長λを550nmで設計した反射防止膜101を有する光学部材は、光線の波長が420nm~720nmの全域で反射率を0.2%以下に抑えられることが判る。また、表10において基準波長λをd線(波長587.6nm)として各光学膜厚を設計した反射防止膜101を有する光学部材でも、その分光特性にはほとんど影響せず、図32に示す基準波長λが550nmの場合とほぼ同等の分光特性を有する。 32, it can be seen that the optical member having the antireflection film 101 designed with the reference wavelength λ of 550 nm can suppress the reflectance to 0.2% or less over the entire wavelength range of 420 nm to 720 nm. Further, even in the optical member having the antireflection film 101 in which each optical film thickness is designed with the reference wavelength λ as d line (wavelength 587.6 nm) in Table 10, the spectral characteristics are hardly affected, and the reference shown in FIG. Spectral characteristics substantially equivalent to those when the wavelength λ is 550 nm.
 次に、本反射防止膜の変形例について説明する。この反射防止膜は5層からなり、表10と同様、以下の表11で示される条件で基準波長λに対する各層の光学膜厚が設計される。本変形例では、第5層の形成に前述のゾル-ゲル法を用いている。 Next, a modified example of the antireflection film will be described. This antireflection film consists of five layers, and similarly to Table 10, the optical film thickness of each layer with respect to the reference wavelength λ is designed under the conditions shown in Table 11 below. In this modification, the above-described sol-gel method is used for forming the fifth layer.
(表11)
            物質         N     D       D
    媒質    空気        1
    第5層  MgF2+SiO2  1.26  0.275λ  0.269λ
    第4層  ZrO2+TiO2  2.12  0.045λ  0.043λ
    第3層  Al2O3       1.65  0.212λ  0.217λ
    第2層  ZrO2+TiO2  2.12  0.077λ  0.066λ
    第1層  Al2O3       1.65  0.288λ  0.290λ
    基板の屈折率              1.46     1.52
 
(Table 11)
Substance N D D
Medium air 1
5th layer MgF2 + SiO2 1.26 0.275λ 0.269λ
4th layer ZrO2 + TiO2 2.12 0.045λ 0.043λ
3rd layer Al2O3 1.65 0.212λ 0.217λ
Second layer ZrO2 + TiO2 2.12 0.077λ 0.066λ
1st layer Al2O3 1.65 0.288λ 0.290λ
Refractive index of substrate 1.46 1.52
 図33は、表11において、基板の屈折率が1.52及び基準波長λを550nmとして各光学膜厚を設計した反射防止膜を有する光学部材に光線が垂直入射する時の分光特性を示している。図33から本変形例の反射防止膜は、光線の波長が420nm~720nmの全域で反射率が0.2%以下に抑えられることがわかる。なお、表11において基準波長λをd線(波長587.6nm)として各光学膜厚を設計した反射防止膜を有する光学部材でも、その分光特性にはほとんど影響せず、図33に示す分光特性とほぼ同等の特性を有する。 FIG. 33 shows the spectral characteristics when light rays are perpendicularly incident on an optical member having an antireflection film in which the optical film thickness is designed with the refractive index of the substrate being 1.52 and the reference wavelength λ being 550 nm in Table 11. Yes. From FIG. 33, it can be seen that the antireflection film of this modification has a reflectance of 0.2% or less over the entire wavelength range of 420 nm to 720 nm. In Table 11, even an optical member having an antireflection film whose optical film thickness is designed with the reference wavelength λ as the d-line (wavelength 587.6 nm) hardly affects the spectral characteristics, and the spectral characteristics shown in FIG. Has almost the same characteristics.
 図34は、図33に示す分光特性を有する光学部材への光線の入射角が30度、45度、60度の場合の分光特性をそれぞれ示す。なお、図33、図34には表11に示す基板の屈折率が1.46の反射防止膜を有する光学部材の分光特性が図示されていないが、基板の屈折率が1.52とほぼ同等の分光特性を有していることは言うまでもない。 FIG. 34 shows the spectral characteristics when the incident angle of the light beam to the optical member having the spectral characteristics shown in FIG. 33 is 30, 45, and 60 degrees, respectively. 33 and 34 do not show the spectral characteristics of the optical member having the antireflection film whose refractive index of the substrate shown in Table 11 is 1.46, but the refractive index of the substrate is almost equal to 1.52. Needless to say, it has the following spectral characteristics.
 また比較のため、図35に、従来の真空蒸着法などのドライプロセスのみで成膜した反射防止膜の一例を示す。図36は、表11と同じ基板の屈折率1.52に以下の表12で示される条件で構成される反射防止膜を設計した光学部材に光線が垂直入射する時の分光特性を示す。また、図36は、図35に示す分光特性を有する光学部材への光線の入射角が30度、45度、60度の場合の分光特性をそれぞれ示す。 For comparison, FIG. 35 shows an example of an antireflection film formed only by a dry process such as a conventional vacuum deposition method. FIG. 36 shows spectral characteristics when a light beam is perpendicularly incident on an optical member designed with an antireflection film configured under the conditions shown in Table 12 below with a refractive index of 1.52 of the same substrate as in Table 11. FIG. 36 shows the spectral characteristics when the incident angles of the light rays to the optical member having the spectral characteristics shown in FIG. 35 are 30, 45, and 60 degrees, respectively.
(表12)
            物質         N     D
    媒質    空気        1
    第7層  MgF2        1.39  0.243λ
    第6層  ZrO2+TiO2  2.12  0.119λ
    第5層  Al2O3       1.65  0.057λ
    第4層  ZrO2+TiO2  2.12  0.220λ
    第3層  Al2O3       1.65  0.064λ
    第2層  ZrO2+TiO2  2.12  0.057λ
    第1層  Al2O3       1.65  0.193λ
    基板の屈折率              1.52
 
(Table 12)
Substance N D
Medium air 1
7th layer MgF2 1.39 0.243λ
6th layer ZrO2 + TiO2 2.12 0.119λ
5th layer Al2O3 1.65 0.057λ
4th layer ZrO2 + TiO2 2.12 0.220λ
3rd layer Al2O3 1.65 0.064λ
Second layer ZrO2 + TiO2 2.12 0.057λ
1st layer Al2O3 1.65 0.193λ
Refractive index of substrate 1.52
 図32~図34で示される本願の第5~8実施形態に係る反射防止膜を有する光学部材の分光特性を、図35および図36で示される従来例の分光特性と比較すると、本願の第5~8実施形態に係る反射防止膜はいずれの入射角においてもより低い反射率を有し、しかもより広い帯域で低い反射率を有することが良くわかる。 When the spectral characteristics of the optical member having the antireflection film according to the fifth to eighth embodiments of the present application shown in FIGS. 32 to 34 are compared with the spectral characteristics of the conventional example shown in FIGS. It can be clearly seen that the antireflection films according to the fifth to eighth embodiments have a lower reflectance at any incident angle and a lower reflectance in a wider band.
 次に、本願の第1実施例から第9実施例に、上記表10および表11に示す反射防止膜を適用した例について説明する。 Next, an example in which the antireflection film shown in Table 10 and Table 11 is applied to the first to ninth embodiments of the present application will be described.
 本願の第1実施例の光学系において、第3レンズ群G3の両凹形状の負レンズL34の屈折率は、表1に示すように、nd=1.59319であり、第3レンズ群G3の両凸形状の正レンズL36の屈折率は、nd=1.77250であるため、両凹形状の負レンズL34における像面側のレンズ面に基板の屈折率が1.62に対応する反射防止膜101(表11参照)を用い、両凸形状の正レンズL36における物体側のレンズ面に、基板の屈折率が1.74に対応する反射防止膜(表11参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of Example 1 of the present application, the refractive index of the biconcave negative lens L34 of the third lens group G3 is nd = 1.59319, as shown in Table 1, and the third lens group G3 has the refractive index. Since the refractive index of the biconvex positive lens L36 is nd = 1.77250, the antireflection film corresponding to the refractive index of the substrate of 1.62 on the image surface side lens surface of the biconcave negative lens L34. 101 (see Table 11), and an antireflection film (see Table 11) corresponding to a refractive index of the substrate of 1.74 is used on the object-side lens surface of the biconvex positive lens L36. The amount of reflected light can be reduced, and ghost and flare can be reduced.
 本願の第2実施例の光学系において、第3レンズ群G3の両凹形状の負レンズL34の屈折率は、表2に示すように、nd=1.59319であるため、両凹形状の負レンズL34における像面側のレンズ面に基板の屈折率が1.62に対応する反射防止膜101(表11参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of the second example of the present application, the refractive index of the biconcave negative lens L34 of the third lens group G3 is nd = 1.59319 as shown in Table 2, so By using an antireflection film 101 (see Table 11) having a substrate refractive index of 1.62 on the lens surface on the image plane side of the lens L34, reflected light from each lens surface can be reduced, and ghost and flare can be reduced. can do.
 本願の第3実施例の光学系において、第1レンズ群G1の正メニスカスレンズL15の屈折率は、表3に示すように、nd=1.49782であるため、正メニスカスレンズL15における像面側のレンズ面に基板の屈折率が1.52に対応する反射防止膜101(表10参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of the third example of the present application, the refractive index of the positive meniscus lens L15 of the first lens group G1 is nd = 1.49782 as shown in Table 3, so that the image plane side of the positive meniscus lens L15 is By using the antireflection film 101 (see Table 10) corresponding to the refractive index of the substrate of 1.52 on the lens surface, the reflected light from each lens surface can be reduced, and ghost and flare can be reduced.
 本願の第4実施例の光学系において、第2レンズ群G2の負メニスカスレンズL21の屈折率は、表4に示すように、nd=1.77250であるため、負メニスカスレンズL21における像面側のレンズ面に基板の屈折率が1.74に対応する反射防止膜101(表11参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of the fourth example of the present application, the refractive index of the negative meniscus lens L21 of the second lens group G2 is nd = 1.77250 as shown in Table 4, so that the image plane side of the negative meniscus lens L21 is By using the antireflection film 101 (see Table 11) corresponding to the refractive index of the substrate of 1.74 on the lens surface, the reflected light from each lens surface can be reduced, and ghost and flare can be reduced.
 本願の第5実施例の光学系において、第1レンズ群G1の両凸形状の正レンズL12の屈折率は、表5に示すように、nd=1.43385であり、第1レンズ群G1の両凹形状の負レンズL13の屈折率は、nd=1.61266であるため、両凸形状の正レンズL12における像面側のレンズ面に基板の屈折率が1.46に対応する反射防止膜101(表10参照)を用い、両凹形状の負レンズL13における物体側のレンズ面に、基板の屈折率が1.62に対応する反射防止膜(表11参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of Example 5 of the present application, the refractive index of the biconvex positive lens L12 of the first lens group G1 is nd = 1.43385, as shown in Table 5, and the refractive index of the first lens group G1 Since the refractive index of the biconcave negative lens L13 is nd = 1.66266, the antireflective film corresponding to the refractive index of the substrate corresponding to the refractive index of 1.46 on the image surface side lens surface of the biconvex positive lens L12. 101 (see Table 10), and an antireflection film (see Table 11) corresponding to a refractive index of the substrate of 1.62 is used on the object-side lens surface of the biconcave negative lens L13. The amount of reflected light can be reduced, and ghost and flare can be reduced.
 本願の第6実施例の光学系において、第2レンズ群G2の正メニスカスレンズL22の屈折率は、表6に示すように、nd=1.80809であるため、正メニスカスレンズL22における物体側のレンズ面に基板の屈折率が1.85に対応する反射防止膜101(表11参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of the sixth example of the present application, the refractive index of the positive meniscus lens L22 of the second lens group G2 is nd = 1.80809 as shown in Table 6, so that the object side of the positive meniscus lens L22 has an object side. By using an antireflection film 101 (see Table 11) corresponding to a refractive index of the substrate of 1.85 on the lens surface, reflected light from each lens surface can be reduced, and ghost and flare can be reduced.
 本願の第7実施例の光学系において、第3レンズ群G3の両凹形状の負レンズL34の屈折率は、表7に示すように、nd=1.59319であり、第3レンズ群G3の両凸形状の正レンズL36の屈折率は、nd=1.77250であるため、両凹形状の負レンズL34における像面側のレンズ面に基板の屈折率が1.62に対応する反射防止膜101(表11参照)を用い、両凸形状の正レンズL36における物体側のレンズ面に、基板の屈折率が1.74に対応する反射防止膜(表11参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of the seventh example of the present application, the refractive index of the biconcave negative lens L34 of the third lens group G3 is nd = 1.59319 as shown in Table 7, and the refractive index of the third lens group G3 Since the refractive index of the biconvex positive lens L36 is nd = 1.77250, the antireflection film corresponding to the refractive index of the substrate of 1.62 on the image surface side lens surface of the biconcave negative lens L34. 101 (see Table 11), and an antireflection film (see Table 11) corresponding to a refractive index of the substrate of 1.74 is used on the object-side lens surface of the biconvex positive lens L36. The amount of reflected light can be reduced, and ghost and flare can be reduced.
 本願の第8実施例の光学系において、第1レンズ群G1の両凸形状の正レンズL12の屈折率は、表8に示すように、nd=1.43385であり、第1レンズ群G1の両凹形状の負レンズL13の屈折率は、nd=1.61266であるため、両凸形状の正レンズL12における像面側のレンズ面に基板の屈折率が1.46に対応する反射防止膜101(表10参照)を用い、両凹形状の負レンズL13における物体側のレンズ面に、基板の屈折率が1.62に対応する反射防止膜(表11参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of the eighth example of the present application, the refractive index of the biconvex positive lens L12 of the first lens group G1 is nd = 1.43385, as shown in Table 8, and the refractive index of the first lens group G1 Since the refractive index of the biconcave negative lens L13 is nd = 1.66266, the antireflective film corresponding to the refractive index of the substrate corresponding to the refractive index of 1.46 on the image surface side lens surface of the biconvex positive lens L12. 101 (see Table 10), and an antireflection film (see Table 11) corresponding to a refractive index of the substrate of 1.62 is used on the object-side lens surface of the biconcave negative lens L13. The amount of reflected light can be reduced, and ghost and flare can be reduced.
 本願の第9実施例の光学系において、第2レンズ群G2の正メニスカスレンズL22の屈折率は、表9に示すように、nd=1.84666であるため、正メニスカスレンズL22における物体側のレンズ面に基板の屈折率が1.85に対応する反射防止膜101(表11参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。 In the optical system of the ninth example of the present application, the refractive index of the positive meniscus lens L22 of the second lens group G2 is nd = 1.84666 as shown in Table 9, so that the object side of the positive meniscus lens L22 has an object side. By using an antireflection film 101 (see Table 11) corresponding to a refractive index of the substrate of 1.85 on the lens surface, reflected light from each lens surface can be reduced, and ghost and flare can be reduced.
 上記第4、5実施形態の各実施例によれば、小型軽量で、諸収差を良好に補正し優れた光学性能を有する光学系を実現することができる。特に、上記第4、5実施形態の各実施例に係る光学系は、4~9度の画角を有し、レンズシフト時の光学性能の劣化を抑えることもできる。
 また、上記第1~3、6~8実施形態の各実施例によれば、4~9度の画角を有し、小型軽量で、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学系を実現することができる。
 なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の第1~8実施形態に係る光学系の光学性能を損なわない範囲で適宜採用することが可能である。
According to the examples of the fourth and fifth embodiments, it is possible to realize an optical system that is small and light, corrects various aberrations favorably, and has excellent optical performance. In particular, the optical systems according to the examples of the fourth and fifth embodiments have an angle of view of 4 to 9 degrees, and can suppress deterioration of optical performance during lens shift.
Further, according to each of the first to third and sixth to eighth embodiments, it has a field angle of 4 to 9 degrees, is small and light, corrects various aberrations satisfactorily, and optically shifts the lens. It is possible to realize an optical system that suppresses deterioration in performance.
In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be appropriately adopted as long as the optical performance of the optical system according to the first to eighth embodiments of the present application is not impaired.
 本願の第1~8実施形態に係る光学系の数値実施例として3群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、4群や5群等)の光学系を構成することもできる。具体的には、本願の第1~8実施形態に係る光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、上記各実施例に係る光学系は、第1レンズ群中の最も物体側に保護フィルタガラスを備えているが、これを備えない構成としてもよい。 Although a three-group configuration is shown as a numerical example of the optical system according to the first to eighth embodiments of the present application, the present application is not limited to this, and optical elements of other group configurations (for example, the fourth group and the fifth group) A system can also be constructed. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the optical system according to the first to eighth embodiments of the present application may be used. In addition, although the optical system according to each of the above embodiments includes the protective filter glass on the most object side in the first lens group, the optical system may be configured without this.
 また、本願の第1~8実施形態に係る光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。 The optical systems according to the first to eighth embodiments of the present application include a part of a lens group, an entire lens group, or a plurality of lens groups in order to perform focusing from an object at infinity to a near object. The focusing lens group may be moved in the optical axis direction. In particular, it is preferable that at least a part of the second lens group is a focusing lens group. Such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor.
 また、本願の第1~8実施形態に係る光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。特に、本願の第1~8実施形態に係る光学系では第3レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。 Further, in the optical systems according to the first to eighth embodiments of the present application, either the entire lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, Or it can also be set as the structure which shake-proofs by carrying out rotational movement (oscillation) to the in-plane direction containing an optical axis. In particular, in the optical systems according to the first to eighth embodiments of the present application, it is preferable that at least a part of the third lens group is an anti-vibration lens group.
 また、本願の第1~8実施形態に係る光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface of the lens constituting the optical system according to the first to eighth embodiments of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
 また、本願の第1~8実施形態に係る光学系において開口絞りは第3レンズ群の物体側の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。 In the optical systems according to the first to eighth embodiments of the present application, it is preferable that the aperture stop is disposed in the vicinity of the object side of the third lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. It is good also as composition to do.
 また、本願の第1~8実施形態に係る光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。 Further, an antireflection film having a high transmittance in a wide wavelength region may be applied to the lens surface of the lens constituting the optical system according to the first to eighth embodiments of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
 次に、本願の第1~8実施形態に係る光学系を備えたカメラを図28に基づいて説明する。
 図28は、本願の第1~8実施形態に係る光学系を備えたカメラの構成を示す図である。
 本カメラ1は、撮影レンズ2として上記第1実施例に係る光学系を備えたレンズ交換式のデジタル一眼レフカメラである。
 本カメラ1において、被写体である不図示の物体からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera including an optical system according to the first to eighth embodiments of the present application will be described with reference to FIG.
FIG. 28 is a diagram showing a configuration of a camera including an optical system according to the first to eighth embodiments of the present application.
The camera 1 is a lens-interchangeable digital single-lens reflex camera provided with the optical system according to the first embodiment as the photographing lens 2.
In the present camera 1, light from an object (not shown) that is a subject is collected by the photographing lens 2 and imaged on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.
 また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。 Further, when a release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
 ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る光学系は、上述のように小型で、諸収差を良好に補正し優れた光学性能を有している。即ち本カメラ1は、小型化と高性能化を実現することができる。なお、上記第2~第9実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラー3を有しない構成のカメラに上記各実施例に係る光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Here, the optical system according to the first example mounted on the camera 1 as the photographing lens 2 is small as described above, and has excellent optical performance by satisfactorily correcting various aberrations. That is, the camera 1 can achieve downsizing and high performance. Even if a camera having the optical system according to the second to ninth embodiments mounted as the taking lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the optical system according to each of the above embodiments is mounted on a camera having a configuration that does not include the quick return mirror 3, the same effect as the camera 1 can be obtained.
 最後に、本願の第1~8実施形態に係る光学系の製造方法の概略を図29、37~43に基づいて説明する。
 図38は、本願の第1実施形態に係る光学系の製造方法の概略を示す図である。
 図38に示す本願の第1実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS11、S12を含むものである。
Finally, an outline of the optical system manufacturing method according to the first to eighth embodiments of the present application will be described with reference to FIGS.
FIG. 38 is a diagram showing an outline of the method of manufacturing the optical system according to the first embodiment of the present application.
The optical system manufacturing method according to the first embodiment of the present application shown in FIG. 38 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S11 and S12.
 ステップS11:光学系が以下の条件式(1-1)を満足するように、第1~第3レンズ群を準備し、各レンズ群を鏡筒内に物体側から順に配置する。
(1-1) 0.10<f/f12<0.55
 ただし、
f:光学系の焦点距離
f12:無限遠物体合焦時の第1レンズ群と第2レンズ群の合成焦点距離
Step S11: First to third lens groups are prepared so that the optical system satisfies the following conditional expression (1-1), and each lens group is sequentially arranged in the lens barrel from the object side.
(1-1) 0.10 <f / f12 <0.55
However,
f: Focal length of optical system f12: Composite focal length of first lens group and second lens group at the time of focusing on an object at infinity
 ステップS12:公知の移動機構を設けることにより、第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにする。 Step S12: By providing a known moving mechanism, the second lens group is moved along the optical axis, thereby focusing from an object at infinity to an object at a short distance.
 斯かる本願の第1実施形態に係る光学系の製造方法によれば、小型で良好な光学性能を備えた光学系を製造することができる。 According to the method of manufacturing an optical system according to the first embodiment of the present application, it is possible to manufacture an optical system that is small and has good optical performance.
 図39は、本願の第2実施形態に係る光学系の製造方法の概略を示す図である。
 図39に示す本願の第2実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS21~S23を含むものである。
FIG. 39 is a diagram showing an outline of a method for manufacturing an optical system according to the second embodiment of the present application.
The optical system manufacturing method according to the second embodiment of the present application shown in FIG. 39 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S21 to S23.
 ステップS21:第2レンズ群が、少なくとも3枚のレンズを有するようにする。
 ステップS22:光学系が以下の条件式(2-1)を満足するように、第1~第3レンズ群を準備し、各レンズ群を鏡筒内に物体側から順に配置する。
(2-1) 0.10<f/f12<0.85
 ただし、
f:光学系の焦点距離
f12:無限遠物体合焦時の第1レンズ群と第2レンズ群の合成焦点距離
Step S21: The second lens group has at least three lenses.
Step S22: First to third lens groups are prepared so that the optical system satisfies the following conditional expression (2-1), and each lens group is sequentially arranged in the barrel from the object side.
(2-1) 0.10 <f / f12 <0.85
However,
f: Focal length of optical system f12: Composite focal length of first lens group and second lens group at the time of focusing on an object at infinity
 ステップS23:公知の移動機構を設けることにより、第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにする。 Step S23: By providing a known moving mechanism, the second lens group is moved along the optical axis so as to focus from an object at infinity to a near object.
 斯かる本願の第2実施形態に係る光学系の製造方法によれば、小型で良好な光学性能を備えた光学系を製造することができる。 According to the method for manufacturing an optical system according to the second embodiment of the present application, it is possible to manufacture an optical system having a small size and good optical performance.
 図40は、本願の第3実施形態に係る光学系の製造方法の概略を示す図である。
 図40に示す本願の第3実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS31~S33を含むものである。
FIG. 40 is a diagram showing an outline of the manufacturing method of the optical system according to the third embodiment of the present application.
The optical system manufacturing method according to the third embodiment of the present application shown in FIG. 40 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S31 to S33.
 ステップS31:第1~第3レンズ群を準備し、各レンズ群を鏡筒内に物体側から順に配置する。そして公知の移動機構を設けることにより、無限遠物体から近距離物体への合焦時に、第2レンズ群が光軸に沿って移動するようにする。 Step S31: First to third lens groups are prepared, and each lens group is sequentially arranged in the lens barrel from the object side. Then, by providing a known moving mechanism, the second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance.
 ステップS32:公知の移動機構を設けることにより、第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようする。 Step S32: By providing a known moving mechanism, a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
 ステップS33:光学系が以下の条件式(3-1)を満足するようにする。
(3-1) -1.60<βr×(1-βs)<-0.85
 ただし、
βs:シフトレンズ群の横倍率
βr:シフトレンズ群よりも像側に位置する全てのレンズの横倍率
Step S33: The optical system is made to satisfy the following conditional expression (3-1).
(3-1) -1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 斯かる本願の第3実施形態に係る光学系の製造方法によれば、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学系を製造することができる。 According to the optical system manufacturing method according to the third embodiment of the present application, it is possible to manufacture an optical system that corrects various aberrations satisfactorily and suppresses deterioration in optical performance during lens shift.
 図41は、本願の第4実施形態に係る光学系の製造方法の概略を示す図である。
 図41に示す本願の第4実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS41~S44を含むものである。
FIG. 41 is a diagram showing an outline of a method of manufacturing an optical system according to the fourth embodiment of the present application.
The manufacturing method of the optical system according to the fourth embodiment of the present application shown in FIG. 41 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S41 to S44.
 ステップS41:第1~第3レンズ群を準備し、第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有するようにする。そして、各レンズ群を鏡筒内に物体側から順に配置する。 Step S41: First to third lens groups are prepared, and the third lens group has a 3a lens group and a 3b lens group in order from the object side. Then, each lens group is arranged in the lens barrel in order from the object side.
 ステップS42:公知の移動機構を設けることにより、無限遠物体から近距離物体への合焦時に、第2レンズ群が光軸に沿って移動するようにする。 Step S42: By providing a known moving mechanism, the second lens group is moved along the optical axis when focusing from an object at infinity to an object at a short distance.
 ステップS43:公知の移動機構を設けることにより、第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにする。 Step S43: By providing a known moving mechanism, the 3b lens group is moved as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
 ステップS44:光学系が以下の条件式(4-1)を満足するようにする。
(4-1) 1.70<|fR/fF|<5.00
 ただし、
fF:無限遠物体合焦時の第1レンズ群から第3aレンズ群までの合成焦点距離
fR:無限遠物体合焦時の第3bレンズ群と第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
Step S44: The optical system is made to satisfy the following conditional expression (4-1).
(4-1) 1.70 <| fR / fF | <5.00
However,
fF: Combined focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: All the positions located on the image side from the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Synthetic focal length of the lens
 斯かる本願の第4実施形態に係る光学系の製造方法によれば、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を製造することができる。 According to the method of manufacturing an optical system according to the fourth embodiment of the present application, it is possible to manufacture a small optical system having excellent optical performance by satisfactorily correcting various aberrations.
 図29は、本願の第5実施形態に係る光学系の製造方法の概略を示す図である。
 図29に示す本願の第5実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS51~S55を含むものである。
FIG. 29 is a diagram showing an outline of a method of manufacturing an optical system according to the fifth embodiment of the present application.
The optical system manufacturing method according to the fifth embodiment shown in FIG. 29 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method for manufacturing an optical system having a third lens group having refractive power, which includes the following steps S51 to S55.
 ステップS51:第1~第3レンズ群を準備し、第1レンズ群、第2レンズ群及び第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設け、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むようにし、各レンズ群を鏡筒内に物体側から順に配置する。 Step S51: First to third lens groups are prepared, and an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is wet. At least one layer formed using the process is included, and each lens group is arranged in the lens barrel in order from the object side.
 ステップS52:第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有するようにする。 Step S52: The third lens group has a 3a lens group and a 3b lens group in order from the object side.
 ステップS53:公知の移動機構を設けることにより、無限遠物体から近距離物体への合焦時に、第2レンズ群が光軸に沿って移動するようにする。 Step S53: By providing a known moving mechanism, the second lens group is moved along the optical axis when focusing from an object at infinity to an object at a short distance.
 ステップS54:公知の移動機構を設けることにより、第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにする。 Step S54: By providing a known moving mechanism, the 3b lens group is moved as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
 ステップS55:光学系が以下の条件式(5-1)を満足するようにする。
(5-1) 1.70<|fR/fF|<5.00
 ただし、
fF:無限遠物体合焦時の第1レンズ群から第3aレンズ群までの合成焦点距離
fR:無限遠物体合焦時の第3bレンズ群と第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
Step S55: The optical system is made to satisfy the following conditional expression (5-1).
(5-1) 1.70 <| fR / fF | <5.00
However,
fF: Combined focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: All the positions located on the image side from the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Synthetic focal length of the lens
 斯かる本願の第5実施形態に係る光学系の製造方法によれば、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を製造することができる。 According to the method of manufacturing an optical system according to the fifth embodiment of the present application, it is possible to manufacture a small optical system having excellent optical performance by satisfactorily correcting various aberrations.
 図37は、本願の第6実施形態に係る光学系の製造方法の概略を示す図である。
 図37に示す本願の第6実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS61~S64を含むものである。
FIG. 37 is a diagram showing an outline of a method of manufacturing an optical system according to the sixth embodiment of the present application.
The optical system manufacturing method according to the sixth embodiment of the present application shown in FIG. 37 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S61 to S64.
 ステップS61:第1~第3レンズ群を準備し、第1レンズ群、第2レンズ群及び第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設け、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むようにし、各レンズ群を鏡筒内に物体側から順に配置する。 Step S61: First to third lens groups are prepared, and an antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is wet. At least one layer formed using the process is included, and each lens group is arranged in the lens barrel in order from the object side.
 ステップS62:公知の移動機構を設けることにより、無限遠物体から近距離物体への合焦時に、第2レンズ群が光軸に沿って移動するようにする。 Step S62: By providing a known moving mechanism, the second lens group is moved along the optical axis when focusing from an object at infinity to an object at a short distance.
 ステップS63:公知の移動機構を設けることにより、第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようする。 Step S63: By providing a known moving mechanism, a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
 ステップS64:光学系が以下の条件式(6-1)を満足するようにする。
(6-1) -1.60<βr×(1-βs)<-0.85
 ただし、
βs:シフトレンズ群の横倍率
βr:シフトレンズ群よりも像側に位置する全てのレンズの横倍率
Step S64: The optical system is made to satisfy the following conditional expression (6-1).
(6-1) −1.60 <βr × (1-βs) <− 0.85
However,
βs: lateral magnification of shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
 斯かる本願の第6実施形態に係る光学系の製造方法によれば、諸収差を良好に補正し、かつレンズシフト時の光学性能の劣化を抑えた光学系を製造することができる。 According to the method of manufacturing an optical system according to the sixth embodiment of the present application, it is possible to manufacture an optical system that corrects various aberrations satisfactorily and suppresses deterioration of optical performance during lens shift.
 図42は、本願の第7実施形態に係る光学系の製造方法の概略を示す図である。
 図42に示す本願の第7実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS71~S73を含むものである。
FIG. 42 is a diagram showing an outline of the method of manufacturing the optical system according to the seventh embodiment of the present application.
The optical system manufacturing method according to the seventh embodiment of the present application shown in FIG. 42 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S71 to S73.
 ステップS71:第1レンズ群、第2レンズ群及び第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設け、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むようにし、各レンズ群を鏡筒内に物体側から順に配置する。 Step S71: An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film has at least one layer formed using a wet process. Each lens group is arranged in the lens barrel in order from the object side.
 ステップS72:光学系が以下の条件式(7-1)を満足するように、第1~第3レンズ群を準備する。
(7-1) 0.10<f/f12<0.55
 ただし、
f:光学系の焦点距離
f12:無限遠物体合焦時の第1レンズ群と第2レンズ群の合成焦点距離
Step S72: First to third lens groups are prepared so that the optical system satisfies the following conditional expression (7-1).
(7-1) 0.10 <f / f12 <0.55
However,
f: Focal length of optical system f12: Composite focal length of first lens group and second lens group at the time of focusing on an object at infinity
 ステップS73:公知の移動機構を設けることにより、第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにする。 Step S73: By providing a known moving mechanism, the second lens group is moved along the optical axis, thereby focusing from an object at infinity to an object at a short distance.
 斯かる本願の第7実施形態に係る光学系の製造方法によれば、小型で良好な光学性能を備えた光学系を製造することができる。 According to the optical system manufacturing method according to the seventh embodiment of the present application, it is possible to manufacture an optical system that is small and has good optical performance.
 図43は、本願の第8実施形態に係る光学系の製造方法の概略を示す図である。
 図43に示す本願の第8実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS81~S84を含むものである。
FIG. 43 is a diagram showing an outline of the manufacturing method of the optical system according to the eighth embodiment of the present application.
The optical system manufacturing method according to the eighth embodiment of the present application shown in FIG. 43 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S81 to S84.
 ステップS81:第1レンズ群、第2レンズ群及び第3レンズ群における光学面のうちの少なくとも1面に反射防止膜を設け、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含むようにし、各レンズ群を鏡筒内に物体側から順に配置する。 Step S81: An antireflection film is provided on at least one of the optical surfaces in the first lens group, the second lens group, and the third lens group, and the antireflection film has at least one layer formed by using a wet process. Each lens group is arranged in the lens barrel in order from the object side.
 ステップS82:第2レンズ群が、少なくとも3枚のレンズを有するようにする。
 ステップS83:光学系が以下の条件式(8-1)を満足するように、第1~第3レンズ群を準備し、
(8-1) 0.10<f/f12<0.85
 ただし、
f:光学系の焦点距離
f12:無限遠物体合焦時の第1レンズ群と第2レンズ群の合成焦点距離
Step S82: The second lens group has at least three lenses.
Step S83: First to third lens groups are prepared so that the optical system satisfies the following conditional expression (8-1):
(8-1) 0.10 <f / f12 <0.85
However,
f: Focal length of optical system f12: Composite focal length of first lens group and second lens group at the time of focusing on an object at infinity
 ステップS84:公知の移動機構を設けることにより、第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにする。 Step S84: By providing a known moving mechanism, the second lens group is moved along the optical axis so as to focus from an object at infinity to an object at short distance.
 斯かる本願の第8実施形態に係る光学系の製造方法によれば、小型で良好な光学性能を備えた光学系を製造することができる。 According to the method of manufacturing an optical system according to the eighth embodiment of the present application, it is possible to manufacture an optical system having a small size and good optical performance.

Claims (68)

  1.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
     前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行い、
     以下の条件式を満足することを特徴とする光学系。
    0.10<f/f12<0.55
     ただし、
    f:前記光学系の焦点距離
    f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
    By moving the second lens group along the optical axis, focusing from an object at infinity to an object at a short distance,
    An optical system satisfying the following conditional expression:
    0.10 <f / f12 <0.55
    However,
    f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  2.  前記第1レンズ群が以下の条件式を満足する少なくとも1枚の正レンズを有することを特徴とする請求項1に記載の光学系。
    80<νd1p<110
     ただし、
    νd1p:前記第1レンズ群中の前記正レンズの硝材のd線に対するアッベ数
    The optical system according to claim 1, wherein the first lens group includes at least one positive lens that satisfies the following conditional expression.
    80 <νd1p <110
    However,
    νd1p: Abbe number with respect to d-line of the glass material of the positive lens in the first lens group
  3.  前記第1レンズ群が複数の正レンズを有し、
     前記複数の正レンズのうちで最も物体側に配置された正レンズが以下の条件式を満足することを特徴とする請求項1に記載の光学系。
    80<νd1pf<110
     ただし、
    νd1pf:前記第1レンズ群中の前記複数の正レンズのうちで最も物体側に配置された前記正レンズの硝材のd線に対するアッベ数
    The first lens group includes a plurality of positive lenses;
    The optical system according to claim 1, wherein a positive lens disposed closest to the object among the plurality of positive lenses satisfies the following conditional expression.
    80 <νd1pf <110
    However,
    νd1pf: Abbe number with respect to d-line of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
  4.  前記第1レンズ群が以下の条件式を満足する少なくとも1枚の負レンズを有することを特徴とする請求項1に記載の光学系。
    1.50<nd1n<1.75
     ただし、
    nd1n:前記第1レンズ群中の前記負レンズの硝材のd線に対する屈折率
    The optical system according to claim 1, wherein the first lens group includes at least one negative lens that satisfies the following conditional expression.
    1.50 <nd1n <1.75
    However,
    nd1n: Refractive index with respect to d-line of the glass material of the negative lens in the first lens group
  5.  前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することを特徴とする請求項1に記載の光学系。 The optical system according to claim 1, wherein at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis.
  6.  前記第3レンズ群が、物体側から順に、正の屈折力を有する第3aレンズ群と、負の屈折力を有する第3bレンズ群と、正の屈折力を有する第3cレンズ群とから構成され、
     前記第3bレンズ群が光軸と直交する方向の成分を含むように移動することを特徴とする請求項1に記載の光学系。
    The third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, and a third c lens group having a positive refractive power. ,
    2. The optical system according to claim 1, wherein the third lens group moves so as to include a component in a direction orthogonal to the optical axis.
  7.  前記第1レンズ群が、物体側から順に、負レンズと正レンズとの接合レンズを有することを特徴とする請求項1に記載の光学系。 The optical system according to claim 1, wherein the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side.
  8.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     以下の条件式を満足することを特徴とする請求項1に記載の光学系。
    0.30<TL1a/TL1<0.70
     ただし、
    TL1a:前記第1aレンズ群の光軸に沿った長さ
    TL1:前記第1レンズ群の光軸に沿った長さ
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 1, wherein the following conditional expression is satisfied.
    0.30 <TL1a / TL1 <0.70
    However,
    TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
  9.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1bレンズ群が、以下の条件式を満足する正レンズを有することを特徴とする請求項1に記載の光学系。
    70<νd1bp<110
     ただし、
    νd1bp:前記第1bレンズ群中の前記正レンズの硝材のd線に対するアッベ数
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 1, wherein the first b lens group includes a positive lens that satisfies the following conditional expression.
    70 <νd1bp <110
    However,
    νd1bp: Abbe number with respect to d-line of the glass material of the positive lens in the 1b lens group
  10.  前記第2レンズ群が、2つの負レンズ成分を有することを特徴とする請求項1に記載の光学系。 The optical system according to claim 1, wherein the second lens group has two negative lens components.
  11.  前記第2レンズ群が以下の条件式を満足する正レンズを有することを特徴とする請求項1に記載の光学系。
    15<νd2p<30
     ただし、
    νd2p:前記第2レンズ群中の前記正レンズの硝材のd線に対するアッベ数
    The optical system according to claim 1, wherein the second lens group includes a positive lens that satisfies the following conditional expression.
    15 <νd2p <30
    However,
    νd2p: Abbe number with respect to d-line of the glass material of the positive lens in the second lens group
  12.  前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいることを特徴とする請求項1に記載の光学系。 An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is a layer formed using a wet process. The optical system according to claim 1, wherein at least one layer is included.
  13.  請求項1に記載の光学系を有することを特徴とする光学装置。 An optical apparatus comprising the optical system according to claim 1.
  14.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
     前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行い、
     前記第2レンズ群が、少なくとも3枚のレンズを有し、
     以下の条件式を満足することを特徴とする光学系。
    0.10<f/f12<0.85
     ただし、
    f:前記光学系の焦点距離
    f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
    By moving the second lens group along the optical axis, focusing from an object at infinity to an object at a short distance,
    The second lens group has at least three lenses;
    An optical system satisfying the following conditional expression:
    0.10 <f / f12 <0.85
    However,
    f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  15.  前記第2レンズ群中の前記少なくとも3枚のレンズのうち、少なくとも2枚が負レンズであることを特徴とする請求項14に記載の光学系。 The optical system according to claim 14, wherein at least two of the at least three lenses in the second lens group are negative lenses.
  16.  前記第2レンズ群が以下の条件式を満足する少なくとも1枚の負レンズを有することを特徴とする請求項14に記載の光学系。
    1.45<nd2n<1.65
     ただし、
    nd2n:前記第2レンズ群中の前記負レンズの硝材のd線に対する屈折率
    The optical system according to claim 14, wherein the second lens group includes at least one negative lens that satisfies the following conditional expression.
    1.45 <nd2n <1.65
    However,
    nd2n: refractive index with respect to d-line of the glass material of the negative lens in the second lens group
  17.  前記第2レンズ群が以下の条件式を満足する正レンズを有することを特徴とする請求項14に記載の光学系。
    15<νd2p<30
     ただし、
    νd2p:前記第2レンズ群中の前記正レンズの硝材のd線に対するアッベ数
    The optical system according to claim 14, wherein the second lens group includes a positive lens that satisfies the following conditional expression.
    15 <νd2p <30
    However,
    νd2p: Abbe number with respect to d-line of the glass material of the positive lens in the second lens group
  18.  前記第1レンズ群が以下の条件式を満足する少なくとも1枚の正レンズを有することを特徴とする請求項14に記載の光学系。
    80<νd1p<110
     ただし、
    νd1p:前記第1レンズ群中の前記正レンズの硝材のd線に対するアッベ数
    The optical system according to claim 14, wherein the first lens group includes at least one positive lens that satisfies the following conditional expression.
    80 <νd1p <110
    However,
    νd1p: Abbe number with respect to d-line of the glass material of the positive lens in the first lens group
  19.  前記第1レンズ群が複数の正レンズを有し、
     前記複数の正レンズのうちで最も物体側に配置された正レンズが以下の条件式を満足することを特徴とする請求項14に記載の光学系。
    80<νd1pf<110
     ただし、
    νd1pf:前記第1レンズ群中の前記複数の正レンズのうちで最も物体側に配置された前記正レンズの硝材のd線に対するアッベ数
    The first lens group includes a plurality of positive lenses;
    The optical system according to claim 14, wherein a positive lens disposed closest to the object among the plurality of positive lenses satisfies the following conditional expression.
    80 <νd1pf <110
    However,
    νd1pf: Abbe number with respect to d-line of the glass material of the positive lens arranged closest to the object side among the plurality of positive lenses in the first lens group
  20.  前記第1レンズ群が以下の条件式を満足する少なくとも1枚の負レンズを有することを特徴とする請求項14に記載の光学系。
    1.50<nd1n<1.75
     ただし、
    nd1n:前記第1レンズ群中の前記負レンズの硝材のd線に対する屈折率
    The optical system according to claim 14, wherein the first lens group includes at least one negative lens that satisfies the following conditional expression.
    1.50 <nd1n <1.75
    However,
    nd1n: Refractive index with respect to d-line of the glass material of the negative lens in the first lens group
  21.  前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することを特徴とする請求項14に記載の光学系。 15. The optical system according to claim 14, wherein at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis.
  22.  前記第3レンズ群が、物体側から順に、正の屈折力を有する第3aレンズ群と、負の屈折力を有する第3bレンズ群と、正の屈折力を有する第3cレンズ群とから構成され、
     前記第3bレンズ群が光軸と直交する方向の成分を含むように移動することを特徴とする請求項14に記載の光学系。
    The third lens group includes, in order from the object side, a 3a lens group having a positive refractive power, a 3b lens group having a negative refractive power, and a third c lens group having a positive refractive power. ,
    The optical system according to claim 14, wherein the third lens group group moves so as to include a component in a direction orthogonal to the optical axis.
  23.  前記第1レンズ群が、物体側から順に、負レンズと正レンズとの接合レンズを有することを特徴とする請求項14に記載の光学系。 The optical system according to claim 14, wherein the first lens group includes a cemented lens of a negative lens and a positive lens in order from the object side.
  24.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     以下の条件式を満足することを特徴とする請求項14に記載の光学系。
    0.30<TL1a/TL1<0.70
     ただし、
    TL1a:前記第1aレンズ群の光軸に沿った長さ
    TL1:前記第1レンズ群の光軸に沿った長さ
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 14, wherein the following conditional expression is satisfied.
    0.30 <TL1a / TL1 <0.70
    However,
    TL1a: length along the optical axis of the first lens group TL1: length along the optical axis of the first lens group
  25.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1bレンズ群が、以下の条件式を満足する正レンズを有することを特徴とする請求項14に記載の光学系。
    70<νd1bp<110
     ただし、
    νd1bp:前記第1bレンズ群中の前記正レンズの硝材のd線に対するアッベ数
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 14, wherein the first-b lens group includes a positive lens that satisfies the following conditional expression.
    70 <νd1bp <110
    However,
    νd1bp: Abbe number with respect to d-line of the glass material of the positive lens in the 1b lens group
  26.  前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいることを特徴とする請求項14に記載の光学系。 An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is a layer formed using a wet process. The optical system according to claim 14, comprising at least one layer.
  27.  請求項14に記載の光学系を有することを特徴とする光学装置。 An optical apparatus comprising the optical system according to claim 14.
  28.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
     無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、
     前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、
     以下の条件式を満足することを特徴とする光学系。
    -1.60<βr×(1-βs)<-0.85
     ただし、
    βs:前記シフトレンズ群の横倍率
    βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
    When focusing from an object at infinity to a near object, the second lens group moves along the optical axis;
    A part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis;
    An optical system satisfying the following conditional expression:
    −1.60 <βr × (1-βs) <− 0.85
    However,
    βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
  29.  前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、
     前記第3bレンズ群が前記シフトレンズ群として光軸と直交する方向の成分を含むように移動することを特徴とする請求項28に記載の光学系。
    The third lens group includes, in order from the object side, a 3a lens group, a 3b lens group, and a 3c lens group,
    29. The optical system according to claim 28, wherein the third lens group is moved so as to include a component in a direction orthogonal to the optical axis as the shift lens group.
  30.  前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、
     前記第3aレンズ群が正レンズと負レンズとから構成されていることを特徴とする請求項28に記載の光学系。
    The third lens group includes, in order from the object side, a 3a lens group, a 3b lens group, and a 3c lens group,
    The optical system according to claim 28, wherein the 3a lens group includes a positive lens and a negative lens.
  31.  前記シフトレンズ群が、物体側から順に、正レンズと負レンズとの接合レンズと、負レンズとから構成されていることを特徴とする請求項28に記載の光学系。 The optical system according to claim 28, wherein the shift lens group includes a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side.
  32.  前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、
     前記第3aレンズ群の物体側又は像側に開口絞りを有することを特徴とする請求項28に記載の光学系。
    The third lens group includes, in order from the object side, a 3a lens group, a 3b lens group, and a 3c lens group,
    The optical system according to claim 28, further comprising an aperture stop on the object side or the image side of the third-a lens group.
  33.  前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群と、第3cレンズ群とから構成され、
     前記第3bレンズ群が前記シフトレンズ群として光軸と直交する方向の成分を含むように移動し、
     以下の条件式を満足することを特徴とする請求項28に記載の光学系。
    -0.45<f3a/f3bc<0.40
     ただし、
    f3a:前記第3aレンズ群の焦点距離
    f3bc:無限遠物体合焦時の前記第3bレンズ群と前記第3cレンズ群の合成焦点距離
    The third lens group includes, in order from the object side, a 3a lens group, a 3b lens group, and a 3c lens group,
    The third lens group moves as the shift lens group so as to include a component in a direction orthogonal to the optical axis,
    The optical system according to claim 28, wherein the following conditional expression is satisfied:
    −0.45 <f3a / f3bc <0.40
    However,
    f3a: focal length of the 3a lens group f3bc: combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
  34.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1aレンズ群が最も像側に負レンズを有することを特徴とする請求項28に記載の光学系。
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 28, wherein the first-a lens group has a negative lens closest to the image side.
  35.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     以下の条件式を満足することを特徴とする請求項28に記載の光学系。
    1.40<f1a/f1b<2.05
     ただし、
    f1a:前記第1aレンズ群の焦点距離
    f1b:前記第1bレンズ群の焦点距離
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 28, wherein the following conditional expression is satisfied:
    1.40 <f1a / f1b <2.05
    However,
    f1a: focal length of the 1a lens group f1b: focal length of the 1b lens group
  36.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1aレンズ群が、物体側から順に、保護ガラスと、正レンズと、正レンズと、負レンズとから構成されていることを特徴とする請求項28に記載の光学系。
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 28, wherein the first-a lens group includes a protective glass, a positive lens, a positive lens, and a negative lens in order from the object side.
  37.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1bレンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズとの接合レンズで構成されていることを特徴とする請求項28に記載の光学系。
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 28, wherein the first-b lens group includes a cemented lens of a negative meniscus lens having a convex surface directed toward the object side and a positive lens in order from the object side.
  38.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1aレンズ群が以下の条件式を満足する少なくとも1枚の正レンズを有することを特徴とする請求項28に記載の光学系。
    90<νdp
     ただし、
    νdp:前記第1aレンズ群中の前記正レンズの硝材のd線に対するアッベ数
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 28, wherein the first-a lens group has at least one positive lens that satisfies the following conditional expression.
    90 <νdp
    However,
    νdp: Abbe number with respect to d-line of the glass material of the positive lens in the 1a lens group
  39.  前記第2レンズ群が複数の負レンズを有し、
     前記複数の負レンズのうちで最も像側に配置された負レンズが以下の条件式を満足することを特徴とする請求項28に記載の光学系。
    ndn<1.65
     ただし、
    ndn:前記第2レンズ群中の前記複数の負レンズのうちで最も像側に配置された前記負レンズの硝材のd線に対する屈折率
    The second lens group includes a plurality of negative lenses;
    29. The optical system according to claim 28, wherein a negative lens arranged closest to the image side among the plurality of negative lenses satisfies the following conditional expression.
    ndn <1.65
    However,
    ndn: Refractive index with respect to d-line of the glass material of the negative lens arranged closest to the image among the plurality of negative lenses in the second lens group
  40.  前記第2レンズ群が複数の負レンズを有し、
     前記複数の負レンズのうちで最も物体側に配置された負レンズが以下の条件式を満足することを特徴とする請求項28に記載の光学系。
    49.7<νdn
     ただし、
    νdn:前記第2レンズ群中の前記複数の負レンズのうちで最も物体側に配置された前記負レンズの硝材のd線に対するアッベ数
    The second lens group includes a plurality of negative lenses;
    29. The optical system according to claim 28, wherein a negative lens arranged closest to the object among the plurality of negative lenses satisfies the following conditional expression.
    49.7 <νdn
    However,
    νdn: Abbe number with respect to d-line of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
  41.  以下の条件式を満足することを特徴とする請求項28に記載の光学系。
    -3.00<f1/f2<-2.00
     ただし、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
    The optical system according to claim 28, wherein the following conditional expression is satisfied:
    -3.00 <f1 / f2 <-2.00
    However,
    f1: Focal length of the first lens group f2: Focal length of the second lens group
  42.  前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとから構成されていることを特徴とする請求項28に記載の光学系。 The optical system according to claim 28, wherein the second lens group includes, in order from the object side, a negative lens having a concave surface facing the image side, and a cemented lens of a positive lens and a negative lens. system.
  43.  以下の条件式を満足することを特徴とする請求項28に記載の光学系。
    0.10<f/f12<0.85
     ただし、
    f:前記光学系の焦点距離
    f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
    The optical system according to claim 28, wherein the following conditional expression is satisfied:
    0.10 <f / f12 <0.85
    However,
    f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  44.  前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいることを特徴とする請求項28に記載の光学系。 An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is a layer formed using a wet process. The optical system according to claim 28, comprising at least one layer.
  45.  請求項28に記載の光学系を有することを特徴とする光学装置。 An optical apparatus comprising the optical system according to claim 28.
  46.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
     前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有し、
     無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、
     前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、
     以下の条件式を満足することを特徴とする光学系。
    1.70<|fR/fF|<5.00
     ただし、
    fF:無限遠物体合焦時の前記第1レンズ群から前記第3aレンズ群までの合成焦点距離
    fR:無限遠物体合焦時の前記第3bレンズ群と前記第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
    The third lens group includes, in order from the object side, a 3a lens group and a 3b lens group,
    When focusing from an object at infinity to a near object, the second lens group moves along the optical axis;
    The third lens group moves as a shift lens group so as to include a component in a direction perpendicular to the optical axis,
    An optical system satisfying the following conditional expression:
    1.70 <| fR / fF | <5.00
    However,
    fF: Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
  47.  以下の条件式を満足することを特徴とする請求項46に記載の光学系。
    -1.60<βr×(1-βs)<-0.85
     ただし、
    βs:前記シフトレンズ群の横倍率
    βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
    47. The optical system according to claim 46, wherein the following conditional expression is satisfied.
    −1.60 <βr × (1-βs) <− 0.85
    However,
    βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
  48.  前記第3aレンズ群が正レンズと負レンズとから構成されていることを特徴とする請求項46に記載の光学系。 The optical system according to claim 46, wherein the third-a lens group includes a positive lens and a negative lens.
  49.  前記第3bレンズ群が、物体側から順に、正レンズと負レンズとの接合レンズと、負レンズとから構成されていることを特徴とする請求項46に記載の光学系。 The optical system according to claim 46, wherein the 3b lens group includes a cemented lens of a positive lens and a negative lens and a negative lens in order from the object side.
  50.  前記第3aレンズ群の物体側又は像側に開口絞りを有することを特徴とする請求項46に記載の光学系。 The optical system according to claim 46, further comprising an aperture stop on the object side or the image side of the third-a lens group.
  51.  前記第3レンズ群が、物体側から順に、前記第3aレンズ群と、前記第3bレンズ群と、第3cレンズ群とから構成され、
     以下の条件式を満足することを特徴とする請求項46に記載の光学系。
    -0.45<f3a/f3bc<0.40
     ただし、
    f3a:前記第3aレンズ群の焦点距離
    f3bc:無限遠物体合焦時の前記第3bレンズ群と前記第3cレンズ群の合成焦点距離
    The third lens group includes, in order from the object side, the third a lens group, the third b lens group, and a third c lens group.
    47. The optical system according to claim 46, wherein the following conditional expression is satisfied.
    −0.45 <f3a / f3bc <0.40
    However,
    f3a: focal length of the 3a lens group f3bc: combined focal length of the 3b lens group and the 3c lens group at the time of focusing on an object at infinity
  52.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1aレンズ群が最も像側に負レンズを有することを特徴とする請求項46に記載の光学系。
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    47. The optical system according to claim 46, wherein the first lens group has a negative lens closest to the image side.
  53.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     以下の条件式を満足することを特徴とする請求項46に記載の光学系。
    1.40<f1a/f1b<2.05
     ただし、
    f1a:前記第1aレンズ群の焦点距離
    f1b:前記第1bレンズ群の焦点距離
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    47. The optical system according to claim 46, wherein the following conditional expression is satisfied.
    1.40 <f1a / f1b <2.05
    However,
    f1a: focal length of the 1a lens group f1b: focal length of the 1b lens group
  54.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1aレンズ群が、物体側から順に、保護ガラスと、正レンズと、正レンズと、負レンズとから構成されていることを特徴とする請求項46に記載の光学系。
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    47. The optical system according to claim 46, wherein the first-a lens group includes a protective glass, a positive lens, a positive lens, and a negative lens in order from the object side.
  55.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1bレンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズとの接合レンズで構成されていることを特徴とする請求項46に記載の光学系。
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 46, wherein the first-b lens group includes a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive lens in order from the object side.
  56.  前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とから構成され、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第1aレンズ群が以下の条件式を満足する少なくとも1枚の正レンズを有することを特徴とする請求項46に記載の光学系。
    90<νdp
     ただし、
    νdp:前記第1aレンズ群中の前記正レンズの硝材のd線に対するアッベ数
    The first lens group is composed of a 1a lens group and a 1b lens group in order from the object side,
    An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
    The optical system according to claim 46, wherein the first-a lens group includes at least one positive lens that satisfies the following conditional expression.
    90 <νdp
    However,
    νdp: Abbe number with respect to d-line of the glass material of the positive lens in the 1a lens group
  57.  前記第2レンズ群が複数の負レンズを有し、
     前記複数の負レンズのうちで最も像側に配置された負レンズが以下の条件式を満足することを特徴とする請求項46に記載の光学系。
    ndn<1.65
     ただし、
    ndn:前記第2レンズ群中の前記複数の負レンズのうちで最も像側に配置された前記負レンズの硝材のd線に対する屈折率
    The second lens group includes a plurality of negative lenses;
    47. The optical system according to claim 46, wherein a negative lens arranged closest to the image side among the plurality of negative lenses satisfies the following conditional expression.
    ndn <1.65
    However,
    ndn: Refractive index with respect to d-line of the glass material of the negative lens arranged closest to the image among the plurality of negative lenses in the second lens group
  58.  前記第2レンズ群が複数の負レンズを有し、
     前記複数の負レンズのうちで最も物体側に配置された負レンズが以下の条件式を満足することを特徴とする請求項46に記載の光学系。
    49.7<νdn
     ただし、
    νdn:前記第2レンズ群中の前記複数の負レンズのうちで最も物体側に配置された前記負レンズの硝材のd線に対するアッベ数
    The second lens group includes a plurality of negative lenses;
    47. The optical system according to claim 46, wherein a negative lens arranged closest to the object among the plurality of negative lenses satisfies the following conditional expression.
    49.7 <νdn
    However,
    νdn: Abbe number with respect to d-line of the glass material of the negative lens arranged closest to the object among the plurality of negative lenses in the second lens group
  59.  以下の条件式を満足することを特徴とする請求項46に記載の光学系。
    -3.00<f1/f2<-2.00
     ただし、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
    47. The optical system according to claim 46, wherein the following conditional expression is satisfied.
    -3.00 <f1 / f2 <-2.00
    However,
    f1: Focal length of the first lens group f2: Focal length of the second lens group
  60.  前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとから構成されていることを特徴とする請求項46に記載の光学系。 The optical system according to claim 46, wherein the second lens group includes, in order from the object side, a negative lens having a concave surface directed toward the image side, and a cemented lens of a positive lens and a negative lens. system.
  61.  以下の条件式を満足することを特徴とする請求項46に記載の光学系。
    0.10<f/f12<0.85
     ただし、
    f:前記光学系の焦点距離
    f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
    47. The optical system according to claim 46, wherein the following conditional expression is satisfied.
    0.10 <f / f12 <0.85
    However,
    f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  62.  前記第3レンズ群が、物体側から順に、前記第3aレンズ群と、前記第3bレンズ群と、第3cレンズ群とから構成されていることを特徴とする請求項46に記載の光学系。 The optical system according to claim 46, wherein the third lens group includes the third a lens group, the third b lens group, and a third c lens group in order from the object side.
  63.  前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群における光学面のうちの少なくとも1面に反射防止膜が設けられており、前記反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいることを特徴とする請求項46に記載の光学系。 An antireflection film is provided on at least one of the optical surfaces of the first lens group, the second lens group, and the third lens group, and the antireflection film is a layer formed using a wet process. The optical system according to claim 46, comprising at least one layer.
  64.  請求項46に記載の光学系を有することを特徴とする光学装置。 An optical device comprising the optical system according to claim 46.
  65.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     前記光学系が以下の条件式を満足するようにし、
     前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにすることを特徴とする光学系の製造方法。
    0.10<f/f12<0.55
     ただし、
    f:前記光学系の焦点距離
    f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
    A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. ,
    The optical system satisfies the following conditional expression,
    A method of manufacturing an optical system, wherein focusing is performed from an object at infinity to a near object by moving the second lens group along an optical axis.
    0.10 <f / f12 <0.55
    However,
    f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  66.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     前記第2レンズ群が、少なくとも3枚のレンズを有するようにし、
     前記光学系が以下の条件式を満足するようにし、
     前記第2レンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行うようにすることを特徴とする光学系の製造方法。
    0.10<f/f12<0.85
     ただし、
    f:前記光学系の焦点距離
    f12:無限遠物体合焦時の前記第1レンズ群と前記第2レンズ群の合成焦点距離
    A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. ,
    The second lens group includes at least three lenses;
    The optical system satisfies the following conditional expression,
    A method of manufacturing an optical system, wherein focusing is performed from an object at infinity to a near object by moving the second lens group along an optical axis.
    0.10 <f / f12 <0.85
    However,
    f: Focal length of the optical system f12: Composite focal length of the first lens group and the second lens group at the time of focusing on an object at infinity
  67.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、
     前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、
     前記光学系が以下の条件式を満足するようにすることを特徴とする光学系の製造方法。
    -1.60<βr×(1-βs)<-0.85
     ただし、
    βs:前記シフトレンズ群の横倍率
    βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
    A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. ,
    The second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance;
    A part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis;
    A method for manufacturing an optical system, characterized in that the optical system satisfies the following conditional expression.
    −1.60 <βr × (1-βs) <− 0.85
    However,
    βs: lateral magnification of the shift lens group βr: lateral magnification of all lenses located on the image side of the shift lens group
  68.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     前記第3レンズ群が、物体側から順に、第3aレンズ群と、第3bレンズ群とを有するようにし、
     無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、
     前記第3bレンズ群がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、
     前記光学系が以下の条件式を満足するようにすることを特徴とする光学系の製造方法。
    1.70<|fR/fF|<5.00
     ただし、
    fF:無限遠物体合焦時の前記第1レンズ群から前記第3aレンズ群までの合成焦点距離
    fR:無限遠物体合焦時の前記第3bレンズ群と前記第3bレンズ群よりも像側に位置する全てのレンズの合成焦点距離
    A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. ,
    The third lens group has a 3a lens group and a 3b lens group in order from the object side,
    The second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance;
    The third lens group is moved so as to include a component in a direction orthogonal to the optical axis as a shift lens group,
    A method for manufacturing an optical system, characterized in that the optical system satisfies the following conditional expression.
    1.70 <| fR / fF | <5.00
    However,
    fF: Composite focal length from the first lens group to the 3a lens group at the time of focusing on an object at infinity fR: Nearer to the image side than the 3b lens group and the 3b lens group at the time of focusing on an object at infinity Combined focal length of all lenses located
PCT/JP2014/084308 2013-12-26 2014-12-25 Optical system, optical device, and manufacturing method for optical system WO2015099038A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013269193A JP6405630B2 (en) 2013-12-26 2013-12-26 Optical system, optical device
JP2013269192A JP6405629B2 (en) 2013-12-26 2013-12-26 Optical system, optical device
JP2013-269193 2013-12-26
JP2013-269192 2013-12-26
JP2014004195A JP6364778B2 (en) 2014-01-14 2014-01-14 Optical system, optical device
JP2014-004196 2014-01-14
JP2014004196A JP6543883B2 (en) 2014-01-14 2014-01-14 Optical system, optical device
JP2014-004195 2014-01-14
JP2014-099623 2014-05-13
JP2014099624A JP6435635B2 (en) 2014-05-13 2014-05-13 Optical system, optical device
JP2014-099624 2014-05-13
JP2014099623A JP6394054B2 (en) 2014-05-13 2014-05-13 Optical system, optical device

Publications (1)

Publication Number Publication Date
WO2015099038A1 true WO2015099038A1 (en) 2015-07-02

Family

ID=53478883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084308 WO2015099038A1 (en) 2013-12-26 2014-12-25 Optical system, optical device, and manufacturing method for optical system

Country Status (1)

Country Link
WO (1) WO2015099038A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041715A (en) * 1990-04-19 1992-01-07 Nikon Corp Internal focusing type telephoto zoom lens
JPH09218346A (en) * 1996-02-08 1997-08-19 Minolta Co Ltd Optical system
JP2013033178A (en) * 2011-06-27 2013-02-14 Nikon Corp Optical system, optical device, and method for manufacturing optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041715A (en) * 1990-04-19 1992-01-07 Nikon Corp Internal focusing type telephoto zoom lens
JPH09218346A (en) * 1996-02-08 1997-08-19 Minolta Co Ltd Optical system
JP2013033178A (en) * 2011-06-27 2013-02-14 Nikon Corp Optical system, optical device, and method for manufacturing optical system

Similar Documents

Publication Publication Date Title
JP5429244B2 (en) Optical system, optical device
US10302905B2 (en) Optical system, image-capturing device comprising optical system and method for manufacturing optical system
JP5422895B2 (en) Lens system and optical apparatus having the same
WO2014025015A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP5853715B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5621636B2 (en) Photographic lens, optical apparatus equipped with the photographic lens, and method of manufacturing photographic lens
JP2016136213A (en) Optical system, optical instrument having the same, and manufacturing method of optical system
JP2012159746A (en) Variable power optical system, optical apparatus, and method for manufacturing variable power optical system
JP5093657B2 (en) Retrofocus lens, image pickup apparatus, and focusing method of retrofocus lens
JP2009198855A (en) Wide angle lens, and image pickup apparatus having the same
JP2013109025A (en) Taking lens, optical apparatus having taking lens, and method for manufacturing taking lens
JP2012247687A (en) Photographic lens, optical apparatus with the photographic lens, and method of manufacturing photographic lens
JP5440560B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5621562B2 (en) Photographic lens, optical apparatus equipped with the photographic lens
JP2015084037A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP5561256B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE HAVING THE OPTICAL SYSTEM, AND METHOD FOR PRODUCING OPTICAL SYSTEM
JP5895745B2 (en) Optical system, imaging apparatus having the optical system, and method of manufacturing the optical system
JP6435635B2 (en) Optical system, optical device
JP2015084039A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6394054B2 (en) Optical system, optical device
WO2015099038A1 (en) Optical system, optical device, and manufacturing method for optical system
JP2015084038A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6780758B2 (en) Optical system and optical equipment having this optical system
JP5861281B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5338861B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE HAVING THE OPTICAL SYSTEM, AND METHOD FOR PRODUCING OPTICAL SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874807

Country of ref document: EP

Kind code of ref document: A1