WO2015083766A1 - 複合体の製造方法 - Google Patents

複合体の製造方法 Download PDF

Info

Publication number
WO2015083766A1
WO2015083766A1 PCT/JP2014/082065 JP2014082065W WO2015083766A1 WO 2015083766 A1 WO2015083766 A1 WO 2015083766A1 JP 2014082065 W JP2014082065 W JP 2014082065W WO 2015083766 A1 WO2015083766 A1 WO 2015083766A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
silicone
resin layer
porous
composite
Prior art date
Application number
PCT/JP2014/082065
Other languages
English (en)
French (fr)
Inventor
大介 平木
吉宏 油屋
澤田 真
米山 聡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015083766A1 publication Critical patent/WO2015083766A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus

Definitions

  • the present invention relates to a method for producing a composite used for an acidic gas separation membrane that selectively separates acidic gas from raw material gas. Specifically, the present invention relates to a method for producing a composite that can appropriately form a silicone resin layer for preventing the facilitated transport film from entering the porous support on the surface of the porous support.
  • Patent Document 1 a multilayer body including an acidic gas separation membrane is wound around a central cylinder (a central permeate collecting pipe) for collecting separated acidic gas, in which through holes are formed in a tube wall.
  • An acid gas separation module is described.
  • the acidic gas separation module disclosed in Patent Document 1 uses a so-called dissolution diffusion membrane as the acidic gas separation membrane.
  • the dissolution diffusion membrane separates the acid gas from the raw material gas by utilizing the difference in solubility between the acidic gas and the substance to be separated in the membrane and the diffusivity in the membrane.
  • Patent Document 2 discloses an aqueous solution containing a carbon dioxide carrier on a carbon dioxide permeable support as an acidic gas separation membrane (carbon dioxide separation gel membrane) for separating carbon dioxide (carbon dioxide) from a raw material gas.
  • An acid gas separation membrane is described in which a hydrogel membrane is formed by absorbing a vinyl alcohol-acrylate copolymer having a crosslinked structure.
  • This acid gas separation membrane is an acid gas separation membrane using a so-called facilitated transport membrane.
  • the facilitated transport film has a carrier that reacts with an acidic gas such as a carbon dioxide carrier in the film, and the acidic gas is separated from the source gas by transporting the acidic gas to the opposite side of the film with this carrier.
  • Such an acid gas separation membrane is usually formed on the surface of a gas-permeable support (porous support) such as a non-woven fabric or a porous membrane on the surface of the above-mentioned dissolution diffusion membrane and facilitated transport membrane (hereinafter referred to as both). And a separation layer).
  • a gas-permeable support such as a non-woven fabric or a porous membrane on the surface of the above-mentioned dissolution diffusion membrane and facilitated transport membrane (hereinafter referred to as both).
  • a separation layer a separation layer
  • the separation layer may gradually enter (penetrate) the porous support.
  • the facilitated transport film is often a gel film or a low-viscosity film in order to move or transport acidic gas. Therefore, when the acidic gas separation membrane using the facilitated transport membrane is used, the separation layer gradually enters the porous support. In the separation membrane, the separation ability of the acidic gas decreases with time due to the separation layer entering the porous support.
  • the facilitated transport film needs to retain a large amount of moisture in the film in order to sufficiently function the carrier. Therefore, a polymer having extremely high water absorption and water retention is used for the facilitated transport film.
  • the facilitated transport film is often a very soft (low viscosity), gel film.
  • a raw material gas having a temperature of 100 to 130 ° C. and a humidity of about 90% is supplied at a pressure of about 1.5 MPa when the acidic gas is separated. Therefore, in an acidic gas separation membrane using a facilitated transport membrane, the facilitated transport membrane tends to enter the porous support and has low durability.
  • Patent Document 3 describes a method for producing an acidic gas separation membrane (a method for producing a thin film) in which an underlayer is formed on the surface of a porous support and a separation membrane is formed on the underlayer.
  • a solution containing a polymer as a main component is applied to the surface of a porous support to form a base layer made of a polymer having air permeability such as a silicone-based polymer.
  • an organic solvent solution mainly composed of a material to be the separation layer is applied onto the base layer and dried to form the separation layer.
  • the acidic gas separation membrane by this production method by having an underlayer made of a polymer having air permeability, a uniform separation layer can be formed, and a low viscosity separation layer can be prevented from entering the porous support.
  • JP-A-4-215824 Japanese Patent Publication No. 7-102310 Japanese Patent Laid-Open No. Sho 62-140620
  • a porous support is formed by forming a non-porous underlayer having air permeability such as a silicone-based polymer on the surface of the porous support and forming a separation layer thereon.
  • the separation layer can be prevented from entering.
  • an underlayer is also usually formed by applying a coating solution containing a component to be the underlayer to the surface of the porous support, and drying and curing. For this reason, when a coating solution serving as an underlayer is applied to the porous support, the coating solution penetrates into the porous support. There is a problem that it is difficult to form an appropriate underlayer on the surface of the porous support due to the soaking of the coating solution.
  • An object of the present invention is to solve such a problem of the prior art, and is used for an acidic gas separation membrane having a facilitated transport membrane for preventing the facilitated transport membrane from entering the porous support.
  • a method for producing a composite having a silicone resin layer which prevents a silicone coating liquid that becomes a silicone resin layer from penetrating into the porous support, and makes a dense silicone resin layer suitable for the surface of the porous support. It is in providing the manufacturing method which can be formed in this.
  • the method for producing a composite according to the present invention is a method for producing an acidic gas separation membrane having a facilitated transport membrane, wherein a facilitated transport membrane is formed on the surface and a silicone resin layer is formed on the surface of the porous support.
  • a method for producing a composite formed by: A step of applying a silicone coating solution to be a silicone resin layer on the surface of the porous support by a roll-to-roll method; In addition, a composite having a maximum pore diameter of 5 ⁇ m or less as the porous support, and the viscosity of the silicone coating solution when applied to the surface of the porous support is 300 cp or more A method for manufacturing a body is provided.
  • a roll-to-roll method further includes a carrier that reacts at least with an acidic gas and a hydrophilic compound for supporting the carrier, which is a facilitated transport film. It is preferable to have the process of apply
  • the silicone resin layer for preventing the facilitated transport membrane from entering the porous support is appropriately formed on the surface of the porous support. Can be formed. Therefore, according to the present invention, the facilitated transport membrane can be prevented from entering (penetrating) into the porous support and an acidic gas separation membrane having excellent durability can be obtained.
  • FIG. 1 (A) and FIG. 1 (B) are diagrams conceptually showing an example of a composite manufactured by the composite manufacturing method of the present invention.
  • FIG. 2 is a diagram conceptually showing an example of a production apparatus for carrying out the method for producing a composite of the present invention.
  • FIG. 3 is a diagram conceptually illustrating an example of a manufacturing apparatus that performs another step of the method for manufacturing a composite according to the present invention.
  • FIG. 4 is a diagram conceptually showing another example of a manufacturing apparatus for carrying out the composite manufacturing method of the present invention.
  • FIG. 1A conceptually shows an example of a composite manufactured by the composite manufacturing method of the present invention.
  • This composite 10 is a composite used for an acidic gas separation membrane having a facilitated transport membrane, and is formed by forming a silicone resin layer 14 on the surface of a porous support 12.
  • the acidic gas separation membrane using the facilitated transport membrane has a problem that the facilitated transport membrane, which is a soft gel membrane, penetrates into (saturates) the porous support 12 and has poor durability.
  • the facilitated transport membrane has a porous support by having a silicone resin layer 14 on the surface of the porous support 12 and forming a facilitated transport membrane (acid gas separation layer) on the surface of the silicone resin layer 14. It can prevent entering the body 12.
  • the production method of the present invention uses a long porous support 12 and forms a silicone resin layer 14 on the surface of the porous support 12 by a so-called roll-to-roll method (hereinafter also referred to as RtoR). Apply the coating solution.
  • RtoR is a process in which an object to be processed is pulled out from a roll wound with a long object to be processed, and the object to be processed is applied and cured while being conveyed in the longitudinal direction. This is a manufacturing method of winding a processed object in a roll shape.
  • a porous body having a maximum pore diameter of 5 ⁇ m or less is used as the porous support 12, and the viscosity of the silicone coating solution at the time of coating is 300 cp or more.
  • FIG. 2 an example of the manufacturing apparatus which implements the manufacturing method of this invention is shown notionally.
  • the composite 10 is produced using RtoR. Therefore, the production apparatus 20 sends out the porous support 12 from a support roll 12R formed by winding the long porous support 12 (web-like porous support 12) into a roll, and the porous support While transporting 12 in the longitudinal direction, a silicone coating solution that becomes the silicone resin layer 14 is applied to the surface of the porous support 12. Next, the manufacturing apparatus 20 cures the silicone coating solution applied to the porous support 12 to form the silicone resin layer 14, thereby forming the composite 10 in which the silicone resin layer 14 is formed on the surface of the porous support 12. . Furthermore, the manufacturing apparatus 20 winds up the composite body 10 thus manufactured in a roll shape to obtain a composite roll 10R.
  • Such a manufacturing apparatus 20 basically includes a supply unit 24, a coating unit 26, a curing device 28, and a winding unit 30.
  • the manufacturing apparatus 20 manufactures a functional film (functional film) using RtoR, such as a pass roller (guide roller), a pair of conveyance rollers, a conveyance guide, and various sensors as necessary. You may have various members provided in the apparatus to do.
  • the supply unit 24 has a rotation shaft 31 on which the support roll 12R is loaded.
  • the support roll 12R is formed by winding a long porous support 12 in a roll shape.
  • the supply unit 24 is a portion that feeds the porous support 12 by loading the support roll 12R onto the rotary shaft 31 and rotating the rotary shaft 31, that is, the support roll 12R.
  • a delivery and conveyance of the porous support 12 may be performed by a known method.
  • the porous support body 12 (hereinafter also referred to as the support body 12) is permeable to an acidic gas such as carbon dioxide gas, and has a silicone resin layer 14 formed on the surface, and the surface of the silicone resin layer 14 or The facilitated transport film formed on the surface of the support 12 is supported.
  • the surface of the support 12 is a surface opposite to the surface on which the silicone resin layer is formed.
  • various known materials can be used as long as they can exhibit this function.
  • the porous support may be a single layer.
  • the porous support has a two-layer structure including a porous film 12a and an auxiliary support film 12b, like the support 12 shown in FIG.
  • the acid gas permeability and the function of supporting the silicone resin layer 14 and the facilitated transport film are more reliably expressed.
  • various materials exemplified below as the porous film 12a and the auxiliary support film 12b can be used as the forming material.
  • the porous film 12 a becomes the surface on which the silicone resin layer 14 is formed. That is, the porous film 12a becomes the application surface of the silicone application liquid. Usually, a facilitated transport film is formed on the surface of the silicone resin layer 14.
  • the porous membrane 12a is preferably made of a material having heat resistance and low hydrolyzability. Specific examples of such a porous membrane 12a include membrane filter membranes such as polysulfone (PSF), polyethersulfone, polypropylene (PP) and cellulose, interfacially polymerized thin films of polyamide and polyimide, polytetrafluoroethylene (PTFE). And a stretched porous membrane of high molecular weight polyethylene.
  • the porous membrane 12a containing 1 or more materials selected from fluorine-containing polymers, such as PTFE, PP, and PSF, is illustrated preferably.
  • a stretched porous membrane of PTFE or high molecular weight polyethylene has a high porosity, has little inhibition of diffusion of acidic gas (especially carbon dioxide gas), and is preferable from the viewpoints of strength and suitability for production.
  • a stretched porous membrane of PTFE is preferably used in terms of having good heat resistance and low hydrolyzability.
  • the auxiliary support membrane 12b is provided for reinforcing the porous membrane 12a.
  • Various materials can be used as the auxiliary support film 12b as long as it satisfies the required strength, stretch resistance and gas permeability.
  • a nonwoven fabric, a woven fabric, a net, and a mesh can be appropriately selected and used.
  • the auxiliary support membrane 12b is also preferably made of a material having heat resistance and low hydrolyzability, similar to the porous membrane 12a described above.
  • the fibers constituting the nonwoven fabric, woven fabric, and knitted fabric are excellent in durability and heat resistance, such as polyolefin such as PP, modified polyamide such as aramid (trade name), polytetrafluoroethylene, and polyfluoride.
  • a fiber made of a fluorine-containing resin such as vinylidene fluoride is preferable. It is preferable to use the same material as the resin material constituting the mesh.
  • a non-woven fabric made of PP that is inexpensive and has high mechanical strength is particularly preferably exemplified.
  • the support 12 has the auxiliary support film 12b, the mechanical strength can be improved. Therefore, even in the manufacturing method using RtoR in the illustrated example, wrinkles on the support 12 can be prevented, and productivity can be increased.
  • the thickness of the porous membrane 12a is preferably 5 to 100 ⁇ m, and the thickness of the auxiliary support membrane 12b is preferably 50 to 300 ⁇ m.
  • the thickness of the support 12 is preferably 30 to 500 ⁇ m.
  • a porous body having a maximum pore diameter of 5 ⁇ m or less is used as the porous support.
  • the maximum pore diameter of the porous film 12a to which the silicone coating liquid to be the silicone resin layer 14 is applied may be 5 ⁇ m or less. That is, in the composite 10 shown in FIG. 1 (A), the porous support in the composite produced by the production method of the present invention is the porous membrane 12a.
  • a silicone coating solution to be the silicone resin layer 14 is applied to the surface of the porous membrane 12a (porous support).
  • the maximum pore diameter of the porous membrane 12a exceeds 5 ⁇ m, a large amount of the silicone coating solution penetrates into the porous membrane 12a, and the silicone coating solution cannot be properly applied, and the appropriate silicone resin layer 14 cannot be formed.
  • the maximum pore diameter of the porous membrane 12a exceeds 5 ⁇ m, the pressure resistance of the formed silicone resin layer 14 is lowered, and there is a disadvantage that the porous membrane 12a enters the porous membrane 12a.
  • a porous body having a small pore diameter is advantageous in terms of preventing penetration of the silicone coating solution.
  • a porous body having an extremely fine pore diameter is very expensive.
  • the present invention can use a porous membrane 12a having a maximum pore size of 5 ⁇ m or less and a relatively large pore size. Therefore, in the present invention, the cost of the composite 10, that is, the acid gas separation membrane can be reduced.
  • the maximum pore diameter of the porous film 12a is preferably 1 ⁇ m or less, and more preferably 0.3 ⁇ m or less, from the viewpoint of more excellent prevention and hardening of the silicone coating liquid soaking.
  • the maximum pore diameter of the porous membrane 12a may be measured with a palm porometer, for example.
  • the average pore diameter of the pores of the porous membrane 12a is preferably 0.01 to 1 ⁇ m, more preferably 0.01 to 0.3 ⁇ m. By setting the average pore diameter of the porous membrane 12a within this range, it is possible to suitably prevent the porous membrane 12a from interfering with the passage of the acidic gas. Prevents the film surface from becoming uneven due to phenomena.
  • the support 12 sent out from the support roll 12R is then applied to the coating unit 26, which is transported to the coating unit 26.
  • the support 12 is applied in the longitudinal direction while applying the silicone coating liquid that becomes the silicone resin layer 14.
  • the application unit 26 includes an application device 32 and a backup roller 34.
  • the support 12 is conveyed in the longitudinal direction while being supported at a predetermined position by the backup roller 34, and the silicone coating liquid is applied to the surface of the porous film 12a.
  • the one where the conveyance speed of the support body 12 is quick from a viewpoint of productivity is preferable.
  • 1 to 200 m / min is preferable, 3 to 150 m / min is more preferable, and 5 to 120 m / min is particularly preferable.
  • silicone-containing polyacetylene such as organopolysiloxane (silicone resin) or polytrimethylsilylpropyne
  • organopolysiloxane silicon resin
  • organopolysiloxane include those represented by the following general formula.
  • n represents an integer of 1 or more.
  • the average value of n is preferably in the range of 10 to 1,000,000, more preferably in the range of 100 to 100,000.
  • R 1n , R 2n , R 3 , and R 4 are each a group consisting of a hydrogen atom, an alkyl group, a vinyl group, an aralkyl group, an aryl group, a hydroxyl group, an amino group, a carboxyl group, and an epoxy group. Indicates which one is selected. Note that n existing R 1n and R 2n may be the same or different. In addition, the alkyl group, aralkyl group, and aryl group may have a ring structure.
  • alkyl group, vinyl group, aralkyl group, and aryl group may have a substituent, and are selected from an alkyl group, vinyl group, aryl group, hydroxyl group, amino group, carboxyl group, epoxy group, or fluorine atom. It is. These substituents may further have a substituent if possible.
  • the alkyl group, vinyl group, aralkyl group, and aryl group selected from R 1n , R 2n , R 3 , and R 4 are an alkyl group having 1 to 20 carbon atoms, vinyl, and the like from the viewpoint of availability. More preferred are an aralkyl group having 7 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms.
  • R 1n , R 2n , R 3 , and R 4 are preferably methyl groups or epoxy-substituted alkyl groups.
  • epoxy-modified polydimethylsiloxane (PDMS) can be suitably used. Therefore, the silicone coating liquid for forming this silicone resin layer 14 is a monomer, dimer, trimer, oligomer, prepolymer, mixture of these compounds, a curing agent, a curing accelerator, a crosslinking agent, Contains a thickener, reinforcing agent, filler and the like.
  • a silicone coating liquid does not contain the organic solvent normally used when forming such a resin layer. Since the silicone coating solution does not contain an organic solvent, the silicone coating solution can be cured immediately after the silicone coating solution is applied without the need for a drying step of the silicone coating solution.
  • the viscosity of the silicone coating solution can easily be 300 cp or more. It is preferable in terms of simplifying the manufacturing equipment because there is no need for static elimination equipment or explosion-proof equipment.
  • the porous film 12a (porous support) having a maximum pore diameter of 5 ⁇ m or less is used, and the viscosity of the silicone coating solution at the time of coating is set to 300 cp or more, so that the porous film 12a Apply a silicone coating solution on the surface of Moreover, in the manufacturing method of this invention, a silicone coating liquid is apply
  • the production method of the present invention has such a configuration, and thus enables a dense (non-porous) silicone resin layer 14 to be appropriately formed on the surface of the porous film 12a.
  • the viscosity of the silicone coating solution at the time of coating may be measured by a method according to JIS Z8803. Specifically, in accordance with JIS Z8803, using a B-type viscometer or a viscometer similar thereto, the viscosity of the silicone coating solution at a rotational speed of 60 rpm may be measured as the temperature at the time of coating.
  • the acidic gas separation membrane having the facilitated transport membrane has a problem in durability because the soft gel-like facilitated transport membrane enters the porous support by use.
  • Patent Document 3 by forming a silicone resin layer on the surface of the porous support and forming a facilitated transport film on the surface of the silicone resin layer, the porous support is obtained. It is possible to prevent the entrance of the facilitated transport film.
  • the silicone resin layer is usually formed by applying a coating liquid containing a monomer or the like that becomes a silicone resin to the porous support and curing.
  • the porous film 12a having a maximum pore diameter of 5 ⁇ m or less is used, the viscosity at the time of application is set to 300 cp or more, and the silicone coating liquid is applied to the surface of the porous film 12a by RtoR.
  • the silicone resin layer 14 is formed. Therefore, according to the production method of the present invention, it is possible to suitably prevent (suppress) the applied silicone coating solution from penetrating into the porous film 12a, and to form a dense (non-porous) silicone on the surface of the porous film 12a.
  • the resin layer 14 can be formed.
  • the facilitated transport film is prevented from entering the porous film 12a (support 12) by forming the facilitated transport film on the surface of the silicone resin layer 14 using the composite 10 according to the production method of the present invention.
  • a facilitated transport type acidic gas separation membrane having excellent durability can be obtained.
  • the silicone coating solution when applied to the porous membrane 12a is less than 300 cp, the silicone coating solution cannot sufficiently obtain the effect of preventing the silicone coating solution from penetrating into the porous membrane 12a, etc. Cause problems.
  • 400 cp or more is preferable and, as for the viscosity of the silicone coating liquid at the time of apply
  • the viscosity of the silicone coating solution it is preferable in that a more preferable effect of preventing penetration of the silicone coating solution can be obtained.
  • the viscosity of the silicone coating solution when it is applied to the porous film 12a may basically be set to a viscosity that allows proper application, depending on the coating device used.
  • the viscosity of the silicone coating solution when applied to the porous film 12a is preferably 10,000,000 cp or less. By setting the viscosity of the silicone coating solution to 10,000,000 cp or less, it is preferable in terms of uniformity of coating of the silicone coating solution.
  • the viscosity of the silicone coating solution when applied to the porous film 12a is controlled by adjusting the composition of the coating solution, such as by adding a thickener or by adding an organic solvent, or by adjusting the temperature of the silicone coating solution, such as heating or cooling. Further, it may be performed by a known method such as mixing of silicone resins having different viscosities or adjusting the molecular weight by partial crosslinking of the silicone resin.
  • the silicone coating liquid preferably does not use an organic solvent as described above.
  • the coating unit 26 includes the coating device 32 and the backup roller 34.
  • the support 12 is transported in the longitudinal direction while being positioned at a predetermined application position by the backup roller 34, and a silicone coating liquid is applied to the surface of the porous film 12 a by the coating device 32, and a coating film of the coating liquid (liquid Film).
  • a silicone coating liquid is applied to the surface of the porous film 12 a by the coating device 32, and a coating film of the coating liquid (liquid Film).
  • Various known coating devices 32 can be used. Specifically, roll coater, direct gravure coater, offset gravure coater, 1 roll kiss coater, 3 reverse roll coater, forward rotation roll coater, curtain flow coater, extrusion die coater, air doctor coater, blade coater, rod coater And knife coaters, squeeze coaters, reverse roll coaters, bar coaters and the like.
  • a roll coater considering the control of the viscosity of the silicone coating solution, the coating amount of the silicone coating solution, the penetration amount of the silicone resin, etc., a roll coater, a direct gravure coater, an offset gravure coater, a single roll kiss coater, a three reverse roll coater, A forward rotating roll coater, a squeeze coater, a reverse roll coater, or the like is preferably used.
  • the coating device 32 preferably coats the surface of the porous film 12a with a silicone coating solution so that the thickness of the cured silicone resin layer 14 is 10 ⁇ m or less. That is, in the manufacturing method of the present invention, the thickness of the silicone resin layer 14 to be formed is preferably 10 ⁇ m or less.
  • the film thickness of the silicone resin layer 14 is the film thickness of the silicone resin layer 14 formed on the surface of the porous film 12a that does not include the portion soaked into the porous film 12a.
  • the film thickness of the silicone resin layer 14 is the film thickness of the silicone resin layer 14 formed on the porous film 12a that does not include the amount soaked into the porous film 12a.
  • the thickness of the silicone resin layer 14 is more preferably 5 ⁇ m or less.
  • the silicone resin layer 14 may be thin as long as it covers the entire surface of the porous film 12a with a dense film without coming off. Considering this point, the thickness of the silicone resin layer 14 is preferably 0.01 ⁇ m or more. By setting the thickness of the silicone resin layer 14 to 0.01 ⁇ m or more, the surface of the porous membrane 12a is suitably covered with the dense silicone resin layer 14, and the facilitated transport membrane enters the porous membrane 12a. The composite 10 that can be more suitably prevented is obtained.
  • the film thickness of the silicone resin layer 14 may be controlled by conducting experiments and simulations in advance in consideration of the penetration of the silicone coating solution into the porous film 12a described later.
  • the thickness of the silicone resin formed inside the porous membrane 12a is preferably thin.
  • the thickness of the silicone resin formed in the porous membrane 12a (the size in the thickness direction of the porous membrane 12a) and the thickness of the silicone resin layer 14 are: (Thickness of silicone resin inside porous membrane 12a) / (Thickness of silicone resin layer 14)
  • the thickness ratio is preferably 0.1 to 100. That is, in the production method of the present invention, the viscosity and the coating thickness of the silicone coating solution, the average pore size and the maximum pore size of the porous membrane 12a, and the curing after applying the silicone coating solution so as to achieve this thickness ratio. It is preferable to control the time until this is done.
  • the thickness ratio By setting the thickness ratio to 0.1 or more, it is preferable in that the adhesion between the silicone resin layer 14 and the porous film 12a can be improved and the pressure resistance of the silicone resin layer can be improved. Moreover, it is preferable at the point which can suppress the fall of gas permeability by making ratio of the said thickness into 100 or less. Furthermore, the ratio of the thickness of (silicone resin inside the porous membrane 12a) / (thickness of the silicone resin layer 14) is 0.1 to 0.1 in that the above effect can be more suitably obtained. 30 is more preferable.
  • the support 12 coated with the silicone coating liquid in the coating unit 26 is then conveyed to the curing device 28 (drying process).
  • the curing device 28 is preferably arranged immediately after the application unit 26 in the support conveyance direction. In other words, the curing device 28 is preferably disposed immediately downstream of the application unit 26 in the support conveyance direction.
  • the support 12 was conveyed by the curing device 28 in the longitudinal direction, and the silicone coating solution was cured, that is, the monomer or the like was cross-linked, so that the silicone resin layer 14 was formed on the surface of the support 12 (porous film 12a).
  • the composite 10 is obtained.
  • a method capable of curing the silicone coating solution may be appropriately used according to the type of monomer or the like contained in the silicone coating solution.
  • ultraviolet irradiation, electron beam irradiation, heating, humidification and the like are exemplified.
  • the curing of the silicone coating solution by ultraviolet irradiation or short heating is preferably used for the reason that curling and deformation of the support 12 can be suppressed and deterioration of the resin constituting the support 12 can be prevented.
  • curing of the silicone coating solution by ultraviolet irradiation is most preferably used. That is, in the production method of the present invention, it is preferable to form the silicone resin layer 14 with a silicone coating solution using a monomer or the like that can be cured by irradiation with ultraviolet rays.
  • the silicone coating solution may be cured in an inert atmosphere such as a nitrogen atmosphere as necessary.
  • the silicone resin layer 14 it is preferable to form the silicone resin layer 14 by curing the silicone coating solution within 5 seconds after coating the silicone coating solution.
  • the silicone coating solution can be cured in a short time after the silicone coating solution is applied.
  • the silicone coating solution After the silicone coating solution is applied to the porous film 12a, the silicone coating solution gradually soaks into the porous film 12a until it is cured.
  • the silicone coating liquid permeates into the porous film 12a. That is, it is preferable that the amount of the silicone resin in the porous film 12a is small.
  • the silicone coating solution and curing the silicone coating solution to form the silicone resin layer within 7 seconds, the penetration of the silicone coating solution into the porous film 12a can be suitably suppressed. Thereby, the high-quality composite 10 in which the silicone resin in the porous film 12a is thin can be obtained. It is more preferable that the silicone coating solution is cured within 5 seconds after the silicone coating solution is applied in that the penetration of the silicone coating solution into the porous film 12a can be more suitably suppressed.
  • the composite 10 in which the silicone coating liquid is cured by the curing device 28 and the silicone resin layer 14 is formed is guided by the pass rollers 38 a, 38 b, 38 c and 38 d and conveyed to the winding unit 30.
  • the pass rollers 38b, 38c, and 38d also function as tension cutters, and guide the composite 10 to meander.
  • the winding unit 30 winds the composite 10 to form a composite roll 10R, and includes a pass roller 38e and a winding shaft 40.
  • the composite 10 conveyed to the take-up unit 30 is guided to the take-up shaft 40 by the pass roller 64e, and taken up by the take-up shaft 40 to form a composite roll 10R.
  • the silicone resin layer 14 is further coated.
  • a coating composition to be a facilitated transport film is applied to the surface to form a facilitated transport film 16 to obtain an acidic gas separation film 18 as shown in FIG.
  • the facilitated transport film is applied to the surface of the support 12 instead of the surface of the silicone resin layer 14.
  • a facilitated transport film may be formed.
  • the surface of the support 12 is the surface opposite to the surface on which the silicone resin layer 14 is formed, that is, the surface of the auxiliary support film 12b on which the silicone resin layer 14 is not formed. The formation may be performed in the same manner as the following method.
  • FIG. 3 conceptually shows an example of a production apparatus for forming a facilitated transport film on the surface of the composite 10 (silicone resin layer 14 or support 12) in the production method of the present invention.
  • a case where a facilitated transport film is formed on the surface of the silicone resin layer 14 will be described as an example.
  • the production method of the present invention also uses RtoR when forming the facilitated transport film 16 on the surface of the silicone resin layer 14. Therefore, the manufacturing apparatus 50 shown in FIG. 3 also accelerates the silicone resin layer 14 while feeding the composite 10 from the composite roll 10R formed by winding the long composite 10 and transporting the composite 10 in the longitudinal direction. A coating composition to be the transport film 16 is applied.
  • the manufacturing apparatus 50 dries the coating composition to form the facilitated transport film 16, thereby forming the acidic gas separation membrane 18 that is a kind of complex manufactured by the manufacturing method of the present invention. Furthermore, the manufacturing apparatus 20 winds the produced acidic gas separation membrane 18 in a roll shape to obtain a separation membrane roll 18R.
  • Such a manufacturing apparatus 50 basically includes a supply unit 52, a coating unit 54, a drying device 56, and a winding unit 58. Similar to the previous manufacturing apparatus 20, the manufacturing apparatus 50 includes various members other than the illustrated members, such as a pass roller and various sensors, which are provided in an apparatus for manufacturing a functional film using RtoR. You may have a member.
  • the supply unit 52 has a rotation shaft 61.
  • the rotary shaft 61 is loaded with a composite roll 10R formed by winding the composite 10 into a roll shape.
  • the supply unit 52 loads the composite roll 10 ⁇ / b> R onto the rotary shaft 61, and sends the composite 10 by rotating the rotary shaft 61, that is, the composite roll 10 ⁇ / b> R. It is a part.
  • such a delivery and conveyance of the composite 10 may be performed by a known method.
  • the composite 10 delivered from the composite roll 10 ⁇ / b> R is then conveyed to the application unit 54.
  • the composite 10 that has been transported to the coating unit 54 is coated with the coating composition that will be the facilitated transport film 16 while being transported in the longitudinal direction.
  • the coating unit 54 includes a coating device 62 and a backup roller 64.
  • the composite 10 is conveyed in the longitudinal direction while being supported at a predetermined position by the backup roller 64, and the coating composition is applied to the surface of the silicone resin layer 14.
  • the conveyance speed of the composite 10 when forming the facilitated transport film 16 may be appropriately set according to the type of the composite 10, the viscosity of the coating composition, and the like.
  • the conveyance speed of the composite 10 is preferably 0.5 m / min or more, more preferably 0.75 to 200 m / min, and particularly preferably 1 to 200 m / min.
  • the facilitated transport film 16 contains a hydrophilic compound such as a hydrophilic polymer, a carrier that reacts with an acidic gas, water, and the like. Therefore, the coating composition for forming such a facilitated transport film 16 is a composition containing a hydrophilic compound, a carrier and water, or a necessary component such as a crosslinking agent.
  • the hydrophilic compound may be crosslinked, partially crosslinked, or uncrosslinked, or a mixture of these.
  • the water may be room temperature water or warm water.
  • the hydrophilic compound functions as a binder, and retains moisture in the facilitated transport film 16 to exert a function of separating a gas such as carbon dioxide by the carrier. Moreover, it is preferable that a hydrophilic compound has a crosslinked structure from a heat resistant viewpoint.
  • the hydrophilic compound can be dissolved in water to form a coating solution, and the facilitated transport film 16 preferably has high hydrophilicity (moisturizing property), those having high hydrophilicity are preferable.
  • the hydrophilic compound preferably has a hydrophilicity of 0.5 g / g or more in physiological saline, and has a hydrophilicity of 1 g / g or more in physiological saline. More preferably, the physiological saline solution has a hydrophilicity of 5 g / g or more, more preferably, the physiological saline solution has a hydrophilicity of 10 g / g or more, more preferably physiological saline. Most preferably, the liquid has a hydrophilicity of 20 g / g or more.
  • the weight average molecular weight of a hydrophilic compound suitably in the range which can form a stable film
  • the weight average molecular weight of the hydrophilic compound By setting the weight average molecular weight of the hydrophilic compound to 20,000 or more, the facilitated transport film 16 having a sufficient film strength can be obtained stably.
  • the hydrophilic compound when the hydrophilic compound has a hydroxy group as a crosslinkable group, the hydrophilic compound preferably has a weight average molecular weight of 30,000 or more. In this case, the weight average molecular weight is more preferably 40,000 or more, and more preferably 50,000 or more.
  • the weight average molecular weight is preferably 6,000,000 or less from the viewpoint of production suitability.
  • the hydrophilic compound has a weight average molecular weight of 10,000 or more.
  • the weight average molecular weight of the hydrophilic compound is more preferably 15,000 or more, and particularly preferably 20,000 or more.
  • a weight average molecular weight is 1,000,000 or less from a viewpoint of manufacture aptitude.
  • the weight average molecular weight of the hydrophilic compound may be a value measured according to JIS K 6726.
  • JIS K 6726 the weight average molecular weight of the hydrophilic compound
  • crosslinkable group forming the hydrophilic compound those capable of forming a hydrolysis-resistant crosslinked structure are preferably selected.
  • Specific examples include a hydroxy group, an amino group, a chlorine atom, a cyano group, a carboxy group, and an epoxy group.
  • an amino group and a hydroxy group are preferably exemplified.
  • a hydroxy group is illustrated from the viewpoint of affinity with a carrier and a carrier carrying effect.
  • hydrophilic compounds include those having a single crosslinkable group such as polyallylamine, polyacrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polyethyleneimine, polyvinylamine, polyornithine, polylysine, Examples include polyethylene oxide, water-soluble cellulose, starch, alginic acid, chitin, polysulfonic acid, polyhydroxymethacrylate, poly-N-vinylacetamide and the like. Most preferred is polyvinyl alcohol. Moreover, as a hydrophilic compound, these copolymers are also illustrated.
  • hydrophilic compounds having a plurality of crosslinkable groups include polyvinyl alcohol-polyacrylic acid copolymers.
  • a polyvinyl alcohol-polyacrylic salt copolymer is preferable because of its high water absorption ability and high hydrogel strength even at high water absorption.
  • the content of polyacrylic acid in the polyvinyl alcohol-polyacrylic acid copolymer is, for example, 1 to 95 mol%, preferably 2 to 70 mol%, more preferably 3 to 60 mol%, particularly preferably 5 to 50 mol%. It is.
  • the content of acrylic acid can be controlled by a known synthesis method.
  • the polyacrylic acid may be a salt.
  • the polyacrylic acid salt in this case include ammonium salts and organic ammonium salts in addition to alkali metal salts such as sodium salts and potassium salts.
  • Polyvinyl alcohol is also available as a commercial product. Specifically, PVA117 (manufactured by Kuraray Co., Ltd.), poval (manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (manufactured by Aldrich Co., Ltd.), J-poval (manufactured by Nihon Ventures & Poval Co., Ltd.) and the like are exemplified. Various grades of molecular weight exist, but those having a weight average molecular weight of 130,000 to 300,000 are preferred. A polyvinyl alcohol-polyacrylate copolymer (sodium salt) is also available as a commercial product. For example, Crustomer AP20 (made by Kuraray Co., Ltd.) is exemplified.
  • two or more hydrophilic compounds of the facilitated transport film 16 to be formed may be used as a mixture.
  • the content of the hydrophilic compound in the coating composition is such that the hydrophilic compound functions as a binder and can sufficiently retain moisture in the formed facilitated transport film 16, depending on the type of the hydrophilic composition or carrier, etc. Accordingly, it may be set appropriately.
  • the amount in the facilitated transport film 16 is preferably 0.5 to 50% by mass, more preferably 0.75 to 30% by mass, and 1 to 15% by mass. Particularly preferred.
  • the crosslinked structure of the hydrophilic compound can be formed by a known method such as thermal crosslinking, ultraviolet crosslinking, electron beam crosslinking, radiation crosslinking, or photocrosslinking. Photocrosslinking or thermal crosslinking is preferred, and thermal crosslinking is most preferred.
  • a coating composition contains a crosslinking agent.
  • the crosslinking agent one containing a crosslinking agent that reacts with a hydrophilic compound and has two or more functional groups capable of crosslinking such as thermal crosslinking or photocrosslinking is selected.
  • the formed crosslinked structure is preferably a hydrolysis-resistant crosslinked structure.
  • an epoxy crosslinking agent a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde, a polyvalent amine, An organic metal type crosslinking agent etc.
  • polyvalent aldehydes such as glutaraldehyde and formaldehyde having two or more aldehyde groups are preferred.
  • Epoxy crosslinking agent it is a compound which has 2 or more of epoxy groups, and the compound which has 4 or more is also preferable.
  • Epoxy crosslinking agents are also available as commercial products, for example, trimethylolpropane triglycidyl ether (manufactured by Kyoeisha Chemical Co., Ltd., Epolite 100MF, etc.), Nagase ChemteX Corporation EX-411, EX-313, EX-614B, Examples include EX-810, EX-811, EX-821, EX-830, and Epiol E400 manufactured by NOF Corporation.
  • the oxetane compound which has cyclic ether as a compound similar to an epoxy crosslinking agent is also used preferably.
  • the oxetane compound is preferably a polyvalent glycidyl ether having two or more functional groups. Examples of commercially available products include EX-411, EX-313, EX-614B, EX-810, EX-811, EX manufactured by Nagase ChemteX Corporation. -821, EX-830, etc.
  • polyvalent glycidyl ether examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene Examples include glycol glycidyl ether and polypropylene glycol diglycidyl ether.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, diethanolamine, triethanolamine, polyoxypropyl, and oxyethylene oxypropylene block copolymer.
  • examples include coalescence, pentaerythritol, and sobitol.
  • Examples of the polyvalent isocyanate include 2,4-toluylene diisocyanate and hexamethylene diisocyanate.
  • Examples of the polyvalent aziridine include 2,2-bishydroxymethylbutanol-tris [3- (1-acyridinyl) propionate], 1,6-hexamethylenediethyleneurea, diphenylmethane-bis-4,4′-N, N Examples include '-diethylene urea.
  • Examples of the haloepoxy compound include epichlorohydrin and ⁇ -methylchlorohydrin.
  • Examples of the polyvalent aldehyde include glutaraldehyde and glyoxal.
  • Examples of the polyvalent amine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and polyethyleneimine.
  • Examples of organometallic crosslinking agents include organic titanium crosslinking agents and organic zirconia crosslinking agents.
  • an epoxy crosslinking agent and glutaraldehyde are preferably used.
  • an epoxy crosslinking agent or glutaraldehyde is preferably used.
  • a polyallylamine having a weight average molecular weight of 10,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure having good reactivity with this hydrophilic compound and excellent hydrolysis resistance.
  • Epoxy crosslinking agents, glutaraldehyde, and organometallic crosslinking agents are preferably used.
  • an epoxy crosslinking agent is preferably used.
  • the amount of a crosslinking agent is preferably 0.001 to 80 parts by mass, more preferably 0.01 to 60 parts by mass, and particularly preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the crosslinkable group possessed by the hydrophilic compound. preferable.
  • the content of the cross-linking agent in the above range, a facilitated transport film having good cross-linking structure formation and excellent shape maintainability can be obtained. Focusing on the crosslinkable group possessed by the hydrophilic compound, the crosslinked structure is preferably formed by reacting 0.001 to 80 mol of a crosslinking agent with respect to 100 mol of the crosslinkable group possessed by the hydrophilic compound.
  • the carrier reacts with an acid gas (for example, carbon dioxide gas (CO 2 )) to transport the acid gas.
  • an acid gas for example, carbon dioxide gas (CO 2 )
  • the carrier is a water-soluble compound having affinity with acidic gas and showing basicity. Specific examples include alkali metal compounds, nitrogen-containing compounds, and sulfur oxides.
  • the carrier may react indirectly with the acid gas, or the carrier itself may react directly with the acid gas. Examples of the carrier that reacts indirectly with the acid gas react with other gas contained in the supply gas, show basicity, and the basic compound reacts with the acid gas. More specifically, OH react with steam (water) - was released, the OH - that reacts with CO 2, a compound can be incorporated selectively CO 2 in facilitated transport membrane 16 For example, an alkali metal compound. With acid gas.
  • the directly reacting carrier is such that the carrier itself is basic, for example, a nitrogen-containing compound or a sulfur oxide.
  • alkali metal compound examples include alkali metal carbonate, alkali metal bicarbonate, and alkali metal hydroxide.
  • alkali metal an alkali metal element selected from cesium, rubidium, potassium, lithium, and sodium is preferably used.
  • an alkali metal compound contains the salt and its ion other than alkali metal itself.
  • Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
  • Examples of the alkali metal bicarbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate.
  • Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, an alkali metal carbonate is preferable, and a compound containing potassium, rubidium, and cesium having high solubility in water is preferable from the viewpoint of good affinity with acidic gas.
  • an alkali metal compound When using an alkali metal compound as a carrier, two or more kinds of carriers may be used in combination. When two or more kinds of carriers are present in the facilitated transport film 16, different carriers can be separated from each other in the film. Thereby, due to the difference in deliquescence of a plurality of carriers, due to the water absorption of the facilitated transport film 16, the facilitated transport films 16, or the facilitated transport film 16 and other members are adhered to each other during manufacturing. (Blocking) can be suitably suppressed.
  • the first compound having deliquescence and the specific gravity having lower deliquescence than the first compound It is preferable to contain the 2nd compound with small.
  • the first compound is exemplified by cesium carbonate
  • the second compound is exemplified by potassium carbonate.
  • Nitrogen-containing compounds include amino acids such as glycine, alanine, serine, proline, histidine, taurine, diaminopropionic acid, hetero compounds such as pyridine, histidine, piperazine, imidazole, triazine, monoethanolamine, diethanolamine, triethanolamine , Alkanolamines such as monopropanolamine, dipropanolamine and tripropanolamine, cyclic polyetheramines such as cryptand [2.1] and cryptand [2.2], cryptand [2.2.1] and cryptand [ And bicyclic polyetheramines such as 2.2.2], porphyrin, phthalocyanine, ethylenediaminetetraacetic acid and the like.
  • sulfur compounds include amino acids such as cystine and cysteine, polythiophene, dodecyl thiol and the like.
  • the amount of carriers in the facilitated transport film 16 is preferably 0.3 to 30% by mass, more preferably 0.5 to 25% by mass, and 1 to 20% by mass. Is particularly preferred.
  • the amount ratio of the hydrophilic compound and the carrier in the coating composition is preferably 1: 9 to 2: 3 or less, more preferably 1: 4 to 2: 3 or less, and more preferably 3: 7 in terms of the weight ratio of the hydrophilic compound to the carrier. ⁇ 2: 3 is particularly preferred.
  • the coating composition may contain a thickener as necessary.
  • a thickener for example, thickening polysaccharides such as agar, carboxymethylcellulose, carrageenan, chitansan gum, guar gum and pectin are preferable.
  • carboxymethylcellulose is preferable from the viewpoints of film forming property, availability, and cost.
  • the content of the thickener in the coating composition is preferably as small as possible as long as it can be adjusted to the target viscosity.
  • a general index 10% by mass or less is preferable, 0.1 to 5% by mass is more preferable, and 0.1 to 2% by mass or less is more preferable.
  • the coating composition (facilitated transport film 16) may contain various components as necessary in addition to such a hydrophilic compound, a crosslinking agent and a carrier, or a thickener.
  • antioxidants such as dibutylhydroxytoluene (BHT), compounds having 3 to 20 carbon atoms or fluorinated alkyl groups having 3 to 20 carbon atoms and hydrophilic groups, and siloxane structures.
  • BHT dibutylhydroxytoluene
  • Specific compounds such as compounds having a surfactant, surfactants such as sodium octoate and sodium 1-hexasulfonate, polymer particles such as polyolefin particles and polymethyl methacrylate particles, and the like.
  • a catalyst, a humectant, a hygroscopic agent, an auxiliary solvent, a film strength modifier, a defect detector, and the like may be used as necessary.
  • a hydrophilic compound, a carrier, and various components to be added as needed are respectively added to water in appropriate amounts, and sufficiently stirred to prepare a coating composition that becomes the facilitated transport film 16.
  • the water may be room temperature water or warm water.
  • dissolution of each component may be promoted by heating with stirring.
  • precipitation (salting out) of a hydrophilic compound can be effectively prevented by adding a carrier gradually and stirring.
  • the coating composition to be the facilitated transport film 16 preferably has a viscosity at 25 ° C. of 100 cp or more.
  • a viscosity at 25 ° C. of the coating composition By setting the viscosity at 25 ° C. of the coating composition to 100 cp or more, repellency when the coating composition is applied on the silicone resin layer 14 can be suppressed, the uniformity of coating of the coating composition can be improved, etc. This is preferable. What is necessary is just to measure the viscosity of a coating composition similarly to the viscosity of the above-mentioned silicone coating liquid.
  • the application part 54 is a part for applying such an application composition to the composite 10 (silicone resin layer 14) conveyed in the longitudinal direction.
  • the application unit 54 includes an application device 62 and a backup roller 64. That is, the composite 10 is transported while being kept at a predetermined application position by the backup roller 64 and is applied with the coating composition by the coating device 62 to form a coating film (liquid film) of the coating composition.
  • a variety of known devices can be used for the coating device 62. Specifically, the same thing as the above-mentioned coating device 32 is illustrated. In consideration of the preferable viscosity of the coating composition, the coating amount of the coating composition, and the like, a roll coater, a bar coater, a positive rotation roll coater, a knife coater, and the like are preferably used.
  • the coating device 62 when forming the facilitated transport film 16, applies the coating composition to the support 12 so that the thickness of the coating film is 0.05 to 2 mm. Is preferred.
  • the thickness of the coating film is the thickness of the coating composition applied to the composite 10.
  • the facilitated transport film 16 that appropriately expresses the intended function can be formed, and the occurrence of defects due to the mixing of bubbles and foreign matters can be prevented. This is preferable in that sufficient drying can be performed by a drying device 56 described later.
  • the thickness of the coating film that becomes the facilitated transport film 16 is more preferably 0.1 to 1.5 mm.
  • the film thickness of the facilitated transport film 16 formed by drying the coating composition to be described later is appropriately selected according to the composition of the facilitated transport film 16, etc. You only have to set it. Specifically, it is preferably 3 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m.
  • the film thickness of the facilitated transport film 16 may be controlled in the same manner as the silicone resin layer 14 described above. That is, it is preferable to prepare the coating composition so that the facilitated transport film 16 having this film thickness can be obtained with the above-mentioned coating film thickness.
  • the film thickness of the facilitated transport film 16 within the above range, it is preferable in terms of improving gas permeation performance and suppressing occurrence of defects.
  • each facilitated transport film may have the same composition or a different composition.
  • the composite 10 coated with the coating composition in the coating unit 54 is guided by the pass roller 68 a that is in contact with the back surface and conveyed to the drying device 56.
  • the back surface is the surface opposite to the coating surface of the coating composition.
  • the drying device 56 removes at least a part of water from the coating composition coated on the support 12 and dries, thereby forming the facilitated transport film 16 and the acid gas separation film 18. It is a part to do.
  • the hydrophilic composition may be further cross-linked as necessary.
  • the drying method various known methods for drying by removing water, such as hot air drying or a drying method by heating the support 12, can be used.
  • the speed of the warm air may be set as appropriate so that the coating composition can be dried quickly and the coating film (gel film) of the coating composition does not collapse.
  • 0.5 to 200 m / min is preferable, 0.75 to 200 m / min is more preferable, and 1 to 200 m / min is particularly preferable.
  • the temperature of the hot air may be appropriately set at a temperature at which the support 12 is not deformed and the coating composition can be dried quickly.
  • the film surface temperature is preferably 1 to 120 ° C., more preferably 2 to 115 ° C., and particularly preferably 3 to 110 ° C.
  • the temperature at which the support 12 is not deformed and the coating composition can be dried quickly may be set as appropriate. Moreover, you may use blowing of a dry wind for heating of the support body 12 together.
  • the temperature of the support 12 is preferably 60 to 120 ° C., more preferably 60 to 90 ° C., and particularly preferably 70 to 80 ° C.
  • the film surface temperature is preferably 15 to 80 ° C., more preferably 30 to 70 ° C.
  • the winding unit 58 winds the acidic gas separation membrane 18 around the winding shaft 70 to form a separation membrane roll 18R.
  • the winding unit 58 includes the above-described winding shaft 70 and three pass rollers 68c to 68e.
  • the acidic gas separation membrane 18 is guided along a predetermined transport station path by the pass rollers 68c to 68e, and is taken up by the take-up shaft 70 (separation membrane roll 18R) to form the separation membrane roll 18R.
  • the three pass rollers 68c to 40e also function as tension cutters, and guide the composite 10 and the like so as to meander.
  • the support roll 12R is mounted on the rotating shaft 31 of the supply unit 24 of the manufacturing apparatus 20, and the rotating shaft 31 is rotated to feed the support 12 from the support roll 12R.
  • the support 12 sent out from the support roll 12R is passed through a coating section 26 (backup roller 34), the curing device 28, the pass rollers 38a to 38e, and a predetermined conveying path to the winding shaft 40, thereby supporting the support.
  • the tip of 12 is wound around the winding shaft 40.
  • the support 12 has a two-layer structure including a porous film 12a and an auxiliary support film 12b.
  • the maximum pore diameter of the porous membrane 12a is 5 micrometers or less.
  • the support roll 12R is mounted on the rotary shaft 31 so that the porous film 12a side faces the coating device 32.
  • the application device 32 is filled with a necessary amount of silicone coating solution.
  • the silicone coating solution is applied at room temperature. Therefore, this silicone coating liquid does not contain the organic solvent it has, and has a viscosity of 300 cp or more at room temperature.
  • the rotary shaft 31, the winding shaft 40, the backup roller 34, and the like are driven in synchronism with each other. Start conveyance.
  • the support 12 delivered from the support roll 12R is first transported while being supported at a predetermined application position by the backup roller 64 in the coating unit 54 while being transported in the longitudinal direction.
  • the silicone coating liquid to be the layer 14 is applied so as to have a target coating thickness (coating amount).
  • the maximum pore diameter of the porous film 12a to which the silicone coating solution is applied is 5 ⁇ m or less, and the viscosity of the silicone coating solution at the time of coating is 300 cp or more. Therefore, the penetration of the silicone coating liquid into the porous film 12a, which is a porous body, can be suitably prevented.
  • the support 12 coated with the silicone coating liquid to be the silicone resin layer 14 is conveyed to the curing device 28 that is disposed immediately after.
  • the silicone coating liquid is cured by irradiation with ultraviolet rays, the silicone resin layer 14 is formed, and the composite 10 is formed.
  • the silicone coating solution is cured to form the silicone resin layer 14 within 7 seconds after the silicone coating solution is applied.
  • the composite 10 on which the silicone resin layer 14 is formed is guided along a predetermined conveyance path by pass rollers 38a to 38d and conveyed to the winding unit 30, and is guided to the winding shaft 40 by the pass roller 38e.
  • the composite roll 10R formed by winding the composite 10 having the target length is completed, the composite roll 10R is removed from the winding shaft 40 as necessary, and the composite roll 10R is removed.
  • the rotating shaft 61 of the supply unit 52 of the manufacturing apparatus 50 is attached. Subsequently, the rotating shaft 61 is rotated and the composite 10 is sent out from the composite roll 10R.
  • the composite 10 delivered from the composite roll 10R passes through the coating unit 54 (backup roller 64), the pass roller 68a, the drying device 56, the pass roller 68b, and the pass rollers 68c to 68e, and reaches a take-up shaft 70.
  • the tip of the composite 10 is wound around the winding shaft 70.
  • the coating device 62 is filled with a necessary amount of the coating composition.
  • the coating composition preferably has a viscosity at 25 ° C. of 100 cp or more.
  • the rotary shaft 61, the winding shaft 70, the backup roller 64, and the like are driven in synchronism with each other. Start conveyance.
  • the composite 10 delivered from the composite roll 10R is first transported in the longitudinal direction while being supported at a predetermined application position by the backup roller 64 in the coating unit 54 while being transported in the longitudinal direction.
  • the coating composition to be the facilitated transport film 16 is applied so as to have a predetermined coating thickness (coating amount).
  • the composite 10 coated with the coating composition to be the facilitated transport film 16 is then guided by the pass roller 68a to the drying device 56, and the coating composition is dried in the drying device 56, whereby the facilitated transport film 16 is dried.
  • the acidic gas separation membrane 18 which is a kind of a complex produced by the production method of the present invention is formed.
  • the acidic gas separation membrane 18 is guided by the pass roller 68b, conveyed to the winding unit 58, guided along a predetermined conveyance path by the pass rollers 68c to 68e, and taken up by the take-up shaft 70, and the separation membrane roll 18R. Is done.
  • the manufacturing apparatus 20 in the illustrated example has only the coating apparatus 32 and the curing apparatus 28, and the manufacturing apparatus 50 has only the coating apparatus 62 and the drying apparatus 56. That is, when this apparatus is used, the silicone resin layer 14 and the facilitated transport film 16 are formed by separate apparatuses.
  • the manufacturing method of the present invention using a device having a coating device 32 and a curing device 28, a coating device 62 and a drying device 56, The acidic gas separation membrane 18 may be produced by forming the silicone resin layer 14 and the facilitated transport membrane 16 by performing winding once.
  • Example 1 ⁇ Silicone coating solution> UV9300 made by Momentive Performance Materials was prepared as a silicone coating solution for forming the silicone resin layer. Further, 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate manufactured by Tokyo Chemical Industry Co., Ltd. was added as a curing agent in an amount of 0.5% by weight based on the silicone resin. The viscosity at 25 ° C. of this silicone coating solution (silicone coating solution added with a curing agent) was measured according to JIS Z8803. Specifically, TVB-10M manufactured by Toki Sangyo Co., Ltd. was used, and the rotor was set to spindle no. The value 30 seconds after the start of rotation was measured as the viscosity of the silicone coating solution at M4 and a rotation speed of 60 rpm. As a result, the viscosity of the silicone coating solution at 25 ° C. was 300 cp.
  • a support roll 12R obtained by winding a long (porous) support 12 having a width of 500 mm and a thickness of 200 ⁇ m in a roll shape was prepared.
  • the support body 12 used the laminated body (made by GE) which laminated
  • the maximum pore meter of the porous membrane 12a of the support 12 was measured with a palm porometer, it was 0.17 ⁇ m.
  • the support roll 12R was loaded on the rotating shaft 31 of the supply unit 24 of the manufacturing apparatus 20 shown in FIG. 2 so that the silicone coating solution was applied to the porous membrane 12a side.
  • the support 12 is sent out from the support roll 12R, and as described above, the leading end of the support 12 is wound up through the coating unit 26 and the curing device 28 through a predetermined transport path to the winding unit 30. It was wound around the shaft 40.
  • the silicone coating solution was filled in the coating device 32 of the coating unit 26. In the coating device 32, the temperature was controlled so that the temperature of the filled silicone coating solution was 24 to 25 ° C.
  • the support 12 is started to be transported, and as described above, a silicone coating liquid is applied to the surface of the porous film 12a in the coating unit 26, and ultraviolet rays are irradiated by the curing device 28.
  • the silicone coating solution was cured to form a composite 10 in which the silicone resin layer 14 was formed on the support 12. Further, the produced composite 10 was wound around the take-up shaft 40 to obtain a composite roll 10R.
  • the conveyance speed of the support 12 was 50 m / min.
  • the ultraviolet irradiation position and the irradiation amount in the curing device 28 were adjusted so that the silicone coating solution was cured in 2 seconds.
  • the silicone coating solution was applied so that the thickness of the silicone resin layer 14 was 10 ⁇ m. Further, the composite 10 is cut at an arbitrary position, and the thickness of the silicone resin soaked in the porous film 12a is obtained by observing the cross section with a scanning electron microscope and analyzing the energy dispersive X-ray analysis image of the cross section. The thickness (average value) was measured. as a result, (Thickness of silicone resin inside porous membrane 12a) / (Thickness of silicone resin layer 14) The thickness ratio was 0.9. In addition, after applying the silicone coating solution, the relationship between the time until the silicone coating solution is cured and the UV irradiation amount, and the film thickness of the silicone resin layer 14 and the coating amount of the silicone coating solution are examined in advance by experiments. Oita.
  • Example 2 except that a laminate having a maximum pore diameter of 4.7 ⁇ m of porous membrane 12a was used as support 12 and the thickness of silicone resin layer 14 was 2 ⁇ m (Example 2); Except for the thickness of the silicone resin layer 14 being 0.5 ⁇ m (Example 3); Except that KF-102 manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silicone coating solution, and the thickness of the silicone resin layer 14 was 0.3 ⁇ m (Example 4); In the same manner as in Example 1, a composite 10 was produced.
  • Example 4 when the viscosity at 25 ° C. of the silicone coating solution was measured in the same manner as in Example 1, it was 4000 cp. In Examples 2 to 4, the thickness ratio between the silicone resin and the silicone resin layer 14 in the porous membrane 12a was measured in the same manner as in Example 1. As a result, Example 2 was 4 and Example 3 was 4 Example 4 was 5.
  • Comparative Example 1 when the viscosity of the silicone coating solution at 25 ° C. was measured in the same manner as in Example 1, it was 20 cp. In Comparative Example 1, the silicone coating solution soaked into the porous film 12a, and the silicone resin layer 14 could not be formed on the porous film 12a. Also in Comparative Example 2, the silicone coating solution soaked into the porous film 12a, and the silicone resin layer 14 could not be formed on the porous film 12a.
  • the transmission speed unit is “1 ⁇ 10 ⁇ 6 cm 3 (STP) / (sec ⁇ cm 2 ⁇ cmHg)”.
  • the evaluation is as follows. A: In the above test conditions, pressurization of 500 kPa is possible and the CO 2 permeation rate is 200 or more. B: When the above test conditions allow pressurization of 500 kPa and the CO 2 permeation rate is 10 or more and less than 200. C: When the above test conditions do not allow pressurization at 500 kPa or the CO 2 permeation rate is less than 10. The results are shown in the table below.
  • the acid gas separation membranes 18 of Examples 1 to 4 using the composite 10 produced by the production method of the present invention have excellent gas permeation performance.
  • the acidic gas separation membrane 18 of Example 3 and Example 4 in which the silicone resin layer 14 is thin has very excellent gas permeation performance.
  • Comparative Example 1 in which the viscosity of the silicone coating solution is less than 300 cp and Comparative Example 2 in which the maximum pore size of the support 12 (porous membrane 12a) exceeds 5 ⁇ m are both applied to the support 12 in the silicone coating solution. Soaked in, the silicone resin layer could not be formed on the surface of the porous membrane 12a, and the gas permeation performance deteriorated. From the above results, the effects of the present invention are clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

 多孔質支持体に促進輸送膜を形成してなる酸性ガス分離膜において、多孔質支持体に促進輸送膜が入り込むことを防止するためのシリコーン樹脂層を、適性に形成できる複合体の製造方法を提供することを課題とする。ロール・トゥ・ロールによってシリコーン樹脂層となるシリコーン塗布液を塗布するものであり、かつ、多孔質支持体として、最大孔径が5μm以下のものを用い、さらに、塗布時におけるシリコーン塗布液の粘度を300cp以上とすることにより、この課題を解決する。

Description

複合体の製造方法
 本発明は、原料ガスから酸性ガスを選択的に分離する酸性ガス分離膜に利用される複合体の製造方法に関する。詳しくは、促進輸送膜が多孔質支持体に入り込むことを防止するためのシリコーン樹脂層を、多孔質支持体の表面に適性に形成できる複合体の製造方法に関する。
 近年、原料ガス(被処理ガス)から、炭酸ガスなどの酸性ガスを選択的に分離する技術の開発が進んでいる。例えば、酸性ガスを選択的に透過する酸性ガス分離膜を用いて、原料ガスから酸性ガスを分離する酸性ガス分離膜が開発されている。
 例えば、特許文献1には、管壁に貫通孔が形成された、分離した酸性ガスを収集するための中心筒(中心透過物収集管)に、酸性ガス分離膜を含む積層体を多重に巻き付けてなる酸性ガス分離モジュールが記載されている。
 この特許文献1に開示される酸性ガス分離モジュールは、酸性ガス分離膜として、いわゆる溶解拡散膜を用いている。この溶解拡散膜は、膜に対する酸性ガスと分離対象物質との溶解性、および、膜中の拡散性の差を利用して、原料ガスから酸性ガスを分離する。
 また、特許文献2には、原料ガスから炭酸ガス(二酸化炭素)を分離する酸性ガス分離膜(二酸化炭素分離ゲル膜)として、二酸化炭素透過性の支持体の上に、二酸化炭素キャリアを含む水溶液を、架橋構造を有するビニルアルコール-アクリル酸塩共重合体に吸収させて形成したハイドロゲル膜を形成した酸性ガス分離膜が記載されている。
 この酸性ガス分離膜は、いわゆる促進輸送膜を用いる酸性ガス分離膜である。促進輸送膜は、二酸化炭素キャリアのような酸性ガスと反応するキャリアを膜中に有し、このキャリアで酸性ガスを膜の反対側に輸送することで、原料ガスから酸性ガスを分離する。
 このような酸性ガス分離膜は、通常、不織布や多孔質膜などのガス透過性を有する支持体(多孔質支持体)の表面に、前述の溶解拡散膜や促進輸送膜(以下、両者をまとめて分離層とも言う)を形成した構成を有する。
 そのため、分離膜は、使用すると、次第に、分離層が多孔質支持体に入り込む(染み込む)場合が有る。特に、促進輸送膜は、酸性ガスを移動あるいは輸送するために、ゲル膜や低粘性の膜である場合が多い。そのため、促進輸送膜を用いる酸性ガス分離膜は、使用すると、次第に、分離層が多孔質支持体に入り込む。
 分離膜は、この多孔質支持体への分離層の入り込みにより、経時と共に酸性ガスの分離能力が低下してしまう。
 しかも、促進輸送膜は、キャリアを十分に機能させるために、膜中に多量の水分を保持させる必要がある。そのため、促進輸送膜には、非常に吸水性および保水性が高いポリマーが用いられる。加えて、促進輸送膜は、金属炭酸塩などのキャリアの含有量が多い程、吸水量が増えて、酸性ガスの分離性能が向上する。すなわち、促進輸送膜は、非常に柔らかい(粘性が低い)、ゲル膜である場合が多い。
 加えて、促進輸送膜を利用する酸性ガス分離膜では、酸性ガスの分離時には、温度100~130℃、湿度90%程度の原料ガスを、1.5MPa程度の圧力で供給される。
 そのため、促進輸送膜を利用する酸性ガス分離膜では、促進輸送膜の多孔質支持体への入り込みが生じ易く、耐久性が低い。
 一方、特許文献3には、多孔質支持体の表面に、下地層を形成し、この下地層の上に、分離膜を形成する、酸性ガス分離膜の製造方法(薄膜の製造方法)が記載されている。この酸性ガス分離膜の製造方法では、まず、多孔質支持体の表面に、ポリマーを主成分とする溶液を塗布して、シリコーン系ポリマー等の通気性を有するポリマーからなる下地層を形成する。さらに、この下地層の上に、分離層となる素材を主成分とする有機溶媒溶液を塗布、乾燥して分離層を形成する。
 この製造方法による酸性ガス分離膜では、通気性を有するポリマーからなる下地層を有することにより、均一な分離層を形成できると共に、低粘度の分離層が多孔質支持体に入り込むことを防止できる。
特開平4-215824号公報 特公平7-102310号公報 特開昭62-140620号公報
 特許文献3にも示されるように、多孔質支持体の表面にシリコーン系ポリマー等の通気性を有する無多孔の下地層を形成し、その上に分離層を形成することにより、多孔質支持体への分離層の入り込みを防止できる。
 しかしながら、このような下地層の形成も、通常、下地層となる成分を含有する塗布液を、多孔質支持体の表面に塗布して、乾燥および硬化することで行われる。
 そのため、多孔質支持体に下地層となる塗布液を塗布した際に、この塗布液が多孔質支持体に染み込んでしまう。この塗布液の染み込みによって、多孔質支持体の表面に、適正な下地層を形成することが難しいという問題が有る。
 本発明の目的は、このような従来技術の問題点を解決することにあり、促進輸送膜を有する酸性ガス分離膜に用いられる、促進輸送膜が多孔質支持体に入り込むことを防止するためのシリコーン樹脂層を有する複合体の製造方法であって、シリコーン樹脂層となるシリコーン塗布液が多孔質支持体に染み込むことを防止して、多孔質支持体の表面に、緻密なシリコーン樹脂層を適性に形成できる製造方法を提供することにある。
 この目的を達成するために、本発明の複合体の製造方法は、促進輸送膜を有する酸性ガス分離膜において、表面に促進輸送膜を形成される、多孔質支持体の表面にシリコーン樹脂層を形成してなる複合体の製造方法であって、
 ロール・トゥ・ロール方式によって、シリコーン樹脂層となるシリコーン塗布液を多孔質支持体の表面に塗布する工程を有し、
 かつ、多孔質支持体として、最大孔径が5μm以下である多孔質体を用い、さらに、多孔質支持体の表面に塗布する際におけるシリコーン塗布液の粘度を300cp以上とすることを特徴とする複合体の製造方法を提供する。
 このような本発明の複合体の製造方法において、さらに、ロール・トゥ・ロール方式によって、少なくとも酸性ガスと反応するキャリアおよびキャリアを担持するための親水性化合物を含有する、促進輸送膜となる塗布組成物を、シリコーン樹脂層の表面もしくは多孔質支持体の表面に塗布する工程を有するのが好ましい。
 また、塗布組成物を、シリコーン樹脂層の表面に塗布するのが好ましい。
 また、25℃における塗布組成物の粘度が100cp以上であるのが好ましい。
 また、シリコーン塗布液を塗布した後、7秒以内に、シリコーン塗布液を硬化してシリコーン樹脂層を形成するのが好ましい。
 また、シリコーン塗布液の硬化を紫外線照射によって行うのが好ましい。
 また、膜厚が10μm以下のシリコーン樹脂層を形成するのが好ましい。
 また、多孔質支持体が、含フッ素ポリマー、ポリプロピレン、および、ポリスルホンから選択される1以上の材料を含むのが好ましい。
 さらに、多孔質支持体の内部へのシリコーン塗布液の染み込みに起因して、多孔質支持体の内部にもシリコーン樹脂が形成されており、かつ、多孔質支持体の内部のシリコーン樹脂の厚さが、シリコーン樹脂層の厚さに対して、
 (支持体内部のシリコーン樹脂)/(シリコーン樹脂層)=0.1~100
を満たすのが好ましい。
 このような本発明によれば、促進輸送膜を用いる酸性ガス分離膜において、促進輸送膜が多孔質支持体に入り込む事を防止するためのシリコーン樹脂層を、多孔質支持体の表面に適性に形成できる。
 そのため、本発明によれば、多孔質支持体への促進輸送膜の入り込み(染み込み)を防止して、耐久性に優れる酸性ガス分離膜を得ることができる。
図1(A)および図1(B)は、本発明の複合体の製造方法で製造する複合体の一例を概念的に示す図である。 図2は、本発明の複合体の製造方法を実施する製造装置の一例を概念的に示す図である。 図3は、本発明の複合体の製造方法の別の工程を実施する製造装置の一例を概念的に示す図である。 図4は、本発明の複合体の製造方法を実施する製造装置の別の例を概念的に示す図である。
 以下、本発明の複合体の製造方法について、添付の図面に示される好適実施例を基に、詳細に説明する。
 図1(A)に、本発明の複合体の製造方法で製造される複合体の一例を概念的に示す。
 この複合体10は、促進輸送膜を有する酸性ガス分離膜に用いられる複合体であって、多孔質支持体12の表面に、シリコーン樹脂層14を形成してなるものである。
 前述のように、促進輸送膜を利用する酸性ガス分離膜では、柔らかいゲル膜である促進輸送膜が多孔質支持体12に入り込み(染み込み)、耐久性が悪いという問題が有る。これに対し、多孔質支持体12の表面にシリコーン樹脂層14を有し、このシリコーン樹脂層14の表面に促進輸送膜(酸性ガス分離層)を形成することにより、促進輸送膜が多孔質支持体12に入り込むことを防止できる。
 本発明の製造方法は、長尺な多孔質支持体12を用い、いわゆるロール・トゥ・ロール方式(以下、RtoRとも言う)によって、多孔質支持体12の表面に、シリコーン樹脂層14となるシリコーン塗布液を塗布する。周知のように、RtoRとは、長尺な被処理物を巻回したロールから、被処理物を引き出し、被処理物を長手方向に搬送しつつ、塗布や硬化などの処理を行って、処理済の被処理物を、ロール状に巻回する製造方法である。
 ここで、本発明の複合体10の製造方法においては、多孔質支持体12として、最大孔径が5μm以下の多孔質体を用い、かつ、塗布時におけるシリコーン塗布液の粘度を300cp以上とする。
 図2に、本発明の製造方法を実施する製造装置の一例を概念的に示す。
 前述のように、本発明の製造方法においては、RtoRを利用して複合体10を製造する。従って、製造装置20は、長尺な多孔質支持体12(ウェブ状の多孔質支持体12)をロール状に巻回してなる支持体ロール12Rから多孔質支持体12を送り出し、多孔質支持体12を長手方向に搬送しつつ、多孔質支持体12の表面にシリコーン樹脂層14となるシリコーン塗布液を塗布する。製造装置20は、次いで、多孔質支持体12に塗布したシリコーン塗布液を硬化してシリコーン樹脂層14を形成し、多孔質支持体12の表面にシリコーン樹脂層14を形成した複合体10とする。さらに、製造装置20は、このようにして作製した複合体10を、ロール状に巻き取って、複合体ロール10Rとする。
 このような製造装置20は、基本的に、供給部24と、塗布部26と、硬化装置28と、巻取部30とを有して構成される。
 なお、製造装置20には、図示した部材以外にも、必要に応じて、パスローラ(ガイドローラ)、搬送ローラ対、搬送ガイド、各種のセンサ等、RtoRによって機能性膜(機能性フィルム)を製造する装置に設けられる、各種の部材を有してもよい。
 供給部24は、支持体ロール12Rを装填する回転軸31を有する。支持体ロール12Rは、長尺な多孔質支持体12をロール状に巻回してなるものである。
 供給部24は、回転軸31に支持体ロール12Rを装填し、回転軸31すなわち支持体ロール12Rを回転することにより、多孔質支持体12を送り出す部位である。
 供給部24において、このような多孔質支持体12の送り出しおよび搬送は、公知の方法で行えばよい。
 多孔質支持体12(以下、支持体12とも言う)は、炭酸ガス等の酸性ガスの透過性を有し、かつ、表面に形成されたシリコーン樹脂層14、および、シリコーン樹脂層14の表面もしくは支持体12の表面に形成された促進輸送膜を支持するものである。支持体12の表面とは、シリコーン樹脂層の形成面と逆面である。
 支持体12は、この機能を発現できる物であれば、公知の各種の物が利用可能である。
 本発明の製造方法において、多孔質支持体は、単層であってもよい。しかしながら、多孔質支持体は、図1(A)に示す支持体12のように、多孔質膜12aと補助支持膜12bとからなる2層構成であるのが好ましい。支持体12を、このような2層構成を有することにより、上記の酸性ガス透過性や、シリコーン樹脂層14および促進輸送膜の支持という機能を、より確実に発現する。
 なお、多孔質支持体が単層である場合には、形成材料としては、以下に多孔質膜12aおよび補助支持膜12bで例示する各種の材料が利用可能である。
 この2層構成の支持体12では、この多孔質膜12aがシリコーン樹脂層14の形成面となる。すなわち、多孔質膜12aがシリコーン塗布液の塗布面となる。また、通常は、このシリコーン樹脂層14の表面に、促進輸送膜が形成される。
 多孔質膜12aは、耐熱性を有し、また加水分解性の少ない材料からなることが好ましい。このような多孔質膜12aとしては、具体的には、ポリスルホン(PSF)、ポリエーテルスルホン、ポリプロピレン(PP)およびセルロースなどのメンブレンフィルター膜、ポリアミドやポリイミドの界面重合薄膜、ポリテトラフルオロエチレン(PTFE)や高分子量ポリエチレンの延伸多孔膜等が例示される。
 中でも、PTFE等の含フッ素ポリマー、PPおよびPSFから選択される1以上の材料を含む多孔質膜12aは好ましく例示される。その中でも、PTFEや高分子量ポリエチレンの延伸多孔膜は、高い空隙率を有し、酸性ガス(特に炭酸ガス)の拡散阻害が小さく、さらに、強度、製造適性などの観点から好ましい。特に、良好な耐熱性を有し、また加水分解性の少ない等の点で、PTFEの延伸多孔膜が、好適に利用される。
 補助支持膜12bは、多孔質膜12aの補強用に備えられるものである。
 補助支持膜12bは、要求される強度、耐延伸性および気体透過性を満たすものであれば、各種の物が利用可能である。例えば、不織布、織布、ネット、および、メッシュなどを、適宜、選択して用いることができる。
 補助支持膜12bも、前述の多孔質膜12aと同様、耐熱性を有し、また加水分解性の少ない素材からなることが好ましい。
 この点を考慮すると、不織布、織布、編布を構成する繊維としては、耐久性や耐熱性に優れる、PPなどのポリオレフィン、アラミド(商品名)などの改質ポリアミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素含有樹脂などからなる繊維が好ましい。メッシュを構成する樹脂材料も同様の素材を用いるのが好ましい。これらの材料のうち、安価で力学的強度の強いPPからなる不織布は、特に好適に例示される。
 支持体12が補助支持膜12bを有することにより、力学的強度を向上させることができる。そのため、図示例のRtoRを利用する製造方法であっても、支持体12に皺がよることを防止でき、生産性を高めることもできる。
 支持体12は、薄すぎると強度に難がある。この点を考慮すると、多孔質膜12aの膜厚は5~100μm、補助支持膜12bの膜厚は50~300μmが好ましい。
 また、支持体12を単層にする場合には、支持体12の厚さは、30~500μmが好ましい。
 ここで、本発明の製造方法においては、多孔質支持体として、最大孔径が5μm以下の多孔質体を用いる。
 なお、図示例のように、2層構成の支持体12を用いる場合には、シリコーン樹脂層14となるシリコーン塗布液が塗布される多孔質膜12aの最大孔径が、5μm以下であればよい。すなわち、図1(A)に示す複合体10において、本発明の製造方法で製造する複合体における多孔質支持体とは、多孔質膜12aである。
 本発明の製造方法では、多孔質膜12a(多孔質支持体)の表面に、シリコーン樹脂層14となるシリコーン塗布液を塗布する。ここで、多孔質膜12aの最大孔径が5μmを超えると、多量のシリコーン塗布液が多孔質膜12aに染み込んでしまい、シリコーン塗布液を適性に塗布できず、適性なシリコーン樹脂層14を形成できない。また、多孔質膜12aの最大孔径が5μmを超えると、形成したシリコーン樹脂層14の耐圧性が低下し、多孔質膜12a内に入り込んでしまう等の不都合も生じる。
 孔径が小さい多孔質体は、シリコーン塗布液の染み込み防止という点では有利である。その反面、孔径が極めて微細な多孔質体は、非常に高価である。これに対し、本発明は、最大孔径が5μm以下という、比較的、孔径の大きな多孔質膜12aを用いることができる。そのため、本発明では、複合体10すなわち酸性ガス分離膜のコストも低減できる。
 より優れたシリコーン塗布液の染み込みの防止硬化という点で、多孔質膜12aの最大孔径は、1μm以下であるのが好ましく、0.3μm以下であるのがより好ましい。
 多孔質膜12aの最大孔径は、例えば、パームポロメータで測定すればよい。
 多孔質膜12aの孔の平均孔径は、0.01~1μmが好ましく、0.01~0.3μmがより好ましい。
 多孔質膜12aの平均孔径を、この範囲とすることにより、多孔質膜12aが酸性ガスの通過の妨げとなることを好適に防止でき、かつ、後述するシリコーン塗布液を塗布する際に、毛管現象などにより膜面が不均一になることを防げる。
 支持体ロール12Rから送り出された支持体12は、次いで、塗布部26に搬送される塗布部26において、支持体12は、長手方向に搬送されつつ、シリコーン樹脂層14となるシリコーン塗布液を塗布される。
 図示例において、塗布部26は、塗布装置32およびバックアップローラ34を有して構成される。支持体12は、バックアップローラ34によって所定の位置に支持されつつ長手方向に搬送されて、多孔質膜12aの表面にシリコーン塗布液を塗布される。
 なお、支持体12の搬送速度は、生産性の観点から速い方が好ましい。しかしながら、シリコーン塗布液を均一に塗布するために、1~200m/minが好ましく、3~150m/minがより好ましく、5~120m/minが特に好ましい。
 シリコーン樹脂層14は、オルガノポリシロキサン(シリコーン樹脂)やポリトリメチルシリルプロピンなどシリコーン含有ポリアセチレン等が利用できる。オルガノポリシロキサンの具体例としては、下記の一般式で示されるものが例示される。
Figure JPOXMLDOC01-appb-C000001
  
 なお、上記一般式中、nは1以上の整数を表す。ここで、入手容易性、揮発性、粘度等の観点から、nの平均値は10~1,000,000の範囲が好ましく、100~100,000の範囲がより好ましい。
 また、R1n、R2n、R3、および、R4は、それぞれ、水素原子、アルキル基、ビニル基、アラルキル基、アリール基、ヒドロキシル基、アミノ基、カルボキシル基、および、エポキシ基からなる群より選択されるいずれかを示す。なお、n個存在するR1nおよびR2nは、それぞれ、同じであっても異なっていても良い。また、アルキル基、アラルキル基、アリール基は環構造を有していても良い。さらに、前記アルキル基、ビニル基、アラルキル基、アリール基は置換基を有していても良く、アルキル基、ビニル基、アリール基、ヒドロキシル基、アミノ基、カルボキシル基、エポキシ基またはフッ素原子から選ばれる。これらの置換基は、可能であればさらに置換基を有することもできる。
 R1n、R2n、R3、および、R4に選択されるアルキル基、ビニル基、アラルキル基、および、アリール基は、入手容易性などの観点から、炭素数1~20のアルキル基、ビニル基、炭素数7~20のアラルキル基、炭素数6~20のアリール基がより好ましい。
 特に、R1n、R2n、R3、および、R4は、メチル基またはエポキシ置換アルキル基が好ましく、例えば、エポキシ変性のポリジメチルシロキサン(PDMS)などが好適に利用できる。
 従って、このシリコーン樹脂層14を形成するためのシリコーン塗布液は、シリコーン樹脂層となる化合物のモノマー、ダイマー、トリマー、オリゴマー、プレポリマー、これらの混合物や、硬化剤、硬化促進剤、架橋剤、増粘剤、補強剤、フィラー等を含有する。
 なお、シリコーン塗布液は、通常、このような樹脂層を形成する際に用いられる有機溶剤を含まないのが好ましい。
 シリコーン塗布液が有機溶剤を含まないことにより、シリコーン塗布液の乾燥工程を不要にしてシリコーン塗布液を塗布した直後にモノマー等の硬化を行うことができる、シリコーン塗布液の粘度を容易に300cp以上にできる、除電設備化や防爆設備化が不要であるため製造設備が簡素化できる等の点で好ましい。
 前述のように、本発明の製造方法においては、最大孔径が5μm以下の多孔質膜12a(多孔質支持体)を用い、塗布時におけるシリコーン塗布液の粘度を300cp以上にして、多孔質膜12aの表面にシリコーン塗布液を塗布する。また、本発明の製造方法においては、RtoRによって多孔質膜12aの表面にシリコーン塗布液を塗布する。
 本発明の製造方法は、このような構成を有することにより、多孔質膜12aの表面に、緻密(無多孔)なシリコーン樹脂層14を適性に形成することを可能にしている。
 なお、本発明の製造方法において、塗布時におけるシリコーン塗布液の粘度は、JIS Z8803に準じた方法で測定すればよい。具体的には、JIS Z8803に準じて、B型粘度計あるいはそれに類似する粘度計を用いて、回転数60rpmにおけるシリコーン塗布液の粘度を、液温を塗布時における温度として測定すればよい。
 前述のように、促進輸送膜を有する酸性ガス分離膜では、使用によって柔らかいゲル状の促進輸送膜が多孔質支持体に入り込んでしまうため、耐久性に問題が有る。これに対し、特許文献3等にも示されるように、多孔質支持体の表面にシリコーン樹脂層を形成し、このシリコーン樹脂層の表面に促進輸送膜を形成することにより、多孔質支持体への促進輸送膜の入り込みを防止できる。
 しかしながら、シリコーン樹脂層は、通常、シリコーン樹脂となるモノマー等を含有する塗布液を多孔質支持体に塗布して、硬化することで形成する。そのため、塗布液を多孔質支持体に塗布した際に、塗布液が多孔質支持体に染み込んでしまい、多孔質支持体の表面に適正なシリコーン樹脂層を形成できない。
 その結果、多孔質支持体の表面にシリコーン樹脂層を形成したにも関わらず、多孔質支持体への促進輸送膜の入り込みを十分に防止できず、酸化ガス分離膜の耐久性を向上することができない。
 これに対し、本発明の製造方法では、最大孔径が5μm以下の多孔質膜12aを用い、塗布時における粘度を300cp以上にして、RtoRによって、多孔質膜12aの表面にシリコーン塗布液を塗布して、シリコーン樹脂層14を形成する。
 そのため、本発明の製造方法によれば、塗布したシリコーン塗布液が多孔質膜12aに染み込むことを、好適に防止(抑制)して、多孔質膜12aの表面に、緻密(無多孔)なシリコーン樹脂層14を形成できる。従って、本発明の製造方法による複合体10を用いて、シリコーン樹脂層14の表面に促進輸送膜を形成することで、促進輸送膜が多孔質膜12a(支持体12)に入り込むことを防止して、耐久性に優れた促進輸送型の酸性ガス分離膜を得ることができる。
 本発明の製造方法において、多孔質膜12aに塗布する際におけるシリコーン塗布液の粘度が300cp未満では、シリコーン塗布液が多孔質膜12aへのシリコーン塗布液の染み込み防止効果を十分に得られない等の問題を生じる。
 多孔質膜12aに塗布する際におけるシリコーン塗布液の粘度は、400cp以上が好ましく、500cp以上がより好ましい。
 シリコーン塗布液の粘度を上記範囲とすることにより、より好適なシリコーン塗布液の染み込み防止効果を得られる等の点で好ましい。
 多孔質膜12aに塗布する際におけるシリコーン塗布液の粘度は、基本的に、使用する塗布装置に応じて、適正な塗布が可能な粘度以下とすればよい。
 ここで、多孔質膜12aに塗布する際におけるシリコーン塗布液の粘度は、10,000,000cp以下が好ましい。シリコーン塗布液の粘度を10,000,000cp以下とすることにより、シリコーン塗布液の塗布の均一性等の点で好ましい。
 多孔質膜12aに塗布する際におけるシリコーン塗布液の粘度制御は、増粘剤の添加や有機溶剤の添加量の調節などの塗布液の組成の調節、加熱や冷却などのシリコーン塗布液の温度調節、粘度の異なるシリコーン樹脂の混合、シリコーン樹脂の部分的架橋による分子量調節等の公知の方法で行えばよい。
 なお、シリコーン塗布液は、好ましくは有機溶剤を使用しないのが好ましいのは、前述のとおりである。
 前述のように、塗布部26は、塗布装置32とバックアップローラ34とを有する。
 支持体12は、バックアップローラ34によって所定の塗布位置に位置されつつ長手方向に搬送されて、塗布装置32によって、多孔質膜12aの表面にシリコーン塗布液を塗布され、塗布液の塗膜(液膜)を形成される。
 なお、塗布部26では、必要に応じて、シリコーン塗布液や支持体12等の温度制御を行ってもよい。
 塗布装置32は、公知のものが、各種、利用可能である。
 具体的には、ロールコータ、ダイレクトグラビアコータ、オフセットグラビアコータ、1本ロールキスコータ、3本リバースロールコータ、正回転ロールコータ、カーテンフローコータ、エクストルージョンダイコータ、エアードクターコータ、ブレードコータ、ロッドコータ、ナイフコータ、スクイズコータ、リバースロールコータ、バーコータ等が例示される。
 中でも、シリコーン塗布液の粘度、シリコーン塗布液の塗布量、シリコーン樹脂の染み込み量の制御等を考慮すると、ロールコータ、ダイレクトグラビアコータ、オフセットグラビアコータ、1本ロールキスコータ、3本リバースロールコータ、正回転ロールコータ、スクイズコータ、リバースロールコータ等は好適に利用される。
 塗布装置32は、硬化して形成されるシリコーン樹脂層14の膜厚が10μm以下となるように、多孔質膜12aの表面にシリコーン塗布液を塗布するのが好ましい。すなわち、本発明の製造方法においては、形成するシリコーン樹脂層14の膜厚は、10μm以下であるのが好ましい。
 なお、本発明において、シリコーン樹脂層14の膜厚とは、多孔質膜12aに染み込んだ分を含まない、多孔質膜12aの表面に形成されたシリコーン樹脂層14の膜厚である。言い換えれば、シリコーン樹脂層14の膜厚とは、多孔質膜12aに染み込んだ分を含まない、多孔質膜12aの上に形成されたシリコーン樹脂層14の膜厚である。
 シリコーン樹脂層14の膜厚を10μm以下とすることにより、シリコーン樹脂層14によるガス透過性の低下を好適に防止できる等の点で好ましい。
 以上の点を考慮すると、シリコーン樹脂層14の膜厚は5μm以下が、より好ましい。
 また、シリコーン樹脂層14は、緻密な膜で多孔質膜12aの表面を抜けなく全面的に覆っていれば、薄くても構わない。
 この点を考慮すると、シリコーン樹脂層14の膜厚は、0.01μm以上が好ましい。シリコーン樹脂層14の膜厚を、0.01μm以上とすることにより、緻密なシリコーン樹脂層14で多孔質膜12aの表面を好適に覆って、多孔質膜12aへの促進輸送膜の入り込みを、より好適に防止できる複合体10が得られる。
 シリコーン樹脂層14の膜厚は、後述する多孔質膜12aへのシリコーン塗布液の染み込み等を考慮して、予め実験やシミュレーションを行って制御すればよい。
 本発明の製造方法によっても、多孔質膜12aへのシリコーン塗布液の染み込みを完全に防止するのは、困難である。
 しかしながら。本発明においては、多孔質膜12aへのシリコーン塗布液の染み込みは、少ないほど、好ましい。すなわち、多孔質膜12aの内部に形成されるシリコーン樹脂の厚さは、薄い方が好ましい。
 ここで、多孔質膜12aの内部に形成されるシリコーン樹脂の厚さ(多孔質膜12aの厚さ方向のサイズ)と、シリコーン樹脂層14の厚さとは、
(多孔質膜12a内部のシリコーン樹脂の厚さ)/(シリコーン樹脂層14の厚さ)
の厚さの比で、0.1~100であるのが好ましい。
 すなわち、本発明の製造方法においては、この厚さの比を達成するように、シリコーン塗布液の粘度や塗布厚、多孔質膜12aの平均孔径や最大孔径、シリコーン塗布液を塗布してから硬化するまでの時間等を制御するのが好ましい。
 上記厚さの比を0.1以上とすることにより、シリコーン樹脂層14と多孔質膜12aとの密着性を向上できる、シリコーン樹脂層の耐圧性を向上できる等の点で好ましい。
 また、上記厚さの比を100以下とすることにより、ガス透過性の低下を抑制できる等の点で好ましい。
 さらに、上記効果を、より好適に得られる等の点で、(多孔質膜12a内部のシリコーン樹脂の厚さ)/(シリコーン樹脂層14の厚さ)の厚さの比は、0.1~30が、より好ましい。
 塗布部26においてシリコーン塗布液を塗布された支持体12は、次いで、硬化装置28(乾燥工程)に搬送される。硬化装置28は、好ましくは、支持体搬送方向の塗布部26の直後に配置される。言い換えれば、硬化装置28は、好ましくは、支持体搬送方向の塗布部26の直下流に配置される。
 支持体12は、硬化装置28によって、長手方向に搬送されつつ、シリコーン塗布液を硬化すなわちモノマー等を架橋されて、支持体12(多孔質膜12a)の表面にシリコーン樹脂層14が形成された複合体10とされる。
 硬化装置28におけるシリコーン塗布液の硬化は、シリコーン塗布液に含有されるモノマー等の種類に応じて、シリコーン塗布液を硬化できる方法を、適宜、利用すればよい。
 具体的には、紫外線の照射、電子線の照射、加熱、加湿等が例示される。
 中でも、支持体12のカールや変形を抑制できる、支持体12を構成する樹脂などの劣化を防止できる等の理由により、紫外線照射や短時間の加熱によるシリコーン塗布液の硬化は、好適に利用される。その中でも特に、紫外線照射によるシリコーン塗布液の硬化は、最も好ましく利用される。すなわち、本発明の製造方法においては、紫外線の照射による硬化が可能なモノマー等を用いたシリコーン塗布液によって、シリコーン樹脂層14を形成するのが好ましい。
 シリコーン塗布液の硬化は、必要に応じて、窒素雰囲気等の不活性雰囲気で行ってもよい。
 本発明の製造方法においては、シリコーン塗布液を塗布した後、5秒以内に、シリコーン塗布液を硬化して、シリコーン樹脂層14を形成するのが好ましい。
 本発明の製造方法においては、RtoRを利用することにより、シリコーン塗布液の塗布後、短時間でのシリコーン塗布液の硬化を可能にしている。
 多孔質膜12aにシリコーン塗布液を塗布した後、硬化するまでは、シリコーン塗布液は、次第に、多孔質膜12aに染み込んでいく。ここで、前述のように、多孔質膜12aへのシリコーン塗布液の染み込みは、少ない方が好ましい。すなわち、多孔質膜12a中のシリコーン樹脂は、少ない方が好ましい。
 これに対し、シリコーン塗布液を塗布した後、7秒以内に、シリコーン塗布液を硬化してシリコーン樹脂層14とすることにより、多孔質膜12aへのシリコーン塗布液の染み込みを好適に抑制できる。これにより、多孔質膜12a中のシリコーン樹脂が薄い、高品質な複合体10を得ることができる。
 多孔質膜12aへのシリコーン塗布液の染み込みを、より好適に抑制できる等の点で、シリコーン塗布液を塗布した後、5秒以内に、シリコーン塗布液を硬化するのが、より好ましい。
 硬化装置28でシリコーン塗布液を硬化されて、シリコーン樹脂層14を形成された複合体10は、パスローラ38a、38b、38cおよび38dに案内されて、巻取部30に搬送される。
 パスローラ38b、38cおよび38dはテンションカッタとしても作用しており、複合体10を蛇行するように、案内する。
 巻取部30は、複合体10を巻き取って複合体ロール10Rとするものであり、パスローラ38eと巻取り軸40とを有する。
 巻取部30に搬送された複合体10は、パスローラ64eによって巻取り軸40に案内され、巻取り軸40によって巻き取られて、複合体ロール10Rとされる。
 本発明の複合体の製造方法においては、このようにして支持体12の表面にシリコーン塗布液を塗布、硬化して、シリコーン樹脂層14を形成した後、好ましくは、さらに、シリコーン樹脂層14の表面に、促進輸送膜となる塗布組成物を塗布して、促進輸送膜16を形成して、図1(B)に示すような酸性ガス分離膜18とする。
 なお、本発明の製造方法においては、シリコーン樹脂層14を形成した後、促進輸送膜を、シリコーン樹脂層14の表面ではなく、支持体12の表面に、促進輸送膜となる塗布組成物を塗布して、促進輸送膜を形成してもよい。前述のように、支持体12の表面とは、シリコーン樹脂層14の形成面と逆面すなわちシリコーン樹脂層14を形成しない補助支持膜12bの表面である
 支持体12の表面への促進輸送膜の形成も、以下の方法と同様にして行えばよい。
 図3に、本発明の製造方法において、複合体10(シリコーン樹脂層14もしくは支持体12)の表面に促進輸送膜を形成する製造装置の一例を概念的に示す。なお、以下の説明は、シリコーン樹脂層14の表面に促進輸送膜を形成する場合を例に行う。
 本発明の製造方法は、シリコーン樹脂層14の表面に促進輸送膜16を形成する際にも、RtoRを利用する。従って、図3に示す製造装置50も、長尺な複合体10を巻回してなる複合体ロール10Rから複合体10を送り出し、複合体10を長手方向に搬送しつつ、シリコーン樹脂層14に促進輸送膜16となる塗布組成物を塗布する。製造装置50は、次いで、塗布組成物を乾燥して促進輸送膜16を形成して、本発明の製造方法で製造する複合体の一種である酸性ガス分離膜18とする。さらに、製造装置20は、作製した酸性ガス分離膜18を、ロール状に巻回して、分離膜ロール18Rとする。
 このような製造装置50は、基本的に、供給部52と、塗布部54と、乾燥装置56と、巻取部58とを有して構成される。
 なお、先の製造装置20と同様、製造装置50においても、図示した部材以外にも、必要に応じて、パスローラや各種のセンサ等、RtoRによって機能性膜を製造する装置に設けられる、各種の部材を有してもよい。
 供給部52は、回転軸61を有する。回転軸61には、複合体10をロール状に巻回してなる複合体ロール10Rが装填される。
 供給部52は、複合体10に促進輸送膜16を形成する際に、回転軸61に複合体ロール10Rを装填し、回転軸61すなわち複合体ロール10Rを回転することにより、複合体10を送り出す部位である。
 なお、先の製造装置20と同様、このような複合体10の送り出しおよび搬送は、公知の方法で行えばよい。
 複合体ロール10Rから送り出された複合体10は、次いで、塗布部54に搬送される。塗布部54に搬送された複合体10は、長手方向に搬送されつつ、促進輸送膜16となる塗布組成物を塗布される。
 図示例において、塗布部54は、塗布装置62およびバックアップローラ64を有して構成される。複合体10は、バックアップローラ64によって所定の位置に支持されつつ長手方向に搬送されて、シリコーン樹脂層14の表面に塗布組成物を塗布される。
 本発明の製造方法において、促進輸送膜16を形成する際の複合体10の搬送速度は、複合体10の種類や塗布組成物の粘度等に応じて、適宜、設定すればよい。
 ここで、複合体10の搬送速度が速すぎると、塗布組成物の塗膜の膜厚均一性の低下や塗布組成物の乾燥が不十分になるおそれがある。複合体10の搬送速度が遅過ぎると、生産性が低下する。この点を考慮すると、複合体10の搬送速度は、0.5m/min以上が好ましく、0.75~200m/minがより好ましく、1~200m/分が特に好ましい。
 促進輸送膜16は、親水性ポリマー等の親水性化合物、酸性ガスと反応するキャリアおよび水等を含有する。
 従って、このような促進輸送膜16を形成するための塗布組成物は、親水性化合物、キャリアおよび水、あるいはさらに、架橋剤等の必要となる成分を含む組成物ものである。なお、親水性化合物は、架橋、一部架橋および未架橋のいずれでも良く、また、これらが混合されたものでもよい。水は、常温水でも可温水でもよい。
 親水性化合物はバインダとして機能するものであり、促進輸送膜16において、水分を保持して、キャリアによる二酸化炭素等のガスの分離機能を発揮させる。また、親水性化合物は、耐熱性の観点から、架橋構造を有するのが好ましい。
 親水性化合物は、水に溶けて塗布液を形成できると共に、促進輸送膜16が高い親水性(保湿性)を有するのが好ましいという観点から、親水性が高いものが好ましい。
 具体的には、親水性化合物は、生理食塩液の吸水量が0.5g/g以上の親水性を有することが好ましく、生理食塩液の吸水量が1g/g以上の親水性を有することがより好ましく、生理食塩液の吸水量が5g/g以上の親水性を有することがさらに好ましく、生理食塩液の吸水量が10g/g以上の親水性を有することが特に好ましく、さらには、生理食塩液の吸水量が20g/g以上の親水性を有することが最も好ましい。
 親水性化合物の重量平均分子量は、安定な膜を形成し得る範囲で、適宜、選択すればよい。具体的には、20,000~2,000,000が好ましく、25,000~2,000,000がより好ましく、30,000~2,000,000が特に好ましい。
 親水性化合物の重量平均分子量を20,000以上とすることで、安定して十分な膜強度を有する促進輸送膜16を得ることができる。
 特に、親水性化合物が架橋可能基としてヒドロキシ基を有する場合には、親水性化合物は、重量平均分子量が30,000以上であるのが好ましい。この際には、重量平均分子量は更に好ましくは40,000以上であり、より好ましくは、50,000以上である。また、親水性化合物が架橋可能基としてヒドロキシ基を有する場合には、製造適性の観点から、重量平均分子量は、6,000,000以下であることが好ましい。
 また、架橋可能基として有する場合には、親水性化合物は、重量平均分子量が10,000以上であるものが好ましい。この際には、親水性化合物の重量平均分子量は、15,000以上であるのがより好ましく、20,000以上であるのが特に好ましい。また、親水性化合物が、架橋可能基としてアミノ基を有する場合には、製造適性の観点から、重量平均分子量は、1,000,000以下であるのが好ましい。
 なお、親水性化合物の重量平均分子量は、例えば、親水性化合物としてPVAを用いる場合には、JIS K 6726に準じて測定した値を用いればよい。また、市販品を用いる場合には、カタログ、仕様書などで公称される分子量を用いればよい。
 親水性化合物を形成する架橋可能基としては、耐加水分解性の架橋構造を形成し得るものが、好ましく選択される。
 具体的には、ヒドロキシ基、アミノ基、塩素原子、シアノ基、カルボキシ基、および、エポキシ基等が例示される。これらの中でも、アミノ基およびヒドロキシ基が好ましく例示される。さらに、最も好ましくは、キャリアとの親和性およびキャリア担持効果の観点から、ヒドロキシ基が例示される。
 親水性化合物としては、具体的には、単一の架橋可能基を有するものとしては、ポリアリルアミン、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリエチレンイミン、ポリビニルアミン、ポリオルニチン、ポリリジン、ポリエチレンオキサイド、水溶性セルロース、デンプン、アルギン酸、キチン、ポリスルホン酸、ポリヒドロキシメタクリレート、ポリ-N-ビニルアセトアミドなどが例示される。最も好ましくはポリビニルアルコールである。また、親水性化合物としては、これらの共重合体も例示される。
 また、複数の架橋可能基を有する親水性化合物としては、ポリビニルアルコール-ポリアクリル酸共重合体が例示される。ポリビニルアルコール-ポリアクリル塩共重合体は、吸水能が高い上に、高吸水時においてもハイドロゲルの強度が大きいため好ましい。
 ポリビニルアルコール-ポリアクリル酸共重合体におけるポリアクリル酸の含有率は、例えば1~95モル%、好ましくは2~70モル%、より好ましくは3~60モル%、特に好ましくは5~50モル%である。なお、アクリル酸の含有率は、公知の合成方法で制御することができる。
 なお、ポリビニルアルコール-ポリアクリル酸共重合体において、ポリアクリル酸は、塩であってもよい。この際におけるポリアクリル酸塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩の他、アンモニウム塩や有機アンモニウム塩等が例示される。
 ポリビニルアルコールは市販品としても入手可能である。具体的には、PVA117(クラレ社製)、ポバール(クラレ製)、ポリビニルアルコール(アルドリッチ社製)、J-ポバール(日本酢ビ・ポバール社製)等が例示される。分子量のグレードは種々存在するが、重量平均分子量が130,000~300,000のものが好ましい。
 ポリビニルアルコール-ポリアクリル酸塩共重合体(ナトリウム塩)も、市販品として入手可能である。例えば、クラストマーAP20(クラレ社製)が例示される。
 なお、本発明の製造方法において、形成するの促進輸送膜16の親水性化合物は、2種以上を混合して使用してもよい。
 塗布組成物における親水性化合物の含有量は、形成した促進輸送膜16において、親水性化合物がバインダーとして機能し、かつ、水分を十分に保持できる量を、親水性組成物やキャリアの種類等に応じて、適宜、設定すればよい。
 具体的には、促進輸送膜16における含有量が、0.5~50質量%となる量が好ましく、0.75~30質量%となる量がより好ましく、1~15質量%となる量が特に好ましい。親水性化合物の含有量を、この範囲とすることにより、上述のバインダとしての機能および水分保持機能を、安定して、好適に発現できる。
 親水性化合物の架橋構造は、熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等、公知の手法により形成できる。
 好ましくは光架橋もしくは熱架橋であり、最も好ましくは熱架橋である。
 また、塗布組成物は、架橋剤を含有するのが好ましい。
 架橋剤としては、親水性化合物と反応し、熱架橋や光架橋等の架橋し得る官能基を2以上有する架橋剤を含むものが選択される。また、形成された架橋構造は、耐加水分解性の架橋構造となるのが好ましい。
 このような観点から、塗布組成物に添加される架橋剤としては、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤などが好適に例示される。より好ましくは多価アルデヒド、有機金属系架橋剤およびエポキシ架橋剤であり、中でも、アルデヒド基を2以上有するグルタルアルデヒドやホルムアルデヒドなどの多価アルデヒドが好ましい。
 エポキシ架橋剤としては、エポキシ基を2以上有する化合物であり、4以上有する化合物も好ましい。エポキシ架橋剤は市販品としても入手可能であり、例えば、トリメチロールプロパントリグリシジルエーテル(共栄社化学株式会社製、エポライト100MF等)、ナガセケムテックス社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、日油株式会社製エピオールE400などが例示される。
 また、エポキシ架橋剤に類似する化合物として、環状エーテルを有するオキセタン化合物も、また、好ましく使用される。オキセタン化合物としては、官能基を2以上有する多価グリシジルエーテルが好ましく、市販品としては、例えばナガセケムテックス社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、などが例示される。
 多価グリシジルエーテルとしては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、プロピレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が例示される。
 多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、プロピレングリコール、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピル、オキシエチエンオキシプロピレンブロック共重合体、ペンタエリスリトール、ソビトール等が例示される。
 多価イソシアネートとしては、例えば、2,4-トルイレンジイソシアネート、ヘキサメチレンジイソシアネート等が例示される。
 多価アジリジンとしては、例えば、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アシリジニル)プロピオネート]、1,6-ヘキサメチレンジエチレンウレア、ジフェニルメタン-ビス-4,4’-N,N’-ジエチレンウレア等が例示される。
 ハロエポキシ化合物としては、例えば、エピクロルヒドリン、α-メチルクロルヒドリン等が例示される。
 多価アルデヒドとしては、例えば、グルタルアルデヒド、グリオキサール等が例示される。
 多価アミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等が例示される。
 有機金属系架橋剤としては、例えば、有機チタン架橋剤、有機ジルコニア架橋剤等が例示される。
 例えば、親水性化合物として、重量平均分子量が130,000以上のポリビニルアルコールを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から,エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
 親水性化合物として、ポリビニルアルコール-ポリアクリル酸共重合体を用いる場合は、エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
 親水性化合物として、重量平均分子量が10,000以上のポリアリルアミンを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から、エポキシ架橋剤、グルタルアルデヒド、および、有機金属架橋剤が好ましく利用される。
 親水性化合物として、ポリエチレンイミンやポリアリルアミンを用いる場合には、エポキシ架橋剤が好ましく利用される。
 架橋剤の量は、塗布組成物に添加する親水性化合物や架橋剤の種類に応じて、適宜、設定すればよい。
 具体的には、親水性化合物が有する架橋可能基量100質量部に対して0.001~80質量部が好ましく、0.01~60質量部がより好ましく、0.1~50質量部が特に好ましい。架橋剤の含有量を上記範囲とすることにより、架橋構造の形成性が良好であり、かつ、形状維持性に優れる促進輸送膜を得ることができる。
 親水性化合物が有する架橋可能基に着目すれば、架橋構造は、親水性化合物が有する架橋可能基100molに対し、架橋剤0.001~80molを反応させて形成されたものであるのが好ましい。
 促進輸送膜16において、キャリア(酸性ガスキャリア)は、酸性ガス(例えば、炭酸ガス(CO2))と反応して、酸性ガスを輸送するものである。
 キャリアは、酸性ガスと親和性を有し、かつ、塩基性を示す水溶性の化合物である。具体的には、アルカリ金属化合物、窒素含有化合物および硫黄酸化物等が例示される。
 なお、キャリアは、間接的に酸性ガスと反応するものでも、キャリア自体が、直接、酸性ガスと反応するものでもよい。
 酸性ガスと間接的に反応するキャリアは、供給ガス中に含まれる他のガスと反応し、塩基性を示し、その塩基性化合物と酸性ガスが反応するものなどが例示される。より具体的には、スチーム(水分)と反応してOH-を放出し、そのOH-がCO2と反応することで、促進輸送膜16中に選択的にCO2を取り込むことができる化合物であり、例えば、アルカリ金属化合物である。
 酸性ガスと。直接、反応するキャリアは、キャリア自体が塩基性であるようなもので、例えば、窒素含有化合物や硫黄酸化物である。
 アルカリ金属化合物としては、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、および、アルカリ金属水酸化物等が例示される。ここで、アルカリ金属としては、セシウム、ルビジウム、カリウム、リチウム、および、ナトリウムから選ばれたアルカリ金属元素が好ましく用いられる。なお、本発明において、アルカリ金属化合物とは、アルカリ金属そのもののほか、その塩およびそのイオンも含む。
 アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、および、炭酸セシウム等が例示される。
 アルカリ金属重炭酸塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、および、炭酸水素セシウム等が例示される。
 アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、および、水酸化セシウム等が例示される。
 これらの中でも、アルカリ金属炭酸塩が好ましく、また、酸性ガスとの親和性が良いという観点から、水に対する溶解度の高いカリウム、ルビジウム、および、セシウムを含む化合物が好ましい。
 キャリアとしてアルカリ金属化合物を用いる際には、2種以上のキャリアを併用してもよい。
 促進輸送膜16中に2種以上のキャリアが存在することにより、膜中で異なるキャリアを距離的に離間させることができる。これにより、複数のキャリアの潮解性の違いによって、促進輸送膜16の吸水性に起因して、製造時等に促進輸送膜16同士や、促進輸送膜16と他の部材とが貼着すること(ブロッキング)を、好適に抑制できる。
 ブロッキングの抑制効果を、より好適に得られる等の点で、2種以上のアルカリ金属化合物をキャリアとして用いる場合には、潮解性を有する第1化合物と、第1化合物よりも潮解性が低く比重が小さい第2化合物を含むのが好ましい。一例として、第1化合物としては炭酸セシウムが、第2化合物としては炭酸カリウムが、例示される。
 窒素含有化合物としては、グリシン、アラニン、セリン、プロリン、ヒスチジン、タウリン、ジアミノプロピオン酸などのアミノ酸類、ピリジン、ヒスチジン、ピペラジン、イミダゾール、トリアジンなどのヘテロ化合物類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミンなどのアルカノールアミン類、クリプタンド[2.1]、クリプタンド[2.2]などの環状ポリエーテルアミン類、クリプタンド[2.2.1]、クリプタンド[2.2.2]などの双環式ポリエーテルアミン類、ポルフィリン、フタロシアニン、エチレンジアミン四酢酸等が例示される。
 硫黄化合物としては、シスチン、システインなどのアミノ酸類、ポリチオフェン、ドデシルチオール等が例示される。
 塗布組成物におけるキャリアの含有量は、キャリアや親水性化合物の種類等に応じて、適宜、設定すればよい。具体的には、促進輸送膜16におけるキャリアの量が、0.3~30質量%となる量が好ましく、0.5~25質量%となる量がより好ましく、1~20質量%となる量が特に好ましい。
 塗布組成物におけるキャリアの含有量を、上記範囲とすることにより、塗布前の塩析を好適に防ぐことができ、さらに、形成した促進輸送膜16が、酸性ガスの分離機能を確実に発揮できる。
 塗布組成物における親水性化合物とキャリアとの量比は、親水性化合物:キャリアの質量比で1:9~2:3以下が好ましく、1:4~2:3以下がより好ましく、3:7~2:3が特に好ましい。
 塗布組成物は、必要に応じて、増粘剤を含有してもよい。
 増粘剤としては、例えば、寒天、カルボキシメチルセルロース、カラギナン、キタンサンガム、グァーガム、ペクチン等の増粘多糖類が好ましい。
 中でも、製膜性、入手の容易性、コストの点から、カルボキシメチセルロースが好ましい。カルボキシメチルセルロースを用いることにより、少量の含有量で、所望粘度の塗布組成物が容易に得られるうえ、塗布液に含まれる溶媒以外の成分の少なくとも一部が塗布液中で溶解できずに析出してしまう恐れも少ない。
 塗布組成物における増粘剤の含有量は、目的とする粘度に調節可能であれば、できるだけ少ないほうが好ましい。
 一般的な指標としては、10質量%以下が好ましく、0.1~5質量%がより好ましく、0.1~2質量%以下がより好ましい。
 塗布組成物(促進輸送膜16)は、このような親水性化合物、架橋剤およびキャリア、あるいはさらに増粘剤に加え、必要に応じて、各種の成分を含有してもよい。
 このような成分としては、ジブチルヒドロキシトルエン(BHT)等の酸化防止剤、炭素数3~20のアルキル基または炭素数3~20のフッ化アルキル基と親水性基とを有する化合物やシロキサン構造を有する化合物等の特定化合物、オクタン酸ナトリウムや1-ヘキサスルホン酸ナトリウム等の界面活性剤、ポリオレフィン粒子やポリメタクリル酸メチル粒子等のポリマー粒子等が例示される。
 その他、必要に応じて、触媒、保湿剤、吸湿剤、補助溶剤、膜強度調節剤、欠陥検出剤等を用いてもよい。
 塗布組成物は、公知の方法で調製すればよい。すなわち、まず、親水性化合物、キャリア、および、必要に応じて添加する各種の成分を、それぞれ適量で水に添加して、十分、攪拌することで、促進輸送膜16となる塗布組成物を調製する。水は、常温水でも可温水でもよい。
 この塗布組成物の調製では、必要に応じて、攪拌しつつ加熱することで、各成分の溶解を促進させてもよい。また、親水性化合物を水に加えて溶解した後、キャリアを徐々に加えて攪拌することで、親水性化合物の析出(塩析)を効果的に防ぐことができる。
 ここで、促進輸送膜16となる塗布組成物は、25℃における粘度が100cp以上であるのが好ましい。
 塗布組成物の25℃における粘度を、100cp以上とすることにより、シリコーン樹脂層14の上に塗布組成物を塗布する際のハジキを抑制できる、塗布組成物の塗布の均一性を良くできる等の点で好ましい。
 塗布組成物の粘度は、前述のシリコーン塗布液の粘度と同様に測定すればよい。
 前述のように、塗布部54は、長手方向に搬送される複合体10(シリコーン樹脂層14)に、このような塗布組成物を塗布する部位である。
 図示例において、塗布部54は、塗布装置62とバックアップローラ64とから構成される。すなわち、複合体10は、バックアップローラ64によって所定の塗布位置に保たれつつ搬送されて、塗布装置62によって塗布組成物を塗布され、塗布組成物の塗膜(液膜)を形成される。なお、塗布部54では、必要に応じて、塗布組成物や複合体10等の温度制御を行ってもよい。
 塗布装置62は、公知の物が各種、利用可能である。具体的には、前述の塗布装置32と同様の物が例示される。また、塗布組成物の好ましい粘度や塗布組成物の塗布量等を考慮すると、ロールコータ、バーコータ、正回転ロールコータ、ナイフコータ等は好適に利用される。
 本発明の製造方法においては、促進輸送膜16を形成する際には、塗布装置62は、塗膜の厚さが0.05~2mmとなるように、支持体12に塗布組成物を塗布するのが好ましい。この塗膜の厚さとは、すなわち、複合体10に塗布する塗布組成物の厚さである。
 塗布組成物の塗膜の厚さを、上記範囲とすることにより、目的とする機能を適性に発現する促進輸送膜16を形成できる、気泡や異物の混入に起因する欠陥の発生を防止できる、後述する乾燥装置56で十分な乾燥を行うことができる等の点で好ましい。
 以上の点を考慮すると、促進輸送膜16となる塗膜の厚さは、0.1~1.5mmがより好ましい。
 本発明の製造方法において、後述する塗布組成物の乾燥によって形成する促進輸送膜16の膜厚は、促進輸送膜16の組成等に応じて、目的とする性能を得られる膜厚を、適宜、設定すればよい。具体的には、3~1000μmが好ましく、5~500μmがより好ましい。なお、促進輸送膜16の膜厚は、前述のシリコーン樹脂層14と同様に制御すればよい。
 すなわち、前述の塗膜厚で、この膜厚の促進輸送膜16が得られるように、塗布組成物を調製するのが好ましい。
 促進輸送膜16の膜厚を、上記範囲とすることにより、ガス透過性能を向上できる、欠陥の発生を抑制できる等の点で好ましい。
 なお、本発明の製造方法では、複数層の促進輸送膜を形成してもよい。また、複数層の促進輸送膜を形成する場合には、各促進輸送膜は、同じ組成でも異なる組成でもよい。
 塗布部54において塗布組成物を塗布された複合体10は、裏面に当接するパスローラ68aに案内されて、乾燥装置56に搬送される。裏面とは、塗布組成物の塗布面と逆側面の面である。
 乾燥装置56(乾燥工程)は、支持体12に塗布された塗布組成物から水の少なくとも一部を除去して乾燥することで、促進輸送膜16を形成して、酸性ガス分離膜18を作製する部位である。乾燥装置56(乾燥工程)では、必要に応じて、さらに、親水性組成物の架橋を行ってもよい。
 乾燥方法は、温風乾燥や支持体12の加熱による乾燥方法等、水の除去による乾燥を行う公知の方法が、各種、利用可能である。
 温風乾燥を行う場合には、温風の風速は、塗布組成物を迅速に乾燥できると共に、塗布組成物の塗膜(ゲル膜)が崩れない速度を、適宜、設定すればよい。具体的には、0.5~200m/分が好ましく、0.75~200m/分がより好ましく、1~200m/分が特に好ましい。
 また、温風の温度は、支持体12の変形などが生じず、かつ、塗布組成物を迅速に乾燥できる温度を、適宜、設定すればよい。具体的には、膜面温度で、1~120℃が好ましく、2~115℃がより好ましく、3~110℃が特に好ましい。
 支持体12の加熱による乾燥を行う場合には、支持体12の変形などが生じず、かつ、塗布組成物を迅速に乾燥できる温度を、適宜、設定すればよい。また、支持体12の加熱に、乾燥風の吹き付けを併用してもよい。
 具体的には、支持体12の温度を60~120℃として行うのが好ましく、60~90℃として行うのがより好ましく、70~80℃として行うのが特に好ましい。また、この際において、膜面温度は、15~80℃が好ましく、30~70℃がより好ましい。
 乾燥装置56で塗布組成物の塗膜を乾燥された複合体10すなわち酸性ガス分離膜18は、パスローラ68bに案内されて、巻取部58に搬送される。
 巻取部58は、巻取り軸70に酸性ガス分離膜18を巻き取って、分離膜ロール18Rとするのものである。
 巻取部58は、前述の巻取り軸70と、3本のパスローラ68c~68eを有する。
 酸性ガス分離膜18は、パスローラ68c~68eによって所定の搬送駅路を案内されて、巻取り軸70(分離膜ロール18R)に巻き取られ、分離膜ロール18Rとされる。3本のパスローラ68c~40eは、テンションカッタとしても作用しており、複合体10等を蛇行するように、案内する。
 以下、製造装置20および製造装置50の作用の一例を説明することにより、本発明の複合体の製造方法について、より詳細に説明する。
 まず、支持体ロール12Rを、製造装置20の供給部24の回転軸31に装着し、回転軸31を回転して支持体ロール12Rから支持体12を送り出す。次いで、支持体ロール12Rから送り出した支持体12を、塗布部26(バックアップローラ34)、硬化装置28、パスローラ38a~38eを経て、巻取り軸40に至る所定の搬送経路に通して、支持体12の先端を巻取り軸40に巻き付ける。
 なお、この支持体12は、図1(A)に示すように、多孔質膜12aおよび補助支持膜12bからなる2層構成を有するものである。また、この支持体12において、多孔質膜12aの最大孔径は、5μm以下である。
 支持体ロール12Rは、多孔質膜12a側が、塗布装置32に対面するように、回転軸31に装着される。
 さらに、塗布装置32に、必要な量のシリコーン塗布液を充填する。なお、本例では、シリコーン塗布液の塗布は、室温で行うとする。従って、このシリコーン塗布液は、有する有機溶剤を含有しておらず、室温において300cp以上の粘度を有する。
 所定の搬送経路に支持体12を通し、さらに、塗布装置62に塗布組成物を充填したら、回転軸31、巻取り軸40、および、バックアップローラ34等を同期して駆動し、支持体12の搬送を開始する。
 支持体ロール12Rから送り出された支持体12は、長手方向に搬送されつつ、まず、塗布部54において、バックアップローラ64によって所定の塗布位置に支持されつつ搬送されて、塗布装置32によって、シリコーン樹脂層14となるシリコーン塗布液を、目的とする塗布厚(塗布量)となるように塗布される。
 本発明においては、前述のように、シリコーン塗布液が塗布される多孔質膜12aの最大孔径が5μm以下で、かつ、塗布時におけるシリコーン塗布液の粘度が300cp以上である。そのため、多孔質体である多孔質膜12aへのシリコーン塗布液の染み込みを、好適に防止できる。
 シリコーン樹脂層14となるシリコーン塗布液を塗布された支持体12は、直後に配置される硬化装置28に搬送される。
 硬化装置28においては、例えば、紫外線の照射によってシリコーン塗布液が硬化されて、シリコーン樹脂層14が形成され、複合体10が形成される。前述のように、本発明においては、シリコーン塗布液を塗布した後、7秒以内に、シリコーン塗布液を硬化して、シリコーン樹脂層14とするのが好ましい。
 シリコーン樹脂層14を形成された複合体10は、パスローラ38a~38dによって所定の搬送経路を案内されて巻取部30に搬送され、パスローラ38eによって巻取り軸40に案内されて、巻取り軸40に巻き取られ、複合体ロール10Rとされる。
 目的とする長さの複合体10を巻回してなる複合体ロール10Rが完成したら、必要に応じて複合体10を切断して巻取り軸40から複合体ロール10Rを取り外し、複合体ロール10Rを、製造装置50の供給部52の回転軸61に装着する。
 次いで、回転軸61を回転して複合体ロール10Rから複合体10を送り出す。次いで、複合体ロール10Rから送り出した複合体10を、塗布部54(バックアップローラ64)、パスローラ68a、乾燥装置56、パスローラ68bおよびパスローラ68c~68eを経て、巻取り軸70に至る所定の搬送経路に通し、複合体10の先端を巻取り軸70に巻き付ける。
 さらに、塗布装置62に、必要な量の塗布組成物を充填する。なお、この塗布組成物は、25℃における粘度が100cp以上であるのが好ましいのは、前述のとおりである。
 所定の搬送経路に複合体10を通し、さらに、塗布装置62に塗布組成物を充填したら、回転軸61、巻取り軸70、および、バックアップローラ64等を同期して駆動し、複合体10の搬送を開始する。
 複合体ロール10Rから送り出された複合体10は、長手方向に搬送されつつ、まず、塗布部54において、バックアップローラ64によって所定の塗布位置に支持されつつ長手方向に搬送されて、塗布装置62によって、促進輸送膜16となる塗布組成物を、所定の塗布厚(塗布量)となるように塗布される。
 促進輸送膜16となる塗布組成物を塗布された複合体10は、次いで、パスローラ68aに案内されて乾燥装置56に至り、乾燥装置56において塗布組成物が乾燥されることにより、促進輸送膜16が形成された、本発明の製造方法によって製造される複合体の一種ある酸性ガス分離膜18とされる。
 酸性ガス分離膜18は、パスローラ68bに案内されて、巻取部58に搬送され、パスローラ68c~68eによって所定の搬送経路を案内されて、巻取り軸70に巻き取られ、分離膜ロール18Rとされる。
 図示例の製造装置20は、塗布装置32および硬化装置28のみ有し、また、製造装置50は、塗布装置62および乾燥装置56のみ有する。すなわち、この装置を用いる場合には、シリコーン樹脂層14と促進輸送膜16とを、別々の装置で形成する。
 しかしながら、本発明の製造方法では、図4に概念的に示すように、塗布装置32および硬化装置28と、塗布装置62および乾燥装置56とを有する装置を用いて、RtoRによるロールからの送り出しと巻取りとを、1回行うことで、シリコーン樹脂層14および促進輸送膜16を形成して、酸性ガス分離膜18を作製してもよい。
 以上、本発明の複合体の製造方法について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げ、本発明の複合体の製造方法について、より詳細に説明する。
 [実施例1]
 <シリコーン塗布液>
 シリコーン樹脂層を形成するためのシリコーン塗布液として、モメンティブ・パフォーマンス・マテリアルズ社製のUV9300を用意した。また、硬化剤として、東京化成工業社製の4-イソプロピル-4´-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートをシリコーン樹脂に対して0.5重量%添加した。
 このシリコーン塗布液(硬化剤を添加したシリコーン塗布液)の25℃における粘度を、JIS Z8803に準じて、測定した。具体的には、東機産業社製のTVB-10Mを用い、ロータをスピンドルNo.M4、回転速度60rpmとして、回転開始から30秒後の値を、シリコーン塗布液の粘度として測定した。その結果、25℃におけるシリコーン塗布液の粘度は300cpであった。
 <支持体>
 幅が500mmで、厚さ200μmの長尺な(多孔質)支持体12をロール状に巻回してなる支持体ロール12Rを用意した。なお、支持体12は、補助支持膜12bとしてのPP不織布の表面に、多孔質膜12aとしての多孔質PTFEを積層してなる積層体(GE社製)を用いた。
 この支持体12の多孔質膜12aの最大孔計をパームポロメータで測定したところ、0.17μmであった。
 <複合体10の作製>
 多孔質膜12a側にシリコーン塗布液が塗布されるように、支持体ロール12Rを図2に示す製造装置20の供給部24の回転軸31に装填した。次いで、支持体ロール12Rから支持体12を送り出し、前述のように、塗布部26および硬化装置28を経て、巻取部30に至る所定の搬送経路で通して、支持体12の先端を巻取り軸40に巻き付けた。
 他方、シリコーン塗布液を、塗布部26の塗布装置32に充填した。なお、塗布装置32においては、充填したシリコーン塗布液の温度が24~25℃となるように、温度制御を行った。
 以上の準備を終了した後に、支持体12の搬送を開始して、前述のように、塗布部26において多孔質膜12aの表面にシリコーン塗布液を塗布し、硬化装置28によって紫外線を照射してシリコーン塗布液を硬化して、支持体12にシリコーン樹脂層14を形成してなる複合体10とした。さらに、作製した複合体10を巻取り軸40に巻き取って、複合体ロール10Rとした。
 支持体12の搬送速度は、50m/minとした。また、シリコーン塗布液を塗布した後、2秒でシリコーン塗布液が硬化するように、硬化装置28における紫外線の照射位置および照射量を調節した。
 シリコーン塗布液の塗布は、シリコーン樹脂層14の厚さが10μmとなるように行った。また、任意の箇所で複合体10を切断して、断面の走査型電子顕微鏡での観察、および、断面のエネルギ分散型X線分析像の解析によって、多孔質膜12aに染み込んだシリコーン樹脂の厚さ(平均値)を測定した。その結果、
(多孔質膜12a内部のシリコーン樹脂の厚さ)/(シリコーン樹脂層14の厚さ)
の厚さの比は0.9であった。
 なお、シリコーン塗布液を塗布した後、シリコーン塗布液が硬化するまでの時間と紫外線照射量との関係、および、シリコーン樹脂層14の膜厚とシリコーン塗布液の塗布量は、予め実験によって調べておいた。
 [実施例2~4]
 支持体12として、多孔質膜12aの最大孔径が4.7μmの積層体を用い、シリコーン樹脂層14の厚さを2μmとした以外(実施例2);
 シリコーン樹脂層14の厚さを0.5μmとした以外(実施例3);
 シリコーン塗布液として信越化学工業社製のKF-102を用い、シリコーン樹脂層14の厚さを0.3μmとした用いた以外(実施例4);
は、実施例1と同様にして、複合体10を作製した。
 実施例4において、実施例1と同様にシリコーン塗布液の25℃における粘度を測定したところ、4000cpであった。
 実施例2~4において、実施例1と同様にして、多孔質膜12a内部のシリコーン樹脂とシリコーン樹脂層14との厚さの比を測定したところ、実施例2が4、実施例3が4、実施例4が5であった。
 [比較例1~2]
 UV9300をヘプタンで希釈して、濃度を20質量%とした液をシリコーン塗布液として用いた以外(比較例1);
 支持体12として、多孔質膜12aの最大孔径が10μmの積層体を用いた以外(比較例2);
は、実施例1と同様にして、複合体10を作製した。
 比較例1において、実施例1と同様にシリコーン塗布液の25℃における粘度を測定したところ、20cpであった。また、比較例1では、シリコーン塗布液が多孔質膜12aに染み込んでしまい、多孔質膜12aの上にシリコーン樹脂層14を形成できなかった。
 比較例2も、シリコーン塗布液が多孔質膜12aに染み込んでしまい、多孔質膜12aの上にシリコーン樹脂層14が形成できなかった。
 [ガス透過性試験]
 各複合体ロール10Rから複合体10を引き出し、任意の位置で切り抜いて、直径47mmの円形の複合体10を作製した。なお、円形の複合体10は、幅方向の500mmに対して、100mm間隔で4箇所、サンプリングした。
 テストガスとしてCO2/H2:25/75(容積比)の混合ガスを用いた。この混合ガスを、流量500ml/min、温度40℃、全圧500kPaの条件で、作製した各透過試験サンプルに供給した。なお、透過側にはArガス(流量100ml/min)をフローさせた。
 透過してきたガスをガスクロマトグラフで分析して、CO2透過速度(Q(CO2))を測定し、各複合体の評価を行った。
 なお、透過速度単位(GPU)は、『1×10-6cm3(STP)/(sec・cm2・cmHg)』である。
 評価は、以下のとおりである。
 A: 上記試験条件において、500kPaの加圧が可能で、かつ、CO2透過速度がが200以上である場合。
 B: 上記試験条件において、500kPaの加圧が可能で、かつ、CO2透過速度がが10以上200未満である場合。
 C: 上記試験条件において、500kPaの加圧が不可能、もしくは、CO2透過速度が10未満である場合。
 結果を下記の表に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表に示すように、本発明の製造方法によって製造した複合体10を用いる実施例1~4の酸性ガス分離膜18は、優れたガス透過性能を有する。特に、シリコーン樹脂層14の膜厚が薄い実施例3および実施例4の酸性ガス分離膜18は、非常に優れたガス透過性能を有している。
 これに対し、シリコーン塗布液の粘度が300cp未満である比較例1、および、支持体12(多孔質膜12a)の最大孔径が5μmを超える比較例2は、共に、支持体12にシリコーン塗布液が染み込んでしまい、多孔質膜12aの表面にシリコーン樹脂層を形成できず、共に、ガス透過性能が悪くなってしまっている。
 以上の結果より、本発明の効果が明らかである。
 10 複合体
 10R 複合幕ロール
 12 (多孔質)支持体
 12R 支持体ロール
 12a 多孔質膜
 12b 補助支持幕
 14 シリコーン樹脂層
 16 促進輸送幕
 18 酸性ガス分離幕
 18R 分離膜ロール
 20,50 製造装置
 26,52 供給部
 26,54 塗布部
 28 硬化装置
 30,58 巻取部
 31,61 回転軸
 32,62 塗布装置
 34,64 バックアップローラ
 38a~38e,68a~68e パスローラ
 40,70 巻取り軸
 56 乾燥装置

Claims (9)

  1.  促進輸送膜を有する酸性ガス分離膜において、表面に前記促進輸送膜を形成される、多孔質支持体の表面にシリコーン樹脂層を形成してなる複合体の製造方法であって、
     ロール・トゥ・ロール方式によって、前記シリコーン樹脂層となるシリコーン塗布液を前記多孔質支持体の表面に塗布する工程を有し、
     かつ、前記多孔質支持体として、最大孔径が5μm以下である多孔質体を用い、さらに、前記多孔質支持体の表面に塗布する際における前記シリコーン塗布液の粘度を300cp以上とすることを特徴とする複合体の製造方法。
  2.  さらに、ロール・トゥ・ロール方式によって、少なくとも酸性ガスと反応するキャリアおよび前記キャリアを担持するための親水性化合物を含有する、前記促進輸送膜となる塗布組成物を、前記シリコーン樹脂層の表面もしくは前記多孔質支持体の表面に塗布する工程を有する請求項1に記載の複合体の製造方法。
  3.  前記塗布組成物を、前記シリコーン樹脂層の表面に塗布する請求項2に記載の複合体の製造方法。
  4.  25℃における前記塗布組成物の粘度が100cp以上である請求項2または3に記載の複合体の製造方法。
  5.  前記シリコーン塗布液を塗布した後、7秒以内に、前記シリコーン塗布液を硬化してシリコーン樹脂層を形成する請求項1~4のいずれか1項に記載の複合体の製造方法。
  6.  前記シリコーン塗布液の硬化を紫外線照射によって行う請求項5に記載の複合体の製造方法。
  7.  膜厚が10μm以下の前記シリコーン樹脂層を形成する請求項1~6のいずれか1項に記載の複合体の製造方法。
  8.  前記多孔質支持体が、含フッ素ポリマー、ポリプロピレン、および、ポリスルホンから選択される1以上の材料を含む請求項1~7のいずれか1項に記載の複合体の製造方法。
  9.  前記多孔質支持体の内部へのシリコーン塗布液の染み込みに起因して、前記多孔質支持体の内部にもシリコーン樹脂が形成されており、
     かつ、前記多孔質支持体の内部のシリコーン樹脂の厚さが、シリコーン樹脂層の厚さに対して、
     (支持体内部のシリコーン樹脂)/(シリコーン樹脂層)=0.1~100
    を満たす請求項1~8のいずれか1項に記載の複合体の製造方法。
PCT/JP2014/082065 2013-12-05 2014-12-04 複合体の製造方法 WO2015083766A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-251965 2013-12-05
JP2013251965A JP6177115B2 (ja) 2013-12-05 2013-12-05 複合体の製造方法

Publications (1)

Publication Number Publication Date
WO2015083766A1 true WO2015083766A1 (ja) 2015-06-11

Family

ID=53273526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082065 WO2015083766A1 (ja) 2013-12-05 2014-12-04 複合体の製造方法

Country Status (3)

Country Link
JP (1) JP6177115B2 (ja)
TW (1) TW201532661A (ja)
WO (1) WO2015083766A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146231A1 (ja) * 2016-02-25 2017-08-31 国立大学法人九州大学 単層膜、複合体、ガス分離材、フィルター、ガス分離装置および複合体の製造方法
JP2019018167A (ja) * 2017-07-19 2019-02-07 旭化成株式会社 ガス分離膜
WO2024112586A1 (en) * 2022-11-22 2024-05-30 Synth-Bio, Llc Gamma stable composite elastomeric and thermoplastic material for pump tubing and other polymer geometries

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098887A1 (ja) * 2015-12-10 2017-06-15 富士フイルム株式会社 保護層付きガス分離膜の製造方法、保護層付きガス分離膜、ガス分離膜モジュール及びガス分離装置
WO2017122530A1 (ja) * 2016-01-12 2017-07-20 富士フイルム株式会社 ガス分離膜の製造方法、ガス分離膜、ガス分離膜モジュール及びガス分離装置
JP6609209B2 (ja) * 2016-03-24 2019-11-20 次世代型膜モジュール技術研究組合 ガス分離膜
JP6779642B2 (ja) * 2016-03-24 2020-11-04 次世代型膜モジュール技術研究組合 ガス分離膜
EP3652362B1 (en) * 2017-07-10 2023-09-13 Agfa-Gevaert Nv A reinforced separator for alkaline hydrolysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136212A (ja) * 1985-12-07 1987-06-19 Mitsubishi Paper Mills Ltd 選択透過性複合膜の製造方法
JPS6430620A (en) * 1987-07-28 1989-02-01 Asahi Glass Co Ltd Production of gas separating composite membrane
JPH10502867A (ja) * 1994-07-20 1998-03-17 ミリポア コーポレイション セルロース系限外ろ過膜
JPH11217459A (ja) * 1998-02-03 1999-08-10 Dainippon Ink & Chem Inc 多孔質膜の製造方法
JP2007196185A (ja) * 2006-01-30 2007-08-09 Toyota Central Res & Dev Lab Inc 水素透過炭化膜及びその製造方法
WO2012096055A1 (ja) * 2011-01-12 2012-07-19 富士フイルム株式会社 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置
WO2013018538A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136212A (ja) * 1985-12-07 1987-06-19 Mitsubishi Paper Mills Ltd 選択透過性複合膜の製造方法
JPS6430620A (en) * 1987-07-28 1989-02-01 Asahi Glass Co Ltd Production of gas separating composite membrane
JPH10502867A (ja) * 1994-07-20 1998-03-17 ミリポア コーポレイション セルロース系限外ろ過膜
JPH11217459A (ja) * 1998-02-03 1999-08-10 Dainippon Ink & Chem Inc 多孔質膜の製造方法
JP2007196185A (ja) * 2006-01-30 2007-08-09 Toyota Central Res & Dev Lab Inc 水素透過炭化膜及びその製造方法
WO2012096055A1 (ja) * 2011-01-12 2012-07-19 富士フイルム株式会社 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置
WO2013018538A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146231A1 (ja) * 2016-02-25 2017-08-31 国立大学法人九州大学 単層膜、複合体、ガス分離材、フィルター、ガス分離装置および複合体の製造方法
JPWO2017146231A1 (ja) * 2016-02-25 2018-12-20 国立大学法人九州大学 単層膜、複合体、ガス分離材、フィルター、ガス分離装置および複合体の製造方法
US10981122B2 (en) 2016-02-25 2021-04-20 Kyushu University, National University Corporation Monolayer, composite, gas separation material, filter, gas separation device and method for manufacturing composite
JP7122752B2 (ja) 2016-02-25 2022-08-22 国立大学法人九州大学 単層膜、複合体、ガス分離材、フィルター、ガス分離装置および複合体の製造方法
JP2019018167A (ja) * 2017-07-19 2019-02-07 旭化成株式会社 ガス分離膜
WO2024112586A1 (en) * 2022-11-22 2024-05-30 Synth-Bio, Llc Gamma stable composite elastomeric and thermoplastic material for pump tubing and other polymer geometries

Also Published As

Publication number Publication date
TW201532661A (zh) 2015-09-01
JP2015107473A (ja) 2015-06-11
JP6177115B2 (ja) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6177115B2 (ja) 複合体の製造方法
JP5990555B2 (ja) 酸性ガス分離膜の製造方法および酸性ガス分離膜巻回物
JP6067649B2 (ja) 酸性ガス分離モジュール
JP6156838B2 (ja) 酸性ガス分離用複合体の製造方法
JP6046537B2 (ja) 酸性ガス分離用複合体の製造方法および製造装置
JP2016026860A (ja) 酸性ガス分離モジュール
JP5840574B2 (ja) 二酸化炭素分離用複合体の製造方法、二酸化炭素分離用複合体、及び二酸化炭素分離用モジュール
JP6276598B2 (ja) 酸性ガス分離用モジュール
JP6170449B2 (ja) 複合体の製造方法
TW201511824A (zh) 酸性氣體分離用螺旋型模組
WO2016121436A1 (ja) 酸性ガス分離モジュール
JP6186286B2 (ja) 酸性ガス分離用積層体の製造方法、酸性ガス分離用積層体および酸性ガス分離モジュール
WO2015029884A1 (ja) 酸性ガス分離膜の製造方法
JP6071872B2 (ja) 複合体の製造方法および複合体
JP6524113B2 (ja) 酸性ガス分離モジュール
JP5975951B2 (ja) 促進輸送型分離膜の製造方法
JP6145431B2 (ja) 酸性ガス分離モジュールの製造方法および酸性ガス分離モジュール
WO2016117360A1 (ja) 酸性ガス分離モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867258

Country of ref document: EP

Kind code of ref document: A1