WO2015090048A1 - 一种微纳光纤组件及其制造方法 - Google Patents

一种微纳光纤组件及其制造方法 Download PDF

Info

Publication number
WO2015090048A1
WO2015090048A1 PCT/CN2014/081892 CN2014081892W WO2015090048A1 WO 2015090048 A1 WO2015090048 A1 WO 2015090048A1 CN 2014081892 W CN2014081892 W CN 2014081892W WO 2015090048 A1 WO2015090048 A1 WO 2015090048A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
quartz tube
micro
nano
quartz
Prior art date
Application number
PCT/CN2014/081892
Other languages
English (en)
French (fr)
Inventor
陈明阳
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US14/419,115 priority Critical patent/US9529149B2/en
Publication of WO2015090048A1 publication Critical patent/WO2015090048A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/14Re-forming fibres or filaments, i.e. changing their shape
    • C03B37/15Re-forming fibres or filaments, i.e. changing their shape with heat application, e.g. for making optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/385Accessories for testing or observation of connectors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Definitions

  • the present invention relates to the field of nonlinear optical fibers, and more particularly to micro/nano optical fibers having high nonlinear characteristics.
  • the fiber that reduces the core radius of the ordinary fiber cannot realize the ultra-small mode field area. The reason is that after the core radius is reduced, its ability to bind light will also decrease. Micro-nano fiber can solve this problem.
  • Various passive photonic devices based on micro-nano fiber have been developed, such as coupler, high birefringence. Optical fiber, micro ring resonator, etc.
  • Micro-nanofibers typically employ a fiber-optic taper method to locally thin the fiber so that its outer diameter is on the order of microns or sub-micrometers. Since the outside of the fiber is usually air, its refractive index is low, and the micro-nano fiber has a high refractive index. Therefore, the micro-nano fiber has a high numerical aperture, so that effective optical transmission can be maintained with a small core diameter. Micro-nano fiber also has some shortcomings, for example: After the completion of the production, if the fiber is not protected, the transmission loss of the fiber will increase with time [3 ⁇ 4 Opt. Photon. , 200% 1(1): 107-161 ⁇ . Therefore, micro-nano fibers need to be coated to protect the fibers. But this will lead to changes in fiber transmission performance.
  • a small core fiber based on a microstructured fiber.
  • the use of microstructured fibers provides a high numerical aperture.
  • With a duty cycle cladding and a small core structure ultra-small core fibers with a mode field diameter of approximately 1 ⁇ m can be obtained.
  • the size of the surrounding air holes, the thickness of the material between the holes, and the like Nevertheless, since it is not possible to have all of the air around the core, the support material will still increase its mode field area and have a certain influence on the performance of the transmitted light.
  • Another object of the present invention is to provide a method of fabricating a micro/nano fiber optic assembly that is easy to operate.
  • a micro-nano fiber assembly comprising a quartz tube and an optical fiber, the optical fiber passing through the quartz tube and retaining pigtails at both ends of the quartz tube; the optical fiber is fixed by melting At both ends of the quartz tube and on the central axis of the quartz tube; the area composed of the quartz tube and the optical fiber is tapered to form a micro-nano fiber region; the fiber of the micro-nano fiber region Description
  • the optical fiber is a single-mode optical fiber
  • the micro-nano core has a length of 1 to 100 mm
  • the micro-nano core has a diameter of 0 ⁇ 1 25 ⁇ .
  • the quartz tube has an outer diameter of 250 5000 ⁇ m, and the quartz tube has a wall thickness of 20 to 1000 ⁇ m.
  • the molten region at both ends of the quartz tube is filled with a quartz dielectric column and a quartz capillary.
  • a method for fabricating a micro/nano fiber assembly comprising the steps of:
  • the optical fiber of the bare fiber region is pre-tapered, and the length of the bare fiber region is 10 100 mm longer than the length of the quartz tube.
  • a laser is input at one end of the optical fiber, and an optical power meter or a spectrometer is connected to the other end of the optical fiber to monitor the transmitted light.
  • the quartz tube has an outer diameter of 250 to 5000 ⁇ m, and the quartz tube has a wall thickness of 20 1000 ⁇ m.
  • the micro-nano fiber assembly of the present invention limits the optical fiber having a diameter of micro-nano to the quartz tube, thereby avoiding the influence of external environmental changes on its light-transmitting performance.
  • the quartz tube is thinned, its outer diameter is still large, which can protect the micro-nano fiber.
  • the micro/nano fiber is suspended in a quartz tube to form a micro-nano core having a high refractive index, and the cladding is air in the quartz tube with a low refractive index.
  • the high refractive index support strips lead to the expansion of the light to the cladding.
  • optical signals can be monitored by accessing light sources, optical power meters, spectrometers, etc., thereby achieving precise control of fiber performance.
  • the preparation process of the micro/nano fiber assembly of the invention combines the preparation and packaging of the micro/nano fiber, and effectively avoids the micro-nano fiber region which is prepared by the ordinary optical fiber direct taper, and has poor mechanical properties, unstable structure and easy structure. Disadvantages such as interference from the external environment.
  • the prepared micro-nano fiber assembly can also be filled into a quartz tube by a special gas, liquid or solid material through a capillary tube to form a micro-nano fiber with a special cladding structure.
  • FIG. 1 is a schematic structural view of a micro/nano fiber assembly according to the present invention.
  • FIG. 2 is a cross-sectional view showing the end face of a quartz tube of a micro/nano fiber assembly according to the present invention when it is filled with a quartz dielectric column
  • FIG. 3 is a view showing a quartz tube of a micro/nano fiber assembly filled with a quartz dielectric column at both ends of the present invention
  • FIG. 4 is a schematic view showing the end face of a quartz tube of a micro/nano fiber assembly according to the present invention when a quartz dielectric column and a quartz capillary are filled at both ends thereof;
  • 1-quartz tube 2-fiber; 3-micro-nano fiber region; 4-quartz dielectric column; 5-quartz capillary.
  • a micro-nano fiber assembly consisting of a quartz tube, an optical fiber passing through a quartz tube and retaining pigtails at both ends; wherein the ends of the quartz tube are fused with the optical fiber to form a fixed structure, or at both ends of the quartz tube
  • the filled quartz dielectric column, quartz capillary or fiber is then fused to form a fixed structure.
  • the fixed structure is tapered to form a micro-nano fiber region.
  • the micro-nano fiber region is composed of a micro-nano core formed by a tapered fiber, a quartz tube after being tapped, and a space between the core and the quartz tube.
  • the optical fiber may also be pre-tapered and placed in a quartz tube, and then subjected to a secondary taper, and the secondary taper region does not exceed the pre-tapered region.
  • the optical fiber is a single-mode optical fiber
  • the micro-nano core has a length of 1 100 mm
  • the micro-nano core has a diameter of 0.01 25 ⁇ ⁇ .
  • the quartz tube has an outer diameter of 250 5000 ⁇ m and a wall thickness of 20 1000 ⁇ .
  • the bare fiber can be pre-tapered once.
  • the length of the bare fiber region of the fiber should be 10 ⁇ 100 mm longer than that of the quartz tube, so as to melt with the quartz tube to form a fixed structure.
  • the two ports with an outer diameter of 0.5 5 mm and an inner diameter of 0.2 4.5 mm are heated and melted at a high temperature to reduce the inner diameter of the two ports to 0.02 0.2 mm larger than the diameter of the fiber, ensuring that the center of the two ports is the same as the center of the axis of the quartz tube. .
  • the fabricated fiber is passed through the melted quartz tube, and the bare fiber is substantially the same length at both ports of the quartz tube. If the fiber has been subjected to taper processing in advance, the taper zone should be located in the middle section of the quartz tube for subsequent processing. Melt the ends of the quartz tube again to fuse the quartz tube to the fiber. The entire quartz tube and fiber optic components can be rotated during the melting process to maintain the fiber in the central axis of the quartz tube. A carbon dioxide laser can also be used, and a reflecting device is used to uniformly heat the quartz tube. The fiber in the quartz tube must be kept straight during the heating process.
  • the quartz tube after the third step on the moving platform, select a suitable heating device to heat the quartz tube, and thin the quartz tube to 1/3 ⁇ 1/50 of its outer diameter, so that the fiber inside the quartz tube
  • the core is also drawn to 1/3 1/50 of its original diameter.
  • the laser can be input at one end of the fiber, and the optical power meter or spectrometer is connected at the other end to monitor the transmitted light.
  • the bare fiber can be pre-tapered once. After the above treatment, the bare fiber length of the fiber should be 10 ⁇ 100 mm longer than the quartz tube to be melted and fixed with the quartz tube.
  • the fabricated fiber is passed through the melted quartz tube, and the bare fiber is substantially the same length at both ports of the quartz tube. If the fiber has been subjected to taper processing in advance, the taper zone should be located in the middle section of the quartz tube for subsequent processing.
  • a quartz capillary having a length of 5 to 30 mm, a quartz dielectric column, or a combination of the two, is filled to both ends of the quartz tube to form a compact structure. When filling, keep the fiber in the central axis of the quartz tube. At both ends of the fused silica tube, the quartz tube, the optical fiber, and the filled dielectric column and capillary are fused to form a fixed structure.
  • the entire quartz tube and fiber optic components can be rotated during the melting process to maintain the fiber in the center axis of the quartz tube.
  • a carbon dioxide laser can also be used, and a reflecting device is used to uniformly heat the quartz tube.
  • the fiber in the quartz tube must be kept straight during the heating process.
  • the dielectric column having a smaller size may be filled in the gap, or the outer wall of the quartz dielectric column or the quartz capillary may be ground into a hexagon to reduce the gap. It is also possible to replace the dielectric column with a bare fiber that removes the cladding.
  • the quartz tube after the third step on the moving platform, select a suitable heating device to heat the quartz tube, and thin the quartz tube to 1/3 ⁇ 1/50 of its outer diameter, so that the fiber inside the quartz tube The core is also thinned by 1/3 to 1/50 of its original diameter.
  • the laser can be input at one end of the fiber, and the optical power meter or spectrometer is connected at the other end to monitor the transmitted light.
  • the diameter of the optical fiber is reduced by a taper, thereby facilitating obtaining a micro-nano core having a smaller diameter when the secondary taper is obtained, and at the same time, When the taper is used, the quartz tube does not need to be pulled very thin, so it is easier to manufacture and package.
  • the distance between the inner wall of the quartz tube and the fiber is further, thereby reducing the influence of the quartz tube on the light transmitted by the micro-nano core.
  • the fabricated micro-nano fiber is filled with a quartz capillary, and a liquid, solid or gas material can be injected through the capillary to form a micro-nano fiber device having a special cladding structure.
  • Embodiment 1 Instruction manual
  • the fiber used is a single mode fiber with a cladding diameter of 80 ⁇ ⁇ , a fiber length of l m and a bare fiber length of 120 mm.
  • the quartz tube has a length of 90 mm, a wall thickness of 100 u rn, and a tube inner diameter of 900 ⁇ ⁇ .
  • the optical fiber is not pre-tapered.
  • the structure of the micro-nano fiber is shown in Figure 1. After fabrication, the micro-nano fiber length is 80 mm, the micro-nano core has a diameter of 6.4 u rn, and the micro-nano fiber area corresponds to a quartz tube with an outer diameter of 80 ⁇ ⁇ .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the fiber used is a common single-mode fiber with a fiber length of 2 m and a bare fiber length of 60 mm. After pre-tapering, the diameter of the fiber is 12 ⁇ ⁇ , the length is 50 mm, and the total length of the bare fiber zone is 130 mm.
  • the quartz tube has a length of 100 mm, a wall thickness of 120 ⁇ ⁇ , and a tube inner diameter of 380 ⁇ ⁇ . According to the second scheme, the quartz tube is filled with quartz dielectric columns at both ends, and its filling structure is shown in Fig. 2. The quartz dielectric column can also be replaced by a bare fiber of comparable diameter and removed.
  • Micro-nano fiber structure is shown in Figure 3. The micro-nano fiber length is 60 mm, the micro-nano core is 2.4 ⁇ m, and the micro-nano fiber area corresponds to an outer diameter of 100 ⁇ .
  • the fiber used is a common single-mode fiber with a fiber length of 1.5 m and a bare fiber length of 50 mm. After taper, the fiber has a diameter of 10 ⁇ ⁇ and a length of 50 mm, and the bare fiber region has a total length of 100 mm.
  • the quartz tube has a length of 65 mm, a wall thickness of 265 ⁇ , and a tube inner diameter of 635 ⁇ . According to the first scheme, it is made according to the first scheme, in which the optical fiber is not pre-tapered.
  • the structure of the micro-nano fiber is shown in Figure 1.
  • the micro-nano fiber length is 40 mm
  • the micro-nano core is 1.25 ⁇
  • the micro-nano fiber area corresponds to an outer diameter of 112 ⁇ ⁇ .
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the fiber used is a common single-mode fiber with a fiber length of 1.5 m and a bare fiber length of 40 mm. After taper, the fiber has a diameter of 12.5 ⁇ ⁇ and a length of 40 mm, and the bare fiber region has a total length of 80 mm.
  • the quartz tube has a length of 50 mm, a wall thickness of 500 u rn, and a tube inner diameter of 2000 ⁇ ⁇ .
  • the quartz tube is filled with quartz dielectric column and quartz capillary at both ends, and its filling structure is shown in Fig. 4.
  • the structure of the micro-nano fiber is shown in Figure 3.
  • the micro-nano fiber length is 40 mm
  • the micro-nano core has a diameter of 1.25 u rn
  • the micro-nano fiber area corresponds to an outer diameter of 300 ⁇ ⁇ .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种微纳光纤组件及其制造方法,光纤(2)穿过石英管(1)并在所述石英管(1)两端保留尾纤,所述光纤(2)通过熔融固定在石英管(1)两端且位于石英管的中心轴线上,所述石英管(1)和光纤(2)组成的区域经拉锥形成微纳光纤区(3),所述微纳光纤区(3)的光纤为微纳纤芯,微纳光纤区(3)由光纤被拉锥形成的微纳纤芯、被拉锥后的石英管、纤芯与石英管之间的空气组成。微纳光纤制备工艺实现将微纳光纤的制备与封装结合,有效避免了由普通光纤直接拉锥制备微纳光纤存在的微纳光纤区机械性能差、结构不稳定、易受外界环境干扰等缺点。

Description

说 明 书 一种微纳光纤组件及其制造方法 技术领域
[0001] 本发明涉及非线性光纤领域, 尤其涉及具有高非线性特性的微纳光纤。
背景技术
[0002] 微纳光纤具有强约束力、 强倏逝场、 可重构性 (超小弯曲半径)、 低连接损耗 (与光纤 连接;)、 灵活可控的色散特性等特点。 由光纤的非线性系数公式: ^=ϊί(¾, 可知, 光纤 的模场直径越小, 其非线性系数越高。 减小普通光纤的纤芯半径并不能实现超小模场面积的 光纤, 原因是纤芯半径减小后, 其束缚光能力也会下降。 采用微纳光纤可以解决这个问题。 人们己研制出了各种基于微纳光纤的无源光子器件, 如耦合器、 高双折射光纤、 微环谐振器 等。
[0003] 微纳光纤通常采用光纤拉锥的方法, 将光纤局部拉细, 使其外部直径为微米或亚微 米及以下量级。 由于光纤外部通常为空气, 其折射率低, 而微纳光纤折射率高, 因此, 微纳 光纤具有高数值孔径, 从而可以在纤芯直径较小的情况下, 保持有效的光传输。 微纳光纤也 存在一些缺点, 例如: 制作完成后, 若没有对光纤进行保护, 光纤的传输损耗会随时间的增 长而增大【 ¾ Opt. Photon. , 200% 1(1): 107-161】。 因此, 需要对微纳光纤进行涂覆, 以保护 光纤。 但这样又会导致光纤传输性能发生变化。
[0004] 为此, 人们也提出了基于微结构光纤构建小纤芯光纤。 例如, 利用微结构光纤可获 得高数值孔径的特点, 采用占空比的包层和小的纤芯结构, 可获得模场直径约为 1 μ πι 的 超小纤芯光纤。 由于纤芯面积小, 为了有效地束缚光, 需要采用特殊的光纤结构, 如车轮结 构 lAppiied Physics B: Lasers and Optics,20\0, 98(2): 371-376 ], 即尽量增大纤芯周围空气孔 的尺寸, 减小孔之间的材料的厚度等。 尽管如此, 由于纤芯周围不可能全部为空气, 支撑材 料仍然会增加其模场面积, 并对传输光的有关性能产生一定的影响。
发明内容
[0005] 本发明的目的是提供一种结构简单、 制作简便、 性能稳定、 具有强束缚光能力的微 纳光纤组件。
[0006] 本发明的另一目的是给出微纳光纤组件的制造方法, 该方法容易操作。
[0007] 本发明的技术方案是: 一种微纳光纤组件, 包括石英管和光纤, 所述光纤穿过所述 石英管并在所述石英管两端保留尾纤; 所述光纤通过熔融固定在石英管两端且位于石英管的 中心轴线上; 所述石英管和光纤组成的区域经拉锥形成微纳光纤区; 所述微纳光纤区的光纤 说 明 书
为微纳纤芯。
[0008] 进一步, 所述光纤为单模光纤, 所述微纳纤芯的长度为 1~100 mm, 微纳纤芯的直径 为 0Ό1 25 μ πι。 所述石英管外径为 250 5000 μ m, 所述石英管壁厚为 20~1000 μ ιη。 所 述石英管两端的熔融区填充石英介质柱和石英毛细管。
[0009] 一种微纳光纤组件的制作方法, 其特征是包括以下步骤:
1 ) 将光纤中段剥离覆层形成裸光纤区, 所述裸光纤区的长度大于石英管长度;
2 ) 将裸光纤区置于石英管内, 并在所述石英管两端口与所述光纤熔融固定, 并确保所述光 纤在石英管内处于拉直状态, 且所述光纤处于所述石英管两端的轴线位置;
3 ) 将石英管拉细至原始外径的 1/3 1/50, 且确保石英管内的光纤被拉细至所述光纤原始直 径的 1/3 1/50。
[0010] 进一步, 所述步骤 1)中对所述裸光纤区的光纤进行预拉锥, 所述裸光纤区长度比石 英管长度长 10 100 mm。
[0011] 进一步, 在所述步骤 3 ) 的拉制过程中, 在光纤一端输入激光, 在光纤另一端连接光 功率计或光谱仪对传输光情况进行监测。
[0012] 进一步, 所述石英管外径为 250~5000 μ m, 所述石英管壁厚为 20 1000 μ m。
[0013] 本发明的技术效果是: 本发明所述微纳光纤组件, 将直径在微纳米量级的光纤限制 在石英管内, 避免了外界环境变化对其传光性能的影响。 石英管虽然被拉细, 但其外径仍较 大, 可对微纳光纤起到很好的保护工作。 微纳光纤被悬于石英管中, 形成微纳纤芯, 其折射 率高, 而其包层为石英管内的空气, 折射率低。 从而实现对传输至微纳区光的强束缚, 可实 现高非线性、 超小模场面积的光传输。 克服了一般采用支撑条结构时, 高折射率的支撑条导 致光向包层的扩展。 在拉锥过程中可通过接入光源和光功率计、 光谱仪等设备对光信号进行 监测, 从而实现对光纤性能的精确控制。 本发明所述微纳光纤组件制备工艺实现将对微纳光 纤的制备与封装结合, 有效避免了由普通光纤直接拉锥制备微纳光纤存在的微纳光纤区机械 性能差、 结构不稳定、 易受外界环境干扰等缺点。 制备完成的微纳光纤组件还可通过毛细管 将特殊的气体、 液体或固体材料填充进石英管内, 从而形成特殊包层结构的微纳光纤。 附图说明
[0014] 图 1为本发明一种微纳光纤组件的结构示意图;
图 2为本发明一种微纳光纤组件的石英管两端填充石英介质柱时, 其端面的横截面示意图; 图 3为本发明一种微纳光纤组件的石英管两端填充石英介质柱时的结构示意图; 图 4 为本发明一种微纳光纤组件的石英管两端填充石英介质柱和石英毛细管时, 其端面 说 明 书
的横截面示意图;
其中: 1-石英管; 2-光纤; 3-微纳光纤区; 4-石英介质柱; 5-石英毛细管。
具体实施方式
[0015] 一种微纳光纤组件, 由石英管、 穿过石英管并在两端保留尾纤的一根光纤组成; 其 中石英管两端与光纤经融合形成固定结构, 或者在石英管两端填充石英介质柱、 石英毛细管 或光纤再经融合形成固定结构。 固定结构经拉锥, 形成微纳光纤区。 微纳光纤区由光纤被拉 锥形成的微纳纤芯、 被拉锥后的石英管、 纤芯与石英管之间的空气组成。
[0016] 也可以将所述光纤预先经拉锥, 再被放置于石英管中, 再经二次拉锥, 二次拉锥区 不超过预拉锥区。
[0017] 所述的光纤为单模光纤, 微纳纤芯长 1 100 mm、 微纳纤芯的直径为 0.01 25 μ ηι。
[0018] 所述石英管外径为 250 5000 μ m, 壁厚为 20 1000 μ πι。
[0019] 微纳光纤组件的制备工艺 (方案一) 如下:
1. 光纤处理
将待处理光纤中段剥去覆层, 并用脱脂棉蘸酒精将表面擦拭干净。 为获得纤芯直径更小 的微纳光纤, 可先将裸光纤进行一次预拉锥。 经以上处理后, 光纤的裸光纤区长度应比石英 管长 10~100 mm, 以便与石英管熔融, 形成固定结构。
[0020] 2. 石英管处理
将外径为 0.5 5 mm、 内径为 0.2 4.5 mm石英管的两端口在高温下加热熔缩, 使两端口内 径缩小至比光纤直径大 0.02 0.2 mm, 保证两端口的中心与石英管轴线中心相同。
[0021] 3. 石英管封装
将制作好的光纤穿过经熔缩的石英管, 并使裸光纤在石英管两端口突出长度基本相同。 若光纤事先经过拉锥处理, 则应使其拉锥区位于石英管中段区域, 以便于后续处理。 再次熔 融石英管两端, 使石英管与光纤熔合。 在熔融过程中可转动整个石英管和光纤部件, 使光纤 保持处于石英管中心轴线区域。 也可采用二氧化碳激光器, 并采用反射装置使石英管被均匀 加热。 加热过程中须使石英管内光纤保持平直。
[0022] 4. 微纳光纤拉制
将经第 3步后的石英管固定在移动平台, 选择合适的加热装置对石英管进行加热, 并将石英 管拉细至其外径的 1/3~1/50, 从而使石英管内的纤芯也被拉细至其原有直径的 1/3 1/50。 在 拉制过程中, 可在光纤一端输入激光, 在另一端连接光功率计或光谱仪对传输光情况进行监 说 明 书
[0023] 对于石英管与光纤的固定, 也可采用填充的方法来实现, 具体制备工艺如下: (方案 二):
1. 光纤处理
将待处理光纤中段剥去覆层, 并用脱脂棉蘸酒精将表面擦拭干净。 为获得纤芯直径更小 的微纳光纤, 可先将裸光纤进行一次预拉锥。 经以上处理后, 光纤的裸光纤区长度应比石英 管长 10~100 mm, 以便与石英管熔融固定。
[0024] 2. 石英管封装
将制作好的光纤穿过经熔缩的石英管, 并使裸光纤在石英管两端口突出长度基本相同。 若光纤事先经过拉锥处理, 则应使其拉锥区位于石英管中段区域, 以便于后续处理。 将长度 为 5~30mm的石英毛细管、 石英介质柱之一或两种的组合, 填充至石英管两端, 并形成紧密 结构。 填充时, 应保持光纤处于石英管中心轴线区域。 熔融石英管两端, 使石英管、 光纤以 及填充的介质柱、 毛细管融合, 形成固定结构。 在熔融过程中可转动整个石英管和光纤部件, 使光纤保持处于石英管中心轴线。 也可采用二氧化碳激光器, 并采用反射装置使石英管被均 匀加热。 加热过程中须使石英管内光纤保持平直。
[0025] 填充时可以在间隙填充尺寸更小的介质柱, 或者将石英介质柱或石英毛细管的外壁 研磨成六角形, 从而减少间隙。 也可用去除覆层的裸光纤代替介质柱。
[0026] 3. 微纳光纤拉制
将经第 3步后的石英管固定在移动平台, 选择合适的加热装置对石英管进行加热, 并将石英 管拉细至其外径的 1/3~1/50, 从而使石英管内的纤芯也被拉细其原有直径的 1/3~1/50。 在拉 制过程中, 可在光纤一端输入激光, 在另一端连接光功率计或光谱仪对传输光情况进行监测。
[0027] 对光纤进行预拉锥的作用有两个: 一是通过拉锥, 减小光纤的直径, 从而有利于二 次拉锥时获得直径更小的微纳纤芯, 同时, 在二次拉锥时石英管无需被拉得很细, 因而更容 易制作、 封装也更简单。 二是预拉锥后的光纤直径变细后, 在石英管内壁和光纤之间距离更 远, 从而减小石英管对微纳纤芯传输光的影响。
[0028] 采用石英毛细管填充制作完成的微纳光纤, 可以通过毛细管注入液体、 固体或气体 材料, 从而形成具有特殊包层结构的微纳光纤器件。
[0029] 下面结合附图, 介绍本发明的具体实施方式。
[0030]
以下实施例均以石英光纤和石英管为基础材料为例, 相关方案也可适用于多组分玻璃光纤等。
[0031] 实施例一: 说 明 书
所用光纤为单模光纤, 包层直径为 80 μ ηι, 光纤长度为 l m, 裸光纤区长度 120 mm。 石英 管长度为 90 mm, 管壁厚度为 100 u rn, 管内径为 900 μ ηι。 按方案一进行制作, 其中光纤 不进行预拉锥。 微纳光纤组成结构如图 1所示。 制作完成后, 微纳光纤区长度为 80 mm, 微 纳纤芯的直径为 6.4 u rn, 微纳光纤区对应的石英管外径为 80 μ ηι。
[0032] 实施例二:
所用光纤为普通单模光纤, 光纤长度为 2 m, 裸光纤区长度 60 mm, 经预拉锥后, 光纤的直 径为 12 μ ηι, 长度为 50 mm, 裸光纤区总长度为 130 mm。 石英管长度为 100 mm, 管壁厚 度为 120 μ ηι, 管内径为 380 μ ηι。 按方案二进行制作, 其中石英管两端填充石英介质柱, 其填充结构如图 2所示。 其中石英介质柱也可用直径相当、 去除覆层的裸光纤来代替。 微纳 光纤组成结构如图 3所示。 微纳光纤区长 60 mm, 微纳纤芯的直径为 2.4 μ m, 微纳光纤区 对应的石英管外径为 100 μ πι。
[0033] 实施例三:
所用光纤为普通单模光纤, 光纤长度为 1.5 m, 裸光纤区长度 50 mm, 经拉锥后, 光纤的直 径为 10 μ ηι, 长度为 50 mm, 裸光纤区总长度为 100 mm。 石英管长度为 65 mm, 管壁厚 度为 265 μ ηι, 管内径为 635 μ ηι。 按方案一进行制作, 按方案一进行制作, 其中光纤不进 行预拉锥。 微纳光纤组成结构如图 1 所示。 微纳光纤区长 40 mm, 微纳纤芯的直径为 1.25 ιη, 微纳光纤区对应的石英管外径为 112 μ ηι。
[0034]
实施例四:
所用光纤为普通单模光纤, 光纤长度为 1.5 m, 裸光纤区长度 40 mm, 经拉锥后, 光纤的直 径为 12.5 μ ηι, 长度为 40 mm, 裸光纤区总长度为 80 mm。 石英管长度为 50 mm, 管壁厚 度为 500 u rn, 管内径为 2000 μ ηι。 按方案二进行制作, 其中石英管两端填充石英介质柱 和石英毛细管, 其填充结构如图 4所示。 微纳光纤组成结构如图 3所示。 微纳光纤区长 40 mm, 微纳纤芯的直径为 1.25 u rn, 微纳光纤区对应的石英管外径为 300 μ ηι。

Claims

权 利 要 求 书
1. 一种微纳光纤组件, 包括石英管 (1)和光纤 (2), 其特征在于: 所述光纤 (2) 穿过所述石 英管 (1)并在所述石英管 (1)两端保留尾纤; 所述光纤 (2 )通过熔融固定在石英管 (1)两端且位 于石英管 (1)的中心轴线上; 所述石英管 (1)和光纤 (2 ) 组成的区域经拉锥形成微纳光纤区; 所述微纳光纤区的光纤为微纳纤芯。
2. 根据权利要求 1 所述的一种微纳光纤组件, 其特征在于: 所述光纤 (2 ) 为单模光纤, 所 述微纳纤芯长度为 l~100 mm, 微纳纤芯的直径为 0.01~25 μ ηι。
3. 根据权利要求书 1 所述的一种微纳光纤组件, 其特征在于: 所述石英管 (1 ) 外径为 250-5000 μ ηι, 所述石英管 (1 ) 壁厚为 20 1000 μ ηι。
4. 根据权利要求书 1 所述的一种微纳光纤组件, 其特征在于: 所述石英管 (1)两端的熔融区 填充石英介质柱 (4)和石英毛细管 (;5;)。
5.一种微纳光纤组件制作方法, 其特征是包括以下步骤:
1 ) 将光纤中段剥离覆层形成裸光纤区, 所述裸光纤区的长度大于石英管长度:
2 ) 将裸光纤区置于石英管内, 并在所述石英管两端口与所述光纤熔融固定, 并确保所述光 纤在石英管内处于拉直状态, 且所述光纤处于所述石英管两端的轴线位置;
3 ) 将石英管拉细至原始外径的 1/3~1/50, 且确保石英管内的光纤被拉细至所述光纤原始直 径的 1/3 1/50。
6. 根据权利要求 5 所述的一种微纳光纤组件制作方法, 其特征是: 所述步骤 1)中对所述裸 光纤区的光纤进行预拉锥, 所述裸光纤区长度比石英管长度长 10 100 mm。
7. 根据权利要求 5所述的一种微纳光纤组件制作方法, 其特征是: 在所述步骤 3 ) 的拉制过 程中, 在光纤一端输入激光, 在光纤另一端连接光功率计或光谱仪对传输光情况进行监测。
8. 根据权利要求书 5 所述的一种微纳光纤组件制作方法, 其特征在于: 所述石英管外径为 250-5000 μ ηι, 所述石英管壁厚为 20~1000 μ m。
PCT/CN2014/081892 2013-12-18 2014-07-09 一种微纳光纤组件及其制造方法 WO2015090048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/419,115 US9529149B2 (en) 2013-12-18 2014-07-09 Optical fiber microwire devices and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310692542.5 2013-12-18
CN201310692542.5A CN103645551B (zh) 2013-12-18 2013-12-18 一种微纳光纤组件及其制造方法

Publications (1)

Publication Number Publication Date
WO2015090048A1 true WO2015090048A1 (zh) 2015-06-25

Family

ID=50250795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081892 WO2015090048A1 (zh) 2013-12-18 2014-07-09 一种微纳光纤组件及其制造方法

Country Status (3)

Country Link
US (1) US9529149B2 (zh)
CN (1) CN103645551B (zh)
WO (1) WO2015090048A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645551B (zh) * 2013-12-18 2016-05-25 江苏大学 一种微纳光纤组件及其制造方法
CN103983435B (zh) * 2014-05-30 2017-02-08 香港理工大学深圳研究院 微纳光纤微型实验结构及其制作方法和测量仪
CN104501843B (zh) * 2014-12-17 2017-02-22 电子科技大学 一种基于随机反馈的外腔型光纤激光传感器
CN108711730B (zh) * 2018-05-22 2020-07-07 四川思创优光科技有限公司 一种高稳定性光纤激光器
CN109298481B (zh) * 2018-10-09 2019-09-10 东北大学 自发产生spr效应的金属银填充光子晶体光纤及其制法
CN110333571B (zh) * 2019-07-01 2021-03-26 华中科技大学鄂州工业技术研究院 双负曲率反谐振空芯光纤及其制备方法
CN110319855A (zh) * 2019-07-05 2019-10-11 华南理工大学 一种高灵敏光电探测用光纤器件及其制备方法
US11614587B2 (en) 2020-05-27 2023-03-28 Medical Instrument Development Laboratories, Inc. Fiber optic tapered coupler
GB202012809D0 (en) * 2020-07-31 2020-09-30 Corning Inc Polarization controller and method of manufacture
US11862923B2 (en) * 2021-11-22 2024-01-02 Lumentum Operations Llc High cladding power mode field adapter for kilowatt fiber lasers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339275A (zh) * 2008-08-13 2009-01-07 哈尔滨工程大学 毛细管光纤与标准光纤的连接方法
CN101825744A (zh) * 2010-04-02 2010-09-08 电子科技大学 一种高非线性复合结构微纳光波导线及其制备方法
US20110170116A1 (en) * 2010-01-12 2011-07-14 Baker Hughes Incorporated Efpi sensor
US20120121221A1 (en) * 2010-11-12 2012-05-17 The University Of Electro-Communications Optical nanofiber resonator
CN103148956A (zh) * 2013-01-31 2013-06-12 中国人民解放军国防科学技术大学 一种基于涂覆微纳光纤进行温度测量的装置及方法
CN103645551A (zh) * 2013-12-18 2014-03-19 江苏大学 一种微纳光纤组件及其制造方法
CN103698841A (zh) * 2013-12-18 2014-04-02 江苏大学 一种微结构光纤器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535671B1 (en) * 2000-02-29 2003-03-18 Eigenlight Corporation Optical fiber tap with integral reflecting surface and method of making same
US6658183B1 (en) * 2000-10-20 2003-12-02 Lucent Technologies Inc. Process for fabricating tapered microstructured fiber system and resultant system
CN102540322A (zh) * 2011-12-30 2012-07-04 暨南大学 一种微纳光纤光栅激光写入方法及装置
CN103293131A (zh) * 2013-05-28 2013-09-11 暨南大学 一种响应快速锥形微纳光纤湿度传感器及其制备方法
CN103323399B (zh) * 2013-05-31 2015-09-16 哈尔滨理工大学 一种微纳光纤生物传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339275A (zh) * 2008-08-13 2009-01-07 哈尔滨工程大学 毛细管光纤与标准光纤的连接方法
US20110170116A1 (en) * 2010-01-12 2011-07-14 Baker Hughes Incorporated Efpi sensor
CN101825744A (zh) * 2010-04-02 2010-09-08 电子科技大学 一种高非线性复合结构微纳光波导线及其制备方法
US20120121221A1 (en) * 2010-11-12 2012-05-17 The University Of Electro-Communications Optical nanofiber resonator
CN103148956A (zh) * 2013-01-31 2013-06-12 中国人民解放军国防科学技术大学 一种基于涂覆微纳光纤进行温度测量的装置及方法
CN103645551A (zh) * 2013-12-18 2014-03-19 江苏大学 一种微纳光纤组件及其制造方法
CN103698841A (zh) * 2013-12-18 2014-04-02 江苏大学 一种微结构光纤器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUE, YANG ET AL.: "Ultrasensitive Temperature Sensor Based on an Isopropanol-sealed Optical Microfiber Taper", OPTICS LETTERS, vol. 38, no. 8, 15 April 2013 (2013-04-15), pages 1209 - 1211 *

Also Published As

Publication number Publication date
US9529149B2 (en) 2016-12-27
CN103645551B (zh) 2016-05-25
US20160033721A1 (en) 2016-02-04
CN103645551A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2015090048A1 (zh) 一种微纳光纤组件及其制造方法
US7620281B2 (en) Subwavelength-diameter silica wires for low-loss optical waveguiding
JP5409928B2 (ja) 偏波保持光ファイバ
JP2004506937A (ja) 非石英系ガラスからなる穴付き光ファイバ
JP2019504352A5 (zh)
US7580609B1 (en) Fiber intensity reducing devices and related systems
JP5676152B2 (ja) 光ファイバ及びその製造方法
WO2018139214A1 (ja) 光結合装置及びその製造方法
US20120063720A1 (en) Optical fiber assembly and methods of making the same
CN103698841B (zh) 一种微结构光纤器件
JP2019095783A (ja) 光ファイバのコア径変換体及び異種光ファイバ接続体
Pal et al. Fabrication and characterization of fused microfiber resonators
JP5539594B2 (ja) ファイバ及びファイバの製造方法
Ye et al. Analysis of coupling losses for all-fiber integration of subwavelength core hybrid optical fibers
JP5858838B2 (ja) 光学装置の製造方法
JP2006154868A (ja) レンズ機能付き光ファイバおよびその製造方法
JP2004271860A (ja) フォトニック結晶ファイバ
Tian et al. Design and fabrication of embedded two elliptical cores hollow fiber
TW202219572A (zh) 包括偏振控制器的光學系統和操作方法
Nagashima et al. Fusion-spliceable Bi 2 O 3-based photonic crystal fiber
Frosz et al. Analytical formulation of bend-loss sensitivity in single-ring hollow-core photonic crystal fibres
JP2005202136A (ja) 光学部材
JP2022549766A (ja) 光ファイバーを結合する方法および光学カプラー
JP2005215266A (ja) 溶融型光ファイババンドル端部の製造方法及び溶融型光ファイババンドル端部
JP2018063455A5 (zh)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14419115

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873006

Country of ref document: EP

Kind code of ref document: A1