WO2015092483A1 - Audio signal encoder - Google Patents

Audio signal encoder Download PDF

Info

Publication number
WO2015092483A1
WO2015092483A1 PCT/IB2013/061034 IB2013061034W WO2015092483A1 WO 2015092483 A1 WO2015092483 A1 WO 2015092483A1 IB 2013061034 W IB2013061034 W IB 2013061034W WO 2015092483 A1 WO2015092483 A1 WO 2015092483A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
distance
parameters
potential code
ordered
Prior art date
Application number
PCT/IB2013/061034
Other languages
French (fr)
Inventor
Adriana Vasilache
Anssi Sakari RAMO
Lasse Juhani Laaksonen
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Priority to JP2016541299A priority Critical patent/JP6337122B2/en
Priority to EP13899497.5A priority patent/EP3084761B1/en
Priority to ES13899497T priority patent/ES2786198T3/en
Priority to CN201380082051.7A priority patent/CN106030703B/en
Priority to RU2016125708A priority patent/RU2665287C2/en
Priority to PCT/IB2013/061034 priority patent/WO2015092483A1/en
Priority to KR1020167019246A priority patent/KR101868252B1/en
Priority to US15/102,855 priority patent/US9892742B2/en
Publication of WO2015092483A1 publication Critical patent/WO2015092483A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/038Vector quantisation, e.g. TwinVQ audio
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/06Determination or coding of the spectral characteristics, e.g. of the short-term prediction coefficients
    • G10L19/07Line spectrum pair [LSP] vocoders

Definitions

  • Audio Ssgnal Encoder Field The present application relates to a multichannel or stereo audio signal encoder, and in particular, but not exclusively to a multichannel or stereo audio signal encoder for use in portable apparatus.
  • Audio signals like speech or music, are encoded for example to enable efficient transmission or storage of the audio signals,
  • Audio encoders and decoders are used to represent audio based signals, such as music and ambient sounds (which in speech coding terms can be called background noise). These types of coders typically do not utilise a speech model for the coding process, rather they use processes for representing all types of audio signals, including speech. Speech encoders and decoders (codecs) can be considered to be audio codecs which are optimised for speech signals, and can operate at either a fixed or variable bit rate.
  • Audio encoders and decoder are often designed as low complexity source coders, !n other words able to perform encoding and decoding of audio signals without requiring highly complex processing.
  • transform coding For music signal audio encoding transform coding generally performs better than Algebraic Code Excited Linear Prediction (ACELP) technology which is better suited and directed for speech signals. Transform coding is performed by coding transform coefficients vector sub-band wise. In other words an audio signal is divided into sub-bands for which a parameter is determined and the parameters represent sub-vectors which are vector or lattice quantised.
  • ACELP Algebraic Code Excited Linear Prediction
  • a method comprising: generating at least one vector of parameters defining at least one audio signal; sorting the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters; selecting from a list of leader classes at least one potential code vector; determining a distance between the at least one potential code vector and the at least one ordered vector of parameters; determining at least one leader class associated with a potential code vector which generates the smallest associated distance; transposing the at least one leader class to generate an output lattice quantized codevector.
  • Determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may comprise: generating a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters; correcting the sign of the first distance component where the potential code vector fails a parity constraint test; determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components.
  • Determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may further comprise determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values.
  • Determining at least one leader class associated with a potential code vector which generates the smallest associated distance may comprise: determining the index of the potential code vector which generates the smallest associated distance; determining the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance.
  • Transposing the at least one leader class to generate an output lattice quantized codevector may comprise sorting the at Ieast one leader class by the reverse ordering of at Ieast one vector absolute tuples.
  • an apparatus comprising: means for generating at least one vector of parameters defining at least one audio signal; means for sorting the at Ieast one vector of parameters according to an ordering of at Ieast one vector absolute tuples to generate an associated at Ieast one ordered vector of parameters; means for selecting from a list of leader classes at Ieast one potential code vector; means for determining a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters; means for determining at Ieast one leader class associated with a potential code vector which generates the smallest associated distance; means for transposing the at Ieast one leader class to generate an output lattice quantized codevector.
  • the means for generating a first vector of parameters defining at Ieast one audio signal may comprise: means for dividing the at Ieast one audio signal into time frames; means for determining a vector of line spectral frequency parameters associated with the at Ieast one audio signal time frames.
  • the means for sorting the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters may comprise: means for determining weights for a weighted distance determination; means for sorting the weights based on the ordering of the at least one vector absolute tuples to generate a sorted weight vector; means for applying the sorted weight vector to the at least one ordered vector of parameters.
  • the means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may comprise: means for generating a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters; means for correcting the sign of the first distance component where the potential code vector fails a parity constraint test; means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components.
  • the means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may further comprise means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values.
  • the means for determining at least one leader class associated with a potential code vector which generates the smallest associated distance may comprise: means for determining the index of the potential code vector which generates the smallest associated distance; means for determining the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance.
  • the means for transposing the at least one leader class to generate an output lattice quantized codevector may comprise means for sorting the at least one leader class by the reverse ordering of at least one vector absolute tuples.
  • an apparatus comprising at least one processor and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: generate at least one vector of parameters defining at least one audio signal; sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters; select from a list of leader classes at least one potential code vector; determine a distance between the at least one potential code vector and the at least one ordered vector of parameters; determine at least one leader class associated with a potential code vector which generates the smallest associated distance; transpose the at least one leader class to generate an output lattice quantized codevector.
  • the apparatus may be further caused to: select at least one scale factor; wherein determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may further cause the apparatus to determine a distance based on the at least one scale factor; wherein determining at least one leader class associated with a potential code vector which generates the smallest associated distance may further cause the apparatus to determine an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance; wherein transposing the at least one leader class to generate an output lattice quantized codevector may cause the apparatus to apply the output scale factor to the output lattice quantized codevector. ?
  • Generating a first vector of parameters defining at least one audio signal may cause the apparatus to: divide the at least one audio signal into time frames; determine a vector of line spectra! frequency parameters associated with the at least one audio signai time frames.
  • Sorting the at least one vector of parameters according to an ordering of at ieast one vector absolute tuples to generate an associated at ieast one ordered vector of parameters may cause the apparatus to: determine weights for a weighted distance determination; sort the weights based on the ordering of the at ieast one vector absolute tuples to generate a sorted weight vector; apply the sorted weight vector to the at Ieast one ordered vector of parameters.
  • Determining a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters may cause the apparatus to: generate a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters; correct the sign of the first distance component where the potential code vector fails a parity constraint test; determine a distance between the at least one potential code vector and the at Ieast one ordered vector of parameters based on the first and second distance components.
  • Transposing the at least one leader class to generate an output lattice quantized codevector may cause the apparatus to sort the at least one leader class by the reverse ordering of at least one vector absolute tuples
  • an apparatus comprising: a vector generator configured to generate at least one vector of parameters defining at least one audio signal; a lattice vector quantizer configured to sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters; the lattice vector quantizer configured to select from a list of leader classes at least one potential code vector; the lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters; the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance; the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector.
  • the apparatus may further comprise: the lattice vector quantizer configured to select at least one scale factor; wherein the lattice vector quantizer configured to determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further may be configured to determine a distance based on the at least one scale factor; the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance may be further configured to determine an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance; the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector may be further configured to apply the output scale factor to the output lattice quantized codevector.
  • the apparatus may further comprise a parameter determiner configured to divide the at least one audio signal into time frames; and determine a vector of line spectral frequency parameters associated with the at least one audio signal time frames,
  • the lattice vector quantizer configured to sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters may be further configured to: determine weights for a weighted distance determination; sort the weights based on the ordering of the at least one vector absolute tuples to generate a sorted weight vector; apply the sorted weight vector to the at least one ordered vector of parameters.
  • the lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters may be further configured to: generate a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters; correct the sign of the first distance component where the potential code vector fails a parity constraint test; determine a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components.
  • the lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters further may be configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values.
  • the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance may be further configured to: determine the index of the potential code vector which generates the smallest associated distance; determine the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance.
  • the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector may be configured to sort the at least one leader class by the reverse ordering of at least one vector absolute tuples.
  • a computer program product may cause an apparatus to perform the method as described herein.
  • An electronic device may comprise apparatus as described herein.
  • a chipset may comprise apparatus as described herein.
  • Figure 1 shows schematically an electronic device employing some embodiments
  • Figure 2 shows schematically an audio codec system according to some embodiments
  • Figure 3 shows schematically an encoder as shown in Figure 2 according to some embodiments
  • Figure 4 shows a flow diagram illustrating the operation of the encoder shown in Figure 3 according to some embodiments
  • Figure 5 shows schematically a lattice vector quantizer as shown in
  • Figure 6 shows a flow diagram illustrating the operation of the lattice vector quantizer shown in Figure 5 according to some embodiments;. Description of Some Em i bod
  • Figure 1 shows a schematic block diagram of an exemplary electronic device or apparatus 10, which may incorporate a codec according to an embodiment of the application.
  • the apparatus 10 may for example be a mobile terminal or user equipment of a wireless communication system.
  • the apparatus 10 may be an audio-video device such as video camera, a Television (TV) receiver, audio recorder or audio player such as a mp3 recorder/player, a media recorder (also known as a rnp4 recorder/player), or any computer suitable for the processing of audio signals.
  • an audio-video device such as video camera, a Television (TV) receiver, audio recorder or audio player such as a mp3 recorder/player, a media recorder (also known as a rnp4 recorder/player), or any computer suitable for the processing of audio signals.
  • the electronic device or apparatus 10 in some embodiments comprises a microphone 11 , which is linked via an analogue-to-digital converter (ADC) 14 to a processor 21 , The processor 21 is further linked via a digital-to-anaiogue (DAC) converter 32 to ioudspeakers 33.
  • the processor 21 is further linked to a transceiver (RX/TX) 13, to a user interface (Ui) 15 and to a memory 22.
  • the processor 21 can in some embodiments be configured to execute various program codes.
  • the implemented program codes in some embodiments comprise an audio encoding or decoding code as described herein.
  • the Implemented program codes 23 can in some embodiments be stored for example in the memory 22 for retrieval by the processor 21 whenever needed.
  • the memory 22 could further provide a section 24 for storing data, for example data that has been encoded in accordance with the application.
  • the encoding and decoding code in embodiments can be impiemented at least partially in hardware and/or firmware.
  • the user interface (UI) 15 enables a user to input commands to the electronic device 10, for example via a keypad, and/or to obtain information from the electronic device 10, for example via a display.
  • a touch screen may provide both input and output functions for the user interface.
  • the apparatus 10 in some embodiments comprises a transceiver (RX TX) 13 suitable for enabling communication with other apparatus, for example via a wireless communication network.
  • the transceiver 13 can communicate with further devices by any suitable known communications protocol, for example in some embodiments the transceiver 13 or transceiver means can use a suitable universai mobile telecommunications system (UMTS) protocol, a wireless local area network (WLA ) protocol such as for example IEEE 802. X, a suitable short-range radio frequency communication protocol such as Bluetooth, or infrared data communication pathway (IRDA).
  • UMTS universai mobile telecommunications system
  • WLA wireless local area network
  • IRDA infrared data communication pathway
  • a user of the apparatus 10 for example can use the microphone 11 for inputting speech or other audio signals that are to be transmitted to some other apparatus or that are to be stored in the data section 24 of the memory 22.
  • a corresponding application in some embodiments can be activated to this end by the user via the user interface 15.
  • the processor 21 causes the processor 21 to execute the encoding code stored in the memory 22,
  • the microphone 1 1 is configured to generate the audio signals for inputting it would be understood that the input audio signals can be received from any suitable input such as from the memory 22 and specifically within the stored data 24 section of the memory 22, in some embodiments the input audio signal or at least one audio signal can be received via the transceiver 13,
  • the transceiver 13 can be configured to receive audio signals generated by microphones external to the apparatus 10, for example a Bluetooth device coupled to the apparatus via the transceiver 13.
  • the analogue-to-digital converter (ADC) 14 in some embodiments converts the input analogue audio signal into a digital audio signal and provides the digital audio signal to the processor 21.
  • the microphone 1 1 can comprise an integrated microphone and ADC function and provide digital audio signals directly to the processor for processing.
  • the processor 21 in such embodiments then processes the digital audio signal in the same way as described with reference to the system shown in Figure 2, and specifically the encoder shown in Figures 3, and details of the encoder shown in Figures 5.
  • the resulting bit stream can in some embodiments be provided to the transceiver 13 for transmission to another apparatus.
  • the coded audio data in some embodiments can be stored in the data section 24 of the memory 22, for instance for a later transmission or for a later presentation by the same apparatus 10.
  • the apparatus 10 in some embodiments can also receive a bit stream with correspondingly encoded data from another apparatus via the transceiver 13.
  • the processor 21 may execute the decoding program code stored In the memory 22.
  • the processor 21 in such embodiments decodes the received data, and provides the decoded data to a digital-to-analogue converter 32.
  • the digital-to-analogue converter 32 converts the digital decoded data into analogue audio data and can in some embodiments output the analogue audio via the loudspeakers 33. Execution of the decoding program code in some embodiments can be triggered as well by an application called by the user via the user interface 15,
  • the received encoded data in some embodiment can also be stored instead of an immediate presentation via the loudspeakers 33 in the data section 24 of the memory 22, for instance for later decoding and presentation or decoding and forwarding to still another apparatus.
  • some embodiments can implement one of either the encoder or decoder, or both the encoder and decoder, Illustrated by Figure 2 is a system 102 with an encoder 104, a storage or media channel 106 and a decoder 108, It would be understood that as described above some embodiments can comprise or implement one of the encoder 104 or both the encoder 104 and decoder 108.
  • the encoder 104 compresses an input audio signal 110 producing a bit stream 112, which in some embodiments can be stored or transmitted through a media channel 108.
  • the encoder 104 can in some embodiments comprise a multichannel encoder that encodes two or more audio signals.
  • the bit stream 112 can be received within the decoder 108.
  • the decoder 108 decompresses the bit stream 112 and produces an output audio signal 114.
  • the decoder 108 can comprise a transform decoder as part of the overall decoding operation.
  • the decoder 108 can also comprise a multi-channel decoder that decodes two or more audio signals.
  • the bit rate of the bit stream 112 and the quality of the output audio signal 114 in relation to the input signal 110 are the main features which define the performance of the coding system 102,
  • Figure 3 shows schematically the encoder 104 according to some embodiments.
  • Figure 4 shows schematically in a flow diagram the operation of the encoder 104 according to some embodiments.
  • the concept for the embodiments as described herein is to determine and apply encoding to audio signals to produce efficient high quality and low bit rate real life coding.
  • an example encoder 104 is shown according to some embodiments.
  • the operation of the encoder 104 is shown in further detail.
  • the encoder is configured to generate frequency domain parameters representing the audio signal and encode the generated frequency domain parameters using a suitable vector lattice quantization, however it wouid be understood that in some embodiments the parameters used in the lattice quantization as described herein can be any suitable parameters defining or representing the audio signals or other type of signals (for example image or, video).
  • the encoder 104 in some embodiments comprises a frame sectioner 201 or suitable means for sectioning the audio signal
  • the frame sectioner 201 is configured to receive the audio signals (for example a mono, left and right stereo or any multichannel audio representation) input audio signal and section or segment the audio signal data into sections or frames suitable for frequency or other domain transformation,
  • the frame sectioner 201 in some embodiments can further be configured to window these frames or sections of audio signal data according to any suitable windowing function.
  • the frame sectioner 201 can be configured in some embodiments to generate frames of 20ms which overlap preceding and succeeding frames by 10ms each. The operation of generating audio frames is shown in Figure 4 by step 501.
  • the audio frames can be passed to a parameter determiner 203.
  • the encoder comprises a parameter determiner 203 of suitable means for determining at least one parameter representing the input audio signal(s) or input audio signal frames.
  • the parameter is a line spectral frequency (LSF) parameter however it would be understood that in some embodiments any suitable parameter can be determined.
  • the parameter determiner comprises a transformer 203 or suitable means for transforming.
  • the transformer 203 in some embodiments is configured to generate frequency domain (or other suitable domain) parameter representations of these audio signals. These frequency domain parameter representations can in some embodiments be passed to the parameter encoder 205.
  • the transformer 203 can be configured to perform any suitable time to frequency domain transformation on the audio signal data.
  • the time to frequency domain transformation can be a discrete Fourier transform (DFT), Fast Fourier transform (FFT), modified discrete cosine transform (IVIDCT). in the following examples a Fast Fourier Transform (FFT) is used.
  • the transformer can further be configured to generate separate frequency band domain parameter representations (sub-band parameter representations) of each input channel audio signal data. These bands can be arranged in any suitable manner. For example these bands can be linearly spaced, or be perceptual or psychoacoustscally allocated.
  • the parameters generated can be any suitable parameter.
  • step 503. the representations, such as LSF parameters, are passed to a parameter encoder 205.
  • the encoder 104 can comprise a parameter encoder 205.
  • the parameter encoder 205 can be configured to receive the parameter representations of the audio signal input, for example the determined LSF parameters.
  • the parameter encoder 205 can furthermore in some embodiments be configured to use each of the LSF parameter values as a sub-vector and combine each sub-vector to create a vector to input into a vector quantizer.
  • the apparatus can comprise a vector generator configured to generate a first vector of parameters (or tuples of a first vector representing the parameters) defining at least one audio signal.
  • the output of the vector quantizer is in some embodiments the encoder and therefore the vector quantized audio signals output are the 'encoded' or parameter encoded representations of the audio signal
  • the operation of encoding or vector quantizing the parameters is shown in Figure 4 by step 505
  • the parameter encoder 205 comprises a vector generator 451.
  • the vector generator 451 is configured to receive the LSF parameters and generate a N dimensional vector from these values,
  • the operation of generating vectors from the input parameters is shown in Figure 4 by sub-step 551.
  • the generated vectors can in some embodiments be passed to the lattice vector quantizer 453.
  • the parameter encoder 205 comprises a lattice vector quantizer 453.
  • the lattice vector quantizer 453 receives the input vector generated from the LSF parameters and generates a nearest neighbour or N output which occurs within a defined lattice and thus can be decoded using a similar lattice at the decoder.
  • the encoded signal can be output.
  • the operation of outpuiting the encoded signal is shown in Figure 4 by step 507, This for the example can be an operation of outputting the quantized lattice vector as shown in Figure 4 by sub-step 557.
  • the lattice quantizer 453 can in some embodiments be defined by respective program code 23 of a computer program that is stored on a tangible storage medium memory 22.
  • lattice quantizers an initial generating or determining a set of potential basis code vectors, wherein each determined potential basis code vector of this set of potential basis code vectors is associated with a potential basis code vector of a different set of basis code vectors is performed.
  • Each set of potential basis code vectors comprises at least one basis code vector. Since each set of basis code vectors is associated with at least one scale representative of a plurality of scale representatives, a code vector can be determined based on a basis code vector of a set of potential basis code vectors and a scale representative of the at least one scale representative associated with the set of potential basis code vectors. In other words the code vector may be represented based on a basis code vector scaled by the respective scale representative. For instance, the scale representative may represent a scale value, wherein a code vector may be determined based on a multiplication of a basis code vector and the respective scale value. Furthermore in some embodiments the codebook is obtained by applying a (signed) permutation of the basis vector.
  • a codebook may comprise a set of code vectors comprising code vectors based on the plurality of sets of basis code vectors and based on the respective at least one scale value associated with a respective set of basis code vectors of the plurality of basis code vectors.
  • This set of code vectors may comprise, for each basis code vector of each set of basis code vectors and for each of the at least one scale representative associated with a respective set of basis code vectors, a code vector based on the respective basis code vector scaled by the respective scale representative,
  • said sets of basis code vectors may represent leader classes, wherein each leader class comprises a different leader vector and permutations of said leader vector.
  • said leader vector and the permutations of said leader vector may represent the basis code vectors of the respective set of basis code vectors.
  • the plurality of sets of basis code vectors may represent a subset of a second plurality of sets of basis code vectors.
  • the plurality of leader classes may represent a subset of a second plurality of leader classes.
  • the plurality of leader classes may be considered as a truncated plurality of leader classes with respect to the second plurality of leader classes.
  • the respective potential basis code vector may be determined by determining the basis code vector of the at least one basis code vector of the respective set of basis code vector which is nearest to the input vector to be encoded. Any kind of suitable criterion may be used for finding the nearest basis code vector with respect to the input vector to be encoded.
  • a potential basis code vector may be determined based on a nearest basis code vector with respect to the absolute valued input vector and based on information of signs of the values of the input vector, wherein this information may comprise the sign of a respective position of respective values in the input vector and is used to assign signs to values of the determined potential basis code vector.
  • the basis code vector which is nearest to the absolute vaiued input vector may be determined, wherein the absolute valued input vector comprises absolute values corresponding to the values of the input vector, wherein the potential basis code vector represents the determined nearest basis code vector, wherein the signs of the values of the potential basis code vector correspond to the signs of the values of the input vector at the same position in the vector, wherein this may hold if the parity of the basis code vectors of the set of basis code vectors is 0.
  • the signs of the values of the potential basis code vector may be assigned corresponding to the signs of the values of the input vector at the same position in the vector, respectively, and if there are not an odd number of negative components, the value in the potential basis code vector having the lowest non-null absolute value may change its sign.
  • the signs of the values of the potentiai basis code vector may be assigned corresponding to the signs of the values of the input vector at the same position in the vector, respectively, and if there are not an even number of negative components, the value in the potential basis code vector having the lowest non- null absolute value may change its sign.
  • the code vector for encoding the input vector is then conventionally determined based on the set of determined potential code vectors, wherein said set of determined potential code vectors defines a subset of code vectors, said subset of code vectors comprising, for each determined potential basis code vector and each scale representative associated with the set of basis code vectors of the respective potential basis code vector, a code vector based on the respective potential basis code vector scaled by the respective scale representative. Accordingly, the search for the code vector for encoding the input vector has been performed in the subset of code vectors defined by the determined potential code vectors and defined by the respective at least one scale representative associated with the set of basis code vectors of the respective determined potential code vector.
  • each scaie representative of the plurality of scale representatives may be associated with at least one set of code vectors, wherein each set of code vectors of said at least one set of code vectors associated with a respective scale representative is associated with a set of basis code vectors of the plurality of sets of basis code vectors such that each set of code vectors of said at least one set of code vectors associated with a respective scale representative comprises code vectors obtained by scaling the basis vectors of the associated respective set of basis vectors with the respective scale representative. Accordingly, the code vectors of the at least one set of basis code vectors associated with a respective scale representative of the plurality of scale representatives can be determined based on scaling the basis code vectors of each set of basis code vectors associated with the scale representative with this scale representative.
  • the at least one set of basis code vectors associated with a respective scale representative may be considered as a union of leader classes. It would be understood that usually the union of leader classes is independent of the scale.
  • the codebook may comprise at last one union of leader classes, wherein each union of leader class is associated with one of at least one scale representatives and with at least one set of basis code vectors of the plurality of basis code vectors.
  • the at least one scale representative may represent the plurality of scale representatives which may comprise at least two scale representatives.
  • b x with xe ⁇ Q s 1 , ...
  • X-1 ⁇ represents a set of basis code vectors of the plurality of sets of basis code vectors, wherein X represents the number of sets of the plurality of sets of basis code vectors.
  • Each set of basis code vectors is associated or comprises at least one basis code vector b Xi y s wherein B x represents the number of basis code vectors of a respective set of basis code vectors b x , i.e. ye ⁇ 0, 1 , ... B x ⁇ 1 ⁇ holds.
  • the number B x of basis code vectors of a set of basis code vectors may be different for different sets of basis code vectors and/or it may be the same for at least two sets of basis code vectors. In other words a leader vector is just one vector.
  • this set forms the leader vector's leader class (or as described herein the basis code vectors).
  • leader vector's leader class or as described herein the basis code vectors.
  • a union of leader classes is formed. Then to this union/unions one or more scales can be attached.
  • a code vector c x,z , y based on basis code vector b x>y and based on a scale representative s 2) wherein index z represents the index of the respective scale representative of the plurality of scale representatives so ... ss-i , i.e. ze ⁇ Q, 1 , ... S-1 ⁇ holds.
  • n-1 ⁇ holds and n represents the length of the respective basis code vector b x , y , and if the absolute valued input vector is used for determining the potential code vector of a respective set of basis code vectors, the sign of each value b x , y , t at the (t+1 )th position of the determined nearest basis code vector b x , y may be assigned based on the sign of the respective value i t at the (t+1 )th position of the input vector i, before determining a code vector c x , z , y based on basis code vector b x , y and based on a scale representative s z is performed.
  • the absolute valued input vector may be represented by [jio
  • the sign of each value b x>yi t at the (t+1 )th position of the determined nearest basis code vector b Xi y may be assigned to the sign of the respective value k at the (t+1 )th position of the input vector, respectively, wherein this may hold if the parity of the basis code vectors b x , y of the set of basis code vectors b x is 0.
  • the signs of the values b x,y ⁇ t of the potential basis code vector may be assigned corresponding to the signs of the values of the input vector at the same position in the vector, respectively, and if there are not an odd number of negative components, the value b x , y , t in the potential basis code vector having the lowest non-null absolute value may change its sign.
  • the signs of the values b x , ytt of the potential basis code vector may be assigned corresponding to the signs of the values of the input vector at the same position in the vector, respectively, and if there are not an even number of negative components, the value b Xi y,t in the potential basis code vector having the lowest non-null absolute value may change its sign.
  • Each of the scale representatives s 2 is associated with at least one set of basis code vectors.
  • this respective at least one set of basis code vectors may be represented by the set of basis code vectors b x , with xe ⁇ 0, 1 , ... n z wherein n 2 may represent the number of sets of basis code vectors associated with the respective scale representative s z , wherein G ⁇ 3 ⁇ 4 ⁇ X holds.
  • n 2 may represent the number of sets of basis code vectors associated with the respective scale representative s z , wherein G ⁇ 3 ⁇ 4 ⁇ X holds.
  • n z -1 ⁇ s the associated at least one set of code vectors c XiZ , y , with xe ⁇ 0, 1 , ... n z ⁇ 1 ⁇ and y ⁇ Q, 1 , ... B x -1 ⁇ and ze ⁇ 0, 1 , ... 5-1 ⁇ , can be determined.
  • a codebook structure of the above mentioned codebook may be defined by the plurality of scale representatives s 2 , the plurality of sets of basis code vectors b x , and the linkage between each scale representative with the associated at least one set of basis code vectors. Since at least one set of basis code vectors, e.g.
  • the same set of basis code vectors can be used to construct code vectors of the at least one set of code vectors associated with a first scale representative and to construct code vectors of the at least one set of code vectors associated with at least one further scale representative.
  • determining a code vector for encoding the input vector from a subset of code vectors is based on a determined distortion metric or distance, or error value.
  • a scale representation of the plurality of scale representations is selected.
  • a code vector may then be determined based on the selected potential basis code vector and on the selected scale representation, wherein this determining of a code vector may be performed as described with respect to the method described herein.
  • a distortion metric is determined based on the determined code vector and the input vector.
  • said distortion metric may be based on any kind of suitable distance between the determined code vector and the input vector.
  • a Hamming distance or an Euclidian distance or any other distance may be used.
  • determining the code vector may be omitted and the distortion metric may be calculated by inherently considering the respective code vector associated with the selected scale representation and the set of basis code vectors associated with this selected scale representation.
  • a distance d may be calculated based on
  • This distance d may be replaced with distance d ! calculated based on
  • distance d may be amended as follows: wherein Wk represent weighting factors of the weighting function.
  • distance d' may by weights means of the weighting function in the foliowing way:
  • the distortion metric d, or d', or d w , or d w ! may be stored, if it is the first determined distortion metric, or it may be compared with a stored distortion metric, wherein the stored distortion metric is replaced if the newly determined distortion metric is better than the stored distortion metric.
  • the code vector associated with the stored distortion metric may be stored or an identifier of this code vector may be stored.
  • the operation can checked whether there are any further sets of basis code vectors associated with the selected scale representation. If yes, then the determined potential basis code vector of this further set of basis code vectors associated with the selected scale representation Is selected. If no there is a check made against further scale representation of the plurality of scale representations.
  • the further scale representation is selected, otherwise the code vector associated with the best distance metric may be selected for encoding the input vector.
  • the sets of basis code vectors may represent leader classes, wherein each leader class comprises a different leader vector and permutations of said leader vector.
  • the leader vector and the permutations of said leader vector may represent the basis code vectors of the respective set of basis code vectors.
  • a leader vector is an n ⁇ dimensional vector (with n denoting an integer number), whose (positive) components are ordered (e.g. decreasingly).
  • the leader class corresponding to the leader vector then consists of the leader vector and all vectors obtained through all the signed permutations of the leader vector (with some possible restrictions).
  • a union of leader classes may be defined by the sets of basis code vectors associated with the same scale representation of the plurality of scale representations and the respective scale representation. For instance, a union of leader classes may be associated with a set of code vectors obtained by means of scaling the basis code vectors of the associated step of basis code vectors with the scale representative.
  • Such a union of leader classes may be considered as a truncation.
  • the plurality of scale representations are n scale representations
  • n unions of leader classes may be defined, wherein each union of leader class is defined by means of the respective scale representation and the sets of basis code vectors associated with the respective scale representation.
  • the plurality of scale representations and the plurality of sets of basis code vectors may define a plurality of union of leader classes thereby defining a codebook, wherein, as an example, each union of leader classes may be considered as a union of scaled leader classes.
  • Codebooks used within these speech and audio codecs may for instance be based on lattice structures, as described in reference “Multiple-scale leader- lattice VQ with application to LSF quantization” by A, Vasiiache, B. Dumitrescu 20 and 1, Tabus, Signal Processing, 2002, vol, 82, pages 583-588, Elsevier, which is incorporated herein in its entirety by reference.
  • a D10+ Iattice may be considered for quantization, but any other well-suited Iattice quantization may also be considered.
  • the sets of basis code vectors are leader classes, wherein each leader class comprises a different leader vector and permutations of said ieader vector, and wherein each Ieader vector represents an n ⁇ dimensional vector comprising n absolute values arranged in a descending or an ascending order.
  • the Ieader vector I of the respective set of basis code vectors b x may be represented by Hb, , Li], wherein l 0 , !i I n -i are absolute values .
  • l 0 represents the 1 -highest value
  • i n -i represents the n-highest value.
  • h represents the 2-lowest value
  • ! ⁇ - represents the n-lowest value.
  • the value of the respective leader vector which represents the value at kth position in the respective Ieader vector, can be assigned to a position in the potential basis code vector which corresponds to the position of the k-highest absolute value (in case of a descending ordered Ieader vector) or to the position of the k-lowest absolute value (in case of an ascending ordered Ieader vector) in the input vector.
  • this position may be denoted as position m.
  • an exemplary input vector may be
  • the corresponding absolute valued input vector may be ia ⁇ [2.4, 5.0, 1.3, 0.2 in case of the descending order of the ieader vector
  • the value in position k of the Ieader vector i.e. value l k -i
  • the position of the 1 -highest absolute value in the input vector is position m-2
  • value IQ is assigned to the position m 2 in the potential basis code vector, i.e. pi ⁇ may hold.
  • the sign (+ or ⁇ ) of the assigned value in the potential basis code vector p m -i is set in accordance with the sign of the value of the input vector associated with the k-highest absolute value. Accordingly, p ⁇ lM-signi may hold.
  • the respective potential code vector obtained by the example method may result in p ⁇ Hi ⁇ , -1 ⁇ 2, h] in case of the descending ordered respective leader vector I, if the leader vector I is ordered in an ascending way, then the method described above may be performed with m representing the position of the k-lowest value in the absolute valued input vector, wherein p m- - l k- - ! sign(i m . ) may hold.
  • the obtained potential code vector p is associated with the respective set of basis code vectors b x , wherein I represents the leader vector of this respective set of basis code vectors.
  • the potential code vector p represents the nearest basis code vector b x , y of the set of basis code vectors b x with respect to the input vector, wherein the absolute valued input vector is used for determining the potential code vector of a respective set of basis code vectors and wherein the sign of each value b x , y, k-i at the kth position of the determined nearest basis code vector b x , y is assigned with the sign of the respective value ik at the kth position of the input vector i, wherein 0 ⁇ k ⁇ n holds.
  • this nearest basis code vector b x , y representing the potential code vector p can be used for determining a code vector c x,2 . y based on the nearest basis code vector b x,y and based on a respective scale representative s 2 , as described above.
  • a first set of code vectors of a plurality of code vectors of the codebook is defined by the first truncation scaled by the first scale representation 0.8
  • a second set of code vectors of the plurality of code vectors of the codebook is defined by the second truncation scaled by the second scale representation 1.2
  • a third set of code vectors of the plurality of code vectors of the codebook is defined by the third truncation scaled by the third scale representation 2.7, the codebook having a multiple scale lattice structure.
  • the search in the multiple scale lattice structure may be seen as having two phases: the first one may compute a potential code vector for each leader class, i.e. for each set of basis code vectors, and the second one may calculate the distortion only for the potential codevectors.
  • an absolute value function may be applied to the input vector i such that absolute input vector la comprises the absolute values of the vector i, and then the absolute input vector may be sorted in an descending (or, alternatively, in an ascending) order.
  • an index representation may contain representatives indicating the indexes of each input vector i in the descendingly (or ascendingly) ordered absolute valued vector.
  • said index representation may be an integer array 'indx ⁇
  • the leader vectors may be descendingly ordered, during the nearest neighbour search algorithm, the first value of the leader vector may be assigned on the position corresponding to the highest absolute value component of the input vector and so on.
  • ! idxjead_jnax' is the maximum number of leader classes out of all truncations, which may correspond to X, in this example may be is 9, Accordingly 9 sets of basis code vectors are defined by means of the 9 leader classer, wherein the nth leader ciass is defined by &pi[n- 1]. For instance, the array 'sign' may store the signs of the input vector components.
  • pl_ crt - &pl[0]; /* pi contains the leader vectors */
  • the outer loop defined by counter u may be considered to associate each each u with a respective leader vector.
  • a corresponding set of basis code vectors is selected by means of the outer loop, since each leader vector corresponds to a different set of basis code vectors of the plurality of basis code vectors.
  • integer value j may be considered to determining a potentiai basis code vector associated with the selected set of basis code vectors, j__crt indicating the position of the (j+1 )highest absolute value in the input vector.
  • the different potential basis code vectors cv_pot are determined by means of this exemplary first part of the search.
  • the second part of the search may be used for determining a code vector for encoding the input vector from a subset of code vectors. /* Second part of the search */
  • the outer loop may be defined by counter I, wherein I is issued to select one scale representation scale[l] of the plurality of scale representations.
  • LATTICEJDIIV] defines the length of the code vectors which may correspond to the length of the input vector to be encoded. Afterwards, the values ws1 [k]and ws2[k] for each k in ⁇ VietnameseLATTiCEJDIM) are calculated, which may be considered to be that part of the distortion metric (X3) which is independent of potential basis code vector. The value w[k] represents the value of the weighting function for each k.
  • the example code shown above further has an inner j loop "forO-0;j ⁇ noJeaders[l];j ⁇ +)" i wherein nojeadersp] defines the set of leader vectors associated with the selected scale representative scale[l], i.e.
  • noJeaders[l] may correspond to n z representing the number of sets of basis code vectors associated with the respective scale representative scale[l], and thus this loop iterates through each set of leader vectors associated with the selected scale representative scalefi], wherein for leader vector of this set of leader vectors one potential basis code vector cyjaot has been determined.
  • this loop iteratively selects each potential basis code vector cv_pot the set of basis code vectors associated with the selected scale representation, wherein cv__pot
  • the respective distortion metric for the code vector being associated with the respective basis code vector and the selected scale representative may be determined, e.g. based on distortion metric in the following way:
  • the distortion metric having the lowest value is determined to represent the best distortion metric, wherein the code vector associated with this distortion metric code vector may be used for encoding the input vector.
  • this code vector may be defined by the best scale representative and the best potential basis code vector of the set of potential basis code vectors.
  • the embodiments described herein reduce the complexity of the vector quantization by not computing the potential codevector array cv__pot, but employing the absolute value sorted version of the input vector and determining or generating the distortion calculation in a suitable transposed space.
  • the lattice vector quantizer comprises as input vector sorter 402.
  • the input vector sorter 402 or suitable means for sorting the input vector can be configured to receive the input vector.
  • the lattice vector quantizer and input vector sorter 402 is configured to sort the input vector into an absolute value descending order (it would be understood that in some embodiments the sorting can be performed in an absolute value ascending order with suitable changes to the following operations). Thus for example if the input vector is
  • the input vector sorter can then pass the sorted vector and sorting permutation to the code vector determiner 403.
  • the lattice vector quantizer 453 comprises a potential code vector determiner 401.
  • the potential code vector determiner or suitable means for determining a potential code vector is configured to store or generate the leader classes used to generate the codevectors.
  • the leader classes may be defined as (in Q1 value, in other words multiplied by 2 ⁇
  • leader classes can in some embodiments be passed to the code vector determiner 403.
  • the lattice vector quantizer 453 comprises a code vector determiner 403.
  • the code vector determiner 403 or suitable means for determining a code vector can in some embodiments receive the leader classes and also the sorted input vector and permutation vector. The code vector determiner can then from these values determine the output code vector associated with the input vector. Where the distance to be determined is a weighted Euclidean distance then in some embodiments the weights are transposed according to the permutation vector and an intermediary input vector produce is generated. It would be understood that in some embodiments the weights are uniform or the weighting operation is optional where the unweighted Euclidean distance is employed.
  • w__transp [ j ] w [ indx [ j ] ] ;
  • wx [ j ] w__transp [ j 3 *cv__pot [ j ] ;
  • the code vector determiner can determine distance components sum1 and sum2 for a first scale value scale[0].
  • This operation can be divided into the steps of:
  • step 508 The operation of initialising the scale and square of the scale values are shown in Figure 8 by step 508. Secondly, selecting a Ieader vector from the leader classes matrix. This is shown in the above matrix example as the matrix pl_crt.
  • the operation can then loop round until all of the Ieader vectors have been selected.
  • the operation of checking whether all leader vectors have been selected and looping back where not all of the leader vectors have been selected is shown in Figure 8 step 514.
  • the code vector determmer can be configured to use the suml and sum2 values to determine distortion distances for other scaies.
  • a similar operation of checking for a ! best ! scale value is further made.
  • the operation of determining distortion distances for other scales is shown in Figure 8 by step 515.
  • the operation of determining the distortion distance can for the other scales using the suml and sum2 values can be implemented using the following example code for (k ::: l; k ⁇ nc__scales k - ; - )
  • the code vector determiner can be configured, once the best leader class and best scale are found, to calculated the resulting codevector 'cv_put ⁇
  • the operation of calculating the codevector can be implemented by the following example code.
  • the calculation of the variables sum1 and sum2 is done up to the number of leaders from the first truncation ⁇ nojeaders[0]) s meaning that the number of leaders should be decreasingly ordered and their corresponding scales ordered accordingly, in such embodiments an additional complexity reduction is produced because the maximum number of leaders for one structure need not be computed, but it is known to be on the first position. it would be understood that most of the complexity reduction comes from the fact that only the winning leader vector has to be transposed, not ail of them. The calculation is done on positive values (both leader vector and input vector are in absolute values) which is ok as long as the input vector component and the quantized one have the same sign.
  • embodiments of the application operating within a codec within an apparatus 10
  • the invention as described below may be implemented as part of any audio (or speech) codec, including any variable rate/adaptive rate audio (or speech) codec.
  • embodiments of the application may be implemented in an audio codec which may implement audio coding over fixed or wired communication paths.
  • user equipment may comprise an audio codec such as those described in embodiments of the application above.
  • user equipment is intended to cover any suitable type of wireless user equipment, such as mobiie te ephones, portable data processing devices or portable web browsers.
  • elements of a public land mobile network may also comprise audio codecs as described above.
  • the various embodiments of the application may be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the invention is not limited thereto.
  • firmware or software which may be executed by a controller, microprocessor or other computing device, although the invention is not limited thereto.
  • While various aspects of the application may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the embodiments of this application may be implemented by computer software executable by a data processor of the mobile device, such as in the processor entity, or by hardware, or by a combination of software and hardware.
  • any blocks of the logic flow as in the Figures may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
  • the data processors may be of any type suitable to the local technical environment, and may include one or more of genera! purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASIC), gate level circuits and processors based on multi-core processor architecture, as non-limiting examples,
  • Embodiments of the application may be practiced in various components such as integrated circuit modules.
  • the design of integrated circuits is by and large a highly automated process. Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.
  • circuits and software and/or firmware
  • combinations of circuits and software such as: (s) to a combination of processor(s) or (ii) to portions of processor(s)/software (including digital signal processor(s)), software, and memory(ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions and (c) to circuits, such as a microprocessors) or a portion of a microprocessors), that require software or firmware for operation, even if the software or firmware is not physicaiiy present.
  • This definition of 'circuitry' applies to all uses of this term in this application, including any claims.
  • the term 'circuitry' would also cover an Implementation of merely a processor (or multiple processors) or portion of a processor and its (or their) accompanying software and/or firmware.
  • the term 'circuitry' would also cover, for example and if applicable to the particular claim element, a baseband integrated circuit or applications processor integrated circuit for a mobile phone or similar integrated circuit in server, a cellular network device, or other network device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

An apparatus comprising: a vector generator configured to generate at least one vector of parameters defining at least one audio signal; a lattice vector quantizer configured to sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters; the lattice vector quantizer configured to select from a list of leader classes at least one potential code vector; the lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters; the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance; the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector.

Description

Audio Ssgnal Encoder Field The present application relates to a multichannel or stereo audio signal encoder, and in particular, but not exclusively to a multichannel or stereo audio signal encoder for use in portable apparatus.
BackgrQund
Audio signals, like speech or music, are encoded for example to enable efficient transmission or storage of the audio signals,
Audio encoders and decoders (also known as codecs) are used to represent audio based signals, such as music and ambient sounds (which in speech coding terms can be called background noise). These types of coders typically do not utilise a speech model for the coding process, rather they use processes for representing all types of audio signals, including speech. Speech encoders and decoders (codecs) can be considered to be audio codecs which are optimised for speech signals, and can operate at either a fixed or variable bit rate.
Audio encoders and decoder are often designed as low complexity source coders, !n other words able to perform encoding and decoding of audio signals without requiring highly complex processing.
An example of which is transform coding. For music signal audio encoding transform coding generally performs better than Algebraic Code Excited Linear Prediction (ACELP) technology which is better suited and directed for speech signals. Transform coding is performed by coding transform coefficients vector sub-band wise. In other words an audio signal is divided into sub-bands for which a parameter is determined and the parameters represent sub-vectors which are vector or lattice quantised.
Summary
According to a first aspect there is provided a method comprising: generating at least one vector of parameters defining at least one audio signal; sorting the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters; selecting from a list of leader classes at least one potential code vector; determining a distance between the at least one potential code vector and the at least one ordered vector of parameters; determining at least one leader class associated with a potential code vector which generates the smallest associated distance; transposing the at least one leader class to generate an output lattice quantized codevector.
The method may further comprise: selecting at least one scale factor; determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may further comprise determining a distance based on the at least one scale factor; determining at least one leader class associated with a potential code vector which generates the smallest associated distance may further comprise determining an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance; transposing the at least one leader class to generate an output lattice quantized codevector may comprise applying the output scale factor to the output lattice quantized codevector.
Generating a first vector of parameters defining at least one audio signal may comprise: dividing the at least one audio signal into time frames; determining a vector of line spectral frequency parameters associated with the at least one audio signal time frames. Sorting the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters may comprise: determining weights for a weighted distance determination; sorting the weights based on the ordering of the at least one vector absolute tuples to generate a sorted weight vector; applying the sorted weight vector to the at least one ordered vector of parameters.
Determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may comprise: generating a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters; correcting the sign of the first distance component where the potential code vector fails a parity constraint test; determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components.
Determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may further comprise determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values.
Determining at least one leader class associated with a potential code vector which generates the smallest associated distance may comprise: determining the index of the potential code vector which generates the smallest associated distance; determining the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance. Transposing the at least one leader class to generate an output lattice quantized codevector may comprise sorting the at Ieast one leader class by the reverse ordering of at Ieast one vector absolute tuples. According to a second aspect there is provided an apparatus comprising: means for generating at least one vector of parameters defining at least one audio signal; means for sorting the at Ieast one vector of parameters according to an ordering of at Ieast one vector absolute tuples to generate an associated at Ieast one ordered vector of parameters; means for selecting from a list of leader classes at Ieast one potential code vector; means for determining a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters; means for determining at Ieast one leader class associated with a potential code vector which generates the smallest associated distance; means for transposing the at Ieast one leader class to generate an output lattice quantized codevector.
The apparatus may further comprise: means for selecting at Ieast one scale factor; wherein the means for determining a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters may further comprise means for determining a distance based on the at Ieast one scale factor; the means for determining at Ieast one leader class associated with a potential code vector which generates the smallest associated distance may further comprise means for determining an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance; the means for transposing the at Ieast one leader class to generate an output lattice quantized codevector may comprise means for applying the output scale factor to the output lattice quantized codevector.
The means for generating a first vector of parameters defining at Ieast one audio signal may comprise: means for dividing the at Ieast one audio signal into time frames; means for determining a vector of line spectral frequency parameters associated with the at Ieast one audio signal time frames. s
The means for sorting the at feast one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters may comprise: means for determining weights for a weighted distance determination; means for sorting the weights based on the ordering of the at least one vector absolute tuples to generate a sorted weight vector; means for applying the sorted weight vector to the at least one ordered vector of parameters.
The means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may comprise: means for generating a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters; means for correcting the sign of the first distance component where the potential code vector fails a parity constraint test; means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components.
The means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may further comprise means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values.
The means for determining at least one leader class associated with a potential code vector which generates the smallest associated distance may comprise: means for determining the index of the potential code vector which generates the smallest associated distance; means for determining the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance.
The means for transposing the at least one leader class to generate an output lattice quantized codevector may comprise means for sorting the at least one leader class by the reverse ordering of at least one vector absolute tuples.
According to a third aspect there is provided an apparatus comprising at least one processor and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: generate at least one vector of parameters defining at least one audio signal; sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters; select from a list of leader classes at least one potential code vector; determine a distance between the at least one potential code vector and the at least one ordered vector of parameters; determine at least one leader class associated with a potential code vector which generates the smallest associated distance; transpose the at least one leader class to generate an output lattice quantized codevector.
The apparatus may be further caused to: select at least one scale factor; wherein determining a distance between the at least one potential code vector and the at least one ordered vector of parameters may further cause the apparatus to determine a distance based on the at least one scale factor; wherein determining at least one leader class associated with a potential code vector which generates the smallest associated distance may further cause the apparatus to determine an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance; wherein transposing the at least one leader class to generate an output lattice quantized codevector may cause the apparatus to apply the output scale factor to the output lattice quantized codevector. ?
Generating a first vector of parameters defining at least one audio signal may cause the apparatus to: divide the at least one audio signal into time frames; determine a vector of line spectra! frequency parameters associated with the at least one audio signai time frames.
Sorting the at least one vector of parameters according to an ordering of at ieast one vector absolute tuples to generate an associated at ieast one ordered vector of parameters may cause the apparatus to: determine weights for a weighted distance determination; sort the weights based on the ordering of the at ieast one vector absolute tuples to generate a sorted weight vector; apply the sorted weight vector to the at Ieast one ordered vector of parameters.
Determining a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters may cause the apparatus to: generate a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters; correct the sign of the first distance component where the potential code vector fails a parity constraint test; determine a distance between the at least one potential code vector and the at Ieast one ordered vector of parameters based on the first and second distance components.
Determining a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters may further cause the apparatus to determine a distance between the at ieast one potential code vector and the at Ieast one ordered vector of parameters based on the first and second distance components and further scale values. Determining at Ieast one leader class associated with a potential code vector which generates the smallest associated distance may cause the apparatus to: determine the index of the potential code vector which generates the smallest associated distance; determine the scale vaiue of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance.
Transposing the at least one leader class to generate an output lattice quantized codevector may cause the apparatus to sort the at least one leader class by the reverse ordering of at least one vector absolute tuples, According to a fourth aspect there is provided an apparatus comprising: a vector generator configured to generate at least one vector of parameters defining at least one audio signal; a lattice vector quantizer configured to sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters; the lattice vector quantizer configured to select from a list of leader classes at least one potential code vector; the lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters; the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance; the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector.
The apparatus may further comprise: the lattice vector quantizer configured to select at least one scale factor; wherein the lattice vector quantizer configured to determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further may be configured to determine a distance based on the at least one scale factor; the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance may be further configured to determine an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance; the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector may be further configured to apply the output scale factor to the output lattice quantized codevector.
The apparatus may further comprise a parameter determiner configured to divide the at least one audio signal into time frames; and determine a vector of line spectral frequency parameters associated with the at least one audio signal time frames,
Wherein the lattice vector quantizer configured to sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters may be further configured to: determine weights for a weighted distance determination; sort the weights based on the ordering of the at least one vector absolute tuples to generate a sorted weight vector; apply the sorted weight vector to the at least one ordered vector of parameters.
The lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters may be further configured to: generate a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters; correct the sign of the first distance component where the potential code vector fails a parity constraint test; determine a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components. The lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters further may be configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values. The lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance may be further configured to: determine the index of the potential code vector which generates the smallest associated distance; determine the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance.
The lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector may be configured to sort the at least one leader class by the reverse ordering of at least one vector absolute tuples.
A computer program product may cause an apparatus to perform the method as described herein. An electronic device may comprise apparatus as described herein. A chipset may comprise apparatus as described herein. Brief Description of Drawings
For better understanding of the present invention, reference will now be made by way of example to the accompanying drawings in which:
Figure 1 shows schematically an electronic device employing some embodiments;
Figure 2 shows schematically an audio codec system according to some embodiments; Figure 3 shows schematically an encoder as shown in Figure 2 according to some embodiments;
Figure 4 shows a flow diagram illustrating the operation of the encoder shown in Figure 3 according to some embodiments;
Figure 5 shows schematically a lattice vector quantizer as shown in
Figure 3 according to some embodiments; and
Figure 6 shows a flow diagram illustrating the operation of the lattice vector quantizer shown in Figure 5 according to some embodiments;. Description of Some Emibod|mentsii fi the Application
The following describes in more detail possible stereo and multichannel speech and audio codecs, including layered or scalable variable rate speech and audio codecs,
There can be a problem with current transform coding approaches in that the use of compression efficient lattices can improve significantly the quantisation. However they manage to produce such improvements at the cost of significant codec complexity.
The concept as discussed in detail by the embodiments herein propose an approach allowing for significant encoding complexify reduction by evaluating the quantization distortion in a transposed vector space. In this regard reference is first made to Figure 1 which shows a schematic block diagram of an exemplary electronic device or apparatus 10, which may incorporate a codec according to an embodiment of the application.
The apparatus 10 may for example be a mobile terminal or user equipment of a wireless communication system. In other embodiments the apparatus 10 may be an audio-video device such as video camera, a Television (TV) receiver, audio recorder or audio player such as a mp3 recorder/player, a media recorder (also known as a rnp4 recorder/player), or any computer suitable for the processing of audio signals.
The electronic device or apparatus 10 in some embodiments comprises a microphone 11 , which is linked via an analogue-to-digital converter (ADC) 14 to a processor 21 , The processor 21 is further linked via a digital-to-anaiogue (DAC) converter 32 to ioudspeakers 33. The processor 21 is further linked to a transceiver (RX/TX) 13, to a user interface (Ui) 15 and to a memory 22. The processor 21 can in some embodiments be configured to execute various program codes. The implemented program codes in some embodiments comprise an audio encoding or decoding code as described herein. The Implemented program codes 23 can in some embodiments be stored for example in the memory 22 for retrieval by the processor 21 whenever needed. The memory 22 could further provide a section 24 for storing data, for example data that has been encoded in accordance with the application.
The encoding and decoding code in embodiments can be impiemented at least partially in hardware and/or firmware.
The user interface (UI) 15 enables a user to input commands to the electronic device 10, for example via a keypad, and/or to obtain information from the electronic device 10, for example via a display. In some embodiments a touch screen may provide both input and output functions for the user interface. The apparatus 10 in some embodiments comprises a transceiver (RX TX) 13 suitable for enabling communication with other apparatus, for example via a wireless communication network.
The transceiver 13 can communicate with further devices by any suitable known communications protocol, for example in some embodiments the transceiver 13 or transceiver means can use a suitable universai mobile telecommunications system (UMTS) protocol, a wireless local area network (WLA ) protocol such as for example IEEE 802. X, a suitable short-range radio frequency communication protocol such as Bluetooth, or infrared data communication pathway (IRDA). It is to be understood again that the structure of the apparatus 10 could be supplemented and varied in many ways,
A user of the apparatus 10 for example can use the microphone 11 for inputting speech or other audio signals that are to be transmitted to some other apparatus or that are to be stored in the data section 24 of the memory 22. A corresponding application in some embodiments can be activated to this end by the user via the user interface 15. This application in these embodiments can be performed by the processor 21 , causes the processor 21 to execute the encoding code stored in the memory 22, Although in the following examples the microphone 1 1 is configured to generate the audio signals for inputting it would be understood that the input audio signals can be received from any suitable input such as from the memory 22 and specifically within the stored data 24 section of the memory 22, in some embodiments the input audio signal or at least one audio signal can be received via the transceiver 13, For example the transceiver 13 can be configured to receive audio signals generated by microphones external to the apparatus 10, for example a Bluetooth device coupled to the apparatus via the transceiver 13.
The analogue-to-digital converter (ADC) 14 in some embodiments converts the input analogue audio signal into a digital audio signal and provides the digital audio signal to the processor 21. In some embodiments the microphone 1 1 can comprise an integrated microphone and ADC function and provide digital audio signals directly to the processor for processing. The processor 21 in such embodiments then processes the digital audio signal in the same way as described with reference to the system shown in Figure 2, and specifically the encoder shown in Figures 3, and details of the encoder shown in Figures 5.
The resulting bit stream can in some embodiments be provided to the transceiver 13 for transmission to another apparatus. Alternatively, the coded audio data in some embodiments can be stored in the data section 24 of the memory 22, for instance for a later transmission or for a later presentation by the same apparatus 10. The apparatus 10 in some embodiments can also receive a bit stream with correspondingly encoded data from another apparatus via the transceiver 13. In this example, the processor 21 may execute the decoding program code stored In the memory 22. The processor 21 in such embodiments decodes the received data, and provides the decoded data to a digital-to-analogue converter 32. The digital-to-analogue converter 32 converts the digital decoded data into analogue audio data and can in some embodiments output the analogue audio via the loudspeakers 33. Execution of the decoding program code in some embodiments can be triggered as well by an application called by the user via the user interface 15,
The received encoded data in some embodiment can also be stored instead of an immediate presentation via the loudspeakers 33 in the data section 24 of the memory 22, for instance for later decoding and presentation or decoding and forwarding to still another apparatus.
It would be appreciated that the schematic structures described in Figures 3 and 5 and the method steps shown in Figures 4 and 6 represent only a part of the operation of an audio codec and specifically part of an audio encoder apparatus or method as exemp!arily shown implemented in the apparatus shown in Figure 1. The general operation of audio codecs as employed by embodiments is shown in Figure 2. General audio coding/decoding systems comprise both an encoder and a decoder, as illustrated schematically in Figure 2. However, it would be understood that some embodiments can implement one of either the encoder or decoder, or both the encoder and decoder, Illustrated by Figure 2 is a system 102 with an encoder 104, a storage or media channel 106 and a decoder 108, It would be understood that as described above some embodiments can comprise or implement one of the encoder 104 or both the encoder 104 and decoder 108. The encoder 104 compresses an input audio signal 110 producing a bit stream 112, which in some embodiments can be stored or transmitted through a media channel 108. The encoder 104 can in some embodiments comprise a multichannel encoder that encodes two or more audio signals. The bit stream 112 can be received within the decoder 108. The decoder 108 decompresses the bit stream 112 and produces an output audio signal 114. The decoder 108 can comprise a transform decoder as part of the overall decoding operation. The decoder 108 can also comprise a multi-channel decoder that decodes two or more audio signals. The bit rate of the bit stream 112 and the quality of the output audio signal 114 in relation to the input signal 110 are the main features which define the performance of the coding system 102,
Figure 3 shows schematically the encoder 104 according to some embodiments. Figure 4 shows schematically in a flow diagram the operation of the encoder 104 according to some embodiments.
The concept for the embodiments as described herein is to determine and apply encoding to audio signals to produce efficient high quality and low bit rate real life coding. To that respect with respect to Figure 3 an example encoder 104 is shown according to some embodiments. Furthermore with respect to Figure 4 the operation of the encoder 104 is shown in further detail. In the following examples the encoder is configured to generate frequency domain parameters representing the audio signal and encode the generated frequency domain parameters using a suitable vector lattice quantization, however it wouid be understood that in some embodiments the parameters used in the lattice quantization as described herein can be any suitable parameters defining or representing the audio signals or other type of signals (for example image or, video).
The encoder 104 in some embodiments comprises a frame sectioner 201 or suitable means for sectioning the audio signal, The frame sectioner 201 is configured to receive the audio signals (for example a mono, left and right stereo or any multichannel audio representation) input audio signal and section or segment the audio signal data into sections or frames suitable for frequency or other domain transformation, The frame sectioner 201 in some embodiments can further be configured to window these frames or sections of audio signal data according to any suitable windowing function. For example the frame sectioner 201 can be configured in some embodiments to generate frames of 20ms which overlap preceding and succeeding frames by 10ms each. The operation of generating audio frames is shown in Figure 4 by step 501.
In some embodiments the audio frames can be passed to a parameter determiner 203. In some embodiments the encoder comprises a parameter determiner 203 of suitable means for determining at least one parameter representing the input audio signal(s) or input audio signal frames. In the following examples the parameter is a line spectral frequency (LSF) parameter however it would be understood that in some embodiments any suitable parameter can be determined. For example in some embodiments the parameter determiner comprises a transformer 203 or suitable means for transforming. The transformer 203 in some embodiments is configured to generate frequency domain (or other suitable domain) parameter representations of these audio signals. These frequency domain parameter representations can in some embodiments be passed to the parameter encoder 205.
In some embodiments the transformer 203 can be configured to perform any suitable time to frequency domain transformation on the audio signal data. For example the time to frequency domain transformation can be a discrete Fourier transform (DFT), Fast Fourier transform (FFT), modified discrete cosine transform (IVIDCT). in the following examples a Fast Fourier Transform (FFT) is used, Furthermore the transformer can further be configured to generate separate frequency band domain parameter representations (sub-band parameter representations) of each input channel audio signal data. These bands can be arranged in any suitable manner. For example these bands can be linearly spaced, or be perceptual or psychoacoustscally allocated. The parameters generated can be any suitable parameter.
The operation of determining or generating parameter representations is shown in Figure 4 by step 503. In some embodiments the representations, such as LSF parameters, are passed to a parameter encoder 205.
In some embodiments the encoder 104 can comprise a parameter encoder 205. The parameter encoder 205 can be configured to receive the parameter representations of the audio signal input, for example the determined LSF parameters. The parameter encoder 205 can furthermore in some embodiments be configured to use each of the LSF parameter values as a sub-vector and combine each sub-vector to create a vector to input into a vector quantizer. In other words the apparatus can comprise a vector generator configured to generate a first vector of parameters (or tuples of a first vector representing the parameters) defining at least one audio signal.
The output of the vector quantizer is in some embodiments the encoder and therefore the vector quantized audio signals output are the 'encoded' or parameter encoded representations of the audio signal The operation of encoding or vector quantizing the parameters is shown in Figure 4 by step 505
In some embodiments the parameter encoder 205 comprises a vector generator 451. The vector generator 451 is configured to receive the LSF parameters and generate a N dimensional vector from these values,
The operation of generating vectors from the input parameters is shown in Figure 4 by sub-step 551. The generated vectors can in some embodiments be passed to the lattice vector quantizer 453.
In some embodiments the parameter encoder 205 comprises a lattice vector quantizer 453. The lattice vector quantizer 453 receives the input vector generated from the LSF parameters and generates a nearest neighbour or N output which occurs within a defined lattice and thus can be decoded using a similar lattice at the decoder.
The operation of Lattice quantizing the vector is shown in Figure 4 by sub-step 553.
The encoded signal can be output. The operation of outpuiting the encoded signal is shown in Figure 4 by step 507, This for the example can be an operation of outputting the quantized lattice vector as shown in Figure 4 by sub-step 557.
With reference to Figure 5 there is shown an example lattice vector quantizer 453 according to some embodiments. The lattice quantizer 453 can in some embodiments be defined by respective program code 23 of a computer program that is stored on a tangible storage medium memory 22.
Before introducing the concepts and embodiments with respect to the invention we shali initialiy discuss conventional lattice vector quantization, in some lattice quantizers an initial generating or determining a set of potential basis code vectors, wherein each determined potential basis code vector of this set of potential basis code vectors is associated with a potential basis code vector of a different set of basis code vectors is performed.
Each set of potential basis code vectors comprises at least one basis code vector. Since each set of basis code vectors is associated with at least one scale representative of a plurality of scale representatives, a code vector can be determined based on a basis code vector of a set of potential basis code vectors and a scale representative of the at least one scale representative associated with the set of potential basis code vectors. In other words the code vector may be represented based on a basis code vector scaled by the respective scale representative. For instance, the scale representative may represent a scale value, wherein a code vector may be determined based on a multiplication of a basis code vector and the respective scale value. Furthermore in some embodiments the codebook is obtained by applying a (signed) permutation of the basis vector.
For instance, at least one set of basis code vectors is associated with at least two scale representatives. Accordingly, as an example, a codebook may comprise a set of code vectors comprising code vectors based on the plurality of sets of basis code vectors and based on the respective at least one scale value associated with a respective set of basis code vectors of the plurality of basis code vectors. This set of code vectors may comprise, for each basis code vector of each set of basis code vectors and for each of the at least one scale representative associated with a respective set of basis code vectors, a code vector based on the respective basis code vector scaled by the respective scale representative,
For instance, said sets of basis code vectors may represent leader classes, wherein each leader class comprises a different leader vector and permutations of said leader vector. Thus, said leader vector and the permutations of said leader vector may represent the basis code vectors of the respective set of basis code vectors.
The plurality of sets of basis code vectors may represent a subset of a second plurality of sets of basis code vectors. For instance, under the assumption that each set of basis code vector represents a leader class, the plurality of leader classes may represent a subset of a second plurality of leader classes. Thus, the plurality of leader classes may be considered as a truncated plurality of leader classes with respect to the second plurality of leader classes.
For instance, the respective potential basis code vector may be determined by determining the basis code vector of the at least one basis code vector of the respective set of basis code vector which is nearest to the input vector to be encoded. Any kind of suitable criterion may be used for finding the nearest basis code vector with respect to the input vector to be encoded. As an example, a potential basis code vector may be determined based on a nearest basis code vector with respect to the absolute valued input vector and based on information of signs of the values of the input vector, wherein this information may comprise the sign of a respective position of respective values in the input vector and is used to assign signs to values of the determined potential basis code vector. Furthermore, as an example, the basis code vector which is nearest to the absolute vaiued input vector may be determined, wherein the absolute valued input vector comprises absolute values corresponding to the values of the input vector, wherein the potential basis code vector represents the determined nearest basis code vector, wherein the signs of the values of the potential basis code vector correspond to the signs of the values of the input vector at the same position in the vector, wherein this may hold if the parity of the basis code vectors of the set of basis code vectors is 0. As another example, if the parity of the basis code vectors of the set of basis code vectors is -1 , the signs of the values of the potential basis code vector may be assigned corresponding to the signs of the values of the input vector at the same position in the vector, respectively, and if there are not an odd number of negative components, the value in the potential basis code vector having the lowest non-null absolute value may change its sign. Or, as another example, if the parity of the basis code vectors of the set of basis code vectors is +1 , the signs of the values of the potentiai basis code vector may be assigned corresponding to the signs of the values of the input vector at the same position in the vector, respectively, and if there are not an even number of negative components, the value in the potential basis code vector having the lowest non- null absolute value may change its sign.
The code vector for encoding the input vector is then conventionally determined based on the set of determined potential code vectors, wherein said set of determined potential code vectors defines a subset of code vectors, said subset of code vectors comprising, for each determined potential basis code vector and each scale representative associated with the set of basis code vectors of the respective potential basis code vector, a code vector based on the respective potential basis code vector scaled by the respective scale representative. Accordingly, the search for the code vector for encoding the input vector has been performed in the subset of code vectors defined by the determined potential code vectors and defined by the respective at least one scale representative associated with the set of basis code vectors of the respective determined potential code vector. Since this subset of code vectors may represent a subset of code vectors associated with the codebook, the number of code vectors of this subset of code vectors may be less than the number of code vectors of the set of code vectors. As an example, each scaie representative of the plurality of scale representatives may be associated with at least one set of code vectors, wherein each set of code vectors of said at least one set of code vectors associated with a respective scale representative is associated with a set of basis code vectors of the plurality of sets of basis code vectors such that each set of code vectors of said at least one set of code vectors associated with a respective scale representative comprises code vectors obtained by scaling the basis vectors of the associated respective set of basis vectors with the respective scale representative. Accordingly, the code vectors of the at least one set of basis code vectors associated with a respective scale representative of the plurality of scale representatives can be determined based on scaling the basis code vectors of each set of basis code vectors associated with the scale representative with this scale representative.
For instance, in case said sets of basis code vectors represent leader classes, the at least one set of basis code vectors associated with a respective scale representative may be considered as a union of leader classes. It would be understood that usually the union of leader classes is independent of the scale. Thus, the codebook may comprise at last one union of leader classes, wherein each union of leader class is associated with one of at least one scale representatives and with at least one set of basis code vectors of the plurality of basis code vectors. As an example, the at least one scale representative may represent the plurality of scale representatives which may comprise at least two scale representatives. Thus for example bx, with xe{Qs 1 , ... X-1}, represents a set of basis code vectors of the plurality of sets of basis code vectors, wherein X represents the number of sets of the plurality of sets of basis code vectors. Each set of basis code vectors is associated or comprises at least one basis code vector bXiys wherein Bx represents the number of basis code vectors of a respective set of basis code vectors bx, i.e. ye{0, 1 , ... Bx~1} holds. For instance, the number Bx of basis code vectors of a set of basis code vectors may be different for different sets of basis code vectors and/or it may be the same for at least two sets of basis code vectors. In other words a leader vector is just one vector. Together with all the signed permutations of the leader vector then this set forms the leader vector's leader class (or as described herein the basis code vectors). When putting together several leader classes, a union of leader classes is formed. Then to this union/unions one or more scales can be attached.
Thus for example it may be possible to determine a code vector cx,z,y based on basis code vector bx>y and based on a scale representative s2) wherein index z represents the index of the respective scale representative of the plurality of scale representatives so ... ss-i , i.e. ze{Q, 1 , ... S-1} holds.
For instance, in case the values bx,y.t of the basis code vectors bXiy~[bx,y!G» bx^i , x,y,n-i3 represent absolute values, wherein te{0, 1 , ... n-1} holds and n represents the length of the respective basis code vector bx,y, and if the absolute valued input vector is used for determining the potential code vector of a respective set of basis code vectors, the sign of each value bx,y,t at the (t+1 )th position of the determined nearest basis code vector bx,y may be assigned based on the sign of the respective value it at the (t+1 )th position of the input vector i, before determining a code vector cx,z,y based on basis code vector bx,y and based on a scale representative sz is performed.
As an example, if H , i in-i] represents the input vector, the absolute valued input vector may be represented by [jio|, |in-i|]. For instance, the sign of each value bx>yit at the (t+1 )th position of the determined nearest basis code vector bXiy may be assigned to the sign of the respective value k at the (t+1 )th position of the input vector, respectively, wherein this may hold if the parity of the basis code vectors bx,y of the set of basis code vectors bx is 0. As another example, if the parity of the basis code vectors bx,y of the set of basis code vectors bx is -1 , the signs of the values bx,y<t of the potential basis code vector may be assigned corresponding to the signs of the values of the input vector at the same position in the vector, respectively, and if there are not an odd number of negative components, the value bx,y,t in the potential basis code vector having the lowest non-null absolute value may change its sign. Or, as another example, if the parity of the basis code vectors bx y of the set of basis code vectors bx is +1 , the signs of the values bx,ytt of the potential basis code vector may be assigned corresponding to the signs of the values of the input vector at the same position in the vector, respectively, and if there are not an even number of negative components, the value bXiy,t in the potential basis code vector having the lowest non-null absolute value may change its sign.
As a non-limiting example, a code vector cx,z,y may be determined by ex,z,y =
[bx,y,o'Sz, bXiy 'S2, .... bx^n-1 'Sz].
Each of the scale representatives s2, wherein ze{G, 1 , ... S-1} holds, is associated with at least one set of basis code vectors. For instance, as a non- limiting example this respective at least one set of basis code vectors may be represented by the set of basis code vectors bx, with xe{0, 1 , ... nz wherein n2 may represent the number of sets of basis code vectors associated with the respective scale representative sz, wherein G<¾<X holds. Based on this linkage between a respective scale representative sz and the associated at least one set of basis code vectors bXl with xe{0, 1 , ... nz-1}s the associated at least one set of code vectors cXiZ,y, with xe{0, 1 , ... nz~1} and y {Q, 1 , ... Bx-1} and ze{0, 1 , ... 5-1}, can be determined. Thus, as an example, a codebook structure of the above mentioned codebook may be defined by the plurality of scale representatives s2, the plurality of sets of basis code vectors bx, and the linkage between each scale representative with the associated at least one set of basis code vectors. Since at least one set of basis code vectors, e.g. at least the set of basis code vectors b0, is associated with at least two scale representatives, the same set of basis code vectors can be used to construct code vectors of the at least one set of code vectors associated with a first scale representative and to construct code vectors of the at least one set of code vectors associated with at least one further scale representative.
It is possible to determine, for each set of basis code vectors of a plurality of sets of basis code vectors, a potential basis code vector for encoding an input vector in other ways.
For example determining a code vector for encoding the input vector from a subset of code vectors is based on a determined distortion metric or distance, or error value. in such examples a scale representation of the plurality of scale representations is selected.
Furthermore the determined potential basis code vector of a set of basis code vectors associated with the selected scale representation is selected.
A code vector may then be determined based on the selected potential basis code vector and on the selected scale representation, wherein this determining of a code vector may be performed as described with respect to the method described herein. in some examples based on the determined code vector and the input vector a distortion metric is determined. For instance, said distortion metric may be based on any kind of suitable distance between the determined code vector and the input vector. As an example, a Hamming distance or an Euclidian distance or any other distance may be used. As an example, determining the code vector may be omitted and the distortion metric may be calculated by inherently considering the respective code vector associated with the selected scale representation and the set of basis code vectors associated with this selected scale representation.
For instance, if cK,z,y-[ cX[Z,y,o, cXiZ,i , cx,z,n-i] represents the code vector determined in step 430 and i=[i0, i t !n-i] represents the input vector, a distance d may be calculated based on
Figure imgf000027_0001
This distance d according to the equation above may be replaced with distance d! calculated based on
Figure imgf000027_0002
Or, as another example, in case the distortion metric is determined based on a weighting function, distance d according to equation above may be amended as follows:
Figure imgf000028_0001
wherein Wk represent weighting factors of the weighting function.
Accordingly, distance d' according to the equation above may by weights means of the weighting function in the foliowing way:
Figure imgf000028_0002
For instance, the distortion metric d, or d', or dw, or dw ! may be stored, if it is the first determined distortion metric, or it may be compared with a stored distortion metric, wherein the stored distortion metric is replaced if the newly determined distortion metric is better than the stored distortion metric. Furthermore, the code vector associated with the stored distortion metric may be stored or an identifier of this code vector may be stored.
Then for example the operation can checked whether there are any further sets of basis code vectors associated with the selected scale representation. If yes, then the determined potential basis code vector of this further set of basis code vectors associated with the selected scale representation Is selected. If no there is a check made against further scale representation of the plurality of scale representations.
If there is a further scale representation of the plurality of scale representations, then the further scale representation is selected, otherwise the code vector associated with the best distance metric may be selected for encoding the input vector. For instance, where the sets of basis code vectors may represent leader classes, wherein each leader class comprises a different leader vector and permutations of said leader vector. Thus, the leader vector and the permutations of said leader vector may represent the basis code vectors of the respective set of basis code vectors. As an example, a leader vector is an n~ dimensional vector (with n denoting an integer number), whose (positive) components are ordered (e.g. decreasingly). The leader class corresponding to the leader vector then consists of the leader vector and all vectors obtained through all the signed permutations of the leader vector (with some possible restrictions).
A union of leader classes may be defined by the sets of basis code vectors associated with the same scale representation of the plurality of scale representations and the respective scale representation. For instance, a union of leader classes may be associated with a set of code vectors obtained by means of scaling the basis code vectors of the associated step of basis code vectors with the scale representative.
Such a union of leader classes may be considered as a truncation. Thus, if the plurality of scale representations are n scale representations, n unions of leader classes may be defined, wherein each union of leader class is defined by means of the respective scale representation and the sets of basis code vectors associated with the respective scale representation. Accordingly, the plurality of scale representations and the plurality of sets of basis code vectors may define a plurality of union of leader classes thereby defining a codebook, wherein, as an example, each union of leader classes may be considered as a union of scaled leader classes. Codebooks used within these speech and audio codecs may for instance be based on lattice structures, as described in reference "Multiple-scale leader- lattice VQ with application to LSF quantization" by A, Vasiiache, B. Dumitrescu 20 and 1, Tabus, Signal Processing, 2002, vol, 82, pages 583-588, Elsevier, which is incorporated herein in its entirety by reference. For instance, a D10+ Iattice may be considered for quantization, but any other well-suited Iattice quantization may also be considered.
For instance the sets of basis code vectors are leader classes, wherein each leader class comprises a different leader vector and permutations of said ieader vector, and wherein each Ieader vector represents an n~dimensional vector comprising n absolute values arranged in a descending or an ascending order.
The Ieader vector I of the respective set of basis code vectors bx may be represented by Hb, , Li], wherein l0, !i In-i are absolute values . In case of a descending order l0 represents the 1 -highest value, represents the 2-highest value and in-i represents the n-highest value. In case of an ascending order l0 represents the 1 -lowest value, h represents the 2-lowest value and !Γι- represents the n-lowest value.
The value of the respective leader vector, which represents the value at kth position in the respective Ieader vector, can be assigned to a position in the potential basis code vector which corresponds to the position of the k-highest absolute value (in case of a descending ordered Ieader vector) or to the position of the k-lowest absolute value (in case of an ascending ordered Ieader vector) in the input vector. For instance, this position may be denoted as position m. As an example, the potential basis code vector may be represented by p~[Po= pi, pn- ]-
For instance, as a non-limiting example, an exemplary input vector may be
H-2.4, 5.0, -1.3, 0.2], wherein the corresponding absolute valued input vector may be ia^[2.4, 5.0, 1.3, 0.2 in case of the descending order of the ieader vector, the value in position k of the Ieader vector, i.e. value lk-i, is assigned to a position in the potential basis code vector which corresponds to the position of the k-highest absolute value in the input vector. For instance, starting with the first position represented by counter k~1 , the position of the 1 -highest absolute value in the input vector is position m-2, since value 5.0 is the 1 -highest value in the absolute valued input vector and is located in position m=2, i.e. iai. Accordingly, value IQ is assigned to the position m 2 in the potential basis code vector, i.e. pi~ may hold.
Furthermore, the sign (+ or ~) of the assigned value in the potential basis code vector pm-i is set in accordance with the sign of the value of the input vector associated with the k-highest absolute value. Accordingly, p^^ lM-signi may hold.
Thus, in the non-limiting example of an exemplary input vector i~[~2.4, 5.0, -1.3, 0.2], ρ·5~Ιβ may hold since value =5.0 has a positive sign.
The position counter k may be incremented, and it may be checked whether there is another value in the Ieader vector, i.e. whether k<n holds. If yes, the method proceeds and in the non-limiting example, with respect to position k~2, value 2.4 at position m=1 represents the 2~highest (k-highest) absolute value in the input vector. Thus,
Po = Irsign(io) = - may hold for assigning with the respective sign, since value i0=-2.4 in the input vector has a negative sign. In this way, for the non-limiting example, the loop may iterate through the positions of the leader vector in the following way: |<χ=3 → m=3™* p2 = B2 sagn(f2) =■½; ^nd
^4→ m=:4 p3 = S3-stgn(i3) ~ +l3
Accordingly, the respective potential code vector obtained by the example method may result in p~Hi< , -½, h] in case of the descending ordered respective leader vector I, if the leader vector I is ordered in an ascending way, then the method described above may be performed with m representing the position of the k-lowest value in the absolute valued input vector, wherein pm- - lk--! sign(im. ) may hold.
The obtained potential code vector p is associated with the respective set of basis code vectors bx, wherein I represents the leader vector of this respective set of basis code vectors. For instance, with respect to the example process of determining a code vector based on a basis code vector bx,y.t and scale representative sz and described above, the potential code vector p represents the nearest basis code vector bx,y of the set of basis code vectors bx with respect to the input vector, wherein the absolute valued input vector is used for determining the potential code vector of a respective set of basis code vectors and wherein the sign of each value bx,y,k-i at the kth position of the determined nearest basis code vector bx,y is assigned with the sign of the respective value ik at the kth position of the input vector i, wherein 0<k<n holds.
Thus, this nearest basis code vector bx,y representing the potential code vector p can be used for determining a code vector cx,2.y based on the nearest basis code vector bx,y and based on a respective scale representative s2, as described above. To each truncation a different scale representative is assigned (e.g. through training), e.g.: float scaieQ = {0.8, 1.2, 2.?};
Accordingly, for instance, a first set of code vectors of a plurality of code vectors of the codebook is defined by the first truncation scaled by the first scale representation 0.8, a second set of code vectors of the plurality of code vectors of the codebook is defined by the second truncation scaled by the second scale representation 1.2, and a third set of code vectors of the plurality of code vectors of the codebook is defined by the third truncation scaled by the third scale representation 2.7, the codebook having a multiple scale lattice structure.
As an example, the search in the multiple scale lattice structure may be seen as having two phases: the first one may compute a potential code vector for each leader class, i.e. for each set of basis code vectors, and the second one may calculate the distortion only for the potential codevectors.
For instance, an absolute value function may be applied to the input vector i such that absolute input vector la comprises the absolute values of the vector i, and then the absolute input vector may be sorted in an descending (or, alternatively, in an ascending) order.
As an example, an index representation may contain representatives indicating the indexes of each input vector i in the descendingly (or ascendingly) ordered absolute valued vector. For instance, said index representation may be an integer array 'indx\
For example, if the input vector is [-2.4 5.0 -1 ,3 0.2], the absolute valued vector Is [2.4 5.0 1.3 0.2] and the 'indx' array is [ 1 0 2 3]. Since the leader vectors may be descendingly ordered, during the nearest neighbour search algorithm, the first value of the leader vector may be assigned on the position corresponding to the highest absolute value component of the input vector and so on.
In the following non-limiting example, !idxjead_jnax' is the maximum number of leader classes out of all truncations, which may correspond to X, in this example may be is 9, Accordingly 9 sets of basis code vectors are defined by means of the 9 leader classer, wherein the nth leader ciass is defined by &pi[n- 1]. For instance, the array 'sign' may store the signs of the input vector components.
/* First part of the search: compute all potential codevectors */
pl_ crt - &pl[0]; /* pi contains the leader vectors */
for {u~0;u<idxJead__max;u+÷)
{
for(j=0;j<LATnCE_D!M-j++, pl_crt++)
{
j__crt = irtdxQ];
if ( (*pl_crt) > 0. )
{
cv__pot[u]0_crt] - (*pl__crt)*(floai)signOcrt];
}
else
{
Figure imgf000034_0001
}
}
}
The outer loop defined by counter u may be considered to associate each each u with a respective leader vector. Thus, in accordance with counter u, a corresponding set of basis code vectors is selected by means of the outer loop, since each leader vector corresponds to a different set of basis code vectors of the plurality of basis code vectors.
The inner toop defined by integer value j may be considered to determining a potentiai basis code vector associated with the selected set of basis code vectors, j__crt indicating the position of the (j+1 )highest absolute value in the input vector.
Thus, the different potential basis code vectors cv_pot are determined by means of this exemplary first part of the search.
The second part of the search may be used for determining a code vector for encoding the input vector from a subset of code vectors. /* Second part of the search */
for{l™0;l<no_scales;i++)
{
s = scaleO]; for(k=0;k<LATTICE_DI ;k++)
{
ws1 [k] w[k]*s*2.0f in[k];
ws2[k] ~ w[k]*s2;
}
forO=0;j<noJeaders[i];j+÷) tmp__dist = O.Of;
for(k=0;k<LATTICE_DIM;k++)
{
s ~ cvj3ot[j][k]j;
tmp_dist +~ (ws2[k]*i s-ws1 [k])*s;
}
if (tmp__dist < min__dist) min__dist ~ im dist;
best_scale ~ I;
bestjdx - k;
The outer loop may be defined by counter I, wherein I is issued to select one scale representation scale[l] of the plurality of scale representations.
LATTICEJDIIV] defines the length of the code vectors which may correspond to the length of the input vector to be encoded. Afterwards, the values ws1 [k]and ws2[k] for each k in ^.....LATTiCEJDIM) are calculated, which may be considered to be that part of the distortion metric (X3) which is independent of potential basis code vector. The value w[k] represents the value of the weighting function for each k. The example code shown above further has an inner j loop "forO-0;j<noJeaders[l];j÷+)"i wherein nojeadersp] defines the set of leader vectors associated with the selected scale representative scale[l], i.e. noJeaders[l] may correspond to nz representing the number of sets of basis code vectors associated with the respective scale representative scale[l], and thus this loop iterates through each set of leader vectors associated with the selected scale representative scalefi], wherein for leader vector of this set of leader vectors one potential basis code vector cyjaot has been determined. Thus, for instance, this loop iteratively selects each potential basis code vector cv_pot the set of basis code vectors associated with the selected scale representation, wherein cv__pot|J] may represent the respective jth basis code vector of this set of basis code vectors. For each of these basis code vectors and the selected scale representative, the respective distortion metric for the code vector being associated with the respective basis code vector and the selected scale representative may be determined, e.g. based on distortion metric in the following way:
d =∑ ( m2ik '] ' cv ~ °^-i\ M ~ wsl[k]) cv _ pot[j] [k]
*={!
The distortion metric having the lowest value is determined to represent the best distortion metric, wherein the code vector associated with this distortion metric code vector may be used for encoding the input vector. For instance, this code vector may be defined by the best scale representative and the best potential basis code vector of the set of potential basis code vectors.
The embodiments described herein reduce the complexity of the vector quantization by not computing the potential codevector array cv__pot, but employing the absolute value sorted version of the input vector and determining or generating the distortion calculation in a suitable transposed space.
In some embodiments the lattice vector quantizer comprises as input vector sorter 402. The input vector sorter 402 or suitable means for sorting the input vector can be configured to receive the input vector.
The operation of receiving the input vector is shown in Figure 8 by step 501. The lattice vector quantizer and input vector sorter 402 is configured to sort the input vector into an absolute value descending order (it would be understood that in some embodiments the sorting can be performed in an absolute value ascending order with suitable changes to the following operations). Thus for example if the input vector is
I = [-2.4 5.0 -1.3 0.2], the absolute valued vector is
absi = [2.4 5,0 1.3 0.2], the sorted absolute valued vector which is defined here as
cv_pot1 = [5.0 2.4 1.3 0.2] and the sorting permutation 1ndx! - [ 1 0 2 3]. The sorting of the input vector is shown in Figure 8 by step 503.
The input vector sorter can then pass the sorted vector and sorting permutation to the code vector determiner 403. In some embodiments the lattice vector quantizer 453 comprises a potential code vector determiner 401. The potential code vector determiner or suitable means for determining a potential code vector is configured to store or generate the leader classes used to generate the codevectors. For instance the leader classes may be defined as (in Q1 value, in other words multiplied by 2}
, 4, 2, o, c, o,
u f o, 0, o,
3 ,- .3. ,- 3.-
1..· f
.·:. f o, o,
f f 4, o, Gf ,
o , 0, o..
5
Figure imgf000039_0001
··.· 4, 4, 2; 2, 0, Of 0,
6, 2, 2, 2, 2, o, 0,
0, o, 0, o, o,
"3 3 , 3 1, I ,
t; ι,. 1, 1 f
f 1, ι,. 1, f
f 1.. 1,
1 2, 2., 2,· 0,
4, 4, 4, 0, of 0 , 0,
6,
Figure imgf000039_0002
These leader classes can in some embodiments be passed to the code vector determiner 403.
In some embodiments the lattice vector quantizer 453 comprises a code vector determiner 403. The code vector determiner 403 or suitable means for determining a code vector can in some embodiments receive the leader classes and also the sorted input vector and permutation vector. The code vector determiner can then from these values determine the output code vector associated with the input vector. Where the distance to be determined is a weighted Euclidean distance then in some embodiments the weights are transposed according to the permutation vector and an intermediary input vector produce is generated. It would be understood that in some embodiments the weights are uniform or the weighting operation is optional where the unweighted Euclidean distance is employed.
An example of this can be shown by the following code
/* calculate intermediary product between transposed weights and sorted input vector */
for { j-0; j <LATTICE__DIM;
{
w__transp [ j ] = w [ indx [ j ] ] ;
wx [ j ] = w__transp [ j 3 *cv__pot [ j ] ;
)
The operation of transposing and applying weights to generate an intermediary product based on the sorted input vector and the transposed weights is shown in Figure 6 by step 505 in some embodiments the code vector determiner can determine distance components sum1 and sum2 for a first scale value scale[0].
This operation can be divided into the steps of:
Firstly, initialising the scale and square of the scale values for a first scale value scale[Q],
The operation of initialising the scale and square of the scale values are shown in Figure 8 by step 508. Secondly, selecting a Ieader vector from the leader classes matrix. This is shown in the above matrix example as the matrix pl_crt.
The operation of selecting a Ieader vector is shown in Figure 8 by step 507.
Thirdly generating intermediary distance values sum1 and sum2 based on intermediary values and the selected Ieader vector.
The operation of generating intermediary distance values based on the selected leader vector is shown in Figure 8 by step 509,
Fourthly, checking the parity conditions where the Ieader vector does not reach the 7th position and correcting the sum1 value where the number of minus signs in the input vector differ from the constranint given in the leader class parity.
The operation of checking the parity conditions where the Ieader vector does not reach the 7th position and correcting the sum1 value where the number of minus signs in the input vector differ from the constranint given in the Ieader class parity is shown in Figure 6 by step 511.
Fifthly, determining the distance or error value from the sum1 and sum 2 values and then where the current Ieader vector distance is the smallest indicating the index of the smallest vector. The operation of determining the distance for the Ieader vectors is shown in Figure 8 by step 513.
The operation can then loop round until all of the Ieader vectors have been selected. The operation of checking whether all leader vectors have been selected and looping back where not all of the leader vectors have been selected is shown in Figure 8 step 514.
These steps can be shown in the following code
for (1-0; <no leaders [0] j ÷÷)
{
surnl[j] - 0;
sum2[1] - 0;
1 - 0;
while (KLATTICE DIM--!}
i
p =: *pl crt;
if (pj
{
suml[j] suml[j] - x[l] * p
sum2[jj sum2[j] - transp [ j j 'A'p*p;
pi crt- -;-;
}
else
i
pl_crt ·- LATTICE__DIM~1
1 - LAT IC JAM
\
}
if (I ·· LATTICE DIil :· 1 —0}
(/*' if it went UP to 7th position, some leaders have zeros at. the eridy so no need for them to cheek the parity, because they have null -parity * /
p ~: *pl crt;
if ( pi par fx[j] } /* if non-zero parity */
' f"
if ( sig -pi par fx [ j ] ! = 0 ) /* if number of minus signs in the input vector different from the constraint given by the leader class parity */
i "
sumlij] = suml [ j ] - wx[i] p; /* here is subtraction */
sum2 [ j j sum2[ ] τ transp[l] *p*p; pi crt- -i- }
else sural [j j suml[j] + w i.1] * p
surn2[jj ::: sum2[j] + w transp [ i ] "Α'ρ*ρ;
pi crt++
δ else
i
suml [j ] ::: sural [j] + wx[.!]* p;
sum2 f j ] :::: sum2[jj + transp [1]
pi}....crt+- ;
}
trap dist = sura2 [j j *s2 -suml [ j ] * ;
if (trap dist < min dist )
1
min dist :::: trap dist;
best idx :::: j;
1
/* end of j loop */
Then in some embodiments the code vector determmer can be configured to use the suml and sum2 values to determine distortion distances for other scaies. A similar operation of checking for a !best! scale value is further made.
The operation of determining distortion distances for other scales is shown in Figure 8 by step 515. 0 The operation of determining the distortion distance can for the other scales using the suml and sum2 values can be implemented using the following example code for (k:::l; k<nc__scales k -;- )
5 {
s ::: sc31Q [ kj ;
s2 = s*s
/* and now use the suml, sum2 values calculated above to calculate distortion for the other scales */
0 for ( j -0 ; j <no_leaders [j'J j÷+)
{
trap dist = sum2 [ j ] * s2 -sural [ j ] * s
if (tmp__dist < min___dist ) iTiin dist = trap dist
best__scale = k;
best idx = j
Furthermore in some embodiments the code vector determiner can be configured, once the best leader class and best scale are found, to calculated the resulting codevector 'cv_put\
The operation of performing a reverse transpose to calculate the codevector is shown in Figure 8 by step 517.
In some embodiments the operation of calculating the codevector can be implemented by the following example code.
/* inverse permutation */
for ; -) =0 <LATT'ICE DIM;j-f-i-} id[indx[j]] - 1 ;
}
for ( j-0 ; j<LATTICE_ DIM ; j÷-i-j cv out[j] - sign[j]
*pl fx [best i x λ LATTICE DIM+id [ ] ] ) ;
f
if ίυΐ par fxl'best idx] )
i
if ( sig -pi par fx [best idx] != 0 )
f
cv out [smallest ] = ~cv out [smallest] ;
in some embodiments the calculation of the variables sum1 and sum2 is done up to the number of leaders from the first truncation {nojeaders[0])s meaning that the number of leaders should be decreasingly ordered and their corresponding scales ordered accordingly, in such embodiments an additional complexity reduction is produced because the maximum number of leaders for one structure need not be computed, but it is known to be on the first position. it would be understood that most of the complexity reduction comes from the fact that only the winning leader vector has to be transposed, not ail of them. The calculation is done on positive values (both leader vector and input vector are in absolute values) which is ok as long as the input vector component and the quantized one have the same sign.
A difference in sign intervenes when there is a parity constraint (odd or even number of negative components) in the considered leader vector and this constraint is not respected by the input vector, in this case the sign of quantized value of the smallest input vector components has its sign flipped. The smallest input vector component corresponds to the last component in the transposed space. This is why the first loop for calculating sum1 and sum2 is "while(l<LATTlCE_DIM~1 )". In the real, non-transposed space this corresponds to smallest = indx[LATTICE__DlM-1]. LATTlCE__DiM is the dimension of the considered lattice.
Although the above examples describe embodiments of the application operating within a codec within an apparatus 10, it would be appreciated that the invention as described below may be implemented as part of any audio (or speech) codec, including any variable rate/adaptive rate audio (or speech) codec. Thus, for example, embodiments of the application may be implemented in an audio codec which may implement audio coding over fixed or wired communication paths. Thus user equipment may comprise an audio codec such as those described in embodiments of the application above.
It shal be appreciated that the term user equipment is intended to cover any suitable type of wireless user equipment, such as mobiie te ephones, portable data processing devices or portable web browsers.
Furthermore elements of a public land mobile network (PLMN) may also comprise audio codecs as described above. in general, the various embodiments of the application may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the invention is not limited thereto. While various aspects of the application may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The embodiments of this application may be implemented by computer software executable by a data processor of the mobile device, such as in the processor entity, or by hardware, or by a combination of software and hardware. Further in this regard it should be noted that any blocks of the logic flow as in the Figures may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions. The memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory. The data processors may be of any type suitable to the local technical environment, and may include one or more of genera! purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASIC), gate level circuits and processors based on multi-core processor architecture, as non-limiting examples,
Embodiments of the application may be practiced in various components such as integrated circuit modules. The design of integrated circuits is by and large a highly automated process. Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.
Programs, such as those provided by Synopsys, Inc. of Mountain View, California and Cadence Design, of San Jose, California automatically route conductors and locate components on a semiconductor chip using well established rules of design as well as libraries of pre-stored design modules. Once the design for a semiconductor circuit has been completed, the resultant design, in a standardized electronic format (e.g., Opus, GDSll, or the like) may be transmitted to a semiconductor fabrication facility or ,!fab!! for fabrication. As used in this application, the term 'circuitry' refers to all of the following:
(a) hardware-only circuit implementations (such as implementations in only analogue and/or digital circuitry) and
(b) to combinations of circuits and software (and/or firmware), such as: (s) to a combination of processor(s) or (ii) to portions of processor(s)/software (including digital signal processor(s)), software, and memory(ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions and (c) to circuits, such as a microprocessors) or a portion of a microprocessors), that require software or firmware for operation, even if the software or firmware is not physicaiiy present. This definition of 'circuitry' applies to all uses of this term in this application, including any claims. As a further example, as used in this application, the term 'circuitry' would also cover an Implementation of merely a processor (or multiple processors) or portion of a processor and its (or their) accompanying software and/or firmware. The term 'circuitry' would also cover, for example and if applicable to the particular claim element, a baseband integrated circuit or applications processor integrated circuit for a mobile phone or similar integrated circuit in server, a cellular network device, or other network device.
The foregoing description has provided by way of exemplary and non-limiting examples a full and informative description of the exemplary embodiment of this invention. However, various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings of this invention will still fall within the scope of this invention as defined in the appended claims.

Claims

Claims:
1 , A method comprising:
generating at least one vector of parameters defining at least one audio signal;
sorting the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters;
selecting from a list of leader classes at least one potential code vector; determining a distance between the at least one potential code vector and the at least one ordered vector of parameters;
determining at least one leader class associated with a potential code vector which generates the smallest associated distance;
transposing the at least one leader class to generate an output lattice quantized codevector.
2, The method as claimed in claim 1 , further comprising:
selecting at least one scale factor;
wherein determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further comprises determining a distance based on the at least one scale factor;
wherein determining at least one leader class associated with a potential code vector which generates the smallest associated distance further comprises determining an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance;
wherein transposing the at least one leader class to generate an output lattice quantized codevector comprises applying the output scale factor to the output lattice quantized codevector.
3. The method as claimed in any of claims 1 and 2, wherein generating a first vector of parameters defining at least one audio signal comprises:
dividing the at least one audio signal into time frames; determining a vector of line spectra frequency parameters associated with the at least one audio signal time frames.
4, The method as claimed in any of claims 1 to 3, wherein sorting the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters comprises:
determining weights for a weighted distance determination;
sorting the weights based on the ordering of the at least one vector absolute tuples to generate a sorted weight vector;
applying the sorted weight vector to the at least one ordered vector of parameters.
5. The method as claimed in any of claims 1 to 4, wherein determining a distance between the at least one potential code vector and the at least one ordered vector of parameters comprises:
generating a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters;
correcting the sign of the first distance component where the potential code vector fails a parity constraint test;
determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components.
8. The method as claimed in claim 5, wherein determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further comprises determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values.
7. The method as claimed in any of claims 1 to 6, wherein determining at Ieast one leader class associated with a potential code vector which generates the smallest associated distance comprises:
determining the index of the potential code vector which generates the smallest associated distance;
determining the scale value of the potential code vector which generates the smallest associated distance by applying scale values to oniy the potential code vector which generates the smallest associated distance,
8. The method as claimed in claims 1 to 7, wherein transposing the at Ieast one leader class to generate an output lattice quantized codevector comprises sorting the at Ieast one leader class by the reverse ordering of at Ieast one vector absolute tuples.
9. An apparatus comprising:
means for generating at Ieast one vector of parameters defining at Ieast one audio signal;
means for sorting the at Ieast one vector of parameters according to an ordering of at Ieast one vector absolute tuples to generate an associated at Ieast one ordered vector of parameters;
means for selecting from a list of leader classes at Ieast one potential code vector;
means for determining a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters;
means for determining at Ieast one leader class associated with a potential code vector which generates the smallest associated distance;
means for transposing the at Ieast one leader class to generate an output lattice quantized codevector,
10. The apparatus as claimed in claim 9, further comprising:
means for selecting at Ieast one scale factor; wherein the means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further comprises means for determining a distance based on the at least one scale factor;
the means for determining at least one leader class associated with a potential code vector which generates the smallest associated distance further comprises means for determining an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance;
the means for transposing the at least one leader class to generate an output lattice quantized codevector comprises means for applying the output scale factor to the output lattice quantized codevector.
11. The apparatus as claimed in any of claims 9 and 10, wherein the means for generating a first vector of parameters defining at least one audio signal comprises:
means for dividing the at least one audio signal into time frames;
means for determining a vector of line spectral frequency parameters associated with the at least one audio signal time frames.
12, The apparatus as claimed in any of claims 9 to 11 , wherein the means for sorting the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters comprises:
means for determining weights for a weighted distance determination; means for sorting the weights based on the ordering of the at least one vector absolute tuples to generate a sorted weight vector;
means for applying the sorted weight vector to the at least one ordered vector of parameters.
13, The apparatus as claimed in any of claims 9 to 12, wherein the means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters comprises:
means for generating a first and second distance components based on a first scale value, the first and second dista?ice components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters;
means for correcting the sign of the first distance component where the potential code vector fails a parity constraint test;
means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components,
14, The apparatus as claimed in claim 13, wherein the means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further comprises means for determining a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values.
15, The apparatus as claimed in any of claims 9 to 14, wherein the means for determining at least one leader class associated with a potential code vector which generates the smallest associated distance comprises:
means for determining the index of the potential code vector which generates the smallest associated distance;
means for determining the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance.
16. The apparatus as claimed in claims 9 to 15, wherein the means for transposing the at least one teader class to generate an output lattice quantized codevector comprises means for sorting the at least one leader class by the reverse ordering of at least one vector absolute tuples.
17. An apparatus comprising at least one processor and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to:
generate at least one vector of parameters defining at least one audio signal;
sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters;
select from a list of leader classes at least one potential code vector; determine a distance between the at least one potentia! code vector and the at least one ordered vector of parameters;
determine at least one leader class associated with a potential code vector which generates the smallest associated distance;
transpose the at least one leader class to generate an output lattice quantized codevector.
18. The apparatus as claimed in claim 17, further caused to:
select at least one scale factor;
wherein determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further causes the apparatus to determine a distance based on the at least one scale factor;
wherein determining at least one leader class associated with a potential code vector which generates the smallest associated distance further causes the apparatus to determine an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance; wherein transposing the at least one leader class to generate an output lattice quantized codevector causes the apparatus to apply the output scale factor to the output lattice quantized codevector.
19. The apparatus as claimed in any of claims 17 and 18, wherein generating a first vector of parameters defining at least one audio signal causes the apparatus to:
divide the at least one audio signal into time frames;
determine a vector of line spectral frequency parameters associated with the at least one audio signal time frames.
20. The apparatus as claimed in any of claims 17 to 19. wherein sorting the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters causes the apparatus to:
determine weights for a weighted distance determination;
sort the weights based on the ordering of the at least one vector absolute tuples to generate a sorted weight vector;
apply the sorted weight vector to the at least one ordered vector of parameters,
21. The apparatus as claimed in any of claims 17 to 20, wherein determining a distance between the at least one potential code vector and the at least one ordered vector of parameters causes the apparatus to:
generate a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters;
correct the sign of the first distance component where the potential code vector fails a parity constraint test;
determine a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components.
22. The apparatus as claimed in claim 21 , wherein determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further causes the apparatus to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters based on the first and second distance components and further scale values.
23. The apparatus as claimed in any of ciaims 17 to 22, wherein determining at least one leader class associated with a potential code vector which generates the smallest associated distance causes the apparatus to:
determine the index of the potential code vector which generates the smallest associated distance;
determine the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance,
24. The apparatus as claimed in claims 17 to 23, wherein transposing the at least one leader class to generate an output lattice quantized codevector causes the apparatus to sort the at least one leader class by the reverse ordering of at least one vector absolute tuples.
25. An apparatus comprising:
a vector generator configured to generate at least one vector of parameters defining at least one audio signal;
a lattice vector quantizer configured to sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters;
the lattice vector quantizer configured to select from a list of leader classes at least one potential code vector;
the lattice vector quantizer configured to determine a distance between the at least one potential code vector and the at least one ordered vector of parameters; 58 the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance;
the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector.
28. The apparatus as claimed in claim 25, further comprising:
the lattice vector quantizer configured to select at least one scale factor; wherein the lattice vector quantizer configured to determining a distance between the at least one potential code vector and the at least one ordered vector of parameters further is configured to determine a distance based on the at least one scale factor;
the lattice vector quantizer configured to determine at least one leader class associated with a potential code vector which generates the smallest associated distance further configured to determine an output scale factor associated with a potential code vector and scale factor which generates the smallest associated distance;
the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector further configured to apply the output scale factor to the output lattice quantized codevector.
27. The apparatus as claimed in any of claims 25 and 28, wherein the apparatus further comprises a parameter determiner configured to divide the at least one audio signal into time frames; and determine a vector of line spectral frequency parameters associated with the at least one audio signal time frames.
28. The apparatus as claimed in any of claims 25 to 27, wherein the lattice vector quantizer configured to sort the at least one vector of parameters according to an ordering of at least one vector absolute tuples to generate an associated at least one ordered vector of parameters is further configured to: determine weights for a weighted distance determination; sort the weights based on the ordering of the at Ieast one vector absolute tuples to generate a sorted weight vector;
apply the sorted weight vector to the at least one ordered vector of parameters.
29. The apparatus as claimed in any of claims 25 to 28, wherein the lattice vector quantizer configured to determine a distance between the at teast one potential code vector and the at least one ordered vector of parameters is further configured to:
generate a first and second distance components based on a first scale value, the first and second distance components associated with the distance between the at least one potential code vector and the at least one ordered vector of parameters;
correct the sign of the first distance component where the potential code vector fails a parity constraint test;
determine a distance between the at ieast one potential code vector and the at Ieast one ordered vector of parameters based on the first and second distance components.
30, The apparatus as claimed in claim 29, wherein the lattice vector quantizer configured to determine a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters further is configured to determine a distance between the at Ieast one potential code vector and the at Ieast one ordered vector of parameters based on the first and second distance components and further scale values.
31. The apparatus as claimed in any of claims 25 to 30, wherein the lattice vector quantizer configured to determine at Ieast one leader class associated with a potential code vector which generates the smallest associated distance is further configured to:
determine the index of the potential code vector which generates the smallest associated distance; determine the scale value of the potential code vector which generates the smallest associated distance by applying scale values to only the potential code vector which generates the smallest associated distance.
32. The apparatus as claimed in claims 25 to 31 , wherein the lattice vector quantizer configured to transpose the at least one leader class to generate an output lattice quantized codevector is configured to sort the at least one leader class by the reverse ordering of at least one vector absolute tuples.
33. A computer program product for causing an apparatus to perform the method of any of claims 1 to 8.
34. An electronic device comprising apparatus as claimed in claims 9 to 32.
35. A chipset comprising apparatus as claimed in claims 9 to 32,
PCT/IB2013/061034 2013-12-17 2013-12-17 Audio signal encoder WO2015092483A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016541299A JP6337122B2 (en) 2013-12-17 2013-12-17 Audio signal encoder
EP13899497.5A EP3084761B1 (en) 2013-12-17 2013-12-17 Audio signal encoder
ES13899497T ES2786198T3 (en) 2013-12-17 2013-12-17 Audio signal encoder
CN201380082051.7A CN106030703B (en) 2013-12-17 2013-12-17 Audio signal encoder
RU2016125708A RU2665287C2 (en) 2013-12-17 2013-12-17 Audio signal encoder
PCT/IB2013/061034 WO2015092483A1 (en) 2013-12-17 2013-12-17 Audio signal encoder
KR1020167019246A KR101868252B1 (en) 2013-12-17 2013-12-17 Audio signal encoder
US15/102,855 US9892742B2 (en) 2013-12-17 2013-12-17 Audio signal lattice vector quantizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2013/061034 WO2015092483A1 (en) 2013-12-17 2013-12-17 Audio signal encoder

Publications (1)

Publication Number Publication Date
WO2015092483A1 true WO2015092483A1 (en) 2015-06-25

Family

ID=53402181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/061034 WO2015092483A1 (en) 2013-12-17 2013-12-17 Audio signal encoder

Country Status (8)

Country Link
US (1) US9892742B2 (en)
EP (1) EP3084761B1 (en)
JP (1) JP6337122B2 (en)
KR (1) KR101868252B1 (en)
CN (1) CN106030703B (en)
ES (1) ES2786198T3 (en)
RU (1) RU2665287C2 (en)
WO (1) WO2015092483A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660400B (en) 2018-06-29 2022-07-12 华为技术有限公司 Coding method, decoding method, coding device and decoding device for stereo signal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083889A1 (en) * 2004-01-30 2005-09-09 France Telecom Dimensional vector and variable resolution quantisation
US20050285764A1 (en) * 2002-05-31 2005-12-29 Voiceage Corporation Method and system for multi-rate lattice vector quantization of a signal
US20090175550A1 (en) * 2005-09-23 2009-07-09 Anisse Taleb Successively Refinable Lattice Vector Quantization
WO2009127097A1 (en) * 2008-04-16 2009-10-22 Huawei Technologies Co., Ltd. Method and apparatus of communication
US20100274556A1 (en) * 2008-01-16 2010-10-28 Panasonic Corporation Vector quantizer, vector inverse quantizer, and methods therefor
WO2012069886A1 (en) * 2010-11-26 2012-05-31 Nokia Corporation Coding of strings
WO2013005065A1 (en) * 2011-07-01 2013-01-10 Nokia Corporation Multiple scale codebook search

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556008A (en) * 1990-10-17 1993-03-05 Hitachi Ltd Vector quantizer
JPH10276095A (en) * 1997-03-28 1998-10-13 Toshiba Corp Encoder/decoder
US7072832B1 (en) * 1998-08-24 2006-07-04 Mindspeed Technologies, Inc. System for speech encoding having an adaptive encoding arrangement
CN100387061C (en) * 1999-11-29 2008-05-07 索尼公司 Video/audio signal processing method and video/audio signal processing apparatus
US7003454B2 (en) * 2001-05-16 2006-02-21 Nokia Corporation Method and system for line spectral frequency vector quantization in speech codec
KR100446630B1 (en) * 2002-05-08 2004-09-04 삼성전자주식회사 Vector quantization and inverse vector quantization apparatus for the speech signal and method thereof
US7966175B2 (en) * 2006-10-18 2011-06-21 Polycom, Inc. Fast lattice vector quantization
US8521540B2 (en) * 2007-08-17 2013-08-27 Qualcomm Incorporated Encoding and/or decoding digital signals using a permutation value
WO2009153995A1 (en) * 2008-06-19 2009-12-23 パナソニック株式会社 Quantizer, encoder, and the methods thereof
CN101430881B (en) * 2008-11-10 2013-04-17 华为技术有限公司 Encoding, decoding and encoding/decoding method, encoding/decoding system and correlated apparatus
EP2915166B1 (en) 2012-10-30 2018-10-17 Nokia Technologies OY A method and apparatus for resilient vector quantization
US9191256B2 (en) * 2012-12-03 2015-11-17 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285764A1 (en) * 2002-05-31 2005-12-29 Voiceage Corporation Method and system for multi-rate lattice vector quantization of a signal
WO2005083889A1 (en) * 2004-01-30 2005-09-09 France Telecom Dimensional vector and variable resolution quantisation
US20090175550A1 (en) * 2005-09-23 2009-07-09 Anisse Taleb Successively Refinable Lattice Vector Quantization
US20100274556A1 (en) * 2008-01-16 2010-10-28 Panasonic Corporation Vector quantizer, vector inverse quantizer, and methods therefor
WO2009127097A1 (en) * 2008-04-16 2009-10-22 Huawei Technologies Co., Ltd. Method and apparatus of communication
WO2012069886A1 (en) * 2010-11-26 2012-05-31 Nokia Corporation Coding of strings
WO2013005065A1 (en) * 2011-07-01 2013-01-10 Nokia Corporation Multiple scale codebook search

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIKNESHAN S; ET AL.: "Efficient methods for the addressing/decoding of a lattice-based fixed-rate, entropy- coded vector quantizer", COMMUNICATIONS, 1997. ICC '97 MONTREAL, TOWARDS THE KNOWLEDGE MILLENNI UM. 1997 IEEE INTERNATIONAL CONFERENCE, 8 June 1997 (1997-06-08), MONTREAL, QUE., CANADA, pages 1 - 5, XP010227200 *
VASILACHE A; ET AL.: "Indexing and entropy coding of lattice codevectors", 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. PROCEEDINGS. (ICASSP), 7 May 2001 (2001-05-07) - 11 May 2001 (2001-05-11), SALT LAKE CITY, UT, pages 2605 - 2608, XP010803266, DOI: 10.1109/ICASSP.2001.940535 *

Also Published As

Publication number Publication date
EP3084761A1 (en) 2016-10-26
ES2786198T3 (en) 2020-10-09
US9892742B2 (en) 2018-02-13
JP2017504829A (en) 2017-02-09
EP3084761B1 (en) 2020-03-25
CN106030703B (en) 2020-02-04
KR101868252B1 (en) 2018-06-15
RU2665287C2 (en) 2018-08-28
CN106030703A (en) 2016-10-12
US20160314797A1 (en) 2016-10-27
EP3084761A4 (en) 2017-05-31
KR20160099684A (en) 2016-08-22
JP6337122B2 (en) 2018-06-06
RU2016125708A (en) 2018-01-23

Similar Documents

Publication Publication Date Title
US20070168197A1 (en) Audio coding
EP2856776B1 (en) Stereo audio signal encoder
EP2875510A1 (en) Stereo audio signal encoder
CN104756187A (en) A method and apparatus for resilient vector quantization
US20160111100A1 (en) Audio signal encoder
US20110135007A1 (en) Entropy-Coded Lattice Vector Quantization
US20160019900A1 (en) Method and apparatus for lattice vector quantization of an audio signal
EP3084761B1 (en) Audio signal encoder
US20100292986A1 (en) encoder
US10580416B2 (en) Bit error detector for an audio signal decoder
RU2769429C2 (en) Audio signal encoder
US8924202B2 (en) Audio signal coding system and method using speech signal rotation prior to lattice vector quantization
US20100280830A1 (en) Decoder
EP3095117A1 (en) Multi-channel audio signal classifier
WO2023198383A1 (en) Method for quantizing line spectral frequencies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15102855

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013899497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899497

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016541299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167019246

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201604662

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016125708

Country of ref document: RU

Kind code of ref document: A