WO2015089419A2 - Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components - Google Patents
Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components Download PDFInfo
- Publication number
- WO2015089419A2 WO2015089419A2 PCT/US2014/070057 US2014070057W WO2015089419A2 WO 2015089419 A2 WO2015089419 A2 WO 2015089419A2 US 2014070057 W US2014070057 W US 2014070057W WO 2015089419 A2 WO2015089419 A2 WO 2015089419A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence
- crispr
- target
- delivery
- cas9
- Prior art date
Links
- 238000012384 transportation and delivery Methods 0.000 title claims abstract description 165
- 239000000203 mixture Substances 0.000 title claims abstract description 156
- 239000002245 particle Substances 0.000 title claims abstract description 115
- 230000001225 therapeutic effect Effects 0.000 title claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title abstract description 62
- 230000008685 targeting Effects 0.000 title abstract description 53
- 201000010099 disease Diseases 0.000 title abstract description 33
- 208000035475 disorder Diseases 0.000 title description 29
- 108091033409 CRISPR Proteins 0.000 claims abstract description 261
- 238000000034 method Methods 0.000 claims abstract description 178
- 239000002105 nanoparticle Substances 0.000 claims abstract description 162
- 239000013598 vector Substances 0.000 claims abstract description 124
- 238000009472 formulation Methods 0.000 claims abstract description 79
- 210000003527 eukaryotic cell Anatomy 0.000 claims abstract description 50
- 238000010354 CRISPR gene editing Methods 0.000 claims abstract 10
- 108090000623 proteins and genes Proteins 0.000 claims description 239
- 210000004027 cell Anatomy 0.000 claims description 228
- 102000004190 Enzymes Human genes 0.000 claims description 195
- 108090000790 Enzymes Proteins 0.000 claims description 195
- 102000040430 polynucleotide Human genes 0.000 claims description 156
- 108091033319 polynucleotide Proteins 0.000 claims description 156
- 239000002157 polynucleotide Substances 0.000 claims description 156
- 102000004169 proteins and genes Human genes 0.000 claims description 111
- 150000002632 lipids Chemical class 0.000 claims description 72
- 108020004414 DNA Proteins 0.000 claims description 71
- 241000282414 Homo sapiens Species 0.000 claims description 68
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 60
- 238000001727 in vivo Methods 0.000 claims description 56
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 55
- 210000001808 exosome Anatomy 0.000 claims description 55
- 239000002502 liposome Substances 0.000 claims description 45
- 108020004999 messenger RNA Proteins 0.000 claims description 38
- 238000000338 in vitro Methods 0.000 claims description 32
- 229920000642 polymer Polymers 0.000 claims description 29
- 230000004048 modification Effects 0.000 claims description 27
- 238000012986 modification Methods 0.000 claims description 27
- 241000124008 Mammalia Species 0.000 claims description 20
- 230000009870 specific binding Effects 0.000 claims description 19
- 210000004072 lung Anatomy 0.000 claims description 14
- 230000030648 nucleus localization Effects 0.000 claims description 14
- 108091026890 Coding region Proteins 0.000 claims description 12
- 230000030279 gene silencing Effects 0.000 claims description 12
- 210000002216 heart Anatomy 0.000 claims description 12
- 238000012226 gene silencing method Methods 0.000 claims description 11
- 230000008901 benefit Effects 0.000 claims description 9
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 239000004094 surface-active agent Substances 0.000 claims description 9
- 210000003205 muscle Anatomy 0.000 claims description 8
- 150000003904 phospholipids Chemical class 0.000 claims description 8
- 210000002889 endothelial cell Anatomy 0.000 claims description 7
- 102000004895 Lipoproteins Human genes 0.000 claims description 6
- 108090001030 Lipoproteins Proteins 0.000 claims description 6
- 239000000969 carrier Substances 0.000 claims description 6
- 241000206602 Eukaryota Species 0.000 claims description 5
- 230000003511 endothelial effect Effects 0.000 claims description 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 229920002988 biodegradable polymer Polymers 0.000 claims description 4
- 239000004621 biodegradable polymer Substances 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 2
- 108091027544 Subgenomic mRNA Proteins 0.000 claims 3
- 230000000747 cardiac effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 57
- 238000005457 optimization Methods 0.000 abstract description 13
- 231100000419 toxicity Toxicity 0.000 abstract description 11
- 230000001988 toxicity Effects 0.000 abstract description 11
- 238000013461 design Methods 0.000 abstract description 6
- 230000009918 complex formation Effects 0.000 abstract description 3
- 229940088598 enzyme Drugs 0.000 description 194
- 230000014509 gene expression Effects 0.000 description 105
- 235000018102 proteins Nutrition 0.000 description 105
- 108020005004 Guide RNA Proteins 0.000 description 92
- 108020004459 Small interfering RNA Proteins 0.000 description 92
- 239000004055 small Interfering RNA Substances 0.000 description 87
- 230000035772 mutation Effects 0.000 description 86
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 68
- 239000000047 product Substances 0.000 description 65
- 238000003776 cleavage reaction Methods 0.000 description 52
- 230000007017 scission Effects 0.000 description 52
- 241000699670 Mus sp. Species 0.000 description 38
- 239000002585 base Substances 0.000 description 36
- 150000001875 compounds Chemical class 0.000 description 35
- 150000007523 nucleic acids Chemical class 0.000 description 35
- 235000012000 cholesterol Nutrition 0.000 description 34
- 210000004556 brain Anatomy 0.000 description 32
- 230000015572 biosynthetic process Effects 0.000 description 31
- 102000039446 nucleic acids Human genes 0.000 description 31
- 108020004707 nucleic acids Proteins 0.000 description 31
- 230000001105 regulatory effect Effects 0.000 description 31
- 210000001519 tissue Anatomy 0.000 description 29
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 28
- 239000003814 drug Substances 0.000 description 28
- 229920001223 polyethylene glycol Polymers 0.000 description 28
- 108020004705 Codon Proteins 0.000 description 27
- 241000699666 Mus <mouse, genus> Species 0.000 description 27
- 208000009869 Neu-Laxova syndrome Diseases 0.000 description 27
- 238000010362 genome editing Methods 0.000 description 27
- 241001465754 Metazoa Species 0.000 description 26
- 239000002773 nucleotide Substances 0.000 description 26
- 238000012360 testing method Methods 0.000 description 26
- 125000003729 nucleotide group Chemical group 0.000 description 25
- 241000193996 Streptococcus pyogenes Species 0.000 description 24
- 238000003556 assay Methods 0.000 description 24
- 210000004940 nucleus Anatomy 0.000 description 24
- -1 cationic lipid Chemical class 0.000 description 23
- 101710163270 Nuclease Proteins 0.000 description 22
- 239000002202 Polyethylene glycol Substances 0.000 description 22
- 230000007018 DNA scission Effects 0.000 description 21
- 238000001415 gene therapy Methods 0.000 description 21
- 230000006870 function Effects 0.000 description 20
- 210000002569 neuron Anatomy 0.000 description 20
- 238000013459 approach Methods 0.000 description 19
- 230000001404 mediated effect Effects 0.000 description 19
- 108091092236 Chimeric RNA Proteins 0.000 description 18
- 241000191967 Staphylococcus aureus Species 0.000 description 18
- 238000011144 upstream manufacturing Methods 0.000 description 18
- 229940024606 amino acid Drugs 0.000 description 17
- 235000001014 amino acid Nutrition 0.000 description 17
- 150000001413 amino acids Chemical class 0.000 description 17
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 239000000523 sample Substances 0.000 description 17
- 238000011282 treatment Methods 0.000 description 17
- 102000053602 DNA Human genes 0.000 description 16
- 230000027455 binding Effects 0.000 description 16
- 238000009739 binding Methods 0.000 description 16
- 238000003780 insertion Methods 0.000 description 16
- 210000004185 liver Anatomy 0.000 description 16
- 238000001890 transfection Methods 0.000 description 16
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 15
- 230000000295 complement effect Effects 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 15
- 230000037431 insertion Effects 0.000 description 15
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 14
- 206010028980 Neoplasm Diseases 0.000 description 14
- 125000002091 cationic group Chemical group 0.000 description 14
- 239000000412 dendrimer Substances 0.000 description 14
- 229920000736 dendritic polymer Polymers 0.000 description 14
- 229940090044 injection Drugs 0.000 description 14
- 108090000765 processed proteins & peptides Proteins 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 13
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 13
- 239000008280 blood Substances 0.000 description 13
- 230000001419 dependent effect Effects 0.000 description 13
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 13
- 210000003027 ear inner Anatomy 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 101000931098 Homo sapiens DNA (cytosine-5)-methyltransferase 1 Proteins 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 12
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 12
- 229940079593 drug Drugs 0.000 description 12
- 239000003446 ligand Substances 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 12
- 230000008439 repair process Effects 0.000 description 12
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 12
- 230000035897 transcription Effects 0.000 description 12
- 238000013518 transcription Methods 0.000 description 12
- 239000013603 viral vector Substances 0.000 description 12
- 241001655883 Adeno-associated virus - 1 Species 0.000 description 11
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 11
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 11
- 230000003247 decreasing effect Effects 0.000 description 11
- 239000005090 green fluorescent protein Substances 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 210000000130 stem cell Anatomy 0.000 description 11
- 230000009261 transgenic effect Effects 0.000 description 11
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 10
- 108091079001 CRISPR RNA Proteins 0.000 description 10
- 102100036279 DNA (cytosine-5)-methyltransferase 1 Human genes 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 238000012217 deletion Methods 0.000 description 10
- 238000012377 drug delivery Methods 0.000 description 10
- 230000009368 gene silencing by RNA Effects 0.000 description 10
- 238000002744 homologous recombination Methods 0.000 description 10
- 230000006801 homologous recombination Effects 0.000 description 10
- 239000007943 implant Substances 0.000 description 10
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 10
- 210000000056 organ Anatomy 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- 241000282412 Homo Species 0.000 description 9
- 241000194020 Streptococcus thermophilus Species 0.000 description 9
- 102100029290 Transthyretin Human genes 0.000 description 9
- 241000700605 Viruses Species 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000002296 dynamic light scattering Methods 0.000 description 9
- 238000005538 encapsulation Methods 0.000 description 9
- 210000003494 hepatocyte Anatomy 0.000 description 9
- 230000001939 inductive effect Effects 0.000 description 9
- 230000010354 integration Effects 0.000 description 9
- 239000003550 marker Substances 0.000 description 9
- 230000009437 off-target effect Effects 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 241000701161 unidentified adenovirus Species 0.000 description 9
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 8
- 241000700159 Rattus Species 0.000 description 8
- 230000005782 double-strand break Effects 0.000 description 8
- 238000003197 gene knockdown Methods 0.000 description 8
- 230000002068 genetic effect Effects 0.000 description 8
- 210000005260 human cell Anatomy 0.000 description 8
- 238000001802 infusion Methods 0.000 description 8
- 238000011068 loading method Methods 0.000 description 8
- 210000004962 mammalian cell Anatomy 0.000 description 8
- 239000002679 microRNA Substances 0.000 description 8
- 230000006780 non-homologous end joining Effects 0.000 description 8
- 238000012552 review Methods 0.000 description 8
- 108700011259 MicroRNAs Proteins 0.000 description 7
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 210000004443 dendritic cell Anatomy 0.000 description 7
- 210000002768 hair cell Anatomy 0.000 description 7
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 102100021257 Beta-secretase 1 Human genes 0.000 description 6
- 101710150192 Beta-secretase 1 Proteins 0.000 description 6
- 108010069091 Dystrophin Proteins 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 108010071690 Prealbumin Proteins 0.000 description 6
- 230000000975 bioactive effect Effects 0.000 description 6
- 230000008499 blood brain barrier function Effects 0.000 description 6
- 210000001218 blood-brain barrier Anatomy 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 238000012350 deep sequencing Methods 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 6
- 230000005847 immunogenicity Effects 0.000 description 6
- 229910052740 iodine Inorganic materials 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000010361 transduction Methods 0.000 description 6
- 230000026683 transduction Effects 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 5
- LRFJOIPOPUJUMI-KWXKLSQISA-N 2-[2,2-bis[(9z,12z)-octadeca-9,12-dienyl]-1,3-dioxolan-4-yl]-n,n-dimethylethanamine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCC1(CCCCCCCC\C=C/C\C=C/CCCCC)OCC(CCN(C)C)O1 LRFJOIPOPUJUMI-KWXKLSQISA-N 0.000 description 5
- 239000013607 AAV vector Substances 0.000 description 5
- 102000014461 Ataxins Human genes 0.000 description 5
- 108010078286 Ataxins Proteins 0.000 description 5
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 5
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 5
- 108700010070 Codon Usage Proteins 0.000 description 5
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 5
- 108010010234 HDL Lipoproteins Proteins 0.000 description 5
- 102000015779 HDL Lipoproteins Human genes 0.000 description 5
- 101001048956 Homo sapiens Homeobox protein EMX1 Proteins 0.000 description 5
- 101001092197 Homo sapiens RNA binding protein fox-1 homolog 3 Proteins 0.000 description 5
- 102100023915 Insulin Human genes 0.000 description 5
- 108090001061 Insulin Proteins 0.000 description 5
- 108091092195 Intron Proteins 0.000 description 5
- 241000713666 Lentivirus Species 0.000 description 5
- 241000288906 Primates Species 0.000 description 5
- 102100035530 RNA binding protein fox-1 homolog 3 Human genes 0.000 description 5
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 5
- 102000001435 Synapsin Human genes 0.000 description 5
- 108050009621 Synapsin Proteins 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 210000001185 bone marrow Anatomy 0.000 description 5
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 5
- 108020001778 catalytic domains Proteins 0.000 description 5
- 210000003855 cell nucleus Anatomy 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 229940125396 insulin Drugs 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 238000010253 intravenous injection Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 108010040003 polyglutamine Proteins 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 4
- 102100032187 Androgen receptor Human genes 0.000 description 4
- 108010032963 Ataxin-1 Proteins 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 4
- 229920000858 Cyclodextrin Polymers 0.000 description 4
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 4
- 101710096438 DNA-binding protein Proteins 0.000 description 4
- 102000003869 Frataxin Human genes 0.000 description 4
- 108090000217 Frataxin Proteins 0.000 description 4
- 101001053946 Homo sapiens Dystrophin Proteins 0.000 description 4
- 101000852815 Homo sapiens Insulin receptor Proteins 0.000 description 4
- 108010052185 Myotonin-Protein Kinase Proteins 0.000 description 4
- 102100022437 Myotonin-protein kinase Human genes 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 229920002873 Polyethylenimine Polymers 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 description 4
- 108700019146 Transgenes Proteins 0.000 description 4
- 102000004243 Tubulin Human genes 0.000 description 4
- 108090000704 Tubulin Proteins 0.000 description 4
- HCAJCMUKLZSPFT-KWXKLSQISA-N [3-(dimethylamino)-2-[(9z,12z)-octadeca-9,12-dienoyl]oxypropyl] (9z,12z)-octadeca-9,12-dienoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC HCAJCMUKLZSPFT-KWXKLSQISA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 125000003275 alpha amino acid group Chemical group 0.000 description 4
- 108010080146 androgen receptors Proteins 0.000 description 4
- 230000003466 anti-cipated effect Effects 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229920006317 cationic polymer Polymers 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 210000003618 cortical neuron Anatomy 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 210000005069 ears Anatomy 0.000 description 4
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 4
- 230000001973 epigenetic effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 4
- 238000001476 gene delivery Methods 0.000 description 4
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 4
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 238000010166 immunofluorescence Methods 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000009126 molecular therapy Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 102000042567 non-coding RNA Human genes 0.000 description 4
- 150000002924 oxiranes Chemical class 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229920000155 polyglutamine Polymers 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 210000001323 spiral ganglion Anatomy 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 230000035899 viability Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102100036664 Adenosine deaminase Human genes 0.000 description 3
- 102000007368 Ataxin-7 Human genes 0.000 description 3
- 108010032953 Ataxin-7 Proteins 0.000 description 3
- 102100020741 Atrophin-1 Human genes 0.000 description 3
- 102100022976 B-cell lymphoma/leukemia 11A Human genes 0.000 description 3
- 101000623895 Bos taurus Mucin-15 Proteins 0.000 description 3
- 238000010453 CRISPR/Cas method Methods 0.000 description 3
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 3
- 108010077544 Chromatin Proteins 0.000 description 3
- 201000003883 Cystic fibrosis Diseases 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 102000001039 Dystrophin Human genes 0.000 description 3
- 102100024108 Dystrophin Human genes 0.000 description 3
- 241000283086 Equidae Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 206010019695 Hepatic neoplasm Diseases 0.000 description 3
- 101000903703 Homo sapiens B-cell lymphoma/leukemia 11A Proteins 0.000 description 3
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 3
- 101000772194 Homo sapiens Transthyretin Proteins 0.000 description 3
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 3
- 208000023105 Huntington disease Diseases 0.000 description 3
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 description 3
- 101710148794 Intercellular adhesion molecule 2 Proteins 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 3
- OVRNDRQMDRJTHS-KEWYIRBNSA-N N-acetyl-D-galactosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-KEWYIRBNSA-N 0.000 description 3
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 3
- 102100037082 Signal recognition particle 14 kDa protein Human genes 0.000 description 3
- 208000012827 T-B+ severe combined immunodeficiency due to gamma chain deficiency Diseases 0.000 description 3
- 108020004566 Transfer RNA Proteins 0.000 description 3
- 102100029591 V(D)J recombination-activating protein 2 Human genes 0.000 description 3
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 3
- 201000007146 X-linked severe combined immunodeficiency Diseases 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000013060 biological fluid Substances 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 210000003483 chromatin Anatomy 0.000 description 3
- 210000003477 cochlea Anatomy 0.000 description 3
- 230000009850 completed effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000009510 drug design Methods 0.000 description 3
- 238000001493 electron microscopy Methods 0.000 description 3
- 210000001163 endosome Anatomy 0.000 description 3
- 210000003038 endothelium Anatomy 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- ZXQYGBMAQZUVMI-GCMPRSNUSA-N gamma-cyhalothrin Chemical compound CC1(C)[C@@H](\C=C(/Cl)C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-GCMPRSNUSA-N 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 210000002443 helper t lymphocyte Anatomy 0.000 description 3
- 102000047882 human INSR Human genes 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 210000004779 membrane envelope Anatomy 0.000 description 3
- 230000011987 methylation Effects 0.000 description 3
- 238000007069 methylation reaction Methods 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 108091027963 non-coding RNA Proteins 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 210000002442 prefrontal cortex Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 102000005912 ran GTP Binding Protein Human genes 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 108091000053 retinol binding Proteins 0.000 description 3
- 102000029752 retinol binding Human genes 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 150000003335 secondary amines Chemical class 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 210000001082 somatic cell Anatomy 0.000 description 3
- 201000003624 spinocerebellar ataxia type 1 Diseases 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 239000012096 transfection reagent Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000005199 ultracentrifugation Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 235000019155 vitamin A Nutrition 0.000 description 3
- 239000011719 vitamin A Substances 0.000 description 3
- 229940045997 vitamin a Drugs 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- RVHYPUORVDKRTM-UHFFFAOYSA-N 1-[2-[bis(2-hydroxydodecyl)amino]ethyl-[2-[4-[2-[bis(2-hydroxydodecyl)amino]ethyl]piperazin-1-yl]ethyl]amino]dodecan-2-ol Chemical compound CCCCCCCCCCC(O)CN(CC(O)CCCCCCCCCC)CCN(CC(O)CCCCCCCCCC)CCN1CCN(CCN(CC(O)CCCCCCCCCC)CC(O)CCCCCCCCCC)CC1 RVHYPUORVDKRTM-UHFFFAOYSA-N 0.000 description 2
- KWVJHCQQUFDPLU-YEUCEMRASA-N 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KWVJHCQQUFDPLU-YEUCEMRASA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- XSVWFLQICKPQAA-UHFFFAOYSA-N 2-[4,10-bis(carboxymethyl)-7-[2-(2,5-dioxopyrrolidin-1-yl)oxy-2-oxoethyl]-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound C1CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CCN1CC(=O)ON1C(=O)CCC1=O XSVWFLQICKPQAA-UHFFFAOYSA-N 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 2
- 102100024378 AF4/FMR2 family member 2 Human genes 0.000 description 2
- 102100040431 Activator of basal transcription 1 Human genes 0.000 description 2
- 101710102819 Activator of basal transcription 1 Proteins 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 102100034452 Alternative prion protein Human genes 0.000 description 2
- 108010027006 Apolipoproteins B Proteins 0.000 description 2
- 102000018616 Apolipoproteins B Human genes 0.000 description 2
- 102100027308 Apoptosis regulator BAX Human genes 0.000 description 2
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- 108090000448 Aryl Hydrocarbon Receptors Proteins 0.000 description 2
- 102100026792 Aryl hydrocarbon receptor Human genes 0.000 description 2
- 102100026789 Aryl hydrocarbon receptor repressor Human genes 0.000 description 2
- 108050004261 Aryl hydrocarbon receptor repressor Proteins 0.000 description 2
- 102100035029 Ataxin-1 Human genes 0.000 description 2
- 102000007372 Ataxin-1 Human genes 0.000 description 2
- 102100035022 Ataxin-2-like protein Human genes 0.000 description 2
- 102000007371 Ataxin-3 Human genes 0.000 description 2
- 108010032947 Ataxin-3 Proteins 0.000 description 2
- 102100026565 Ataxin-8 Human genes 0.000 description 2
- 102000007370 Ataxin2 Human genes 0.000 description 2
- 108010032951 Ataxin2 Proteins 0.000 description 2
- 108090000806 Atrophin-1 Proteins 0.000 description 2
- 101150035467 BDNF gene Proteins 0.000 description 2
- 102100031006 Beta-Ala-His dipeptidase Human genes 0.000 description 2
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 2
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 102100032912 CD44 antigen Human genes 0.000 description 2
- 102100031198 CGG triplet repeat-binding protein 1 Human genes 0.000 description 2
- 101710132053 CGG triplet repeat-binding protein 1 Proteins 0.000 description 2
- 108010040163 CREB-Binding Protein Proteins 0.000 description 2
- 102100021975 CREB-binding protein Human genes 0.000 description 2
- 102100025492 CUGBP Elav-like family member 3 Human genes 0.000 description 2
- 102100040484 Claspin Human genes 0.000 description 2
- 102100023804 Coagulation factor VII Human genes 0.000 description 2
- 102100027041 Crossover junction endonuclease MUS81 Human genes 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 108010058546 Cyclin D1 Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102100020756 D(2) dopamine receptor Human genes 0.000 description 2
- 230000005778 DNA damage Effects 0.000 description 2
- 231100000277 DNA damage Toxicity 0.000 description 2
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 2
- 102100037700 DNA mismatch repair protein Msh3 Human genes 0.000 description 2
- 102100028675 DNA polymerase subunit gamma-2, mitochondrial Human genes 0.000 description 2
- 102100035619 DNA-(apurinic or apyrimidinic site) lyase Human genes 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 2
- 201000008163 Dentatorubral pallidoluysian atrophy Diseases 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- 102100038913 E1A-binding protein p400 Human genes 0.000 description 2
- 102100035813 E3 ubiquitin-protein ligase CBL Human genes 0.000 description 2
- 102100034597 E3 ubiquitin-protein ligase TRIM22 Human genes 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108010007005 Estrogen Receptor alpha Proteins 0.000 description 2
- 102100038595 Estrogen receptor Human genes 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- 108010023321 Factor VII Proteins 0.000 description 2
- 102100026748 Fatty acid-binding protein, intestinal Human genes 0.000 description 2
- 102100020760 Ferritin heavy chain Human genes 0.000 description 2
- 108010044495 Fetal Hemoglobin Proteins 0.000 description 2
- 102100026121 Flap endonuclease 1 Human genes 0.000 description 2
- 108050002219 Flap endonuclease 1 Proteins 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 108010032606 Fragile X Mental Retardation Protein Proteins 0.000 description 2
- 208000024412 Friedreich ataxia Diseases 0.000 description 2
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 2
- 108091092584 GDNA Proteins 0.000 description 2
- 101150106478 GPS1 gene Proteins 0.000 description 2
- 102100040196 GRB10-interacting GYF protein 2 Human genes 0.000 description 2
- 101710132788 GRB10-interacting GYF protein 2 Proteins 0.000 description 2
- 102100033962 GTP-binding protein RAD Human genes 0.000 description 2
- 102100032518 Gamma-crystallin B Human genes 0.000 description 2
- 102100027813 Gamma-crystallin C Human genes 0.000 description 2
- 229940123611 Genome editing Drugs 0.000 description 2
- 102100039696 Glutamate-cysteine ligase catalytic subunit Human genes 0.000 description 2
- 102100033039 Glutathione peroxidase 1 Human genes 0.000 description 2
- 102100035341 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 Human genes 0.000 description 2
- 102100031249 H/ACA ribonucleoprotein complex subunit DKC1 Human genes 0.000 description 2
- 102100031561 Hamartin Human genes 0.000 description 2
- 101710175981 Hamartin Proteins 0.000 description 2
- 108091027305 Heteroduplex Proteins 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 102100031470 Homeobox protein ARX Human genes 0.000 description 2
- 101710081544 Homeobox protein ARX Proteins 0.000 description 2
- 102100022377 Homeobox protein DLX-2 Human genes 0.000 description 2
- 102100023823 Homeobox protein EMX1 Human genes 0.000 description 2
- 102100030309 Homeobox protein Hox-A1 Human genes 0.000 description 2
- 102100025110 Homeobox protein Hox-A5 Human genes 0.000 description 2
- 102100030636 Homeobox protein OTX1 Human genes 0.000 description 2
- 102100030634 Homeobox protein OTX2 Human genes 0.000 description 2
- 102100025449 Homeobox protein SIX5 Human genes 0.000 description 2
- 102100027695 Homeobox protein engrailed-2 Human genes 0.000 description 2
- 101000833172 Homo sapiens AF4/FMR2 family member 2 Proteins 0.000 description 2
- 101000873088 Homo sapiens Ataxin-2-like protein Proteins 0.000 description 2
- 101000919694 Homo sapiens Beta-Ala-His dipeptidase Proteins 0.000 description 2
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 2
- 101000914299 Homo sapiens CUGBP Elav-like family member 3 Proteins 0.000 description 2
- 101000750011 Homo sapiens Claspin Proteins 0.000 description 2
- 101000982890 Homo sapiens Crossover junction endonuclease MUS81 Proteins 0.000 description 2
- 101000931901 Homo sapiens D(2) dopamine receptor Proteins 0.000 description 2
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 2
- 101001027762 Homo sapiens DNA mismatch repair protein Msh3 Proteins 0.000 description 2
- 101000804964 Homo sapiens DNA polymerase subunit gamma-1 Proteins 0.000 description 2
- 101000837415 Homo sapiens DNA polymerase subunit gamma-2, mitochondrial Proteins 0.000 description 2
- 101000848629 Homo sapiens E3 ubiquitin-protein ligase TRIM22 Proteins 0.000 description 2
- 101000911337 Homo sapiens Fatty acid-binding protein, intestinal Proteins 0.000 description 2
- 101001002987 Homo sapiens Ferritin heavy chain Proteins 0.000 description 2
- 101001132495 Homo sapiens GTP-binding protein RAD Proteins 0.000 description 2
- 101000942158 Homo sapiens Gamma-crystallin B Proteins 0.000 description 2
- 101000859938 Homo sapiens Gamma-crystallin C Proteins 0.000 description 2
- 101001034527 Homo sapiens Glutamate-cysteine ligase catalytic subunit Proteins 0.000 description 2
- 101001024278 Homo sapiens Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 Proteins 0.000 description 2
- 101000844866 Homo sapiens H/ACA ribonucleoprotein complex subunit DKC1 Proteins 0.000 description 2
- 101000901635 Homo sapiens Homeobox protein DLX-2 Proteins 0.000 description 2
- 101001083156 Homo sapiens Homeobox protein Hox-A1 Proteins 0.000 description 2
- 101001077568 Homo sapiens Homeobox protein Hox-A5 Proteins 0.000 description 2
- 101000584392 Homo sapiens Homeobox protein OTX1 Proteins 0.000 description 2
- 101000584400 Homo sapiens Homeobox protein OTX2 Proteins 0.000 description 2
- 101000835959 Homo sapiens Homeobox protein SIX5 Proteins 0.000 description 2
- 101001081122 Homo sapiens Homeobox protein engrailed-2 Proteins 0.000 description 2
- 101001003138 Homo sapiens Interleukin-12 receptor subunit beta-2 Proteins 0.000 description 2
- 101001027192 Homo sapiens Kelch-like protein 41 Proteins 0.000 description 2
- 101000583839 Homo sapiens Muscleblind-like protein 1 Proteins 0.000 description 2
- 101001098523 Homo sapiens PAX-interacting protein 1 Proteins 0.000 description 2
- 101000595929 Homo sapiens POLG alternative reading frame Proteins 0.000 description 2
- 101000922137 Homo sapiens Peripheral plasma membrane protein CASK Proteins 0.000 description 2
- 101000605534 Homo sapiens Prostate-specific antigen Proteins 0.000 description 2
- 101000710817 Homo sapiens Protein canopy homolog 3 Proteins 0.000 description 2
- 101001000998 Homo sapiens Protein phosphatase 1 regulatory subunit 12C Proteins 0.000 description 2
- 101000957337 Homo sapiens Putative nucleotidyltransferase MAB21L1 Proteins 0.000 description 2
- 101000575639 Homo sapiens Ribonucleoside-diphosphate reductase subunit M2 Proteins 0.000 description 2
- 101000766306 Homo sapiens Serotransferrin Proteins 0.000 description 2
- 101000663158 Homo sapiens Signal recognition particle 14 kDa protein Proteins 0.000 description 2
- 101001026232 Homo sapiens Small conductance calcium-activated potassium channel protein 3 Proteins 0.000 description 2
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 description 2
- 101000655155 Homo sapiens Transmembrane protein 158 Proteins 0.000 description 2
- 101000693985 Homo sapiens Twinkle mtDNA helicase Proteins 0.000 description 2
- 101000863873 Homo sapiens Tyrosine-protein phosphatase non-receptor type substrate 1 Proteins 0.000 description 2
- 101001061851 Homo sapiens V(D)J recombination-activating protein 2 Proteins 0.000 description 2
- 101000935117 Homo sapiens Voltage-dependent P/Q-type calcium channel subunit alpha-1A Proteins 0.000 description 2
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 2
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 206010051792 Infusion related reaction Diseases 0.000 description 2
- 102100036721 Insulin receptor Human genes 0.000 description 2
- 102000018682 Interleukin Receptor Common gamma Subunit Human genes 0.000 description 2
- 108010066719 Interleukin Receptor Common gamma Subunit Proteins 0.000 description 2
- 102100020792 Interleukin-12 receptor subunit beta-2 Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 102100037644 Kelch-like protein 41 Human genes 0.000 description 2
- 208000027747 Kennedy disease Diseases 0.000 description 2
- 101710172072 Kexin Proteins 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 108010007622 LDL Lipoproteins Proteins 0.000 description 2
- 102000007330 LDL Lipoproteins Human genes 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 108010018650 MEF2 Transcription Factors Proteins 0.000 description 2
- 241000282560 Macaca mulatta Species 0.000 description 2
- 206010025421 Macule Diseases 0.000 description 2
- 102100029663 Mediator of RNA polymerase II transcription subunit 15 Human genes 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 208000036626 Mental retardation Diseases 0.000 description 2
- 102100021833 Mesencephalic astrocyte-derived neurotrophic factor Human genes 0.000 description 2
- 101710155665 Mesencephalic astrocyte-derived neurotrophic factor Proteins 0.000 description 2
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 2
- 101710115937 Microtubule-associated protein tau Proteins 0.000 description 2
- 102100037480 Mismatch repair endonuclease PMS2 Human genes 0.000 description 2
- 101100219625 Mus musculus Casd1 gene Proteins 0.000 description 2
- 101001033765 Mus musculus Methyl-CpG-binding protein 2 Proteins 0.000 description 2
- 102100030965 Muscleblind-like protein 1 Human genes 0.000 description 2
- 102100021148 Myocyte-specific enhancer factor 2A Human genes 0.000 description 2
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 108091092724 Noncoding DNA Proteins 0.000 description 2
- 108020004485 Nonsense Codon Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 108090001145 Nuclear Receptor Coactivator 3 Proteins 0.000 description 2
- 102100022883 Nuclear receptor coactivator 3 Human genes 0.000 description 2
- 102000002488 Nucleoplasmin Human genes 0.000 description 2
- 102100037141 PAX-interacting protein 1 Human genes 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 102100035196 POLG alternative reading frame Human genes 0.000 description 2
- 102100031166 Peripheral plasma membrane protein CASK Human genes 0.000 description 2
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 2
- 102100039427 Polyadenylate-binding protein 2 Human genes 0.000 description 2
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 2
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 2
- 108010076181 Proinsulin Proteins 0.000 description 2
- 102100038358 Prostate-specific antigen Human genes 0.000 description 2
- 102100033856 Protein canopy homolog 3 Human genes 0.000 description 2
- 102100035620 Protein phosphatase 1 regulatory subunit 12C Human genes 0.000 description 2
- 102100038753 Putative nucleotidyltransferase MAB21L1 Human genes 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 101100344443 Rattus norvegicus Map1b gene Proteins 0.000 description 2
- 102100026006 Ribonucleoside-diphosphate reductase subunit M2 Human genes 0.000 description 2
- 102000004387 Ribosomal protein L14 Human genes 0.000 description 2
- 108090000985 Ribosomal protein L14 Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 102100037442 Small conductance calcium-activated potassium channel protein 3 Human genes 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108010053551 Sp1 Transcription Factor Proteins 0.000 description 2
- 108091061980 Spherical nucleic acid Proteins 0.000 description 2
- 102100030511 Stanniocalcin-1 Human genes 0.000 description 2
- 241000320123 Streptococcus pyogenes M1 GAS Species 0.000 description 2
- 102000006467 TATA-Box Binding Protein Human genes 0.000 description 2
- 108010044281 TATA-Box Binding Protein Proteins 0.000 description 2
- 102100036034 Thrombospondin-1 Human genes 0.000 description 2
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 2
- 102100030246 Transcription factor Sp1 Human genes 0.000 description 2
- 102100027671 Transcriptional repressor CTCF Human genes 0.000 description 2
- 102100033036 Transmembrane protein 158 Human genes 0.000 description 2
- 102100040666 Transmembrane protein 185A Human genes 0.000 description 2
- 102100040241 Trinucleotide repeat-containing gene 6A protein Human genes 0.000 description 2
- 101710126045 Trinucleotide repeat-containing gene 6A protein Proteins 0.000 description 2
- 102100040244 Trinucleotide repeat-containing gene 6B protein Human genes 0.000 description 2
- 101710087261 Trinucleotide repeat-containing gene 6B protein Proteins 0.000 description 2
- 102100040242 Trinucleotide repeat-containing gene 6C protein Human genes 0.000 description 2
- 101710163378 Trinucleotide repeat-containing gene 6C protein Proteins 0.000 description 2
- 102100027193 Twinkle mtDNA helicase Human genes 0.000 description 2
- 102100039094 Tyrosinase Human genes 0.000 description 2
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 2
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 2
- 102100025387 Tyrosine-protein kinase JAK3 Human genes 0.000 description 2
- 102100029948 Tyrosine-protein phosphatase non-receptor type substrate 1 Human genes 0.000 description 2
- 108010072685 Uracil-DNA Glycosidase Proteins 0.000 description 2
- 102100037111 Uracil-DNA glycosylase Human genes 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 102100039066 Very low-density lipoprotein receptor Human genes 0.000 description 2
- 101710177612 Very low-density lipoprotein receptor Proteins 0.000 description 2
- 102100025330 Voltage-dependent P/Q-type calcium channel subunit alpha-1A Human genes 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 208000026448 Wilms tumor 1 Diseases 0.000 description 2
- 102100022748 Wilms tumor protein Human genes 0.000 description 2
- 101710127857 Wilms tumor protein Proteins 0.000 description 2
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 description 2
- 208000023940 X-Linked Combined Immunodeficiency disease Diseases 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 2
- ZKSPKDDUPMUGBG-KWXKLSQISA-N [(9z,12z)-octadeca-9,12-dienyl] 3-(dimethylamino)-2-[(9z,12z)-octadeca-9,12-dienoxy]propanoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOC(CN(C)C)C(=O)OCCCCCCCC\C=C/C\C=C/CCCCC ZKSPKDDUPMUGBG-KWXKLSQISA-N 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 101150027964 ada gene Proteins 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 206010002022 amyloidosis Diseases 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 2
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 108700000707 bcl-2-Associated X Proteins 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 208000036815 beta tubulin Diseases 0.000 description 2
- 239000002551 biofuel Substances 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 101150055766 cat gene Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 208000019425 cirrhosis of liver Diseases 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 231100000895 deafness Toxicity 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000011143 downstream manufacturing Methods 0.000 description 2
- RUZYUOTYCVRMRZ-UHFFFAOYSA-N doxazosin Chemical compound C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 RUZYUOTYCVRMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 238000007877 drug screening Methods 0.000 description 2
- 210000000883 ear external Anatomy 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 108010025678 empty spiracles homeobox proteins Proteins 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000012202 endocytosis Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 229940093476 ethylene glycol Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229940012413 factor vii Drugs 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 229960000304 folic acid Drugs 0.000 description 2
- 230000037433 frameshift Effects 0.000 description 2
- 230000000799 fusogenic effect Effects 0.000 description 2
- 238000012239 gene modification Methods 0.000 description 2
- 238000010363 gene targeting Methods 0.000 description 2
- 230000007614 genetic variation Effects 0.000 description 2
- 238000012268 genome sequencing Methods 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 108010086596 glutathione peroxidase GPX1 Proteins 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 208000016354 hearing loss disease Diseases 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 229920001427 mPEG Polymers 0.000 description 2
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- UMFJAHHVKNCGLG-UHFFFAOYSA-N n-Nitrosodimethylamine Chemical compound CN(C)N=O UMFJAHHVKNCGLG-UHFFFAOYSA-N 0.000 description 2
- RSILPKJOINTLOK-UJRRQQMQSA-N n-[2-[2-[(2r,3r,4r,5r,6r)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyethoxy]ethyl]-3-(4-methyl-2,5-dioxofuran-3-yl)propanamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OCCOCCNC(=O)CCC1=C(C)C(=O)OC1=O RSILPKJOINTLOK-UJRRQQMQSA-N 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 210000000633 nuclear envelope Anatomy 0.000 description 2
- 108060005597 nucleoplasmin Proteins 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 238000013081 phylogenetic analysis Methods 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 229960003471 retinol Drugs 0.000 description 2
- 235000020944 retinol Nutrition 0.000 description 2
- 239000011607 retinol Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000003196 serial analysis of gene expression Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- 108091006106 transcriptional activators Proteins 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- GKSPIZSKQWTXQG-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[1-(pyridin-2-yldisulfanyl)ethyl]benzoate Chemical compound C=1C=C(C(=O)ON2C(CCC2=O)=O)C=CC=1C(C)SSC1=CC=CC=N1 GKSPIZSKQWTXQG-UHFFFAOYSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- MWRBNPKJOOWZPW-NYVOMTAGSA-N 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-NYVOMTAGSA-N 0.000 description 1
- XXMFJKNOJSDQBM-UHFFFAOYSA-N 2,2,2-trifluoroacetic acid;hydrate Chemical compound [OH3+].[O-]C(=O)C(F)(F)F XXMFJKNOJSDQBM-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- KCYOZNARADAZIZ-CWBQGUJCSA-N 2-[(2e,4e,6e,8e,10e,12e,14e)-15-(4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-2-yl)-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaen-2-yl]-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-6-ol Chemical compound O1C2(C)CC(O)CC(C)(C)C2=CC1C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)C1C=C2C(C)(C)CCCC2(C)O1 KCYOZNARADAZIZ-CWBQGUJCSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- SPCKHVPPRJWQRZ-UHFFFAOYSA-N 2-benzhydryloxy-n,n-dimethylethanamine;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 SPCKHVPPRJWQRZ-UHFFFAOYSA-N 0.000 description 1
- 101150092649 3a gene Proteins 0.000 description 1
- 101150006159 3b gene Proteins 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 241001634120 Adeno-associated virus - 5 Species 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 1
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 1
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 102000005427 Asialoglycoprotein Receptor Human genes 0.000 description 1
- 208000036640 Asperger disease Diseases 0.000 description 1
- 201000006062 Asperger syndrome Diseases 0.000 description 1
- 102000002785 Ataxin-10 Human genes 0.000 description 1
- 101710147490 Ataxin-8 Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 101150025446 Atn1 gene Proteins 0.000 description 1
- 101150070808 Atxn10 gene Proteins 0.000 description 1
- 101150074725 Atxn3 gene Proteins 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 229940125759 BACE1 protease inhibitor Drugs 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010061692 Benign muscle neoplasm Diseases 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101150111062 C gene Proteins 0.000 description 1
- 101710117545 C protein Proteins 0.000 description 1
- 108010027741 CASP8 and FADD Like Apoptosis Regulating Protein Proteins 0.000 description 1
- 102100025752 CASP8 and FADD-like apoptosis regulator Human genes 0.000 description 1
- 108010014064 CCCTC-Binding Factor Proteins 0.000 description 1
- 101150029409 CFTR gene Proteins 0.000 description 1
- 101150018129 CSF2 gene Proteins 0.000 description 1
- 101150069031 CSN2 gene Proteins 0.000 description 1
- 101150066398 CXCR4 gene Proteins 0.000 description 1
- 101100385576 Caenorhabditis elegans ctg-1 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102000055007 Cartilage Oligomeric Matrix Human genes 0.000 description 1
- 108700005376 Cartilage Oligomeric Matrix Proteins 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 102100029855 Caspase-3 Human genes 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- ZKLPARSLTMPFCP-UHFFFAOYSA-N Cetirizine Chemical compound C1CN(CCOCC(=O)O)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZKLPARSLTMPFCP-UHFFFAOYSA-N 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108091028732 Concatemer Proteins 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- KCYOZNARADAZIZ-PPBBKLJYSA-N Cryptochrome Natural products O[C@@H]1CC(C)(C)C=2[C@@](C)(O[C@H](/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(\C)/[C@H]3O[C@@]4(C)C(C(C)(C)CCC4)=C3)/C)\C)/C)C=2)C1 KCYOZNARADAZIZ-PPBBKLJYSA-N 0.000 description 1
- 108010037139 Cryptochromes Proteins 0.000 description 1
- 101150074775 Csf1 gene Proteins 0.000 description 1
- 102100028908 Cullin-3 Human genes 0.000 description 1
- 125000002038 D-arginyl group Chemical class N[C@@H](C(=O)*)CCCNC(=N)N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 108010009540 DNA (Cytosine-5-)-Methyltransferase 1 Proteins 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 102100022928 DNA repair protein RAD51 homolog 1 Human genes 0.000 description 1
- 108010063362 DNA-(Apurinic or Apyrimidinic Site) Lyase Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101150007297 Dnmt1 gene Proteins 0.000 description 1
- 238000007355 Double Michael addition reaction Methods 0.000 description 1
- 102000000331 Double-stranded RNA-binding domains Human genes 0.000 description 1
- 108050008793 Double-stranded RNA-binding domains Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 102100025682 Dystroglycan 1 Human genes 0.000 description 1
- 108010071885 Dystroglycans Proteins 0.000 description 1
- 101710202499 E1A-binding protein p400 Proteins 0.000 description 1
- 102100039793 E3 ubiquitin-protein ligase RAG1 Human genes 0.000 description 1
- 101150030532 F7 gene Proteins 0.000 description 1
- 208000034846 Familial Amyloid Neuropathies Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 208000001914 Fragile X syndrome Diseases 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 102100036698 Golgi reassembly-stacking protein 1 Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 241000251188 Holocephali Species 0.000 description 1
- 101000924727 Homo sapiens Alternative prion protein Proteins 0.000 description 1
- 101000765700 Homo sapiens Ataxin-8 Proteins 0.000 description 1
- 101000785083 Homo sapiens Atrophin-1 Proteins 0.000 description 1
- 101000916238 Homo sapiens Cullin-3 Proteins 0.000 description 1
- 101001055227 Homo sapiens Cytokine receptor common subunit gamma Proteins 0.000 description 1
- 101000620735 Homo sapiens DNA repair protein RAD51 homolog 1 Proteins 0.000 description 1
- 101001137256 Homo sapiens DNA-(apurinic or apyrimidinic site) lyase Proteins 0.000 description 1
- 101000715390 Homo sapiens E3 ubiquitin-protein ligase CBL Proteins 0.000 description 1
- 101000744443 Homo sapiens E3 ubiquitin-protein ligase RAG1 Proteins 0.000 description 1
- 101000614618 Homo sapiens Junctophilin-3 Proteins 0.000 description 1
- 101000573901 Homo sapiens Major prion protein Proteins 0.000 description 1
- 101001005668 Homo sapiens Mastermind-like protein 3 Proteins 0.000 description 1
- 101000614988 Homo sapiens Mediator of RNA polymerase II transcription subunit 12 Proteins 0.000 description 1
- 101001013208 Homo sapiens Mediator of RNA polymerase II transcription subunit 15 Proteins 0.000 description 1
- 101000954986 Homo sapiens Merlin Proteins 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 101000738911 Homo sapiens Mismatch repair endonuclease PMS2 Proteins 0.000 description 1
- 101000597928 Homo sapiens Numb-like protein Proteins 0.000 description 1
- 101000706121 Homo sapiens Parvalbumin alpha Proteins 0.000 description 1
- 101001091365 Homo sapiens Plasma kallikrein Proteins 0.000 description 1
- 101000609211 Homo sapiens Polyadenylate-binding protein 2 Proteins 0.000 description 1
- 101000831949 Homo sapiens Receptor for retinol uptake STRA6 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 1
- 101000701440 Homo sapiens Stanniocalcin-1 Proteins 0.000 description 1
- 101000799388 Homo sapiens Thiopurine S-methyltransferase Proteins 0.000 description 1
- 101000659879 Homo sapiens Thrombospondin-1 Proteins 0.000 description 1
- 101000625338 Homo sapiens Transcriptional adapter 1 Proteins 0.000 description 1
- 101000626636 Homo sapiens Transcriptional adapter 2-beta Proteins 0.000 description 1
- 101000725972 Homo sapiens Transcriptional repressor CTCF Proteins 0.000 description 1
- 101000892344 Homo sapiens Transmembrane protein 185A Proteins 0.000 description 1
- 101000606090 Homo sapiens Tyrosinase Proteins 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- 101150047851 IL2RG gene Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 108010001127 Insulin Receptor Proteins 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 108010019421 Janus Kinase 3 Proteins 0.000 description 1
- 239000013283 Janus particle Substances 0.000 description 1
- 102100040488 Junctophilin-3 Human genes 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 238000008214 LDL Cholesterol Methods 0.000 description 1
- 108010028554 LDL Cholesterol Proteins 0.000 description 1
- 102000000853 LDL receptors Human genes 0.000 description 1
- 108010001831 LDL receptors Proteins 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 1
- 229910015837 MSH2 Inorganic materials 0.000 description 1
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010031099 Mannose Receptor Proteins 0.000 description 1
- 102100025134 Mastermind-like protein 3 Human genes 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 102100025169 Max-binding protein MNT Human genes 0.000 description 1
- 102100021070 Mediator of RNA polymerase II transcription subunit 12 Human genes 0.000 description 1
- 101710179287 Mediator of RNA polymerase II transcription subunit 15 Proteins 0.000 description 1
- 102100037106 Merlin Human genes 0.000 description 1
- 206010027457 Metastases to liver Diseases 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 108010074346 Mismatch Repair Endonuclease PMS2 Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100452019 Mus musculus Icam2 gene Proteins 0.000 description 1
- 101100078999 Mus musculus Mx1 gene Proteins 0.000 description 1
- 101100101250 Mus musculus Th gene Proteins 0.000 description 1
- 206010028289 Muscle atrophy Diseases 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 201000004458 Myoma Diseases 0.000 description 1
- 206010068871 Myotonic dystrophy Diseases 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 208000033383 Neuroendocrine tumor of pancreas Diseases 0.000 description 1
- 108010085793 Neurofibromin 1 Proteins 0.000 description 1
- 101100385413 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) csm-3 gene Proteins 0.000 description 1
- 208000025464 Norrie disease Diseases 0.000 description 1
- 102100036986 Numb-like protein Human genes 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108010049358 Oncogene Protein p65(gag-jun) Proteins 0.000 description 1
- 241000906034 Orthops Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 108010041472 Poly(A)-Binding Protein II Proteins 0.000 description 1
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 1
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 1
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 101800001494 Protease 2A Proteins 0.000 description 1
- 101800001066 Protein 2A Proteins 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 102000006478 Protein Phosphatase 2 Human genes 0.000 description 1
- 108010058956 Protein Phosphatase 2 Proteins 0.000 description 1
- 102000002727 Protein Tyrosine Phosphatase Human genes 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 102100030469 Putative protein ATXN8OS Human genes 0.000 description 1
- 101710204903 Putative protein ATXN8OS Proteins 0.000 description 1
- 244000305267 Quercus macrolepis Species 0.000 description 1
- 235000016976 Quercus macrolepis Nutrition 0.000 description 1
- 102000001195 RAD51 Human genes 0.000 description 1
- 102000001183 RAG-1 Human genes 0.000 description 1
- 108060006897 RAG1 Proteins 0.000 description 1
- 108010068097 Rad51 Recombinase Proteins 0.000 description 1
- 101100047461 Rattus norvegicus Trpm8 gene Proteins 0.000 description 1
- 102100024235 Receptor for retinol uptake STRA6 Human genes 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 102100027609 Rho-related GTP-binding protein RhoD Human genes 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 1
- 101710089523 Signal recognition particle 14 kDa protein Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 101710142157 Stanniocalcin-1 Proteins 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241001633172 Streptococcus thermophilus LMD-9 Species 0.000 description 1
- 101100166147 Streptococcus thermophilus cas9 gene Proteins 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229940126530 T cell activator Drugs 0.000 description 1
- 238000010459 TALEN Methods 0.000 description 1
- 108091084976 TET family Proteins 0.000 description 1
- 101150070537 Tet3 gene Proteins 0.000 description 1
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 1
- 208000002903 Thalassemia Diseases 0.000 description 1
- 238000012338 Therapeutic targeting Methods 0.000 description 1
- 102100034162 Thiopurine S-methyltransferase Human genes 0.000 description 1
- 102000004377 Thiopurine S-methyltransferases Human genes 0.000 description 1
- 108090000958 Thiopurine S-methyltransferases Proteins 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241000283907 Tragelaphus oryx Species 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 102100025043 Transcriptional adapter 1 Human genes 0.000 description 1
- 102100024858 Transcriptional adapter 2-beta Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 101710197968 Transmembrane protein 185A Proteins 0.000 description 1
- 108010020764 Transposases Proteins 0.000 description 1
- 102000008579 Transposases Human genes 0.000 description 1
- 208000034953 Twin anemia-polycythemia sequence Diseases 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 101710112792 Tyrosine-protein kinase JAK3 Proteins 0.000 description 1
- 108010032099 V(D)J recombination activating protein 2 Proteins 0.000 description 1
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 1
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 108091093126 WHP Posttrascriptional Response Element Proteins 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 210000004504 adult stem cell Anatomy 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 102000009899 alpha Karyopherins Human genes 0.000 description 1
- 108010077099 alpha Karyopherins Proteins 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- CWJNMKKMGIAGDK-UHFFFAOYSA-N amtolmetin guacil Chemical compound COC1=CC=CC=C1OC(=O)CNC(=O)CC(N1C)=CC=C1C(=O)C1=CC=C(C)C=C1 CWJNMKKMGIAGDK-UHFFFAOYSA-N 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000036436 anti-hiv Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 108010006523 asialoglycoprotein receptor Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- KCYOZNARADAZIZ-XZOHMNSDSA-N beta-cryptochrome Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C3OC4(C)CCCC(C)(C)C4=C3 KCYOZNARADAZIZ-XZOHMNSDSA-N 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- VJLOFJZWUDZJBX-UHFFFAOYSA-N bis(2-hydroxyethyl)azanium;chloride Chemical compound [Cl-].OCC[NH2+]CCO VJLOFJZWUDZJBX-UHFFFAOYSA-N 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- GHWVXCQZPNWFRO-UHFFFAOYSA-N butane-2,3-diamine Chemical group CC(N)C(C)N GHWVXCQZPNWFRO-UHFFFAOYSA-N 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- 102220354910 c.4C>G Human genes 0.000 description 1
- 229940022399 cancer vaccine Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 210000000354 cell of hensen Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 229960001803 cetirizine Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 210000000262 cochlear duct Anatomy 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 101150055601 cops2 gene Proteins 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 210000005257 cortical tissue Anatomy 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- SPTYHKZRPFATHJ-HYZXJONISA-N dT6 Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)CO)[C@@H](O)C1 SPTYHKZRPFATHJ-HYZXJONISA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- RNPXCFINMKSQPQ-UHFFFAOYSA-N dicetyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCC RNPXCFINMKSQPQ-UHFFFAOYSA-N 0.000 description 1
- 229940093541 dicetylphosphate Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 101150015424 dmd gene Proteins 0.000 description 1
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 238000010387 dual polarisation interferometry Methods 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 210000000959 ear middle Anatomy 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 108010050663 endodeoxyribonuclease CreI Proteins 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229950005470 eteplirsen Drugs 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012537 formulation buffer Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000007849 functional defect Effects 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000037440 gene silencing effect Effects 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 238000010448 genetic screening Methods 0.000 description 1
- 238000011331 genomic analysis Methods 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000034737 hemoglobinopathy Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 210000004024 hepatic stellate cell Anatomy 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 230000000971 hippocampal effect Effects 0.000 description 1
- 210000004295 hippocampal neuron Anatomy 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 102000049902 human IL2RG Human genes 0.000 description 1
- 102000049240 human PVALB Human genes 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 108700032552 influenza virus INS1 Proteins 0.000 description 1
- 208000018337 inherited hemoglobinopathy Diseases 0.000 description 1
- 210000001445 inner phalangeal cell Anatomy 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 102000002467 interleukin receptors Human genes 0.000 description 1
- 108010093036 interleukin receptors Proteins 0.000 description 1
- 102000009634 interleukin-1 receptor antagonist activity proteins Human genes 0.000 description 1
- 108040001669 interleukin-1 receptor antagonist activity proteins Proteins 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000001630 jejunum Anatomy 0.000 description 1
- 108010012212 junctophilin Proteins 0.000 description 1
- 102000019028 junctophilin Human genes 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 150000002634 lipophilic molecules Chemical class 0.000 description 1
- 238000007449 liver function test Methods 0.000 description 1
- 230000007056 liver toxicity Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004777 loss-of-function mutation Effects 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000005171 mammalian brain Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 230000004973 motor coordination Effects 0.000 description 1
- 229920006030 multiblock copolymer Polymers 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 231100000243 mutagenic effect Toxicity 0.000 description 1
- NFQBIAXADRDUGK-KWXKLSQISA-N n,n-dimethyl-2,3-bis[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/CCCCC NFQBIAXADRDUGK-KWXKLSQISA-N 0.000 description 1
- YNTOKMNHRPSGFU-UHFFFAOYSA-N n-Propyl carbamate Chemical compound CCCOC(N)=O YNTOKMNHRPSGFU-UHFFFAOYSA-N 0.000 description 1
- 210000004898 n-terminal fragment Anatomy 0.000 description 1
- 229940042880 natural phospholipid Drugs 0.000 description 1
- 230000032405 negative regulation of neuron apoptotic process Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000009438 off-target cleavage Effects 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000000278 osteoconductive effect Effects 0.000 description 1
- 230000002138 osteoinductive effect Effects 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 210000002705 pancreatic stellate cell Anatomy 0.000 description 1
- 238000011192 particle characterization Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- HIGSLXSBYYMVKI-UHFFFAOYSA-N pralidoxime chloride Chemical compound [Cl-].C[N+]1=CC=CC=C1\C=N\O HIGSLXSBYYMVKI-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 210000002243 primary neuron Anatomy 0.000 description 1
- 208000022256 primary systemic amyloidosis Diseases 0.000 description 1
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 230000004845 protein aggregation Effects 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 108020000494 protein-tyrosine phosphatase Proteins 0.000 description 1
- 230000004144 purine metabolism Effects 0.000 description 1
- 210000000449 purkinje cell Anatomy 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 208000019465 refractory cytopenia of childhood Diseases 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 230000036390 resting membrane potential Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 210000001079 scala tympani Anatomy 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 210000003949 semicircular duct Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000036362 sensorimotor function Effects 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000002672 stereotactic surgery Methods 0.000 description 1
- 102000005969 steroid hormone receptors Human genes 0.000 description 1
- 108020003113 steroid hormone receptors Proteins 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 210000003523 substantia nigra Anatomy 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000010809 targeting technique Methods 0.000 description 1
- 210000001103 thalamus Anatomy 0.000 description 1
- 210000000211 third ventricle Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 108091006107 transcriptional repressors Proteins 0.000 description 1
- 230000031998 transcytosis Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 201000007905 transthyretin amyloidosis Diseases 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229960003862 vemurafenib Drugs 0.000 description 1
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 description 1
- 230000007332 vesicle formation Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 208000027121 wild type ATTR amyloidosis Diseases 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1082—Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
Definitions
- the present invention generally relates to the delivery, engineering, optimization and therapeutic applications of systems, methods, and compositions used for the control of gene expression involving sequence targeting, such as genome perturbation or gene-editing, that relate to Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and components thereof.
- sequence targeting such as genome perturbation or gene-editing
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- the CRISPR-Cas system does not require the generation of customized proteins to target specific sequences but rather a single Cas enzyme can be programmed by a short RNA molecule to recognize a specific DNA target.
- Adding the CRISPR-Cas system to the repertoire of genome sequencing techniques and analysis methods may significantly simplify the methodology and accelerate the ability to catalog and map genetic factors associated with a diverse range of biological functions and diseases.
- An exemplary CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
- the guide sequence is linked to a tracr mate sequence, which in turn hybridizes to a tracr sequence.
- the invention provides methods for using one or more elements/components of a CRISPR-Cas system via a particle delivery formulation and/or system as a means to modify a target polynucleotide.
- the particle delivery formulation and/or system are nanoparticles.
- the CRISPR complex of the invention provides an effective means for modifying a target polynucleotide.
- the CRISPR complex of the invention has a wide variety of utilities including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types in various tissues and organs, e.g., endothelial cells, skin, heart, mucle or lung.
- the CRISPR complex of the invention has a broad spectrum of applications in, e.g., gene or genome editing, gene therapy, drug discovery, drug screening, disease diagnosis, and prognosis.
- the present invention contemplates uses in medicine, and gene or genome editing.
- the modification may occur ex vivo or in vitro, for instance in a cell culture and in some instances not in vivo. In other embodiments, it may occur in vivo.
- the invention provides a method of modifying an organism or a non- human organism by manipulation of a target sequence in a genomic locus of interest comprising: delivering via nanoparticle complex(es) a non-naturally occurring or engineered composition comprising :
- the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence
- the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence and the polynucleotide sequence encoding a CRISPR enzyme is DNA or RNA
- a polynucleotide sequence comprising a tracr sequence, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence, and the polynucleotide sequence encoding a CRISPR enzyme is DNA or RNA.
- the CRISPR enzyme is a type I or III CRISPR enzyme, preferably a type II CRISPR enzyme.
- This type II CRISPR enzyme may be any Cas enzyme.
- a preferred Cas enzyme may be identified as Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system.
- the Cas9 enzyme is from, or is derived from, spCas9 or saCas9. It will be appreciated that SpCas9 or SaCas9 are those from or derived from S. pyogenes or S. aureus Cas9.
- the Cas enzyme can be for instance any naturally-occurring bacterial Cas9 as well as any chimaeras, mutants, homologs or orthologs. Many of the residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes (annotated alternatively as SpCas9 or spCas9).
- this invention includes many more Cas9s from other species of microbes, such as SpCas9 derived from S. pyogenes, SaCas9 derived from S. aureus, St1Cas9 derived from S. thermophilus and so forth.
- the skilled person will be able to determine appropriate corresponding residues in Cas9 enzymes other than SpCas9 by comparison of the relevant amino acid sequences.
- a specific amino acid replacement is referred to using the SpCas9 numbering, then, unless the context makes it apparent this is not intended to refer to other Cas9 enzymes, the disclosure is intended to encompass corresponding modifications in other Cas9 enzymes.
- the Cas9 enzyme can be constitutively present, or delivered via a nanoparticle, or via a vector expressing the Cas9 enzyme, e.g., by sequential or co-administration of a nanoparticle containing or vector containing nucleic acid molecule(s) for in vivio expression of the Cas9 with the nanoparticle containing RNA components of the CRISPR system.
- the nanoparticle can also deliver the vector,
- Cas9 orthologs typically share the general organization of 3-4 RuvC domains and a HNH domain.
- the 5' most RuvC domain cleaves the non-complementary strand
- the HNH domain cleaves the complementary strand. All notations are in reference to the guide sequence.
- the catalytic residue in the 5' RuvC domain is identified through homology comparison of the Cas9 of interest with other Cas9 orthologs (from S. pyogenes type II CRISPR locus, S. thermophilus CRISPR locus 1, S.
- thermophilus CRISPR locus 3 and Franciscilla novicida type II CRISPR locus
- conserved Asp residue (D10) is mutated to alanine to convert Cas9 into a complementary-strand nicking enzyme.
- conserved His and Asn residues in the HNH domains are mutated to Alanine to convert Cas9 into a non- complementary-strand nicking enzyme.
- both sets of mutations may be made, to convert Cas9 into a non-cutting enzyme.
- the Cas9 may comprise one or more mutations and may be used as a generic DNA binding protein with or without fusion to a functional domain.
- the mutations may be artificially introduced mutations or gain- or loss-of- function mutations.
- the mutations may include but are not limited to mutations in one of the catalytic domains (D10 and H840) in the RuvC and HNH catalytic domains respectively. Further mutations have been characterized and may be used in one or more compositions of the invention.
- the mutated Cas9 enzyme may be fused to a protein domain, e.g., such as a transcriptional activation domain.
- the transcriptional activation domain may be VP64.
- the transcriptional repressor domain may be KRAB or SID4X.
- mutated Cas 9 enzyme can be fused to domains which include but are not limited to a transcriptional activator, repressor, a recombinase, a transposase, a histone remodeler, a demethylase, a DNA methyltransferase, a cryptochrome, a light inducible/controllable domain or a chemically inducible/controllable domain.
- the Cas9 in the invention may be a chimeric Cas9 proteins; e.g., a Cas9 having enhanced function by being a chimera. Chimeric Cas9 proteins may be new Cas9 containing fragments from more than one naturally occurring Cas9.
- the Cas of the CRISPR-Cas system can be in a form to reducing the toxicity of Cas enzymes.
- the Cas9 can be delivered into the cell in the form of mRNA, for transient expression of the enzyme thereby reducing toxicity.
- the expression of Cas9 can be under the control of an inducible promoter.
- the tracrRNA and direct repeat sequences can be mutant sequences or the invention can encompass RNA of the CRISPR-Cas system that includes mutant chimeric guide sequences that allow for enhancing performance of these RNAs in cells.
- a suitable promoter such as the Pol III promoter, such as a U6 promoter, can be added onto the guide RNA that is advantageously delivered via nanoparticle.
- aspects of the invention also relate to the guide RNA being transcribed in vitro or ordered from a synthesis company and directly transfected. Expression of guide RNAs under the control of the T7 promoter driven by the expression of T7 polymerase in the cell is also envisioned.
- the cell is a eukaryotic cell.
- the eukaryotic cell is a human cell.
- the human cell is a patient specific cell.
- codon optimized sequence in this instance optimized for humans (i.e. being optimized for expression in humans) is provided herein, see the SaCas9 human codon optimized sequence. Whilst this is preferred, it will be appreciated that other examples are possible and codon optimization for a host species other than human, or for codon optimization for specific organs such as the brain, is known.
- the RNA sequence includes the feature.
- the DNA sequence is or can be transcribed into the RNA that comprises the feature at issue.
- the feature is a protein, such as the CRISPR enzyme
- the DNA or RNA sequence referred to is, or can be, translated (and in the case of DNA transcribed first).
- an RNA encoding the CRISPR enzyme is provided to a cell, it is understood that the RNA is capable of being translated by the cell into which it is delivered.
- the invention provides a method of modifying an organism, e.g., mammal including human or a non-human mammal or organism by manipulation of a target sequence in a genomic locus of interest comprising delivering a non- naturally occurring or engineered composition comprising a nanoparticle, wherein the composition comprises: (A) a non-naturally occurring or engineered composition comprising a vector system comprising one or more vectors comprising I.
- a first regulatory element operably linked to a CRISPR-Cas system chimeric RNA (chiRNA) polynucleotide sequence wherein the polynucleotide sequence comprises (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, (b) a tracr mate sequence, and (c) a tracr sequence, and II.
- chiRNA CRISPR-Cas system chimeric RNA
- a first regulatory element operably linked to (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, and (b) at least one or more tracr mate sequences, II. a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, and III.
- components I, II and III are located on the same or different vectors of the system, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence.
- components I, II and III are delivered together. In other embodiments, components I and II are delivered separately. In other embodiments, components I and III are delivered together, while component II is delivered separately.
- the invention provides a method of modifying an organism, e.g., mammal including human or a non-human mammal or organism by manipulation of a target sequence in a genomic locus of interest, e.g., in heart, muscle or lung tissue or cells, comprising delivering a non-naturally occurring or engineered composition comprising by nanoparticle complex(es), wherein the composition comprises: (A) a non- naturally occurring or engineered composition comprising a vector system comprising one or more vectors comprising I.
- a first regulatory element operably linked to a CRISPR-Cas system RNA or chimeric RNA (chiRNA) polynucleotide sequence wherein the polynucleotide sequence comprises (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, (b) a tracr mate sequence, and (c) a tracr sequence, and II.
- a second regulatory element operably linked to nucleotide sequence encoding a CRISPR enzyme advantageously comprising at least one or more nuclear localization sequences (or advantageiously two nuclear localization sequences), wherein (a), (b) and (c) are arranged in a 5’ to 3’ orientation, wherein components I and II are located on the same or different vectors of the system, wherein vector or vectors involving at least component I or II or both I and II are delivered via nanoparticles or nanoparticle complex(es); and wherein when transcribed, the tracr mate sequence is hybridzable to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence, or (B) a non-naturally occurring or engineered composition comprising a vector system comprising
- a first regulatory element operably linked to (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, and (b) at least one or more tracr mate sequences, II. a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, and III.
- a third regulatory element operably linked to a tracr sequence wherein components I, II and III are located on the same or different vectors of the system, wherein vector(s) as to at least one of I, II and III, and advantageously as to all of I, II and III are delivered via nanoparticles or nanoparticle complex(es), and wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence.
- components I, II and III are delivered together. In other embodiments, components I and II are delivered separately. In other embodiments, components I and III are delivered together, while component II is delivered separately. In any event use of nanoparticles, especially to target heart, muscle or lung tissue or cells , are aspects of the invention.
- Applicants mean the alteration of the target sequence, which may include the epigenetic manipulation of a target sequence.
- This epigenetic manipulation may be of the chromatin state of a target sequence, such as by modification of the methylation state of the target sequence (i.e. addition or removal of methylation or methylation patterns or CpG islands), histone modification, increasing or reducing accessibility to the target sequence, or by promoting 3D folding.
- the invention provides a method of treating or inhibiting a condition caused by a defect in a target sequence in a genomic locus of interest in a subject (e.g., mammal or human) or a non-human subject (e.g., mammal) in need thereof comprising modifying the subject or a non-human subject by manipulation of the target sequence and wherein the condition is susceptible to treatment or inhibition by manipulation of the target sequence comprising providing treatment comprising: delivering a non-naturally occurring or engineered composition comprising by nanoparticle complex(es), wherein the composition comprises: (A) a non-naturally occurring or engineered composition comprising a vector system comprising one or more vectors comprising I.
- a first regulatory element operably linked to a CRISPR-Cas system RNA or chimeric RNA (chiRNA) polynucleotide sequence wherein the polynucleotide sequence comprises (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, (b) a tracr mate sequence, and (c) a tracr sequence, and II.
- a second regulatory element operably linked to nucleotide sequence encoding a CRISPR enzyme advantageously comprising at least one or more nuclear localization sequences (or advantageiously two nuclear localization sequences), wherein (a), (b) and (c) are arranged in a 5’ to 3’ orientation, wherein components I and II are located on the same or different vectors of the system, wherein vector or vectors involving at least component I or II or both I and II are delivered via nanoparticles or nanoparticle complex(es); and wherein when transcribed, the tracr mate sequence is hybridzable to the tracr sequence and the guide sequence directs sequence- specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence, or (B) a non-naturally occurring or engineered composition comprising a vector system comprising
- a first regulatory element operably linked to (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, and (b) at least one or more tracr mate sequences, II. a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, and III.
- a third regulatory element operably linked to a tracr sequence wherein components I, II and III are located on the same or different vectors of the system, wherein vector(s) as to at least one of I, II and III, and advantageously as to all of I, II and III are delivered via nanoparticles or nanoparticle complex(es), and wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence.
- components I, II and III are delivered together. In other embodiments, components I and II are delivered separately. In other embodiments, components I and III are delivered together, while component II is delivered separately. In any event use of nanoparticles, especially to target heart, muscle or lung tissue or cells , are aspects of the invention.
- Some methods of the invention can include inducing expression.
- the organism or subject is a eukaryote (including mammal including human) or a non-human eukaryote or a non-human animal or a non-human mammal.
- the organism or subject is a non-human animal, and may be an arthropod, for example, an insect, or may be a nematode.
- the organism or subject is a plant.
- the organism or subject is a mammal or a non-human mammal.
- a non-human mammal may be for example a rodent (preferably a mouse or a rat), an ungulate, or a primate.
- the invention comprehends delivering a CRISPR enzyme comprising delivering to a cell mRNA encoding the CRISPR enzyme, e.g., via nanoparticle complex(es).
- the CRISPR enzyme is a Cas9.
- the invention further comprehends nanoparticle complex(es) containing CRISPR complex components or vector(s) for expression, e.g., RNA of the CRISPR complex, or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme), for use in medicine or in therapy, or more generally a method according to the invention, including in vivo, in vitro or ex vivo gene or genome editing.
- the CRISPR enzyme comprises one or more mutations in one of the catalytic domains.
- mutations of the CRISPR enzyme when the enzyme is not SpCas9, mutations may be made at any or all residues corresponding to positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 (which may be ascertained for instance by standard sequence comparison tools).
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the invention provides as to any or each or all embodiments herein-discussed wherein the CRISPR enzyme comprises at least one or more, or at least two or more mutations, wherein the at least one or more mutation or the at least two or more mutations is as to D10, E762, H840, N854, N863, or D986 according to SpCas9 protein, e.g., D10A, E762A, H840A, N854A, N863A and/or D986A as to SpCas9, or N580 according to SaCas9, e.g., N580A as to SaCas9, or any corresponding mutation(s) in a Cas9 of an ortholog to Sp or Sa, or the CRISPR enzyme comprises at least one mutation wherein at least H840 or N863A as to Sp Cas9 or N580A as to Sa Cas9 is mutated; e.g., wherein the CRISPR enzyme comprises H840A, or D10A, where
- the CRISPR enzyme is a Cas9 nickase.
- the invention envisions the use of nanoparticle complex(es) containing CRISPR complex components or vector(s) for expression, e.g., RNA of the CRISPR complex, or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme), for the manufacture of a medicament for in vivo, in vitro or ex vivo gene or genome editing or for use in a method according of the invention.
- the invention comprehends nanoparticle complex(es) containing CRISPR complex components or vector(s) for expression, e.g., RNA of the CRISPR complex, or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme), , wherein the target sequence is flanked at its 3’ end by a PAM (protospacer adjacent motif) sequence comprising 5’-motif, especially where the Cas9 is (or is derived from) S. pyogenes or S. aureus Cas9.
- a suitable PAM is 5'-NRG or 5'-NNGRR (where N is any Nucleotide) for SpCas9 or SaCas9 enzymes (or derived enzymes).
- SpCas9 or SaCas9 are those from or derived from S. pyogenes or S. aureus Cas9, and SaCas9 is presently considered advantageous.
- the invention in some embodiments comprehends a method of modifying an organism or a non-human organism by minimizing off-target modifications by manipulation of a first and a second target sequence on opposite strands of a DNA duplex in a genomic locus of interest in a cell comprising delivering by at least one nanoparticle complex a non-naturally occurring or engineered composition or component thereof, said composition comprising :
- a first CRISPR-Cas system chimeric RNA (chiRNA) polynucleotide sequence wherein the first polynucleotide sequence comprises:
- a second CRISPR-Cas system chiRNA polynucleotide sequence wherein the second polynucleotide sequence comprises:
- a polynucleotide sequence encoding a CRISPR enzyme comprising at least one or more nuclear localization sequences and comprising one or more mutations wherein (a), (b) and (c) are arranged in a 5’ to 3’ orientation, wherein when transcribed, the first and the second tracr mate sequence hybridize to the first and second tracr sequence respectively and the first and the second guide sequence directs sequence-specific binding of a first and a second CRISPR complex to the first and second target sequences respectively, wherein the first CRISPR complex comprises the CRISPR enzyme complexed with (1) the first guide sequence that is hybridizable to the first target sequence, and (2) the first tracr mate sequence that is hybridizable to the first tracr sequence, wherein the second CRISPR complex comprises the CRISPR enzyme complexed with (1) the second guide sequence that is hybridizable to the second target sequence, and (2) the second tracr mate sequence that is hybridizable to the second tracr sequence,
- any or all of the polynucleotide sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA; and RNA is advantageously delived via nanoparticle complex(es).
- the polynucleotides comprising the sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA and are delivered via nanoparticles.
- the first and second tracr mate sequence share 100% identity and/or the first and second tracr sequence share 100% identity.
- the polynucleotides may be comprised within a vector system comprising one or more vectors.
- the CRISPR enzyme is a Cas9 enzyme, e.g. SpCas9 or SaCas9.
- the CRISPR enzyme comprises one or more mutations in a catalytic domain, wherein the one or more mutations are selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the CRISPR enzyme has the D10A mutation.
- the first CRISPR enzyme has one or more mutations such that the enzyme is a complementary strand nicking enzyme
- the second CRISPR enzyme has one or more mutations such that the enzyme is a non-complementary strand nicking enzyme.
- the first enzyme may be a non-complementary strand nicking enzyme
- the second enzyme may be a complementary strand nicking enzyme.
- the first guide sequence directing cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence directing cleavage of the other strand near the second target sequence results in a 5’ overhang.
- the 5’ overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5’ overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs.
- the invention in some embodiments comprehends a method of modifying an organism or a non-human organism by minimizing off-target modifications by manipulation of a first and a second target sequence on opposite strands of a DNA duplex in a genomic locus of interest in a cell comprising delivering via at least one nanoparticle complex a non-naturally occurring or engineered composition or component thereof, said composition comprising a vector system comprising one or more vectors comprising
- the tracr mate sequence hybridizes to the tracr sequence and the first and the second guide sequence direct sequence-specific binding of a first and a second CRISPR complex to the first and second target sequences respectively
- the first CRISPR complex comprises the CRISPR enzyme complexed with (1) the first guide sequence that is hybridizable to the first target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence
- the second CRISPR complex comprises the CRISPR enzyme complexed with (1) the second guide sequence that is hybridizable to the second target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence
- the polynucleotide sequence encoding a CRISPR enzyme is DNA or RNA
- the first guide sequence directs cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence
- the invention also provides a vector system as described herein.
- the system may comprise one, two, three or four different vectors; and the system may comprise one, two, three or four different nanoparticle complex(es) deliverying the component(s) of the system.
- Components I, II, III and IV may thus be located on one, two, three or four different vectors, and may be delivered by one, two, three or four different nanoparticle complex(es) (with other delivery means envisioned for those portions of the system not delived via nanoparticle complex(es); and all combinations for possible locations and complex(es) of the components are herein envisaged, for example: components I, II, III and IV can be located on the same vector; components I, II, III and IV can each be located on different vectors; components I, II, II I and IV may be located on a total of two or three different vectors, with all combinations of locations envisaged, etc.; and components I, II, III and IV can be delivered via the nanoparticle complex; components I, II, III and IV can be delivered via the nanoparticle complex; components I, II, II I and IV may be delivered via a total of two or three different complex(es), with all combinations of locations envisaged, etc. And complexes that target lung, heart or muscle tissue or cells are advantageous
- any or all of the polynucleotide sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA; and advantageously delivered via nanoparticle complex(es).
- the first and second tracr mate sequence share 100% identity and/or the first and second tracr sequence share 100% identity.
- the CRISPR enzyme is a Cas9 enzyme, e.g. SpCas9.
- the CRISPR enzyme comprises one or more mutations in a catalytic domain, wherein the one or more mutations are selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the CRISPR enzyme has the D10A mutation.
- the first CRISPR enzyme has one or more mutations such that the enzyme is a complementary strand nicking enzyme
- the second CRISPR enzyme has one or more mutations such that the enzyme is a non- complementary strand nicking enzyme.
- the first enzyme may be a non- complementary strand nicking enzyme
- the second enzyme may be a complementary strand nicking enzyme.
- one or more of the vectors or viral vectors are delivered via nanoparticles.
- the first guide sequence directing cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence directing cleavage of the opposite strand near the second target sequence results in a 5’ overhang.
- the 5’ overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5’ overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs.
- the invention in some embodiments comprehends a method of modifying a genomic locus of interest by minimizing off-target modifications by introducing into a cell containing and expressing a double stranded DNA molecule encoding a gene product of interest an engineered, non-naturally occurring CRISPR-Cas system, wherein the introducing is via at least one nanoparticle complex delivering at least a portion of the CRISPR-Cas system (e.g., RNA thereof, and/or the Cas9 and/or a vector encoding the Cas9 and/or a vector expressing the RNA of the system) wherein the system comprises a Cas protein having one or more mutations and two guide RNAs that target a first strand and a second strand of the DNA molecule respectively, whereby the guide RNAs target the DNA molecule encoding the gene product and the Cas protein nicks each of the first strand and the second strand of the DNA molecule encoding the gene product, whereby expression of the gene product
- the Cas protein can nick each of the first strand and the second strand of the DNA molecule encoding the gene product results in a 5’ overhang.
- the 5’ overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5’ overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs.
- Embodiments of the invention also comprehend the guide RNAs comprising a guide sequence fused to a tracr mate sequence and a tracr sequence.
- the Cas protein is codon optimized for expression in a eukaryotic cell, preferably a mammalian cell or a human cell.
- the Cas protein is a type II CRISPR- Cas protein, e.g. a Cas 9 protein.
- the Cas protein is a Cas9 protein, e.g. SpCas9.
- the Cas protein has one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the Cas protein has the D10A mutation.
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- the template polynucleotide can also be introduced via nanoparticle complex(es).
- the invention also comprehends an engineered, non-naturally occurring CRISPR-Cas system comprising a Cas protein having one or more mutations and two guide RNAs that target a first strand and a second strand respectively of a double stranded DNA molecule encoding a gene product in a cell, whereby the guide RNAs target the DNA molecule encoding the gene product and the Cas protein nicks each of the first strand and the second strand of the DNA molecule encoding the gene product, whereby expression of the gene product is altered; and, wherein the Cas protein and the two guide RNAs do not naturally occur together; and, wherein a the system or a component thereof or that which gives rise to expression of the system or a component thereof is delivered via nanoparticle complex(es); and advantageously the complex(es) target heart, muscle or lung tissue or cells.
- the guide RNAs may comprise a guide sequence fused to a tracr mate sequence and a tracr sequence.
- the Cas protein is a type II CRISPR-Cas protein.
- the Cas protein is codon optimized for expression in a eukaryotic cell, preferably a mammalian cell or a human cell.
- the Cas protein is a type II CRISPR-Cas protein, e.g. a Cas 9 protein.
- the Cas protein is a Cas9 protein, e.g. SpCas9.
- the Cas protein has one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the Cas protein has the D10A mutation.
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- the invention also comprehends an engineered, non-naturally occurring vector system comprising one or more vectors comprising:
- components (a) and (b) are located on same or different vectors of the system, wherein at least one of said vector(s) are delived via one or more nanoparticle complex(es), whereby the guide RNAs target the DNA molecule encoding the gene product and the Cas protein nicks each of the first strand and the second strand of the DNA molecule encoding the gene product, whereby expression of the gene product is altered; and, wherein the Cas protein and the two guide RNAs do not naturally occur together.
- the guide RNAs may comprise a guide sequence fused to a tracr mate sequence and a tracr sequence.
- the Cas protein is a type II CRISPR-Cas protein.
- the Cas protein is codon optimized for expression in a eukaryotic cell, preferably a mammalian cell or a human cell.
- the Cas protein is a type II CRISPR-Cas protein, e.g. a Cas 9 protein.
- the Cas protein is a Cas9 protein, e.g. SpCas9.
- the Cas protein has one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the Cas protein can have the D10A mutation.
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- the vectors of the system are viral vectors.
- the vectors of the system are delivered via nanoparticles.
- the invention provides a method of modifying a target polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence; and advantageously the complex or a component thereof has been delivered via nanoparticle complex(es).
- said cleavage comprises cleaving one or two strands at the location of the target sequence by said CRISPR enzyme.
- said cleavage results in decreased transcription of a target gene.
- the method further comprises repairing said cleaved target polynucleotide by homologous recombination with an exogenous template polynucleotide, wherein said repair results in a mutation comprising an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide.
- said mutation results in one or more amino acid changes in a protein expressed from a gene comprising the target sequence.
- the method further comprises delivering, e.g., via nanoparticle complex(es) one or more vectors to said eukaryotic cell, wherein the one or more vectors drive expression of one or more of: the CRISPR enzyme, the guide sequence linked to the tracr mate sequence, and the tracr sequence.
- said vectors are delivered to the eukaryotic cell in a subject.
- said modifying takes place in said eukaryotic cell in a cell culture.
- the method further comprises isolating said eukaryotic cell from a subject prior to said modifying.
- the method further comprises returning said eukaryotic cell and/or cells derived therefrom to said subject.
- the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence; and advantageously the complex or a component thereof has been delivered via nanoparticle complex(es).
- the method further comprises delivering, e.g., via one or more nanoparticle complex(es0 one or more vectors to said eukaryotic cells, wherein the one or more vectors drive expression of one or more of: the CRISPR enzyme, the guide sequence linked to the tracr mate sequence, and the tracr sequence.
- the invention provides a method of generating a model eukaryotic cell comprising a mutated disease gene.
- a disease gene is any gene associated with an increase in the risk of having or developing a disease.
- the method comprises (a) introducing one or more vectors into a eukaryotic cell, wherein the one or more vectors drive expression of one or more of: a CRISPR enzyme, a guide sequence linked to a tracr mate sequence, and a tracr sequence; and (b) allowing a CRISPR complex to bind to a target polynucleotide to effect cleavage of the target polynucleotide within said disease gene, wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence within the target polynucleotide, and (2) the tracr mate sequence that is hybridizable to the tracr sequence, thereby generating a model
- said cleavage comprises cleaving one or two strands at the location of the target sequence by said CRISPR enzyme. In some embodiments, said cleavage results in decreased transcription of a target gene. In some embodiments, the method further comprises repairing said cleaved target polynucleotide by homologous recombination with an exogenous template polynucleotide, wherein said repair results in a mutation comprising an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide. In some embodiments, said mutation results in one or more amino acid changes in a protein expression from a gene comprising the target sequence.
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence; and advantageously the complex or a component thereof has been delivered via nanoparticle complex(es).
- this invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises increasing or decreasing expression of a target polynucleotide by using a CRISPR complex that binds to the polynucleotide; and advantageously the complex or a component thereof has been delivered via nanoparticle complex(es).
- one or more vectors comprising a tracr sequence, a guide sequence linked to the tracr mate sequence, a sequence encoding a CRISPR enzyme is delivered to a cell; and advantageously the complex or a component thereof has been delivered via nanoparticle complex(es).
- the one or more vectors comprises a regulatory element operably linked to an enzyme-coding sequence encoding said CRISPR enzyme comprising a nuclear localization sequence; and a regulatory element operably linked to a tracr mate sequence and one or more insertion sites for inserting a guide sequence upstream of the tracr mate sequence; and advantageously the complex or a component thereof has been delivered via nanoparticle complex(es).
- the guide sequence directs sequence-specific binding of a CRISPR complex to a target sequence in a cell.
- the CRISPR complex comprises a CRISPR enzyme complexed with (1 ) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence; and advantageously the complex or a component thereof has been delivered via nanoparticle complex(es).
- a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a CRISPR complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein is not produced, or the sequence does not function as the wild-type sequence does.
- a protein or microRNA coding sequence may be inactivated such that the protein or microRNA or pre-microRNA transcript is not produced.
- the CRISPR enzyme comprises one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A or D986A and/or the one or more mutations is in a RuvC1 or HNH domain of the CRISPR enzyme or is a mutation as otherwise as discussed herein.
- the CRISPR enzyme has one or more mutations in a catalytic domain, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the enzyme further comprises a functional domain.
- the mutated Cas9 enzyme may be fused to a protein domain, e.g., such as a transcriptional activation domain.
- the functional domain is a transcriptional activation domain, preferably VP64.
- the functional domain is a transcription repression domain, preferably KRAB.
- the transcription repression domain is SID, or concatemers of SID (eg SID4X).
- the functional domain is an epigenetic modifying domain, such that an epigenetic modifying enzyme is provided.
- the functional domain is an activation domain, which may be the P65 activation domain.
- Delivery can be in the form of a vector which may be a plasmid or other nucleic acid molecule form, especially when the delivery is via a nanoparticle complex; and the vector also can be viral vector, such as a lenti- or baculo- or preferably adeno-viral/adeno-associated viral vectors, but other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided, especially as to those aspects of the complex not delivered via a nanoparticle complex.
- viral vector such as a lenti- or baculo- or preferably adeno-viral/adeno-associated viral vectors, but other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided, especially as to those aspects of the complex not delivered via a nanoparticle complex.
- a vector may mean not only a viral or yeast system (for instance, where the nucleic acids of interest may be operably linked to and under the control of (in terms of expression, such as to ultimately provide a processed RNA) a promoter), but also direct delivery of nucleic acids into a host cell; and advantageously the complex or a component thereof is delivered via nanoparticle complex(es). Also envisaged is a method of delivering the present CRISPR enzyme comprising delivering to a cell mRNA encoding the CRISPR enzyme; and advantageously the complex or a component thereof has been delivered via nanoparticle complex(es).
- the CRISPR enzyme is truncated, and/or comprised of less than one thousand amino acids or less than four thousand amino acids, and/or is a nuclease or nickase, and/or is codon-optimized, and/or comprises one or more mutations, and/or comprises a chimeric CRISPR enzyme, and/or the other options as herein discussed.
- AAV and lentiviral vectors are preferred.
- the target sequence is flanked or followed, at its 3’ end, by a PAM suitable for the CRISPR enzyme, typically a Cas and in particular a Cas9.
- a suitable PAM is 5'-NRG or 5'-NNGRR for SpCas9 or SaCas9 enzymes (or derived enzymes), respectively.
- the invention provides nanoparticle formulation comprising one or more guide RNAs are delivered in vitro, ex vivo or in vivo in the context of the CRISPR- Cas system.
- the guide RNA-nanoparticle formulations may be delivered separately from the Cas9.
- a dual-delivery system is envisaged such that the Cas 9 may be delivered via a vector and the guide RNAs are provided in a nanoparticle formulation, where vectors are considered in the broadest light as simply any means of delivery, rather than specifically viral vectors.
- separate delivery of the guide RNA-nanoparticle formulation and the Cas 9 may be sequential, for example, first Cas9 vector is delivered via a vector system followed by delivery of sgRNA-nanoparticle formulation) or the sgRNA-nanoparticle formulation and Cas9 may be delivered substantially contemporaneously (i.e., co-delivery). Sequential delivery may be done at separate points in time, separated by days, weeks or even months.
- multiple guide RNAs formulated in one or more delivery vehicles may be provided with a Cas9 delivery system.
- the Cas9 is also delivered in a nanoparticle formulation.
- the guide RNA-nanoparticle formulation and the Cas9 nanoparticle formulation may be delivered separately or may be delivered substantially contemporaneously (i.e., co- delivery). Sequential delivery could be done at separate points in time, separated by days, weeks or even months.
- nanoparticle formulations comprising one or more guide RNAs are adapted for delivery in vitro, ex vivo or in vivo in the context of the CRISPR-Cas system to different target genes, different target cells or different target different tissues/organs, e.g., heart or muscle or lung.
- Multiplexed gene targeting using nanoparticle formulations comprising one or more guide RNAs are also envisioned.
- a nanoparticle formulation comprising one or more components of the CRISPR-Cas system is provided.
- a gRNA-nanoparticle formulation comprising one or more guide RNAs is provided.
- a composition comprising a nanoparticle formulation comprising one or more components of the CRISPR-Cas system is provided.
- a pharmaceutical composition comprising a nanoparticle formulation comprising one or more components of the CRISPR-Cas system is provided.
- a method for in vitro, ex vivo, and/or in vivo functional gene silencing comprising administering a composition comprising a nanoparticle formulation comprising one or more components of the CRISPR-Cas system is provided.
- a method for in vitro, ex vivo, and/or in vivo functional gene silencing comprising administering a nanoparticle formulation comprising one or more components of the CRISPR-Cas system is provided.
- a method for in vitro, ex vivo, and/or in vivo functional gene silencing comprising a gRNA-nanoparticle formulation comprising one or more guide RNAs is provided.
- a method for in vitro, ex vivo, and/or in vivo functional gene silencing in endothelial cells comprising administering a nanoparticle formulation comprising one or more components of the CRISPR-Cas system is provided
- a method for in vitro, ex vivo, and/or in vivo functional gene silencing in endothelial cells comprising administering a gRNA-nanoparticle formulation comprising one or more guide RNAs is provided.
- a method for in vitro, ex vivo, and/or in vivo functional gene silencing in endothelial cells in the lung and/or heart comprising a gRNA-nanoparticle formulation comprising one or more guide RNAs is provided.
- a method of treating a subject suffering from a disease or disorder associated with the endothelium in any tissue or organ comprising administering a composition comprising a nanoparticle formulation comprising one or more components of the CRISPR-Cas system.
- a method of treating a subject suffering from a disease or disorder associated with the endothelium in any tissue or organ comprising administering a gRNA- nanoparticle formulation comprising one or more guide RNAs.
- sgRNA may be pre-complexed with the Cas9 protein, before formulating the entire complex in a particle.
- Formulations may be made with a different molar ratio of different components known to promote delivery of nucleic acids into cells (e.g.
- DOTAP 1,2- dioleoyl-3-trimethylammonium-propane
- DMPC 1,2-ditetradecanoyl-sn-glycero-3- phosphocholine
- PEG polyethylene glycol
- cholesterol 1,2- dioleoyl-3-trimethylammonium-propane
- DMPC 1,2-ditetradecanoyl-sn-glycero-3- phosphocholine
- PEG polyethylene glycol
- cholesterol cholesterol
- the invention accordingly comprehends admixing sgRNA, Cas9 protein and components that form a particle; as well as particles from such
- Particles were formed using an efficient process.
- Cas9 protein and sgRNA targeting the gene EMX1 or the control gene LacZ were mixed together at a suitable, e.g.,3:1 to 1:3 or 2:1 to 1:2 or 1:1 molar ratio, at a suitable temperature, e.g., 15-30C, e.g., 20-25C, e.g., room temperature, for a suitable time, e.g., 15-45, such as 30 minutes, advantageously in sterile, nuclease free buffer, e.g., 1X PBS.
- particle components such as or comprising: a surfactant, e.g., cationic lipid, e.g., 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP); phospholipid, e.g., dimyristoylphosphatidylcholine (DMPC); biodegradable polymer, such as an ethylene-glycol polymer or PEG, and a lipoprotein, such as a low-density lipoprotein, e.g., cholesterol were dissolved in an alcohol, advantageously a C 1-6 alkyl alcohol, such as methanol, ethanol, isopropanol, e.g., 100% ethanol.
- a surfactant e.g., cationic lipid, e.g., 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP); phospholipid, e.g., dimyristoylphosphatidylcholine (DMPC); biodegrad
- the invention comprehends admixing sgRNA, Cas9 protein and components that form a particle, e.g., comprising admixing an sgRNA and Cas9 protein mixture with a mixture comprising or consisting essentially of or consisting of surfactant, phospholipid, biodegradable polymer, lipoprotein and alcohol, and such a method to form particles containing the sgRNA and Cas9 protein, and particles therefrom.
- particles containing the Cas9-sgRNA complexes may be formed by mixing Cas9 protein and one or more sgRNAs together, preferably at a 1:1 molar ratio, enzyme: guide RNA.
- the different components known to promote delivery of nucleic acids e.g. DOTAP, DMPC, PEG, and cholesterol
- the two solutions are mixed together to form particles containing the Cas9-sgRNA complexes.
- Cas9-sgRNA complexes may be transfected into cells (e.g. HSCs). Bar coding may be applied.
- the particles, the Cas-9 and/or the sgRNA may be barcoded.
- barcoding techniques of WO/2013/138585 A1 can be adapted or integrated into the practice of the invention.
- WO/2013/138585 A1 provides methods for simultaneously determining the effect of a test condition on viability or proliferation of each of a plurality of genetically heterogeneous cell types.
- the methods include: providing a unitary sample comprising a plurality of, e.g., five, ten, twenty, twenty-five, or more, genetically heterogeneous cell types (each individual cell type is genetically homogeneous within itself, but differs from the others in the plurality), wherein each cell type further comprises: (i) an exogenous nucleic acid tag stably integrated into the genome of the cells, e.g., a tag comprising a core sequence that is unique to each cell type, and flanking amplification primer binding sequences that are the same in all of the cells of the plurality, and (ii) optionally, a marker, e.g., a selectable or detectable marker; and a known number of cells of each cell type is present in the sample; exposing the sample to a test condition for a selected time; and detecting a level of the exogenous nucleic acid tag in each cell type, wherein the level of the exogenous nucleic acid tag is proportional to the number of living cells
- WO/2013/138585 A1 also provides methods for simultaneously determining the effect of a test condition on viability or proliferation of each of a plurality of genetically heterogeneous cell types, wherein the methods include providing a unitary sample comprising a plurality of, e.g., five, ten, twenty, twenty-five, or more, genetically heterogeneous cell types, wherein each cell type further comprises: (i) an exogenous nucleic acid tag stably integrated into the genome of the cells, e.g., comprising a core sequence that is unique to each cell type, and flanking amplification primer binding sequences that are the same in all of the cells of the plurality, and (ii) optionally, a selectable or detectable marker; and a known number of cells of each cell type is present in the sample; implanting the sample into a living animal; exposing
- the number of living cells in the sample after exposure to the test condition as compared to the reference number of cells indicates the effect of the test condition on viability or proliferation of each cell type.
- the tag can be Cas9 or another TAG or marker that is integrated into the genome of cells to be transplanted into or onto a non-human eukaryote, e.g., animal model, or that is integrated into the genome of the non-human transgenic eukaryote, e.g., animal, mammal, primate, rodent, mouse, rat, rabbit, etc (along with coding for Cas9).
- the test condition can be the administration or delivery of the RNA(s) to guide the Cas9 to induce one or more or a plurality, e.g., 3-50 or more, mutations.
- the test condition can be the administration, delivery or contacting with a putative chemical agent treatment and/or gene therapy treatment.
- the tag can also be the one or more or a plurality, e.g., 3-50 or more mutations, and the test condition can be the administration, delivery or contacting with a putative chemical agent treatment and/or gene therapy treatment.
- the invention in an embodiment comprehends a method of preparing an sgRNA-and- Cas9 protein containing particle comprising admixing an sgRNA and Cas9 protein mixture with a mixture comprising or consisting essentially of or consisting of surfactant, phospholipid, biodegradable polymer, lipoprotein and alcohol.
- An embodiment comprehends an sgRNA-and- Cas9 protein containing particle from the method.
- the invention in an embodiment comprehends use of the particle in a method of modifying a genomic locus of interest, or an organism or a non- human organism by manipulation of a target sequence in a genomic locus of interest, comprising contacting a cell containing the genomic locus of interest with the particle wherein the sgRNA targets the genomic locus of interest; or a method of modifying a genomic locus of interest, or an organism or a non-human organism by manipulation of a target sequence in a genomic locus of interest, comprising contacting a cell containing the genomic locus of interest with the particle wherein the sgRNA targets the genomic locus of interest.
- FIG. 1 shows a schematic model of the CRISPR system.
- the Cas9 nuclease from Streptococcus pyogenes (yellow) is targeted to genomic DNA by a synthetic guide RNA (sgRNA) consisting of a 20-nt guide sequence (blue) and a scaffold (red).
- the guide sequence base-pairs with the DNA target (blue), directly upstream of a requisite 5’-NGG protospacer adjacent motif (PAM; magenta), and Cas9 mediates a double-stranded break (DSB) ⁇ 3 bp upstream of the PAM (red triangle).
- PAM magenta
- Figure 2A-F shows an exemplary CRISPR system, a possible mechanism of action, an example adaptation for expression in eukaryotic cells, and results of tests assessing nuclear localization and CRISPR activity.
- Figure 3A-D shows results of an evaluation of SpCas9 specificity for an example target.
- Figure 4A-G show an exemplary vector system and results for its use in directing homologous recombination in eukaryotic cells.
- Figure 5 provides a table of protospacer sequences and summarizes modification efficiency results for protospacer targets designed based on exemplary S. pyogenes and S. thermophilus CRISPR systems with corresponding PAMs against loci in human and mouse genomes.
- Figure 6A-C shows a comparison of different tracrRNA transcripts for Cas9-mediated gene targeting.
- Figure 7 shows a schematic of a surveyor nuclease assay for detection of double strand break-induced micro-insertions and–deletions.
- Figure 8A-B shows exemplary bicistronic expression vectors for expression of CRISPR system elements in eukaryotic cells.
- Figure 9A-C shows histograms of distances between adjacent S. pyogenes SF370 locus 1 PAM (NGG) ( Figure 9A) and S. thermophilus LMD9 locus 2 PAM (NNAGAAW) ( Figure 9B) in the human genome; and distances for each PAM by chromosome (Chr) ( Figure 9C).
- Figure 10A-D shows an exemplary CRISPR system, an example adaptation for expression in eukaryotic cells, and results of tests assessing CRISPR activity.
- Figure 11A-C shows exemplary manipulations of a CRISPR system for targeting of genomic loci in mammalian cells.
- Figure 12A-B shows the results of a Northern blot analysis of crRNA processing in mammalian cells.
- Figure 13A-B shows an exemplary selection of protospacers in the human PVALB and mouse Th loci.
- Figure 14 shows example protospacer and corresponding PAM sequence targets of the S. thermophilus CRISPR system in the human EMX1 locus.
- Figure 15 provides a table of sequences for primers and probes used for Surveyor, RFLP, genomic sequencing, and Northern blot assays.
- Figure 16A-D shows a circular depiction of the phylogenetic analysis revealing five families of Cas9s, including three groups of large Cas9s ( ⁇ 1400 amino acids) and two of small Cas9s ( ⁇ 1100 amino acids).
- Figure 17A-F shows the linear depiction of the phylogenetic analysis revealing five families of Cas9s, including three groups of large Cas9s ( ⁇ 1400 amino acids) and two of small Cas9s ( ⁇ 1100 amino acids).
- Figure 18A-D shows genome editing via homologous recombination.
- Figure 19A-B shows single vector designs for SpCas9.
- Figure 20 shows a graph representing the length distribution of Cas9 orthologs.
- Figure 21A-M shows sequences where the mutation points are located within the SpCas9 gene.
- Figure 22A shows the Conditional Cas9, Rosa26 targeting vector map.
- Figure 22B shows the Constitutive Cas9, Rosa26 targeting vector map.
- Figure 23 shows a schematic of the important elements in the Constitutive and Conditional Cas9 constructs.
- Figure 24A-C shows RNA delivery of Cas9 and chimeric RNA into cells
- A Delivery of a GFP reporter as either DNA or mRNA into Neuro-2A cells.
- B Delivery of Cas9 and chimeric RNA against the Icam2 gene as RNA results in cutting for one of two spacers tested.
- C Delivery of Cas9 and chimeric RNA against the F7 gene as RNA results in cutting for one of two spacers tested.
- Figure 25 shows how DNA double-strand break (DSB) repair promotes gene editing.
- NHEJ error-prone non-homologous end joining
- Indel random insertion/deletion
- a repair template in the form of a plasmid or single-stranded oligodeoxynucleotides (ssODN) can be supplied to leverage the homology-directed repair (HDR) pathway, which allows high fidelity and precise editing.
- FIG. 26A-C shows anticipated results for HDR in HEK and HUES9 cells.
- Either a targeting plasmid or an ssODN (sense or antisense) with homology arms can be used to edit the sequence at a target genomic locus cleaved by Cas9 (red triangle).
- a targeting plasmid or an ssODN (sense or antisense) with homology arms can be used to edit the sequence at a target genomic locus cleaved by Cas9 (red triangle).
- a HindIII site red bar
- Digestion of the PCR product with HindIII reveals the occurrence of HDR events.
- ssODNs oriented in either the sense or the antisense (s or a) direction relative to the locus of interest, can be used in combination with Cas9 to achieve efficient HDR-mediated editing at the target locus.
- Example of the effect of ssODNs on HDR in the EMX1 locus is shown using both wild-type Cas9 and Cas9 nickase (D10A). Each ssODN contains homology arms of 90 bp flanking a 12-bp insertion of two restriction sites.
- Figure 27A-C shows the repair strategy for Cystic Fibrosis delta F508 mutation.
- Figure 28 shows a screen for efficient SpCas9 mediated targeting of Tet1 -3 and Dnmt1, 3a and 3b gene loci.
- Surveyor assay on DNA from transfected N2A cells demonstrates efficient DNA cleavage by using different gRNAs.
- Figure 29 shows a strategy of multiplex genome targeting using a 2-vector system in an AAV1/2 delivery system. Tet1-3 and Dnmt1, 3a and 3b gRNA under the control of the U6 promoter. GFP-KASH under the control of the human synapsin promoter. Restriction sides shows simple gRNA replacement strategy by subcloning. HA-tagged SpCas9 flanked by two nuclear localization signals (NLS) is shown. Both vectors are delivered into the brain by AAV1/2 virus in a 1:1 ratio.
- NLS nuclear localization signals
- Figure 30 shows verification of multiplex DNMT targeting vector #1 functionality using Surveyor assay. N2A cells were co-transfected with the DNMT targeting vector #1 (+) and the SpCas9 encoding vector for testing SpCas9 mediated cleavage of DNMTs genes family loci. gRNA only (-) is negative control. Cells were harvested for DNA purification and downstream processing 48 h after transfection. [0119] Figure 31 shows verification of multiplex DNMT targeting vector #2 functionality using Surveyor assay. N2A cells were co-transfected with the DNMT targeting vector #1 (+) and the SpCas9 encoding vector for testing SpCas9 mediated cleavage of DNMTs genes family loci. gRNA only (-) is negative control. Cells were harvested for DNA purification and downstream processing 48 h after transfection.
- Figure 32 shows schematic overview of short promoters and short polyA versions used for HA-SpCas9 expression in vivo. Sizes of the encoding region from L-ITR to R-ITR are shown on the right.
- Figure 33 shows schematic overview of short promoters and short polyA versions used for HA-SaCas9 expression in vivo. Sizes of the encoding region from L-ITR to R-ITR are shown on the right.
- Figure 34 shows expression of SpCas9 and SaCas9 in N2A cells. Representative Western blot of HA-tagged SpCas9 and SaCas9 versions under the control of different short promoters and with or short polyA (spA) sequences. Tubulin is loading control. mCherry (mCh) is a transfection control. Cells were harvested and further processed for Western blotting 48 h after transfection.
- spA short polyA
- Figure 35 shows screen for efficient SaCas9 mediated targeting of Tet3 gene locus.
- Surveyor assay on DNA from transfected N2A cells demonstrates efficient DNA cleavage by using different gRNAs with NNGGGT PUM sequence.
- GFP transfected cells and cells expressing only SaCas9 are controls.
- Figure 36 shows expression of HA-SaCas9 in the mouse brain.
- Animals were injected into dentate gyri with virus driving expression of HA-SaCas9 under the control of human Synapsin promoter. Animals were sacrificed 2 weeks after surgery.
- HA tag was detected using rabbit monoclonal antibody C29F4 (Cell Signaling). Cell nuclei stained in blue with DAPI stain.
- Figure 37 shows expression of SpCas9 and SaCas9 in cortical primary neurons in culture 7 days after transduction. Representative Western blot of HA-tagged SpCas9 and SaCas9 versions under the control of different promoters and with bgh or short polyA (spA) sequences. Tubulin is loading control.
- Figure 38 shows LIVE/DEAD stain of primary cortical neurons 7 days after transduction with AAV1 particles carrying SpCas9 with different promoters and multiplex gRNAs constructs (example shown on the last panel for DNMTs). Neurons after AAV transduction were compared with control untransduced neurons. Red nuclei indicate permeabilized, dead cells (second line of panels). Live cells are marked in green color (third line of panels).
- Figure 39 shows LIVE/DEAD stain of primary cortical neurons 7 days after transduction with AAV1 particles carrying SaCas9 with different promoters. Red nuclei indicate permeabilized, dead cells (second line of panels). Live cells are marked in green color (third line of panels).
- Figure 40 shows comparison of morphology of neurons after transduction with AAV1 virus carrying SpCas9 and gRNA multiplexes for TETs and DNMTs genes loci. Neurons without transduction are shown as a control.
- Figure 41 shows verification of multiplex DNMT targeting vector #1 functionality using Surveyor assay in primary cortical neurons.
- Cells were co-transduced with the DNMT targeting vector #1 and the SpCas9 viruses with different promoters for testing SpCas9 mediated cleavage of DNMTs genes family loci.
- Figure 42 shows in vivo efficiency of SpCas9 cleavage in the brain.
- Mice were injected with AAV1/2 virus carrying gRNA multiplex targeting DNMT family genes loci together with SpCas9 viruses under control of 2 different promoters: mouse Mecp2 and rat Map1b.
- FIG 43 shows purification of GFP-KASH labeled cell nuclei from hippocampal neurons.
- the outer nuclear membrane (ONM) of the cell nuclear membrane is tagged with a fusion of GFP and the KASH protein transmembrane domain. Strong GFP expression in the brain after one week of stereotactic surgery and AAV1/2 injection. Density gradient centrifugation step to purify cell nuclei from intact brain. Purified nuclei are shown. Chromatin stain by Vybrant® DyeCycleTM Ruby Stain is shown in red, GFP labeled nuclei are green. Representative FACS profile of GFP+ and GFP- cell nuclei (Magenta: Vybrant® DyeCycleTM Ruby Stain, Green: GFP).
- Figure 44 shows efficiency of SpCas9 cleavage in the mouse brain.
- Mice were injected with AAV1/2 virus carrying gRNA multiplex targeting TET family genes loci together with SpCas9 viruses under control of 2 different promoters: mouse Mecp2 and rat Map1b.
- Figure 45 shows GFP-KASH expression in cortical neurons in culture. Neurons were transduced with AAV1 virus carrying gRNA multiplex constructs targeting TET genes loci. The strongest signal localize around cells nuclei due to KASH domain localization.
- Figure 46A-M shows generation of the Cre-dependent Cas9 mouse and its application for in vivo genome editing (a) Cas9 Rosa26 targeting vector and knockin schematic.
- the transgene includes: (1) 5’ homology arm, (2) ubiquitously expressed CAG promoter, (3) Cre-dependent loxP– 3xSV40 polyA– loxP stop cassette (LSL), (4) 3xFLAG epitope tag, (5) Streptococcus pyogenes Cas9 flanked by two nuclear localization signals (NLSs), (6) WPRE, (7) bovine growth hormone polyA, (8) pPGK– Neo– pA positive selection cassette, (9) 3’ Rosa26 homology arm, and (10) pPGK– DTA– pA negative selection cassette.
- the bottom row is a magnification of the boundary between infected and non-infected cells. Scale bars, 200 ⁇ m (top) and 50 ⁇ m (bottom).
- (j) Immunoblot quantification showing significant NeuN depletion in sgNeuN-injected and not sgLacZ-injected Cre-dependent Cas9 mice. Data are plotted as mean ⁇ SEM (n 3 mice). *** p-value ⁇ 0.0005.
- Figure 47A-H shows cell type-specific Cas9 expression and normal neuronal electrophysiology
- Figure 48A-H shows nanoparticle delivery of sgRNAs to endothelial cells of the constitutively Cas9 expressing mouse
- a Nanoparticle:sgRNA intravenous (i.v.) delivery and downstream assay schematic.
- b Dynamic light scattering (DLS), size distribution plot showing 7C1:sgRNA nanoparticles formed small, multilamellar structures (Dahlman, J. E. et al. Nat. Nanotechnol. 9, 648–655 (2014)). Data are plotted as mean ⁇ SEM.
- Inset CryoTEM image of 7C1:sgRNA. Scale bar, 50 ⁇ m.
- Figure 49 shows Cas9-P2A-EGFP expression in various organs. Stereotactic images showing Cas9-P2A-EGFP positive organs from constitutively Cas9 expressing mouse but not wild-type mice.
- Figure 50 sows tightly controlled Cas9 expression. Representative fluorescence images showing lack of EGFP and FLAG staining in Cre-dependent Cas9 and wild-type mice.
- Figure 51 shows normal cellular morphology of constitutively Cas9 expressing mice. Representative bright field images of HE stained tissues from the constitutively Cas9 expressing and a wild-type mouse.
- Figure 52 shows no detectible DNA damage or apoptosis in constitutively Cas9 expressing mice.
- Representative bright field images of yH2AX, a marker for DNA damage, and cleaved caspase 3 (CC3), are marker for late stage apoptosis, stained tissues from the constitutively Cas9 expressing and a wild-type mouse.
- Figure 53A-B shows in vitro validation of ICAM2-targeted sgRNAs.
- ICAM2 locus schematic showing locations of sgICAM2 exon targets.
- SURVEYOR nuclease assay gel showing indel formation for most sgRNAs. Indel percent was quantified using relative band intensities and then plotted below. Red arrows highlight predicted cleavage products from SURVEYOR nuclease reaction.
- Cas9 as converted into a nicking enzyme can be used to facilitate homology-directed repair in eukaryotic cells with minimal mutagenic activity.
- multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several at endogenous genomic loci sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology. This ability to use RNA to program sequence specific DNA cleavage in cells defined a new class of genome engineering tools.
- CRISPR loci are likely to be transplantable into mammalian cells and can also mediate mammalian genome cleavage.
- it can be envisaged that several aspects of the CRISPR-Cas system can be further improved to increase its efficiency and versatility.
- 3 ⁇ 4 Jiang et al. used the clustered, regularly interspaced, short palindromic repeats (CRISPR)– associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coli.
- CRISPR clustered, regularly interspaced, short palindromic repeats
- the approach relied on dual- RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems.
- the study reported reprogramming dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates.
- the Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis.
- Ran et al. described an approach that combined a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage.
- 3 ⁇ 4 Hsu et al. characterized SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects.
- the authors further showed that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification.
- Nishimasu et al. reported the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 A° resolution.
- the structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface.
- the recognition lobe is essential for binding sgRNA and DNA
- the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and non-complementary strands of the target DNA, respectively.
- the nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM).
- PAM protospacer adjacent motif
- 3 ⁇ 4 Hsu 2014 is a review article that discusses generally CRISPR-Cas9 history from yogurt to genome editing, including genetic screening of cells, that is in the information, data and findings of the applications in the lineage of this specification filed prior to June 5, 2014.
- the general teachings of Hsu 2014 do not involve the specific models, animals of the instant specification.
- CRISPR-Cas or CRISPR system is as used in the foregoing documents, such as WO 2014/093622 (PCT/US2013/074667) and refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR-associated (“Cas”) genes, including sequences encoding a Cas gene, a tracr (trans-activating CRISPR) sequence (e.g.
- RNA(s) as that term is herein used (e.g., RNA(s) to guide Cas9, e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)) or other sequences and transcripts from a CRISPR locus.
- RNA(s) to guide Cas9 e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)
- sgRNA single guide RNA
- a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system).
- target sequence refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex.
- a target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides.
- a target sequence is located in the nucleus or cytoplasm of a cell.
- direct repeats may be identified in silico by searching for repetitive motifs that fulfill any or all of the following criteria: 1. found in a 2Kb window of genomic sequence flanking the type II CRISPR locus; 2. span from 20 to 50 bp; and 3. interspaced by 20 to 50 bp. In some embodiments, 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3. In some embodiments, all 3 criteria may be used.
- the tracr sequence has one or more hairpins and is 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length; the guide sequence is between 10 to 30 nucleotides in length, the CRISPR/Cas enzyme is a Type II Cas9 enzyme.
- the terms guide sequence and guide RNA are used interchangeably as in foregoing cited documents such as WO 2014/093622 (PCT/US2013/074667).
- a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence.
- the degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more.
- Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g. the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net).
- Burrows-Wheeler Transform e.g. the Burrows Wheeler Aligner
- ClustalW Clustal X
- BLAT Novoalign
- ELAND Illumina, San Diego, CA
- SOAP available at soap.genomics.org.cn
- Maq available at maq.sourceforge.net.
- a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length. Preferably the guide sequence is 10 - 30 nucleotides long. The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay.
- the components of a CRISPR system sufficient to form a CRISPR complex may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein.
- cleavage of a target polynucleotide sequence may be evaluated in a test tube by providing the target sequence, components of a CRISPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions.
- a guide sequence may be selected to target any target sequence.
- the target sequence is a sequence within a genome of a cell.
- Exemplary target sequences include those that are unique in the target genome.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNXGG where NNNNNNNNNNXGG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNXAGAAW where NNNNNNNNNNXXAGAAW (N is A, G, T, or C; X can be anything; and W is A or T) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNNNNNNNNNNNXGGXG where NNNNNNNNNNXGGXG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- pyogenes Cas9 target site of the form MMMMMMMMMNNNNNNNNNNNNNXGGXG where NNNNNNNNNXGGXG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- N is A, G, T, or C; and X can be anything
- a guide sequence is selected to reduce the degree secondary structure within the guide sequence. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the guide sequence participate in self-complementary base pairing when optimally folded.
- Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g. A.R. Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).
- a tracr mate sequence includes any sequence that has sufficient complementarity with a tracr sequence to promote one or more of: (1) excision of a guide sequence flanked by tracr mate sequences in a cell containing the corresponding tracr sequence; and (2) formation of a CRISPR complex at a target sequence, wherein the CRISPR complex comprises the tracr mate sequence hybridized to the tracr sequence.
- degree of complementarity is with reference to the optimal alignment of the tracr mate sequence and tracr sequence, along the length of the shorter of the two sequences.
- Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self-complementarity within either the tracr sequence or tracr mate sequence.
- the degree of complementarity between the tracr sequence and tracr mate sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher.
- the tracr sequence is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length.
- the tracr sequence and tracr mate sequence are contained within a single transcript, such that hybridization between the two produces a transcript having a secondary structure, such as a hairpin.
- the transcript or transcribed polynucleotide sequence has at least two or more hairpins.
- the transcript has two, three, four or five hairpins.
- the transcript has at most five hairpins.
- the portion of the sequence 5’ of the final“N” and upstream of the loop corresponds to the tracr mate sequence
- the portion of the sequence 3’ of the loop corresponds to the tracr sequence
- “N” represents a base of a guide sequence
- the first block of lower case letters represent the tracr mate sequence
- the second block of lower case letters represent the tracr sequence
- the final poly-T sequence represents the transcription terminator: (1) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNgttttgtactctcaagatttaGAAAtaaatcttgcagaagctacaaagataa ggcttcatgccgaaatcaacaccctgtcattttatggcagggtgtttcgtatttttttt
- sequences (1) to (3) are used in combination with Cas9 from S. thermophilus CRISPR1.
- sequences (4) to (6) are used in combination with Cas9 from S. pyogenes.
- the tracr sequence is a separate transcript from a transcript comprising the tracr mate sequence.
- candidate tracrRNA may be subsequently predicted by sequences that fulfill any or all of the following criteria: 1. sequence homology to direct repeats (motif search in Geneious with up to 18-bp mismatches); 2. presence of a predicted Rho-independent transcriptional terminator in direction of transcription; and 3. stable hairpin secondary structure between tracrRNA and direct repeat.
- 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3. In some embodiments, all 3 criteria may be used.
- chimeric synthetic guide RNAs may incorporate at least 12 bp of duplex structure between the direct repeat and tracrRNA.
- CRISPR enzyme mRNA and guide RNA For minimization of toxicity and off-target effect, it will be important to control the concentration of CRISPR enzyme mRNA and guide RNA delivered. Optimal concentrations of CRISPR enzyme mRNA and guide RNA can be determined by testing different concentrations in a cellular or non-human eukaryote animal model and using deep sequencing the analyze the extent of modification at potential off-target genomic loci.
- deep sequencing can be used to assess the level of modification at the following two off-target loci, 1: 5’-GAGTCCTAGCAGGAGAAGAA-3’ and 2: 5’-GAGTCTAAGCAGAAGAAGAA- 3’.
- concentration that gives the highest level of on-target modification while minimizing the level of off-target modification should be chosen for in vivo delivery.
- CRISPR enzyme nickase mRNA for example S.
- pyogenes Cas9 with the D10A mutation can be delivered with a pair of guide RNAs targeting a site of interest.
- the two guide RNAs need to be spaced as follows.
- Guide sequences and strategies to mimize toxicity and off-target effects can be as in WO 2014/093622 (PCT/US2013/074667).
- the CRISPR system is derived advantageously from a type II CRISPR system.
- one or more elements of a CRISPR system is derived from a particular organism comprising an endogenous CRISPR system, such as Streptococcus pyogenes.
- the CRISPR system is a type II CRISPR system and the Cas enzyme is Cas9, which catalyzes DNA cleavage.
- Cas proteins include Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csn1 and Csx12), Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, homologues thereof, or modified versions thereof.
- the unmodified CRISPR enzyme has DNA cleavage activity, such as Cas9.
- the CRISPR enzyme directs cleavage of one or both strands at the location of a target sequence, such as within the target sequence and/or within the complement of the target sequence.
- the CRISPR enzyme directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence.
- a vector encodes a CRISPR enzyme that is mutated to with respect to a corresponding wild-type enzyme such that the mutated CRISPR enzyme lacks the ability to cleave one or both strands of a target polynucleotide containing a target sequence.
- an aspartate-to-alanine substitution (D10A) in the RuvC I catalytic domain of Cas9 from S. pyogenes converts Cas9 from a nuclease that cleaves both strands to a nickase (cleaves a single strand).
- mutations that render Cas9 a nickase include, without limitation, H840A, N854A, and N863A.
- two or more catalytic domains of Cas9 may be mutated to produce a mutated Cas9 substantially lacking all DNA cleavage activity.
- a D10A mutation is combined with one or more of H840A, N854A, or N863A mutations to produce a Cas9 enzyme substantially lacking all DNA cleavage activity.
- a CRISPR enzyme is considered to substantially lack all DNA cleavage activity when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the DNA cleavage activity of the non- mutated form of the enzyme; an example can be when the DNA cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form.
- the enzyme is not SpCas9
- mutations may be made at any or all residues corresponding to positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 (which may be ascertained for instance by standard sequence comparison tools).
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the same (or conservative substitutions of these mutations) at corresponding positions in other Cas9s are also preferred.
- Particularly preferred are D10 and H840 in SpCas9.
- residues corresponding to SpCas9 D10 and H840 are also preferred.
- Orthologs of SpCas9 can be used in the practice of the invention.
- a Cas enzyme may be identified Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system.
- the Cas9 enzyme is from, or is derived from, spCas9 (S. pyogenes Cas9) or saCas9 (S. aureus Cas9).
- StCas9 refers to wild type Cas9 from S. thermophilus, the protein sequence of which is given in the SwissProt database under accession number G3ECR1.
- S pyogenes Cas9 or spCas9 is included in SwissProt under accession number Q99ZW2.
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes.
- this invention includes many more Cas9s from other species of microbes, such as SpCas9, SaCa9, St1Cas9 and so forth.
- Enzymatic action by Cas9 derived from Streptococcus pyogenes or any closely related Cas9 generates double stranded breaks at target site sequences which hybridize to 20 nucleotides of the guide sequence and that have a protospacer-adjacent motif (PAM) sequence (examples include NGG/NRG or a PAM that can be determined as described herein) following the 20 nucleotides of the target sequence.
- PAM protospacer-adjacent motif
- the CRISPR system small RNA- guided defence in bacteria and archaea, Mole Cell 2010, January 15; 37(1): 7.
- the type II CRISPR locus from Streptococcus pyogenes SF370 which contains a cluster of four genes Cas9, Cas1, Cas2, and Csn1, as well as two non-coding RNA elements, tracrRNA and a characteristic array of repetitive sequences (direct repeats) interspaced by short stretches of non-repetitive sequences (spacers, about 30bp each).
- DSB DNA double-strand break
- RNAs two non-coding RNAs, the pre-crRNA array and tracrRNA, are transcribed from the CRISPR locus.
- tracrRNA hybridizes to the direct repeats of pre-crRNA, which is then processed into mature crRNAs containing individual spacer sequences.
- the mature crRNA:tracrRNA complex directs Cas9 to the DNA target consisting of the protospacer and the corresponding PAM via heteroduplex formation between the spacer region of the crRNA and the protospacer DNA.
- Cas9 mediates cleavage of target DNA upstream of PAM to create a DSB within the protospacer.
- Cas9 may be constitutively present or inducibly present or conditionally present or administered or delivered. Cas9 optimization may be used to enhance function or to develop new functions, one can generate chimeric Cas9 proteins. And Cas9 may be used as a generic DNA binding protein.
- a CRISPR complex comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins
- formation of a CRISPR complex results in cleavage of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence.
- the tracr sequence which may comprise or consist of all or a portion of a wild- type tracr sequence (e.g.
- a wild-type tracr sequence may also form part of a CRISPR complex, such as by hybridization along at least a portion of the tracr sequence to all or a portion of a tracr mate sequence that is operably linked to the guide sequence.
- a codon optimized sequence is in this instance a sequence optimized for expression in a eukaryote, e.g., humans (i.e. being optimized for expression in humans), or for another eukaryote, animal or mammal as herein discussed; see, e.g., SaCas9 human codon optimized sequence in WO 2014/093622 (PCT/US2013/074667). Whilst this is preferred, it will be appreciated that other examples are possible and codon optimization for a host species other than human, or for codon optimization for specific organs is known.
- an enzyme coding sequence encoding a CRISPR enzyme is codon optimized for expression in particular cells, such as eukaryotic cells.
- the eukaryotic cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, or non-human eukaryote or animal or mammal as herein discussed, e.g., mouse, rat, rabbit, dog, livestock, or non-human mammal or primate.
- processes for modifying the germ line genetic identity of human beings and/or processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes may be excluded.
- codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g.
- Codon bias differences in codon usage between organisms
- mRNA messenger RNA
- tRNA transfer RNA
- genes can be tailored for optimal gene expression in a given organism based on codon optimization.
- Codon usage tables are readily available, for example, at the“Codon Usage Database” available at www.kazusa.orjp/codon/ and these tables can be adapted in a number of ways. See Nakamura, Y., et al.“Codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000).
- Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, PA), are also available.
- one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons
- one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons
- one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50,
- a vector encodes a CRISPR enzyme comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs.
- the CRISPR enzyme comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. zero or at least one or more NLS at the amino-terminus and zero or at one or more NLS at the carboxy terminus).
- the CRISPR enzyme comprises at most 6 NLSs.
- an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus.
- Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV; the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK); the c-myc NLS having the amino acid sequence PAAKRVKLD or RQRRNELKRSP; the hRNPA1 M9 NLS having the sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY; the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV of the IBB domain from importin-alpha; the sequences VSRKRPRP and PPKKARED of the myoma T protein; the sequence POPKKKPL of human p53; the sequence SALIKKKKKMAP of mouse c-abl IV; the sequences DRLRR and PKQKKRK of the influenza
- the one or more NLSs are of sufficient strength to drive accumulation of the CRISPR enzyme in a detectable amount in the nucleus of a eukaryotic cell.
- strength of nuclear localization activity may derive from the number of NLSs in the CRISPR enzyme, the particular NLS(s) used, or a combination of these factors.
- Detection of accumulation in the nucleus may be performed by any suitable technique.
- a detectable marker may be fused to the CRISPR enzyme, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI).
- Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of CRISPR complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity), as compared to a control no exposed to the CRISPR enzyme or complex, or exposed to a CRISPR enzyme lacking the one or more NLSs.
- an assay for the effect of CRISPR complex formation e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein. Only sgRNA pairs creating 5’ overhangs with less than 8bp overlap between the guide sequences (offset greater than -8 bp) were able to mediate detectable indel formation.
- each guide used in these assays is able to efficiently induce indels when paired with wildtype Cas9, indicating that the relative positions of the guide pairs are the most important parameters in predicting double nicking activity.
- Cas9n and Cas9H840A nick opposite strands of DNA
- substitution of Cas9n with Cas9H840A with a given sgRNA pair should have resulted in the inversion of the overhang type; but no indel formation is observed as with Cas9H840A indicating that Cas9H840A is a CRISPR enzyme substantially lacking all DNA cleavage activity (which is when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the DNA cleavage activity of the non- mutated form of the enzyme; whereby an example can be when the DNA cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form, e
- a recombination template is also provided.
- a recombination template may be a component of another vector as described herein, contained in a separate vector, or provided as a separate polynucleotide.
- a recombination template is designed to serve as a template in homologous recombination, such as within or near a target sequence nicked or cleaved by a CRISPR enzyme as a part of a CRISPR complex.
- a template polynucleotide may be of any suitable length, such as about or more than about 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000, or more nucleotides in length.
- the template polynucleotide is complementary to a portion of a polynucleotide comprising the target sequence.
- a template polynucleotide When optimally aligned, a template polynucleotide might overlap with one or more nucleotides of a target sequences (e.g. about or more than about 1, 5, 10, 15, 20, or more nucleotides). In some embodiments, when a template sequence and a polynucleotide comprising a target sequence are optimally aligned, the nearest nucleotide of the template polynucleotide is within about 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000, or more nucleotides from the target sequence.
- one or more vectors driving expression of one or more elements of a CRISPR system are introduced into a host cell such that expression of the elements of the CRISPR system direct formation of a CRISPR complex at one or more target sites.
- a Cas enzyme, a guide sequence linked to a tracr-mate sequence, and a tracr sequence could each be operably linked to separate regulatory elements on separate vectors.
- RNA(s) of the CRISPR System can be delivered to a transgenic Cas9 animal or mammal, e.g., an animal or mammal that constitutively or inducibly or conditionally expresses Cas9; or an animal or mammal that is otherwise expressing Cas9 or has cells containing Cas9, such as by way of prior administration thereto of a vector or vectors that code for and express in vivo Cas9.
- a transgenic Cas9 animal or mammal e.g., an animal or mammal that constitutively or inducibly or conditionally expresses Cas9; or an animal or mammal that is otherwise expressing Cas9 or has cells containing Cas9, such as by way of prior administration thereto of a vector or vectors that code for and express in vivo Cas9.
- two or more of the elements expressed from the same or different regulatory elements may be combined in a single vector, with one or more additional vectors providing any components of the CRISPR system not included in the first vector.
- CRISPR system elements that are combined in a single vector may be arranged in any suitable orientation, such as one element located 5’ with respect to (“upstream” of) or 3’ with respect to (“downstream” of) a second element.
- the coding sequence of one element may be located on the same or opposite strand of the coding sequence of a second element, and oriented in the same or opposite direction.
- a single promoter drives expression of a transcript encoding a CRISPR enzyme and one or more of the guide sequence, tracr mate sequence (optionally operably linked to the guide sequence), and a tracr sequence embedded within one or more intron sequences (e.g. each in a different intron, two or more in at least one intron, or all in a single intron).
- the CRISPR enzyme, guide sequence, tracr mate sequence, and tracr sequence are operably linked to and expressed from the same promoter.
- Delivery vehicles, vectors, particles, nanoparticles, formulations and components thereof for expression of one or more elements of a CRISPR system are as used in the foregoing documents, such as WO 2014/093622 (PCT/US2013/074667).
- a vector comprises one or more insertion sites, such as a restriction endonuclease recognition sequence (also referred to as a “cloning site”).
- one or more insertion sites e.g.
- a vector comprises an insertion site upstream of a tracr mate sequence, and optionally downstream of a regulatory element operably linked to the tracr mate sequence, such that following insertion of a guide sequence into the insertion site and upon expression the guide sequence directs sequence-specific binding of a CRISPR complex to a target sequence in a eukaryotic cell.
- a vector comprises two or more insertion sites, each insertion site being located between two tracr mate sequences so as to allow insertion of a guide sequence at each site.
- the two or more guide sequences may comprise two or more copies of a single guide sequence, two or more different guide sequences, or combinations of these.
- a single expression construct may be used to target CRISPR activity to multiple different, corresponding target sequences within a cell.
- a single vector may comprise about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more guide sequences. In some embodiments, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such guide-sequence-containing vectors may be provided, and optionally delivered to a cell.
- a vector comprises a regulatory element operably linked to an enzyme- coding sequence encoding a CRISPR enzyme, such as a Cas protein.
- CRISPR enzyme or CRISPR enzyme mRNA or CRISPR guide RNA or RNA(s) can be delivered separately; and advantageously at least one of these is delivered via a nanoparticle complex.
- CRISPR enzyme mRNA can be delivered prior to the guide RNA to give time for CRISPR enzyme to be expressed.
- CRISPR enzyme mRNA might be administered 1 -12 hours (preferably around 2-6 hours) prior to the administration of guide RNA.
- CRISPR enzyme mRNA and guide RNA can be administered together.
- a second booster dose of guide RNA can be administered 1-12 hours (preferably around 2-6 hours) after the initial administration of CRISPR enzyme mRNA + guide RNA. Additional administrations of CRISPR enzyme mRNA and/or guide RNA might be useful to achieve the most efficient levels of genome modification.
- the invention provides methods for using one or more elements of a CRISPR system.
- the CRISPR complex of the invention provides an effective means for modifying a target polynucleotide.
- the CRISPR complex of the invention has a wide variety of utility including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types.
- the CRISPR complex of the invention has a broad spectrum of applications in, e.g., gene therapy, drug screening, disease diagnosis, and prognosis.
- An exemplary CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
- the guide sequence is linked to a tracr mate sequence, which in turn hybridizes to a tracr sequence.
- this invention provides a method of cleaving a target polynucleotide.
- the method comprises modifying a target polynucleotide using a CRISPR complex that binds to the target polynucleotide and effect cleavage of said target polynucleotide.
- the CRISPR complex of the invention when introduced into a cell, creates a break (e.g., a single or a double strand break) in the genome sequence.
- the method can be used to cleave a disease gene in a cell.
- the break created by the CRISPR complex can be repaired by a repair processes such as the error prone non-homologous end joining (NHEJ) pathway or the high fidelity homology-directed repair (HDR).
- NHEJ error prone non-homologous end joining
- HDR high fidelity homology-directed repair
- an exogenous polynucleotide template can be introduced into the genome sequence.
- the HDR process is used modify genome sequence.
- an exogenous polynucleotide template comprising a sequence to be integrated flanked by an upstream sequence and a downstream sequence is introduced into a cell.
- the upstream and downstream sequences share sequence similarity with either side of the site of integration in the chromosome.
- a donor polynucleotide can be DNA, e.g., a DNA plasmid, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), a viral vector, a linear piece of DNA, a PCR fragment, a naked nucleic acid, or a nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer.
- the exogenous polynucleotide template comprises a sequence to be integrated (e.g., a mutated gene).
- the sequence for integration may be a sequence endogenous or exogenous to the cell.
- sequences to be integrated include polynucleotides encoding a protein or a non-coding RNA (e.g., a microRNA).
- the sequence for integration may be operably linked to an appropriate control sequence or sequences.
- the sequence to be integrated may provide a regulatory function.
- the upstream and downstream sequences in the exogenous polynucleotide template are selected to promote recombination between the chromosomal sequence of interest and the donor polynucleotide.
- the upstream sequence is a nucleic acid sequence that shares sequence similarity with the genome sequence upstream of the targeted site for integration.
- the downstream sequence is a nucleic acid sequence that shares sequence similarity with the chromosomal sequence downstream of the targeted site of integration.
- the upstream and downstream sequences in the exogenous polynucleotide template can have 75%, 80%, 85%, 90%, 95%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 99% or 100% sequence identity with the targeted genome sequence.
- exogenous polynucleotide template of the invention can be constructed using recombinant techniques (see, for example, Sambrook et al., 2001 and Ausubel et al., 1996).
- a double stranded break is introduced into the genome sequence by the CRISPR complex, the break is repaired via homologous recombination an exogenous polynucleotide template such that the template is integrated into the genome.
- the presence of a double-stranded break facilitates integration of the template.
- this invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises increasing or decreasing expression of a target polynucleotide by using a CRISPR complex that binds to the polynucleotide.
- a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a CRISPR complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein is not produced, or the sequence does not function as the wild-type sequence does.
- a protein or microRNA coding sequence may be inactivated such that the protein or microRNA or pre-microRNA transcript is not produced.
- a control sequence can be inactivated such that it no longer functions as a control sequence.
- control sequence refers to any nucleic acid sequence that effects the transcription, translation, or accessibility of a nucleic acid sequence. Examples of a control sequence include, a promoter, a transcription terminator, and an enhancer are control sequences.
- the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell.
- the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell.
- the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
- Examples of target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway- associated gene or polynucleotide.
- target polynucleotides include a disease associated gene or polynucleotide.
- A“disease-associated” gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease.
- a disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease.
- the transcribed or translated products may be known or unknown, and may be at a normal or abnormal level.
- the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell.
- the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell.
- the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
- the target sequence should be associated with a PAM (protospacer adjacent motif); that is, a short sequence recognized by the CRISPR complex.
- PAM protospacer adjacent motif
- the precise sequence and length requirements for the PAM differ depending on the CRISPR enzyme used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence) Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given CRISPR enzyme.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- Similar considerations and conditions apply as above for methods of modifying a target polynucleotide. In fact, these sampling, culturing and re-introduction options apply across the aspects of the present invention.
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell, which may be in vivo, ex vivo or in vitro.
- the method comprises sampling a cell or population of cells from a human or non- human animal, and modifying the cell or cells. Culturing may occur at any stage ex vivo.
- the cell or cells may even be re-introduced into the non-human animal or plant. For re-introduced cells it is particularly preferred that the cells are stem cells.
- the CRISPR complex may comprise a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence, wherein said guide sequence may be linked to a tracr mate sequence which in turn may hybridize to a tracr sequence.
- This invention relates to the engineering and optimization of systems, methods and compositions used for the control of gene expression involving sequence targeting, such as genome perturbation or gene-editing, that relate to the CRISPR-Cas system and components thereof as delivered by nanoparticle carrier.
- sequence targeting such as genome perturbation or gene-editing
- An advantage of the present methods is that the delivery of the CRISPR system can be directed to minimize off-target delivery and its resulting side effects. This is achieved using delivery particle formulations and/or systems, preferably, nanoparticle systems.
- Cas9 optimization may be used to enhance function or to develop new functions, one can generate chimeric Cas9 proteins. Examples that the Applicants have generated are provided in Example 4. Chimeric Cas9 proteins can be made by combining fragments from different Cas9 homologs. For example, two example chimeric Cas9 proteins from the Cas9s described herein. For example, Applicants fused the N-term of St1Cas9 (fragment from this protein is in bold) with C-term of SpCas9.
- chimeric Cas9s include any or all of: reduced toxicity; improved expression in eukaryotic cells; enhanced specificity; reduced molecular weight of protein, for example, making the protein smaller by combining the smallest domains from different Cas9 homologs; and/or altering the PAM sequence requirement.
- the Cas9 may be used as a generic DNA binding protein.
- Cas9 as a generic DNA binding protein by mutating the two catalytic domains (D10 and H840) responsible for cleaving both strands of the DNA target.
- a transcriptional activation domain VP64
- Other transcriptional activation domains are known.
- transcriptional activation is possible.
- gene repression in this case of the beta-catenin gene
- Cas9 repressor DNA- binding domain
- Cas9 and one or more guide RNA can be delivered using adeno associated virus (AAV), lentivirus, adenovirus or other plasmid or viral vector types, in particular, using formulations and doses from, for example, US Patents Nos. 8,454,972 (formulations, doses for adenovirus), 8,404,658 (formulations, doses for AAV) and 5,846,946 (formulations, doses for DNA plasmids) and from clinical trials and publications regarding the clinical trials involving lentivirus, AAV and adenovirus.
- AAV the route of administration, formulation and dose can be as in US Patent No. 8,454,972 and as in clinical trials involving AAV.
- the route of administration, formulation and dose can be as in US Patent No. 8,404,658 and as in clinical trials involving adenovirus.
- the route of administration, formulation and dose can be as in US Patent No 5,846,946 and as in clinical studies involving plasmids.
- Doses may be based on or extrapolated to an average 70 kg individual, and can be adjusted for patients, subjects, mammals of different weight and species. Frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), depending on usual factors including the age, sex, general health, other conditions of the patient or subject and the particular condition or symptoms being addressed.
- Transgenic animals are also provided.
- Preferred examples include animals comprising Cas9, in terms of polynucleotides encoding Cas9 or the protein itself. Mice, rats and rabbits are preferred.
- To generate transgenic mice with the constructs as exemplified herein one may inject pure, linear DNA into the pronucleus of a zygote from a pseudo pregnant female, e.g. a CB56 female. Founders may then be identified, genotyped, and backcrossed to CB57 mice. The constructs may then be cloned and optionally verified, for instance by Sanger sequencing. Knock outs are envisaged where for instance one or more genes are knocked out in a model.
- knockins are also envisaged (alone or in combination).
- An example knockin Cas9 mouse was generated and this is exemplified, but Cas9 knockins are preferred.
- To generate a Cas9 knock in mice one may target the same constitutive and conditional constructs to the Rosa26 locus, as described herein (Figs. 22A-B and 23).
- Methods of US Patent Publication Nos. 20120017290 and 20110265198 assigned to Sangamo BioSciences, Inc. directed to targeting the Rosa locus may be modified to utilize the CRISPR Cas system of the present invention.
- the methods of US Patent Publication No. 20130236946 assigned to Cellectis directed to targeting the Rosa locus may also be modified to utilize the CRISPR Cas system of the present invention.
- chimeric RNA induces genome editing in embryonic or adult mice.
- conditional Cas9 mouse is crossed with a mouse expressing Cre under a tissue specific promoter, there is only be Cas9 in the tissues that also express Cre. This approach may be used to edit the genome in only precise tissues by delivering chimeric RNA to the same tissue.
- transgenic animals are also provided, as are transgenic plants, especially crops and algae.
- the transgenic plants may be useful in applications outside of providing a disease model. These may include food or feed production through expression of, for instance, higher protein, carbohydrate, nutrient or vitamin levels than would normally be seen in the wildtype.
- transgenic plants, especially pulses and tubers, and animals, especially mammals such as livestock (cows, sheep, goats and pigs), but also poultry and edible insects, are preferred.
- Transgenic algae or other plants such as rape may be particularly useful in the production of vegetable oils or biofuels such as alcohols (especially methanol and ethanol), for instance. These may be engineered to express or overexpress high levels of oil or alcohols for use in the oil or biofuel industries.
- Particle delivery systems and/or formulations are Particle delivery systems and/or formulations:
- a particle is defined as a small object that behaves as a whole unit with respect to its transport and properties. Particles are further classified according to diameter Coarse particles cover a range between 2,500 and 10,000 nanometers. Fine particles are sized between 100 and 2,500 nanometers. Ultrafine particles, or nanoparticles, are generally between 1 and 100 nanometers in size. The basis of the 100-nm limit is the fact that novel properties that differentiate particles from the bulk material typically develop at a critical length scale of under 100 nm.
- a particle delivery system/formulation is defined as any biological delivery system/formulation which includes a particle in accordance with the present invention.
- a particle in accordance with the present invention is any entity having a greatest dimension (e.g. diameter) of less than 100 microns (Pm).
- inventive particles have a greatest dimension of less than 10 Pm.
- inventive particles have a greatest dimension of less than 2000 nanometers (nm).
- inventive particles have a greatest dimension of less than 1000 nanometers (nm).
- inventive particles have a greatest dimension of less than 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm, or 100 nm.
- inventive particles have a greatest dimension (e.g., diameter) of 500 nm or less.
- inventive particles have a greatest dimension (e.g., diameter) of 250 nm or less.
- inventive particles have a greatest dimension (e.g., diameter) of 200 nm or less.
- inventive particles have a greatest dimension (e.g., diameter) of 150 nm or less.
- inventive particles have a greatest dimension (e.g., diameter) of 100 nm or less. Smaller particles, e.g., having a greatest dimension of 50 nm or less are used in some embodiments of the invention. In some embodiments, inventive particles have a greatest dimension ranging between 25 nm and 200 nm.
- Particle characterization is done using a variety of different techniques. Common techniques are electron microscopy (TEM, SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI- TOF), ultraviolet-visible spectroscopy, dual polarisation interferometry and nuclear magnetic resonance (NMR).
- TEM electron microscopy
- AFM atomic force microscopy
- DLS dynamic light scattering
- XPS X-ray photoelectron spectroscopy
- XRD powder X-ray diffraction
- FTIR Fourier transform infrared spectroscopy
- MALDI- TOF matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
- Characterization may be made as to native particles (i.e., preloading) or after loading of the cargo (herein cargo refers to e.g., one or more components of CRISPR-Cas system e.g., CRISPR enzyme or mRNA or guide RNA, or any combination thereof, and may include additional carriers and/or excipients) to provide particles of an optimal size for delivery for any in vitro, ex vivo and/or in vivo application of the present invention.
- particle dimension (e.g., diameter) characterization is based on measurements using dynamic laser scattering (DLS).
- DLS dynamic laser scattering
- Particles delivery systems within the scope of the present invention may be provided in any form, including but not limited to solid, semi-solid, emulsion, or colloidal particles.
- any of the delivery systems described herein including but not limited to, e.g., lipid-based systems, liposomes, micelles, microvesicles, exosomes, or gene gun may be provided as particle delivery systems within the scope of the present invention.
- nanoparticles refers to any particle having a diameter of less than 1000 nm.
- nanoparticles of the invention have a greatest dimension (e.g., diameter) of 500 nm or less.
- nanoparticles of the invention have a greatest dimension ranging between 25 nm and 200 nm.
- nanoparticles of the invention have a greatest dimension of 100 nm or less.
- nanoparticles of the invention have a greatest dimension ranging between 35 nm and 60 nm.
- Nanoparticles encompassed in the present invention may be provided in different forms, e.g., as solid nanoparticles (e.g., metal such as silver, gold, iron, titanium), non-metal, lipid-based solids, polymers), suspensions of nanoparticles, or combinations thereof.
- Metal, dielectric, and semiconductor nanoparticles may be prepared, as well as hybrid structures (e.g., core–shell nanoparticles).
- Nanoparticles made of semiconducting material may also be labeled quantum dots if they are small enough (typically sub 10 nm) that quantization of electronic energy levels occurs. Such nanoscale particles are used in biomedical applications as drug carriers or imaging agents and may be adapted for similar purposes in the present invention.
- Nanoparticles with one half hydrophilic and the other half hydrophobic are termed Janus particles and are particularly effective for stabilizing emulsions. They can self- assemble at water/oil interfaces and act as solid surfactants.
- nanoparticles based on self assembling bioadhesive polymers are contemplated, which may be applied to oral delivery of peptides, intravenous delivery of peptides and nasal delivery of peptides, all to the brain.
- Other embodiments, such as oral absorption and ocular deliver of hydrophobic drugs are also contemplated.
- the molecular envelope technology involves an engineered polymer envelope which is protected and delivered to the site of the disease (see, e.g., Mazza, M. et al. ACSNano, 2013. 7(2): 1016-1026; Siew, A., et al. Mol Pharm, 2012. 9(1):14-28; Lalatsa, A., et al.
- mice involve 20g mammals and that dosing can be scaled up to a 70 kg human.
- nanoparticles that can deliver RNA to a cancer cell to stop tumor growth developed by Dan Anderson’s lab at MIT may be used and/or adapted to the CRISPR Cas system of the present invention.
- the Anderson lab developed fully automated, combinatorial systems for the synthesis, purification, characterization, and formulation of new biomaterials and nanoformulations. See, e.g., Alabi et al., Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12881-6; Zhang et al., Adv Mater. 2013 Sep 6;25(33):4641 -5; Jiang et al., Nano Lett.
- US patent application 20110293703 relates to lipidoid compounds are also particularly useful in the administration of polynucleotides, which may be applied to deliver the CRISPR Cas system of the present invention.
- the aminoalcohol lipidoid compounds are combined with an agent to be delivered to a cell or a subject to form nanoparticles.
- the agent to be delivered by the particles may be in the form of a gas, liquid, or solid, and the agent may be a polynucleotide, protein, peptide, or small molecule.
- the minoalcohol lipidoid compounds may be combined with other aminoalcohol lipidoid compounds, polymers (synthetic or natural), surfactants, cholesterol, carbohydrates, proteins, lipids, etc. to form the particles. These particles may then optionally be combined with a pharmaceutical excipient to form a pharmaceutical composition.
- US Patent Publication No. 0110293703 also provides methods of preparing the aminoalcohol lipidoid compounds.
- One or more equivalents of an amine are allowed to react with one or more equivalents of an epoxide-terminated compound under suitable conditions to form an aminoalcohol lipidoid compound of the present invention.
- all the amino groups of the amine are fully reacted with the epoxide-terminated compound to form tertiary amines.
- all the amino groups of the amine are not fully reacted with the epoxide-terminated compound to form tertiary amines thereby resulting in primary or secondary amines in the aminoalcohol lipidoid compound.
- a diamine or polyamine may include one, two, three, or four epoxide-derived compound tails off the various amino moieties of the molecule resulting in primary, secondary, and tertiary amines. In certain embodiments, all the amino groups are not fully functionalized. In certain embodiments, two of the same types of epoxide-terminated compounds are used. In other embodiments, two or more different epoxide- terminated compounds are used.
- the synthesis of the aminoalcohol lipidoid compounds is performed with or without solvent, and the synthesis may be performed at higher temperatures ranging from 30.-100 C., preferably at approximately 50.-90 C.
- the prepared aminoalcohol lipidoid compounds may be optionally purified.
- the mixture of aminoalcohol lipidoid compounds may be purified to yield an aminoalcohol lipidoid compound with a particular number of epoxide-derived compound tails. Or the mixture may be purified to yield a particular stereo- or regioisomer.
- the aminoalcohol lipidoid compounds may also be alkylated using an alkyl halide (e.g., methyl iodide) or other alkylating agent, and/or they may be acylated.
- US Patent Publication No. 0110293703 also provides libraries of aminoalcohol lipidoid compounds prepared by the inventive methods. These aminoalcohol lipidoid compounds may be prepared and/or screened using high-throughput techniques involving liquid handlers, robots, microtiter plates, computers, etc. In certain embodiments, the aminoalcohol lipidoid compounds are screened for their ability to transfect polynucleotides or other agents (e.g., proteins, peptides, small molecules) into the cell.
- agents e.g., proteins, peptides, small molecules
- US Patent Publication No. 20130302401 relates to a class of poly(beta-amino alcohols) (PBAAs) has been prepared using combinatorial polymerization.
- PBAAs poly(beta-amino alcohols)
- the inventive PBAAs may be used in biotechnology and biomedical applications as coatings (such as coatings of films or multilayer films for medical devices or implants), additives, materials, excipients, non-biofouling agents, micropatterning agents, and cellular encapsulation agents.
- coatings such as coatings of films or multilayer films for medical devices or implants
- additives such as coatings of films or multilayer films for medical devices or implants
- materials such as coatings of films or multilayer films for medical devices or implants
- additives such as coatings of films or multilayer films for medical devices or implants
- materials such as coatings of films or multilayer films for medical devices or implants
- additives such as coatings of films or multilayer films for medical devices or implants
- materials such as coatings
- these coatings reduce the recruitment of inflammatory cells, and reduce fibrosis, following the subcutaneous implantation of carboxylated polystyrene microparticles.
- These polymers may be used to form polyelectrolyte complex capsules for cell encapsulation.
- the invention may also have many other biological applications such as antimicrobial coatings, DNA or siRNA delivery, and stem cell tissue engineering.
- US Patent Publication No. 20130302401 may be applied to the CRISPR Cas system of the present invention.
- lipid nanoparticles are contemplated.
- an antitransthyretin small interfering RNA encapsulated in lipid nanoparticles may be applied to the CRISPR Cas system of the present invention.
- Doses of about 0.01 to about 1 mg per kg of body weight administered intravenously are contemplated.
- Medications to reduce the risk of infusion-related reactions are contemplated, such as dexamethasone, acetampinophen, diphenhydramine or cetirizine, and ranitidine are contemplated.
- Multiple doses of about 0.3 mg per kilogram every 4 weeks for five doses are also contemplated.
- LNPs have been shown to be highly effective in delivering siRNAs to the liver (see, e.g., Tabernero et al., Cancer Discovery, April 2013, Vol. 3, No. 4, pages 363-470) and are therefore contemplated for delivering CRISPR Cas to the liver.
- a dosage of about four doses of 6 mg/kg of the LNP every two weeks may be contemplated.
- Tabernero et al. demonstrated that tumor regression was observed after the first 2 cycles of LNPs dosed at 0.7 mg/kg, and by the end of 6 cycles the patient had achieved a partial response with complete regression of the lymph node metastasis and substantial shrinkage of the liver tumors.
- the charge of the LNP must be taken into consideration.
- cationic lipids combined with negatively charged lipids to induce nonbilayer structures that facilitate intracellular delivery.
- ionizable cationic lipids with pKa values below 7 were developed (see, e.g., Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011).
- Negatively charged polymers such as siRNA oligonucleotides may be loaded into LNPs at low pH values (e.g., pH 4) where the ionizable lipids display a positive charge.
- LNPs exhibit a low surface charge compatible with longer circulation times.
- ionizable cationic lipids have been focused upon, namely 1,2-dilineoyl-3- dimethylammonium-propane (DLinDAP), 1,2-dilinoleyloxy-3-N,N-dimethylaminopropane (DLinDMA), 1,2-dilinoleyloxy-keto-N,N-dimethyl-3-aminopropane (DLinKDMA), and 1,2- dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLinKC2-DMA).
- DLinDAP 1,2-dilineoyl-3- dimethylammonium-propane
- DLinDMA 1,2-dilinoleyloxy-3-N,N-dimethylaminopropane
- DLinKDMA 1,2-dilinoleyloxy-keto-N,N-di
- LNP siRNA systems containing these lipids exhibit remarkably different gene silencing properties in hepatocytes in vivo, with potencies varying according to the series DLinKC2- DMA>DLinKDMA>DLinDMA>>DLinDAP employing a Factor VII gene silencing model (see, e.g., Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011).
- a dosage of 1 ⁇ g/ml levels may be contemplated, especially for a formulation containing DLinKC2-DMA.
- Preparation of LNPs and CRISPR Cas encapsulation may be used/and or adapted from Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011).
- the cationic lipids 1,2-dilineoyl-3-dimethylammonium-propane (DLinDAP), 1,2-dilinoleyloxy-3-N,N- dimethylaminopropane (DLinDMA), 1,2-dilinoleyloxyketo-N,N-dimethyl-3-aminopropane (DLinK-DMA), 1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLinKC2-DMA), (3- o-[2 ⁇ -(methoxypolyethyleneglycol 2000) succinoyl]-1,2-dimyristoyl-sn-glycol (PEG-S-DMG), and R-3-[((
- Cholesterol may be purchased from Sigma (St Louis, MO).
- the specific CRISPR Cas RNA may be encapsulated in LNPs containing DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA (cationic lipid:DSPC:CHOL: PEGS-DMG or PEG-C-DOMG at 40:10:40:10 molar ratios).
- 0.2% SP-DiOC18 Invitrogen, Burlington, Canada
- Encapsulation may be performed by dissolving lipid mixtures comprised of cationic lipid:DSPC:cholesterol:PEG-c-DOMG (40:10:40:10 molar ratio) in ethanol to a final lipid concentration of 10 mmol/l.
- This ethanol solution of lipid may be added drop-wise to 50 mmol/l citrate, pH 4.0 to form multilamellar vesicles to produce a final concentration of 30% ethanol vol/vol.
- Large unilamellar vesicles may be formed following extrusion of multilamellar vesicles through two stacked 80 nm Nuclepore polycarbonate filters using the Extruder (Northern Lipids, Vancouver, Canada).
- Encapsulation may be achieved by adding RNA dissolved at 2 mg/ml in 50 mmol/l citrate, pH 4.0 containing 30% ethanol vol/vol drop-wise to extruded preformed large unilamellar vesicles and incubation at 31 °C for 30 minutes with constant mixing to a final RNA/lipid weight ratio of 0.06/1 wt/wt. Removal of ethanol and neutralization of formulation buffer were performed by dialysis against phosphate-buffered saline (PBS), pH 7.4 for 16 hours using Spectra/Por 2 regenerated cellulose dialysis membranes.
- PBS phosphate-buffered saline
- Nanoparticle size distribution may be determined by dynamic light scattering using a NICOMP 370 particle sizer, the vesicle/intensity modes, and Gaussian fitting (Nicomp Particle Sizing, Santa Barbara, CA). The particle size for all three LNP systems may be ⁇ 70 nm in diameter.
- siRNA encapsulation efficiency may be determined by removal of free siRNA using VivaPureD MiniH columns (Sartorius Stedim Biotech) from samples collected before and after dialysis. The encapsulated RNA may be extracted from the eluted nanoparticles and quantified at 260 nm.
- siRNA to lipid ratio was determined by measurement of cholesterol content in vesicles using the Cholesterol E enzymatic assay from Wako Chemicals USA (Richmond, VA).
- Preparation of large LNPs may be used/and or adapted from Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011.
- a lipid premix solution (20.4 mg/ml total lipid concentration) may be prepared in ethanol containing DLinKC2-DMA, DSPC, and cholesterol at 50:10:38.5 molar ratios.
- Sodium acetate may be added to the lipid premix at a molar ratio of 0.75:1 (sodium acetate:DLinKC2-DMA).
- the lipids may be subsequently hydrated by combining the mixture with 1.85 volumes of citrate buffer (10 mmol/l, pH 3.0) with vigorous stirring, resulting in spontaneous liposome formation in aqueous buffer containing 35% ethanol.
- the liposome solution may be incubated at 37 °C to allow for time-dependent increase in particle size. Aliquots may be removed at various times during incubation to investigate changes in liposome size by dynamic light scattering (Zetasizer Nano ZS, Malvern Instruments, Worcestershire, UK).
- the liposomes should their size, effectively quenching further growth.
- RNA may then be added to the empty liposomes at an siRNA to total lipid ratio of approximately 1:10 (wt:wt), followed by incubation for 30 minutes at 37 °C to form loaded LNPs. The mixture may be subsequently dialyzed overnight in PBS and filtered with a 0.45- ⁇ m syringe filter.
- Spherical Nucleic Acid (SNATM) constructs and other nanoparticles (particularly gold nanoparticles) are also contemplate as a means to delivery CRISPR/Cas system to intended targets.
- Significant data show that AuraSense Therapeutics' Spherical Nucleic Acid (SNATM) constructs, based upon nucleic acid-functionalized gold nanoparticles, are superior to alternative platforms based on multiple key success factors, such as: High in vivo stability. (Due to their dense loading, a majority of cargo (DNA or siRNA) remains bound to the constructs inside cells, conferring nucleic acid stability and resistance to enzymatic degradation.) Deliverability.
- the constructs demonstrate a transfection efficiency of 99% with no need for carriers or transfection agents.
- Therapeutic targeting The unique target binding affinity and specificity of the constructs allowaki specificity for matched target sequences (i.e., limited off-target effects).
- Superior efficacy The constructs significantly outperform leading conventional transfection reagents (Lipofectamine 2000 and Cytofectin).) Low toxicity. (The constructs can enter a variety of cultured cells, primary cells, and tissues with no apparent toxicity.) No significant immune response.
- nucleic acid-based therapeutics may be applicable to numerous disease states, including inflammation and infectious disease, cancer, skin disorders and cardiovascular disease.
- Citable literature includes: Cutler et al.,. J. Am. Chem. Soc. 2011 133:9254-9257, Hao et al., Small. 2011 7:3158-3162, Zhang et al., ACS Nano.
- Self-assembling nanoparticles with siRNA may be constructed with polyethyleneimine (PEI) that is PEGylated with an Arg-Gly-Asp (RGD) peptide ligand attached at the distal end of the polyethylene glycol (PEG), for example, as a means to target tumor neovasculature expressing integrins and used to deliver siRNA inhibiting vascular endothelial growth factor receptor-2 (VEGF R2) expression and thereby tumor angiogenesis (see, e.g., Schiffelers et al., Nucleic Acids Research, 2004, Vol. 32, No. 19).
- PEI polyethyleneimine
- RGD Arg-Gly-Asp
- VEGF R2 vascular endothelial growth factor receptor-2
- Nanoplexes may be prepared by mixing equal volumes of aqueous solutions of cationic polymer and nucleic acid to give a net molar excess of ionizable nitrogen (polymer) to phosphate (nucleic acid) over the range of 2 to 6.
- the electrostatic interactions between cationic polymers and nucleic acid resulted in the formation of polyplexes with average particle size distribution of about 100 nm, hence referred to here as nanoplexes.
- a dosage of about 100 to 200 mg of CRISPR Cas is envisioned for delivery in the self-assembling nanoparticles of Schiffelers et al.
- the nanoplexes of Bartlett et al. may also be applied to the present invention.
- the nanoplexes of Bartlett et al. are prepared by mixing equal volumes of aqueous solutions of cationic polymer and nucleic acid to give a net molar excess of ionizable nitrogen (polymer) to phosphate (nucleic acid) over the range of 2 to 6.
- the electrostatic interactions between cationic polymers and nucleic acid resulted in the formation of polyplexes with average particle size distribution of about 100 nm, hence referred to here as nanoplexes.
- DOTA- NHSester 1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(N-hydroxysuccinimide ester)
- DOTA- NHSester 1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(N-hydroxysuccinimide ester)
- the amine modified RNA sense strand with a 100-fold molar excess of DOTA-NHS-ester in carbonate buffer (pH 9) was added to a microcentrifuge tube. The contents were reacted by stirring for 4 h at room temperature.
- the DOTA-RNAsense conjugate was ethanol-precipitated, resuspended in water, and annealed to the unmodified antisense strand to yield DOTA-siRNA.
- Tf-targeted and nontargeted siRNA nanoparticles may be formed by using cyclodextrin-containing polycations. Typically, nanoparticles were formed in water at a charge ratio of 3 (+/-) and an siRNA concentration of 0.5 g/liter. One percent of the adamantane-PEG molecules on the surface of the targeted nanoparticles were modified with Tf (adamantane-PEG-Tf). The nanoparticles were suspended in a 5% (wt/vol) glucose carrier solution for injection.
- the nanoparticles consist of a synthetic delivery system containing: (1) a linear, cyclodextrin-based polymer (CDP), (2) a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells, (3) a hydrophilic polymer (polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids), and (4) siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B+5).
- CDP linear, cyclodextrin-based polymer
- TF human transferrin protein
- TFR TF receptors
- siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B+5).
- the TFR has long been known to be upregulated in malignant cells, and RRM2 is an established anti-cancer target.
- nanoparticles (clinical version denoted as CALAA-01) have been shown to be well tolerated in multi-dosing studies in non-human primates.
- Davis et al. s clinical trial is the initial human trial to systemically deliver siRNA with a targeted delivery system and to treat patients with solid cancer.
- Davis et al. investigated biopsies from three patients from three different dosing cohorts; patients A, B and C, all of whom had metastatic melanoma and received CALAA-01 doses of 18, 24 and 30 mg m -2 siRNA, respectively.
- CRISPR Cas system of the present invention Similar doses may also be contemplated for the CRISPR Cas system of the present invention.
- the delivery of the invention may be achieved with nanoparticles containing a linear, cyclodextrin-based polymer (CDP), a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells and/or a hydrophilic polymer (for example, polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids).
- CDP linear, cyclodextrin-based polymer
- TF human transferrin protein
- TFR TF receptors
- hydrophilic polymer for example, polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids
- RNAi RNAi-RNAi-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9-Cas9 system.
- Some of the techniques described are also be suitable for delivery of the Cas9 as well. In some instance is may be useful to deliver the guides of the CRISPR-Cas9 system separately from the Cas9. This may be as part of a dual-vector delivery system, where the vectors are considered in the broadest light as simply any means of delivery, rather than specifically viral vectors.
- the Cas9 may be delivered via a viral vector and that guides specific to genomic targets are delivered separately.
- the guides could be delivered via the same vector types as the Cas9, for example a dual-vector system where the Cas9 is delivered in an AAV vector and the guide(s) are delivered in a separate AAV vector. This can be done substantially contemporaneously (i.e. co-delivery), but it could also be done at separate points in time, separated even by weeks or months. For example, if a first round of CRISPR-Cas9 systems have been delivered, but then it is subsequently required to provide further guides, then the original Cas9 which is hopefully still functional in the target cells may be re-used.
- the Cas9 is under the control of an inducible promoter, then induction of transcription of new CAs9 in the target cells is preferred. Equally, if a CAs9-expressing model provided for herein is used, then only delivery of guide(s) is necessary. Accordingly, where delivery of guide(s) is required separately from Cas9, then it may be delivered in much the same way as RNAi. As such, the review by Kanasty is helpful in pointing out a number of known approaches that are suitable, with particular focus on the liver, although the means of delivery are generally appropriate for a broad range of cells. Examples include:
- Lipoprotein delivery system as well as siRNA conjugated to lipophilic molecules, interact with serum lipoproteins and subsequently gain entry into hepatocytes that take up those lipoproteins;”
- x Conjugates such as: o Dynamic Polyconjugates (DPCs, 10nm nanoparticles), which have been shown to deliver RNAi to successfully supress ApoB; and Triantennary GalNAc conjugates are“both highly effective”;
- DPCs Dynamic Polyconjugates
- 10nm nanoparticles which have been shown to deliver RNAi to successfully supress ApoB
- Triantennary GalNAc conjugates are“both highly effective”
- nanoparticles include:
- Cyclodextrin Polymer nanoparticles including additional formulation components such as adamantine-PEG (AD-PEG) and adamantine-PEG-transferrin (AD-PEG-Tf) ;
- LNP Lipid Nanoparticles
- endogenous targeting ligand is Retinol Binding protein (RBP) useful for targeting hepatic and pancreatic stellate cells, which express the RBP receptor.
- exogenous targeting ligand is GalNac, which also targets the liver via the asialoglycoprotein receptor on hepatocytes. A combined approach is seen in Anlylams ALN-VSP;
- liver endothelium allow molecules 100-200 nm in diameter to diffuse out of the bloodstream and gain access to the hepatocytes and other liver cells”;
- Ligands such as GalNAc are suitable for delivery to non-parenchymal liver cells expressing the mannose receptor, and to hepatocytes where conjugation of suitable siRNA to a GalNAc ligand has been shown to successfully supress PCSK9;
- Oligonucleotide nanoparticles composed of composed of complimentary DNA fragments designed to hybridise into a pre-defined 3D structure. Using suitable 3’ overhand sequences, 6 siRNA strands could be attached to each particle, even at a specified position. The hydrodynamic diameter was about 29nm.
- US Patent No. 8,709,843 incoportated herein by reference, provides a drug delivery system for targeted delivery of therapeutic agent-containing particles to tissues, cells, and intracellular compartments.
- the invention provides targeted particles comprising comprising polymer conjugated to a surfactant, hydrophilic polymer or lipid.
- US Patent No. 6,007,845, incorporated herein by reference provides particles which have a core of a multiblock copolymer formed by covalently linking a multifunctional compound with one or more hydrophobic polymers and one or more hydrophilic polymers, and conatin a biologically active material.
- 5,855,913, incorporated herein by reference provides a particulate composition having aerodynamically light particles having a tap density of less than 0.4 g/cm 3 with a mean diameter of between 5 Pm and 30 Pm, incorporating a surfactant on the surface thereof for drug delivery to the pulmonary system.
- US Patent No. 5,985,309, incorporated herein by reference provides particles incorporating a surfactant and/or a hydrophilic or hydrophobic complex of a positively or negatively charged therapeutic or diagnostic agent and a charged molecule of opposite charge for delivery to the pulmonary system.
- the nanoparticle may be epoxide-modified lipid–polymer, advantageously 7C1 (see, e.g., James E. Dahlman and Carmen Barnes et al. Nature Nanotechnology (2014) published online 11 May 2014, doi:10.1038/nnano.2014.84).
- C71 was synthesized by reacting C15 epoxide-terminated lipids with PEI600 at a 14:1 molar ratio, and was formulated with C14PEG2000 to produce nanoparticles (diameter between 35 and 60 nm) that were stable in PBS solution for at least 40 days.
- An epoxide-modified lipid-polymer may be utilized to deliver the CRISPR-Cas system of the present invention to pulmonary, cardiovascular or renal cells, however, one of skill in the art may adapt the system to deliver to other target organs. Dosage ranging from about 0.05 to about 0.6 mg/kg are envisioned. Dosages over several days or weeks are also envisioned, with a total dosage of about 2 mg/kg.
- Exosomes are endogenous nano-vesicles that transport RNAs and proteins which can deliver short interfering (si)RNA to the brain in mice.
- siRNAs and proteins which can deliver short interfering (si)RNA to the brain in mice.
- Alvarez-Erviti et al. 2011, Nat Biotechnol 29: 341
- Lamp2b an exosomal membrane protein, fused to the neuron-specific RVG peptide3.
- Purified exosomes were loaded with exogenous siRNA by electroporation.
- RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not observed. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer's disease.
- exosomes produced were physically homogenous, with a size distribution peaking at 80 nm in diameter as determined by nanoparticle tracking analysis (NTA) and electron microscopy.
- NTA nanoparticle tracking analysis
- Alvarez-Erviti et al. obtained 6-12 ⁇ g of exosomes (measured based on protein concentration) per 10 6 cells.
- siRNA-RVG exosomes induced immune responses in vivo by assessing IL-6, IP-10, TNF ⁇ and IFN- ⁇ serum concentrations.
- siRNA-RVG exosome treatment nonsignificant changes in all cytokines were registered similar to siRNA-transfection reagent treatment in contrast to siRNA-RVG-9R, which potently stimulated IL-6 secretion, confirming the immunologically inert profile of the exosome treatment.
- exosomes encapsulate only 20% of siRNA
- delivery with RVG-exosome appears to be more efficient than RVG-9R delivery as comparable mRNA knockdown and greater protein knockdown was achieved with fivefold less siRNA without the corresponding level of immune stimulation.
- This experiment demonstrated the therapeutic potential of RVG- exosome technology, which is potentially suited for long-term silencing of genes related to neurodegenerative diseases.
- the exosome delivery system of Alvarez-Erviti et al. may be applied to deliver the CRISPR-Cas system of the present invention to therapeutic targets, especially neurodegenerative diseases.
- a dosage of about 100 to 1000 mg of CRISPR Cas encapsulated in about 100 to 1000 mg of RVG exosomes may be contemplated for the present invention.
- El-Andaloussi et al. discloses how exosomes derived from cultured cells can be harnessed for delivery of siRNA in vitro and in vivo. This protocol first describes the generation of targeted exosomes through transfection of an expression vector, comprising an exosomal protein fused with a peptide ligand. Next, El-Andaloussi et al. explain how to purify and characterize exosomes from transfected cell supernatant. Next, El- Andaloussi et al. detail crucial steps for loading siRNA into exosomes. Finally, El-Andaloussi et al.
- exosome-mediated siRNA delivery is evaluated by functional assays and imaging.
- the entire protocol takes 3 weeks. Delivery or administration according to the invention may be performed using exosomes produced from self- derived dendritic cells.
- Exosomes are nano-sized vesicles (30– 90nm in size) produced by many cell types, including dendritic cells (DC), B cells, T cells, mast cells, epithelial cells and tumor cells. These vesicles are formed by inward budding of late endosomes and are then released to the extracellular environment upon fusion with the plasma membrane. Because exosomes naturally carry RNA between cells, this property might be useful in gene therapy.
- DC dendritic cells
- B cells B cells
- T cells T cells
- mast cells epithelial cells
- tumor cells tumor cells.
- Exosomes from plasma are prepared by centrifugation of buffy coat at 900g for 20 min to isolate the plasma followed by harvesting cell supernatants, centrifuging at 300g for 10 min to eliminate cells and at 16 500g for 30 min followed by filtration through a 0.22 mm filter. Exosomes are pelleted by ultracentrifugation at 120 000g for70 min. Chemical transfection of siRNA into exosomes is carried out according to the manufacturer’s instructions in RNAi Human/Mouse Starter Kit (Quiagen, Hilden, Germany). siRNA is added to 100 ml PBS at a final concentration of 2 mmol/ml.
- exosomes are re- isolated using aldehyde/sulfate latex beads.
- the chemical transfection of CRISPR Cas into exosomes may be conducted similarly to siRNA.
- the exosomes may be co-cultured with monocytes and lymphocytes isolated from the peripheral blood of healthy donors. Therefore, it may be contemplated that exosomes containing CRISPR Cas may be introduced to monocytes and lymphocytes of and autologously reintroduced into a human. Accordingly, delivery or administration according to the invention may beperformed using plasma exosomes.
- Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. Liposomes have gained considerable attention as drug delivery carriers because they are biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB) (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).
- BBB blood brain barrier
- Liposomes can be made from several different types of lipids; however, phospholipids are most commonly used to generate liposomes as drug carriers. Although liposome formation is spontaneous when a lipid film is mixed with an aqueous solution, it can also be expedited by applying force in the form of shaking by using a homogenizer, sonicator, or an extrusion apparatus (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).
- liposomes may be added to liposomes in order to modify their structure and properties.
- either cholesterol or sphingomyelin may be added to the liposomal mixture in order to help stabilize the liposomal structure and to prevent the leakage of the liposomal inner cargo.
- liposomes are prepared from hydrogenated egg phosphatidylcholine or egg phosphatidylcholine, cholesterol, and dicetyl phosphate, and their mean vesicle sizes were adjusted to about 50 and 100 ⁇ nm. (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).
- Conventional liposome formulation is mainly comprised of natural phospholipids and lipids such as 1,2-distearoryl-sn-glycero-3-phosphatidyl choline (DSPC), sphingomyelin, egg phosphatidylcholines and monosialoganglioside. Since this formulation is made up of phospholipids only, liposomal formulations have encountered many challenges, one of the ones being the instability in plasma. Several attempts to overcome these challenges have been made, specifically in the manipulation of the lipid membrane. One of these attempts focused on the manipulation of cholesterol.
- DSPC 1,2-distearoryl-sn-glycero-3-phosphatidyl choline
- DOPE 1,2-dioleoyl-sn-glycero-3- phosphoethanolamine
- Trojan Horse liposomes also known as Molecular Trojan Horses
- These particles allow delivery of a transgene to the entire brain after an intravascular injection. Without being bound by limitation, it is believed that neutral lipid particles with specific antibodies conjugated to surface allow crossing of the blood brain barrier via endocytosis.
- Applicant postulates utilizing Trojan Horse Liposomes to deliver the CRISPR family of nucleases to the brain via an intravascular injection, which would allow whole brain transgenic animals without the need for embryonic manipulation. About 1-5 g of DNA may be contemplated for in vivo administration in liposomes.
- the CRISPR Cas system may be administered in liposomes, such as a stable nucleic-acid-lipid particle (SNALP) (see, e.g., Morrissey et al., Nature Biotechnology, Vol. 23, No. 8, August 2005).
- SNALP stable nucleic-acid-lipid particle
- Daily intravenous injections of about 1, 3 or 5 mg/kg/day of a specific CRISPR Cas targeted in a SNALP are contemplated.
- the daily treatment may be over about three days and then weekly for about five weeks.
- a specific CRISPR Cas encapsulated SNALP administered by intravenous injection to at doses of abpit 1 or 2.5 mg/kg are also contemplated (see, e.g., Zimmerman et al., Nature Letters, Vol. 441, 4 May 2006).
- the SNALP formulation may contain the lipids 3-N-[(wmethoxypoly(ethylene glycol) 2000) carbamoyl] -!
- PEG-C-DMA 1,2-dilinoleyloxy-N,N- dimethyl-3-aminopropane
- DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine
- cholesterol in a 2:40:10:48 molar per cent ratio (see, e.g., Zimmerman et al., Nature Letters, Vol. 441, 4 May 2006).
- SNALPs stable nucleic-acid-lipid particles
- the SNALP liposomes may be prepared by formulating D-Lin-DMA and PEG-C-DMA with distearoylphosphatidylcholine (DSPC), Cholesterol and siRNA using a 25:1 lipid/siRNA ratio and a 48/40/10/2 molar ratio of Cholesterol/D-Lin-DMA/DSPC/PEG-C-DMA.
- DSPC distearoylphosphatidylcholine
- Cholesterol and siRNA using a 25:1 lipid/siRNA ratio and a 48/40/10/2 molar ratio of Cholesterol/D-Lin-DMA/DSPC/PEG-C-DMA.
- the resulted SNALP liposomes are about 80–100 nm in size.
- a SNALP may comprise synthetic cholesterol (Sigma- Aldrich, St Louis, MO, USA), dipalmitoylphosphatidylcholine (Avanti Polar Lipids, Alabaster, AL, USA), 3-N-[(w-methoxy poly(ethylene glycol)2000)carbamoyl]-1,2- dimyrestyloxypropylamine, and cationic 1,2-dilinoleyloxy-3-N,Ndimethylaminopropane (see, e.g., Geisbert et al., Lancet 2010; 375: 1896-905).
- a SNALP may comprise synthetic cholesterol (Sigma-Aldrich), 1,2- distearoyl-sn-glycero-3-phosphocholine (DSPC; Avanti Polar Lipids Inc.), PEG-cDMA, and 1,2- dilinoleyloxy-3-(N;N-dimethyl)aminopropane (DLinDMA) (see, e.g., Judge, J. Clin. Invest. 119:661-673 (2009)).
- Formulations used for in vivo studies may comprise a final lipid/RNA mass ratio of about 9:1.
- the stability profile of RNAi nanomedicines has been reviewed by Barros and Gollob of Alnylam Pharmaceuticals (see, e.g., Advanced Drug Delivery Reviews 64 (2012) 1730–1737).
- the stable nucleic acid lipid particle is comprised of four different lipids— an ionizable lipid (DLinDMA) that is cationic at low pH, a neutral helper lipid, cholesterol, and a diffusible polyethylene glycol (PEG)-lipid.
- the particle is approximately 80 nm in diameter and is charge-neutral at physiologic pH.
- the ionizable lipid serves to condense lipid with the anionic siRNA during particle formation.
- the ionizable lipid When positively charged under increasingly acidic endosomal conditions, the ionizable lipid also mediates the fusion of SNALP with the endosomal membrane enabling release of siRNA into the cytoplasm.
- the PEG-lipid stabilizes the particle and reduces aggregation during formulation, and subsequently provides a neutral hydrophilic exterior that improves pharmacokinetic properties.
- ALN-TTR01 which employs the SNALP technology described above and targets hepatocyte production of both mutant and wild- type TTR to treat TTR amyloidosis (ATTR).
- TTR amyloidosis TTR amyloidosis
- FAP familial amyloidotic polyneuropathy
- FAC familial amyloidotic cardiomyopathy
- SSA senile systemic amyloidosis
- ALN-TTR01 was administered as a 15- minute IV infusion to 31 patients (23 with study drug and 8 with placebo) within a dose range of 0.01 to 1.0 mg/kg (based on siRNA). Treatmentwaswell tolerated with no significant increases in liver function tests. Infusion-related reactions were noted in 3 of 23 patients at 0.4 mg/kg; all responded to slowing of the infusion rate and all continued on study. Minimal and transient elevations of serum cytokines IL-6, IP-10 and IL-1ra were noted in two patients at the highest dose of 1 mg/kg (as anticipated from preclinical and NHP studies). Lowering of serum TTR, the expected pharmacodynamics effect of ALN-TTR01, was observed at 1 mg/kg.
- a SNALP may be made by solubilizing a cationic lipid, DSPC, cholesterol and PEG-lipid were solubilized in ethanol at a molar ratio of 40:10:40:10, respectively (see, Semple et al., Nature Niotechnology, Volume 28 Number 2 February 2010, pp. 172-177).
- the lipid mixture was added to an aqueous buffer (50 mM citrate, pH 4) with mixing to a final ethanol and lipid concentration of 30% (vol/vol) and 6.1 mg/ml, respectively, and allowed to equilibrate at 22 °C for 2 min before extrusion.
- the hydrated lipids were extruded through two stacked 80 nm pore-sized filters (Nuclepore) at 22 °C using a Lipex Extruder (Northern Lipids) until a vesicle diameter of 70–90 nm, as determined by dynamic light scattering analysis, was obtained. This generally required 1–3 passes.
- the siRNA (solubilized in a 50 mM citrate, pH 4 aqueous solution containing 30% ethanol) was added to the pre- equilibrated (35 °C) vesicles at a rate of ⁇ 5 ml/min with mixing.
- siRNA/lipid ratio 0.06 (wt/wt) was reached, the mixture was incubated for a further 30 min at 35 °C to allow vesicle reorganization and encapsulation of the siRNA.
- the ethanol was then removed and the external buffer replaced with PBS (155 mM NaCl, 3 mM Na2HPO4, 1 mM KH2PO4, pH 7.5) by either dialysis or tangential flow diafiltration.
- siRNA were encapsulated in SNALP using a controlled step-wise dilution method process.
- the lipid constituents of KC2-SNALP were DLin-KC2-DMA (cationic lipid), dipalmitoylphosphatidylcholine (DPPC; Avanti Polar Lipids), synthetic cholesterol (Sigma) and PEG-C-DMA used at a molar ratio of 57.1:7.1:34.3:1.4.
- SNALP were dialyzed against PBS and filter sterilized through a 0.2 ⁇ m filter before use.
- Mean particle sizes were 75–85 nm and 90–95% of the siRNA was encapsulated within the lipid particles.
- the final siRNA/lipid ratio in formulations used for in vivo testing was ⁇ 0.15 (wt/wt).
- LNP-siRNA systems containing Factor VII siRNA were diluted to the appropriate concentrations in sterile PBS immediately before use and the formulations were administered intravenously through the lateral tail vein in a total volume of 10 ml/kg. This method may be extrapolated to the CRISPR Cas system of the present invention.
- DLin-KC2-DMA amino lipid 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]- dioxolane
- DLin-KC2-DMA amino lipid 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]- dioxolane
- a preformed vesicle with the following lipid composition may be contemplated: amino lipid, distearoylphosphatidylcholine (DSPC), cholesterol and (R)-2,3-bis(octadecyloxy) propyl-1- (methoxy poly(ethylene glycol)2000)propylcarbamate (PEG-lipid) in the molar ratio 40/10/40/10, respectively, and a FVII siRNA/total lipid ratio of approximately 0.05 (w/w).
- the particles may be extruded up to three times through 80 nm membranes prior to adding the CRISPR Cas RNA.
- Particles containing the highly potent amino lipid 16 may be used, in which the molar ratio of the four lipid components 16, DSPC, cholesterol and PEG-lipid (50/10/38.5/1.5) which may be further optimized to enhance in vivo activity.
- lipid envelopes to deliver RNA.
- lipids may be formulated with the CRISPR Cas system of the present invention to form lipid nanoparticles (LNPs).
- Lipids include, but are not limited to, DLin-KC2-DMA4, C12-200 and colipids disteroylphosphatidyl choline, cholesterol, and PEG-DMG may be formulated with CRISPR Cas instead of siRNA (see, e.g., Novobrantseva, Molecular Therapy–Nucleic Acids (2012) 1, e4; doi:10.1038/mtna.2011.3) using a spontaneous vesicle formation procedure.
- the component molar ratio may be about 50/10/38.5/1.5 (DLin-KC2-DMA or C12-200/disteroylphosphatidyl choline/cholesterol/PEG-DMG).
- the final lipid:siRNA weight ratio may be ⁇ 12:1 and 9:1 in the case of DLin-KC2-DMA and C12-200 lipid nanoparticles (LNPs), respectively.
- the formulations may have mean particle diameters of ⁇ 80 nm with >90% entrapment efficiency. A 3 mg/kg dose may be contemplated.
- Tekmira has a portfolio of approximately 95 patent families, in the U.S. and abroad, that are directed to various aspects of LNPs and LNP formulations (see, e.g., U.S. Pat. Nos.
- the CRISPR Cas system may be delivered encapsulated in PLGA Microspheres such as that further described in US published applications 20130252281 and 20130245107 and 20130244279 (assigned to Moderna Therapeutics) which relate to aspects of formulation of compositions comprising modified nucleic acid molecules which may encode a protein, a protein precursor, or a partially or fully processed form of the protein or a protein precursor.
- the formulation may have a molar ratio 50:10:38.5:1.5-3.0 (cationic lipid:fusogenic lipid:cholesterol:PEG lipid).
- the PEG lipid may be selected from, but is not limited to PEG-c- DOMG, PEG-DMG.
- the fusogenic lipid may be DSPC. See also, Schrum et al., Delivery and Formulation of Engineered Nucleic Acids, US published application 20120251618.
- Nanomerics’ technology addresses bioavailability challenges for a broad range of therapeutics, including low molecular weight hydrophobic drugs, peptides, and nucleic acid based therapeutics (plasmid, siRNA, miRNA).
- Specific administration routes for which the technology has demonstrated clear advantages include the oral route, transport across the blood- brain-barrier, delivery to solid tumours, as well as to the eye. See, e.g., Mazza et al., 2013, ACS Nano. 2013 Feb 26;7(2):1016-26; Uchegbu and Siew, 2013, J Pharm Sci. 102(2):305-10 and Lalatsa et al., 2012, J Control Release. 2012 Jul 20;161(2):523-36.
- US Patent Publication No. 20050019923 involves cationic dendrimers for delivering bioactive molecules, such as polynucleotide molecules, peptides and polypeptides and/or pharmaceutical agents, to a mammalian body.
- the dendrimers are suitable for targeting the delivery of the bioactive molecules to, for example, the liver, spleen, lung, kidney or heart.
- Dendrimers are synthetic 3-dimensional macromolecules that are prepared in a step-wise fashion from simple branched monomer units, the nature and functionality of which can be easily controlled and varied.
- Dendrimers are synthesised from the repeated addition of building blocks to a multifunctional core (divergent approach to synthesis), or towards a multifunctional core (convergent approach to synthesis) and each addition of a 3-dimensional shell of building blocks leads to the formation of a higher generation of the dendrimers.
- Polypropylenimine dendrimers start from a diaminobutane core to which is added twice the number of amino groups by a double Michael addition of acrylonitrile to the primary amines followed by the hydrogenation of the nitriles. This results in a doubling of the amino groups.
- Polypropylenimine dendrimers contain 100% protonable nitrogens and up to 64 terminal amino groups (generation 5, DAB 64).
- Protonable groups are usually amine groups which are able to accept protons at neutral pH.
- the use of dendrimers as gene delivery agents has largely focused on the use of the polyamidoamine. and phosphorous containing compounds with a mixture of amine/amide or N--P(O 2 )S as the conjugating units respectively with no work being reported on the use of the lower generation polypropylenimine dendrimers for gene delivery.
- Polypropylenimine dendrimers have also been studied as pH sensitive controlled release systems for drug delivery and for their encapsulation of guest molecules when chemically modified by peripheral amino acid groups. The cytotoxicity and interaction of polypropylenimine dendrimers with DNA as well as the transfection efficacy of DAB 64 has also been studied.
- cationic dendrimers such as polypropylenimine dendrimers
- display suitable properties such as specific targeting and low toxicity, for use in the targeted delivery of bioactive molecules, such as genetic material.
- derivatives of the cationic dendrimer also display suitable properties for the targeted delivery of bioactive molecules.
- CRISPR enzyme or CRISPR enzyme mRNA and CRISPR guide RNA might also be delivered separately; and advantageously at least one of these is delivered via a nanoparticle complex.
- CRISPR enzyme mRNA can be delivered prior to the guide RNA to give time for CRISPR enzyme to be expressed.
- CRISPR enzyme mRNA might be administered 1 -12 hours (preferably around 2-6 hours) prior to the administration of guide RNA.
- CRISPR enzyme mRNA and guide RNA can be administered together.
- a second booster dose of guide RNA can be administered 1 -12 hours (preferably around 2-6 hours) after the initial administration of CRISPR enzyme mRNA + guide RNA.
- CRISPR enzyme mRNA and/or guide RNA might be useful to achieve the most efficient levels of genome modification. For minimization of toxicity and off-target effect, it will be important to control the concentration of CRISPR enzyme mRNA and guide RNA delivered. Optimal concentrations of CRISPR enzyme mRNA and guide RNA can be determined by testing different concentrations in a cellular or animal model and using deep sequencing the analyze the extent of modification at potential off-target genomic loci.
- deep sequencing can be used to assess the level of modification at the following two off-target loci, 1: 5’-GAGTCCTAGCAGGAGAAGAA-3’ and 2: 5’-GAGTCTAAGCAGAAGAAGAA- 3’.
- concentration that gives the highest level of on-target modification while minimizing the level of off-target modification should be chosen for in vivo delivery.
- CRISPR enzyme nickase mRNA for example S.
- pyogenes Cas9 with the D10A mutation can be delivered with a pair of guide RNAs targeting a site of interest.
- the two guide RNAs need to be spaced as follows. Guide sequences in red (single underline) and blue (double underline) respectively (these examples are based on the PAM requirement for Streptococcus pyogenes Cas9).
- the 5’ overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5’ overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs or 1-34 base pairs.
- the first guide sequence directing cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence directing cleavage of the opposite strand near the second target sequence results in a blunt cut or a 3’ overhang.
- the 3’ overhang is at most 150, 100 or 25 base pairs or at least 15, 10 or 1 base pairs.
- the 3’ overhang is 1 -100 base pairs (and in this instance“base pairs” can mean nucleotides or nt or nts).
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- Cas9H840A can render Cas9 a“dead Cas9”, i.e., a CRISPR enzyme substantially lacking all DNA cleavage activity (which is when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1 %, 0.1%, 0.01%, or less of the DNA cleavage activity of the non-mutated form of the enzyme; whereby an example can be when the DNA cleavage activity of the mutated form is nil or negligible as compared with the non-mut
- PCSK9 liver, proprotein convertase subtilisin kexin 9
- PCSK9 Proprotein convertase subtilisin kexin 9
- PCSK9 is a member of the subtilisin serine protease family.
- PCSK9 is primarily expressed by the liver and is critical for the down regulation of hepatocyte LDL receptor expression. LDL-C levels in plasma are highly elevated in humans with gain of function mutations in PCSK9, classifying them as having severe hypercholesterolemia. Therefore, PCSK9 is an attractive target for CRISPR.
- PCS9K-targeted CRISPR may be formulated in a lipid particle and for example administered at about 15, 45, 90, 150, 250 and 400 ⁇ g/kg intraveneously (see, e.g., http://www.alnylam.com/capella/wp- content/uploads/2013/08/ALN-PCS02-001-Protocol-Lancet.pdf).
- Bailey et al. J Mol Med (Berl). 1999 Jan;77(1):244-9) discloses insulin delivery by ex- vivo somatic cell gene therapy involves the removal of non-B-cell somatic cells (e.g. fibroblasts) from a diabetic patient, and genetically altering them in vitro to produce and secrete insulin.
- the cells can be grown in culture and returned to the donor as a source of insulin replacement. Cells modified in this way could be evaluated before implantation, and reserve stocks could be cryopreserved.
- the procedure should obviate the need for immunosuppression and overcome the problem of tissue supply, while avoiding a recurrence of cell destruction.
- Ex-vivo somatic cell gene therapy requires an accessible and robust cell type that is amenable to multiple transfections and subject to controlled proliferation.
- Special problems associated with the use of non-B-cell somatic cells include the processing of proinsulin to insulin, and the conferment of sensitivity to glucose-stimulated proinsulin biosynthesis and regulated insulin release.
- Preliminary studies using fibroblasts, pituitary cells, kidney (COS) cells and ovarian (CHO) cells show that these challenges could be met, and that ex-vivo somatic cell gene therapy offers a feasible approach to insulin replacement therapy.
- the system of Bailey et al. may be used/and or adapted to the CRISPR Cas system of the present invention for delivery to the liver.
- Cationic liposomes (Lipotrust) containing O,O’-ditetradecanoyl-N-(a-trimethylammonioacetyl) diethanolamine chloride (DC-6-14) as a cationic lipid, cholesterol and dioleoylphosphatidylethanolamine at a molar ratio of 4:3:3 (which has shown high transfection efficiency under serumcontaining conditions for in vitro and in vivo gene delivery) were purchased from Hokkaido System Science. The liposomes were manufactured using a freeze- dried empty liposomes method and prepared at a concentration of 1 mM (DC-16-4) by addition of double-distilled water (DDW) to the lyophilized lipid mixture under vortexing before use.
- DC-6-14 O,O’-ditetradecanoyl-N-(a-trimethylammonioacetyl) diethanolamine chloride
- VA-coupled liposomes 200 nmol of vitamin A (retinol, Sigma) dissolved in DMSO was mixed with the liposome suspensions (100 nmol as DC-16-4) by vortexing in a 1.5 ml tube at 25 1C.
- VA-lip-siRNAgp46 a solution of siRNAgp46 (580 pmol/ml in DDW) was added to the retinol-coupled liposome solution with stirring at 25 C.
- the ratio of siRNA to DC-16-4 was 1:11.5 (mol/mol) and the siRNA to liposome ratio (wt/wt) was 1:1.
- CRISPR Cas system of the present invention may be used/and or adapted to the CRISPR Cas system of the present invention for delivery to the liver by delivering about 0.5 to 1 mg/kg of CRISPR Cas RNA in the liposomes as described by Sato et al. to humans.
- the methods of Rozema et al. (PNAS, August 7, 2007, vol. 104, no. 32) for a vehicle for the delivery of siRNA to hepatocytes both in vitro and in vivo, which Rozema et al. have named siRNA Dynamic PolyConjugates may also be applied to the present invention.
- SATA-modified siRNAs are synthesized by reaction of 5’ aminemodified siRNA with 1 weight equivalents (wt eq) of Nsuccinimidyl-S-acetylthioacetate (SATA) reagent (Pierce) and 0.36 wt eq of NaHCO 3 in water at 4°C for 16 h.
- the modified siRNAs are then precipitated by the addition of 9 vol of ethanol and incubation at 80°C for 2 h.
- the precipitate is resuspended in 1X siRNA buffer (Dharmacon) and quantified by measuring absorbance at the 260-nm wavelength.
- PBAVE (30 mg/ml in 5mMTAPS, pH 9) is modified by addition of 1.5 wt % SMPT (Pierce). After a 1 -h incubation, 0.8 mg of SMPT-PBAVE was added to 400 ⁇ l of isotonic glucose solution containing 5 mM TAPS (pH 9). To this solution was added 50 ⁇ g of SATA-modified siRNA.
- Delivery options for the brain include encapsulation of CRISPR enzyme and guide RNA in the form of either DNA or RNA into liposomes and conjugating to molecular Trojan horses for trans-blood brain barrier (BBB) delivery.
- BBB trans-blood brain barrier
- Molecular Trojan horses have been shown to be effective for delivery of B-gal expression vectors into the brain of non-human primates.
- the same approach can be used to delivery vectors containing CRISPR enzyme and guide RNA.
- Xia CF and Boado RJ, Pardridge WM Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology. Mol Pharm. 2009 May- Jun;6(3):747-51.
- siRNA short interfering RNA
- mAb monoclonal antibody
- avidin-biotin a receptor-specific monoclonal antibody
- the authors also report that because the bond between the targeting mAb and the siRNA is stable with avidin-biotin technology, and RNAi effects at distant sites such as brain are observed in vivo following an intravenous administration of the targeted siRNA.
- Zhang et al. (Mol Ther. 2003 Jan;7(1):11-8.) describe how expression plasmids encoding reporters such as luciferase were encapsulated in the interior of an "artificial virus" comprised of an 85 nm pegylated immunoliposome, which was targeted to the rhesus monkey brain in vivo with a monoclonal antibody (MAb) to the human insulin receptor (HIR).
- MAb monoclonal antibody
- HIR human insulin receptor
- the HIRMAb enables the liposome carrying the exogenous gene to undergo transcytosis across the blood-brain barrier and endocytosis across the neuronal plasma membrane following intravenous injection.
- the level of luciferase gene expression in the brain was 50-fold higher in the rhesus monkey as compared to the rat.
- Widespread neuronal expression of the beta-galactosidase gene in primate brain was demonstrated by both histochemistry and confocal microscopy. The authors indicate that this approach makes feasible reversible adult transgenics in 24 hours. Accordingly, the use of immunoliposome is preferred. These may be used in conjunction with antibodies to target specific tissues or cell surface proteins.
- RNA Ribonucleic acid
- nanoparticles Cho, S., Goldberg, M., Son, S., Xu, Q., Yang, F., Mei, Y., Bogatyrev, S., Langer, R. and Anderson, D., Lipid-like nanoparticles for small interfering RNA delivery to endothelial cells, Advanced Functional Materials, 19: 3112-3118, 2010
- exosomes Schroeder, A., Levins, C., Cortez, C., Langer, R., and Anderson, D., Lipid-based nanotherapeutics for siRNA delivery, Journal of Internal Medicine, 267: 9-21, 2010, PMID: 20059641).
- exosomes have been shown to be particularly useful in delivery siRNA, a system with some parallels to the CRISPR system.
- El-Andaloussi S, et al. (“Exosome- mediated delivery of siRNA in vitro and in vivo.” Nat Protoc. 2012 Dec;7(12):2112-26. doi: 10.1038/nprot.2012.131. Epub 2012 Nov 15.) describe how exosomes are promising tools for drug delivery across different biological barriers and can be harnessed for delivery of siRNA in vitro and in vivo.
- Their approach is to generate targeted exosomes through transfection of an expression vector, comprising an exosomal protein fused with a peptide ligand. The exosomes are then purify and characterized from transfected cell supernatant, then siRNA is loaded into the exosomes. Delivery or administration according to the invention can be performed with exosomes, in particular but not limited to the brain.
- Vitamin E ( ⁇ -tocopherol) may be conjugated with CRISPR Cas and delivered to the brain along with high density lipoprotein (HDL), for example in a similar manner as was done by Uno et al. (HUMAN GENE THERAPY 22:711–719 (June 2011)) for delivering short-interfering RNA (siRNA) to the brain.
- Mice were infused via Osmotic minipumps (model 1007D; Alzet, Cupertino, CA) filled with phosphate-buffered saline (PBS) or free TocsiBACE or Toc- siBACE/HDL and connected with Brain Infusion Kit 3 (Alzet).
- a brain-infusion cannula was placed about 0.5mm posterior to the bregma at midline for infusion into the dorsal third ventricle.
- Uno et al. found that as little as 3 nmol of Toc-siRNA with HDL could induce a target reduction in comparable degree by the same ICV infusion method.
- a similar dosage of CRISPR Cas conjugated to ⁇ -tocopherol and co-administered with HDL targeted to the brain may be contemplated for humans in the present invention, for example, about 3 nmol to about 3 ⁇ mol of CRISPR Cas targeted to the brain may becontemplated. [0234] Zou et al.
- a similar dosage of CRISPR Cas expressed in a lentiviral vector targeted to the brain may be contemplated for humans in the present invention, for example, about 10-50 ml of CRISPR Cas targeted to the brain in a lentivirus having a titer of 1 x 10 9 transducing units (TU)/ml may becontemplated.
- TU transducing units
- Targeted deletion of genes is preferred. Examples are exemplified in Example 16. Preferred are, therefore, genes involved in cholesterol biosynthesis, fatty acid biosynthesis, and other metabolic disorders, genes encoding mis-folded proteins involved in amyloid and other diseases, oncogenes leading to cellular transformation, latent viral genes, and genes leading to dominant-negative disorders, amongst other disorders.
- Applicants prefer gene delivery of a CRISPR-Cas system to the liver, brain, ocular, epithelial, hematopoetic, or another tissue of a subject or a patient in need thereof, suffering from metabolic disorders, amyloidosis and protein-aggregation related diseases, cellular transformation arising from genetic mutations and translocations, dominant negative effects of gene mutations, latent viral infections, and other related symptoms, using either viral or nanoparticle delivery system.
- Therapeutic applications of the CRISPR-Cas system include Glaucoma, Amyloidosis, and Huntington's disease. These are exemplified in Example 18 and the features described therein are preferred alone or in combination.
- AAV spinocerebellar ataxia type 1
- AAV1 and AAV5 vectors are preferred and AAV titers of about 1 x 10 12 vector genomes/ml are desirable.
- CRISPR-Cas guide RNAs that target the vast majority of the HIV-1 genome while taking into account HIV-1 strain variants for maximal coverage and effectiveness.
- host immune cells could be a) isolated, transduced with CRISPR-Cas, selected, and re- introduced in to the host or b) transduced in vivo by systemic delivery of the CRISPR-Cas system.
- the first approach allows for generation of a resistant immune population whereas the second is more likely to target latent viral reservoirs within the host. This is discussed in more detail in the Examples section.
- US Patent Publication No. 20130171732 assigned to Sangamo BioSciences, Inc. relates to insertion of an anti-HIV transgene into the genome, methods of which may be applied to the CRISPR Cas system of the present invention.
- the CXCR4 gene may be targeted and the TALE system of US Patent Publication No. 20100291048 assigned to Sangamo BioSciences, Inc. may be modified to the CRISPR Cas system of the present invention.
- the method of US Patent Publication Nos. 20130137104 and 20130122591 assigned to Sangamo BioSciences, Inc. and US Patent Publication No. 20100146651 assigned to Cellectis may be more generally applicable for transgene expression as it involves modifying a hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus for increasing the frequency of gene modification.
- HPRT hypoxanthine-guanine phosphoribosyltransferase
- the present invention generates a gene knockout cell library. Each cell may have a single gene knocked out. This is exemplified in Example 21.
- This library is useful for the screening of gene function in cellular processes as well as diseases.
- To make this cell library one may integrate Cas9 driven by an inducible promoter (e.g. doxycycline inducible promoter) into the ES cell.
- an inducible promoter e.g. doxycycline inducible promoter
- To make the ES cell library one may simply mix ES cells with a library of genes encoding guide RNAs targeting each gene in the human genome.
- each guide RNA gene may be contained on a plasmid that carries of a single attP site. This way BxB1 will recombine the attB site in the genome with the attP site on the guide RNA containing plasmid.
- To generate the cell library one may take the library of cells that have single guide RNAs integrated and induce Cas9 expression. After induction, Cas9 mediates double strand break at sites specified by the guide RNA.
- the immunogenicity of protein drugs can be ascribed to a few immunodominant helper T lymphocyte (HTL) epitopes. Reducing the MHC binding affinity of these HTL epitopes contained within these proteins can generate drugs with lower immunogenicity (Tangri S, et al. (“Rationally engineered therapeutic proteins with reduced immunogenicity” J Immunol. 2005 Mar 15;174(6):3187-96.)
- the immunogenicity of the CRISPR enzyme in particular may be reduced following the approach first set out in Tangri et al with respect to erythropoietin and subsequently developed. Accordingly, directed evolution or rational design may be used to reduce the immunogenicity of the CRISPR enzyme (for instance a Cas9) in the host species (human or other species).
- Example 26 Applicants used 3 guideRNAs of interest and able to visualize efficient DNA cleavage in vivo occurring only in a small subset of cells. Essentially, what Applicants have shown here is targeted in vivo cleavage. In particular, this provides proof of concept that specific targeting in higher organisms such as mammals can also be achieved. It also highlights multiplex aspect in that multiple guide sequences (i.e. separate targets) can be used simultaneously (in the sense of co-delivery). In other words, Applicants used a multiple approach, with several different sequences targeted at the same time, but independently.
- Trinucleotide repeat disorders are preferred conditions to be treated. These are also exemplified herein.
- US Patent Publication No. 20110016540 describes use of zinc finger nucleases to genetically modify cells, animals and proteins associated with trinucleotide repeat expansion disorders.
- Trinucleotide repeat expansion disorders are complex, progressive disorders that involve developmental neurobiology and often affect cognition as well as sensori-motor functions.
- Trinucleotide repeat expansion proteins are a diverse set of proteins associated with susceptibility for developing a trinucleotide repeat expansion disorder, the presence of a trinucleotide repeat expansion disorder, the severity of a trinucleotide repeat expansion disorder or any combination thereof. Trinucleotide repeat expansion disorders are divided into two categories determined by the type of repeat. The most common repeat is the triplet CAG, which, when present in the coding region of a gene, codes for the amino acid glutamine (Q).
- polyglutamine disorders comprise the following diseases: Huntington Disease (HD); Spinobulbar Muscular Atrophy (SBMA); Spinocerebellar Ataxias (SCA types 1, 2, 3, 6, 7, and 17); and Dentatorubro-Pallidoluysian Atrophy (DRPLA).
- the remaining trinucleotide repeat expansion disorders either do not involve the CAG triplet or the CAG triplet is not in the coding region of the gene and are, therefore, referred to as the non-polyglutamine disorders.
- the non-polyglutamine disorders comprise Fragile X Syndrome (FRAXA); Fragile XE Mental Retardation (FRAXE); Friedreich Ataxia (FRDA); Myotonic Dystrophy (DM); and Spinocerebellar Ataxias (SCA types 8, and 12).
- FAAXA Fragile X Syndrome
- FAAXE Fragile XE Mental Retardation
- FRDA Friedreich Ataxia
- DM Myotonic Dystrophy
- SCA types 8, and 12 Spinocerebellar Ataxias
- the proteins associated with trinucleotide repeat expansion disorders are typically selected based on an experimental association of the protein associated with a trinucleotide repeat expansion disorder to a trinucleotide repeat expansion disorder.
- the production rate or circulating concentration of a protein associated with a trinucleotide repeat expansion disorder may be elevated or depressed in a population having a trinucleotide repeat expansion disorder relative to a population lacking the trinucleotide repeat expansion disorder.
- Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- the proteins associated with trinucleotide repeat expansion disorders may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR).
- genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR).
- Non-limiting examples of proteins associated with trinucleotide repeat expansion disorders include AR (androgen receptor), FMR1 (fragile X mental retardation 1), HTT (huntingtin), DMPK (dystrophia myotonica-protein kinase), FXN (frataxin), ATXN2 (ataxin 2), ATN1 (atrophin 1), FEN1 (flap structure-specific endonuclease 1), TNRC6A (trinucleotide repeat containing 6A), PABPN1 (poly(A) binding protein, nuclear 1), JPH3 (junctophilin 3), MED15 (mediator complex subunit 15), ATXN1 (ataxin 1), ATXN3 (ataxin 3), TBP (TATA box binding protein), CACNA1A (calcium channel, voltage-dependent, P/Q type, alpha 1A subunit), ATXN80S (ATXN8 opposite strand (non-protein coding)), PPP
- G protein guanine nucleotide binding protein
- beta polypeptide 2 ribosomal protein L14
- ATXN8 ataxin 8
- INSR insulin receptor
- TTR transthyretin
- EP400 E1A binding protein p400
- GIGYF2 GYF protein 2
- OGG1 8-oxoguanine DNA glycosylase
- STC1 stanniocalcin 1
- CNDP1 carnosine dipeptidase 1 (metallopeptidase M20 family)
- coli (S. cerevisiae)
- NCOA3 nuclear receptor coactivator 3
- ERDA1 expanded repeat domain, CAG/CTG 1
- TSC1 tuberous sclerosis 1
- COMP cartilage oligomeric matrix protein
- GCLC glycolutamate-cysteine ligase, catalytic subunit
- RRAD Ras-related associated with diabetes
- MSH3 mutS homolog 3
- GLA galactosidase, alpha
- CBL Cas-Br- M (murine) ecotropic retroviral transforming sequence
- FTH1 ferritin, heavy polypeptide 1
- IL12RB2 interleukin 12 receptor, beta 2
- OTX2 orthodenticle homeobox 2
- HOXA5 homeobox A5
- POLG2 polymerase (DNA directed), gamma 2, accessory subunit)
- DLX2 distal-less homeobox 2
- SIRPA signal-regulatory protein alpha
- OTX1 orthodenticle homeobox 1
- AHRR aryl-hydrocarbon receptor repressor
- MANF mesencephalic astrocyte- derived neurotrophic factor
- TMEM158 transmembrane protein 158 (gene/pseudogene)
- ENSG00000078687 GLA (galactosidase, alpha
- CBL Cas-Br-
- Preferred proteins associated with trinucleotide repeat expansion disorders include HTT (Huntingtin), AR (androgen receptor), FXN (frataxin), Atxn3 (ataxin), Atxn1 (ataxin), Atxn2 (ataxin), Atxn7 (ataxin), Atxn10 (ataxin), DMPK (dystrophia myotonica-protein kinase), Atn1 (atrophin 1), CBP (creb binding protein), VLDLR (very low density lipoprotein receptor), and any combination thereof.
- a method of gene therapy for the treatment of a subject having a mutation in the CFTR gene comprises administering a therapeutically effective amount of a CRISPR-Cas gene therapy particle, optionally via a biocompatible pharmaceutical carrier, to the cells of a subject.
- the target DNA comprises the mutation deltaF508.
- the mutation is repaired to the wildtype.
- the mutation is a deletion of the three nucleotides that comprise the codon for phenylalanine (F) at position 508. Accordingly, repair in this instance requires reintroduction of the missing codon into the mutant.
- an adenovirus/AAV vector system is introduced into the host cell, cells or patient.
- the system comprises a Cas9 (or Cas9 nickase) and the guide RNA along with a adenovirus/AAV vector system comprising the homology repair template containing the F508 residue.
- This may be introduced into the subject via one of the methods of delivery discussed earlier.
- the CRISPR-Cas system may be guided by the CFTRdelta 508 chimeric guide RNA. It targets a specific site of the CFTR genomic locus to be nicked or cleaved.
- the repair template is inserted into the cleavage site via homologous recombination correcting the deletion that results in cystic fibrosis or causes cystic fibrosis related symptoms.
- This strategy to direct delivery and provide systemic introduction of CRISPR systems with appropriate guide RNAs can be employed to target genetic mutations to edit or otherwise manipulate genes that cause metabolic, liver, kidney and protein diseases and disorders such as those in Table B.
- the CRISPR/Cas9 systems of the present invention can be used to correct genetic mutations that were previously attempted with limited success using TALEN and ZFN.
- TALEN and ZFN genetic correction of Mutated Genes
- WO2013163628 A2 Genetic Correction of Mutated Genes
- published application of Duke University describes efforts to correct, for example, a frameshift mutation which causes a premature stop codon and a truncated gene product that can be corrected via nuclease mediated non-homologous end joining such as those responsible for Duchenne Muscular Dystrophy, (“DMD”) a recessive, fatal, X-linked disorder that results in muscle degeneration due to mutations in the dystrophin gene.
- DMD Duchenne Muscular Dystrophy
- Dystrophin is a cytoplasmic protein that provides structural stability to the dystroglycan complex of the cell membrane that is responsible for regulating muscle cell integrity and function.
- the dystrophin gene or "DMD gene” as used interchangeably herein is 2.2 megabases at locus Xp21. The primary transcription measures about 2,400 kb with the mature mRNA being about 14 kb. 79 exons code for the protein which is over 3500 amino acids. Exon 51 is frequently adjacent to frame-disrupting deletions in DMD patients and has been targeted in clinical trials for oligonucleotide-based exon skipping.
- the present invention also contemplates delivering the CRISPR-Cas system to the blood.
- the plasma exosomes of Wahlgren et al. may be modified to deliver the CRISPR Cas system to the blood.
- the CRISPR Cas system of the present invention is also contemplated to treat hemoglobinopathies, such as thalassemias and sickle cell disease. See, e.g., International Patent Publication No. WO 2013/126794 for potential targets that may be targeted by the CRISPR Cas system of the present invention.
- US Patent Publication Nos. 20110225664, 20110091441, 20100229252, 20090271881 and 20090222937 assigned to Cellectis relates to CREI variants , wherein at least one of the two I-CreI monomers has at least two substitutions, one in each of the two functional subdomains of the LAGLIDADG core domain situated respectively from positions 26 to 40 and 44 to 77 of I- CreI, said variant being able to cleave a DNA target sequence from the human interleukin-2 receptor gamma chain (IL2RG) gene also named common cytokine receptor gamma chain gene or gamma C gene.
- IL2RG human interleukin-2 receptor gamma chain
- the target sequences identified in US Patent Publication Nos. 20110225664, 20110091441, 20100229252, 20090271881 and 20090222937 may be utilized for the CRISPR Cas system of the present invention.
- SCID Severe Combined Immune Deficiency
- IL2RG encodes the gamma C protein (Noguchi, et al., Cell, 1993, 73, 147-157), a common component of at least five interleukin receptor complexes. These receptors activate several targets through the JAK3 kinase (Macchi et al., Nature, 1995, 377, 65-68), which inactivation results in the same syndrome as gamma C inactivation; (ii) mutation in the ADA gene results in a defect in purine metabolism that is lethal for lymphocyte precursors, which in turn results in the quasi absence of B, T and NK cells; (iii) V(D)J recombination is an essential step in the maturation of immunoglobulins and T lymphocytes receptors (TCRs).
- TCRs T lymphocytes receptors
- HSCs Hematopoietic Stem Cells
- US Patent Publication No. 20110182867 assigned to the Children’s Medical Center Corporation and the President and Fellows of Harvard College relates to methods and uses of modulating fetal hemoglobin expression (HbF) in a hematopoietic progenitor cells via inhibitors of BCL11A expression or activity, such as RNAi and antibodies.
- the targets disclosed in US Patent Publication No. 20110182867, such as BCL11A may be targeted by the CRISPR Cas system of the present invention for modulating fetal hemoglobin expression. See also Bauer et al. (Science 11 October 2013: Vol. 342 no. 6155 pp. 253-257) and Xu et al. (Science 18 November 2011: Vol. 334 no. 6058 pp. 993-996) for additional BCL11A targets.
- the present invention also contemplates delivering the CRISPR-Cas system to one or both ears.
- gene therapy could be used to aid current deafness treatments—namely, cochlear implants. Deafness is often caused by lost or damaged hair cells that cannot relay signals to auditory neurons. In such cases, cochlear implants may be used to respond to sound and transmit electrical signals to the nerve cells. But these neurons often degenerate and retract from the cochlea as fewer growth factors are released by impaired hair cells.
- US patent application 20120328580 involves injection of a pharmaceutical composition into the ear (e.g., auricular administration), such as into the luminae of the cochlea (e.g., the Scala media, Sc vestibulae, and Sc tympani), e.g., using a syringe, e.g., a single-dose syringe.
- a pharmaceutical composition into the ear (e.g., auricular administration), such as into the luminae of the cochlea (e.g., the Scala media, Sc vestibulae, and Sc tympani), e.g., using a syringe, e.g., a single-dose syringe.
- a pharmaceutical composition into the ear e.g., auricular administration
- the luminae of the cochlea e.g., the Scala media, Sc vestibulae, and Sc tympani
- Injection can be, for example, through the round window of the ear or through the cochlear capsule.
- inner ear administration methods known in the art (see, e.g., Salt and Plontke, Drug Discovery Today, 10:1299-1306, 2005) can also be adapted for the practice of the instant invention.
- the pharmaceutical composition in another mode of administration, can be administered in situ, via a catheter or pump.
- a catheter or pump can, for example, direct a pharmaceutical composition into the cochlear luminae or the round window of the ear and/or the lumen of the colon.
- Exemplary drug delivery apparatus and methods suitable for administering one or more of the compounds described herein into an ear, e.g., a human ear, are described by McKenna et al., (U.S. Publication No. 2006/0030837) and Jacobsen et al., (U.S. Pat. No. 7,206,639).
- a catheter or pump can be positioned, e.g., in the ear (e.g., the outer, middle, and/or inner ear) of a patient during a surgical procedure.
- a catheter or pump can be positioned, e.g., in the ear (e.g., the outer, middle, and/or inner ear) of a patient without the need for a surgical procedure.
- one or more of the compounds described herein can be administered in combination with a mechanical device such as a cochlear implant or a hearing aid, which is worn in the outer ear.
- a mechanical device such as a cochlear implant or a hearing aid, which is worn in the outer ear.
- An exemplary cochlear implant that is suitable for use with the present invention is described by Edge et al., (U.S. Publication No. 2007/0093878).
- the modes of administration described above may be combined in any order and can be simultaneous or interspersed.
- the present invention may be administered according to any of the Food and Drug Administration approved methods, for example, as described in CDER Data Standards Manual, version number 004 (which is available at fda.give/cder/dsm/DRG/drg00301.htm).
- the cell therapy methods described in US patent application 20120328580 can be used to promote complete or partial differentiation of a cell to or towards a mature cell type of the inner ear (e.g., a hair cell) in vitro.
- Cells resulting from such methods can then be transplanted or implanted into a patient in need of such treatment.
- the cell culture methods required to practice these methods including methods for identifying and selecting suitable cell types, methods for promoting complete or partial differentiation of selected cells, methods for identifying complete or partially differentiated cell types, and methods for implanting complete or partially differentiated cells can be adapted in the practice of the present invention.
- Cells suitable for use in the present invention include, but are not limited to, cells that are capable of differentiating completely or partially into a mature cell of the inner ear, e.g., a hair cell (e.g., an inner and/or outer hair cell), when contacted, e.g., in vitro, with one or more of the compounds described herein.
- a hair cell e.g., an inner and/or outer hair cell
- Exemplary cells that are capable of differentiating into a hair cell include, but are not limited to stem cells (e.g., inner ear stem cells, adult stem cells, bone marrow derived stem cells, embryonic stem cells, mesenchymal stem cells, skin stem cells, iPS cells, and fat derived stem cells), progenitor cells (e.g., inner ear progenitor cells), support cells (e.g., Deiters' cells, pillar cells, inner phalangeal cells, tectal cells and Hensen's cells), and/or germ cells.
- stem cells e.g., inner ear stem cells, adult stem cells, bone marrow derived stem cells, embryonic stem cells, mesenchymal stem cells, skin stem cells, iPS cells, and fat derived stem cells
- progenitor cells e.g., inner ear progenitor cells
- support cells e.g., Deiters' cells, pillar cells, inner phalangeal cells, tectal cells and Hen
- Such suitable cells can be identified by analyzing (e.g., qualitatively or quantitatively) the presence of one or more tissue specific genes.
- gene expression can be detected by detecting the protein product of one or more tissue-specific genes.
- Protein detection techniques involve staining proteins (e.g., using cell extracts or whole cells) using antibodies against the appropriate antigen.
- the appropriate antigen is the protein product of the tissue- specific gene expression.
- a first antibody i.e., the antibody that binds the antigen
- a second antibody directed against the first e.g., an anti-IgG
- This second antibody is conjugated either with fluorochromes, or appropriate enzymes for colorimetric reactions, or gold beads (for electron microscopy), or with the biotin-avidin system, so that the location of the primary antibody, and thus the antigen, can be recognized.
- the CRISPR Cas molecules of the present invention may be delivered to the ear by direct application of pharmaceutical composition to the outer ear, with compositions modified from US Published application, 20110142917.
- the pharmaceutical composition is applied to the ear canal. Delivery to the ear may also be refered to as aural or otic delivery.
- RNA molecules of the invention are delivered in liposome or lipofectin formulations and the like and can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Pat. Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference.
- siRNA has recently been successfully used for inhibition of gene expression in primates (see for example. Tolentino et al., Retina 24(4):660 which may also be applied to the present invention.
- Qi et al. involves methods for efficient siRNA transfection to the inner ear through the intact round window by a novel proteidic delivery technology which may be applied to the CRISPR Cas system of the present invention (see, e.g., Qi et al., Gene Therapy (2013), 1 -9).
- TAT-DRBDs TAT double stranded RNA-binding domains
- TAT-DRBDs TAT double stranded RNA-binding domains
- cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant and brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears.
- BDNF brain derived neurotrophic factor
- Rejali et al. tested a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, Rejali et al.
- transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert and determined that these cells secreted BDNF and then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani.
- Rejali et al. determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes and demonstrated the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.
- Such a system may be applied to the CRISPR Cas system of the present invention for delivery to the ear.
- the present invention also contemplates delivering the CRISPR-Cas system to one or both eyes.
- the CRISPR-Cas system may be used to correct ocular defects that arise from several genetic mutations further described in Genetic Diseases of the Eye, Second Edition, edited by Elias I. Traboulsi, Oxford University Press, 2012.
- lentiviral vectors in particular equine infectious anemia viruses (EIAV) are particularly preferred.
- minimal non-primate lentiviral vectors based on the equine infectious anemia virus are also contemplated, especially for ocular gene therapy (see, e.g., Balagaan, J Gene Med 2006; 8: 275– 285, Published online 21 November 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jgm.845).
- the vectors are contemplated to have cytomegalovirus (CMV) promoter driving expression of the target gene.
- CMV cytomegalovirus
- Intraocular injections may be performed with the aid of an operating microscope.
- eyes may be prolapsed by gentle digital pressure and fundi visualised using a contact lens system consisting of a drop of a coupling medium solution on the cornea covered with a glass microscope slide coverslip.
- the tip of a 10-mm 34- gauge needle, mounted on a 5- ⁇ l Hamilton syringe may be advanced under direct visualisation through the superior equatorial sclera tangentially towards the posterior pole until the aperture of the needle was visible in the subretinal space. Then, 2 ⁇ l of vector suspension may be injected to produce a superior bullous retinal detachment, thus confirming subretinal vector administration.
- This approach creates a self-sealing sclerotomy allowing the vector suspension to be retained in the subretinal space until it is absorbed by the RPE, usually within 48 h of the procedure. This procedure may be repeated in the inferior hemisphere to produce an inferior retinal detachment.
- the needle tip may be advanced through the sclera 1 mm posterior to the corneoscleral limbus and 2 ⁇ l of vector suspension injected into the vitreous cavity.
- the needle tip may be advanced through a corneoscleral limbal paracentesis, directed towards the central cornea, and 2 ⁇ l of vector suspension may be injected.
- the needle tip may be advanced through a corneoscleral limbal paracentesis, directed towards the central cornea, and 2 ⁇ l of vector suspension may be injected.
- RetinoStat® an equine infectious anemia virus-based lentiviral gene therapy vector that expresses angiostatic proteins endostain and angiostatin that is delivered via a subretinal injection for the treatment of the web form of age-related macular degeneration is also contemplated (see, e.g., Binley et al., HUMAN GENE THERAPY 23:980–991 (September 2012)).
- Such a vector may be modified for the CRISPR-Cas system of the present invention.
- Each eye may be treated with either RetinoStat® at a dose of 1.1 x 10 5 transducing units per eye (TU/eye) in a total volume of 100 ⁇ l.
- an E1-, partial E3-, E4-deleted adenoviral vector may be contemplated for delivery to the eye.
- Twenty-eight patients with advanced neovascular age-related macular degeneration (AMD) were given a single intravitreous injection of an E1 -, partial E3-, E4-deleted adenoviral vector expressing human pigment ep- ithelium-derived factor (AdPEDF.ll) (see, e.g., Campochiaro et al., Human Gene Therapy 17:167-176 (February 2006)).
- Adenoviral vector- mediated ocular gene transfer appears to be a viable approach for the treatment of ocular disorders and could be applied to the CRISPR Cas system.
- the sd-rxRNA® system of RXi Pharmaceuticals may be used/and or adapted for delivering CRISPR Cas to the eye.
- a single intravitreal administration of 3 ⁇ g of sd-rxRNA results in sequence-specific reduction of PPIB mRNA levels for 14 days.
- the the sd-rxRNA® system may be applied to the CRISPR Cas system of the present invention, contemplating a dose of about 3 to 20 mg of CRISPR administered to a human.
- Millington-Ward et al. (Molecular Therapy, vol. 19 no. 4, 642–649 apr. 2011) describes adeno-associated virus (AAV) vectors to deliver an RNA interference (RNAi)-based rhodopsin suppressor and a codon-modified rhodopsin replacement gene resistant to suppression due to nucleotide alterations at degenerate positions over the RNAi target site.
- RNAi RNA interference
- 1.8 x 10 10 vp AAV were subretinally injected into the eyes by Millington-Ward et al.
- Dalkara et al. (Sci Transl Med 5, 189ra76 (2013)) also relates to in vivo directed evolution to fashion an AAV vector that delivers wild-type versions of defective genes throughout the retina after noninjurious injection into the eyes’ vitreous humor.
- Dalkara describes a a 7mer peptide display library and an AAV library constructed by DNA shuffling of cap genes from AAV1, 2, 4, 5, 6, 8, and 9.
- the rcAAV libraries and rAAV vectors expressing GFP under a CAG or Rho promoter were packaged and and deoxyribonuclease-resistant genomic titers were obtained through quantitative PCR.
- the libraries were pooled, and two rounds of evolution were performed, each consisting of initial library diversification followed by three in vivo selection steps.
- P30 rho-GFP mice were intravitreally injected with 2 ml of iodixanol-purified, phosphate-buffered saline (PBS)–dialyzed library with a genomic titer of about 1 ⁇ 10 12 vg/ml.
- PBS phosphate-buffered saline
- the AAV vectors of Dalkara et al. may be applied to the CRISPR Cas system of the present invention, contemplating a dose of about 1 x 10 15 to about 1 x 10 16 vg/ml administered to a human.
- the rhodopsin gene may be targeted for the treatment of retinitis pigmentosa (RP), wherein the system of US Patent Publication No. 20120204282 assigned to Sangamo BioSciences, Inc. may be modified in accordance of the CRISPR Cas system of the present invention.
- the methods of US Patent Publication No. 20130183282 assigned to Cellectis which is directed to methods of cleaving a target sequence from the human rhodopsin gene, may also be modified to the CRISPR Cas system of the present invention.
- 20130202678 assigned to Academia Sinica relates to methods for treating retinopathies and sight-threatening ophthalmologic disorders relating to delivering of the Puf-A gene (which is expressed in retinal ganglion and pigmented cells of eye tissues and displays a unique anti-apoptotic activity) to the sub-retinal or intravitreal space in the eye.
- desirable targets are zgc:193933, prdm1a, spata2, tex10, rbb4, ddx3, zp2.2, Blimp-1 and HtrA2, all of which may be targeted by the CRISPR Cas system of the present invention.
- Macular degeneration is the primary cause of visual impairment in the elderly, but is also a hallmark symptom of childhood diseases such as Stargardt disease, Sorsby fundus, and fatal childhood neurodegenerative diseases, with an age of onset as young as infancy. Macular degeneration results in a loss of vision in the center of the visual field (the macula) because of damage to the retina.
- Currently existing animal models do not recapitulate major hallmarks of the disease as it is observed in humans.
- the available animal models comprising mutant genes encoding proteins associated with MD also produce highly variable phenotypes, making translations to human disease and therapy development problematic.
- 20120159653 relates to editing of any chromosomal sequences that encode proteins associated with MD which may be applied to the CRISPR Cas system of the present invention.
- the proteins associated with MD are typically selected based on an experimental association of the protein associated with MD to an MD disorder. For example, the production rate or circulating concentration of a protein associated with MD may be elevated or depressed in a population having an MD disorder relative to a population lacking the MD disorder. Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- ELISA enzyme linked immunosorbent assay
- proteins associated with MD may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR).
- proteins associated with MD include but are not limited to the following proteins: (ABCA4) ATP-binding cassette, sub- family A (ABC1), member 4 ACHM1 achromatopsia (rod monochromacy) 1 ApoE Apolipoprotein E (ApoE) C1QTNF5 (CTRP5) C1q and tumor necrosis factor related protein 5 (C1QTNF5) C2 Complement component 2 (C2) C3 Complement components (C3) CCL2 Chemokine (C-C motif) Ligand 2 (CCL2) CCR2 Chemokine (C-C motif) receptor 2 (CCR2) CD36 Cluster of Differentiation 36 CFB Complement factor B CFH Complement factor CFH H CFHR1 complement factor
- the identity of the protein associated with MD whose chromosomal sequence is edited can and will vary.
- the CRISPR-Cas system is applied as to proteins associated with MD whose chromosomal sequence is edited may be the ATP-binding cassette, sub-family A (ABC1) member 4 protein (ABCA4) encoded by the ABCR gene, the apolipoprotein E protein (APOE) encoded by the APOE gene, the chemokine (C-C motif) Ligand 2 protein (CCL2) encoded by the CCL2 gene, the chemokine (C-C motif) receptor 2 protein (CCR2) encoded by the CCR2 gene, the ceruloplasmin protein (CP) encoded by the CP gene, the cathepsin D protein (CTSD) encoded by the CTSD gene, or the metalloproteinase inhibitor 3 protein (TIMP3) encoded by the TIMP3 gene.
- ABSC1 sub-family A
- APOE apolipoprotein E protein
- CCR2 chem
- the genetically modified animal is a rat
- the edited chromosomal sequence encoding the protein associated with MD may be: (ABCA4) ATP-binding cassette, NM_000350 sub-family A (ABC1), member 4 APOE Apolipoprotein E NM_138828 (APOE) CCL2 Chemokine (C-C NM_031530 motif) Ligand 2 (CCL2) CCR2 Chemokine (C-C NM_021866 motif) receptor 2 (CCR2) CP ceruloplasmin (CP) NM_012532 CTSD Cathepsin D (CTSD) NM_134334 TIMP3 Metalloproteinase NM_012886 inhibitor 3 (TIMP3).
- ABCA4 ATP-binding cassette
- NM_000350 sub-family A (ABC1) member 4
- APOE Apolipoprotein E NM_138828
- the animal or cell may comprise 1, 2, 3, 4, 5, 6, 7 or more disrupted chromosomal sequences encoding a protein associated with MD and zero, 1, 2, 3, 4, 5, 6, 7 or more chromosomally integrated sequences encoding the disrupted protein associated with MD.
- the edited or integrated chromosomal sequence may be modified to encode an altered protein associated with MD.
- Non-limiting examples of mutations in chromosomal sequences associated with MD include those that may cause MD including in the ABCR protein, E471K (i.e. glutamate at position 471 is changed to lysine), R1129L (i.e.
- arginine at position 1129 is changed to leucine
- T1428M i.e. threonine at position 1428 is changed to methionine
- R1517S i.e. arginine at position 1517 is changed to serine
- I1562T i.e. isoleucine at position 1562 is changed to threonine
- G1578R i.e. glycine at position 1578 is changed to arginine
- V64I i.e. valine at position 192 is changed to isoleucine
- G969B i.e.
- glycine at position 969 is changed to asparagine or aspartate); in TIMP3 protein, S156C (i.e. serine at position 156 is changed to cysteine), G166C (i.e. glycine at position 166 is changed to cysteine), G167C (i.e. glycine at position 167 is changed to cysteine), Y168C (i.e. tyrosine at position 168 is changed to cysteine), S170C (i.e. serine at position 170 is changed to cysteine), Y172C (i.e. tyrosine at position 172 is changed to cysteine) and S181C (i.e. serine at position 181 is changed to cysteine).
- Other associations of genetic variants in MD-associated genes and disease are known in the art, and can be targets as to the CRISPR-Cas system, e.g., to correct mutation.
- the present invention also contemplates delivering the CRISPR-Cas system to the heart.
- a myocardium tropic adena-associated virus AAVM
- AAVM41 myocardium tropic adena-associated virus
- Administration may be systemic or local.
- a dosage of about 1-10 x 10 14 vector genomes are contemplated for systemic administration. See also, e.g., Eulalio et al. (2012) Nature 492: 376 and Somasuntharam et al. (2013) Biomaterials 34: 7790.
- Cardiovascular diseases generally include high blood pressure, heart attacks, heart failure, and stroke and TIA. Any chromosomal sequence involved in cardiovascular disease or the protein encoded by any chromosomal sequence involved in cardiovascular disease may be utilized in the methods described in this disclosure.
- the cardiovascular-related proteins are typically selected based on an experimental association of the cardiovascular-related protein to the development of cardiovascular disease. For example, the production rate or circulating concentration of a cardiovascular-related protein may be elevated or depressed in a population having a cardiovascular disorder relative to a population lacking the cardiovascular disorder.
- Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- the cardiovascular-related proteins may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR).
- the chromosomal sequence may comprise, but is not limited to, IL1B (interleukin 1, beta), XDH (xanthine dehydrogenase), TP53 (tumor protein p53), PTGIS (prostaglandin 12 (prostacyclin) synthase), MB (myoglobin), IL4 (interleukin 4), ANGPT1 (angiopoietin 1), ABCG8 (ATP-binding cassette, sub-family G (WHITE), member 8), CTSK (cathepsin K), PTGIR (prostaglandin 12 (prostacyclin) receptor (IP)), KCNJ11 (potassium inwardly-rectifying channel, subfamily J, member 11), INS (insulin), CRP (C-reactive protein, pentraxin-related), PDGFRB (platelet-derived growth factor receptor, beta polypeptide), CCNA2 (cyclin A2), PDGFB (platelet-derived growth factor beta polypeptide (s), IL1
- ACE angiotensin I converting enzyme peptidyl- dipeptidase A 1)
- TNF tumor necrosis factor
- IL6 interleukin 6 (interferon, beta 2)
- STN statin
- SERPINE1 serotonin peptidase inhibitor
- clade E nonin, plasminogen activator inhibitor type 1
- ALB albumin
- ADIPOQ adiponectin, C1Q and collagen domain containing
- APOB apolipoprotein B (including Ag(x) antigen)
- APOE apolipoprotein E
- LEP laeptin
- MTHFR 5,10-methylenetetrahydrofolate reductase (NADPH)
- APOA1 apolipoprotein A-I
- EDN1 endothelin 1
- NPPB natriuretic peptide precursor B
- NOS3 nitric oxide synthase 3
- GNRH1 gonadotropin-releasing hormone 1 (luteinizing-releasing hormone)
- PAPPA pregnancy-associated plasma protein A, pappalysin 1
- ARR3 arrestin 3, retinal (X-arrestin)
- NPPC natriuretic peptide precursor C
- AHSP alpha hemoglobin stabilizing protein
- PTK2 PTK2 protein tyrosine kinase 2
- IL13 interleukin 13
- MTOR mechanistic target of rapamycin (serine/threonine kinase)
- ITGB2 integratedin, beta 2 (complement component 3 receptor 3 and 4 subunit)
- GSTT1 glutthione S-transferase theta 1
- IL6ST interleukin 6 signal transducer (gp130, oncostatin M receptor)
- CPB2 carboxypeptidase B2 (plasma)
- CYP1A2 cytochrome P450
- CAMP cathelicidin antimicrobial peptide
- ZC3H12A zinc finger CCCH-type containing 12A
- AKR1B1 aldo-keto reductase family 1, member B1 (aldose reductase)
- DES desmin
- MMP7 matrix metallopeptidase 7 (matrilysin, uterine)
- AHR aryl hydrocarbon receptor
- CSF1 colony stimulating factor 1 (macrophage)
- HDAC9 histone deacetylase 9
- CTGF connective tissue growth factor
- KCNMA1 potassium large conductance calcium- activated channel, subfamily M, alpha member 1
- UGT1A UDP glucuronosyltransferase 1 family, polypeptide A complex locus
- PRKCA protein kinase C, alpha
- COMT catechol- .beta.-methyltransferase
- S100B S100 calcium
- the chromosomal sequence may further be selected from Pon1 (paraoxonase 1), LDLR (LDL receptor), ApoE (Apolipoprotein E), Apo B-100 (Apolipoprotein B-100), ApoA (Apolipoprotein(a)), ApoA1 (Apolipoprotein A1), CBS (Cystathione B-synthase), Glycoprotein IIb/IIb, MTHRF (5,10-methylenetetrahydrofolate reductase (NADPH), and combinations thereof.
- Pon1 paraoxonase 1
- LDLR LDL receptor
- ApoE Apolipoprotein E
- Apo B-100 Apolipoprotein B-100
- ApoA Adoprotein(a)
- ApoA1 Adpolipoprotein A1
- CBS Cystathione B-synthase
- Glycoprotein IIb/IIb Glycoprotein IIb/IIb
- the chromosomal sequences and proteins encoded by chromosomal sequences involved in cardiovascular disease may be chosen from Cacna1C, Sod1, Pten, Ppar(alpha), Apo E, Leptin, and combinations thereof as target(s) for the CRISPR-Cas system.
- the present invention also contemplates delivering the CRISPR-Cas system to the kidney.
- Delivery strategies to induce cellular uptake of the therapeutic nucleic acid include physical force or vector systems such as viral-, lipid- or complex- based delivery, or nanocarriers. From the initial applications with less possible clinical relevance, when nucleic acids were addressed to renal cells with hydrodynamic high pressure injection systemically, a wide range of gene therapeutic viral and non-viral carriers have been applied already to target posttranscriptional events in different animal kidney disease models in vivo (Csaba Révész and Péter Hamar (2011). Delivery Methods to Target RNAs in the Kidney, Gene Therapy Applications, Prof.
- Yuan et al. (Am J Physiol Renal Physiol 295: F605–F617, 2008) investigated whether in vivo delivery of small interfering RNAs (siRNAs) targeting the 12/15-lipoxygenase (12/15-LO) pathway of arachidonate acid metabolism can ameliorate renal injury and diabetic nephropathy (DN) in a streptozotocininjected mouse model of type 1 diabetes.
- siRNAs small interfering RNAs
- DN diabetic nephropathy
- Yuan et al. used double-stranded 12/15-LO siRNA oligonucleotides conjugated with cholesterol. About 400 ⁇ g of siRNA was injected subcutaneously into mice.
- the method of Yuang et al. may be applied to the CRISPR Cas system of the present invention contemplating a 1-2 g subcutaneous injection of CRISPR Cas conjugated with cholesterol to a human for delivery to the kidneys.
- Molitoris et al. (J Am Soc Nephrol 20: 1754–1764, 2009) exploited proximal tubule cells (PTCs), as the site of oligonucleotide reabsorption within the kidney to test the efficacy of siRNA targeted to p53, a pivotal protein in the apoptotic pathway, to prevent kidney injury. Naked synthetic siRNA to p53 injected intravenously 4 h after ischemic injury maximally protected both PTCs and kidney function. Molitoris et al.’s data indicates that rapid delivery of siRNA to proximal tubule cells follows intravenous administration.
- mice were injected with doses of siP53, 0.33; 1, 3, or 5mg/kg, given at the same four time points, resulting in cumulative doses of 1.32; 4, 12, and 20 mg/kg, respectively. All siRNA doses tested produced a SCr reducing effect on day one with higher doses being effective over approximately five days compared with PBS-treated ischemic control rats. The 12 and 20 mg/kg cumulative doses provided the best protective effect.
- the method of Molitoris et al. may be applied to the CRISPR Cas system of the present invention contemplating 12 and 20 mg/kg cumulative doses to a human for delivery to the kidneys.
- RNA interference pathway to temporarily inhibit expression of the pro-apoptotic protein p53 and is being developed to protect cells from acute ischemia/reperfusion injuries such as acute kidney injury that can occur during major cardiac surgery and delayed graft function that can occur following renal transplantation.
- Shimizu et al. J Am Soc Nephrol 21: 622–633, 2010 developed a system to target delivery of siRNAs to glomeruli via poly(ethylene glycol)-poly(L-lysine)-based vehicles.
- the siRNA/nanocarrier complex was approximately 10 to 20 nm in diameter, a size that would allow it to move across the fenestrated endothelium to access to the mesangium.
- Shimizu et al. detected siRNAs in the blood circulation for a prolonged time.
- CRISPR Cas system of the present invention contemplating a dose of about of 10-20 ⁇ mol CRISPR Cas complexed with nanocarriers in about 1-2 liters to a human for intraperitoneal administration and delivery to the kidneys.
- the present invention also contemplates delivering the CRISPR-Cas system to oneor both lungs.
- AAV-2-based vectors were originally proposed for CFTR delivery to CF airways, other serotypes such as AAV-1, AAV-5, AAV-6, and AAV-9 exhibit improved gene transfer efficiency in a variety of models of the lung epithelium (see, e.g., Li et al., Molecular Therapy, vol. 17 no. 12, 2067-2077 Dec 2009).
- AAV-1 was demonstrated to be ⁇ 100-fold more efficient than AAV-2 and AAV-5 at transducing human airway epithelial cells in vitro,5 although AAV-1 transduced murine tracheal airway epithelia in vivo with an efficiency equal to that of AAV-5.
- Other studies have shown that AAV-5 is 50-fold more efficient than AAV-2 at gene delivery to human airway epithelium (HAE) in vitro and significantly more efficient in the mouse lung airway epithelium in vivo.
- AAV-6 has also been shown to be more efficient than AAV-2 in human airway epithelial cells in vitro and murine airways in vivo.8
- AAV-9 The more recent isolate, AAV-9, was shown to display greater gene transfer efficiency than AAV-5 in murine nasal and alveolar epithelia in vivo with gene expression detected for over 9 months showing AAV may enable long-term gene expression in vivo, a desirable property for a CFTR gene delivery vector.
- AAV-9 could be readministered to the murine lung with no loss of CFTR expression and minimal immune consequences.
- CF and non- CF HAE cultures may be inoculated on the apical surface with 100 ⁇ l of AAV vectors for hours (see, e.g., Li et al., Molecular Therapy, vol. 17 no. 12, 2067-2077 Dec 2009).
- the MOI may vary from 1 ⁇ 10 3 to 4 ⁇ 10 5 vector genomes/cell, depending on virus concentration and purposes of the experiments.
- the above cited vectors are contemplated for the delivery and/or administration of the invention.
- Zamora et al. (Am J Respir Crit Care Med Vol 183. pp 531–538, 2011) reported an example of the application of an RNA interference therapeutic to the treatment of human infectious disease and also a randomized trial of an antiviral drug in respiratory syncytial virus (RSV)-infected lung transplant recipients.
- RSV respiratory syncytial virus
- Zamora et al. performed a randomized, double-blind, placebocontrolled trial in LTX recipients with RSV respiratory tract infection. Patients were permitted to receive standard of care for RSV. Aerosolized ALN-RSV01 (0.6 mg/kg) or placebo was administered daily for 3 days. This study demonstrates that an RNAi therapeutic targeting RSV can be safely administered to LTX recipients with RSV infection.
- Three daily doses of ALN-RSV01 did not result in any exacerbation of respiratory tract symptoms or impairment of lung function and did not exhibit any systemic proinflammatory effects, such as induction of cytokines or CRP.
- Pharmacokinetics showed only low, transient systemic exposure after inhalation, consistent with preclinical animal data showing that ALN-RSV01, administered intravenously or by inhalation, is rapidly cleared from the circulation through exonucleasemediated digestion and renal excretion.
- the method of Zamora et al. may be applied to the CRISPR Cas system of the present invention and an aerosolized CRISPR Cas, for example with a dosage of 0.6 mg/kg, may be contemplated for the present invention.
- Example 20 demonstrates gene transfer or gene delivery of a CRISPR-Cas system in airways of subject or a patient in need thereof, suffering from cystic fibrosis or from cystic fibrosis (CF) related symptoms, using adeno-associated virus (AAV) particles.
- AAV adeno-associated virus
- the treated subjects in this instance receive pharmaceutically effective amount of aerosolized AAV vector system per lung endobronchially delivered while spontaneously breathing.
- aerosolized delivery is preferred for AAV delivery in general.
- An adenovirus or an AAV particle may be used for delivery.
- Suitable gene constructs, each operably linked to one or more regulatory sequences, may be cloned into the delivery vector.
- Cbh or EF1a promoter for Cas9, U6 or H1 promoter for chimeric guide RNA A preferred arrangement is to use a CFTRdelta508 targeting chimeric guide, a repair template for deltaF508 mutation and a codon optimized Cas9 enzyme (preferred Cas9s are those with nuclease or nickase activity) with optionally one or more nuclear localization signal or sequence(s) (NLS(s)), e.g., two (2) NLSs. Constructs without NLS are also envisaged.
- the PAM may contain a NGG or a NNAGAAW motif.
- the present method comprises manipulation of a target sequence in a genomic locus of interest comprising
- composition comprising a viral vector system comprising one or more viral vectors operably encoding a composition for expression thereof, wherein the composition comprises:
- composition comprising a vector system comprising one or more vectors comprising
- a first regulatory element operably linked to a CRISPR-Cas system chimeric RNA (chiRNA) polynucleotide sequence wherein the polynucleotide sequence comprises (a) a guide sequence capable of hybridizing to the CF target sequence in a suitable mammalian cell,
- a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme comprising at least one or more nuclear localization sequences
- components I and II are located on the same or different vectors of the system, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridizable to the tracr sequence.
- preferred target DNA sequences comprise the CFTRdelta508 mutation.
- a preferred PAM is described above.
- a preferred CRISPR enzyme is any Cas (described herein, but particularly that described in Example 20).
- Alternatives to CF include any genetic disorder and examples of these are well known.
- Another preferred method or use of the invention is for correcting defects in the EMP2A and EMP2B genes that have been identified to be associated with Lafora disease.
- a "guide sequence” may be distinct from “guide RNA”.
- a guide sequence may refer to an approx. 20bp sequence, within the guide RNA, that specifies the target site.
- the Cas9 is (or is derived from) SpCas9.
- preferred mutations are at any or all or positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 or corresponding positions in other Cas9s (which may be ascertained for instance by standard sequence comparison tools.
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the same (or conservative substitutions of these mutations) at corresponding positions in other Cas9s are also preferred.
- residues corresponding to SpCas9 D10 and H840 are also preferred. These are advantageous as they provide nickase activity.
- Such mutations may be applied to all aspects of the present invention, not only treatment of CF.
- Schwank et al. (Cell Stem Cell, 13:653–58, 2013) used CRISPR/Cas9 to correct a defect associated with cystic fibrosis in human stem cells.
- the team’s target was the gene for an ion channel, cystic fibrosis transmembrane conductor receptor (CFTR).
- CFTR cystic fibrosis transmembrane conductor receptor
- a deletion in CFTR causes the protein to misfold in cystic fibrosis patients.
- CFTR cystic fibrosis transmembrane conductor receptor
- the present invention also contemplates delivering the CRISPR-Cas system to muscle(s).
- Bortolanza et al. (Molecular Therapy vol. 19 no. 11, 2055–2064 Nov. 2011) shows that systemic delivery of RNA interference expression cassettes in the FRG1 mouse, after the onset of facioscapulohumeral muscular dystrophy (FSHD), led to a dose-dependent long-term FRG1 knockdown without signs of toxicity.
- FSHD facioscapulohumeral muscular dystrophy
- Bortolanza et al. found that a single intravenous injection of 5 ⁇ 10 12 vg of rAAV6-sh1FRG1 rescues muscle histopathology and muscle function of FRG1 mice.
- 200 ⁇ l containing 2 ⁇ 10 12 or 5 ⁇ 10 12 vg of vector in physiological solution were injected into the tail vein using a 25-gauge Terumo syringe.
- the method of Bortolanza et al. may be applied to an AAV expressing CRISPR Cas and injected into humans at a dosage of about 2 ⁇ 10 15 or 2 ⁇ 10 16 vg of vector.
- Dumonceaux et al. inhibit the myostatin pathway using the technique of RNA interference directed against the myostatin receptor AcvRIIb mRNA (sh-AcvRIIb).
- the restoration of a quasi-dystrophin was mediated by the vectorized U7 exon-skipping technique (U7-DYS).
- U7-DYS vectorized U7 exon-skipping technique
- Adeno-associated vectors carrying either the sh-AcvrIIb construct alone, the U7-DYS construct alone, or a combination of both constructs were injected in the tibialis anterior (TA) muscle of dystrophic mdx mice. The injections were performed with 10 11 AAV viral genomes.
- Dumonceaux et al. may be applied to an AAV expressing CRISPR Cas and injected into humans, for example, at a dosage of about 10 14 to about 10 15 vg of vector.
- Kinouchi et al. (Gene Therapy (2008) 15, 1126–1130) report the effectiveness of in vivo siRNA delivery into skeletal muscles of normal or diseased mice through nanoparticle formation of chemically unmodified siRNAs with atelocollagen (ATCOL). ATCOL-mediated local application of siRNA targeting myostatin, a negative regulator of skeletal muscle growth, in mouse skeletal muscles or intravenously, caused a marked increase in the muscle mass within a few weeks after application.
- Hagstrom et al. (Molecular Therapy Vol. 10, No. 2, August 2004) describe an intravascular, nonviral methodology that enables efficient and repeatable delivery of nucleic acids to muscle cells (myofibers) throughout the limb muscles of mammals.
- the procedure involves the injection of naked plasmid DNA or siRNA into a distal vein of a limb that is transiently isolated by a tourniquet or blood pressure cuff.
- Nucleic acid delivery to myofibers is facilitated by its rapid injection in sufficient volume to enable extravasation of the nucleic acid solution into muscle tissue.
- High levels of transgene expression in skeletal muscle were achieved in both small and large animals with minimal toxicity.
- Evidence of siRNA delivery to limb muscle was also obtained.
- plasmid DNA intravenous injection into a rhesus monkey a threeway stopcock was connected to two syringe pumps (Model PHD 2000; Harvard Instruments), each loaded with a single syringe.
- pDNA (15.5 to 25.7 mg in 40–100 ml saline) was injected at a rate of 1.7 or 2.0 ml/s. This could be scaled up for plasmid DNA expressing CRISPR Cas of the present invention with an injection of about 300 to 500 mg in 800 to 2000 ml saline for a human.
- adenoviral vector injections into a rat 2 x 10 9 infectious particles were injected in 3 ml of normal saline solution (NSS). This could be scaled up for an adenoviral vector expressing CRISPR Cas of the present invention with an injection of about 1 x 10 13 infectious particles were injected in 10 liters of NSS for a human.
- siRNA a rat was injected into the great saphenous vein with 12.5 ⁇ g of a siRNA and a primate was injected injected into the great saphenous vein with 750 ⁇ g of a siRNA.
- This could be scaled up for a CRISPR Cas of the present invention for example, with an injection of about 15 to about 50 mg into the great saphenous vein of a human.
- the present invention also contemplates delivering the CRISPR-Cas system to the skin.
- Hickerson et al. Molecular Therapy—Nucleic Acids (2013) 2, e129
- a motorized microneedle array skin delivery device for delivering self-delivery (sd)-siRNA to human and murine skin.
- the primary challenge to translating siRNA-based skin therapeutics to the clinic is the development of effective delivery systems.
- Substantial effort has been invested in a variety of skin delivery technologies with limited success.
- the naked pain associated with the hypodermic needle injection precluded enrollment of additional patients in the trial, highlighting the need for improved, more“patient-friendly” (i.e., little or no pain) delivery approaches.
- Microneedles represent an efficient way to deliver large charged cargos including siRNAs across the primary barrier, the stratum corneum, and are generally regarded as less painful than conventional hypodermic needles.
- Motorized“stamp type” microneedle devices including the motorized microneedle array (MMNA) device used by Hickerson et al., have been shown to be safe in hairless mice studies and cause little or no pain as evidenced by (i) widespread use in the cosmetic industry and (ii) limited testing in which nearly all volunteers found use of the device to be much less painful than a flushot, suggesting siRNA delivery using this device will result in much less pain than was experienced in the previous clinical trial using hypodermic needle injections.
- MMNA motorized microneedle array
- the MMNA device (marketed as Triple-M or Tri-M by Bomtech Electronic Co, Seoul, South Korea) was adapted for delivery of siRNA to mouse and human skin.
- sd-siRNA solution up to 300 ⁇ l of 0.1 mg/ml RNA
- the disposable Tri-M needle cartridge (Bomtech), which was set to a depth of 0.1 mm.
- deidentified skin obtained immediately following surgical procedures was manually stretched and pinned to a cork platform before treatment. All intradermal injections were performed using an insulin syringe with a 28-gauge 0.5-inch needle.
- Zheng et al. show that spherical nucleic acid nanoparticle conjugates (SNA-NCs), gold cores surrounded by a dense shell of highly oriented, covalently immobilized siRNA, freely penetrate almost 100% of keratinocytes in vitro, mouse skin, and human epidermis within hours after application.
- SNA-NCs spherical nucleic acid nanoparticle conjugates
- Zheng et al. demonstrated that a single application of 25 nM epidermal growth factor receptor (EGFR) SNA- NCs for 60 h demonstrate effective gene knockdown in human skin.
- EGFR epidermal growth factor receptor
- CRISPR Cas immobilized in SNA-NCs for administration to the skin.
- the present invention may also be applied to treat hepatitis B virus (HBV).
- HBV hepatitis B virus
- the CRISPR Cas system must be adapted to avoid the shortcomings of RNAi, such as the risk of oversatring endogenous small RNA pathways, by for example, optimizing dose and sequence (see, e.g., Grimm et al., Nature vol. 441, 26 May 2006).
- low doses such as about 1-10 x 10 14 particles per humane are contemplated.
- the CRISPR Cas system directed against HBV may be administered in liposomes, such as a stable nucleic-acid- lipid particle (SNALP) (see, e.g., Morrissey et al., Nature Biotechnology, Vol.
- SNALP stable nucleic-acid- lipid particle
- a CRISPR Cas system directed to HBV may be cloned into an AAV vector, such as a dsAAV2/8 vector and administered to a human, for example, at a dosage of about 1 x 10 15 vector genomes to about 1 x 10 16 vector genomes per human.
- Wooddell et al. (Molecular Therapy vol. 21 no. 5, 973–985 May 2013) may be used/and or adapted to the CRISPR Cas system of the present invention.
- Woodell et al. show that simple coinjection of a hepatocyte-targeted, N-acetylgalactosamine-conjugated melittin-like peptide (NAG-MLP) with a liver-tropic cholesterol-conjugated siRNA (chol-siRNA) targeting coagulation factor VII (F7) results in efficient F7 knockdown in mice and nonhuman primates without changes in clinical chemistry or induction of cytokines.
- chol-siRNA liver-tropic cholesterol-conjugated siRNA
- F7 coagulation factor VII
- Intraveinous coinjections for example, of about 6 mg/kg of NAG-MLP and 6 mg/kg of HBV specific CRISPR Cas may be envisioned for the present invention.
- about 3 mg/kg of NAG-MLP and 3 mg/kg of HBV specific CRISPR Cas may be delivered on day one, followed by administration of about about 2-3 mg/kg of NAG- MLP and 2-3 mg/kg of HBV specific CRISPR Cas two weeks later.
- the present invention may also be applied to treat hepatitis C virus (HCV).
- HCV hepatitis C virus
- the methods of Roelvinki et al. may be applied to the CRISPR Cas system.
- an AAV vector such as AAV8 may be a contemplated vector and for example a dosage of about 1.25 ⁇ 10 11 to 1.25 ⁇ 10 13 vector genomes per kilogram body weight (vg/kg) may be contemplated.
- RNA interference offers therapeutic potential for this disorder by reducing the expression of HTT, the disease-causing gene of Huntington’s disease (see, e.g., McBride et al., Molecular Therapy vol. 19 no. 12 Dec. 2011, pp. 2152-2162), therefore Applicant postulates that it may be used/and or adapted to the CRISPR-Cas system.
- the CRISPR-Cas system may be generated using an algorithm to reduce the off-targeting potential of antisense sequences.
- the CRISPR-Cas sequences may target either a sequence in exon 52 of mouse, rhesus or human huntingtin and expressed in a viral vector, such as AAV.
- DiFiglia et al. PNAS, October 23, 2007, vol. 104, no.
- a similar dosage of CRISPR Cas targeted to Htt may be contemplated for humans in the present invention, for example, about 5-10 ml of 10 ⁇ M CRISPR Cas targeted to Htt may be injected intrastriatally.
- Boudreau et al. (Molecular Therapy vol. 17 no. 6 june 2009) injects 5 ⁇ l of recombinant AAV serotype 2/1 vectors expressing htt-specific RNAi virus (at 4 x 10 12 viral genomes/ml) into the straiatum.
- a similar dosage of CRISPR Cas targeted to Htt may be contemplated for humans in the present invention, for example, about 10-20 ml of 4 x 10 12 viral genomes/ml) CRISPR Cas targeted to Htt may be injected intrastriatally.
- a CRISPR Cas targetd to HTT may be administered continuously (see, e.g., Yu et al., Cell 150, 895–908, August 31, 2012). Yu et al. utilizes osmotic pumps delivering 0.25 ml/hr (Model 2004) to deliver 300 mg/day of ss-siRNA or phosphate-buffered saline (PBS) (Sigma Aldrich) for 28 days, and pumps designed to deliver 0.5 ⁇ l/hr (Model 2002) were used to deliver 75 mg/day of the positive control MOE ASO for 14 days.
- osmotic pumps delivering 0.25 ml/hr (Model 2004) to deliver 300 mg/day of ss-siRNA or phosphate-buffered saline (PBS) (Sigma Aldrich) for 28 days, and pumps designed to deliver 0.5 ⁇ l/hr (Model 2002) were used to deliver 75 mg/day of the positive control MOE ASO for 14 days.
- PBS
- CRISPR Cas targeted to Htt may be contemplated for humans in the present invention, for example, about 500 to 1000 g/day CRISPR Cas targeted to Htt may be administered.
- Stiles et al. (Experimental Neurology 233 (2012) 463–471) implanted an intraparenchymal catheter with a titanium needle tip into the right putamen. The catheter was connected to a SynchroMed® II Pump (Medtronic Neurological, Minneapolis, MN) subcutaneously implanted in the abdomen. After a 7 day infusion of phosphate buffered saline at 6 ⁇ L/day, pumps were re-filled with test article and programmed for continuous delivery for 7 days.
- CRISPR Cas targeted to Htt may be contemplated for humans in the present invention, for example, about 20 to 200 mg/day CRISPR Cas targeted to Htt may be administered.
- the methods of US Patent Publication No. 20130253040 assigned to Sangamo may also be also be adapted from TALES to the CRISPR Cas system of the present invention for treating Huntington’s Disease. Nucleic acids, amino acids and proteins
- the invention uses nucleic acids to bind target DNA sequences. This is advantageous as nucleic acids are much easier and cheaper to produce than proteins, and the specificity can be varied according to the length of the stretch where homology is sought. Complex 3-D positioning of multiple fingers, for example is not required.
- polynucleotide refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof.
- Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown.
- polynucleotides coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.
- loci locus defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched poly
- a polynucleotide may comprise one or more modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer.
- the sequence of nucleotides may be interrupted by non-nucleotide components.
- a polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
- wild type is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from mutant or variant forms.
- variable should be taken to mean the exhibition of qualities that have a pattern that deviates from what occurs in nature.
- nucleic acid molecules or polypeptides mean that the nucleic acid molecule or the polypeptide is at least substantially free from at least one other component with which they are naturally associated in nature and as found in nature.
- “Complementarity” refers to the ability of a nucleic acid to form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick base pairing or other non- traditional types.
- a percent complementarity indicates the percentage of residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary).
- “Perfectly complementary” means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence.
- “Substantially complementary” as used herein refers to a degree of complementarity that is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, or more nucleotides, or refers to two nucleic acids that hybridize under stringent conditions.
- stringent conditions for hybridization refer to conditions under which a nucleic acid having complementarity to a target sequence predominantly hybridizes with the target sequence, and substantially does not hybridize to non-target sequences.
- Stringent conditions are generally sequence-dependent, and vary depending on a number of factors. In general, the longer the sequence, the higher the temperature at which the sequence specifically hybridizes to its target sequence.
- Non-limiting examples of stringent conditions are described in detail in Tijssen (1993), Laboratory Techniques In Biochemistry And Molecular Biology- Hybridization With Nucleic Acid Probes Part I, Second Chapter“Overview of principles of hybridization and the strategy of nucleic acid probe assay”, Elsevier, N.Y.
- complementary or partially complementary sequences are also envisaged. These are preferably capable of hybridising to the reference sequence under highly stringent conditions.
- relatively low-stringency hybridization conditions are selected: about 20 to 25° C lower than the thermal melting point (T m ).
- T m is the temperature at which 50% of specific target sequence hybridizes to a perfectly complementary probe in solution at a defined ionic strength and pH.
- highly stringent washing conditions are selected to be about 5 to 15° C lower than the T m .
- moderately-stringent washing conditions are selected to be about 15 to 30° C lower than the T m .
- Highly permissive (very low stringency) washing conditions may be as low as 50° C below the T m , allowing a high level of mis-matching between hybridized sequences.
- Other physical and chemical parameters in the hybridization and wash stages can also be altered to affect the outcome of a detectable hybridization signal from a specific level of homology between target and probe sequences.
- Preferred highly stringent conditions comprise incubation in 50% formamide, 5 ⁇ SSC, and 1% SDS at 42° C, or incubation in 5 ⁇ SSC and 1% SDS at 65° C, with wash in 0.2 ⁇ SSC and 0.1% SDS at 65° C.
- “Hybridization” refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues.
- the hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner.
- the complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self-hybridizing strand, or any combination of these.
- a hybridization reaction may constitute a step in a more extensive process, such as the initiation of PCR, or the cleavage of a polynucleotide by an enzyme.
- a sequence capable of hybridizing with a given sequence is referred to as the “complement” of the given sequence.
- the term“genomic locus” or“locus” is the specific location of a gene or DNA sequence on a chromosome.
- A“gene” refers to stretches of DNA or RNA that encode a polypeptide or an RNA chain that has functional role to play in an organism and hence is the molecular unit of heredity in living organisms.
- genes include regions which regulate the production of the gene product, whether or not such regulatory sequences are adjacent to coding and/or transcribed sequences.
- a gene includes, but is not necessarily limited to, promoter sequences, terminators, translational regulatory sequences such as ribosome binding sites and internal ribosome entry sites, enhancers, silencers, insulators, boundary elements, replication origins, matrix attachment sites and locus control regions.
- “expression of a genomic locus” or“gene expression” is the process by which information from a gene is used in the synthesis of a functional gene product.
- the products of gene expression are often proteins, but in non-protein coding genes such as rRNA genes or tRNA genes, the product is functional RNA.
- the process of gene expression is used by all known life - eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea) and viruses to generate functional products to survive.
- "expression" of a gene or nucleic acid encompasses not only cellular gene expression, but also the transcription and translation of nucleic acid(s) in cloning systems and in any other context.
- expression also refers to the process by which a polynucleotide is transcribed from a DNA template (such as into and mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins.
- Transcripts and encoded polypeptides may be collectively referred to as“gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
- polypeptide “peptide” and“protein” are used interchangeably herein to refer to polymers of amino acids of any length.
- the polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non amino acids.
- the terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.
- amino acid includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics.
- domain or“protein domain” refers to a part of a protein sequence that may exist and function independently of the rest of the protein chain.
- sequence identity is related to sequence homology. Homology comparisons may be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs may calculate percent (%) homology between two or more sequences and may also calculate the sequence identity shared by two or more amino acid or nucleic acid sequences.
- the capping region of the dTALEs described herein have sequences that are at least 95% identical or share identity to the capping region amino acid sequences provided herein.
- Sequence homologies may be generated by any of a number of computer programs known in the art, for example BLAST or FASTA, etc.
- a suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A; Devereux et al., 1984, Nucleic Acids Research 12:387).
- Examples of other software than may perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid– Chapter 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 ibid, pages 7-58 to 7-60). However it is preferred to use the GCG Bestfit program.
- Percentage (%) sequence homology may be calculated over contiguous sequences, i.e., one sequence is aligned with the other sequence and each amino acid or nucleotide in one sequence is directly compared with the corresponding amino acid or nucleotide in the other sequence, one residue at a time. This is called an“ungapped” alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.
- BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999, Short Protocols in Molecular Biology, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program.
- a new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequences (see FEMS Microbiol Lett. 1999 174(2): 247-50; FEMS Microbiol Lett. 1999 177(1): 187-8 and the website of the National Center for Biotechnology information at the website of the National Institutes for Health).
- the final % homology may be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pair-wise comparison based on chemical similarity or evolutionary distance.
- An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs.
- GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table, if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.
- percentage homologies may be calculated using the multiple alignment feature in DNASIS TM (Hitachi Software), based on an algorithm, analogous to CLUSTAL (Higgins DG & Sharp PM (1988), Gene 73(1), 237-244).
- % homology preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.
- sequences may also have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent substance.
- Deliberate amino acid substitutions may be made on the basis of similarity in amino acid properties (such as polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues) and it is therefore useful to group amino acids together in functional groups.
- Amino acids may be grouped together based on the properties of their side chains alone. However, it is more useful to include mutation data as well.
- the sets of amino acids thus derived are likely to be conserved for structural reasons. These sets may be described in the form of a Venn diagram (Livingstone C.D.
- Embodiments of the invention include sequences (both polynucleotide or polypeptide) which may comprise homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue or nucleotide, with an alternative residue or nucleotide) that may occur i.e., like-for-like substitution in the case of amino acids such as basic for basic, acidic for acidic, polar for polar, etc.
- Non-homologous substitution may also occur i.e., from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine.
- Z ornithine
- B diaminobutyric acid ornithine
- O norleucine ornithine
- pyriylalanine pyriylalanine
- thienylalanine thienylalanine
- naphthylalanine phenylglycine
- Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or E-alanine residues.
- alkyl groups such as methyl, ethyl or propyl groups
- amino acid spacers such as glycine or E-alanine residues.
- a further form of variation which involves the presence of one or more amino acid residues in peptoid form, may be well understood by those skilled in the art.
- the peptoid form is used to refer to variant amino acid residues wherein the D-carbon substituent group is on the residue’s nitrogen atom rather than the D-carbon.
- the invention provides for vectors that are used in the engineering and optimization of CRISPR-Cas systems.
- a“vector” is a tool that allows or facilitates the transfer of an entity from one environment to another. It is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. Generally, a vector is capable of replication when associated with the proper control elements.
- the term“vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- Vectors include, but are not limited to, nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g. circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art.
- a“plasmid” refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques.
- viral vector wherein virally-derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g.
- Viral vectors also include polynucleotides carried by a virus for transfection into a host cell.
- Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g. bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
- Other vectors e.g., non-episomal mammalian vectors are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
- vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as“expression vectors.”
- expression vectors Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
- Recombinant expression vectors can comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory elements, which may be selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed.
- “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory element(s) in a manner that allows for expression of the nucleotide sequence (e.g. in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
- aspects of the invention relate to bicistronic vectors for chimeric RNA and Cas9.
- Bicistronic expression vectors for chimeric RNA and Cas9 are preferred.
- Cas9 is preferably driven by the CBh promoter.
- the chimeric RNA may preferably be driven by a Pol III promoter, such as a U6 promoter. Ideally the two are combined.
- the chimeric guide RNA typically consists of a 20bp guide sequence (Ns) and this may be joined to the tracr sequence (running from the first“U” of the lower strand to the end of the transcript). The tracr sequence may be truncated at various positions as indicated.
- the guide and tracr sequences are separated by the tracr-mate sequence, which may be GUUUUAGAGCUA. This may be followed by the loop sequence GAAA as shown. Both of these are preferred examples.
- Applicants have demonstrated Cas9-mediated indels at the human EMX1 and PVALB loci by SURVEYOR assays.
- ChiRNAs are indicated by their“+n” designation, and crRNA refers to a hybrid RNA where guide and tracr sequences are expressed as separate transcripts.
- chimeric RNA may also be called single guide, or synthetic guide RNA (sgRNA).
- the loop is preferably GAAA, but it is not limited to this sequence or indeed to being only 4bp in length.
- preferred loop forming sequences for use in hairpin structures are four nucleotides in length, and most preferably have the sequence GAAA. However, longer or shorter loop sequences may be used, as may alternative sequences.
- the sequences preferably include a nucleotide triplet (for example, AAA), and an additional nucleotide (for example C or G). Examples of loop forming sequences include CAAA and AAAG.
- regulatory element is intended to include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences).
- IRES internal ribosomal entry sites
- regulatory elements e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences.
- Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences).
- a tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g. liver, pancreas), or particular cell types (e.g. lymphocytes). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-type specific.
- a vector comprises one or more pol III promoter (e.g. 1, 2, 3, 4, 5, or more pol III promoters), one or more pol II promoters (e.g. 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g.
- pol III promoters include, but are not limited to, U6 and H1 promoters.
- pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., Boshart et al, Cell, 41:521 -530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the ⁇ -actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1 ⁇ promoter.
- RSV Rous sarcoma virus
- CMV cytomegalovirus
- PGK phosphoglycerol kinase
- enhancer elements such as WPRE; CMV enhancers; the R-U5’ segment in LTR of HTLV-I (Mol. Cell. Biol., Vol. 8(1), p. 466-472, 1988); SV40 enhancer; and the intron sequence between exons 2 and 3 of rabbit ⁇ -globin (Proc. Natl. Acad. Sci. USA., Vol. 78(3), p. 1527-31, 1981 ).
- WPRE WPRE
- CMV enhancers the R-U5’ segment in LTR of HTLV-I
- SV40 enhancer SV40 enhancer
- the intron sequence between exons 2 and 3 of rabbit ⁇ -globin Proc. Natl. Acad. Sci. USA., Vol. 78(3), p. 1527-31, 1981 .
- the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression desired, etc.
- a vector can be introduced into host cells to thereby produce transcripts, proteins, or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., clustered regularly interspersed short palindromic repeats (CRISPR) transcripts, proteins, enzymes, mutant forms thereof, fusion proteins thereof, etc.).
- CRISPR clustered regularly interspersed short palindromic repeats
- Vectors can be designed for expression of CRISPR transcripts (e.g. nucleic acid transcripts, proteins, or enzymes) in prokaryotic or eukaryotic cells.
- CRISPR transcripts e.g. nucleic acid transcripts, proteins, or enzymes
- CRISPR transcripts can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors), yeast cells, or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
- Vectors may be introduced and propagated in a prokaryote or prokaryotic cell.
- a prokaryote is used to amplify copies of a vector to be introduced into a eukaryotic cell or as an intermediate vector in the production of a vector to be introduced into a eukaryotic cell (e.g. amplifying a plasmid as part of a viral vector packaging system).
- a prokaryote is used to amplify copies of a vector and express one or more nucleic acids, such as to provide a source of one or more proteins for delivery to a host cell or host organism.
- Fusion vectors add a number of amino acids to a protein encoded therein, such as to the amino terminus of the recombinant protein.
- Such fusion vectors may serve one or more purposes, such as: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
- a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
- Such enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
- Example fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988.
- GST glutathione S-transferase
- Suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
- a vector is a yeast expression vector.
- yeast Saccharomyces cerivisae examples include pYepSec1 (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kuijan and Herskowitz, 1982.
- a vector drives protein expression in insect cells using baculovirus expression vectors.
- Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).
- a vector is capable of driving expression of one or more sequences in mammalian cells using a mammalian expression vector.
- mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195).
- the expression vector’s control functions are typically provided by one or more regulatory elements.
- commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, simian virus 40, and others disclosed herein and known in the art.
- the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
- tissue-specific regulatory elements are known in the art.
- suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J.
- a regulatory element is operably linked to one or more elements of a CRISPR system so as to drive expression of the one or more elements of the CRISPR system.
- CRISPRs Clustered Regularly Interspaced Short Palindromic Repeats
- SPIDRs Sacer Interspersed Direct Repeats
- the CRISPR locus comprises a distinct class of interspersed short sequence repeats (SSRs) that were recognized in E. coli (Ishino et al., J. Bacteriol., 169:5429-5433 [1987]; and Nakata et al., J.
- the CRISPR loci typically differ from other SSRs by the structure of the repeats, which have been termed short regularly spaced repeats (SRSRs) (Janssen et al., OMICS J. Integ. Biol., 6:23-33 [2002]; and Mojica et al., Mol. Microbiol., 36:244-246 [2000]).
- SRSRs short regularly spaced repeats
- the repeats are short elements that occur in clusters that are regularly spaced by unique intervening sequences with a substantially constant length (Mojica et al., [2000], supra).
- the repeat sequences are highly conserved between strains, the number of interspersed repeats and the sequences of the spacer regions typically differ from strain to strain (van Embden et al., J.
- CRISPR loci have been identified in more than 40 prokaryotes (See e.g., Jansen et al., Mol. Microbiol., 43:1565-1575 [2002]; and Mojica et al., [2005]) including, but not limited to Aeropyrum, Pyrobaculum, Sulfolobus, Archaeoglobus, Halocarcula, Methanobacterium, Methanococcus, Methanosarcina, Methanopyrus, Pyrococcus, Picrophilus, Thermoplasma, Corynebacterium, Mycobacterium, Streptomyces, Aquifex, Porphyromonas, Chlorobium, Thermus, Bacillus, Listeria, Staphylococcus, Clostridium, Thermoanaerobacter, Mycoplasma, Fusobacterium, Azarcus, Chromobacterium, Neisseria, Nitrosomon
- CRISPR system refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR-associated (“Cas”) genes, including sequences encoding a Cas gene, a tracr (trans-activating CRISPR) sequence (e.g. tracrRNA or an active partial tracrRNA), a tracr-mate sequence (encompassing a“direct repeat” and a tracrRNA-processed partial direct repeat in the context of an endogenous CRISPR system), a guide sequence (also referred to as a“spacer” in the context of an endogenous CRISPR system), or other sequences and transcripts from a CRISPR locus.
- a tracr trans-activating CRISPR
- tracr-mate sequence encompassing a“direct repeat” and a tracrRNA-processed partial direct repeat in the context of an endogenous CRISPR system
- guide sequence also referred to as a“spacer” in the context of an endogenous CRISPR system
- one or more elements of a CRISPR system is derived from a type I, type II, or type III CRISPR system.
- one or more elements of a CRISPR system is derived from a particular organism comprising an endogenous CRISPR system, such as Streptococcus pyogenes.
- a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system).
- target sequence refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex.
- a target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides.
- a target sequence is located in the nucleus or cytoplasm of a cell.
- direct repeats may be identified in silico by searching for repetitive motifs that fulfill any or all of the following criteria: 1. found in a 2Kb window of genomic sequence flanking the type II CRISPR locus; 2. span from 20 to 50 bp; and 3. interspaced by 20 to 50 bp. In some embodiments, 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3. In some embodiments, all 3 criteria may be used.
- candidate tracrRNA may be subsequently predicted by sequences that fulfill any or all of the following criteria: 1. sequence homology to direct repeats (motif search in Geneious with up to 18-bp mismatches); 2. presence of a predicted Rho-independent transcriptional terminator in direction of transcription; and 3. stable hairpin secondary structure between tracrRNA and direct repeat.
- 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3.
- all 3 criteria may be used.
- chimeric synthetic guide RNAs may incorporate at least 12 bp of duplex structure between the direct repeat and tracrRNA.
- the CRISPR system is a type II CRISPR system and the Cas enzyme is Cas9, which catalyzes DNA cleavage.
- the Cas enzyme is Cas9, which catalyzes DNA cleavage.
- Enzymatic action by Cas9 derived from Streptococcus pyogenes or any closely related Cas9 generates double stranded breaks at target site sequences which hybridize to 20 nucleotides of the guide sequence and that have a protospacer-adjacent motif (PAM) sequence (examples include NGG/NRG or a PAM that can be determined as described herein) following the 20 nucleotides of the target sequence.
- PAM protospacer-adjacent motif
- CRISPR activity through Cas9 for site-specific DNA recognition and cleavage is defined by the guide sequence, the tracr sequence that hybridizes in part to the guide sequence and the PAM sequence. More aspects of the CRISPR system are described in Karginov and Hannon, The CRISPR system: small RNA-guided defence in bacteria and archaea, Mole Cell 2010, January 15; 37(1): 7.
- the type II CRISPR locus from Streptococcus pyogenes SF370 which contains a cluster of four genes Cas9, Cas1, Cas2, and Csn1, as well as two non-coding RNA elements, tracrRNA and a characteristic array of repetitive sequences (direct repeats) interspaced by short stretches of non-repetitive sequences (spacers, about 30bp each).
- DSB targeted DNA double- strand break
- tracrRNA hybridizes to the direct repeats of pre-crRNA, which is then processed into mature crRNAs containing individual spacer sequences.
- the mature crRNA:tracrRNA complex directs Cas9 to the DNA target consisting of the protospacer and the corresponding PAM via heteroduplex formation between the spacer region of the crRNA and the protospacer DNA.
- Cas9 mediates cleavage of target DNA upstream of PAM to create a DSB within the protospacer (Fig. 2A).
- Fig. 2B demonstrates the nuclear localization of the codon optimized Cas9.
- the RNA polymerase III-based U6 promoter was selected to drive the expression of tracrRNA (Fig. 2C).
- a U6 promoter-based construct was developed to express a pre-crRNA array consisting of a single spacer flanked by two direct repeats (DRs, also encompassed by the term“tracr-mate sequences”; Fig. 2C).
- the initial spacer was designed to target a 33-base-pair (bp) target site (30-bp protospacer plus a 3-bp CRISPR motif (PAM) sequence satisfying the NGG recognition motif of Cas9) in the human EMX1 locus (Fig. 2C), a key gene in the development of the cerebral cortex.
- bp 33-base-pair
- PAM 3-bp CRISPR motif
- a CRISPR complex comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins
- formation of a CRISPR complex results in cleavage of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence.
- the tracr sequence which may comprise or consist of all or a portion of a wild- type tracr sequence (e.g.
- one or more vectors driving expression of one or more elements of a CRISPR system are introduced into a host cell such that expression of the elements of the CRISPR system direct formation of a CRISPR complex at one or more target sites.
- a Cas enzyme, a guide sequence linked to a tracr-mate sequence, and a tracr sequence could each be operably linked to separate regulatory elements on separate vectors.
- two or more of the elements expressed from the same or different regulatory elements may be combined in a single vector, with one or more additional vectors providing any components of the CRISPR system not included in the first vector.
- CRISPR system elements that are combined in a single vector may be arranged in any suitable orientation, such as one element located 5’ with respect to (“upstream” of) or 3’ with respect to (“downstream” of) a second element.
- the coding sequence of one element may be located on the same or opposite strand of the coding sequence of a second element, and oriented in the same or opposite direction.
- a single promoter drives expression of a transcript encoding a CRISPR enzyme and one or more of the guide sequence, tracr mate sequence (optionally operably linked to the guide sequence), and a tracr sequence embedded within one or more intron sequences (e.g. each in a different intron, two or more in at least one intron, or all in a single intron).
- the CRISPR enzyme, guide sequence, tracr mate sequence, and tracr sequence are operably linked to and expressed from the same promoter.
- a vector comprises one or more insertion sites, such as a restriction endonuclease recognition sequence (also referred to as a“cloning site”).
- one or more insertion sites e.g. about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more insertion sites are located upstream and/or downstream of one or more sequence elements of one or more vectors.
- a vector comprises an insertion site upstream of a tracr mate sequence, and optionally downstream of a regulatory element operably linked to the tracr mate sequence, such that following insertion of a guide sequence into the insertion site and upon expression the guide sequence directs sequence-specific binding of a CRISPR complex to a target sequence in a eukaryotic cell.
- a vector comprises two or more insertion sites, each insertion site being located between two tracr mate sequences so as to allow insertion of a guide sequence at each site.
- the two or more guide sequences may comprise two or more copies of a single guide sequence, two or more different guide sequences, or combinations of these.
- a single expression construct may be used to target CRISPR activity to multiple different, corresponding target sequences within a cell.
- a single vector may comprise about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more guide sequences. In some embodiments, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such guide-sequence-containing vectors may be provided, and optionally delivered to a cell.
- a vector comprises a regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, such as a Cas protein.
- Cas proteins include Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csn1 and Csx12), Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, homologues thereof, or modified versions thereof, or modified versions thereof, or modified versions thereof,
- the unmodified CRISPR enzyme has DNA cleavage activity, such as Cas9.
- the CRISPR enzyme directs cleavage of one or both strands at the location of a target sequence, such as within the target sequence and/or within the complement of the target sequence. In some embodiments, the CRISPR enzyme directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence.
- a vector encodes a CRISPR enzyme that is mutated to with respect to a corresponding wild-type enzyme such that the mutated CRISPR enzyme lacks the ability to cleave one or both strands of a target polynucleotide containing a target sequence.
- an aspartate-to-alanine substitution (D10A) in the RuvC I catalytic domain of Cas9 from S. pyogenes converts Cas9 from a nuclease that cleaves both strands to a nickase (cleaves a single strand).
- mutations that render Cas9 a nickase include, without limitation, H840A, N854A, and N863A.
- two or more catalytic domains of Cas9 may be mutated to produce a mutated Cas9 substantially lacking all DNA cleavage activity.
- a D10A mutation is combined with one or more of H840A, N854A, or N863A mutations to produce a Cas9 enzyme substantially lacking all DNA cleavage activity.
- a CRISPR enzyme is considered to substantially lack all DNA cleavage activity when the DNA cleavage activity of the mutated enzyme is less than about 25%, 10%, 5%, 1%, 0.1%, 0.01%, or lower of the DNA cleavage activity of its non-mutated form; e.g., when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the DNA cleavage activity of the non-mutated form of the enzyme; whereby an example can be when the DNA cleavage activity of the mutated form is nil or negligible as compared with the non- mutated form, e.g., when no indel formation is observed as with Cas9H840A, as herein discussed.
- mutations may be made at any or all residues corresponding to positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 (which may be ascertained for instance by standard sequence comparison tools .
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the same (or conservative substitutions of these mutations) at corresponding positions in other Cas9s are also preferred.
- Particularly preferred are D10 and H840 in SpCas9 .
- residues corresponding to SpCas9 D10 and H840 are also preferred.
- a Cas enzyme may be identified Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system. Most preferably, the Cas9 enzyme is from, or is derived from, spCas9 (S. pyogenes Cas9) or saCas9 (S. aureus Cas9). By derived, Applicants mean that the derived enzyme is largely based, in the sense of having a high degree of sequence homology with, a wildtype enzyme, but that it has been mutated (modified) in some way as described herein.
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes.
- this invention includes many more Cas9s from other species of microbes, such as SpCas9, SaCa9, St1Cas9 and so forth.
- an enzyme coding sequence encoding a CRISPR enzyme is codon optimized for expression in particular cells, such as eukaryotic cells.
- the eukaryotic cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, mouse, rat, rabbit, dog, or non-human mammal or primate.
- processes for modifying the germ line genetic identity of human beings and/or processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes may be excluded.
- codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g. about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codons that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence.
- codon bias differs in codon usage between organisms
- mRNA messenger RNA
- tRNA transfer RNA
- Codon usage tables are readily available, for example, at the“Codon Usage Database” available at www.kazusa.orjp/codon/ (visited Jul. 9, 2002), and these tables can be adapted in a number of ways. See Nakamura, Y., et al.“Codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000).
- codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, PA), are also available.
- one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons
- one or more codons in a sequence encoding a CRISPR enzyme correspond to the most frequently used codon for a particular amino acid.
- NLSs Nuclear localization sequences
- a vector encodes a CRISPR enzyme comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs.
- the CRISPR enzyme comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. zero or at least one or more NLS at the amino-terminus and zero or at one or more NLS at the carboxy terminus).
- the CRISPR enzyme comprises at most 6 NLSs.
- an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus.
- Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV; the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK); the c-myc NLS having the amino acid sequence PAAKRVKLD or RQRRNELKRSP; the hRNPA1 M9 NLS having the sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY; the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV of the IBB domain from importin-alpha; the sequences VSRKRPRP and PPKKARED of the myoma T protein; the sequence POPKKKPL of human p53; the sequence SALIKKKKKMAP of mouse c-abl IV; the sequences DRLRR and PKQKKRK of the influenza
- the one or more NLSs are of sufficient strength to drive accumulation of the CRISPR enzyme in a detectable amount in the nucleus of a eukaryotic cell.
- strength of nuclear localization activity may derive from the number of NLSs in the CRISPR enzyme, the particular NLS(s) used, or a combination of these factors.
- Detection of accumulation in the nucleus may be performed by any suitable technique.
- a detectable marker may be fused to the CRISPR enzyme, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI).
- Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of CRISPR complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity), as compared to a control no exposed to the CRISPR enzyme or complex, or exposed to a CRISPR enzyme lacking the one or more NLSs.
- an assay for the effect of CRISPR complex formation e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity
- a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence.
- the degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more.
- Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g. the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net).
- Burrows-Wheeler Transform e.g. the Burrows Wheeler Aligner
- ClustalW Clustal X
- BLAT Novoalign
- ELAND Illumina, San Diego, CA
- SOAP available at soap.genomics.org.cn
- Maq available at maq.sourceforge.net.
- a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length. The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay.
- the components of a CRISPR system sufficient to form a CRISPR complex may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein.
- cleavage of a target polynucleotide sequence may be evaluated in a test tube by providing the target sequence, components of a CRISPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions.
- Other assays are possible, and will occur to those skilled in the art.
- a guide sequence may be selected to target any target sequence.
- the target sequence is a sequence within a genome of a cell.
- Exemplary target sequences include those that are unique in the target genome.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNXGG where NNNNNNNNNNXGG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNXAGAAW where NNNNNNNNNNXXAGAAW (N is A, G, T, or C; X can be anything; and W is A or T) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNNNNNNNNNNNXGGXG where NNNNNNNNNNXGGXG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- N is A, G, T, or C; and X can be anything
- N is A, G, T, or C; and X can be anything
- N is A, G, T, or C; and X can be anything
- N is A, G, T, or C; and X can be anything
- M may be A, G, T, or C, and need not be considered in identifying a sequence as unique.
- a guide sequence is selected to reduce the degree secondary structure within the guide sequence. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1 %, or fewer of the nucleotides of the guide sequence participate in self-complementary base pairing when optimally folded.
- Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148).
- Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g. A.R. Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).
- a tracr mate sequence includes any sequence that has sufficient complementarity with a tracr sequence to promote one or more of: (1) excision of a guide sequence flanked by tracr mate sequences in a cell containing the corresponding tracr sequence; and (2) formation of a CRISPR complex at a target sequence, wherein the CRISPR complex comprises the tracr mate sequence hybridized to the tracr sequence.
- degree of complementarity is with reference to the optimal alignment of the tracr mate sequence and tracr sequence, along the length of the shorter of the two sequences.
- Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self-complementarity within either the tracr sequence or tracr mate sequence.
- the degree of complementarity between the tracr sequence and tracr mate sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher.
- the tracr sequence is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length.
- the tracr sequence and tracr mate sequence are contained within a single transcript, such that hybridization between the two produces a transcript having a secondary structure, such as a hairpin.
- the transcript or transcribed polynucleotide sequence has at least two or more hairpins.
- the transcript has two, three, four or five hairpins.
- the transcript has at most five hairpins.
- the portion of the sequence 5’ of the final“N” and upstream of the loop corresponds to the tracr mate sequence
- the portion of the sequence 3’ of the loop corresponds to the tracr sequence
- “N” represents a base of a guide sequence
- the first block of lower case letters represent the tracr mate sequence
- the second block of lower case letters represent the tracr sequence
- the final poly-T sequence represents the transcription terminator: (1) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNgttttgtactctcaagatttaGAAAtaaatcttgcagaagctacaaagataa ggcttcatgccgaaatcaacaccctgtcattttatggcagggtgtttcgtatttttttt
- sequences (1) to (3) are used in combination with Cas9 from S. thermophilus CRISPR1.
- sequences (4) to (6) are used in combination with Cas9 from S. pyogenes.
- the tracr sequence is a separate transcript from a transcript comprising the tracr mate sequence. Recombination template
- a recombination template is also provided.
- a recombination template may be a component of another vector as described herein, contained in a separate vector, or provided as a separate polynucleotide.
- a recombination template is designed to serve as a template in homologous recombination, such as within or near a target sequence nicked or cleaved by a CRISPR enzyme as a part of a CRISPR complex.
- a template polynucleotide may be of any suitable length, such as about or more than about 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000, or more nucleotides in length.
- the template polynucleotide is complementary to a portion of a polynucleotide comprising the target sequence.
- a template polynucleotide might overlap with one or more nucleotides of a target sequences (e.g. about or more than about 1, 5, 10, 15, 20, or more nucleotides).
- the nearest nucleotide of the template polynucleotide is within about 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000, or more nucleotides from the target sequence.
- the CRISPR enzyme is part of a fusion protein comprising one or more heterologous protein domains (e.g. about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more domains in addition to the CRISPR enzyme).
- a CRISPR enzyme fusion protein may comprise any additional protein sequence, and optionally a linker sequence between any two domains.
- protein domains that may be fused to a CRISPR enzyme include, without limitation, epitope tags, reporter gene sequences, and protein domains having one or more of the following activities: methylase activity, demethylase activity, transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, RNA cleavage activity and nucleic acid binding activity.
- epitope tags include histidine (His) tags, V5 tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags.
- reporter genes include, but are not limited to, glutathione-S-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT) beta-galactosidase, beta-glucuronidase, luciferase, green fluorescent protein (GFP), HcRed, DsRed, cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and autofluorescent proteins including blue fluorescent protein (BFP).
- GST glutathione-S-transferase
- HRP horseradish peroxidase
- CAT chloramphenicol acetyltransferase
- beta-galactosidase beta-galactosidase
- beta-glucuronidase beta-galactosidase
- luciferase green fluorescent protein
- GFP green fluorescent protein
- HcRed HcRed
- DsRed cyan fluorescent protein
- a CRISPR enzyme may be fused to a gene sequence encoding a protein or a fragment of a protein that bind DNA molecules or bind other cellular molecules, including but not limited to maltose binding protein (MBP), S-tag, Lex A DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions. Additional domains that may form part of a fusion protein comprising a CRISPR enzyme are described in US20110059502, incorporated herein by reference. In some embodiments, a tagged CRISPR enzyme is used to identify the location of a target sequence.
- MBP maltose binding protein
- DBD Lex A DNA binding domain
- HSV herpes simplex virus
- a CRISPR enzyme may form a component of an inducible system.
- the inducible nature of the system would allow for spatiotemporal control of gene editing or gene expression using a form of energy.
- the form of energy may include but is not limited to electromagnetic radiation, sound energy, chemical energy and thermal energy.
- inducible system examples include tetracycline inducible promoters (Tet-On or Tet-Off), small molecule two-hybrid transcription activations systems (FKBP, ABA, etc), or light inducible systems (Phytochrome, LOV domains, or cryptochrome).
- the CRISPR enzyme may be a part of a Light Inducible Transcriptional Effector (LITE) to direct changes in transcriptional activity in a sequence-specific manner.
- the components of a light may include a CRISPR enzyme, a light-responsive cytochrome heterodimer (e.g. from Arabidopsis thaliana), and a transcriptional activation/repression domain.
- LITE Light Inducible Transcriptional Effector
- the invention involves at least one component of the CRISPR complex, e.g., RNA, delivered via at least one nanoparticle complex.
- the invention provides methods comprising delivering one or more polynucleotides, such as or one or more vectors as described herein, one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell.
- the invention further provides cells produced by such methods, and animals comprising or produced from such cells.
- a CRISPR enzyme in combination with (and optionally complexed with) a guide sequence is delivered to a cell.
- Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in mammalian cells or target tissues.
- Non-viral vector delivery systems include DNA plasmids, RNA (e.g. a transcript of a vector described herein), naked nucleic acid, and nucleic acid complexed with a delivery vehicle, such as a liposome.
- Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell.
- Methods of non-viral delivery of nucleic acids include lipofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA.
- Lipofection is described in e.g., U.S. Pat. Nos. 5,049,386, 4,946,787; and 4,897,355) and lipofection reagents are sold commercially (e.g., TransfectamTM and LipofectinTM).
- Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424; WO 91/16024. Delivery can be to cells (e.g. in vitro or ex vivo administration) or target tissues (e.g. in vivo administration).
- lipid:nucleic acid complexes including targeted liposomes such as immunolipid complexes
- Boese et al. Cancer Gene Ther. 2:291 -297 (1995); Behr et al., Bioconjugate Chem. 5:382-389 (1994); Remy et al., Bioconjugate Chem. 5:647-654 (1994); Gao et al., Gene Therapy 2:710-722 (1995); Ahmad et al., Cancer Res. 52:4817-4820 (1992); U.S. Pat. Nos. 4,186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).
- RNA or DNA viral based systems for the delivery of nucleic acids take advantage of highly evolved processes for targeting a virus to specific cells in the body and trafficking the viral payload to the nucleus.
- Viral vectors can be administered directly to patients (in vivo) or they can be used to treat cells in vitro, and the modified cells may optionally be administered to patients (ex vivo).
- Conventional viral based systems could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome is possible with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.
- Lentiviral vectors are retroviral vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic gene into the target cell to provide permanent transgene expression.
- Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof (see, e.g., Buchscher et al., J. Virol. 66:2731-2739 (1992); Johann et al., J. Virol. 66:1635-1640 (1992); Sommnerfelt et al., Virol. 176:58-59 (1990); Wilson et al., J. Virol. 63:2374-2378 (1989); Miller et al., J. Virol. 65:2220-2224 (1991); PCT/US94/05700).
- MiLV murine leukemia virus
- GaLV gibbon ape leukemia virus
- SIV Simian Immuno deficiency virus
- HAV human immuno deficiency virus
- Cocal vesiculovirus envelope pseudotyped retroviral vector particles are contemplated (see, e.g., US Patent Publication No. 20120164118 assigned to the Fred Hutchinson Cancer Research Center).
- Cocal virus is in the Vesiculovirus genus, and is a causative agent of vesicular stomatitis in mammals.
- Cocal virus was originally isolated from mites in Trinidad (Jonkers et al., Am. J. Vet. Res. 25:236-242 (1964)), and infections have been identified in Trinidad, Brazil, and Argentina from insects, cattle, and horses.
- the Cocal vesiculovirus envelope pseudotyped retroviral vector particles may include for example, lentiviral, alpharetroviral, betaretroviral, gammaretroviral, deltaretroviral, and epsilonretroviral vector particles that may comprise retroviral Gag, Pol, and/or one or more accessory protein(s) and a Cocal vesiculovirus envelope protein.
- the Gag, Pol, and accessory proteins are lentiviral and/or gammaretroviral.
- adenoviral based systems may be used.
- Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system.
- Adeno-associated virus (“AAV”) vectors may also be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures (see, e.g., West et al., Virology 160:38-47 (1987); U.S. Pat. No. 4,797,368; WO 93/24641; Kotin, Human Gene Therapy 5:793-801 (1994); Muzyczka, J. Clin. Invest. 94:1351 (1994). Construction of recombinant AAV vectors are described in a number of publications, including U.S. Pat. No.
- Packaging cells are typically used to form virus particles that are capable of infecting a host cell. Such cells include 293 cells, which package adenovirus, and ⁇ 2 cells or PA317 cells, which package retrovirus.
- Viral vectors used in gene therapy are usually generated by producer a cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the polynucleotide(s) to be expressed. The missing viral functions are typically supplied in trans by the packaging cell line. For example, AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome.
- Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences.
- the cell line may also infected with adenovirus as a helper.
- the helper virus promotes replication of the AAV vector and expression of AAV genes from the helper plasmid.
- the helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.
- AAV is considered an ideal candidate for use as a transducing vector.
- Such AAV transducing vectors can comprise sufficient cis-acting functions to replicate in the presence of adenovirus or herpesvirus or poxvirus (e.g., vaccinia virus) helper functions provided in trans.
- Recombinant AAV rAAV
- rAAV Recombinant AAV
- these vectors the AAV cap and/or rep genes are deleted from the viral genome and replaced with a DNA segment of choice.
- Current AAV vectors may accommodate up to 4300 bases of inserted DNA.
- rAAV there are a number of ways to produce rAAV, and the invention provides rAAV and methods for preparing rAAV.
- plasmid(s) containing or consisting essentially of the desired viral construct are transfected into AAV-infected cells.
- a second or additional helper plasmid is cotransfected into these cells to provide the AAV rep and/or cap genes which are obligatory for replication and packaging of the recombinant viral construct. Under these conditions, the rep and/or cap proteins of AAV act in trans to stimulate replication and packaging of the rAAV construct.
- Two to Three days after transfection rAAV is harvested. Traditionally rAAV is harvested from the cells along with adenovirus.
- rAAV is advantageously harvested not from the cells themselves, but from cell supernatant.
- rAAV can be prepared by a method that comprises or consists essentially of: infecting susceptible cells with a rAAV containing exogenous DNA including DNA for expression, and helper virus (e.g., adenovirus, herpesvirus, poxvirus such as vaccinia virus) wherein the rAAV lacks functioning cap and/or rep (and the helper virus (e.g., adenovirus, herpesvirus, poxvirus such as vaccinia virus) provides the cap and/or rev function that the rAAV lacks); or infecting susceptible cells with a rAAV containing exogenous DNA including DNA for expression, wherein the recombinant lacks functioning cap and/or rep, and
- helper virus e.g., adenovirus, herpesvirus, poxvirus such as vaccinia virus
- the rAAV can be from an AAV as herein described, and advantageously can be an rAAV1, rAAV2, AAV5 or rAAV having hybrid or capsid which may comprise AAV1, AAV2, AAV5 or any combination thereof.
- the invention provides rAAV that contains or consists essentially of an exogenous nucleic acid molecule encoding a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system, e.g., a plurality of cassettes comprising or consisting a first cassette comprising or consisting essentially of a promoter, a nucleic acid molecule encoding a CRISPR-associated (Cas) protein (putative nuclease or helicase proteins), e.g., Cas9 and a terminator, and a two, or more, advantageously up to the packaging size limit of the vector, e.g., in total (including the first cassette) five, cassettes comprising or consisting essentially of a promoter, nucleic acid molecule encoding guide RNA (gRNA) and a terminator (e.g., each cassette schematically represented as Promoter-gRNA1-terminator, Promoter-gRNA2-terminator ...
- CRISPR Clustered Regularly
- Promoter- gRNA(N)-terminator (where N is a number that can be inserted that is at an upper limit of the packaging size limit of the vector), or two or more individual rAAVs, each containing one or more than one cassette of a CRISPR system, e.g., a first rAAV containing the first cassette comprising or consisting essentially of a promoter, a nucleic acid molecule encoding Cas, e.g., Cas9 and a terminator, and a second rAAV containing a plurality, four, cassettes comprising or consisting essentially of a promoter, nucleic acid molecule encoding guide RNA (gRNA) and a terminator (e.g., each cassette schematically represented as Promoter-gRNA1-terminator, Promoter-gRNA2-terminator ...
- gRNA nucleic acid molecule encoding guide RNA
- Promoter-gRNA(N)-terminator (where N is a number that can be inserted that is at an upper limit of the packaging size limit of the vector).
- N is a number that can be inserted that is at an upper limit of the packaging size limit of the vector.
- the promoter is in some embodiments advantageously human Synapsin I promoter (hSyn). Additional methods for the delivery of nucleic acids to cells are known to those skilled in the art. See, for example, US20030087817, incorporated herein by reference.
- a host cell is transiently or non-transiently transfected with one or more vectors described herein.
- a cell is transfected as it naturally occurs in a subject.
- a cell that is transfected is taken from a subject.
- the cell is derived from cells taken from a subject, such as a cell line. A wide variety of cell lines for tissue culture are known in the art.
- cell lines include, but are not limited to, C8161, CCRF-CEM, MOLT, mIMCD-3, NHDF, HeLa-S3, Huh1, Huh4, Huh7, HUVEC, HASMC, HEKn, HEKa, MiaPaCell, Panc1, PC-3, TF1, CTLL-2, C1R, Rat6, CV1, RPTE, A10, T24, J82, A375, ARH-77, Calu1 , SW480, SW620, SKOV3, SK-UT, CaCo2, P388D1, SEM-K2, WEHI-231, HB56, TIB55, Jurkat, J45.01, LRMB, Bcl-1, BC-3, IC21, DLD2, Raw264.7, NRK, NRK-52E, MRC5, MEF, Hep G2, HeLa B, HeLa T4, COS, COS-1, COS-6, COS-M6A, BS-C-1 monkey kidney epithelial,
- a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences.
- a cell transiently transfected with the components of a CRISPR system as described herein (such as by transient transfection of one or more vectors, or transfection with RNA), and modified through the activity of a CRISPR complex, is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence.
- cells transiently or non-transiently transfected with one or more vectors described herein, or cell lines derived from such cells are used in assessing one or more test compounds.
- one or more vectors described herein are used to produce a non- human transgenic animal or transgenic plant.
- the transgenic animal is a mammal, such as a mouse, rat, or rabbit.
- Methods for producing transgenic animals and plants are known in the art, and generally begin with a method of cell transfection, such as described herein.
- a fluid delivery device with an array of needles may be contemplated for delivery of CRISPR Cas to solid tissue.
- 20110230839 for delivery of a fluid to a solid tissue may comprise a plurality of needles arranged in an array; a plurality of reservoirs, each in fluid communication with a respective one of the plurality of needles; and a plurality of actuators operatively coupled to respective ones of the plurality of reservoirs and configured to control a fluid pressure within the reservoir.
- each of the plurality of actuators may comprise one of a plurality of plungers, a first end of each of the plurality of plungers being received in a respective one of the plurality of reservoirs, and in certain further embodiments the plungers of the plurality of plungers are operatively coupled together at respective second ends so as to be simultaneously depressable.
- each of the plurality of actuators may comprise one of a plurality of fluid transmission lines having first and second ends, a first end of each of the plurality of fluid transmission lines being coupled to a respective one of the plurality of reservoirs.
- the device may comprise a fluid pressure source, and each of the plurality of actuators comprises a fluid coupling between the fluid pressure source and a respective one of the plurality of reservoirs.
- the fluid pressure source may comprise at least one of a compressor, a vacuum accumulator, a peristaltic pump, a master cylinder, a microfluidic pump, and a valve.
- each of the plurality of needles may comprise a plurality of ports distributed along its length.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- Similar considerations and conditions apply as above for methods of modifying a target polynucleotide. In fact, these sampling, culturing and re-introduction options apply across the aspects of the present invention.
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell, which may be in vivo, ex vivo or in vitro.
- the method comprises sampling a cell or population of cells from a human or non-human animal, or a plant, and modifying the cell or cells. Culturing may occur at any stage ex vivo.
- the cell or cells may even be re-introduced into the non-human animal or plant. For re-introduced cells it is particularly preferred that the cells are stem cells.
- the CRISPR complex may comprise a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence, wherein said guide sequence may be linked to a tracr mate sequence which in turn may hybridize to a tracr sequence. Similar considerations and conditions apply as above for methods of modifying a target polynucleotide.
- kits containing any one or more of the elements disclosed in the above methods and compositions. Elements may be provided individually or in combinations, and may be provided in any suitable container, such as a vial, a bottle, or a tube. In some embodiments, the kit includes instructions in one or more languages, for example in more than one language.
- a kit comprises one or more reagents for use in a process utilizing one or more of the elements described herein.
- Reagents may be provided in any suitable container.
- a kit may provide one or more reaction or storage buffers.
- Reagents may be provided in a form that is usable in a particular assay, or in a form that requires addition of one or more other components before use (e.g. in concentrate or lyophilized form).
- a buffer can be any buffer, including but not limited to a sodium carbonate buffer, a sodium bicarbonate buffer, a borate buffer, a Tris buffer, a MOPS buffer, a HEPES buffer, and combinations thereof.
- the buffer is alkaline.
- the buffer has a pH from about 7 to about 10.
- the kit comprises one or more oligonucleotides corresponding to a guide sequence for insertion into a vector so as to operably link the guide sequence and a regulatory element.
- the kit comprises a homologous recombination template polynucleotide.
- the kit comprises one or more of the vectors and/or one or more of the polynucleotides described herein. The kit may advantageously allows to provide all elements of the systems of the invention.
- the invention provides methods for using one or more elements of a CRISPR system.
- the CRISPR complex of the invention provides an effective means for modifying a target polynucleotide.
- the CRISPR complex of the invention has a wide variety of utility including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types.
- the CRISPR complex of the invention has a broad spectrum of applications in, e.g., gene therapy, drug screening, disease diagnosis, and prognosis.
- An exemplary CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
- the guide sequence is linked to a tracr mate sequence, which in turn hybridizes to a tracr sequence.
- this invention provides a method of cleaving a target polynucleotide.
- the method comprises modifying a target polynucleotide using a CRISPR complex that binds to the target polynucleotide and effect cleavage of said target polynucleotide.
- the CRISPR complex of the invention when introduced into a cell, creates a break (e.g., a single or a double strand break) in the genome sequence.
- the method can be used to cleave a disease gene in a cell.
- the break created by the CRISPR complex can be repaired by a repair processes such as the error prone non-homologous end joining (NHEJ) pathway or the high fidelity homology- directed repair (HDR) (Fig. 25).
- NHEJ error prone non-homologous end joining
- HDR homology- directed repair
- an exogenous polynucleotide template can be introduced into the genome sequence.
- the HDR process is used modify genome sequence.
- an exogenous polynucleotide template comprising a sequence to be integrated flanked by an upstream sequence and a downstream sequence is introduced into a cell.
- the upstream and downstream sequences share sequence similarity with either side of the site of integration in the chromosome.
- a donor polynucleotide can be DNA, e.g., a DNA plasmid, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), a viral vector, a linear piece of DNA, a PCR fragment, a naked nucleic acid, or a nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer.
- DNA e.g., a DNA plasmid, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), a viral vector, a linear piece of DNA, a PCR fragment, a naked nucleic acid, or a nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer.
- the exogenous polynucleotide template comprises a sequence to be integrated (e.g., a mutated gene).
- the sequence for integration may be a sequence endogenous or exogenous to the cell. Examples of a sequence to be integrated include polynucleotides encoding a protein or a non-coding RNA (e.g., a microRNA). Thus, the sequence for integration may be operably linked to an appropriate control sequence or sequences. Alternatively, the sequence to be integrated may provide a regulatory function.
- the upstream and downstream sequences in the exogenous polynucleotide template are selected to promote recombination between the chromosomal sequence of interest and the donor polynucleotide.
- the upstream sequence is a nucleic acid sequence that shares sequence similarity with the genome sequence upstream of the targeted site for integration.
- the downstream sequence is a nucleic acid sequence that shares sequence similarity with the chromosomal sequence downstream of the targeted site of integration.
- the upstream and downstream sequences in the exogenous polynucleotide template can have 75%, 80%, 85%, 90%, 95%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 99% or 100% sequence identity with the targeted genome sequence.
- An upstream or downstream sequence may comprise from about 20 bp to about 2500 bp, for example, about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 bp.
- the exemplary upstream or downstream sequence have about 200 bp to about 2000 bp, about 600 bp to about 1000 bp, or more particularly about 700 bp to about 1000 bp.
- the exogenous polynucleotide template may further comprise a marker.
- a marker may make it easy to screen for targeted integrations. Examples of suitable markers include restriction sites, fluorescent proteins, or selectable markers.
- the exogenous polynucleotide template of the invention can be constructed using recombinant techniques (see, for example, Sambrook et al., 2001 and Ausubel et al., 1996).
- a double stranded break is introduced into the genome sequence by the CRISPR complex, the break is repaired via homologous recombination an exogenous polynucleotide template such that the template is integrated into the genome.
- the presence of a double-stranded break facilitates integration of the template.
- this invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises increasing or decreasing expression of a target polynucleotide by using a CRISPR complex that binds to the polynucleotide.
- a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a CRISPR complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein is not produced, or the sequence does not function as the wild-type sequence does.
- a protein or microRNA coding sequence may be inactivated such that the protein or microRNA or pre-microRNA transcript is not produced.
- control sequence can be inactivated such that it no longer functions as a control sequence.
- control sequence refers to any nucleic acid sequence that effects the transcription, translation, or accessibility of a nucleic acid sequence. Examples of a control sequence include, a promoter, a transcription terminator, and an enhancer are control sequences.
- the inactivated target sequence may include a deletion mutation (i.e., deletion of one or more nucleotides), an insertion mutation (i.e., insertion of one or more nucleotides), or a nonsense mutation (i.e., substitution of a single nucleotide for another nucleotide such that a stop codon is introduced).
- a deletion mutation i.e., deletion of one or more nucleotides
- an insertion mutation i.e., insertion of one or more nucleotides
- a nonsense mutation i.e., substitution of a single nucleotide for another nucleotide such that a stop codon is introduced.
- a method of the invention may be used to create a plant, an animal or cell that may be used as a disease model.
- disease refers to a disease, disorder, or indication in a subject.
- a method of the invention may be used to create an animal or cell that comprises a modification in one or more nucleic acid sequences associated with a disease, or a plant, animal or cell in which the expression of one or more nucleic acid sequences associated with a disease are altered.
- Such a nucleic acid sequence may encode a disease associated protein sequence or may be a disease associated control sequence.
- a plant, subject, patient, organism or cell can be a non-human subject, patient, organism or cell.
- the invention provides a plant, animal or cell, produced by the present methods, or a progeny thereof.
- the progeny may be a clone of the produced plant or animal, or may result from sexual reproduction by crossing with other individuals of the same species to introgress further desirable traits into their offspring.
- the cell may be in vivo or ex vivo in the cases of multicellular organisms, particularly animals or plants.
- a cell line may be established if appropriate culturing conditions are met and preferably if the cell is suitably adapted for this purpose (for instance a stem cell).
- Bacterial cell lines produced by the invention are also envisaged. Hence, cell lines are also envisaged.
- the disease model can be used to study the effects of mutations on the animal or cell and development and/or progression of the disease using measures commonly used in the study of the disease.
- a disease model is useful for studying the effect of a pharmaceutically active compound on the disease.
- the disease model can be used to assess the efficacy of a potential gene therapy strategy. That is, a disease-associated gene or polynucleotide can be modified such that the disease development and/or progression is inhibited or reduced.
- the method comprises modifying a disease-associated gene or polynucleotide such that an altered protein is produced and, as a result, the animal or cell has an altered response.
- a genetically modified animal may be compared with an animal predisposed to development of the disease such that the effect of the gene therapy event may be assessed.
- this invention provides a method of developing a biologically active agent that modulates a cell signaling event associated with a disease gene.
- the method comprises contacting a test compound with a cell comprising one or more vectors that drive expression of one or more of a CRISPR enzyme, a guide sequence linked to a tracr mate sequence, and a tracr sequence; and detecting a change in a readout that is indicative of a reduction or an augmentation of a cell signaling event associated with, e.g., a mutation in a disease gene contained in the cell.
- a cell model or animal model can be constructed in combination with the method of the invention for screening a cellular function change.
- a model may be used to study the effects of a genome sequence modified by the CRISPR complex of the invention on a cellular function of interest.
- a cellular function model may be used to study the effect of a modified genome sequence on intracellular signaling or extracellular signaling.
- a cellular function model may be used to study the effects of a modified genome sequence on sensory perception.
- one or more genome sequences associated with a signaling biochemical pathway in the model are modified.
- An altered expression of one or more genome sequences associated with a signaling biochemical pathway can be determined by assaying for a difference in the mRNA levels of the corresponding genes between the test model cell and a control cell, when they are contacted with a candidate agent.
- the differential expression of the sequences associated with a signaling biochemical pathway is determined by detecting a difference in the level of the encoded polypeptide or gene product.
- nucleic acid contained in a sample is first extracted according to standard methods in the art.
- mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (1989), or extracted by nucleic-acid-binding resins following the accompanying instructions provided by the manufacturers.
- the mRNA contained in the extracted nucleic acid sample is then detected by amplification procedures or conventional hybridization assays (e.g. Northern blot analysis) according to methods widely known in the art or based on the methods exemplified herein.
- amplification means any method employing a primer and a polymerase capable of replicating a target sequence with reasonable fidelity.
- Amplification may be carried out by natural or recombinant DNA polymerases such as TaqGoldTM, T7 DNA polymerase, Klenow fragment of E.coli DNA polymerase, and reverse transcriptase.
- a preferred amplification method is PCR.
- the isolated RNA can be subjected to a reverse transcription assay that is coupled with a quantitative polymerase chain reaction (RT-PCR) in order to quantify the expression level of a sequence associated with a signaling biochemical pathway.
- RT-PCR quantitative polymerase chain reaction
- Detection of the gene expression level can be conducted in real time in an amplification assay.
- the amplified products can be directly visualized with fluorescent DNA- binding agents including but not limited to DNA intercalators and DNA groove binders. Because the amount of the intercalators incorporated into the double-stranded DNA molecules is typically proportional to the amount of the amplified DNA products, one can conveniently determine the amount of the amplified products by quantifying the fluorescence of the intercalated dye using conventional optical systems in the art.
- DNA-binding dye suitable for this application include SYBR green, SYBR blue, DAPI, propidium iodine, Hoeste, SYBR gold, ethidium bromide, acridines, proflavine, acridine orange, acriflavine, fluorcoumanin, ellipticine, daunomycin, chloroquine, distamycin D, chromomycin, homidium, mithramycin, ruthenium polypyridyls, anthramycin, and the like.
- probe-based quantitative amplification relies on the sequence-specific detection of a desired amplified product. It utilizes fluorescent, target-specific probes (e.g., TaqMan® probes) resulting in increased specificity and sensitivity. Methods for performing probe-based quantitative amplification are well established in the art and are taught in U.S. Patent No. 5,210,015.
- probes are allowed to form stable complexes with the sequences associated with a signaling biochemical pathway contained within the biological sample derived from the test subject in a hybridization reaction.
- antisense used as the probe nucleic acid
- the target polynucleotides provided in the sample are chosen to be complementary to sequences of the antisense nucleic acids.
- the target polynucleotide is selected to be complementary to sequences of the sense nucleic acid.
- Hybridization can be performed under conditions of various stringency. Suitable hybridization conditions for the practice of the present invention are such that the recognition interaction between the probe and sequences associated with a signaling biochemical pathway is both sufficiently specific and sufficiently stable. Conditions that increase the stringency of a hybridization reaction are widely known and published in the art. See, for example, (Sambrook, et al., (1989); Nonradioactive In Situ Hybridization Application Manual, Boehringer Mannheim, second edition).
- the hybridization assay can be formed using probes immobilized on any solid support, including but are not limited to nitrocellulose, glass, silicon, and a variety of gene arrays. A preferred hybridization assay is conducted on high-density gene chips as described in U.S. Patent No.
- the nucleotide probes are conjugated to a detectable label.
- Detectable labels suitable for use in the present invention include any composition detectable by photochemical, biochemical, spectroscopic, immunochemical, electrical, optical or chemical means.
- a wide variety of appropriate detectable labels are known in the art, which include fluorescent or chemiluminescent labels, radioactive isotope labels, enzymatic or other ligands.
- a fluorescent label or an enzyme tag such as digoxigenin, ß-galactosidase, urease, alkaline phosphatase or peroxidase, avidin/biotin complex.
- the detection methods used to detect or quantify the hybridization intensity will typically depend upon the label selected above.
- radiolabels may be detected using photographic film or a phosphoimager.
- Fluorescent markers may be detected and quantified using a photodetector to detect emitted light.
- Enzymatic labels are typically detected by providing the enzyme with a substrate and measuring the reaction product produced by the action of the enzyme on the substrate; and finally colorimetric labels are detected by simply visualizing the colored label.
- An agent-induced change in expression of sequences associated with a signaling biochemical pathway can also be determined by examining the corresponding gene products. Determining the protein level typically involves a) contacting the protein contained in a biological sample with an agent that specifically bind to a protein associated with a signaling biochemical pathway; and (b) identifying any agent:protein complex so formed.
- the agent that specifically binds a protein associated with a signaling biochemical pathway is an antibody, preferably a monoclonal antibody.
- the reaction is performed by contacting the agent with a sample of the proteins associated with a signaling biochemical pathway derived from the test samples under conditions that will allow a complex to form between the agent and the proteins associated with a signaling biochemical pathway.
- the formation of the complex can be detected directly or indirectly according to standard procedures in the art.
- the agents are supplied with a detectable label and unreacted agents may be removed from the complex; the amount of remaining label thereby indicating the amount of complex formed.
- an indirect detection procedure may use an agent that contains a label introduced either chemically or enzymatically.
- a desirable label generally does not interfere with binding or the stability of the resulting agent:polypeptide complex.
- the label is typically designed to be accessible to an antibody for an effective binding and hence generating a detectable signal.
- a wide variety of labels suitable for detecting protein levels are known in the art. Non-limiting examples include radioisotopes, enzymes, colloidal metals, fluorescent compounds, bioluminescent compounds, and chemiluminescent compounds.
- agent:polypeptide complexes formed during the binding reaction can be quantified by standard quantitative assays. As illustrated above, the formation of agent:polypeptide complex can be measured directly by the amount of label remained at the site of binding.
- the protein associated with a signaling biochemical pathway is tested for its ability to compete with a labeled analog for binding sites on the specific agent. In this competitive assay, the amount of label captured is inversely proportional to the amount of protein sequences associated with a signaling biochemical pathway present in a test sample.
- a number of techniques for protein analysis based on the general principles outlined above are available in the art. They include but are not limited to radioimmunoassays, ELISA (enzyme linked immunoradiometric assays),“sandwich” immunoassays, immunoradiometric assays, in situ immunoassays (using e.g., colloidal gold, enzyme or radioisotope labels), western blot analysis, immunoprecipitation assays, immunofluorescent assays, and SDS-PAGE.
- radioimmunoassays ELISA (enzyme linked immunoradiometric assays),“sandwich” immunoassays, immunoradiometric assays, in situ immunoassays (using e.g., colloidal gold, enzyme or radioisotope labels), western blot analysis, immunoprecipitation assays, immunofluorescent assays, and SDS-PAGE.
- Antibodies that specifically recognize or bind to proteins associated with a signaling biochemical pathway are preferable for conducting the aforementioned protein analyses.
- antibodies that recognize a specific type of post-translational modifications e.g., signaling biochemical pathway inducible modifications
- Post-translational modifications include but are not limited to glycosylation, lipidation, acetylation, and phosphorylation. These antibodies may be purchased from commercial vendors.
- anti-phosphotyrosine antibodies that specifically recognize tyrosine-phosphorylated proteins are available from a number of vendors including Invitrogen and Perkin Elmer.
- Anti- phosphotyrosine antibodies are particularly useful in detecting proteins that are differentially phosphorylated on their tyrosine residues in response to an ER stress.
- proteins include but are not limited to eukaryotic translation initiation factor 2 alpha (eIF-2 ⁇ ).
- eIF-2 ⁇ eukaryotic translation initiation factor 2 alpha
- these antibodies can be generated using conventional polyclonal or monoclonal antibody technologies by immunizing a host animal or an antibody-producing cell with a target protein that exhibits the desired post-translational modification.
- An altered expression of a gene associated with a signaling biochemical pathway can also be determined by examining a change in activity of the gene product relative to a control cell.
- the assay for an agent-induced change in the activity of a protein associated with a signaling biochemical pathway will dependent on the biological activity and/or the signal transduction pathway that is under investigation.
- a change in its ability to phosphorylate the downstream substrate(s) can be determined by a variety of assays known in the art. Representative assays include but are not limited to immunoblotting and immunoprecipitation with antibodies such as anti-phosphotyrosine antibodies that recognize phosphorylated proteins.
- kinase activity can be detected by high throughput chemiluminescent assays such as AlphaScreenTM (available from Perkin Elmer) and eTagTM assay (Chan-Hui, et al. (2003) Clinical Immunology 111: 162-174).
- high throughput chemiluminescent assays such as AlphaScreenTM (available from Perkin Elmer) and eTagTM assay (Chan-Hui, et al. (2003) Clinical Immunology 111: 162-174).
- pH sensitive molecules such as fluorescent pH dyes can be used as the reporter molecules.
- the protein associated with a signaling biochemical pathway is an ion channel
- fluctuations in membrane potential and/or intracellular ion concentration can be monitored.
- Representative instruments include FLIPRTM (Molecular Devices, Inc.) and VIPR (Aurora Biosciences). These instruments are capable of detecting reactions in over 1000 sample wells of a microplate simultaneously, and providing real-time measurement and functional data within a second or even a minisecond.
- a suitable vector can be introduced to a cell or an embryo via one or more methods known in the art, including without limitation, microinjection, electroporation, sonoporation, biolistics, calcium phosphate-mediated transfection, cationic transfection, liposome transfection, dendrimer transfection, heat shock transfection, nucleofection transfection, magnetofection, lipofection, impalefection, optical transfection, proprietary agent-enhanced uptake of nucleic acids, and delivery via liposomes, immunoliposomes, virosomes, or artificial virions.
- the vector is introduced into an embryo by microinjection.
- the vector or vectors may be microinjected into the nucleus or the cytoplasm of the embryo.
- the vector or vectors may be introduced into a cell by nucleofection.
- the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell.
- the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell.
- the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
- target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway-associated gene or polynucleotide.
- target polynucleotides include a disease associated gene or polynucleotide.
- a “disease-associated” gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non disease control.
- a disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease.
- the transcribed or translated products may be known or unknown, and may be at a normal or abnormal level.
- the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell.
- the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell.
- the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
- a gene product e.g., a protein
- a non-coding sequence e.g., a regulatory polynucleotide or a junk DNA.
- PAM protospacer adjacent motif
- PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence) Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given CRISPR enzyme.
- the target polynucleotide of a CRISPR complex may include a number of disease- associated genes and polynucleotides as well as signaling biochemical pathway-associated genes and polynucleotides as listed in US provisional patent applications 61/736,527 and 61/748,427 having Broad reference BI-2011/008/WSGR Docket No. 44063-701.101 and BI- 2011/008/WSGR Docket No. 44063-701.102 respectively, both entitled SYSTEMS METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION filed on December 12, 2012 and January 2, 2013, respectively, the contents of all of which are herein incorporated by reference in their entirety.
- target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway-associated gene or polynucleotide.
- target polynucleotides include a disease associated gene or polynucleotide.
- a “disease-associated” gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non disease control.
- a disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease.
- the transcribed or translated products may be known or unknown, and may be at a normal or abnormal level.
- Embodiments of the invention also relate to methods and compositions related to knocking out genes, amplifying genes and repairing particular mutations associated with DNA repeat instability and neurological disorders (Robert D. Wells, Tetsuo Ashizawa, Genetic Instabilities and Neurological Diseases, Second Edition, Academic Press, Oct 13, 2011 – Medical). Specific aspects of tandem repeat sequences have been found to be responsible for more than twenty human diseases (New insights into repeat instability: role of RNA•DNA hybrids. McIvor EI, Polak U, Napierala M. RNA Biol. 2010 Sep-Oct;7(5):551-8). The CRISPR- Cas system may be harnessed to correct these defects of genomic instability.
- a further aspect of the invention relates to utilizing the CRISPR-Cas system for correcting defects in the EMP2A and EMP2B genes that have been identified to be associated with Lafora disease.
- Lafora disease is an autosomal recessive condition which is characterized by progressive myoclonus epilepsy which may start as epileptic seizures in adolescence. A few cases of the disease may be caused by mutations in genes yet to be identified. The disease causes seizures, muscle spasms, difficulty walking, dementia, and eventually death. There is currently no therapy that has proven effective against disease progression.
- the genetic brain diseases may include but are not limited to Adrenoleukodystrophy, Agenesis of the Corpus Callosum, Aicardi Syndrome, Alpers' Disease, Alzheimer's Disease, Barth Syndrome, Batten Disease, CADASIL, Cerebellar Degeneration, Fabry's Disease, Gerstmann-Straussler-Scheinker Disease, Huntington’s Disease and other Triplet Repeat Disorders, Leigh's Disease, Lesch-Nyhan Syndrome, Menkes Disease, Mitochondrial Myopathies and NINDS Colpocephaly. These diseases are further described on the website of the National Institutes of Health under the subsection Genetic Brain Disorders.
- the condition may be neoplasia.
- the genes to be targeted are any of those listed in Table A (in this case PTEN and so forth).
- the condition may be Age-related Macular Degeneration.
- the condition may be a Schizophrenic Disorder.
- the condition may be a Trinucleotide Repeat Disorder.
- the condition may be Fragile X Syndrome.
- the condition may be a Secretase Related Disorder.
- the condition may be a Prion - related disorder.
- the condition may be ALS.
- the condition may be a drug addiction.
- the condition may be Autism.
- the condition may be Alzheimer’s Disease.
- the condition may be inflammation.
- the condition may be Parkinson’s Disease.
- ASDs Autism spectrum disorders
- ASD autism, Asperger syndrome (AS) and pervasive developmental disorder-not otherwise specified
- AS Asperger syndrome
- PDD-NOS pervasive developmental disorder-not otherwise specified
- US Patent Publication No. 20110023145 comprises editing of any chromosomal sequences that encode proteins associated with ASD which may be applied to the CRISPR Cas system of the present invention.
- the proteins associated with ASD are typically selected based on an experimental association of the protein associated with ASD to an incidence or indication of an ASD. For example, the production rate or circulating concentration of a protein associated with ASD may be elevated or depressed in a population having an ASD relative to a population lacking the ASD. Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- ELISA enzyme linked immunosorbent assay
- the proteins associated with ASD may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q- PCR).
- genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q- PCR).
- Non limiting examples of disease states or disorders that may be associated with proteins associated with ASD include autism, Asperger syndrome (AS), pervasive developmental disorder-not otherwise specified (PDD-NOS), Rett's syndrome, tuberous sclerosis, phenylketonuria, Smith-Lemli-Opitz syndrome and fragile X syndrome.
- proteins associated with ASD include but are not limited to the following proteins: ATP10C aminophospholipid- MET MET receptor transporting ATPase tyrosine kinase (ATP10C) BZRAP1 MGLUR5 (GRM5) Metabotropic glutamate receptor 5 (MGLUR5) CDH10 Cadherin-10 MGLUR6 (GRM6) Metabotropic glutamate receptor 6 (MGLUR6) CDH9 Cadherin-9 NLGN1 Neuroligin-1 CNTN4 Contactin-4 NLGN2 Neuroligin-2 CNTNAP2 Contactin-associated SEMA5A Neuroligin-3 protein-like 2 (CNTNAP2) DHCR7 7- dehydrocholesterol NLGN4X Neuroligin-4 X- reductase (DHCR7) linked DOC2A Double C2- like domain- NLGN4Y Neuroligin-4 Y- containing protein alpha linked DPP6 Dipeptidyl NLGN5 Neuroligin-5 aminopeptidase-like protein 6 EN
- the proteins associated with ASD whose chromosomal sequence is edited can and will vary.
- the proteins associated with ASD whose chromosomal sequence is edited may be the benzodiazapine receptor (peripheral) associated protein 1 (BZRAP1) encoded by the BZRAP1 gene, the AF4/FMR2 family member 2 protein (AFF2) encoded by the AFF2 gene (also termed MFR2), the fragile X mental retardation autosomal homolog 1 protein (FXR1) encoded by the FXR1 gene, the fragile X mental retardation autosomal homolog 2 protein (FXR2) encoded by the FXR2 gene, the MAM domain containing glycosylphosphatidylinositol anchor 2 protein (MDGA2) encoded by the MDGA2 gene, the methyl CpG binding protein 2 (MECP2) encoded by the MECP2 gene, the metabotropic glutamate receptor 5 (MGLUR5) encoded by the MGLUR5
- BZRAP1 benz
- the genetically modified animal is a rat
- the edited chromosomal sequence encoding the protein associated with ASD is as listed below: BZRAP1 benzodiazapine receptor XM_002727789, (peripheral) associated XM_213427, protein 1 (BZRAP1) XM_002724533, XM_001081125 AFF2 (FMR2) AF4/FMR2 family member 2 XM_219832, (AFF2) XM_001054673 FXR1 Fragile X mental NM_001012179 retardation, autosomal homolog 1 (FXR1) FXR2 Fragile X mental NM_001100647 retardation, autosomal homolog 2 (FXR2) MDGA2 MAM domain containing NM_199269 glycosylphosphatidylinositol anchor 2 (MDGA2) MECP2 Methyl CpG binding NM_022673 protein 2 (
- Exemplary animals or cells may comprise one, two, three, four, five, six, seven, eight, or nine or more inactivated chromosomal sequences encoding a protein associated with ASD, and zero, one, two, three, four, five, six, seven, eight, nine or more chromosomally integrated sequences encoding proteins associated with ASD.
- the edited or integrated chromosomal sequence may be modified to encode an altered protein associated with ASD.
- Non-limiting examples of mutations in proteins associated with ASD include the L18Q mutation in neurexin 1 where the leucine at position 18 is replaced with a glutamine, the R451C mutation in neuroligin 3 where the arginine at position 451 is replaced with a cysteine, the R87W mutation in neuroligin 4 where the arginine at position 87 is replaced with a tryptophan, and the I425V mutation in serotonin transporter where the isoleucine at position 425 is replaced with a valine.
- a number of other mutations and chromosomal rearrangements in ASD-related chromosomal sequences have been associated with ASD and are known in the art. See, for example, Freitag et al. (2010) Eur. Child.
- proteins associated with Parkinson’s disease include but are not limited to ⁇ - synuclein, DJ-1, LRRK2, PINK1, Parkin, UCHL1, Synphilin-1, and NURR1.
- Examples of addiction-related proteins may include ABAT for example.
- inflammation-related proteins may include the monocyte chemoattractant protein-1 (MCP1) encoded by the Ccr2 gene, the C-C chemokine receptor type 5 (CCR5) encoded by the Ccr5 gene, the IgG receptor IIB (FCGR2b, also termed CD32) encoded by the Fcgr2b gene, or the Fc epsilon R1g (FCER1 g) protein encoded by the Fcer1g gene, for example.
- MCP1 monocyte chemoattractant protein-1
- CCR5 C-C chemokine receptor type 5
- FCGR2b also termed CD32
- FCER1 g Fc epsilon R1g
- cardiovascular diseases associated proteins may include IL1B (interleukin 1, beta), XDH (xanthine dehydrogenase), TP53 (tumor protein p53), PTGIS (prostaglandin I2 (prostacyclin) synthase), MB (myoglobin), IL4 (interleukin 4), ANGPT1 (angiopoietin 1), ABCG8 (ATP-binding cassette, sub-family G (WHITE), member 8), or CTSK (cathepsin K), for example.
- IL1B interleukin 1, beta
- XDH xanthine dehydrogenase
- TP53 tumor protein p53
- PTGIS prostaglandin I2 (prostacyclin) synthase)
- MB myoglobin
- IL4 interleukin 4
- ANGPT1 angiopoietin 1
- ABCG8 ATP-binding cassette, sub-family G (WHITE), member 8
- US Patent Publication No. 20110023153 describes use of zinc finger nucleases to genetically modify cells, animals and proteins associated with Alzheimer’s Disease. Once modified cells and animals may be further tested using known methods to study the effects of the targeted mutations on the development and/or progression of AD using measures commonly used in the study of AD– such as, without limitation, learning and memory, anxiety, depression, addiction, and sensory motor functions as well as assays that measure behavioral, functional, pathological, metaboloic and biochemical function.
- the present disclosure comprises editing of any chromosomal sequences that encode proteins associated with AD.
- the AD-related proteins are typically selected based on an experimental association of the AD-related protein to an AD disorder. For example, the production rate or circulating concentration of an AD-related protein may be elevated or depressed in a population having an AD disorder relative to a population lacking the AD disorder. Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- ELISA enzyme linked immunosorbent assay
- the AD-related proteins may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR).
- Examples of Alzheimer’s disease associated proteins may include the very low density lipoprotein receptor protein (VLDLR) encoded by the VLDLR gene, the ubiquitin-like modifier activating enzyme 1 (UBA1) encoded by the UBA1 gene, or the NEDD8-activating enzyme E1 catalytic subunit protein (UBE1C) encoded by the UBA3 gene, for example.
- VLDLR very low density lipoprotein receptor protein
- UBA1 ubiquitin-like modifier activating enzyme 1
- UBE1C NEDD8-activating enzyme E1 catalytic subunit protein
- proteins associated with AD include but are not limited to the proteins listed as follows: Chromosomal Sequence Encoded Protein ALAS2 Delta- aminolevulinate synthase 2 (ALAS2) ABCA1 ATP-binding cassette transporter (ABCA1) ACE Angiotensin I-converting enzyme (ACE) APOE Apolipoprotein E precursor (APOE) APP amyloid precursor protein (APP) AQP1 aquaporin 1 protein (AQP1) BIN1 Myc box-dependent- interacting protein 1 or bridging integrator 1 protein (BIN1) BDNF brain-derived neurotrophic factor (BDNF) BTNL8 Butyrophilin-like protein 8 (BTNL8) C1ORF49 chromosome 1 open reading frame 49 CDH4 Cadherin-4 CHRNB2 Neuronal acetylcholine receptor subunit beta-2 CKLFSF2 CKLF-like MARVEL transmembrane domain- containing protein 2 (CKLFSF2) CLEC4E C-
- the proteins associated with AD whose chromosomal sequence is edited may be the very low density lipoprotein receptor protein (VLDLR) encoded by the VLDLR gene, the ubiquitin-like modifier activating enzyme 1 (UBA1) encoded by the UBA1 gene, the NEDD8-activating enzyme E1 catalytic subunit protein (UBE1C) encoded by the UBA3 gene, the aquaporin 1 protein (AQP1) encoded by the AQP1 gene, the ubiquitin carboxyl-terminal esterase L1 protein (UCHL1) encoded by the UCHL1 gene, the ubiquitin carboxyl-terminal hydrolase isozyme L3 protein (UCHL3) encoded by the UCHL3 gene, the ubiquitin B protein (UBB) encoded by the UBB gene, the microtubule-associated protein tau (MAPT) encoded by the MAPT gene, the protein tyrosine phosphatase receptor type A protein (PTPRA) encoded
- VLDLR very low density lip
- the genetically modified animal is a rat
- the edited chromosomal sequence encoding the protein associated with AD is as as follows: APP amyloid precursor protein (APP) NM_019288 AQP1 aquaporin 1 protein (AQP1) NM_012778 BDNF Brain-derived neurotrophic factor NM_012513 CLU clusterin protein (also known as NM_053021 apoplipoprotein J) MAPT microtubule-associated protein NM_017212 tau (MAPT) PICALM phosphatidylinositol binding NM_053554 clathrin assembly protein (PICALM) PSEN1 presenilin 1 protein (PSEN1) NM_019163 PSEN2 presenilin 2 protein (PSEN2) NM_031087 PTPRA protein tyrosine phosphatase NM_012763 receptor type A protein (PTPRA) SORL1 sortilin-related receptor L(DLR NM_053519, class
- APP am
- the animal or cell may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15 or more disrupted chromosomal sequences encoding a protein associated with AD and zero, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more chromosomally integrated sequences encoding a protein associated with AD.
- the edited or integrated chromosomal sequence may be modified to encode an altered protein associated with AD.
- a number of mutations in AD-related chromosomal sequences have been associated with AD.
- the V7171 i.e. valine at position 717 is changed to isoleucine
- missense mutation in APP causes familial AD.
- cysteine at position 410 is changed to tyrosine
- familial Alzheimer's type 3 Mutations in the presenilin-2 protein, such as N141 I (i.e. asparagine at position 141 is changed to isoleucine), M239V (i.e. methionine at position 239 is changed to valine), and D439A (i.e. aspartate at position 439 is changed to alanine) cause familial Alzheimer's type 4.
- N141 I i.e. asparagine at position 141 is changed to isoleucine
- M239V i.e. methionine at position 239 is changed to valine
- D439A i.e. aspartate at position 439 is changed to alanine
- Other associations of genetic variants in AD-associated genes and disease are known in the art. See, for example, Waring et al. (2008) Arch. Neurol. 65:329-334, the disclosure of which is incorporated by reference herein in its entirety.
- proteins associated Autism Spectrum Disorder may include the benzodiazapine receptor (peripheral) associated protein 1 (BZRAP1) encoded by the BZRAP1 gene, the AF4/FMR2 family member 2 protein (AFF2) encoded by the AFF2 gene (also termed MFR2), the fragile X mental retardation autosomal homolog 1 protein (FXR1) encoded by the FXR1 gene, or the fragile X mental retardation autosomal homolog 2 protein (FXR2) encoded by the FXR2 gene, for example.
- BZRAP1 benzodiazapine receptor (peripheral) associated protein 1
- AFF2 AF4/FMR2 family member 2 protein
- FXR1 fragile X mental retardation autosomal homolog 1 protein
- FXR2 fragile X mental retardation autosomal homolog 2 protein
- proteins associated Macular Degeneration may include the ATP-binding cassette, sub-family A (ABC1) member 4 protein (ABCA4) encoded by the ABCR gene, the apolipoprotein E protein (APOE) encoded by the APOE gene, or the chemokine (C-C motif) Ligand 2 protein (CCL2) encoded by the CCL2 gene, for example.
- ABC1 sub-family A
- APOE apolipoprotein E protein
- CCL2 Ligand 2 protein
- proteins associated Schizophrenia may include NRG1, ErbB4, CPLX1, TPH1, TPH2, NRXN1, GSK3A, BDNF, DISC1, GSK3B, and combinations thereof.
- proteins involved in tumor suppression may include ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3 related), EGFR (epidermal growth factor receptor), ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2), ERBB3 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 3), ERBB4 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 4), Notch 1, Notch2, Notch 3, or Notch 4, for example.
- ATM ataxia telangiectasia mutated
- ATR ataxia telangiectasia and Rad3 related
- EGFR epidermatitise
- ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
- ERBB3 v-erb-b2 erythroblastic leukemia viral on
- proteins associated with a secretase disorder may include PSENEN (presenilin enhancer 2 homolog (C. elegans)), CTSB (cathepsin B), PSEN1 (presenilin 1), APP (amyloid beta (A4) precursor protein), APH1B (anterior pharynx defective 1 homolog B (C. elegans)), PSEN2 (presenilin 2 (Alzheimer disease 4)), or BACE1 (beta-site APP-cleaving enzyme 1), for example.
- US Patent Publication No. 20110023146 describes use of zinc finger nucleases to genetically modify cells, animals and proteins associated with secretase-associated disorders.
- Secretases are essential for processing pre-proteins into their biologically active forms. Defects in various components of the secretase pathways contribute to many disorders, particularly those with hallmark amyloidogenesis or amyloid plaques, such as Alzheimer's disease (AD).
- AD Alzheimer's disease
- a secretase disorder and the proteins associated with these disorders are a diverse set of proteins that effect susceptibility for numerous disorders, the presence of the disorder, the severity of the disorder, or any combination thereof.
- the present disclosure comprises editing of any chromosomal sequences that encode proteins associated with a secretase disorder.
- the proteins associated with a secretase disorder are typically selected based on an experimental association of the secretase--related proteins with the development of a secretase disorder. For example, the production rate or circulating concentration of a protein associated with a secretase disorder may be elevated or depressed in a population with a secretase disorder relative to a population without a secretase disorder.
- Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- the protein associated with a secretase disorder may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR).
- proteins associated with a secretase disorder include PSENEN (presenilin enhancer 2 homolog (C. elegans)), CTSB (cathepsin B), PSEN1 (presenilin 1), APP (amyloid beta (A4) precursor protein), APH1B (anterior pharynx defective 1 homolog B (C.
- IL1R1 interleukin 1 receptor, type I
- PROK1 prokineticin 1
- MAPK3 mitogen- activated protein kinase 3
- NTRK1 neurotrophic tyrosine kinase, receptor, type 1
- IL13 interleukin 13
- MME membrane metallo-endopeptidase
- TKT transketolase
- CXCR2 chemokine (C-X-C motif) receptor 2
- IGF1R insulin-like growth factor 1 receptor
- RARA retinoic acid receptor, alpha
- CREBBP CREB binding protein
- PTGS1 prostaglandin- endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)
- GALT galactose- 1-phosphate uridylyltransferase
- CHRM1 cholinergic receptor, muscarinic 1
- ATXN1 ATXN1
- the genetically modified animal or cell may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more disrupted chromosomal sequences encoding a protein associated with a secretase disorder and zero, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more chromosomally integrated sequences encoding a disrupted protein associated with a secretase disorder.
- proteins associated with Amyotrophic Lateral Sclerosis may include SOD1 (superoxide dismutase 1), ALS2 (amyotrophic lateral sclerosis 2), FUS (fused in sarcoma), TARDBP (TAR DNA binding protein), VAGFA (vascular endothelial growth factor A), VAGFB (vascular endothelial growth factor B), and VAGFC (vascular endothelial growth factor C), and any combination thereof.
- ALS amyotrophyic lateral sclerosis
- Motor neuron disorders and the proteins associated with these disorders are a diverse set of proteins that effect susceptibility for developing a motor neuron disorder, the presence of the motor neuron disorder, the severity of the motor neuron disorder or any combination thereof.
- the present disclosure comprises editing of any chromosomal sequences that encode proteins associated with ALS disease, a specific motor neuron disorder.
- the proteins associated with ALS are typically selected based on an experimental association of ALS--related proteins to ALS. For example, the production rate or circulating concentration of a protein associated with ALS may be elevated or depressed in a population with ALS relative to a population without ALS.
- Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry.
- the proteins associated with ALS may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR).
- proteins associated with ALS include but are not limited to the following proteins: SOD1 superoxide dismutase 1, ALS3 amyotrophic lateral soluble sclerosis 3 SETX senataxin ALS5 amyotrophic lateral sclerosis 5 FUS fused in sarcoma ALS7 amyotrophic lateral sclerosis 7 ALS2 amyotrophic lateral DPP6 Dipeptidyl-peptidase 6 sclerosis 2 NEFH neurofilament, heavy PTGS1 prostaglandin- polypeptide endoperoxide synthase 1 SLC1A2 solute carrier family 1 TNFRSF10B tumor necrosis factor (glial high affinity receptor superfamily, glutamate transporter), member 10b member 2 PRPH peripherin HSP90AA1 heat shock protein 90 kDa alpha (cytosolic), class A member 1 GRIA2 glutamate receptor, IFNG interferon, gamma ionotropic
- FIG. 4 homolog, SAC1 kinesin binding 2 lipid phosphatase domain containing NIF3L1 NIF3 NGG1 interacting INA internexin neuronal factor 3-like 1 intermediate filament protein, alpha PARD3B par-3 partitioning COX8A cytochrome c oxidase defective 3 homolog B subunit VIIIA CDK15 cyclin-dependent kinase HECW1 HECT, C2 and WW 15 domain containing E3 ubiquitin protein ligase 1 NOS1 nitric oxide synthase 1 MET met proto-oncogene SOD2 superoxide dismutase 2, HSPB1 heat shock 27 kDa mitochondrial protein 1 NEFL neurofilament, light CTSB cathepsin B polypeptide ANG angiogenin, HSPA8 heat shock 70 kDa ribonuclease, RNase A protein 8 family, 5 VAPB VAMP (vesicle- ESR1 estrogen receptor 1 associated membrane protein)-associated
- the animal or cell may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more disrupted chromosomal sequences encoding a protein associated with ALS and zero, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more chromosomally integrated sequences encoding the disrupted protein associated with ALS.
- Preferred proteins associated with ALS include SOD1 (superoxide dismutase 1), ALS2 (amyotrophic lateral sclerosis 2), FUS (fused in sarcoma), TARDBP (TAR DNA binding protein), VAGFA (vascular endothelial growth factor A), VAGFB (vascular endothelial growth factor B), and VAGFC (vascular endothelial growth factor C), and any combination thereof.
- proteins associated with prion diseases may include SOD1 (superoxide dismutase 1), ALS2 (amyotrophic lateral sclerosis 2), FUS (fused in sarcoma), TARDBP (TAR DNA binding protein), VAGFA (vascular endothelial growth factor A), VAGFB (vascular endothelial growth factor B), and VAGFC (vascular endothelial growth factor C), and any combination thereof.
- proteins related to neurodegenerative conditions in prion disorders may include A2M (Alpha-2-Macroglobulin), AATF (Apoptosis antagonizing transcription factor), ACPP (Acid phosphatase prostate), ACTA2 (Actin alpha 2 smooth muscle aorta), ADAM22 (ADAM metallopeptidase domain), ADORA3 (Adenosine A3 receptor), or ADRA1D (Alpha-1 D adrenergic receptor for Alpha-1D adrenoreceptor), for example.
- A2M Alpha-2-Macroglobulin
- AATF Apoptosis antagonizing transcription factor
- ACPP Acid phosphatase prostate
- ACTA2 Actin alpha 2 smooth muscle aorta
- ADAM22 ADAM metallopeptidase domain
- ADORA3 Adosine A3 receptor
- ADRA1D Alpha-1 D adrenergic receptor for Alpha-1D adrenoreceptor
- proteins associated with Immunodeficiency may include A2M [alpha-2- macroglobulin]; AANAT [arylalkylamine N-acetyltransferase]; ABCA1 [ATP-binding cassette, sub-family A (ABC1), member 1]; ABCA2 [ATP-binding cassette, sub-family A (ABC1), member 2]; or ABCA3 [ATP-binding cassette, sub-family A (ABC1), member 3]; for example.
- proteins associated with Trinucleotide Repeat Disorders include AR (androgen receptor), FMR1 (fragile X mental retardation 1), HTT (huntingtin), or DMPK (dystrophia myotonica-protein kinase), FXN (frataxin), ATXN2 (ataxin 2), for example.
- proteins associated with Neurotransmission Disorders include SST (somatostatin), NOS1 (nitric oxide synthase 1 (neuronal)), ADRA2A (adrenergic, alpha-2A-, receptor), ADRA2C (adrenergic, alpha-2C-, receptor), TACR1 (tachykinin receptor 1), or HTR2c (5-hydroxytryptamine (serotonin) receptor 2C), for example.
- neurodevelopmental-associated sequences include A2BP1 [ataxin 2-binding protein 1], AADAT [aminoadipate aminotransferase], AANAT [arylalkylamine N- acetyltransferase], ABAT [4-aminobutyrate aminotransferase], ABCA1 [ATP-binding cassette, sub-family A (ABC1), member 1], or ABCA13 [ATP-binding cassette, sub-family A (ABC1), member 13], for example.
- A2BP1 ataxin 2-binding protein 1
- AADAT aminoadipate aminotransferase
- AANAT arylalkylamine N- acetyltransferase
- ABAT 4-aminobutyrate aminotransferase
- ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1
- ABCA13 ATP-binding cassette, sub-family A (ABC1), member 13
- inventions treatable with the present system include may be selected from: Aicardi-Goutines Syndrome; Alexander Disease; Allan-Herndon-Dudley Syndrome; POLG-Related Disorders; Alpha-Mannosidosis (Type II and III); Alström Syndrome; Angelman; Syndrome; Ataxia-Telangiectasia; Neuronal Ceroid-Lipofuscinoses; Beta- Thalassemia; Bilateral Optic Atrophy and (Infantile) Optic Atrophy Type 1; Retinoblastoma (bilateral); Canavan Disease; Cerebrooculofacioskeletal Syndrome 1 [COFS1]; Cerebrotendinous Xanthomatosis; Cornelia de Lange Syndrome; MAPT-Related Disorders; Genetic Prion Diseases; Dravet Syndrome; Early-Onset Familial Alzheimer Disease; Friedreich Ataxia [FRDA]; Fryns Syndrome; Fucosidosis; Fukuyama Congenital Muscular Dystrophy; Galactosialidos
- the present system can be used to target any polynucleotide sequence of interest.
- Some examples of conditions or diseases that might be usefully treated using the present system are included in the Tables above and examples of genes currently associated with those conditions are also provided there. However, the genes exemplified are not exhaustive.
- “wild type StCas9” refers to wild type Cas9 from S thermophilus, the protein sequence of which is given in the SwissProt database under accession number G3ECR1.
- S pyogenes Cas9 is included in SwissProt under accession number Q99ZW2.
- the ability to use CRISPR-Cas systems to perform efficient and cost effective gene editing and manipulation will allow the rapid selection and comparison of single and and multiplexed genetic manipulations to transform such genomes for improved production and enhanced traits.
- the CRISPR-cas system may be expressed in plants with a tobacco mosaic virus-derived system or an Agrobacterium Ti or Ri plasmid.
- US patents and publications US Patent No. 6,603,061 - Agrobacterium-Mediated Plant Transformation Method; US Patent No. 7,868,149 - Plant Genome Sequences and Uses Thereof and US 2009/0100536 - Transgenic Plants with Enhanced Agronomic Traits, all the contents and disclosure of each of which are herein incorporated by reference in their entirety.
- Morrell et al“Crop genomics:advances and applications” Nat Rev Genet. 2011 Dec 29;13(2):85-96 are also herein incorporated by reference in their entirety.
- Example 1 CRISPR Complex Activity in the Nucleus of a Eukaryotic Cell
- An example type II CRISPR system is the type II CRISPR locus from Streptococcus pyogenes SF370, which contains a cluster of four genes Cas9, Cas1, Cas2, and Csn1, as well as two non-coding RNA elements, tracrRNA and a characteristic array of repetitive sequences (direct repeats) interspaced by short stretches of non-repetitive sequences (spacers, about 30bp each).
- DSB targeted DNA double-strand break
- tracrRNA hybridizes to the direct repeats of pre- crRNA, which is then processed into mature crRNAs containing individual spacer sequences.
- the mature crRNA:tracrRNA complex directs Cas9 to the DNA target consisting of the protospacer and the corresponding PAM via heteroduplex formation between the spacer region of the crRNA and the protospacer DNA.
- Cas9 mediates cleavage of target DNA upstream of PAM to create a DSB within the protospacer (Fig. 2A).
- This example describes an example process for adapting this RNA-programmable nuclease system to direct CRISPR complex activity in the nuclei of eukaryotic cells.
- HEK cell line HEK 293FT Human embryonic kidney (HEK) cell line HEK 293FT (Life Technologies) was maintained in Dulbecco’s modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (HyClone), 2mM GlutaMAX (Life Technologies), 100U/mL penicillin, and 100 ⁇ g/mL streptomycin at 37oC with 5% CO 2 incubation.
- DMEM Dulbecco’s modified Eagle’s Medium
- HyClone fetal bovine serum
- 2mM GlutaMAX Human neuro2A
- streptomycin 100U/mL
- streptomycin 100 ⁇ g/mL streptomycin at 37oC with 5% CO 2 .
- HEK 293FT or N2A cells were seeded into 24-well plates (Corning) one day prior to transfection at a density of 200,000 cells per well. Cells were transfected using Lipofectamine 2000 (Life Technologies) following the manufacturer’s recommended protocol. For each well of a 24-well plate a total of 800ng of plasmids were used.
- HEK 293FT or N2A cells were transfected with plasmid DNA as described above. After transfection, the cells were incubated at 37oC for 72 hours before genomic DNA extraction. Genomic DNA was extracted using the QuickExtract DNA extraction kit (Epicentre) following the manufacturer’s protocol. Briefly, cells were resuspended in QuickExtract solution and incubated at 65oC for 15 minutes and 98oC for 10 minutes. Extracted genomic DNA was immediately processed or stored at–20oC.
- the genomic region surrounding a CRISPR target site for each gene was PCR amplified, and products were purified using QiaQuick Spin Column (Qiagen) following manufacturer’s protocol.
- a total of 400ng of the purified PCR products were mixed with 2 ⁇ l 10X Taq polymerase PCR buffer (Enzymatics) and ultrapure water to a final volume of 20 ⁇ l, and subjected to a re-annealing process to enable heteroduplex formation: 95oC for 10min, 95oC to 85oC ramping at– 2oC/s, 85oC to 25oC at– 0.25oC/s, and 25oC hold for 1 minute.
- RNA secondary structure prediction was performed using the online webserver RNAfold developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g. A.R. Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151 -62).
- HEK 293FT cells were maintained and transfected as stated above. Cells were harvested by trypsinization followed by washing in phosphate buffered saline (PBS). Total cell RNA was extracted with TRI reagent (Sigma) following manufacturer’s protocol. Extracted total RNA was quantified using Naonodrop (Thermo Scientific) and normalized to same concentration.
- RNAs were mixed with equal volumes of 2X loading buffer (Ambion), heated to 95qC for 5 min, chilled on ice for 1 min, and then loaded onto 8% denaturing polyacrylamide gels (SequaGel, National Diagnostics) after pre-running the gel for at least 30 minutes. The samples were electrophoresed for 1.5 hours at 40W limit. Afterwards, the RNA was transferred to Hybond N+ membrane (GE Healthcare) at 300 mA in a semi-dry transfer apparatus (Bio-rad) at room temperature for 1.5 hours. The RNA was crosslinked to the membrane using autocrosslink button on Stratagene UV Crosslinker the Stratalinker (Stratagene).
- the membrane was pre- hybridized in ULTRAhyb-Oligo Hybridization Buffer (Ambion) for 30 min with rotation at 42qC, and probes were then added and hybridized overnight. Probes were ordered from IDT and labeled with [gamma- 32 P] ATP (Perkin Elmer) with T4 polynucleotide kinase (New England Biolabs). The membrane was washed once with pre-warmed (42qC) 2xSSC, 0.5% SDS for 1 min followed by two 30 minute washes at 42qC. The membrane was exposed to a phosphor screen for one hour or overnight at room temperature and then scanned with a phosphorimager (Typhoon).
- CRISPR locus elements including tracrRNA, Cas9, and leader were PCR amplified from Streptococcus pyogenes SF370 genomic DNA with flanking homology arms for Gibson Assembly. Two BsaI type IIS sites were introduced in between two direct repeats to facilitate easy insertion of spacers (Fig. 8). PCR products were cloned into EcoRV-digested pACYC184 downstream of the tet promoter using Gibson Assembly Master Mix (NEB). Other endogenous CRISPR system elements were omitted, with the exception of the last 50bp of Csn2.
- Oligos (Integrated DNA Technology) encoding spacers with complimentary overhangs were cloned into the BsaI-digested vector pDC000 (NEB) and then ligated with T7 ligase (Enzymatics) to generate pCRISPR plasmids.
- T7 ligase Enzymatics
- FIG. 6A shows results of a Northern blot analysis of total RNA extracted from 293FT cells transfected with U6 expression constructs carrying long or short tracrRNA, as well as SpCas9 and DR-EMX1(1)-DR. Left and right panels are from 293FT cells transfected without or with SpRNase III, respectively.
- U6 indicate loading control blotted with a probe targeting human U6 snRNA.
- Transfection of the short tracrRNA expression construct led to abundant levels of the processed form of tracrRNA ( ⁇ 75bp). Very low amounts of long tracrRNA are detected on the Northern blot.
- RNA polymerase III-based U6 promoter was selected to drive the expression of tracrRNA (Fig. 2C).
- a U6 promoter-based construct was developed to express a pre-crRNA array consisting of a single spacer flanked by two direct repeats (DRs, also encompassed by the term“tracr-mate sequences”; Fig. 2C).
- the initial spacer was designed to target a 33-base-pair (bp) target site (30-bp protospacer plus a 3-bp CRISPR motif (PAM) sequence satisfying the NGG recognition motif of Cas9) in the human EMX1 locus (Fig. 2C), a key gene in the development of the cerebral cortex.
- bp 33-base-pair
- PAM 3-bp CRISPR motif
- HEK 293FT cells were transfected with combinations of CRISPR components. Since DSBs in mammalian nuclei are partially repaired by the non-homologous end joining (NHEJ) pathway, which leads to the formation of indels, the Surveyor assay was used to detect potential cleavage activity at the target EMX1 locus (Fig. 7) (see e.g. Guschin et al., 2010, Methods Mol Biol 649: 247).
- NHEJ non-homologous end joining
- Co-transfection of all four CRISPR components was able to induce up to 5.0% cleavage in the protospacer (see Fig. 2D).
- Co-transfection of all CRISPR components minus SpRNase III also induced up to 4.7% indel in the protospacer; there may be endogenous mammalian RNases that are capable of assisting with crRNA maturation, such as for example the related Dicer and Drosha enzymes. Removing any of the remaining three components abolished the genome cleavage activity of the CRISPR system (Fig. 2D). Sanger sequencing of amplicons containing the target locus verified the cleavage activity: in 43 sequenced clones, 5 mutated alleles (11.6%) were found.
- FIG. 12A illustrates a schematic showing the expression vector for a single spacer flanked by two direct repeats (DR-EMX1(1)-DR).
- the line indicates the region whose reverse-complement sequence was used to generate Northern blot probes for EMX1(1) crRNA detection.
- Fig. 12B shows a Northern blot analysis of total RNA extracted from 293FT cells transfected with U6 expression constructs carrying DR- EMX1(1)-DR. Left and right panels are from 293FT cells transfected without or with SpRNase III respectively.
- DR-EMX1(1)-DR was processed into mature crRNAs only in the presence of SpCas9 and short tracrRNA and was not dependent on the presence of SpRNase III.
- the mature crRNA detected from transfected 293FT total RNA is ⁇ 33bp and is shorter than the 39-42bp mature crRNA from S. pyogenes.
- Fig. 2 illustrates the bacterial CRISPR system described in this example.
- Fig. 2A illustrates a schematic showing the CRISPR locus 1 from Streptococcus pyogenes SF370 and a proposed mechanism of CRISPR-mediated DNA cleavage by this system.
- Mature crRNA processed from the direct repeat-spacer array directs Cas9 to genomic targets consisting of complimentary protospacers and a protospacer-adjacent motif (PAM).
- PAM protospacer-adjacent motif
- Cas9 mediates a double-strand break in the target DNA.
- Fig. 2B illustrates engineering of S.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Epidemiology (AREA)
- Cardiology (AREA)
- Pulmonology (AREA)
- Dermatology (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
Abstract
Description
Claims
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480072807.4A CN106536729A (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
KR1020167018584A KR20160089526A (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
JP2016539044A JP2017501149A (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of CRISPR-CAS systems and compositions for targeting disorders and diseases using particle delivery components |
BR112016013213A BR112016013213A2 (en) | 2013-12-12 | 2014-12-12 | administration, use and therapeutic applications of crisper systems and compositions for targeting disorders and diseases using particle delivery components |
CA2932475A CA2932475A1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
EP14827606.6A EP3079726B1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
EP18199415.3A EP3470089A1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
AU2014361826A AU2014361826A1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using particle delivery components |
MX2016007327A MX2016007327A (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components. |
US14/705,719 US20150232883A1 (en) | 2013-12-12 | 2015-05-06 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
IL246106A IL246106B (en) | 2013-12-12 | 2016-06-08 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
IL272423A IL272423A (en) | 2013-12-12 | 2020-02-02 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
US16/920,982 US20200340015A1 (en) | 2013-12-12 | 2020-07-06 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361915215P | 2013-12-12 | 2013-12-12 | |
US201361915148P | 2013-12-12 | 2013-12-12 | |
US201361915118P | 2013-12-12 | 2013-12-12 | |
US61/915,215 | 2013-12-12 | ||
US61/915,118 | 2013-12-12 | ||
US61/915,148 | 2013-12-12 | ||
US201462010441P | 2014-06-10 | 2014-06-10 | |
US62/010,441 | 2014-06-10 | ||
US201462054490P | 2014-09-24 | 2014-09-24 | |
US62/054,490 | 2014-09-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/705,719 Continuation US20150232883A1 (en) | 2013-12-12 | 2015-05-06 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2015089419A2 true WO2015089419A2 (en) | 2015-06-18 |
WO2015089419A3 WO2015089419A3 (en) | 2015-09-17 |
WO2015089419A9 WO2015089419A9 (en) | 2015-11-05 |
Family
ID=53371970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/070057 WO2015089419A2 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
Country Status (12)
Country | Link |
---|---|
US (2) | US20150232883A1 (en) |
EP (2) | EP3079726B1 (en) |
JP (1) | JP2017501149A (en) |
KR (1) | KR20160089526A (en) |
CN (1) | CN106536729A (en) |
AU (1) | AU2014361826A1 (en) |
BR (1) | BR112016013213A2 (en) |
CA (1) | CA2932475A1 (en) |
IL (2) | IL246106B (en) |
MX (1) | MX2016007327A (en) |
SG (1) | SG10201804977UA (en) |
WO (1) | WO2015089419A2 (en) |
Cited By (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3009511A2 (en) | 2015-06-18 | 2016-04-20 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
WO2016086197A1 (en) | 2014-11-25 | 2016-06-02 | The Brigham And Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
WO2016094880A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs) |
WO2016094872A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
WO2016094867A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Protected guide rnas (pgrnas) |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
WO2016100974A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
WO2016106244A1 (en) | 2014-12-24 | 2016-06-30 | The Broad Institute Inc. | Crispr having or associated with destabilization domains |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
WO2016205749A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2016205764A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2016205613A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Crispr enzyme mutations reducing off-target effects |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
WO2017053312A1 (en) * | 2015-09-21 | 2017-03-30 | The Regents Of The University Of California | Compositions and methods for target nucleic acid modification |
WO2017053713A1 (en) * | 2015-09-25 | 2017-03-30 | Tarveda Therapeutics, Inc. | Compositions and methods for genome editing |
WO2017069958A2 (en) | 2015-10-09 | 2017-04-27 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
WO2017070605A1 (en) | 2015-10-22 | 2017-04-27 | The Broad Institute Inc. | Type vi-b crispr enzymes and systems |
WO2017075465A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3 |
WO2017075478A2 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures |
WO2017074788A1 (en) | 2015-10-27 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for targeting cancer-specific sequence variations |
WO2017075451A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1 |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
WO2017069829A3 (en) * | 2015-07-31 | 2017-06-08 | The Trustees Of Columbia University In The City Of New York | High-throughput strategy for dissecting mammalian genetic interactions |
WO2017106657A1 (en) | 2015-12-18 | 2017-06-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2017136764A1 (en) * | 2016-02-05 | 2017-08-10 | The General Hospital Corporation | Hybrid system for efficient gene delivery to cells of the inner ear |
WO2017134529A1 (en) * | 2016-02-02 | 2017-08-10 | Crispr Therapeutics Ag | Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome |
WO2017137585A1 (en) * | 2016-02-12 | 2017-08-17 | Combigene Ab | Vector |
WO2017141109A1 (en) * | 2016-02-18 | 2017-08-24 | Crispr Therapeutics Ag | Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome |
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
WO2017158422A1 (en) * | 2016-03-16 | 2017-09-21 | Crispr Therapeutics Ag | Materials and methods for treatment of hereditary haemochromatosis |
WO2017184786A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute Inc. | Cpf1 complexes with reduced indel activity |
WO2017184768A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2017185054A1 (en) * | 2016-04-22 | 2017-10-26 | Intellia Therapeutics, Inc. | Compositions and methods for treatment of diseases associated with trinucleotide repeats in transcription factor four |
WO2017189308A1 (en) | 2016-04-19 | 2017-11-02 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US9822372B2 (en) | 2012-12-12 | 2017-11-21 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
WO2017205423A1 (en) * | 2016-05-23 | 2017-11-30 | Washington University | Pulmonary targeted cas9/crispr for in vivo editing of disease genes |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
WO2017219027A1 (en) | 2016-06-17 | 2017-12-21 | The Broad Institute Inc. | Type vi crispr orthologs and systems |
WO2017216392A1 (en) * | 2016-09-23 | 2017-12-21 | Dsm Ip Assets B.V. | A guide-rna expression system for a host cell |
WO2018005873A1 (en) | 2016-06-29 | 2018-01-04 | The Broad Institute Inc. | Crispr-cas systems having destabilization domain |
WO2018007871A1 (en) * | 2016-07-08 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of transthyretin amyloidosis |
US9888673B2 (en) | 2014-12-10 | 2018-02-13 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
WO2018035387A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2018035388A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2018049025A2 (en) | 2016-09-07 | 2018-03-15 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses |
WO2018067991A1 (en) | 2016-10-07 | 2018-04-12 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
WO2018154418A1 (en) * | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders |
CN108495928A (en) * | 2015-12-23 | 2018-09-04 | 芬兰国家技术研究中心股份公司 | Method for obtaining indicator signal from cell |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
WO2018170333A1 (en) | 2017-03-15 | 2018-09-20 | The Broad Institute, Inc. | Novel cas13b orthologues crispr enzymes and systems |
WO2018175480A1 (en) * | 2017-03-20 | 2018-09-27 | The Research Foundation For The State University Of New York | Methods of inhibiting fungal ceramide synthase for treatment of cryptococcus neoformans infection |
WO2018191520A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Respiratory and sweat gland ionocytes |
WO2018191388A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Novel type vi crispr orthologs and systems |
WO2018191553A1 (en) | 2017-04-12 | 2018-10-18 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
WO2018195486A1 (en) | 2017-04-21 | 2018-10-25 | The Broad Institute, Inc. | Targeted delivery to beta cells |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
WO2018202800A1 (en) | 2017-05-03 | 2018-11-08 | Kws Saat Se | Use of crispr-cas endonucleases for plant genome engineering |
WO2018129486A3 (en) * | 2017-01-06 | 2018-11-15 | President And Fellows Of Harvard College | Composition and methods for enhanced knock-in reporter gene expression |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10166255B2 (en) | 2015-07-31 | 2019-01-01 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
WO2019005884A1 (en) | 2017-06-26 | 2019-01-03 | The Broad Institute, Inc. | Crispr/cas-adenine deaminase based compositions, systems, and methods for targeted nucleic acid editing |
WO2019014564A1 (en) * | 2017-07-14 | 2019-01-17 | Editas Medicine, Inc. | Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites |
WO2019023770A1 (en) | 2017-07-31 | 2019-02-07 | Universidade Federal Do Rio Grande Do Sul | Composition for gene therapy of the central nervous system, process of production and use thereof |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
WO2019067992A1 (en) * | 2017-09-29 | 2019-04-04 | Intellia Therapeutics, Inc. | Formulations |
WO2019071054A1 (en) | 2017-10-04 | 2019-04-11 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
WO2019089561A1 (en) * | 2017-10-30 | 2019-05-09 | Georgia Tech Research Corporation | Multiplexed analysis of materials for tissue delivery |
WO2019094983A1 (en) | 2017-11-13 | 2019-05-16 | The Broad Institute, Inc. | Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway |
WO2019099943A1 (en) * | 2017-11-16 | 2019-05-23 | Astrazeneca Ab | Compositions and methods for improving the efficacy of cas9-based knock-in strategies |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
EP3359662A4 (en) * | 2015-10-09 | 2019-06-19 | The Children's Hospital of Philadelphia | Compositions and methods for treating huntington's disease and related disorders |
US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
WO2019165149A1 (en) * | 2018-02-22 | 2019-08-29 | Wisconsin Alumni Research Foundation | Polyplex delivery system for proteins, nucleic acids and protein/nucleic acid complexes |
EP3353298A4 (en) * | 2015-09-21 | 2019-09-25 | Arcturus Therapeutics, Inc. | Allele selective gene editing and uses thereof |
WO2019204585A1 (en) | 2018-04-19 | 2019-10-24 | Massachusetts Institute Of Technology | Single-stranded break detection in double-stranded dna |
EP3560330A1 (en) | 2018-04-24 | 2019-10-30 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
WO2019210268A2 (en) | 2018-04-27 | 2019-10-31 | The Broad Institute, Inc. | Sequencing-based proteomics |
WO2019213660A2 (en) | 2018-05-04 | 2019-11-07 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses |
WO2019232542A2 (en) | 2018-06-01 | 2019-12-05 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10519442B2 (en) | 2016-02-11 | 2019-12-31 | City Of Hope | Twist signaling inhibitor compositions and methods of using the same |
WO2020006036A1 (en) | 2018-06-26 | 2020-01-02 | Massachusetts Institute Of Technology | Crispr effector system based amplification methods, systems, and diagnostics |
WO2020006049A1 (en) | 2018-06-26 | 2020-01-02 | The Broad Institute, Inc. | Crispr/cas and transposase based amplification compositions, systems and methods |
US10550372B2 (en) | 2013-12-12 | 2020-02-04 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
EP3497221A4 (en) * | 2016-08-10 | 2020-02-05 | Duke University | Compositions, systems and methods for programming immune cell function through targeted gene regulation |
WO2020033601A1 (en) | 2018-08-07 | 2020-02-13 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
US10577630B2 (en) | 2013-06-17 | 2020-03-03 | The Broad Institute, Inc. | Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy |
WO2020051507A1 (en) | 2018-09-06 | 2020-03-12 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
US20200095579A1 (en) * | 2017-02-22 | 2020-03-26 | Crispr Therapeutics Ag | Materials and methods for treatment of merosin-deficient cogenital muscular dystrophy (mdcmd) and other laminin, alpha 2 (lama2) gene related conditions or disorders |
WO2020072699A1 (en) * | 2018-10-02 | 2020-04-09 | Exosome Therapeutics, Inc. | Exosome loaded therapeutics for treating sickle cell disease |
WO2020077236A1 (en) | 2018-10-12 | 2020-04-16 | The Broad Institute, Inc. | Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
US10646540B2 (en) | 2016-11-18 | 2020-05-12 | City Of Hope | Peptide inhibitors of twist |
US10648020B2 (en) | 2015-06-18 | 2020-05-12 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US10676735B2 (en) | 2015-07-22 | 2020-06-09 | Duke University | High-throughput screening of regulatory element function with epigenome editing technologies |
US10676726B2 (en) | 2015-02-09 | 2020-06-09 | Duke University | Compositions and methods for epigenome editing |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
US10711285B2 (en) | 2013-06-17 | 2020-07-14 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
WO2020112908A3 (en) * | 2018-11-28 | 2020-08-20 | Crispr Therapeutics Ag | OPTIMIZED mRNA ENCODING CAS9 FOR USE IN LNPs |
WO2020165768A1 (en) | 2019-02-12 | 2020-08-20 | Università Degli Studi Di Trento | Cas12a guide rna molecules and uses thereof |
EP3500667A4 (en) * | 2016-08-18 | 2020-09-02 | The Regents of the University of California | Crispr-cas genome engineering via a modular aav delivery system |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
EP3708155A1 (en) * | 2014-10-31 | 2020-09-16 | Massachusetts Institute Of Technology | Massively parallel combinatorial genetics for crispr |
US10781444B2 (en) | 2013-06-17 | 2020-09-22 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
WO2020191102A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
US20200362038A1 (en) * | 2017-09-11 | 2020-11-19 | The Regents Of The University Of California | Antibody-mediated delivery of cas9 to mammalian cells |
WO2020229533A1 (en) | 2019-05-13 | 2020-11-19 | KWS SAAT SE & Co. KGaA | Drought tolerance in corn |
WO2020236967A1 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Random crispr-cas deletion mutant |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
US10851357B2 (en) | 2013-12-12 | 2020-12-01 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
WO2020243661A1 (en) | 2019-05-31 | 2020-12-03 | The Broad Institute, Inc. | Methods for treating metabolic disorders by targeting adcy5 |
WO2020239680A2 (en) | 2019-05-25 | 2020-12-03 | KWS SAAT SE & Co. KGaA | Haploid induction enhancer |
WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
US10912797B2 (en) | 2016-10-18 | 2021-02-09 | Intima Bioscience, Inc. | Tumor infiltrating lymphocytes and methods of therapy |
EP3772542A1 (en) | 2019-08-07 | 2021-02-10 | KWS SAAT SE & Co. KGaA | Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2 |
US10930367B2 (en) | 2012-12-12 | 2021-02-23 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
US10946108B2 (en) | 2013-06-17 | 2021-03-16 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
WO2021074367A1 (en) | 2019-10-17 | 2021-04-22 | KWS SAAT SE & Co. KGaA | Enhanced disease resistance of crops by downregulation of repressor genes |
US11001829B2 (en) | 2014-09-25 | 2021-05-11 | The Broad Institute, Inc. | Functional screening with optimized functional CRISPR-Cas systems |
US11008588B2 (en) | 2013-06-17 | 2021-05-18 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
WO2021111280A1 (en) * | 2019-12-04 | 2021-06-10 | Crispr Therapeutics Ag | Regulatable expression systems |
US11033584B2 (en) | 2017-10-27 | 2021-06-15 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
US11041173B2 (en) | 2012-12-12 | 2021-06-22 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US11053482B2 (en) | 2015-04-16 | 2021-07-06 | Wageningen Universiteit | Vector systems for nuclease-mediated genome editing |
US11058644B2 (en) | 2016-11-23 | 2021-07-13 | Wisconsin Alumni Research Foundation | Unimolecular nanoparticles for efficient delivery of therapeutic RNA |
US11098325B2 (en) | 2017-06-30 | 2021-08-24 | Intima Bioscience, Inc. | Adeno-associated viral vectors for gene therapy |
CN113304321A (en) * | 2021-06-01 | 2021-08-27 | 山东隽秀生物科技股份有限公司 | Biological membrane material, preparation method thereof and application thereof in nerve repair |
US11149267B2 (en) | 2013-10-28 | 2021-10-19 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
US11155795B2 (en) | 2013-12-12 | 2021-10-26 | The Broad Institute, Inc. | CRISPR-Cas systems, crystal structure and uses thereof |
EP3723733A4 (en) * | 2017-12-15 | 2021-11-24 | Board of Regents, The University of Texas System | Methods and compositions for treating cancer using exosomes-associated gene editing |
WO2021239986A1 (en) | 2020-05-29 | 2021-12-02 | KWS SAAT SE & Co. KGaA | Plant haploid induction |
US11214800B2 (en) | 2015-08-18 | 2022-01-04 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
US11253482B2 (en) * | 2017-07-26 | 2022-02-22 | Albert-Ludwigs-Universitaet Freiburg | Biodegradable multilayer nanocapsules for the delivery of biologically active agents in target cells |
US11260132B2 (en) | 2017-03-16 | 2022-03-01 | Children's Medical Center Corporation | Engineered liposomes as cancer-targeted therapeutics |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11332736B2 (en) | 2017-12-07 | 2022-05-17 | The Broad Institute, Inc. | Methods and compositions for multiplexing single cell and single nuclei sequencing |
CN114634930A (en) * | 2015-08-25 | 2022-06-17 | 杜克大学 | Compositions and methods for improving genome engineering specificity using RNA-guided endonucleases |
US11400110B2 (en) | 2015-05-06 | 2022-08-02 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11407985B2 (en) | 2013-12-12 | 2022-08-09 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing |
US11414657B2 (en) | 2015-06-29 | 2022-08-16 | Ionis Pharmaceuticals, Inc. | Modified CRISPR RNA and modified single CRISPR RNA and uses thereof |
US11421251B2 (en) | 2015-10-13 | 2022-08-23 | Duke University | Genome engineering with type I CRISPR systems in eukaryotic cells |
US11421227B2 (en) | 2018-04-30 | 2022-08-23 | Snipr Biome Aps | Treating and preventing microbial infections |
US11427861B2 (en) | 2016-03-17 | 2022-08-30 | Massachusetts Institute Of Technology | Methods for identifying and modulating co-occurant cellular phenotypes |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447527B2 (en) | 2018-09-18 | 2022-09-20 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
US11471530B2 (en) | 2016-06-05 | 2022-10-18 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
WO2023006933A1 (en) | 2021-07-30 | 2023-02-02 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11578333B2 (en) | 2018-10-14 | 2023-02-14 | Snipr Biome Aps | Single-vector type I vectors |
US11578312B2 (en) | 2015-06-18 | 2023-02-14 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
US11578118B2 (en) | 2017-10-20 | 2023-02-14 | Fred Hutchinson Cancer Center | Systems and methods to produce B cells genetically modified to express selected antibodies |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
US11603544B2 (en) | 2017-06-05 | 2023-03-14 | Fred Hutchinson Cancer Center | Genomic safe harbors for genetic therapies in human stem cells and engineered nanoparticles to provide targeted genetic therapies |
CN115981384A (en) * | 2023-02-07 | 2023-04-18 | 淮阴工学院 | Intelligent biomass ORC evaporation pressure control equipment |
US11630103B2 (en) | 2016-08-17 | 2023-04-18 | The Broad Institute, Inc. | Product and methods useful for modulating and evaluating immune responses |
WO2023089183A1 (en) | 2021-11-19 | 2023-05-25 | Branca Bunus Limited | A composition comprising a therapeutically active agent packaged within a drug delivery vehicle |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11672766B2 (en) | 2017-02-08 | 2023-06-13 | Wisconsin Alumni Research Foundation | Therapeutic cationic peptides and unimolecular nanoparticles for efficient delivery thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
US11779657B2 (en) | 2016-06-10 | 2023-10-10 | City Of Hope | Compositions and methods for mitochondrial genome editing |
WO2023196818A1 (en) | 2022-04-04 | 2023-10-12 | The Regents Of The University Of California | Genetic complementation compositions and methods |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
EP4268831A2 (en) | 2018-09-12 | 2023-11-01 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
US11814624B2 (en) | 2017-06-15 | 2023-11-14 | The Regents Of The University Of California | Targeted non-viral DNA insertions |
US11866697B2 (en) | 2017-05-18 | 2024-01-09 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11897953B2 (en) | 2017-06-14 | 2024-02-13 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US11913075B2 (en) | 2017-04-01 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
WO2024042199A1 (en) | 2022-08-26 | 2024-02-29 | KWS SAAT SE & Co. KGaA | Use of paired genes in hybrid breeding |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
US12031128B2 (en) | 2021-04-07 | 2024-07-09 | Battelle Memorial Institute | Rapid design, build, test, and learn technologies for identifying and using non-viral carriers |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US12037407B2 (en) | 2021-10-14 | 2024-07-16 | Arsenal Biosciences, Inc. | Immune cells having co-expressed shRNAS and logic gate systems |
US12043870B2 (en) | 2017-10-02 | 2024-07-23 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
US12076375B2 (en) | 2022-06-29 | 2024-09-03 | Snipr Biome Aps | Treating and preventing E coli infections |
US12098399B2 (en) | 2022-06-24 | 2024-09-24 | Tune Therapeutics, Inc. | Compositions, systems, and methods for epigenetic regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) gene expression |
US12105089B2 (en) | 2017-07-17 | 2024-10-01 | The Broad Institute, Inc. | Cell atlas of the healthy and ulcerative colitis human colon |
US12109223B2 (en) | 2020-12-03 | 2024-10-08 | Battelle Memorial Institute | Polymer nanoparticle and DNA nanostructure compositions and methods for non-viral delivery |
EP4247953A4 (en) * | 2020-11-23 | 2024-10-30 | Recursion Pharmaceuticals Inc | High throughput gene editing system and method |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
HUE038850T2 (en) | 2012-05-25 | 2018-11-28 | Univ California | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
US10544405B2 (en) | 2013-01-16 | 2020-01-28 | Emory University | Cas9-nucleic acid complexes and uses related thereto |
CN105980575A (en) | 2013-03-14 | 2016-09-28 | 卡里布生物科学公司 | Compositions and methods of nucleic acid-targeting nucleic acids |
US10760064B2 (en) | 2013-03-15 | 2020-09-01 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
WO2014204578A1 (en) | 2013-06-21 | 2014-12-24 | The General Hospital Corporation | Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing |
EP3467125B1 (en) | 2013-03-15 | 2023-08-30 | The General Hospital Corporation | Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing |
SI3456831T1 (en) | 2013-04-16 | 2021-11-30 | Regeneron Pharmaceuticals, Inc., | Targeted modification of rat genome |
RU2685914C1 (en) | 2013-12-11 | 2019-04-23 | Регенерон Фармасьютикалс, Инк. | Methods and compositions for genome targeted modification |
WO2015105955A1 (en) | 2014-01-08 | 2015-07-16 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
US10280419B2 (en) | 2014-05-09 | 2019-05-07 | UNIVERSITé LAVAL | Reduction of amyloid beta peptide production via modification of the APP gene using the CRISPR/Cas system |
KR20170005494A (en) | 2014-05-30 | 2017-01-13 | 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 | Compositions and methods of delivering treatments for latent viral infections |
GB2544001A (en) | 2014-08-27 | 2017-05-03 | Caribou Biosciences Inc | Methods for increasing Cas9-mediated engineering efficiency |
PT3221457T (en) | 2014-11-21 | 2019-06-27 | Regeneron Pharma | Methods and compositions for targeted genetic modification using paired guide rnas |
US10059940B2 (en) * | 2015-01-27 | 2018-08-28 | Minghong Zhong | Chemically ligated RNAs for CRISPR/Cas9-lgRNA complexes as antiviral therapeutic agents |
CA2977685C (en) | 2015-03-02 | 2024-02-20 | Sinai Health System | Homologous recombination factors |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
US10117911B2 (en) | 2015-05-29 | 2018-11-06 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
EP3303585A4 (en) | 2015-06-03 | 2018-10-31 | Board of Regents of the University of Nebraska | Dna editing using single-stranded dna |
US10626393B2 (en) | 2015-06-04 | 2020-04-21 | Arbutus Biopharma Corporation | Delivering CRISPR therapeutics with lipid nanoparticles |
KR102706532B1 (en) | 2015-06-10 | 2024-09-19 | 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 | Uses of exosomes for the treatment of diseases |
US11279928B2 (en) * | 2015-06-29 | 2022-03-22 | Massachusetts Institute Of Technology | Compositions comprising nucleic acids and methods of using the same |
US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
KR20240090567A (en) | 2015-08-28 | 2024-06-21 | 더 제너럴 하스피탈 코포레이션 | Engineered crispr-cas9 nucleases |
EP3347469A4 (en) * | 2015-09-10 | 2019-02-27 | Youhealth Biotech, Limited | Methods and compositions for the treatment of glaucoma |
EP3353296B1 (en) * | 2015-09-24 | 2020-11-04 | Editas Medicine, Inc. | Use of exonucleases to improve crispr/cas-mediated genome editing |
WO2017087395A1 (en) * | 2015-11-16 | 2017-05-26 | Research Institute At Nationwide Children's Hospital | Materials and methods for treatment of titin-based myopathies and other titinopaties |
US20180369336A1 (en) * | 2015-12-03 | 2018-12-27 | Boston Medical Center Corporation | B cell-based cancer immunotherapy |
WO2017136794A1 (en) | 2016-02-03 | 2017-08-10 | Massachusetts Institute Of Technology | Structure-guided chemical modification of guide rna and its applications |
US12037601B2 (en) | 2016-03-04 | 2024-07-16 | Indoor Biotechnologies Inc. | Method of inactivating a FEL D1 gene using crispr |
SG10202008883SA (en) * | 2016-03-15 | 2020-10-29 | Codiak Biosciences Inc | Therapeutic membrane vesicles |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
US11065252B2 (en) | 2016-05-06 | 2021-07-20 | Albany Medical College | Treatment of rosacea with P38 and Erk kinase pathway inhibitors |
US11191849B2 (en) | 2016-06-30 | 2021-12-07 | Arbutus Biopharma Corporation | Compositions and methods for delivering messenger RNA |
KR101710026B1 (en) | 2016-08-10 | 2017-02-27 | 주식회사 무진메디 | Composition comprising delivery carrier of nano-liposome having Cas9 protein and guide RNA |
CN106282228A (en) * | 2016-08-19 | 2017-01-04 | 苏州兰希亚生物科技有限公司 | A kind of method that point mutation is repaired |
AU2017378431A1 (en) | 2016-12-14 | 2019-06-20 | Ligandal, Inc. | Compositions and methods for nucleic acid and/or protein payload delivery |
KR101917287B1 (en) * | 2016-12-19 | 2018-11-13 | 한국과학기술연구원 | self-assembled ribonucleoprotein nanoparticles |
US11597947B2 (en) * | 2016-12-29 | 2023-03-07 | Asc Therapeutics Inc. | Gene editing method using virus |
EP3596117A4 (en) | 2017-03-17 | 2021-01-13 | The Johns Hopkins University | Targeted epigenetic therapy against distal regulatory element of tgfb2 expression |
US20200405639A1 (en) | 2017-04-14 | 2020-12-31 | The Broad Institute, Inc. | Novel delivery of large payloads |
WO2018194876A1 (en) * | 2017-04-17 | 2018-10-25 | Temple University- Of The Commonwealth System Of Higher Education | An hiv-1 eradication strategy employing nanoformulated anti-retroviral drugs and gene editing agents |
BR112019021719A2 (en) | 2017-04-21 | 2020-06-16 | The General Hospital Corporation | CPF1 VARIANT (CAS12A) WITH CHANGED PAM SPECIFICITY |
CN107034188B (en) * | 2017-05-24 | 2018-07-24 | 中山大学附属口腔医院 | A kind of excretion body carrier, CRISPR/Cas9 gene editings system and the application of targeting bone |
AU2018273968A1 (en) | 2017-05-25 | 2019-11-28 | The General Hospital Corporation | Using split deaminases to limit unwanted off-target base editor deamination |
CA3066750A1 (en) * | 2017-06-13 | 2018-12-20 | Flagship Pioneering Innovations V, Inc. | Compositions comprising curons and uses thereof |
KR102206676B1 (en) | 2017-06-14 | 2021-01-26 | 한국과학기술원 | Nonviral genome editing CRISPR nanocomplex and fabrication method thereof |
US10709797B2 (en) * | 2017-08-16 | 2020-07-14 | City University Of Hong Kong | Isolation of extracellular vesicles (EVs) from red blood cells for gene therapy |
CN111629761B (en) * | 2017-08-17 | 2024-04-16 | 伊利亚斯生物制品有限公司 | Exosomes for target-specific delivery and methods for preparing and delivering the exosomes |
WO2019079362A1 (en) | 2017-10-16 | 2019-04-25 | Massachusetts Institute Of Technology | Mycobacterium tuberculosis host-pathogen interaction |
KR101870694B1 (en) | 2017-10-18 | 2018-06-25 | 주식회사 무진메디 | Nanoliposome-microbubble assemblies encapsulating complex of Cas9 protein, guide RNA for repressing gene expression or SRD5A2 gene and cationic polymer, and composition comprising the same for improving or treating hair loss |
KR102439221B1 (en) | 2017-12-14 | 2022-09-01 | 프로디자인 소닉스, 인크. | Acoustic transducer actuators and controllers |
EP3733641B1 (en) | 2017-12-28 | 2024-04-10 | Takeda Pharmaceutical Company Limited | Cationic lipids |
JP7288282B2 (en) | 2017-12-28 | 2023-06-07 | 国立大学法人京都大学 | Composition for targeted gene modification |
WO2019166877A1 (en) | 2018-03-02 | 2019-09-06 | Sixfold Bioscience Ltd. | Compositions for delivery of cargo to cells |
MX2020010974A (en) * | 2018-04-19 | 2021-01-20 | Univ California | Compositions and methods for gene editing. |
JP2021523696A (en) * | 2018-04-23 | 2021-09-09 | デューク ユニバーシティ | Downward regulation of SNCA expression by targeted editing of DNA methylation |
CN112654710A (en) | 2018-05-16 | 2021-04-13 | 辛瑟高公司 | Methods and systems for directing RNA design and use |
CN108795935B (en) * | 2018-05-23 | 2022-06-21 | 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) | SiRNA of SjELAV-like 1 gene of schistosoma japonicum and application thereof |
WO2019237398A1 (en) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | Grna targeting sequence of specific target human cd272 gene and application thereof |
CN108977444A (en) * | 2018-06-28 | 2018-12-11 | 西南大学 | The siRNA and screening technique of silencing Rongchang Pig CD14 expression and application |
EP3823995A4 (en) * | 2018-08-01 | 2022-05-04 | The Regents of the University of Colorado, a body corporate | Programmable designer therapeutic fusogenic secreted gectosome vesicles for macromolecule delivery and genome modification |
CN109288512B (en) * | 2018-09-16 | 2021-09-07 | 华北理工大学 | Electrocardio trigger device for spinal rehabilitation system |
US11207425B2 (en) * | 2018-09-28 | 2021-12-28 | City University Of Hong Kong | Guide RNA molecule and method for treating cancer |
WO2020072698A1 (en) * | 2018-10-02 | 2020-04-09 | Exosome Therapeutics, Inc. | Compositions and methods for producing exosome loaded therapeutics for treating cardiovascular disease |
CN111198063A (en) * | 2018-11-16 | 2020-05-26 | 北京纳米能源与系统研究所 | Pressure sensor |
CN113544270A (en) * | 2018-12-23 | 2021-10-22 | 美国杰特贝林生物制品有限公司 | Nanocapsules for delivery of cell modulators |
KR20210142599A (en) * | 2019-01-18 | 2021-11-25 | 이노자임 파마, 인코포레이티드 | Treatment of diseases involving ENPP1 or ENPP3 deficiency |
EP3921417A4 (en) | 2019-02-04 | 2022-11-09 | The General Hospital Corporation | Adenine dna base editor variants with reduced off-target rna editing |
WO2020185784A1 (en) * | 2019-03-12 | 2020-09-17 | Nostopharma, LLC | Localized delivery of therapeutic agents |
JP7522458B2 (en) * | 2019-03-20 | 2024-07-25 | 学校法人順天堂 | Double-membrane structure intracellular organelle DNA targeting drug |
CN109971790B (en) * | 2019-04-01 | 2022-06-10 | 南京大学 | Near-infrared light regulation gene editing method |
CN110079555A (en) * | 2019-05-23 | 2019-08-02 | 湖南大地同年生物科技有限公司 | A method of utilizing excretion body transfecting stem cells |
BR112021022722A2 (en) | 2019-06-07 | 2022-01-04 | Regeneron Pharma | Non-human animal, non-human animal cell, non-human animal genome, humanized non-human animal albumin gene, targeting vector, method of evaluating the activity of a reagent, and, method of optimizing the activity of a reagent |
WO2021041846A1 (en) * | 2019-08-30 | 2021-03-04 | Inari Agriculture, Inc. | Rna-guided nucleases and dna binding proteins |
WO2021072115A1 (en) * | 2019-10-08 | 2021-04-15 | Regents Of The University Of Minnesota | Crispr-mediated human genome editing with vectors |
US20220380809A1 (en) * | 2019-11-15 | 2022-12-01 | The Regents Of The University Of California | Delivery of intact crispr/cas9 protein using supramolecular nanoparticle (smnp) vectors |
CN111154002B (en) * | 2020-01-10 | 2022-11-22 | 上海海洋大学 | Bifunctional peptide K14, gene vector and co-drug delivery system |
WO2021220053A2 (en) | 2020-04-27 | 2021-11-04 | Sixfold Bioscience Ltd. | Compositions containing nucleic acid nanoparticles with modular functionality |
WO2021231552A1 (en) * | 2020-05-12 | 2021-11-18 | Duke University | Compositions and methods for controlling blood pressure |
EP4262761A1 (en) * | 2020-12-18 | 2023-10-25 | Omega Therapeutics, Inc. | Tissue-specific nucleic acid delivery by 1,2-dioleoyl-3-trimethylammonium-propane (dotap) lipid nanoparticles |
CN113181376B (en) * | 2021-03-17 | 2022-11-29 | 复旦大学附属眼耳鼻喉科医院 | Application of Htra2 gene expression inhibitor in preventing acquired sensorineural deafness |
US20240325568A1 (en) | 2021-07-20 | 2024-10-03 | The Broad Institute, Inc. | Engineered targeting compositions for endothelial cells of the central nervous system vasculature and methods of use thereof |
CN113604583B (en) * | 2021-08-10 | 2024-04-02 | 河南省畜牧总站 | Method for auxiliary detection of growth traits by goat KCNJ15 gene CNV markers and special kit thereof |
US20230279442A1 (en) | 2021-12-15 | 2023-09-07 | Versitech Limited | Engineered cas9-nucleases and method of use thereof |
TW202428311A (en) | 2022-07-14 | 2024-07-16 | 美商博得學院股份有限公司 | Aav capsids that enable cns-wide gene delivery through interactions with the transferrin receptor |
CN115737682B (en) * | 2022-11-03 | 2023-12-29 | 四川大学 | Engineering exosome targeted slow release system for osteoarthritis treatment and preparation method and application thereof |
WO2024163842A2 (en) | 2023-02-03 | 2024-08-08 | The Broad Institute, Inc. | Delivering genes to the brain endothelium to treat lysosomal storage disorder-derived neuropathology |
CN116844074A (en) * | 2023-07-25 | 2023-10-03 | 北京爱科农科技有限公司 | Panoramic display linkage method for three-dimensional scene and key area of orchard |
Citations (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186183A (en) | 1978-03-29 | 1980-01-29 | The United States Of America As Represented By The Secretary Of The Army | Liposome carriers in chemotherapy of leishmaniasis |
US4217344A (en) | 1976-06-23 | 1980-08-12 | L'oreal | Compositions containing aqueous dispersions of lipid spheres |
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4261975A (en) | 1979-09-19 | 1981-04-14 | Merck & Co., Inc. | Viral liposome particle |
US4485054A (en) | 1982-10-04 | 1984-11-27 | Lipoderm Pharmaceuticals Limited | Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV) |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
EP0264166A1 (en) | 1986-04-09 | 1988-04-20 | Genzyme Corporation | Transgenic animals secreting desired proteins into milk |
US4774085A (en) | 1985-07-09 | 1988-09-27 | 501 Board of Regents, Univ. of Texas | Pharmaceutical administration systems containing a mixture of immunomodulators |
US4797368A (en) | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4946787A (en) | 1985-01-07 | 1990-08-07 | Syntex (U.S.A.) Inc. | N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US5049386A (en) | 1985-01-07 | 1991-09-17 | Syntex (U.S.A.) Inc. | N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
WO1991016024A1 (en) | 1990-04-19 | 1991-10-31 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
WO1991017424A1 (en) | 1990-05-03 | 1991-11-14 | Vical, Inc. | Intracellular delivery of biologically active substances by means of self-assembling lipid complexes |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
US5210015A (en) | 1990-08-06 | 1993-05-11 | Hoffman-La Roche Inc. | Homogeneous assay system using the nuclease activity of a nucleic acid polymerase |
WO1993024641A2 (en) | 1992-06-02 | 1993-12-09 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Adeno-associated virus with inverted terminal repeat sequences as promoter |
US5445934A (en) | 1989-06-07 | 1995-08-29 | Affymax Technologies N.V. | Array of oligonucleotides on a solid substrate |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
WO1996039154A1 (en) | 1995-06-06 | 1996-12-12 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
WO1997003211A1 (en) | 1995-07-13 | 1997-01-30 | Isis Pharmaceuticals, Inc. | Antisense inhibition of hepatitis b virus replication |
US5846946A (en) | 1996-06-14 | 1998-12-08 | Pasteur Merieux Serums Et Vaccins | Compositions and methods for administering Borrelia DNA |
US5855913A (en) | 1997-01-16 | 1999-01-05 | Massachusetts Instite Of Technology | Particles incorporating surfactants for pulmonary drug delivery |
US5985309A (en) | 1996-05-24 | 1999-11-16 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US20030087817A1 (en) | 1999-01-12 | 2003-05-08 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
US6603061B1 (en) | 1999-07-29 | 2003-08-05 | Monsanto Company | Agrobacterium-mediated plant transformation method |
US6750059B1 (en) | 1998-07-16 | 2004-06-15 | Whatman, Inc. | Archiving of vectors |
US20040171156A1 (en) | 1995-06-07 | 2004-09-02 | Invitrogen Corporation | Recombinational cloning using nucleic acids having recombination sites |
US20050019923A1 (en) | 2001-10-19 | 2005-01-27 | Ijeoma Uchegbu | Dendrimers for use in targeted delivery |
EP1519714A1 (en) | 2002-06-28 | 2005-04-06 | Protiva Biotherapeutics Inc. | Method and apparatus for producing liposomes |
US20050287127A1 (en) | 2003-11-13 | 2005-12-29 | Huawei Li | Use of stem cells to generate inner ear cells |
US20060030837A1 (en) | 2004-01-29 | 2006-02-09 | The Charles Stark Draper Laboratory, Inc. | Drug delivery apparatus |
EP1664316A1 (en) | 2003-09-15 | 2006-06-07 | Protiva Biotherapeutics Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
EP1766035A1 (en) | 2004-06-07 | 2007-03-28 | Protiva Biotherapeutics Inc. | Lipid encapsulated interfering rna |
US7206639B2 (en) | 2002-03-15 | 2007-04-17 | Sarcos Investments Lc | Cochlear drug delivery system and method |
US20070093878A1 (en) | 2005-09-08 | 2007-04-26 | Albert Edge | Cochlear implants containing biological cells and uses thereof |
EP1781593A2 (en) | 2004-06-07 | 2007-05-09 | Protiva Biotherapeutics Inc. | Cationic lipids and methods of use |
US20080267903A1 (en) | 2004-10-14 | 2008-10-30 | Ijeoma Uchegbu | Bioactive Polymers |
US20090100536A1 (en) | 2001-12-04 | 2009-04-16 | Monsanto Company | Transgenic plants with enhanced agronomic traits |
US20090222937A1 (en) | 2006-02-13 | 2009-09-03 | Cellectis | Meganuclease variants cleaving a dna target sequence from a xeroderma pigmentosum gene and uses thereof |
US20090271881A1 (en) | 2006-07-18 | 2009-10-29 | Cellectis | Meganuclease variants cleaving a dna target sequence from a rag gene and uses thereof |
US20100146651A1 (en) | 2006-11-14 | 2010-06-10 | Cellectis | Meganuclease variants cleaving a dna target sequence from the hprt gene and uses thereof |
US7776321B2 (en) | 2001-09-26 | 2010-08-17 | Mayo Foundation For Medical Education And Research | Mutable vaccines |
US20100229252A1 (en) | 2007-07-23 | 2010-09-09 | Cellectis | Meganuclease variants cleaving a dna target sequence from the human hemoglobin beta gene and uses thereof |
US20100291048A1 (en) | 2009-03-20 | 2010-11-18 | Sangamo Biosciences, Inc. | Modification of CXCR4 using engineered zinc finger proteins |
US7838658B2 (en) | 2005-10-20 | 2010-11-23 | Ian Maclachlan | siRNA silencing of filovirus gene expression |
US20100311124A1 (en) | 2008-10-29 | 2010-12-09 | Sangamo Biosciences, Inc. | Methods and compositions for inactivating glutamine synthetase gene expression |
US7868149B2 (en) | 1999-07-20 | 2011-01-11 | Monsanto Technology Llc | Plant genome sequence and uses thereof |
US20110016540A1 (en) | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genome editing of genes associated with trinucleotide repeat expansion disorders in animals |
US20110023153A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in alzheimer's disease |
US20110023146A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in secretase-associated disorders |
US20110023145A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in autism spectrum disorders |
US20110023144A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in amyotrophyic lateral sclerosis disease |
US20110023139A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in cardiovascular disease |
WO2011028929A2 (en) | 2009-09-03 | 2011-03-10 | The Regents Of The University Of California | Nitrate-responsive promoter |
US20110059502A1 (en) | 2009-09-07 | 2011-03-10 | Chalasani Sreekanth H | Multiple domain proteins |
US7915399B2 (en) | 2006-06-09 | 2011-03-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20110091441A1 (en) | 2007-08-03 | 2011-04-21 | Cellectis | Meganuclease variants cleaving a dna target sequence from the human interleukin-2 receptor gamma chain gene and uses thereof |
US20110142917A1 (en) | 2008-06-06 | 2011-06-16 | Egvenia Alpert | Compositions and methods for treatment of ear disorders |
US20110158957A1 (en) | 2009-11-10 | 2011-06-30 | Sangamo Biosciences, Inc. | Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases |
US7982027B2 (en) | 2003-07-16 | 2011-07-19 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
US20110182867A1 (en) | 2008-09-15 | 2011-07-28 | Children's Medical Center Corporation | Modulation of bcl11a for treatment of hemoglobinopathies |
US20110225664A1 (en) | 2008-09-08 | 2011-09-15 | Cellectis | Meganuclease variants cleaving a dna target sequence from a glutamine synthetase gene and uses thereof |
US20110230839A1 (en) | 2007-08-14 | 2011-09-22 | Fred Hutchinson Cancer Research Center | Needle Array Assembly and Method for Delivering Therapeutic Agents |
US20110265198A1 (en) | 2010-04-26 | 2011-10-27 | Sangamo Biosciences, Inc. | Genome editing of a Rosa locus using nucleases |
US8058069B2 (en) | 2008-04-15 | 2011-11-15 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20110293703A1 (en) | 2008-11-07 | 2011-12-01 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US8101741B2 (en) | 2005-11-02 | 2012-01-24 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20120025160A1 (en) | 2010-07-30 | 2012-02-02 | Kabushiki Kaisha Toshiba | Nonvolatile memory device |
US20120159653A1 (en) | 2008-12-04 | 2012-06-21 | Sigma-Aldrich Co. | Genomic editing of genes involved in macular degeneration |
US20120164118A1 (en) | 2009-05-04 | 2012-06-28 | Fred Hutchinson Cancer Research Center | Cocal vesiculovirus envelope pseudotyped retroviral vectors |
US8236943B2 (en) | 2009-07-01 | 2012-08-07 | Protiva Biotherapeutics, Inc. | Compositions and methods for silencing apolipoprotein B |
US20120204282A1 (en) | 2011-02-04 | 2012-08-09 | Sangamo Biosciences, Inc. | Methods and compositions for treating occular disorders |
WO2012135025A2 (en) | 2011-03-28 | 2012-10-04 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US20120251618A1 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
US8283333B2 (en) | 2009-07-01 | 2012-10-09 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20120328580A1 (en) | 2008-02-07 | 2012-12-27 | Albert Edge | Compounds that enhance atoh1 expression |
US8404658B2 (en) | 2007-12-31 | 2013-03-26 | Nanocor Therapeutics, Inc. | RNA interference for the treatment of heart failure |
US20130122591A1 (en) | 2011-10-27 | 2013-05-16 | The Regents Of The University Of California | Methods and compositions for modification of the hprt locus |
US8454972B2 (en) | 2004-07-16 | 2013-06-04 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Method for inducing a multiclade immune response against HIV utilizing a multigene and multiclade immunogen |
US20130145487A1 (en) | 2010-05-12 | 2013-06-06 | Cellectis | Meganuclease variants cleaving a dna target sequence from the dystrophin gene and uses thereof |
US20130171732A1 (en) | 2011-10-06 | 2013-07-04 | Sangamo Biosciences, Inc. | Methods and compositions for regulating hiv infection |
US20130183282A1 (en) | 2010-05-12 | 2013-07-18 | Cellectis | Meganuclease variants cleaving a DNA target sequence from the rhodopsin gene and uses thereof |
US20130202678A1 (en) | 2008-07-29 | 2013-08-08 | Academia Sinica | Puf-a and related compounds for treatment of retinopathies and sight-threatening ophthalmologic disorders |
WO2013126794A1 (en) | 2012-02-24 | 2013-08-29 | Fred Hutchinson Cancer Research Center | Compositions and methods for the treatment of hemoglobinopathies |
US20130236946A1 (en) | 2007-06-06 | 2013-09-12 | Cellectis | Meganuclease variants cleaving a dna target sequence from the mouse rosa26 locus and uses thereof |
WO2013138585A1 (en) | 2012-03-16 | 2013-09-19 | The Broad Institute, Inc. | Multiplex methods to assay mixed cell populations simultaneously |
US20130245107A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
US20130253040A1 (en) | 2012-02-29 | 2013-09-26 | c/o Sangamo BioSciences, Inc. | Methods and compositions for treating huntington's disease |
WO2013163628A2 (en) | 2012-04-27 | 2013-10-31 | Duke University | Genetic correction of mutated genes |
US20130302401A1 (en) | 2010-08-26 | 2013-11-14 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
WO2014018423A2 (en) | 2012-07-25 | 2014-01-30 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
US8709843B2 (en) | 2006-08-24 | 2014-04-29 | Rohm Co., Ltd. | Method of manufacturing nitride semiconductor and nitride semiconductor element |
WO2014093655A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
WO2014093701A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
WO2014093595A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
WO2014093718A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
WO2014093635A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
WO2014093622A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
WO2014093712A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
WO2014093709A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
US20140287938A1 (en) | 2013-03-15 | 2014-09-25 | The Broad Institute, Inc. | Recombinant virus and preparations thereof |
US9405700B2 (en) | 2010-11-04 | 2016-08-02 | Sonics, Inc. | Methods and apparatus for virtualization in an integrated circuit |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US101A (en) | 1836-12-06 | Method of jcakibtg and furling iw sails fob ships | ||
WO2008054544A2 (en) * | 2006-05-22 | 2008-05-08 | Immune Disease Institute, Inc. | Method for delivery across the blood brain barrier |
WO2012031205A2 (en) * | 2010-09-03 | 2012-03-08 | The Brigham And Women's Hospital, Inc. | Lipid-polymer hybrid particles |
EP2591770B1 (en) * | 2011-11-14 | 2016-03-16 | Silenseed Ltd | Compositions for siRNA delivery and methods of manufacturing and using same |
DE18200782T1 (en) * | 2012-04-02 | 2021-10-21 | Modernatx, Inc. | MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF PROTEINS ASSOCIATED WITH DISEASES IN HUMANS |
AU2013204327B2 (en) * | 2012-04-20 | 2016-09-01 | Aviagen | Cell transfection method |
HUE038850T2 (en) * | 2012-05-25 | 2018-11-28 | Univ California | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
US9834791B2 (en) * | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
EP3155116A4 (en) * | 2014-06-10 | 2017-12-27 | Massachusetts Institute Of Technology | Method for gene editing |
US11116729B2 (en) * | 2019-01-17 | 2021-09-14 | Georgia Tech Research Corporation | Drug delivery systems containing oxidized cholesterols |
US20220273566A1 (en) * | 2019-07-29 | 2022-09-01 | Georgia Tech Research Corporation | Nanomaterials containing constrained lipids and uses thereof |
-
2014
- 2014-12-12 MX MX2016007327A patent/MX2016007327A/en unknown
- 2014-12-12 KR KR1020167018584A patent/KR20160089526A/en not_active Application Discontinuation
- 2014-12-12 EP EP14827606.6A patent/EP3079726B1/en active Active
- 2014-12-12 AU AU2014361826A patent/AU2014361826A1/en not_active Abandoned
- 2014-12-12 CN CN201480072807.4A patent/CN106536729A/en active Pending
- 2014-12-12 EP EP18199415.3A patent/EP3470089A1/en active Pending
- 2014-12-12 BR BR112016013213A patent/BR112016013213A2/en not_active IP Right Cessation
- 2014-12-12 CA CA2932475A patent/CA2932475A1/en not_active Abandoned
- 2014-12-12 WO PCT/US2014/070057 patent/WO2015089419A2/en active Application Filing
- 2014-12-12 SG SG10201804977UA patent/SG10201804977UA/en unknown
- 2014-12-12 JP JP2016539044A patent/JP2017501149A/en active Pending
-
2015
- 2015-05-06 US US14/705,719 patent/US20150232883A1/en not_active Abandoned
-
2016
- 2016-06-08 IL IL246106A patent/IL246106B/en active IP Right Grant
-
2020
- 2020-02-02 IL IL272423A patent/IL272423A/en unknown
- 2020-07-06 US US16/920,982 patent/US20200340015A1/en active Pending
Patent Citations (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217344A (en) | 1976-06-23 | 1980-08-12 | L'oreal | Compositions containing aqueous dispersions of lipid spheres |
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4186183A (en) | 1978-03-29 | 1980-01-29 | The United States Of America As Represented By The Secretary Of The Army | Liposome carriers in chemotherapy of leishmaniasis |
US4261975A (en) | 1979-09-19 | 1981-04-14 | Merck & Co., Inc. | Viral liposome particle |
US4485054A (en) | 1982-10-04 | 1984-11-27 | Lipoderm Pharmaceuticals Limited | Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV) |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US5049386A (en) | 1985-01-07 | 1991-09-17 | Syntex (U.S.A.) Inc. | N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4946787A (en) | 1985-01-07 | 1990-08-07 | Syntex (U.S.A.) Inc. | N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4797368A (en) | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US4774085A (en) | 1985-07-09 | 1988-09-27 | 501 Board of Regents, Univ. of Texas | Pharmaceutical administration systems containing a mixture of immunomodulators |
EP0264166A1 (en) | 1986-04-09 | 1988-04-20 | Genzyme Corporation | Transgenic animals secreting desired proteins into milk |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US5589466A (en) | 1989-03-21 | 1996-12-31 | Vical Incorporated | Induction of a protective immune response in a mammal by injecting a DNA sequence |
US5445934A (en) | 1989-06-07 | 1995-08-29 | Affymax Technologies N.V. | Array of oligonucleotides on a solid substrate |
WO1991016024A1 (en) | 1990-04-19 | 1991-10-31 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
WO1991017424A1 (en) | 1990-05-03 | 1991-11-14 | Vical, Inc. | Intracellular delivery of biologically active substances by means of self-assembling lipid complexes |
US5210015A (en) | 1990-08-06 | 1993-05-11 | Hoffman-La Roche Inc. | Homogeneous assay system using the nuclease activity of a nucleic acid polymerase |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
WO1993024641A2 (en) | 1992-06-02 | 1993-12-09 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Adeno-associated virus with inverted terminal repeat sequences as promoter |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
WO1996039154A1 (en) | 1995-06-06 | 1996-12-12 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US20040171156A1 (en) | 1995-06-07 | 2004-09-02 | Invitrogen Corporation | Recombinational cloning using nucleic acids having recombination sites |
WO1997003211A1 (en) | 1995-07-13 | 1997-01-30 | Isis Pharmaceuticals, Inc. | Antisense inhibition of hepatitis b virus replication |
US5985309A (en) | 1996-05-24 | 1999-11-16 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
US5846946A (en) | 1996-06-14 | 1998-12-08 | Pasteur Merieux Serums Et Vaccins | Compositions and methods for administering Borrelia DNA |
US5855913A (en) | 1997-01-16 | 1999-01-05 | Massachusetts Instite Of Technology | Particles incorporating surfactants for pulmonary drug delivery |
US6750059B1 (en) | 1998-07-16 | 2004-06-15 | Whatman, Inc. | Archiving of vectors |
US20030087817A1 (en) | 1999-01-12 | 2003-05-08 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
US7868149B2 (en) | 1999-07-20 | 2011-01-11 | Monsanto Technology Llc | Plant genome sequence and uses thereof |
US6603061B1 (en) | 1999-07-29 | 2003-08-05 | Monsanto Company | Agrobacterium-mediated plant transformation method |
US7776321B2 (en) | 2001-09-26 | 2010-08-17 | Mayo Foundation For Medical Education And Research | Mutable vaccines |
US20050019923A1 (en) | 2001-10-19 | 2005-01-27 | Ijeoma Uchegbu | Dendrimers for use in targeted delivery |
US20090100536A1 (en) | 2001-12-04 | 2009-04-16 | Monsanto Company | Transgenic plants with enhanced agronomic traits |
US7206639B2 (en) | 2002-03-15 | 2007-04-17 | Sarcos Investments Lc | Cochlear drug delivery system and method |
EP1519714A1 (en) | 2002-06-28 | 2005-04-06 | Protiva Biotherapeutics Inc. | Method and apparatus for producing liposomes |
US7901708B2 (en) | 2002-06-28 | 2011-03-08 | Protiva Biotherapeutics, Inc. | Liposomal apparatus and manufacturing methods |
US7982027B2 (en) | 2003-07-16 | 2011-07-19 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
US7803397B2 (en) | 2003-09-15 | 2010-09-28 | Protiva Biotherapeutics, Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
EP1664316A1 (en) | 2003-09-15 | 2006-06-07 | Protiva Biotherapeutics Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US20050287127A1 (en) | 2003-11-13 | 2005-12-29 | Huawei Li | Use of stem cells to generate inner ear cells |
US20060030837A1 (en) | 2004-01-29 | 2006-02-09 | The Charles Stark Draper Laboratory, Inc. | Drug delivery apparatus |
US7799565B2 (en) | 2004-06-07 | 2010-09-21 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
EP1766035A1 (en) | 2004-06-07 | 2007-03-28 | Protiva Biotherapeutics Inc. | Lipid encapsulated interfering rna |
US7745651B2 (en) | 2004-06-07 | 2010-06-29 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use |
EP1781593A2 (en) | 2004-06-07 | 2007-05-09 | Protiva Biotherapeutics Inc. | Cationic lipids and methods of use |
US8454972B2 (en) | 2004-07-16 | 2013-06-04 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Method for inducing a multiclade immune response against HIV utilizing a multigene and multiclade immunogen |
US20080267903A1 (en) | 2004-10-14 | 2008-10-30 | Ijeoma Uchegbu | Bioactive Polymers |
US20070093878A1 (en) | 2005-09-08 | 2007-04-26 | Albert Edge | Cochlear implants containing biological cells and uses thereof |
US7838658B2 (en) | 2005-10-20 | 2010-11-23 | Ian Maclachlan | siRNA silencing of filovirus gene expression |
US8188263B2 (en) | 2005-11-02 | 2012-05-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US8101741B2 (en) | 2005-11-02 | 2012-01-24 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20090222937A1 (en) | 2006-02-13 | 2009-09-03 | Cellectis | Meganuclease variants cleaving a dna target sequence from a xeroderma pigmentosum gene and uses thereof |
US7915399B2 (en) | 2006-06-09 | 2011-03-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20090271881A1 (en) | 2006-07-18 | 2009-10-29 | Cellectis | Meganuclease variants cleaving a dna target sequence from a rag gene and uses thereof |
US8709843B2 (en) | 2006-08-24 | 2014-04-29 | Rohm Co., Ltd. | Method of manufacturing nitride semiconductor and nitride semiconductor element |
US20100146651A1 (en) | 2006-11-14 | 2010-06-10 | Cellectis | Meganuclease variants cleaving a dna target sequence from the hprt gene and uses thereof |
US20130236946A1 (en) | 2007-06-06 | 2013-09-12 | Cellectis | Meganuclease variants cleaving a dna target sequence from the mouse rosa26 locus and uses thereof |
US20100229252A1 (en) | 2007-07-23 | 2010-09-09 | Cellectis | Meganuclease variants cleaving a dna target sequence from the human hemoglobin beta gene and uses thereof |
US20110091441A1 (en) | 2007-08-03 | 2011-04-21 | Cellectis | Meganuclease variants cleaving a dna target sequence from the human interleukin-2 receptor gamma chain gene and uses thereof |
US20110230839A1 (en) | 2007-08-14 | 2011-09-22 | Fred Hutchinson Cancer Research Center | Needle Array Assembly and Method for Delivering Therapeutic Agents |
US8404658B2 (en) | 2007-12-31 | 2013-03-26 | Nanocor Therapeutics, Inc. | RNA interference for the treatment of heart failure |
US20120328580A1 (en) | 2008-02-07 | 2012-12-27 | Albert Edge | Compounds that enhance atoh1 expression |
US8058069B2 (en) | 2008-04-15 | 2011-11-15 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20110142917A1 (en) | 2008-06-06 | 2011-06-16 | Egvenia Alpert | Compositions and methods for treatment of ear disorders |
US20130202678A1 (en) | 2008-07-29 | 2013-08-08 | Academia Sinica | Puf-a and related compounds for treatment of retinopathies and sight-threatening ophthalmologic disorders |
US20110225664A1 (en) | 2008-09-08 | 2011-09-15 | Cellectis | Meganuclease variants cleaving a dna target sequence from a glutamine synthetase gene and uses thereof |
US20110182867A1 (en) | 2008-09-15 | 2011-07-28 | Children's Medical Center Corporation | Modulation of bcl11a for treatment of hemoglobinopathies |
US20100311124A1 (en) | 2008-10-29 | 2010-12-09 | Sangamo Biosciences, Inc. | Methods and compositions for inactivating glutamine synthetase gene expression |
US20110293703A1 (en) | 2008-11-07 | 2011-12-01 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US20110023144A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in amyotrophyic lateral sclerosis disease |
US20110023146A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in secretase-associated disorders |
US20110016540A1 (en) | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genome editing of genes associated with trinucleotide repeat expansion disorders in animals |
US20110023139A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in cardiovascular disease |
US20110023153A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in alzheimer's disease |
US20110023145A1 (en) | 2008-12-04 | 2011-01-27 | Sigma-Aldrich Co. | Genomic editing of genes involved in autism spectrum disorders |
US20120159653A1 (en) | 2008-12-04 | 2012-06-21 | Sigma-Aldrich Co. | Genomic editing of genes involved in macular degeneration |
US20100291048A1 (en) | 2009-03-20 | 2010-11-18 | Sangamo Biosciences, Inc. | Modification of CXCR4 using engineered zinc finger proteins |
US20120164118A1 (en) | 2009-05-04 | 2012-06-28 | Fred Hutchinson Cancer Research Center | Cocal vesiculovirus envelope pseudotyped retroviral vectors |
US8283333B2 (en) | 2009-07-01 | 2012-10-09 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US8236943B2 (en) | 2009-07-01 | 2012-08-07 | Protiva Biotherapeutics, Inc. | Compositions and methods for silencing apolipoprotein B |
WO2011028929A2 (en) | 2009-09-03 | 2011-03-10 | The Regents Of The University Of California | Nitrate-responsive promoter |
US20110059502A1 (en) | 2009-09-07 | 2011-03-10 | Chalasani Sreekanth H | Multiple domain proteins |
US20110158957A1 (en) | 2009-11-10 | 2011-06-30 | Sangamo Biosciences, Inc. | Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases |
US20120017290A1 (en) | 2010-04-26 | 2012-01-19 | Sigma Aldrich Company | Genome editing of a Rosa locus using zinc-finger nucleases |
US20110265198A1 (en) | 2010-04-26 | 2011-10-27 | Sangamo Biosciences, Inc. | Genome editing of a Rosa locus using nucleases |
US20130145487A1 (en) | 2010-05-12 | 2013-06-06 | Cellectis | Meganuclease variants cleaving a dna target sequence from the dystrophin gene and uses thereof |
US20130183282A1 (en) | 2010-05-12 | 2013-07-18 | Cellectis | Meganuclease variants cleaving a DNA target sequence from the rhodopsin gene and uses thereof |
US20120025160A1 (en) | 2010-07-30 | 2012-02-02 | Kabushiki Kaisha Toshiba | Nonvolatile memory device |
US20130302401A1 (en) | 2010-08-26 | 2013-11-14 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
US9405700B2 (en) | 2010-11-04 | 2016-08-02 | Sonics, Inc. | Methods and apparatus for virtualization in an integrated circuit |
US20120204282A1 (en) | 2011-02-04 | 2012-08-09 | Sangamo Biosciences, Inc. | Methods and compositions for treating occular disorders |
WO2012135025A2 (en) | 2011-03-28 | 2012-10-04 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US20120251618A1 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
US20130171732A1 (en) | 2011-10-06 | 2013-07-04 | Sangamo Biosciences, Inc. | Methods and compositions for regulating hiv infection |
US20130137104A1 (en) | 2011-10-27 | 2013-05-30 | The Regents Of The University Of California | Methods and compositions for modification of the hprt locus |
US20130122591A1 (en) | 2011-10-27 | 2013-05-16 | The Regents Of The University Of California | Methods and compositions for modification of the hprt locus |
US20130245107A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
US20130244279A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Formulation and delivery of plga microspheres |
US20130252281A1 (en) | 2011-12-16 | 2013-09-26 | modeRNA Therapeutics | Formulation and delivery of plga microspheres |
WO2013126794A1 (en) | 2012-02-24 | 2013-08-29 | Fred Hutchinson Cancer Research Center | Compositions and methods for the treatment of hemoglobinopathies |
US20130253040A1 (en) | 2012-02-29 | 2013-09-26 | c/o Sangamo BioSciences, Inc. | Methods and compositions for treating huntington's disease |
WO2013138585A1 (en) | 2012-03-16 | 2013-09-19 | The Broad Institute, Inc. | Multiplex methods to assay mixed cell populations simultaneously |
WO2013163628A2 (en) | 2012-04-27 | 2013-10-31 | Duke University | Genetic correction of mutated genes |
WO2014018423A2 (en) | 2012-07-25 | 2014-01-30 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
EP2764103A2 (en) | 2012-12-12 | 2014-08-13 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
WO2014093661A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
WO2014093701A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
WO2014093595A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140170753A1 (en) | 2012-12-12 | 2014-06-19 | Massachusetts Institute Of Technology | Crispr-cas systems and methods for altering expression of gene products |
WO2014093718A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
WO2014093635A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
WO2014093622A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
WO2014093712A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
WO2014093709A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
US20140179006A1 (en) | 2012-12-12 | 2014-06-26 | Massachusetts Institute Of Technology | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140179770A1 (en) | 2012-12-12 | 2014-06-26 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US20140189896A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140186958A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US20140186843A1 (en) | 2012-12-12 | 2014-07-03 | Massachusetts Institute Of Technology | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
US20140186919A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US8771945B1 (en) | 2012-12-12 | 2014-07-08 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
US8795965B2 (en) | 2012-12-12 | 2014-08-05 | The Broad Institute, Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
US20140227787A1 (en) | 2012-12-12 | 2014-08-14 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
US20140234972A1 (en) | 2012-12-12 | 2014-08-21 | Massachusetts Institute Of Technology | CRISPR-CAS Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US20140242699A1 (en) | 2012-12-12 | 2014-08-28 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US20140242664A1 (en) | 2012-12-12 | 2014-08-28 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140242700A1 (en) | 2012-12-12 | 2014-08-28 | Massachusetts Institute Of Technology | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
EP2771468A1 (en) | 2012-12-12 | 2014-09-03 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140248702A1 (en) | 2012-12-12 | 2014-09-04 | The Broad Institute, Inc. | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US20140256046A1 (en) | 2012-12-12 | 2014-09-11 | Massachusetts Institute Of Technology | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US20140273231A1 (en) | 2012-12-12 | 2014-09-18 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140273232A1 (en) | 2012-12-12 | 2014-09-18 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140273234A1 (en) | 2012-12-12 | 2014-09-18 | The Board Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
WO2014093655A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
EP2784162A1 (en) | 2012-12-12 | 2014-10-01 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140310830A1 (en) | 2012-12-12 | 2014-10-16 | Feng Zhang | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US8865406B2 (en) | 2012-12-12 | 2014-10-21 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US8871445B2 (en) | 2012-12-12 | 2014-10-28 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
US8889418B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US8889356B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
US8895308B1 (en) | 2012-12-12 | 2014-11-25 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US20140287938A1 (en) | 2013-03-15 | 2014-09-25 | The Broad Institute, Inc. | Recombinant virus and preparations thereof |
Non-Patent Citations (273)
Title |
---|
"METHODS IN ENZYMOLOGY", ACADEMIC PRESS, INC. |
A.R. GRUBER ET AL., CELL, vol. 106, no. 1, 2008, pages 23 - 24 |
A.R. GRUBER, CELL, vol. 106, no. 1, 2008, pages 23 - 24 |
ADVANCED DRUG DELIVERY REVIEWS, vol. 64, 2012, pages 1730 - 1737 |
AHMAD ET AL., CANCER RES., vol. 52, 1992, pages 4817 - 4820 |
AHMAD, S. ET AL., J ROYAL SOC INTERFACE, vol. 7, 2010, pages 423 - 33 |
AIUTI ET AL., NAT. MED., vol. 8, 2002, pages 423 - 425 |
ALABI ET AL., PROC TL ACAD SCI U S A., vol. 110, no. 32, 6 August 2013 (2013-08-06), pages 12881 - 6 |
ALTSCHUL ET AL., J.MOL. BIOL., 1990, pages 403 - 410 |
ALVAREZ-ERVITI ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 341 |
AMRANN ET AL., GENE, vol. 69, 1988, pages 301 - 315 |
ANDERSON, SCIENCE, vol. 256, 1992, pages 808 - 813 |
ATSCHUL ET AL., J. MOL. BIOL., 1990, pages 403 - 410 |
AUSUBEL ET AL., SHORT PROTOCOLS IN MOLECULAR BIOLOGY, 1999, pages 7 - 58,7-60 |
AUSUBEL ET AL.: "Short Protocols in Molecular Biology, 4th Ed.", 1999, article "Chapter 18" |
BAILEY ET AL., J MOL MED (BERL)., vol. 77, no. 1, January 1999 (1999-01-01), pages 244 - 9 |
BALAGAAN: "J Gene Med", vol. 8, 21 November 2005, WILEY INTERSCIENCE, pages: 275 - 285 |
BALDARI, EMBO J., vol. 6, 1987, pages 229 - 234 |
BANEIJI, CELL, vol. 33, 1983, pages 729 - 740 |
BARTLETT ET AL., PNAS, vol. 104, no. 39, 25 September 2007 (2007-09-25) |
BAUER ET AL., SCIENCE, vol. 342, no. 6155, 11 October 2013 (2013-10-11), pages 253 - 257 |
BEHR ET AL., BIOCONJUGATE CHEM., vol. 5, 1994, pages 382 - 389 |
BINLEY ET AL., HUMAN GENE THERAPY, vol. 23, September 2012 (2012-09-01), pages 980 - 991 |
BLAESE ET AL., CANCER GENE THER., vol. 2, 1995, pages 291 - 297 |
BLOOD, vol. 88, pages 3901 - 3909 |
BORTOLANZA ET AL., MOLECULAR THERAPY, vol. 19, no. 11, November 2011 (2011-11-01), pages 2055 - 2064 |
BOSHART ET AL., CELL, vol. 41, 1985, pages 521 - 530 |
BOUDREAU ET AL., MOLECULAR THERAPY, vol. 17, no. 6, June 2009 (2009-06-01) |
BOUSSO ET AL., PROC. NATL., ACAD. SCI. USA, vol. 97, 2000, pages 274 - 278 |
BUCAN ET AL., PLOS GENETICS, vol. 5, 2009, pages E1000536 |
BUCHSCHER ET AL., J. VIROL., vol. 66, 1992, pages 2731 - 2739 |
BUNTING ET AL., HUM. GENE THER., vol. 11, 2000, pages 2353 - 2364 |
BUNTING ET AL., NAT. MED., vol. 4, 1998, pages 58 - 64 |
BYRNEAND RUDDLE, PROC. NATL ACAD.SCI. USA, vol. 86, 1989, pages 5473 - 5477 |
CALAME; EATON, ADV. IMMUNOL., vol. 43, 1988, pages 235 - 275 |
CAMPES; TILGHMAN, GENES DEV., vol. 3, 1989, pages 537 - 546 |
CAMPOCHIARO ET AL., HUMAN GENE THERAPY, vol. 17, February 2006 (2006-02-01), pages 167 - 176 |
CANDOTTI ET AL., BLOOD, vol. 87, 1996, pages 3097 - 3102 |
CAVAZZANA-CALVO ET AL., ANNU. REV. MED., vol. 56, 2005, pages 585 - 602 |
CAVAZZANA-CALVO ET AL., AUNU. REV. MED., vol. 56, 2005, pages 585 - 602 |
CAVAZZANA-CALVO ET AL., BLOOD, 1996 |
CAVAZZANA-CALVO ET AL., SCIENCE, vol. 288, 2000, pages 669 - 672 |
CELL STEM CELL, vol. 3, 2013, pages 659 - 62 |
CHAN-HUI, CLINICAL IMMUNOLOGY, vol. 111, 2003, pages 162 - 174 |
CHEN ET AL., GENE THERAPY, vol. 14, 2007, pages 11 - 19 |
CHO, S.; GOLDBERG, M.; SON, S.; XU, Q.; YANG, F.; MEI, Y.; BOGATYREV, S.; LANGER, R.; ANDERSON, D.: "Lipid-like nanoparticles for small interfering RNA delivery to endothelial cells", ADVANCED FUNCTIONAL MATERIALS, vol. 19, 2010, pages 3112 - 3118, XP001548633, DOI: doi:10.1002/adfm.200900519 |
CHOI ET AL., PROC. NATL. ACAD. SCI. USA., vol. 110, no. 19, 2013, pages 7625 - 7630 |
COELHO ET AL., N ENGL J MED, vol. 369, 2013, pages 819 - 29 |
CONG, L.; RAN, F.A.; COX, D.; LIN, S.; BARRETTO, R.; HABIB, N.; HSU, P.D.; WU, X.; JIANG, W.; MARRAFFINI, L.A.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 819 - 23, XP055469277, DOI: doi:10.1126/science.1231143 |
CRYSTAL, SCIENCE, vol. 270, 1995, pages 404 - 410 |
CSABA RÉVÉSZ; PÉTER HAMAR: "Delivery Methods to Target RNAs in the Kidney, Gene Therapy Applications", 2011, ISBN: 978-953-307-5 |
CUTLER ET AL., J. AM. CHEM. SOC., vol. 133, 2011, pages 9254 - 9257 |
CUTLER ET AL., J. AM. CHEM. SOC., vol. 134, 2012, pages 1376 - 1391 |
DAHLMAN, J. E. ET AL., NAT. NANOTECHNOL., vol. 9, 2014, pages 648 - 655 |
DALKARA ET AL., SCI TRANSL MED, vol. 5, 2013, pages 189RA76 |
DAVIS ET AL., NATURE, vol. 464, 15 April 2010 (2010-04-15) |
DEVEREUX ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387 |
DIFIGLIA ET AL., PNAS, vol. 104, no. 43, 23 October 2007 (2007-10-23), pages 17204 - 17209 |
DILLON, TIBTECH, vol. 11, 1993, pages 167 - 175 |
DOENCH ET AL.: "Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation", NATURE BIOTECHNOLOGY, 3 September 2014 (2014-09-03) |
DUMONCEAUX ET AL., MOLECULAR THERAPY, vol. 18, no. 5, May 2010 (2010-05-01), pages 881 - 887 |
E ERS ET AL., NUCLEIC ACIDS RESEARCH, vol. 32, no. 19, 2004 |
EDLUND ET AL., SCIENCE, vol. 230, 1985, pages 912 - 916 |
EL-ANDALOUSSI ET AL., NATURE PROTOCOLS, vol. 7, 2012, pages 2112 - 2126 |
EL-ANDALOUSSI S ET AL.: "Exosome-mediated delivery of siRNA in vitro and in vivo.", NAT PROTOC., vol. 7, no. 12, 15 November 2012 (2012-11-15), pages 2112 - 26, XP055129954, DOI: doi:10.1038/nprot.2012.131 |
ELIAS I. TRABOULSI,: "Genetic Diseases of the Eye, Second Edition,", 2012, OXFORD UNIVERSITY PRESS |
EULALIO ET AL., NATURE, vol. 492, 2012, pages 376 |
F. M. AUSUBEL, ET AL.: "CURRENT PROTOCOLS IN MOLECULAR BIOLOGY", 1987 |
FEMS MICROBIOL LETT., vol. 174, no. 2, 1999, pages 247 - 50 |
FEMS MICROBIOL LETT., vol. 177, no. 1, 1999, pages 187 - 8 |
FISCHER ET AL., IMMUNOL. REV., vol. 203, 2005, pages 98 - 109 |
FREITAG ET AL., EUR. CHILD. ADOLESC. PSYCHIATRY, vol. 19, 2010, pages 169 - 178 |
GAO ET AL., GENE THERAPY, vol. 2, 1995, pages 710 - 722 |
GARRETT, N.L. ET AL., J BIOPHOTONICS, no. 5-6, 2012, pages 458 - 68 |
GARRETT, N.L. ET AL., J RAMAN SPECT, vol. 43, no. 5, 2012, pages 681 - 688 |
GASIUNAS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 109, 2012, pages E2579 |
GASPAR ET AL., LANCET, vol. 364, 2004, pages 2181 - 2187 |
GEISBERT ET AL., LANCET, vol. 375, 2010, pages 1896 - 905 |
GIBLETT ET AL., LANCET, vol. 2, 1972, pages 1067 - 1069 |
GIULIANO A VANZINI, JEFFREY L. NOEBELS: "Genetics of Epilepsy and Genetic Epilepsies", vol. 20, 2009, MARIANI FOUNDATION PAEDIATRIC NEUROLOGY |
GOEDDEL: "GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY", vol. 185, 1990, ACADEMIC PRESS |
GRIMM ET AL., NATURE, vol. 441, 26 May 2006 (2006-05-26) |
GRIMM, D. ET AL., J. VIROL., vol. 82, 2008, pages 5887 - 5911 |
GROENEN ET AL., MOL. MICROBIOL., vol. 10, 1993, pages 1057 - 1065 |
GRUBER ET AL., NUCLEIC ACIDS RESEARCH, vol. 36, 2008, pages W70 |
GUSCHIN ET AL., METHODS MOL BIOL, vol. 649, 2010, pages 247 |
HACEIN-BEY ET AL., BLOOD, vol. 92, 1998, pages 4090 - 4097 |
HADDADA ET AL.: "Current Topics in Microbiology and Immunology", 1995 |
HAGSTROM ET AL., MOLECULAR THERAPY, vol. 10, no. 2, August 2004 (2004-08-01) |
HAO ET AL., SMALL, vol. 7, 2011, pages 3158 - 3162 |
HARLOW AND LANE,: "ANTIBODIES, A LABORATORY MANUAL", 1988 |
HICKERSON ET AL., MOLECULAR THERAPYNUCLEIC ACIDS, vol. 2, 2013, pages E129 |
HIGGINS DG; SHARP PM, GENE, vol. 73, no. 1, 1988, pages 237 - 244 |
HIRSCHHORN ET AL., NAT. GENET, vol. 13, 1996, pages 290 - 295 |
HOE ET AL., EMERG. INFECT. DIS., vol. 5, 1999, pages 254 - 263 |
HORMONAL; MUZYCZKA, PNAS, vol. 81, 1984, pages 6466 - 6470 |
HORWELL DC, TRENDS BIOTECHNOL., vol. 13, no. 4, 1995, pages 132 - 134 |
HSU ET AL.: "Development and Applications of CRISPR-Cas9 for Genome Engineering", CELL, vol. 157, 5 June 2014 (2014-06-05), pages 1262 - 1278, XP028849523, DOI: doi:10.1016/j.cell.2014.05.010 |
HSU, P.; SCOTT, D.; WEINSTEIN, J.; RAN, FA.; KONERMANN, S.; AGARWALA, V.; LI, Y.; FINE, E.; WU, X.; SHALEM, O.: "DNA targeting specificity of RNA-guided Cas9 nucleases.", NAT BIOTECHNOL, 2013 |
ISHINO ET AL., J. BACTERIOL., vol. 169, 1987, pages 5429 - 5433 |
JAMES E. DAHLMAN; CARMEN BARNES ET AL., NATURE NANOTECHNOLOGY, 11 May 2014 (2014-05-11) |
JANSEN ET AL., MOL. MICROBIOL., vol. 43, 2002, pages 1565 - 1575 |
JANSSEN ET AL., OMICS J. INTEG. BIOL., vol. 6, 2002, pages 23 - 33 |
JAYARAMAN, ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 852 - 8 |
JENSEN ET AL., SCI. TRANSL. MED., vol. 5, 2013, pages 209RA152 |
JIANG ET AL., NANO LETT., vol. 13, no. 3, 13 March 2013 (2013-03-13), pages 1059 - 64 |
JIANG W.; BIKARD D.; COX D.; ZHANG F; MARRAFFINI LA: "RNA-guided editing of bacterial gcnomes using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, no. 3, March 2013 (2013-03-01), pages 233 - 9, XP055249123, DOI: doi:10.1038/nbt.2508 |
JINEK, SCIENCE, vol. 337, 2012, pages 816 |
JOHANN ET AL., J. VIROL., vol. 66, 1992, pages 1635 - 1640 |
JONKERS ET AL., AM. J. VET RES., vol. 25, 1964, pages 236 - 242 |
JONKERS ET AL., AM. J. VET. RES., vol. 25, 1964, pages 236 - 242 |
JUDGE, J. CLIN. INVEST., vol. 119, 2009, pages 661 - 673 |
JUNG ET AL., MOLECULAR THERAPY, vol. 21, no. 4, April 2013 (2013-04-01), pages 834 - 841 |
KANASTY; ANDERSON, NATURE MATERIALS, vol. 12, November 2013 (2013-11-01) |
KARAGIANNIS ET AL., ACS NANO., vol. 6, no. 10, 23 October 2012 (2012-10-23), pages 8484 - 7 |
KARGINOV; HANNON: "The CR SPR system: small RNA-guided defence in bacteria and archaea", MOLE CELL, vol. 37, no. 1, 15 January 2010 (2010-01-15), pages 7 |
KARGINOV; HANNON: "The CRISPR system: small RNA-guided defence in bacteria and archaea", MOLE CELL, vol. 37, no. 1, 15 January 2010 (2010-01-15), pages 7, XP055016972, DOI: doi:10.1016/j.molcel.2009.12.033 |
KAUFMAN ET AL., EMBO J., vol. 6, 1987, pages 187 - 195 |
KESSEL; GRUSS, SCIENCE, vol. 249, 1990, pages 374 - 379 |
KINOUCHI ET AL., GENE THERAPY, vol. 15, 2008, pages 1126 - 1130 |
KONERMANN S; BRIGHAM MD; TREVINO AE; HSU PD; HEIDENREICH M; CONG L; PLATT RJ; SCOTT DA; CHURCH GM; ZHANG F: "Optical control of mammalian endogenous transcription and epigenetic states", NATURE, vol. 500, no. 7463, 22 August 2013 (2013-08-22), pages 472 - 6 |
KOTIN, HUMAN GENE THERAPY, vol. 5, 1994, pages 793 - 801 |
KREMER; PERRICAUDET, BRITISH MEDICAL BULLETIN, vol. 51, no. 1, 1995, pages 31 - 44 |
KUIJAN; HERSKOWITZ, CELL, vol. 30, 1982, pages 933 - 943 |
LALATSA ET AL., J CONTROL RELEASE, vol. 161, no. 2, 20 July 2012 (2012-07-20), pages 523 - 36 |
LALATSA, A. ET AL., J CONTR REL, vol. 161, no. 2, 2012, pages 523 - 36 |
LALATSA, A. ET AL., MOL PHARM, vol. 9, no. 6, 2012, pages 1665 - 80 |
LALATSA, A. ET AL., MOL PHARM, vol. 9, no. 6, 2012, pages 1764 - 74 |
LEACHMAN ET AL., MOLECULAR THERAPY, vol. 18, no. 2, February 2010 (2010-02-01), pages 442 - 446 |
LEE ET AL., NAT NANOTECHNOL., vol. 7, no. 6, 3 June 2012 (2012-06-03), pages 389 - 93 |
LEWIS ET AL., NAT. GEN., vol. 32, 2002, pages 107 - 108 |
LI ET AL., MOLECULAR THERAPY, vol. 17, no. 12, December 2009 (2009-12-01), pages 2067 - 2077 |
LI, GENE THERAPY, vol. 19, 2012, pages 775 - 780 |
LIN-YANGA ET AL., PNAS, vol. 106, no. 10, 10 March 2009 (2009-03-10) |
LIVINGSTONE C.D.; BARTON G.J.: "Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation", COMPUT. APPL.BIOSCI., vol. 9, 1993, pages 745 - 756 |
LUCKLOW; SUMMERS, VIROLOGY, vol. 170, 1989, pages 31 - 39 |
M.J. MACPHERSON, B.D. HAMES AND G.R. TAYLOR: "PCR 2: A PRACTICAL APPROACH", 1995 |
MACCHI ET AL., NATURE, vol. 377, 1995, pages 65 - 68 |
MAKAROVA ET AL., NAT REV MICROBIOL, vol. 9, 2011, pages 467 |
MASEPOHL ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 1307, 1996, pages 26 - 30 |
MAZZA ET AL., ACS NANO., vol. 7, no. 2, 26 February 2013 (2013-02-26), pages 1016 - 26 |
MAZZA, M. ET AL., ACSNANO, vol. 7, no. 2, 2013, pages 1016 - 1026 |
MCBRIDE ET AL., MOLECULAR THERAPY, vol. 19, no. 12, December 2011 (2011-12-01), pages 2152 - 2162 |
MCLVOR EI; POLAK U; NAPIERALA M, RNA BIOL., vol. 7, no. 5, September 2010 (2010-09-01), pages 551 - 8 |
MICHAEL S D; KORMANN ET AL.: "Expression of therapeutic proteins after delivery of chemically modified mRNA in mice", NATURE BIOTECHNOLOGY, vol. 29, 9 January 2011 (2011-01-09), pages 154 - 157, XP055040839, DOI: doi:10.1038/nbt.1733 |
MILLER ET AL., J. VIROL., vol. 65, 1991, pages 2220 - 2224 |
MILLER, NATURE, vol. 357, 1992, pages 455 - 460 |
MILLINGTON-WARD ET AL., MOLECULAR THERAPY, vol. 19, no. 4, April 2011 (2011-04-01), pages 642 - 649 |
MIRKIN ET AL., SMALL |
MIRKIN, NANOMEDICINE, vol. 7, 2012, pages 635 - 638 |
MITANI; CASKEY, TIBTECH, vol. 11, 1993, pages 162 - 166 |
MOJICA ET AL., MOL. MICROBIOL., vol. 17, 1995, pages 85 - 93 |
MOJICA ET AL., MOL. MICROBIOL., vol. 36, 2000, pages 244 - 246 |
MOL. CELL. BIOL., vol. 8, no. 1, 1988, pages 466 - 472 |
MOLITORIS ET AL., J AM SOC NEPHROL, vol. 20, 2009, pages 1754 - 1764 |
MORRELL ET AL.: "Crop genomics:advances and applications", NAT REV GENET., vol. 13, no. 2, 29 December 2011 (2011-12-29), pages 85 - 96 |
MORRISSEY ET AL., NATURE BIOTECHNOLOGY, vol. 23, no. 8, August 2005 (2005-08-01) |
MUKHERJEA ET AL., ANTIOXIDANTS & REDOX SIGNALING, vol. 13, no. 5, 2010 |
MUZYCZKA, J. CLIN. INVEST., vol. 94, 1994, pages 1351 |
NABEL; FELGNER, TIBTECH, vol. 11, 1993, pages 211 - 217 |
NAKAGAWA ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 101 - 106 |
NAKAMURA, Y. ET AL.: "Codon usage tabulated from the international DNA sequence databases: status for the year 2000", NUCL. ACIDS RES., vol. 28, 2000, pages 292, XP002941557, DOI: doi:10.1093/nar/28.1.292 |
NAKATA ET AL., J. BACTERIOL., vol. 171, 1989, pages 3553 - 3556 |
NISHIKOMORI ET AL., BLOOD, vol. 103, 2004, pages 4565 - 4572 |
NISHIMASU, H.; RAN, FA.; HSU, PD.; KONERMANN, S.; SHEHATA, SI.; DOHMAE, N.; ISHITANI, R.; ZHANG, F.; NUREKI, O.: "Crystal structure of cas9 in complex with guide RNA and target DNA", CELL, vol. 156, no. 5, 27 February 2014 (2014-02-27), pages 935 - 49, XP028667665, DOI: doi:10.1016/j.cell.2014.02.001 |
NOGUCHI ET AL., CELL, vol. 73, 1993, pages 147 - 157 |
OAKES; LIEBERMAN, CLIN ORTHOP RELAT RES., October 2000 (2000-10-01), pages 101 - 12 |
OKITA ET AL., NATURE, vol. 448, 2007, pages 260 - 262 |
PA CARR; GM CHURCH, NATURE BIOTECHNOLOGY, 2009, pages 1151 - 62 |
PA CARR; GM CHURCH, NATURE BIOTECHNOLOGY, vol. 27, no. 12, 2009, pages 1151 - 62 |
PARDRIDGE ET AL., COLD SPRING HARB PROTOC, 2010 |
PINKERT ET AL., GENES DEV., vol. 1, 1987, pages 268 - 277 |
PLATT ET AL.: "CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling", CELL, vol. 159, no. 2, 2014, pages 440 - 455, XP029073412, DOI: doi:10.1016/j.cell.2014.09.014 |
PROC. NATL. ACAD. SCI. USA., vol. 78, no. 3, 1981, pages 1527 - 31 |
QI ET AL., GENE THERAPY, 2013, pages 1 - 9 |
QU, X., BIOMACROMOLECULES, vol. 7, no. 12, 2006, pages 452 - 9 |
QUEEN; BALTIMORE, CELL, vol. 33, 1983, pages 741 - 748 |
R.I. FRESHNEY,: "ANIMAL CELL CULTURE", 1987 |
RAN ET AL., CELL, vol. 154, no. 6, 12 September 2013 (2013-09-12), pages 1380 - 9 |
RAN, FA.; HSU, PD.; LIN, CY.; GOOTENBERG, JS.; KONERMANN, S.; TREVINO, AE.; SCOTT, DA.; INOUE, A.; MATOBA, S.; ZHANG, Y.: "Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity", CELL, vol. S0092-86, no. 13, 28 August 2013 (2013-08-28), pages 01015 - 5 |
RAN, FA.; HSU, PD.; WRIGHT, J.; AGARWALA, V.; SCOTT, DA.; ZHANG, F: "Genome engineering using the CRISPR-Cas9 system", NATURE PROTOCOLS, vol. 8, no. 11, November 2013 (2013-11-01), pages 2281 - 308, XP009174668, DOI: doi:10.1038/nprot.2013.143 |
REICH ET AL., MOL. VISION., vol. 9, 2003, pages 210 - 216 |
REJALI ET AL., HEAR RES., vol. 228, no. 1-2, June 2007 (2007-06-01), pages 180 - 7 |
REMY ET AL., BIOCONJUGATE CHEM., vol. 5, 1994, pages 647 - 654 |
ROBERT D. WELLS; TETSUO ASHIZAWA: "Genetic Instabilities and Neurological Diseases, Second Edition,", 13 October 2011, ACADEMIC PRESS |
ROCLVINKI ET AL., MOLECULAR THERAPY, vol. 20, no. 9, September 2012 (2012-09-01), pages 1737 - 1749 |
ROSIN ET AL., MOLECULAR THERAPY, vol. 19, no. 12, December 2011 (2011-12-01), pages 1286 - 2200 |
ROZEMA ET AL., PNAS, vol. 104, no. 32, 7 August 2007 (2007-08-07) |
SALT; PLONTKE, DRUG DISCOVERY TODAY, vol. 10, 2005, pages 1299 - 1306 |
SAMBROOK ET AL.: "MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed.,", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SAMBROOK ET AL.: "Nonradioactive In Situ Hybridization Application Manual", 1989, BOEHRINGER MANNHEIM |
SAMBROOK; FRITSCH; MANIATIS: "MOLECULAR CLONING: A LABORATORY MANUAL, 2nd edition", 1989 |
SAMULSKI ET AL., J. VIROL., vol. 63, 1989, pages 03822 - 3828 |
SAPRANAUSAKS ET AL., NUCLEIC ACIDS RESCH, vol. 39, 2011, pages 9275 |
SAPRANAUSKAS ET AL., NUCLEIC ACTS RESEARCH, vol. 39, 2011, pages 9275 |
SATO ET AL., NATURE BIOTECHNOLOGY, vol. 26, no. 4, April 2008 (2008-04-01), pages 431 - 442 |
SCHROEDER, A.; LEVINS, C.; CORTEZ, C.; LANGER, R.; ANDERSON, D.: "Lipid-based nanotherapeutics for siRNA delivery", JOURNAL OF INTERNAL MEDICINE, vol. 267, 2010, pages 9 - 21 |
SCHULTZ ET AL., GENE, vol. 54, 1987, pages 113 - 123 |
SCHWANK ET AL., CELL STEM CELL, vol. 13, 2013, pages 653 - 58 |
SEED, NATURE, vol. 329, 1987, pages 840 |
SEMPLE ET AL., NATURE NIOTECHNOLOGY, vol. 2.8, no. 2, February 2010 (2010-02-01), pages 172 - 177 |
SHALEK ET AL., NANO LETTERS, 2012 |
SHALEM, O.; SANJANA, NE.; HARTENIAN, E.; SHI, X.; SCOTT, DA.; MIKKELSON, T.; HECKL, D.; EBERT, BL.; ROOT, DE.; DOENCH, JG.: "Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells", SCIENCE, 12 December 2013 (2013-12-12) |
SHEN ET AL., FEBS LET., vol. 539, 2003, pages 111 - 114 |
SHIMIZU ET AL., J AM SOC NEPHROL, vol. 21, 2010, pages 622 - 633 |
SIEW, A. ET AL., MOL PHARM, vol. 9, no. 1, 2012, pages 14 - 28 |
SIMEONI ET AL., NAR, vol. 31, no. 11, 2003, pages 2717 - 2724 |
SIMON RJ ET AL., PNAS, vol. 89, no. 20, 1992, pages 9367 - 9371 |
SMITH ET AL., MOL. CELL. BIOL., vol. 3, 1983, pages 2156 - 2165 |
SMITH; JOHNSON: "Gene", vol. 67, 1988, PHARMACIA BIOTECH INC, pages: 31 - 40 |
SOMASUNTHARAM ET AL., BIOMATERIALS, vol. 34, 2013, pages 7790 |
SOMMNERFELT ET AL., VIROL., vol. 176, 1990, pages 58 - 59 |
SORENSEN ET AL., J. MOL. BIOL., vol. 327, 2003, pages 761 - 766 |
SOUDAIS ET AL., BLOOD, vol. 95, 2000, pages 3071 - 3077 |
SPUCH; NAVARRO, JOURNAL OF DRUG DELIVERY, vol. 2011, 2011, pages 12 |
STEPHAN ET AL., N. ENGL. J. MED., vol. 335, 1996, pages 1563 - 1567 |
STILES ET AL., EXPERIMENTAL NEUROLOGY, vol. 233, 2012, pages 463 - 471 |
STUDIER ET AL.: "GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY", vol. 185, 1990, ACADEMIC PRESS, pages: 60 - 89 |
SU X; FRICKE J; KAVANAGH DG; IRVINE DJ: "In vitro and in vivo mRNA delivery using lipid-enveioped pH-responsive polymer nanoparticles", MOL PHARM., vol. 8, no. 3, 1 April 2011 (2011-04-01), pages 774 - 87, XP055127583, DOI: doi:10.1021/mp100390w |
SWIECH ET AL.: "In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9", NATURE BIOTECHNOLOGY, 19 October 2014 (2014-10-19) |
TABEMERO ET AL., CANCER DISCOVERY, vol. 3, no. 4, April 2013 (2013-04-01), pages 363 - 470 |
TAKAHASHI ET AL., CELL, vol. 131, no. 5, 2007, pages 861 - 872 |
TAKAHASHI; YAMANAKA, CELL, vol. 126, 2006, pages 663 - 76 |
TANGRI S ET AL.: "Rationally engineered therapeutic proteins with reduced immunogenicity", J IMMUNOL., vol. 174, no. 6, 15 March 2005 (2005-03-15), pages 3187 - 96 |
TAYLOR ET AL., BLOOD, vol. 87, 1996, pages 3103 - 3107 |
TAYLOR W.R.: "The classification of amino acid conservation", J. THEOR.BIOL., vol. 119, 1986, pages 205 - 218, XP055050432, DOI: doi:10.1016/S0022-5193(86)80075-3 |
THOMPSON ET AL., NUCLEIC ACID THERAPEUTICS, vol. 22, no. 4, 2012 |
TIJSSEN: "Laboratory Techniques In Biochemistry And Molecular Biology-Hybridization With Nucleic Acid Probes Part I", 1993, ELSEVIER, article "Overview of principles of hybridization and the strategy of nucleic acid probe assay" |
TOLENTINO ET AL., RETINA, vol. 24, no. 4, pages 660 |
TRATSCHIN ET AL., MOL. CELL. BIOL., vol. 4, 1984, pages 2072 - 2081 |
TRATSCHIN ET AL., MOL. CELL. BIOL., vol. 5, 1985, pages 325 - 0 |
TRAVASSOS DA ROSA ET AL., AM. J. TROPICAL MED. & HYGIENE, vol. 33, 1984, pages 999 - 1006 |
TSAI ET AL., BLOOD, vol. 100, 2002, pages 72 - 79 |
UCHEGBU, I.F. ET AL., INT J PHARM, vol. 224, 2001, pages 185 - 199 |
UCHEGBU, I.F., EXPERT OPIN DRUG DELIV, vol. 3, no. 5, 2006, pages 629 - 40 |
UCHEGBU; SIEW, J PHARM SCI., vol. 102, no. 2, 2013, pages 305 - 10 |
UNO ET AL., HUMAN GENE THERAPY, vol. 22, June 2011 (2011-06-01), pages 711 - 719 |
VAN BRUNT, BIOTECHNOLOGY, vol. 6, no. 10, 1988, pages 1149 - 1154 |
VAN EMBDEN ET AL., J. BACTERIOL., vol. 182, 2000, pages 2393 - 2401 |
VIGNE, RESTORATIVE NEUROLOGY AND NEUROSCIENCE, vol. 8, 1995, pages 35 - 36 |
WADA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 98, 2001, pages 8697 - 8702 |
WAHLGREN ET AL., NUCLEIC ACIDS RESEARCH, vol. 40, no. 17, 2012, pages E130 |
WANG ET AL.: "Genetic screens in human cells using the CRISPR/Cas9 system", SCIENCE, vol. 343, no. 6166, 3 January 2014 (2014-01-03), pages 80 - 84, XP055294787, DOI: doi:10.1126/science.1246981 |
WANG H.; YANG H.; SHIVALILA CS.; DAWLATY MM.; CHENG AW.; ZHANG F.; JAENISCH R: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering", CELL, vol. 153, no. 4, 9 May 2013 (2013-05-09), pages 910 - 8, XP028538358, DOI: doi:10.1016/j.cell.2013.04.025 |
WARING ET AL., ARCH. NEUROL., vol. 65, 2008, pages 329 - 334 |
WEINTRAUB, NATURE, vol. 495, 2013, pages S14 - S16 |
WEST ET AL., VIROLOGY, vol. 160, 1987, pages 38 - 47 |
WHITEHEAD ET AL., ACS NANO., vol. 6, no. 8, 28 August 2012 (2012-08-28), pages 6922 - 9 |
WILSON ET AL., J. VIROL., vol. 63, 1989, pages 2374 - 2378 |
WINOTO; BALTIMORE, EMBO J, vol. 8, 1989, pages 729 - 733 |
WOODDELL ET AL., MOLECULAR THERAPY, vol. 21, no. 5, May 2013 (2013-05-01), pages 973 - 985 |
WU X.; SCOTT DA.; KRIZ AJ.; CHIU AC.; HSU PD.; DADON DB.; CHENG AW.; TREVINO AE.; KONERMANN S.; CHEN S.: "Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells", NAT BIOTECHNOL., 20 April 2014 (2014-04-20) |
XIA CF; BOADO RJ; PARDRIDGE WM: "Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology.", MOL PHARM., vol. 6, no. 3, May 2009 (2009-05-01), pages 747 - 51, XP055088899, DOI: doi:10.1021/mp800194y |
XIA ET AL., NAT. BIOTECH., vol. 20, 2002, pages 1006 - 1010 |
XIA ET AL., NATURE MEDICINE, vol. 10, no. 8, August 2004 (2004-08-01) |
XU ET AL., SCIENCE, vol. 334, no. 6058, 18 November 2011 (2011-11-18), pages 993 - 996 |
YATES ET AL., BLOOD, vol. 100, 2002, pages 3942 - 3949 |
YOUNG ET AL., NANO LETT., vol. 12, 2012, pages 3867 - 71 |
YU ET AL., CELL, vol. 150, 31 August 2012 (2012-08-31), pages 895 - 908 |
YU ET AL., GENE THERAPY, vol. 1, 1994, pages 13 - 26 |
YU, J. ET AL., SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920 |
YUAN ET AL., AM J PHYSIOL RENAL PHYSIOL, vol. 295, 2008, pages F605 - F617 |
ZAEHRES; SCHOLER, CELL, vol. 131, no. 5, 2007, pages 834 - 835 |
ZAMORA ET AL., AM J RESPIR CRIT CARE MED, vol. 183, 2011, pages 531 - 538 |
ZHANG ET AL., ACS NANO, 2011, pages 6962 - 6970 |
ZHANG ET AL., ADV MATER., vol. 25, no. 33, 6 September 2013 (2013-09-06), pages 4641 - 5 |
ZHANG ET AL., J. AM. CHEM. SOC., vol. 134, 2012, pages 16488 - 1691 |
ZHANG ET AL., MOL THER., vol. 7, no. 1, January 2003 (2003-01-01), pages 11 - 8 |
ZHEN ET AL., PNAS, vol. 109, no. 30, 24 July 2012 (2012-07-24), pages 11975 - 11980 |
ZHENG ET AL., PROC. NATL. ACAD. SCI. USA., vol. 109, 2012, pages 11975 - 80 |
ZIMMERMAN ET AL., NATURE LETTERS, vol. 441, 4 May 2006 (2006-05-04) |
ZOU ET AL., HUMAN GENE THERAPY, vol. 22, April 2011 (2011-04-01), pages 465 - 475 |
ZUKER; STIEGLER, NUCLEIC ACIDS RES., vol. 9, 1981, pages 133 - 148 |
Cited By (341)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US9822372B2 (en) | 2012-12-12 | 2017-11-21 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
US11041173B2 (en) | 2012-12-12 | 2021-06-22 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US9840713B2 (en) | 2012-12-12 | 2017-12-12 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
US10930367B2 (en) | 2012-12-12 | 2021-02-23 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof |
US11597949B2 (en) | 2013-06-17 | 2023-03-07 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
US10577630B2 (en) | 2013-06-17 | 2020-03-03 | The Broad Institute, Inc. | Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy |
US10711285B2 (en) | 2013-06-17 | 2020-07-14 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
US10781444B2 (en) | 2013-06-17 | 2020-09-22 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
US12018275B2 (en) | 2013-06-17 | 2024-06-25 | The Broad Institute, Inc. | Delivery and use of the CRISPR-CAS systems, vectors and compositions for hepatic targeting and therapy |
US10946108B2 (en) | 2013-06-17 | 2021-03-16 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components |
US11008588B2 (en) | 2013-06-17 | 2021-05-18 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US11149267B2 (en) | 2013-10-28 | 2021-10-19 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10640788B2 (en) | 2013-11-07 | 2020-05-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAs |
US11390887B2 (en) | 2013-11-07 | 2022-07-19 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10190137B2 (en) | 2013-11-07 | 2019-01-29 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US11597919B2 (en) | 2013-12-12 | 2023-03-07 | The Broad Institute Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10851357B2 (en) | 2013-12-12 | 2020-12-01 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
US11407985B2 (en) | 2013-12-12 | 2022-08-09 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing |
US10550372B2 (en) | 2013-12-12 | 2020-02-04 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
US11155795B2 (en) | 2013-12-12 | 2021-10-26 | The Broad Institute, Inc. | CRISPR-Cas systems, crystal structure and uses thereof |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11001829B2 (en) | 2014-09-25 | 2021-05-11 | The Broad Institute, Inc. | Functional screening with optimized functional CRISPR-Cas systems |
EP3708155A1 (en) * | 2014-10-31 | 2020-09-16 | Massachusetts Institute Of Technology | Massively parallel combinatorial genetics for crispr |
WO2016086197A1 (en) | 2014-11-25 | 2016-06-02 | The Brigham And Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
EP3626832A2 (en) | 2014-11-25 | 2020-03-25 | The Brigham and Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
US10900034B2 (en) | 2014-12-03 | 2021-01-26 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10993419B2 (en) | 2014-12-10 | 2021-05-04 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
US10278372B2 (en) | 2014-12-10 | 2019-05-07 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
US9888673B2 (en) | 2014-12-10 | 2018-02-13 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
US11234418B2 (en) | 2014-12-10 | 2022-02-01 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
WO2016094867A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Protected guide rnas (pgrnas) |
US11624078B2 (en) | 2014-12-12 | 2023-04-11 | The Broad Institute, Inc. | Protected guide RNAS (pgRNAS) |
EP3985115A1 (en) | 2014-12-12 | 2022-04-20 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
WO2016094880A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs) |
US10696986B2 (en) | 2014-12-12 | 2020-06-30 | The Board Institute, Inc. | Protected guide RNAS (PGRNAS) |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
WO2016094872A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
US10954514B2 (en) | 2014-12-12 | 2021-03-23 | The Broad Institute, Inc. | Escorted and functionalized guides for CRISPR-Cas systems |
EP3889260A1 (en) | 2014-12-12 | 2021-10-06 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
WO2016100974A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
WO2016106244A1 (en) | 2014-12-24 | 2016-06-30 | The Broad Institute Inc. | Crispr having or associated with destabilization domains |
EP3702456A1 (en) | 2014-12-24 | 2020-09-02 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
US12116619B2 (en) | 2014-12-30 | 2024-10-15 | The Broad Institute, Inc. | CRISPR mediated in vivo modeling and genetic screening of tumor growth and metastasis |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
US10676726B2 (en) | 2015-02-09 | 2020-06-09 | Duke University | Compositions and methods for epigenome editing |
US11155796B2 (en) | 2015-02-09 | 2021-10-26 | Duke University | Compositions and methods for epigenome editing |
US11535846B2 (en) | 2015-04-06 | 2022-12-27 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation |
US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
US11851652B2 (en) | 2015-04-06 | 2023-12-26 | The Board Of Trustees Of The Leland Stanford Junior | Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB |
US11760985B2 (en) | 2015-04-16 | 2023-09-19 | Wageningen Universiteit | CRISPR-Cas complex |
US11053482B2 (en) | 2015-04-16 | 2021-07-06 | Wageningen Universiteit | Vector systems for nuclease-mediated genome editing |
US11479761B2 (en) | 2015-04-16 | 2022-10-25 | Wageningen Universiteit | Nuclease-mediated genome editing |
US11844760B2 (en) | 2015-05-06 | 2023-12-19 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11547716B2 (en) | 2015-05-06 | 2023-01-10 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11517582B2 (en) | 2015-05-06 | 2022-12-06 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11642363B2 (en) | 2015-05-06 | 2023-05-09 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11400110B2 (en) | 2015-05-06 | 2022-08-02 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11612617B2 (en) | 2015-05-06 | 2023-03-28 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
EP3470519A1 (en) * | 2015-06-18 | 2019-04-17 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US11091798B2 (en) | 2015-06-18 | 2021-08-17 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US10648020B2 (en) | 2015-06-18 | 2020-05-12 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11421250B2 (en) | 2015-06-18 | 2022-08-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11578312B2 (en) | 2015-06-18 | 2023-02-14 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
EP3009511A3 (en) * | 2015-06-18 | 2016-06-29 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
EP4159856A1 (en) | 2015-06-18 | 2023-04-05 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
EP3502253A1 (en) | 2015-06-18 | 2019-06-26 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US11634755B2 (en) | 2015-06-18 | 2023-04-25 | The Broad Institute, Inc. | Crispr enzymes and systems |
US11773412B2 (en) | 2015-06-18 | 2023-10-03 | The Broad Institute, Inc. | Crispr enzymes and systems |
EP3929287A2 (en) | 2015-06-18 | 2021-12-29 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
WO2016205711A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US11773432B2 (en) | 2015-06-18 | 2023-10-03 | The Broad Institute Inc. | CRISPR enzymes and systems |
WO2016205749A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US11781172B2 (en) | 2015-06-18 | 2023-10-10 | The Broad Institute, Inc. | Crispr enzymes and systems |
WO2016205764A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
EP3502253B1 (en) | 2015-06-18 | 2020-05-27 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US10494621B2 (en) | 2015-06-18 | 2019-12-03 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
US11060115B2 (en) | 2015-06-18 | 2021-07-13 | The Broad Institute, Inc. | CRISPR enzymes and systems |
KR102613296B1 (en) | 2015-06-18 | 2023-12-13 | 더 브로드 인스티튜트, 인코퍼레이티드 | Novel CRISPR enzymes and systems |
WO2016205613A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Crispr enzyme mutations reducing off-target effects |
EP3009511A2 (en) | 2015-06-18 | 2016-04-20 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
EP4403638A2 (en) | 2015-06-18 | 2024-07-24 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US10876100B2 (en) | 2015-06-18 | 2020-12-29 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
EP3009511B1 (en) | 2015-06-18 | 2017-05-31 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
EP3310917B1 (en) | 2015-06-18 | 2020-02-12 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
KR20180034402A (en) * | 2015-06-18 | 2018-04-04 | 더 브로드 인스티튜트, 인코퍼레이티드 | New CRISPR Enzymes and Systems |
US12091709B2 (en) | 2015-06-18 | 2024-09-17 | The Broad Institute, Inc. | Crispr enzymes and systems |
EP3666895A1 (en) | 2015-06-18 | 2020-06-17 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US9790490B2 (en) | 2015-06-18 | 2017-10-17 | The Broad Institute Inc. | CRISPR enzymes and systems |
US12123032B2 (en) | 2015-06-18 | 2024-10-22 | The Broad Institute, Inc. | CRISPR enzyme mutations reducing off-target effects |
US10669540B2 (en) | 2015-06-18 | 2020-06-02 | The Board Institute, Inc. | CRISPR enzymes and systems |
US11414657B2 (en) | 2015-06-29 | 2022-08-16 | Ionis Pharmaceuticals, Inc. | Modified CRISPR RNA and modified single CRISPR RNA and uses thereof |
US10676735B2 (en) | 2015-07-22 | 2020-06-09 | Duke University | High-throughput screening of regulatory element function with epigenome editing technologies |
US11642375B2 (en) | 2015-07-31 | 2023-05-09 | Intima Bioscience, Inc. | Intracellular genomic transplant and methods of therapy |
US11642374B2 (en) | 2015-07-31 | 2023-05-09 | Intima Bioscience, Inc. | Intracellular genomic transplant and methods of therapy |
US11266692B2 (en) | 2015-07-31 | 2022-03-08 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
US10166255B2 (en) | 2015-07-31 | 2019-01-01 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
US11583556B2 (en) | 2015-07-31 | 2023-02-21 | Regents Of The University Of Minnesota | Modified cells and methods of therapy |
US11147837B2 (en) | 2015-07-31 | 2021-10-19 | Regents Of The University Of Minnesota | Modified cells and methods of therapy |
US10406177B2 (en) | 2015-07-31 | 2019-09-10 | Regents Of The University Of Minnesota | Modified cells and methods of therapy |
WO2017069829A3 (en) * | 2015-07-31 | 2017-06-08 | The Trustees Of Columbia University In The City Of New York | High-throughput strategy for dissecting mammalian genetic interactions |
US11925664B2 (en) | 2015-07-31 | 2024-03-12 | Intima Bioscience, Inc. | Intracellular genomic transplant and methods of therapy |
US11903966B2 (en) | 2015-07-31 | 2024-02-20 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
US11214800B2 (en) | 2015-08-18 | 2022-01-04 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
EP4345455A3 (en) * | 2015-08-25 | 2024-07-17 | Duke University | Compositions and methods of improving specificity in genomic engineering using rna-guided endonucleases |
US11427817B2 (en) | 2015-08-25 | 2022-08-30 | Duke University | Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases |
CN114634930A (en) * | 2015-08-25 | 2022-06-17 | 杜克大学 | Compositions and methods for improving genome engineering specificity using RNA-guided endonucleases |
WO2017053312A1 (en) * | 2015-09-21 | 2017-03-30 | The Regents Of The University Of California | Compositions and methods for target nucleic acid modification |
EP3353298A4 (en) * | 2015-09-21 | 2019-09-25 | Arcturus Therapeutics, Inc. | Allele selective gene editing and uses thereof |
EP3353309A4 (en) * | 2015-09-25 | 2019-04-10 | Tarveda Therapeutics, Inc. | Compositions and methods for genome editing |
WO2017053713A1 (en) * | 2015-09-25 | 2017-03-30 | Tarveda Therapeutics, Inc. | Compositions and methods for genome editing |
US11473084B2 (en) | 2015-10-09 | 2022-10-18 | The Children's Hospital Of Philadelphia | Compositions and methods for treating Huntington's disease and related disorders |
AU2016335572B2 (en) * | 2015-10-09 | 2022-12-08 | The Children's Hospital Of Philadelphia | Compositions and methods for treating Huntington's disease and related disorders |
EP3359662A4 (en) * | 2015-10-09 | 2019-06-19 | The Children's Hospital of Philadelphia | Compositions and methods for treating huntington's disease and related disorders |
WO2017069958A2 (en) | 2015-10-09 | 2017-04-27 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
US11421251B2 (en) | 2015-10-13 | 2022-08-23 | Duke University | Genome engineering with type I CRISPR systems in eukaryotic cells |
WO2017070605A1 (en) | 2015-10-22 | 2017-04-27 | The Broad Institute Inc. | Type vi-b crispr enzymes and systems |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
WO2017074788A1 (en) | 2015-10-27 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for targeting cancer-specific sequence variations |
US11180730B2 (en) | 2015-10-28 | 2021-11-23 | The Broad Institute, Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting GATA3 |
US11186825B2 (en) | 2015-10-28 | 2021-11-30 | The Broad Institute, Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting POU2AF1 |
WO2017075478A2 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures |
WO2017075465A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3 |
WO2017075451A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1 |
US11001622B2 (en) | 2015-11-19 | 2021-05-11 | The Brigham And Women's Hospital, Inc. | Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein |
US11884717B2 (en) | 2015-11-19 | 2024-01-30 | The Brigham And Women's Hospital, Inc. | Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
WO2017106657A1 (en) | 2015-12-18 | 2017-06-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US12110490B2 (en) | 2015-12-18 | 2024-10-08 | The Broad Institute, Inc. | CRISPR enzymes and systems |
CN108495928A (en) * | 2015-12-23 | 2018-09-04 | 芬兰国家技术研究中心股份公司 | Method for obtaining indicator signal from cell |
WO2017134529A1 (en) * | 2016-02-02 | 2017-08-10 | Crispr Therapeutics Ag | Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome |
WO2017136764A1 (en) * | 2016-02-05 | 2017-08-10 | The General Hospital Corporation | Hybrid system for efficient gene delivery to cells of the inner ear |
US11407998B2 (en) | 2016-02-11 | 2022-08-09 | City Of Hope | Twist signaling inhibitor compositions and methods of using the same |
US10519442B2 (en) | 2016-02-11 | 2019-12-31 | City Of Hope | Twist signaling inhibitor compositions and methods of using the same |
US11926826B2 (en) | 2016-02-11 | 2024-03-12 | City Of Hope | Twist signaling inhibitor compositions and methods of using the same |
US11072804B2 (en) | 2016-02-12 | 2021-07-27 | Combigene Ab | Vector |
WO2017137585A1 (en) * | 2016-02-12 | 2017-08-17 | Combigene Ab | Vector |
CN109069669A (en) * | 2016-02-12 | 2018-12-21 | 康贝基因有限公司 | carrier |
WO2017141109A1 (en) * | 2016-02-18 | 2017-08-24 | Crispr Therapeutics Ag | Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome |
US11083799B2 (en) | 2016-03-16 | 2021-08-10 | Crispr Therapeutics Ag | Materials and methods for treatment of hereditary haemochromatosis |
WO2017158422A1 (en) * | 2016-03-16 | 2017-09-21 | Crispr Therapeutics Ag | Materials and methods for treatment of hereditary haemochromatosis |
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
WO2017158153A1 (en) | 2016-03-17 | 2017-09-21 | Imba - Institut Für Molekulare Biotechnologie Gmbh | Conditional crispr sgrna expression |
US11427861B2 (en) | 2016-03-17 | 2022-08-30 | Massachusetts Institute Of Technology | Methods for identifying and modulating co-occurant cellular phenotypes |
WO2017189308A1 (en) | 2016-04-19 | 2017-11-02 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2017184786A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute Inc. | Cpf1 complexes with reduced indel activity |
US11286478B2 (en) | 2016-04-19 | 2022-03-29 | The Broad Institute, Inc. | Cpf1 complexes with reduced indel activity |
WO2017184768A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute Inc. | Novel crispr enzymes and systems |
JP2019515914A (en) * | 2016-04-22 | 2019-06-13 | インテリア セラピューティクス,インコーポレイテッド | Compositions and methods for the treatment of diseases associated with trinucleotide repeats in transcription factor 4 |
WO2017185054A1 (en) * | 2016-04-22 | 2017-10-26 | Intellia Therapeutics, Inc. | Compositions and methods for treatment of diseases associated with trinucleotide repeats in transcription factor four |
WO2017205423A1 (en) * | 2016-05-23 | 2017-11-30 | Washington University | Pulmonary targeted cas9/crispr for in vivo editing of disease genes |
US11471530B2 (en) | 2016-06-05 | 2022-10-18 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US11471531B2 (en) | 2016-06-05 | 2022-10-18 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
US11779657B2 (en) | 2016-06-10 | 2023-10-10 | City Of Hope | Compositions and methods for mitochondrial genome editing |
WO2017219027A1 (en) | 2016-06-17 | 2017-12-21 | The Broad Institute Inc. | Type vi crispr orthologs and systems |
US11788083B2 (en) | 2016-06-17 | 2023-10-17 | The Broad Institute, Inc. | Type VI CRISPR orthologs and systems |
WO2018005873A1 (en) | 2016-06-29 | 2018-01-04 | The Broad Institute Inc. | Crispr-cas systems having destabilization domain |
WO2018007871A1 (en) * | 2016-07-08 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of transthyretin amyloidosis |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
EP3497221A4 (en) * | 2016-08-10 | 2020-02-05 | Duke University | Compositions, systems and methods for programming immune cell function through targeted gene regulation |
US11630103B2 (en) | 2016-08-17 | 2023-04-18 | The Broad Institute, Inc. | Product and methods useful for modulating and evaluating immune responses |
US11352647B2 (en) | 2016-08-17 | 2022-06-07 | The Broad Institute, Inc. | Crispr enzymes and systems |
WO2018035388A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2018035387A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
EP3500667A4 (en) * | 2016-08-18 | 2020-09-02 | The Regents of the University of California | Crispr-cas genome engineering via a modular aav delivery system |
IL264872B1 (en) * | 2016-08-18 | 2024-10-01 | Univ California | Crispr-cas genome engineering via a modular aav delivery system |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
WO2018049025A2 (en) | 2016-09-07 | 2018-03-15 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses |
WO2017216392A1 (en) * | 2016-09-23 | 2017-12-21 | Dsm Ip Assets B.V. | A guide-rna expression system for a host cell |
WO2018067991A1 (en) | 2016-10-07 | 2018-04-12 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11154574B2 (en) | 2016-10-18 | 2021-10-26 | Regents Of The University Of Minnesota | Tumor infiltrating lymphocytes and methods of therapy |
US10912797B2 (en) | 2016-10-18 | 2021-02-09 | Intima Bioscience, Inc. | Tumor infiltrating lymphocytes and methods of therapy |
US10946061B2 (en) | 2016-11-18 | 2021-03-16 | City Of Hope | Peptide inhibitors of twist |
US10646540B2 (en) | 2016-11-18 | 2020-05-12 | City Of Hope | Peptide inhibitors of twist |
US11058644B2 (en) | 2016-11-23 | 2021-07-13 | Wisconsin Alumni Research Foundation | Unimolecular nanoparticles for efficient delivery of therapeutic RNA |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
WO2018129486A3 (en) * | 2017-01-06 | 2018-11-15 | President And Fellows Of Harvard College | Composition and methods for enhanced knock-in reporter gene expression |
US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
US11672766B2 (en) | 2017-02-08 | 2023-06-13 | Wisconsin Alumni Research Foundation | Therapeutic cationic peptides and unimolecular nanoparticles for efficient delivery thereof |
WO2018154418A1 (en) * | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders |
US20200095579A1 (en) * | 2017-02-22 | 2020-03-26 | Crispr Therapeutics Ag | Materials and methods for treatment of merosin-deficient cogenital muscular dystrophy (mdcmd) and other laminin, alpha 2 (lama2) gene related conditions or disorders |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
EP4361261A2 (en) | 2017-03-15 | 2024-05-01 | The Broad Institute Inc. | Novel cas13b orthologues crispr enzymes and systems |
US11739308B2 (en) | 2017-03-15 | 2023-08-29 | The Broad Institute, Inc. | Cas13b orthologues CRISPR enzymes and systems |
WO2018170333A1 (en) | 2017-03-15 | 2018-09-20 | The Broad Institute, Inc. | Novel cas13b orthologues crispr enzymes and systems |
US11260132B2 (en) | 2017-03-16 | 2022-03-01 | Children's Medical Center Corporation | Engineered liposomes as cancer-targeted therapeutics |
WO2018175480A1 (en) * | 2017-03-20 | 2018-09-27 | The Research Foundation For The State University Of New York | Methods of inhibiting fungal ceramide synthase for treatment of cryptococcus neoformans infection |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
US11913075B2 (en) | 2017-04-01 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
WO2018191553A1 (en) | 2017-04-12 | 2018-10-18 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
WO2018191388A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Novel type vi crispr orthologs and systems |
WO2018191520A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Respiratory and sweat gland ionocytes |
US11840711B2 (en) | 2017-04-12 | 2023-12-12 | The Broad Institute, Inc. | Type VI CRISPR orthologs and systems |
WO2018195486A1 (en) | 2017-04-21 | 2018-10-25 | The Broad Institute, Inc. | Targeted delivery to beta cells |
WO2018202800A1 (en) | 2017-05-03 | 2018-11-08 | Kws Saat Se | Use of crispr-cas endonucleases for plant genome engineering |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11866697B2 (en) | 2017-05-18 | 2024-01-09 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US11603544B2 (en) | 2017-06-05 | 2023-03-14 | Fred Hutchinson Cancer Center | Genomic safe harbors for genetic therapies in human stem cells and engineered nanoparticles to provide targeted genetic therapies |
US11897953B2 (en) | 2017-06-14 | 2024-02-13 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US11814624B2 (en) | 2017-06-15 | 2023-11-14 | The Regents Of The University Of California | Targeted non-viral DNA insertions |
WO2019005884A1 (en) | 2017-06-26 | 2019-01-03 | The Broad Institute, Inc. | Crispr/cas-adenine deaminase based compositions, systems, and methods for targeted nucleic acid editing |
US11098325B2 (en) | 2017-06-30 | 2021-08-24 | Intima Bioscience, Inc. | Adeno-associated viral vectors for gene therapy |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
WO2019014564A1 (en) * | 2017-07-14 | 2019-01-17 | Editas Medicine, Inc. | Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites |
US11866726B2 (en) | 2017-07-14 | 2024-01-09 | Editas Medicine, Inc. | Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites |
US12105089B2 (en) | 2017-07-17 | 2024-10-01 | The Broad Institute, Inc. | Cell atlas of the healthy and ulcerative colitis human colon |
US11253482B2 (en) * | 2017-07-26 | 2022-02-22 | Albert-Ludwigs-Universitaet Freiburg | Biodegradable multilayer nanocapsules for the delivery of biologically active agents in target cells |
US11957794B2 (en) | 2017-07-26 | 2024-04-16 | Albert-Ludwigs-Universitaet Freiburg | Biodegradable multilayer nanocapsules for the delivery of biologically active agents in target cells |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
WO2019023770A1 (en) | 2017-07-31 | 2019-02-07 | Universidade Federal Do Rio Grande Do Sul | Composition for gene therapy of the central nervous system, process of production and use thereof |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US20200362038A1 (en) * | 2017-09-11 | 2020-11-19 | The Regents Of The University Of California | Antibody-mediated delivery of cas9 to mammalian cells |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
WO2019067992A1 (en) * | 2017-09-29 | 2019-04-04 | Intellia Therapeutics, Inc. | Formulations |
EP4385514A3 (en) * | 2017-09-29 | 2024-10-23 | Intellia Therapeutics, Inc. | Formulations |
US12043870B2 (en) | 2017-10-02 | 2024-07-23 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
WO2019071054A1 (en) | 2017-10-04 | 2019-04-11 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11578118B2 (en) | 2017-10-20 | 2023-02-14 | Fred Hutchinson Cancer Center | Systems and methods to produce B cells genetically modified to express selected antibodies |
US11083753B1 (en) | 2017-10-27 | 2021-08-10 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
US11590171B2 (en) | 2017-10-27 | 2023-02-28 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
US11331346B2 (en) | 2017-10-27 | 2022-05-17 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
US11033584B2 (en) | 2017-10-27 | 2021-06-15 | The Regents Of The University Of California | Targeted replacement of endogenous T cell receptors |
WO2019089561A1 (en) * | 2017-10-30 | 2019-05-09 | Georgia Tech Research Corporation | Multiplexed analysis of materials for tissue delivery |
WO2019094983A1 (en) | 2017-11-13 | 2019-05-16 | The Broad Institute, Inc. | Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway |
WO2019099943A1 (en) * | 2017-11-16 | 2019-05-23 | Astrazeneca Ab | Compositions and methods for improving the efficacy of cas9-based knock-in strategies |
US11332736B2 (en) | 2017-12-07 | 2022-05-17 | The Broad Institute, Inc. | Methods and compositions for multiplexing single cell and single nuclei sequencing |
EP3723733A4 (en) * | 2017-12-15 | 2021-11-24 | Board of Regents, The University of Texas System | Methods and compositions for treating cancer using exosomes-associated gene editing |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
US11351263B2 (en) | 2018-02-22 | 2022-06-07 | Wisconsin Alumni Research Foundation | Polyplex delivery system for proteins, nucleic acids and protein/nucleic acid complexes |
WO2019165149A1 (en) * | 2018-02-22 | 2019-08-29 | Wisconsin Alumni Research Foundation | Polyplex delivery system for proteins, nucleic acids and protein/nucleic acid complexes |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
US11999767B2 (en) | 2018-04-03 | 2024-06-04 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
WO2019204585A1 (en) | 2018-04-19 | 2019-10-24 | Massachusetts Institute Of Technology | Single-stranded break detection in double-stranded dna |
WO2019206927A1 (en) | 2018-04-24 | 2019-10-31 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
EP3560330A1 (en) | 2018-04-24 | 2019-10-30 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
WO2019210268A2 (en) | 2018-04-27 | 2019-10-31 | The Broad Institute, Inc. | Sequencing-based proteomics |
US11485973B2 (en) | 2018-04-30 | 2022-11-01 | Snipr Biome Aps | Treating and preventing microbial infections |
US11643653B2 (en) | 2018-04-30 | 2023-05-09 | Snipr Biome Aps | Treating and preventing microbial infections |
US11788085B2 (en) | 2018-04-30 | 2023-10-17 | Snipr Biome Aps | Treating and preventing microbial infections |
US11421227B2 (en) | 2018-04-30 | 2022-08-23 | Snipr Biome Aps | Treating and preventing microbial infections |
WO2019213660A2 (en) | 2018-05-04 | 2019-11-07 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses |
WO2019232542A2 (en) | 2018-06-01 | 2019-12-05 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2020006036A1 (en) | 2018-06-26 | 2020-01-02 | Massachusetts Institute Of Technology | Crispr effector system based amplification methods, systems, and diagnostics |
WO2020006049A1 (en) | 2018-06-26 | 2020-01-02 | The Broad Institute, Inc. | Crispr/cas and transposase based amplification compositions, systems and methods |
WO2020033601A1 (en) | 2018-08-07 | 2020-02-13 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
EP3847650A1 (en) * | 2018-09-06 | 2021-07-14 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
US20210317479A1 (en) * | 2018-09-06 | 2021-10-14 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
WO2020051507A1 (en) | 2018-09-06 | 2020-03-12 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
EP4268831A2 (en) | 2018-09-12 | 2023-11-01 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
US11505578B2 (en) | 2018-09-18 | 2022-11-22 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
US11447527B2 (en) | 2018-09-18 | 2022-09-20 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
WO2020072699A1 (en) * | 2018-10-02 | 2020-04-09 | Exosome Therapeutics, Inc. | Exosome loaded therapeutics for treating sickle cell disease |
WO2020077236A1 (en) | 2018-10-12 | 2020-04-16 | The Broad Institute, Inc. | Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues |
US11629350B2 (en) | 2018-10-14 | 2023-04-18 | Snipr Biome Aps | Single-vector type I vectors |
US11851663B2 (en) * | 2018-10-14 | 2023-12-26 | Snipr Biome Aps | Single-vector type I vectors |
US11578333B2 (en) | 2018-10-14 | 2023-02-14 | Snipr Biome Aps | Single-vector type I vectors |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
WO2020112908A3 (en) * | 2018-11-28 | 2020-08-20 | Crispr Therapeutics Ag | OPTIMIZED mRNA ENCODING CAS9 FOR USE IN LNPs |
US11384344B2 (en) | 2018-12-17 | 2022-07-12 | The Broad Institute, Inc. | CRISPR-associated transposase systems and methods of use thereof |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
WO2020165768A1 (en) | 2019-02-12 | 2020-08-20 | Università Degli Studi Di Trento | Cas12a guide rna molecules and uses thereof |
WO2020191102A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
WO2020229533A1 (en) | 2019-05-13 | 2020-11-19 | KWS SAAT SE & Co. KGaA | Drought tolerance in corn |
WO2020236967A1 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Random crispr-cas deletion mutant |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
WO2020239680A2 (en) | 2019-05-25 | 2020-12-03 | KWS SAAT SE & Co. KGaA | Haploid induction enhancer |
WO2020243661A1 (en) | 2019-05-31 | 2020-12-03 | The Broad Institute, Inc. | Methods for treating metabolic disorders by targeting adcy5 |
WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
EP3772542A1 (en) | 2019-08-07 | 2021-02-10 | KWS SAAT SE & Co. KGaA | Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2 |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
WO2021074367A1 (en) | 2019-10-17 | 2021-04-22 | KWS SAAT SE & Co. KGaA | Enhanced disease resistance of crops by downregulation of repressor genes |
WO2021111280A1 (en) * | 2019-12-04 | 2021-06-10 | Crispr Therapeutics Ag | Regulatable expression systems |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
WO2021239986A1 (en) | 2020-05-29 | 2021-12-02 | KWS SAAT SE & Co. KGaA | Plant haploid induction |
EP4247953A4 (en) * | 2020-11-23 | 2024-10-30 | Recursion Pharmaceuticals Inc | High throughput gene editing system and method |
US12109223B2 (en) | 2020-12-03 | 2024-10-08 | Battelle Memorial Institute | Polymer nanoparticle and DNA nanostructure compositions and methods for non-viral delivery |
US12031128B2 (en) | 2021-04-07 | 2024-07-09 | Battelle Memorial Institute | Rapid design, build, test, and learn technologies for identifying and using non-viral carriers |
CN113304321A (en) * | 2021-06-01 | 2021-08-27 | 山东隽秀生物科技股份有限公司 | Biological membrane material, preparation method thereof and application thereof in nerve repair |
WO2023006933A1 (en) | 2021-07-30 | 2023-02-02 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
US12037407B2 (en) | 2021-10-14 | 2024-07-16 | Arsenal Biosciences, Inc. | Immune cells having co-expressed shRNAS and logic gate systems |
WO2023089183A1 (en) | 2021-11-19 | 2023-05-25 | Branca Bunus Limited | A composition comprising a therapeutically active agent packaged within a drug delivery vehicle |
WO2023196818A1 (en) | 2022-04-04 | 2023-10-12 | The Regents Of The University Of California | Genetic complementation compositions and methods |
US12098399B2 (en) | 2022-06-24 | 2024-09-24 | Tune Therapeutics, Inc. | Compositions, systems, and methods for epigenetic regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) gene expression |
US12076375B2 (en) | 2022-06-29 | 2024-09-03 | Snipr Biome Aps | Treating and preventing E coli infections |
WO2024042199A1 (en) | 2022-08-26 | 2024-02-29 | KWS SAAT SE & Co. KGaA | Use of paired genes in hybrid breeding |
CN115981384A (en) * | 2023-02-07 | 2023-04-18 | 淮阴工学院 | Intelligent biomass ORC evaporation pressure control equipment |
CN115981384B (en) * | 2023-02-07 | 2023-09-22 | 淮阴工学院 | Intelligent biomass ORC evaporation pressure control equipment |
Also Published As
Publication number | Publication date |
---|---|
EP3470089A1 (en) | 2019-04-17 |
CA2932475A1 (en) | 2015-06-18 |
EP3079726A2 (en) | 2016-10-19 |
SG10201804977UA (en) | 2018-07-30 |
IL246106B (en) | 2020-02-27 |
CN106536729A (en) | 2017-03-22 |
WO2015089419A9 (en) | 2015-11-05 |
IL246106A0 (en) | 2016-07-31 |
US20150232883A1 (en) | 2015-08-20 |
MX2016007327A (en) | 2017-03-06 |
BR112016013213A2 (en) | 2017-12-05 |
KR20160089526A (en) | 2016-07-27 |
AU2014361826A8 (en) | 2016-07-14 |
WO2015089419A3 (en) | 2015-09-17 |
US20200340015A1 (en) | 2020-10-29 |
JP2017501149A (en) | 2017-01-12 |
AU2014361826A1 (en) | 2016-06-23 |
IL272423A (en) | 2020-03-31 |
EP3079726B1 (en) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7228059B2 (en) | Delivery, engineering and optimization of systems, methods and compositions for sequence engineering and therapeutic applications | |
US20200340015A1 (en) | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components | |
US10946108B2 (en) | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components | |
AU2014361781B2 (en) | Delivery, use and therapeutic applications of the CRISPR -Cas systems and compositions for genome editing | |
ES2767318T3 (en) | Supply, modification and optimization of systems, methods and compositions to generate models and act on postmitotic cell diseases and disorders | |
JP2017501149A6 (en) | Delivery, use and therapeutic applications of CRISPR-CAS systems and compositions for targeting disorders and diseases using particle delivery components | |
BR122024006902A2 (en) | APPLICATION, MANIPULATION AND OPTIMIZATION OF SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION AND THERAPEUTIC APPLICATIONS | |
BR112015031610B1 (en) | COMPOSITION FOR MODIFYING A BRAIN OR NEURONAL CELL IN VIVO INTO A EUKARYOTIC ORGANISM AND USE OF A VIRAL VECTOR IN THE TREATMENT OF A CEREBRAL OR NEUROLOGICAL DISEASE OR DISORDER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14827606 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2932475 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/007327 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 246106 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2016539044 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016013213 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2014361826 Country of ref document: AU Date of ref document: 20141212 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014827606 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014827606 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167018584 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016128058 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112016013213 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112016013213 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160608 |