WO2015080008A1 - Method for producing oriented fiber sheet - Google Patents

Method for producing oriented fiber sheet Download PDF

Info

Publication number
WO2015080008A1
WO2015080008A1 PCT/JP2014/080707 JP2014080707W WO2015080008A1 WO 2015080008 A1 WO2015080008 A1 WO 2015080008A1 JP 2014080707 W JP2014080707 W JP 2014080707W WO 2015080008 A1 WO2015080008 A1 WO 2015080008A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
sheet
cutting
fiber material
oriented
Prior art date
Application number
PCT/JP2014/080707
Other languages
French (fr)
Japanese (ja)
Inventor
井上 鉄也
智也 山下
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2015080008A1 publication Critical patent/WO2015080008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • B29K2105/124Nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes

Definitions

  • the present invention relates to a method for producing an oriented fiber sheet in which a large number of fiber materials are juxtaposed in the vertical direction to form a sheet.
  • the heat conductive sheet includes a sheet obtained by carbonizing a polyimide resin sheet at a high temperature.
  • seat there exists the thing which impregnated resin to the vertically aligned carbon nanotube, for example (for example, refer patent document 1).
  • the manufacturing method of the heat conductive sheet described in Patent Document 1 includes a step of forming a vertically aligned carbon nanotube array, a step of filling the carbon nanotube array with a polymer precursor, and the carbon nanotube array.
  • the side plates are surrounded by side plates and a pair of opposing side plates are brought close to each other to increase the density of the carbon nanotube array, a coagulant is added to the carbon nanotube array to polymerize the polymer precursor, and the coagulant And cutting the solidified carbon nanotube array along a plane parallel to the surface thereof to obtain a sheet-like carbon nanotube layer.
  • the thickness of the obtained sheet-like carbon nanotube layer depends on the height of the carbon nanotube, so that there is a problem that it is difficult to obtain a carbon nanotube layer having an arbitrary thickness.
  • the thickness of the obtained sheet-like carbon nanotube layer depends on the height of the carbon nanotube, so that there is a problem that it is difficult to obtain a carbon nanotube layer having an arbitrary thickness.
  • an object of the present invention is to provide a method for producing an oriented fiber sheet that can obtain an arbitrary thickness and is suitable for mass production.
  • a method for producing an oriented fiber sheet according to the first invention includes a drawing step of drawing out the fiber material into a sheet shape, A winding step of winding the fiber material drawn into a sheet in this drawing step around the core material a plurality of times to obtain an annular fiber layer; An immersion step of immersing the annular fiber material layer wound in the winding step in a fixing solution; A cutting step of cutting the front and rear end portions in the winding direction of the annular fiber layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber layer, Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A sheet acquisition step of obtaining an oriented fiber sheet made of a material.
  • the method for producing an oriented fiber sheet according to the second invention is a sheet in which a large number of fiber materials formed in a direction perpendicular to the surface of the substrate are connected from one end side of the substrate and the fiber materials are connected in the axial direction.
  • a drawing process to draw out the shape A winding step of winding the fiber material drawn into a sheet in this drawing step a plate material a plurality of times to obtain an annular fiber material layer; An immersion step of immersing the annular fiber material layer wound in the winding step in a fixing solution; A cutting step of cutting the front and rear end portions in the winding direction of the annular fiber layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber layer, Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A sheet acquisition step of obtaining an oriented fiber sheet made of a material.
  • the method for producing an oriented fiber sheet according to the third invention is a sheet in which a large number of fiber materials formed in the direction perpendicular to the surface of the substrate are connected from one end side of the substrate and the fiber materials are connected in the axial direction.
  • a drawing process to draw out the shape A stacking step of reciprocating the fiber material drawn in a sheet shape in this drawing step to obtain a superimposed fiber material layer folded into a plurality of layers; An immersion step of immersing the superimposed fiber material layer obtained in this overlapping step in a fixing solution; A cutting step of cutting the front and rear end portions in the reciprocating direction of the superimposed fiber material layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber material layer; Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A sheet acquisition step of obtaining an oriented fiber sheet made of a material.
  • Another invention is a method using a fiber material having electrical conductivity or thermal conductivity in the manufacturing method according to each of the above inventions.
  • another invention is a method of using any one of carbon fiber, metal fiber, and synthetic resin fiber coated with metal as a fiber material in the manufacturing method according to each of the above inventions, or using two or more kinds. It is.
  • the annular fiber material layer is immersed in a fixing solution, Next, the front and rear ends are cut to obtain a belt-like fiber material layer having a predetermined thickness, and the front end portion or the rear end portion of the belt-like fiber material layer has a predetermined sheet thickness along a direction perpendicular to the fiber direction. Since the oriented fiber sheet oriented in the thickness direction of the sheet is obtained by cutting, there is no need to press the fiber material from the four sides using the side plate as in the prior art, thus simplifying the manufacturing method Can be achieved. Moreover, since a fiber sheet is obtained by cutting the strip-shaped fiber material layer, a fiber sheet having an arbitrary thickness can be easily manufactured.
  • the oriented fiber material formed in a large number in the vertical direction on the surface of the substrate is drawn out in a sheet shape so as to be continuous from one end side in the axial direction, and this sheet shape
  • the fiber material is wound around a plate material as it is multiple times to obtain an annular fiber material layer having a predetermined thickness, or folded with a predetermined length to obtain a superimposed fiber material layer, and then the fiber material layer is fixed.
  • FIG. 1 It is a schematic diagram of the manufacturing apparatus of the oriented fiber sheet which concerns on Example 1 of this invention. It is a figure for demonstrating the manufacturing method of the Example 1, and is a perspective view of the carbon nanotube group formed in the surface of a board
  • FIG. FIG. 3 is a cross-sectional view of a main part when obtaining a band-shaped carbon nanotube layer in the manufacturing method of Example 1. It is principal part sectional drawing which shows a sheet
  • FIG. 2 It is a figure explaining the manufacturing method of the orientation fiber sheet which concerns on Example 2 of this invention, and is a perspective view of the carbon nanotube group formed in the surface of a board
  • FIG. It is principal part sectional drawing which shows the immersion process in the manufacturing method of the Example 2. It is principal part sectional drawing which shows the cutting process in the manufacturing method of the Example 2. It is principal part sectional drawing which shows the sheet
  • Example 1 of the present invention a method for producing an oriented fiber sheet according to Example 1 of the present invention will be described with reference to FIGS. 1 to 7 (corresponding to claim 2).
  • the oriented fiber sheet according to Example 1 is one in which a large number of carbon nanotubes are formed (aligned) in parallel in the vertical direction on the surface of the substrate, in other words, a group of vertically aligned carbon nanotubes formed in layers. It is. In the present specification, a large number of carbon nanotubes are formed. To be precise, the expression of a carbon nanotube group is suitable, but it will be described simply as carbon nanotubes. When it is more appropriate to emphasize “group”, it is referred to as a carbon nanotube group.
  • the winding device 1 has a predetermined length and a rectangular (rectangular) main plate member 2a in plan view, and is detachable perpendicularly to the left and right side edges of the main plate member 2a (detachable) It is comprised from the winding body 2 which consists of a pair of side plate material 2b attached freely, and the electric motor 3 as a rotation apparatus which rotates this winding body 2 in the surface parallel to the side plate material 2b.
  • the winding body 2 is rotatably supported by a bearing (not shown) via a support shaft member 2c protruding outward at the center position of the side plate member 2b, and an electric motor is mounted on one support shaft member 2c. 3 are detachably connected via a coupling 4. When the electric motor 3 is driven, the winding body 2 is rotated in a vertical plane including the longitudinal direction of the main plate 2a as indicated by an arrow a.
  • winding body 2 can be separated from the electric motor 3, and the support shaft 2c can also be detached from the bearing. Further, the side plate 2b can be detached from the main plate 2a.
  • a group of vertically aligned carbon nanotubes is formed on the surface of a substrate K made of a thin stainless steel plate using, for example, a CVD method (including chemical vapor deposition method: thermal CVD method).
  • C is formed with a predetermined height.
  • a large number of carbon nanotubes C formed in the vertical direction on the surface of the substrate K are slowly pulled out from the front end side with the full width (which can be said to be in a line shape), and a single cloth shape, that is, a sheet Carbon nanotubes (also referred to as carbon nanotube layers) C are obtained.
  • the carbon nanotubes C are pulled out from the front end side, the carbon nanotubes are sequentially pulled by a van der Waals force between the carbon nanotubes and pulled out into a sheet shape.
  • the front end portion of the carbon nanotube C drawn out in the form of a sheet is wound around the main plate 2a of the winding body 2 in the drawing direction (longitudinal direction of the main plate), and the electric motor 3 is driven to wind the winding 2
  • the carbon nanotubes C are wound around the main plate 2a to obtain an annular carbon nanotube layer (an example of an annular fiber material layer) C (C1) having a predetermined thickness.
  • the winding body 2 is separated from the motor 3 and removed from the bearing, and the bottom plate member 5 and the front and rear end wall plate members 6 are arranged on the bottom surface and the front and rear end surfaces between the two side plate members 2b.
  • a container (also referred to as a mold) 7 having a size capable of accommodating the annular carbon nanotube layer C1 is formed.
  • the container 7 is filled with a fixing liquid 8 in which a synthetic resin such as silicon rubber is used, and the annular carbon nanotube layer C1 is placed, and the annular carbon nanotube layer C1 is impregnated with the fixing liquid.
  • a synthetic resin such as silicon rubber
  • the impregnation of the fixing liquid 8 is performed in a vacuum container, the internal penetration of the liquid can be promoted and the generation of bubbles inside can be suppressed.
  • the front and rear end portions of the rectangular carbon nanotube layer C1 in a plan view in a state where the container 7 is removed and wound around the main plate 2a are positioned at predetermined positions (a, b).
  • two strip-shaped carbon nanotube layers (an example of a strip-shaped fiber material layer) C (C2) separated from the main plate material 2a and divided vertically are obtained.
  • the band-shaped carbon nanotube layer C2 is formed with a predetermined sheet thickness along the direction perpendicular to the direction of the carbon nanotubes from the end surface side of the front end portion or the rear end portion by a cutter 11 such as a circular saw. It cut
  • seat acquisition process sheet
  • a large number of oriented carbon nanotubes (fibrous materials) formed in the vertical direction on the surface of the substrate are drawn out from one end side thereof in a sheet shape so as to be continuous in the axial direction.
  • a cyclic carbon nanotube layer annular fiber material layer
  • the thickness of the sheet is obtained by obtaining (strip-like fiber material layer) and further cutting the front end portion or the rear end portion of the strip-like carbon nanotube layer along the direction perpendicular to the direction of the carbon nanotubes (along the thickness direction).
  • the annular carbon nanotube layer C1 wound around the main plate 2a has been described as being impregnated with the fixing liquid 8 in the container 7.
  • the carbon nanotube C is added to the main plate 2a.
  • the side plate member 2b is removed and the main plate member 2a is also extracted to extract only the annular carbon nanotube layer C1.
  • the annular carbon nanotube layer C1 may be crushed and then placed in a separately prepared container, and the fixing liquid 8 may be filled to impregnate the annular carbon nanotube layer C1.
  • the manufacturing method of the first embodiment includes a drawing step in which a large number of fiber materials formed in the vertical direction on the surface of the substrate are drawn out from one end side of the substrate and into a sheet shape so that the fiber materials are connected in the axial direction. , Winding the fiber material drawn in a sheet form in this drawing step multiple times around the plate material to obtain an annular fiber material layer, and immersing the annular fiber layer wound in this winding step in the fixing solution Obtained in this cutting step, and a cutting step for cutting the front and rear end portions in the winding direction of the annular fiber layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber material layer.
  • a sheet obtaining step of obtaining an oriented fiber sheet made of a vertically oriented fiber material by cutting the front end portion or the rear end portion of the strip-like fiber material layer along the thickness direction a drawing process for drawing out the fiber material into a sheet shape, and winding the fiber material drawn out in a sheet shape in the drawing process into a core material a plurality of times to obtain an annular fiber material layer
  • Cutting step to obtain a belt-like fiber material layer by cutting the portion, and the front end portion or the rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the fiber direction
  • a sheet acquisition step of obtaining an oriented fiber sheet made of a fiber material oriented in the thickness direction of the sheet corresponding
  • the core member around which the fiber sheet is wound may be a columnar member.
  • Example 1 the carbon nanotubes as the oriented fiber material drawn out in the form of a sheet were taken up along the longitudinal direction with a winding device, but this example was used.
  • No. 2 a carbon nanotube as an oriented fiber material drawn out in a sheet shape is folded in a zigzag shape.
  • a group of vertically aligned carbon nanotubes is formed on the surface of a substrate K made of a thin stainless steel plate by using, for example, a CVD method (including chemical vapor deposition method: thermal CVD method).
  • C is formed with a predetermined height.
  • a large number of carbon nanotubes C formed in the vertical direction on the surface of the substrate K are slowly pulled out from the front end side with a full width (which can be said to be in a line shape) to form a single cloth shape, that is, a sheet Carbon nanotubes (also referred to as carbon nanotube layers) C are obtained.
  • the carbon nanotubes C are pulled out from the front end side, the carbon nanotubes are sequentially pulled by a van der Waals force between the carbon nanotubes and pulled out into a sheet shape.
  • the carbon nanotubes C drawn out in a sheet shape are folded at a predetermined length interval to obtain a superimposed carbon nanotube layer (an example of a superimposed fiber material layer) C (C11) having a predetermined thickness.
  • the container 21 is filled with a fixing liquid 22 in which a synthetic resin such as silicon rubber is used, and a superposed carbon nanotube layer C11 is placed, and the fixing liquid 22 is added to the superposed carbon.
  • the nanotube layer C11 is impregnated. If the impregnation with the fixing liquid 22 is performed in a vacuum container, the internal penetration of the liquid can be promoted and the generation of bubbles inside the liquid can be suppressed. In addition, you may use an epoxy resin about a synthetic resin.
  • the superposed carbon nanotube layer C11 is taken out from the container 22, and the front and rear ends of the superposed carbon nanotube layer C11 having a rectangular shape in plan view are cut at predetermined positions (a, b).
  • a band-shaped carbon nanotube layer (an example of a band-shaped fiber material layer) C (C12) is obtained.
  • the band-shaped carbon nanotube layer C12 is formed with a predetermined sheet thickness along the direction perpendicular to the direction of the carbon nanotubes from the end surface side of the front end portion or the rear end portion by a cutter 23 such as a circular saw. It cut
  • oriented carbon nanotube sheet S2 having an arbitrary thickness can be obtained.
  • a large number of oriented carbon nanotubes (fibrous materials) formed in the direction perpendicular to the surface of the substrate are drawn out from one end side so as to be continuous in the axial direction, and the sheet-like carbon nanotubes are predetermined.
  • Folded lengthwise to obtain a superimposed carbon nanotube layer (superimposed fiber material layer) with a predetermined thickness then immersed in a fixing solution, and then cut the bent portions before and after that to form a band-shaped carbon with a predetermined thickness
  • a nanotube layer strip-like fiber material layer
  • the front and rear ends of this strip-like carbon nanotube layer are cut along a direction perpendicular to the direction of the carbon nanotubes (along the thickness direction) to a predetermined sheet thickness.
  • carbon fibers other than carbon nanotubes may be used.
  • any material having electrical conductivity or thermal conductivity may be used.
  • a metal fiber or a synthetic resin fiber coated with a metal can be used.
  • carbon fibers, metal fibers, and synthetic resin fibers coated with metal can be used which are composed of two or more kinds.

Abstract

This method is provided with: a pull-out step for pulling out carbon nanotubes, of which a plurality are formed in the direction perpendicular to the surface of a substrate, from the substrate in a sheet shape in a manner such that the tubes are contiguous with each other in the axis-center direction; a coiling-up step for coiling up the carbon nanotubes, which were pulled out in a sheet shape, a plurality of times at a primary plate member in a manner so as to obtain an annular carbon nanotube layer; an immersion step for immersing the annular carbon nanotube layer in an affixing liquid; a cutting step for cutting the front and back ends in the direction of coiling up of the annular carbon nanotube layer impregnated with the affixing liquid to obtain a band-shaped carbon nanotube layer; and a sheet acquisition step for cutting the front end or back end of the band-shaped carbon nanotube layer (C2) along the thickness direction to obtain a carbon nanotube sheet (S1) oriented in the perpendicular direction.

Description

配向性繊維シートの製造方法Method for producing oriented fiber sheet
 本発明は、繊維材が垂直方向で多数並置されてシート状にされてなる配向性繊維シートの製造方法に関する。 The present invention relates to a method for producing an oriented fiber sheet in which a large number of fiber materials are juxtaposed in the vertical direction to form a sheet.
 例えば、熱伝導シートとしては、ポリイミド樹脂シートを高温で炭化させたシートなどがある。また、シートの厚み方向で繊維材が配向されてなるシートとしては、例えば垂直配向性カーボンナノチューブに樹脂を含浸させたものがある(例えば、特許文献1参照)。 For example, the heat conductive sheet includes a sheet obtained by carbonizing a polyimide resin sheet at a high temperature. Moreover, as a sheet | seat by which a fiber material is orientated in the thickness direction of a sheet | seat, there exists the thing which impregnated resin to the vertically aligned carbon nanotube, for example (for example, refer patent document 1).
 ところで、特許文献1に記載された熱伝導シートの製造方法は、垂直に配向されたカーボンナノチューブアレイを形成するステップと、このカーボンナノチューブアレイにポリマーの前駆物質を充填するステップと、このカーボンナノチューブアレイの四方を側板で囲むとともに互いに対向する一対の側板を接近させてカーボンナノチューブアレイの密度を高めるステップと、カーボンナノチューブアレイに凝固剤を添加してポリマーの前駆物質を重合させるステップと、凝固剤により固められたカーボンナノチューブアレイをその表面と平行な面に沿って切断してシート状のカーボンナノチューブ層を得るステップとから成るものである。 By the way, the manufacturing method of the heat conductive sheet described in Patent Document 1 includes a step of forming a vertically aligned carbon nanotube array, a step of filling the carbon nanotube array with a polymer precursor, and the carbon nanotube array. The side plates are surrounded by side plates and a pair of opposing side plates are brought close to each other to increase the density of the carbon nanotube array, a coagulant is added to the carbon nanotube array to polymerize the polymer precursor, and the coagulant And cutting the solidified carbon nanotube array along a plane parallel to the surface thereof to obtain a sheet-like carbon nanotube layer.
特許第4991657号公報Japanese Patent No. 4991657
 しかし、上記従来の製造方法によると、得られるシート状のカーボンナノチューブ層の厚さがカーボンナノチューブの高さに依存するため、任意の厚さのカーボンナノチューブ層を得ることが難しいという問題がある。また、シート状のカーボンナノチューブを得る際に、カーボンナノチューブアレイの四方を側板で囲むとともに互いに対向する側板を接近させてカーボンナノチューブアレイの密度を高めるという面倒な作業があるため、量産するのには適していないという問題がある。 However, according to the above conventional manufacturing method, the thickness of the obtained sheet-like carbon nanotube layer depends on the height of the carbon nanotube, so that there is a problem that it is difficult to obtain a carbon nanotube layer having an arbitrary thickness. In addition, when obtaining sheet-like carbon nanotubes, there is a troublesome work of enclosing the four sides of the carbon nanotube array with side plates and bringing the opposite side plates closer together to increase the density of the carbon nanotube array. There is a problem that it is not suitable.
 そこで、本発明は、任意の厚さが得られるとともに量産に適した配向性繊維シートの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing an oriented fiber sheet that can obtain an arbitrary thickness and is suitable for mass production.
 上記課題を解決するため、第1の発明に係る配向性繊維シートの製造方法は、繊維材をシート状に引き出す引出工程と、
 この引出工程でシート状に引き出された繊維材を芯材に複数回巻き取り環状繊維材層を得る巻取工程と、
 この巻取工程で巻き取られた環状繊維材層を固定用溶液に浸漬させる浸漬工程と、
 この浸漬工程にて固定用溶液が含浸された環状繊維材層の巻取方向における前後端部を切断して帯状繊維材層を得る切断工程と、
 この切断工程にて得られた帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定の厚さとなるように切断して、シートの厚さ方向に配向された繊維材からなる配向性繊維シートを得るシート取得工程とを具備する方法である。
In order to solve the above problems, a method for producing an oriented fiber sheet according to the first invention includes a drawing step of drawing out the fiber material into a sheet shape,
A winding step of winding the fiber material drawn into a sheet in this drawing step around the core material a plurality of times to obtain an annular fiber layer;
An immersion step of immersing the annular fiber material layer wound in the winding step in a fixing solution;
A cutting step of cutting the front and rear end portions in the winding direction of the annular fiber layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber layer,
Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A sheet acquisition step of obtaining an oriented fiber sheet made of a material.
 また、第2の発明に係る配向性繊維シートの製造方法は、基板の表面に垂直方向で多数形成された繊維材を当該基板の一端側から且つ繊維材同士が軸心方向で連なるようにシート状に引き出す引出工程と、
 この引出工程でシート状に引き出された繊維材を板材に複数回巻き取り環状繊維材層を得る巻取工程と、
 この巻取工程で巻き取られた環状繊維材層を固定用溶液に浸漬させる浸漬工程と、
 この浸漬工程にて固定用溶液が含浸された環状繊維材層の巻取方向における前後端部を切断して帯状繊維材層を得る切断工程と、
 この切断工程にて得られた帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定の厚さとなるように切断して、シートの厚さ方向に配向された繊維材からなる配向性繊維シートを得るシート取得工程とを具備する方法である。
Also, the method for producing an oriented fiber sheet according to the second invention is a sheet in which a large number of fiber materials formed in a direction perpendicular to the surface of the substrate are connected from one end side of the substrate and the fiber materials are connected in the axial direction. A drawing process to draw out the shape,
A winding step of winding the fiber material drawn into a sheet in this drawing step a plate material a plurality of times to obtain an annular fiber material layer;
An immersion step of immersing the annular fiber material layer wound in the winding step in a fixing solution;
A cutting step of cutting the front and rear end portions in the winding direction of the annular fiber layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber layer,
Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A sheet acquisition step of obtaining an oriented fiber sheet made of a material.
 また、第3の発明に係る配向性繊維シートの製造方法は、基板の表面に垂直方向で多数形成された繊維材を当該基板の一端側から且つ繊維材同士が軸心方向で連なるようにシート状に引き出す引出工程と、
 この引出工程でシート状に引き出された繊維材を往復移動させて複数層に折り重ねられた重畳繊維材層を得る重ね工程と、
 この重ね工程で得られた重畳繊維材層を固定用溶液に浸漬させる浸漬工程と、
 この浸漬工程にて固定用溶液が含浸された重畳繊維材層の上記往復移動方向における前後端部を切断して帯状繊維材層を得る切断工程と、
 この切断工程にて得られた帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定の厚さとなるように切断して、シートの厚さ方向に配向された繊維材からなる配向性繊維シートを得るシート取得工程とを具備する方法である。
Further, the method for producing an oriented fiber sheet according to the third invention is a sheet in which a large number of fiber materials formed in the direction perpendicular to the surface of the substrate are connected from one end side of the substrate and the fiber materials are connected in the axial direction. A drawing process to draw out the shape,
A stacking step of reciprocating the fiber material drawn in a sheet shape in this drawing step to obtain a superimposed fiber material layer folded into a plurality of layers;
An immersion step of immersing the superimposed fiber material layer obtained in this overlapping step in a fixing solution;
A cutting step of cutting the front and rear end portions in the reciprocating direction of the superimposed fiber material layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber material layer;
Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A sheet acquisition step of obtaining an oriented fiber sheet made of a material.
 また、他の発明は、上記各発明に係る製造方法において、繊維材として、電気伝導性または熱伝導性を有するものを用いる方法である。 Further, another invention is a method using a fiber material having electrical conductivity or thermal conductivity in the manufacturing method according to each of the above inventions.
 さらに、他の発明は、上記各発明に係る製造方法において、繊維材として、炭素繊維、金属繊維、および金属がコーティングされた合成樹脂繊維のうちいずれか、または2種以上からなるものを用いる方法である。 Furthermore, another invention is a method of using any one of carbon fiber, metal fiber, and synthetic resin fiber coated with metal as a fiber material in the manufacturing method according to each of the above inventions, or using two or more kinds. It is.
 上記第1の発明によると、シート状に引き出された繊維材を芯材に複数回巻き取り所定厚さの環状繊維材層を得た後、この環状繊維材層を固定用溶液に浸漬し、次にその前後を切断して所定厚さの帯状繊維材層を得、さらにこの帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定のシート厚さとなるように切断することにより、シートの厚さ方向に配向された配向性繊維シートを得るようにしたので、従来のように、繊維材を四方から側板を用いて押圧する必要がないため、製造方法の簡略化を図ることができる。また、帯状繊維材層を切断することにより繊維シートが得られるので、任意厚さの繊維シートを容易に製造することができる。 According to the first aspect of the invention, after the fiber material drawn into a sheet is wound around the core material a plurality of times to obtain an annular fiber material layer having a predetermined thickness, the annular fiber material layer is immersed in a fixing solution, Next, the front and rear ends are cut to obtain a belt-like fiber material layer having a predetermined thickness, and the front end portion or the rear end portion of the belt-like fiber material layer has a predetermined sheet thickness along a direction perpendicular to the fiber direction. Since the oriented fiber sheet oriented in the thickness direction of the sheet is obtained by cutting, there is no need to press the fiber material from the four sides using the side plate as in the prior art, thus simplifying the manufacturing method Can be achieved. Moreover, since a fiber sheet is obtained by cutting the strip-shaped fiber material layer, a fiber sheet having an arbitrary thickness can be easily manufactured.
 また、上記第2および第3の発明によると、基板の表面に垂直方向で多数形成された配向性繊維材をその一端側から且つその軸心方向で連なるようにシート状に引き出すとともにこのシート状の繊維材を、そのまま板材に複数回巻き取り所定厚さの環状繊維材層を得た後、または所定長さでもって折り重ねて重畳繊維材層を得た後、この繊維材層を固定用溶液に浸漬し、次にその前後の湾曲部分または屈曲部分を切断して所定厚さの帯状繊維材層を得、さらにこの帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定のシート厚さとなるように切断することにより、シートの厚さ方向に配向された繊維材からなる配向性繊維シートを得るようにしたので、従来のように、繊維材を四方から側板を用いて押圧する必要がないため、製造方法の簡略化を図ることができる。また、帯状繊維材層を切断することにより繊維シートが得られるので、任意厚さの繊維シートを容易に製造することができる。 Further, according to the second and third inventions, the oriented fiber material formed in a large number in the vertical direction on the surface of the substrate is drawn out in a sheet shape so as to be continuous from one end side in the axial direction, and this sheet shape The fiber material is wound around a plate material as it is multiple times to obtain an annular fiber material layer having a predetermined thickness, or folded with a predetermined length to obtain a superimposed fiber material layer, and then the fiber material layer is fixed. Immerse in the solution, then cut the curved or bent portions before and after that to obtain a band-shaped fibrous material layer of a predetermined thickness, and further, the front end or the rear end of this band-shaped fibrous layer is perpendicular to the direction of the fiber In order to obtain an oriented fiber sheet made of a fiber material oriented in the thickness direction of the sheet by cutting to a predetermined sheet thickness along There is no need to press using the side plate Therefore, it is possible to simplify the manufacturing process. Moreover, since a fiber sheet is obtained by cutting the strip-shaped fiber material layer, a fiber sheet having an arbitrary thickness can be easily manufactured.
本発明の実施例1に係る配向性繊維シートの製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of the oriented fiber sheet which concerns on Example 1 of this invention. 同実施例1の製造方法を説明するための図で、基板の表面に形成されたカーボンナノチューブ群の斜視図である。It is a figure for demonstrating the manufacturing method of the Example 1, and is a perspective view of the carbon nanotube group formed in the surface of a board | substrate. 同実施例1の製造方法における巻取工程を示す要部断面図である。It is principal part sectional drawing which shows the winding process in the manufacturing method of the Example 1. FIG. 同実施例1の製造方法における浸漬工程を示す要部断面図である。It is principal part sectional drawing which shows the immersion process in the manufacturing method of the Example 1. FIG. 同実施例1の製造方法における切断工程を示す要部断面図である。It is principal part sectional drawing which shows the cutting process in the manufacturing method of the Example 1. FIG. 同実施例1の製造方法における帯状カーボンナノチューブ層を得る際の要部断面図である。FIG. 3 is a cross-sectional view of a main part when obtaining a band-shaped carbon nanotube layer in the manufacturing method of Example 1. 同実施例1の製造方法におけるはシート取得工程を示す要部断面図である。It is principal part sectional drawing which shows a sheet | seat acquisition process in the manufacturing method of the Example 1. FIG. 本発明の実施例2に係る配向性繊維シートの製造方法を説明する図で、基板の表面に形成されたカーボンナノチューブ群の斜視図である。It is a figure explaining the manufacturing method of the orientation fiber sheet which concerns on Example 2 of this invention, and is a perspective view of the carbon nanotube group formed in the surface of a board | substrate. 同実施例2の製造方法における折り重ね工程を示す要部側面図である。It is a principal part side view which shows the folding process in the manufacturing method of the Example 2. FIG. 同実施例2の製造方法における浸漬工程を示す要部断面図である。It is principal part sectional drawing which shows the immersion process in the manufacturing method of the Example 2. 同実施例2の製造方法における切断工程を示す要部断面図である。It is principal part sectional drawing which shows the cutting process in the manufacturing method of the Example 2. 同実施例2の製造方法におけるシート取得工程を示す要部断面図である。It is principal part sectional drawing which shows the sheet | seat acquisition process in the manufacturing method of the Example 2.
 以下、本発明の実施例1に係る配向性繊維シートの製造方法を図1~図7に基づき説明する(請求項2に対応する)。 Hereinafter, a method for producing an oriented fiber sheet according to Example 1 of the present invention will be described with reference to FIGS. 1 to 7 (corresponding to claim 2).
 本実施例1に係る配向性繊維シートは、基板の表面に垂直方向でカーボンナノチューブが多数並列に形成(配向)されたものであり、言い換えれば、垂直配向カーボンナノチューブ群が層状に形成されたものである。なお、本明細書においては、カーボンナノチューブが多数形成されたものであり、正確には、カーボンナノチューブ群という表現が適しているが、単にカーボンナノチューブと称して説明する。「群」であることを強調した方が適切である場合には、カーボンナノチューブ群と称する。 The oriented fiber sheet according to Example 1 is one in which a large number of carbon nanotubes are formed (aligned) in parallel in the vertical direction on the surface of the substrate, in other words, a group of vertically aligned carbon nanotubes formed in layers. It is. In the present specification, a large number of carbon nanotubes are formed. To be precise, the expression of a carbon nanotube group is suitable, but it will be described simply as carbon nanotubes. When it is more appropriate to emphasize “group”, it is referred to as a carbon nanotube group.
 ところで、本実施例1に係る製造方法においては、シート状に引き出されたカーボンナノチューブを巻き取る巻取装置を用いるため、先に、この巻取装置について説明する。 By the way, in the manufacturing method according to the first embodiment, since a winding device for winding the carbon nanotube drawn into a sheet shape is used, the winding device will be described first.
 図1に示すように、この巻取装置1は、所定長さで平面視が長方形状(矩形状)の主板材2aおよび当該主板材2aの左右の側縁部に垂直で且つ取り外し可能(着脱自在)に取り付けられた一対の側板材2bからなる巻取体2と、この巻取体2をその側板材2bと平行な面内で回転させる回転装置としての電動機3とから構成されている。 As shown in FIG. 1, the winding device 1 has a predetermined length and a rectangular (rectangular) main plate member 2a in plan view, and is detachable perpendicularly to the left and right side edges of the main plate member 2a (detachable) It is comprised from the winding body 2 which consists of a pair of side plate material 2b attached freely, and the electric motor 3 as a rotation apparatus which rotates this winding body 2 in the surface parallel to the side plate material 2b.
 上記巻取体2は、側板材2bの中心位置で外側に突設された支持軸材2cを介して軸受(図示せず)に回転自在に支持されるとともに、一方の支持軸材2cに電動機3がカップリング4を介して切り離し可能に連結されている。上記電動機3が駆動されると、巻取体2は、矢印aで示すように、主板材2aの長手方向を含む鉛直面内で回転される。 The winding body 2 is rotatably supported by a bearing (not shown) via a support shaft member 2c protruding outward at the center position of the side plate member 2b, and an electric motor is mounted on one support shaft member 2c. 3 are detachably connected via a coupling 4. When the electric motor 3 is driven, the winding body 2 is rotated in a vertical plane including the longitudinal direction of the main plate 2a as indicated by an arrow a.
 また、上記巻取体2は電動機3から切り離し得るようにされるとともに、支持軸材2cについても軸受から取り外し得るようにされている。さらに、側板材2bも主板材2aから取り外し得るようにされている。 Further, the winding body 2 can be separated from the electric motor 3, and the support shaft 2c can also be detached from the bearing. Further, the side plate 2b can be detached from the main plate 2a.
 上記構成において、配向性繊維シートの製造方法について説明する。 In the above configuration, a method for producing an oriented fiber sheet will be described.
 まず、図2に示すように、ステンレス製の薄い鋼板からなる基板Kの表面に、例えばCVD法(化学的気相成長法:熱CVD法も含む)を用いて、垂直配向性のカーボンナノチューブ群Cを所定高さでもって形成する。 First, as shown in FIG. 2, a group of vertically aligned carbon nanotubes is formed on the surface of a substrate K made of a thin stainless steel plate using, for example, a CVD method (including chemical vapor deposition method: thermal CVD method). C is formed with a predetermined height.
 次に、図3に示すように、基板Kの表面に垂直方向で多数形成されカーボンナノチューブCを、その前端側から全幅でもって(列状ともいえる)をゆっくり引き出し、一枚の布状つまりシート状のカーボンナノチューブ(カーボンナノチューブ層ともいえる)Cを得る。なお、カーボンナノチューブCを前端側から引き出すと、各カーボンナノチューブ同士のファンデルワース力により、順次、カーボンナノチューブが引っ張られ、シート状に引き出される。 Next, as shown in FIG. 3, a large number of carbon nanotubes C formed in the vertical direction on the surface of the substrate K are slowly pulled out from the front end side with the full width (which can be said to be in a line shape), and a single cloth shape, that is, a sheet Carbon nanotubes (also referred to as carbon nanotube layers) C are obtained. When the carbon nanotubes C are pulled out from the front end side, the carbon nanotubes are sequentially pulled by a van der Waals force between the carbon nanotubes and pulled out into a sheet shape.
 次に、シート状に引き出されたカーボンナノチューブCの前端部分を巻取体2の主板材2aにその引き出し方向(主板材の長手方向)で巻き付け、そして電動機3を駆動して巻取体2をゆっくりと回転させ、カーボンナノチューブCを主板材2aの周囲に巻き付けて所定厚さの環状カーボンナノチューブ層(環状繊維材層の一例)C(C1)を得る。 Next, the front end portion of the carbon nanotube C drawn out in the form of a sheet is wound around the main plate 2a of the winding body 2 in the drawing direction (longitudinal direction of the main plate), and the electric motor 3 is driven to wind the winding 2 By rotating slowly, the carbon nanotubes C are wound around the main plate 2a to obtain an annular carbon nanotube layer (an example of an annular fiber material layer) C (C1) having a predetermined thickness.
 次に、図4に示すように、巻取体2を電動機3から切り離すとともに軸受から取り外し、両側板材2b同士間の底面および前後の端面に、底板材5および前後の端壁板材6を配置して、環状カーボンナノチューブ層C1を収納し得る大きさの容器(型枠ともいえる)7を形成する。 Next, as shown in FIG. 4, the winding body 2 is separated from the motor 3 and removed from the bearing, and the bottom plate member 5 and the front and rear end wall plate members 6 are arranged on the bottom surface and the front and rear end surfaces between the two side plate members 2b. Thus, a container (also referred to as a mold) 7 having a size capable of accommodating the annular carbon nanotube layer C1 is formed.
 次に、この容器7内に、シリコンゴムなどの合成樹脂が用いられる固定用液体8を充填するとともに、環状カーボンナノチューブ層C1を入れて、固定用液体を当該環状カーボンナノチューブ層C1に含浸させる。この固定用液体8の含浸を、真空の容器内で行なえば、液体の内部浸透の促進および内部での気泡の発生を抑制することができる。なお、合成樹脂についてはエポキシ樹脂を用いてもよい。 Next, the container 7 is filled with a fixing liquid 8 in which a synthetic resin such as silicon rubber is used, and the annular carbon nanotube layer C1 is placed, and the annular carbon nanotube layer C1 is impregnated with the fixing liquid. If the impregnation of the fixing liquid 8 is performed in a vacuum container, the internal penetration of the liquid can be promoted and the generation of bubbles inside can be suppressed. In addition, you may use an epoxy resin about a synthetic resin.
 固定用液体8が固まると、環状カーボンナノチューブ層C1を囲んでいる各板材2b,5,6を外して、容器7から環状カーボンナノチューブ層C1を取り出す。 When the fixing liquid 8 is solidified, the plate members 2b, 5 and 6 surrounding the annular carbon nanotube layer C1 are removed, and the annular carbon nanotube layer C1 is taken out from the container 7.
 次に、図5に示すようには、容器7が取り外されて主板材2aに巻き付けられた状態の平面視が長方形状の環状カーボンナノチューブ層C1の前後端部を所定位置(a、b)で切断し、図6に示すように、主板材2aから分離させて上下に分割された2つの帯状カーボンナノチューブ層(帯状繊維材層の一例)C(C2)を得る。 Next, as shown in FIG. 5, the front and rear end portions of the rectangular carbon nanotube layer C1 in a plan view in a state where the container 7 is removed and wound around the main plate 2a are positioned at predetermined positions (a, b). As shown in FIG. 6, two strip-shaped carbon nanotube layers (an example of a strip-shaped fiber material layer) C (C2) separated from the main plate material 2a and divided vertically are obtained.
 そして、図7に示すように、上記帯状カーボンナノチューブ層C2を、例えば丸鋸などのカッター11により前端部または後端部の端面側からカーボンナノチューブの向きに直角方向に沿って所定のシート厚さとなるように切断して、シートの厚さ方向に配向されたカーボンナノチューブからなる配向性カーボンナノチューブシート(配向性繊維シート)S1を得る(シート取得工程)。なお、この切断の厚さを調節することにより、任意の厚さの配向性カーボンナノチューブシートS1が得られる。 Then, as shown in FIG. 7, the band-shaped carbon nanotube layer C2 is formed with a predetermined sheet thickness along the direction perpendicular to the direction of the carbon nanotubes from the end surface side of the front end portion or the rear end portion by a cutter 11 such as a circular saw. It cut | disconnects so that it may become, and the oriented carbon nanotube sheet (oriented fiber sheet) S1 which consists of a carbon nanotube orientated in the thickness direction of the sheet | seat is obtained (sheet | seat acquisition process). In addition, by adjusting the thickness of this cutting, an oriented carbon nanotube sheet S1 having an arbitrary thickness can be obtained.
 このように、基板の表面に垂直方向で多数形成された配向性カーボンナノチューブ(繊維材)をその一端側から且つその軸心方向で連なるようにシート状に引き出し、このシート状のカーボンナノチューブを板材に複数回巻き取り所定厚さの環状カーボンナノチューブ層(環状繊維材層)を得た後、固定用溶液に浸漬し、次にその前後の湾曲部分を切断して所定厚さの帯状カーボンナノチューブ層(帯状繊維材層)を得、さらにこの帯状カーボンナノチューブ層の前端部または後端部をカーボンナノチューブの向きに直角方向に沿って(厚さ方向に沿って)切断することにより、シートの厚さ方向に配向された(垂直配向性)のカーボンナノチューブからなる配向性繊維シートを得るようにしたので、従来のように、カーボンナノチューブを四方から側板を用いて押圧する必要がないため、製造方法の簡略化を図ることができる。また、帯状カーボンナノチューブ層を切断することによりカーボンナノチューブシートが得られるので、任意厚さのシートを容易に製造することができる。 Thus, a large number of oriented carbon nanotubes (fibrous materials) formed in the vertical direction on the surface of the substrate are drawn out from one end side thereof in a sheet shape so as to be continuous in the axial direction. After obtaining a cyclic carbon nanotube layer (annular fiber material layer) having a predetermined thickness after winding a plurality of times, it is dipped in a fixing solution, and then the curved portions before and after the cut are cut to form a band-shaped carbon nanotube layer having a predetermined thickness The thickness of the sheet is obtained by obtaining (strip-like fiber material layer) and further cutting the front end portion or the rear end portion of the strip-like carbon nanotube layer along the direction perpendicular to the direction of the carbon nanotubes (along the thickness direction). Since we have obtained an oriented fiber sheet consisting of carbon nanotubes oriented in the direction (vertical orientation), carbon nanotubes as in the past It is not necessary to press all sides with side plate, it is possible to simplify the manufacturing process. Moreover, since a carbon nanotube sheet | seat is obtained by cut | disconnecting a strip | belt-shaped carbon nanotube layer, a sheet | seat of arbitrary thickness can be manufactured easily.
 なお、上記実施例1においては、主板材2aに巻き付けられた状態の環状カーボンナノチューブ層C1に容器7内で固定用液体8を含浸させるように説明したが、例えばカーボンナノチューブCを主板材2aの周囲に巻き付けて所定厚さの環状カーボンナノチューブ層C1を得た後に、側板材2bを取り外すとともに主板材2aも抜き出して環状カーボンナノチューブ層C1だけを取り出す。次に、この環状カーボンナノチューブ層C1を押し潰した後に、別途用意された容器内に入れ、そして固定用液体8を充填して当該環状カーボンナノチューブ層C1に含浸させるようにしてもよい。 In the first embodiment, the annular carbon nanotube layer C1 wound around the main plate 2a has been described as being impregnated with the fixing liquid 8 in the container 7. However, for example, the carbon nanotube C is added to the main plate 2a. After winding around the periphery to obtain the annular carbon nanotube layer C1 having a predetermined thickness, the side plate member 2b is removed and the main plate member 2a is also extracted to extract only the annular carbon nanotube layer C1. Next, the annular carbon nanotube layer C1 may be crushed and then placed in a separately prepared container, and the fixing liquid 8 may be filled to impregnate the annular carbon nanotube layer C1.
 ところで、上記実施例1の製造方法は、基板の表面に垂直方向で多数形成された繊維材を当該基板の一端側から且つ繊維材同士が軸心方向で連なるようにシート状に引き出す引出工程と、この引出工程でシート状に引き出された繊維材を板材に複数回巻き取り環状繊維材層を得る巻取工程と、この巻取工程で巻き取られた環状繊維材層を固定用溶液に浸漬させる浸漬工程と、この浸漬工程にて固定用溶液が含浸された環状繊維材層の巻取方向における前後端部を切断して帯状繊維材層を得る切断工程と、この切断工程にて得られた帯状繊維材層の前端部または後端部を厚さ方向に沿って切断して垂直に配向された繊維材からなる配向性繊維シートを得るシート取得工程とを具備する方法として説明した。しかし、その変形例に係る製造方法として、繊維材をシート状に引き出す引出工程と、この引出工程でシート状に引き出された繊維材を芯材に複数回巻き取り環状繊維材層を得る巻取工程と、この巻取工程で巻き取られた環状繊維材層を固定用溶液に浸漬させる浸漬工程と、この浸漬工程にて固定用溶液が含浸された環状繊維材層の巻取方向における前後端部を切断して帯状繊維材層を得る切断工程と、この切断工程にて得られた帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定の厚さとなるように切断して、シートの厚さ方向に配向された繊維材からなる配向性繊維シートを得るシート取得工程とを具備する方法であってもよい(請求項1に対応する)。この製造方法によると、カーボンナノチューブに加えて、炭素繊維、金属繊維、および金属がコーティングされた合成樹脂繊維のうちいずれか、または2種以上からなるものに好適に対応することができる。また、繊維シートを巻き付ける芯材としては円柱状部材でもよい。 By the way, the manufacturing method of the first embodiment includes a drawing step in which a large number of fiber materials formed in the vertical direction on the surface of the substrate are drawn out from one end side of the substrate and into a sheet shape so that the fiber materials are connected in the axial direction. , Winding the fiber material drawn in a sheet form in this drawing step multiple times around the plate material to obtain an annular fiber material layer, and immersing the annular fiber layer wound in this winding step in the fixing solution Obtained in this cutting step, and a cutting step for cutting the front and rear end portions in the winding direction of the annular fiber layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber material layer. And a sheet obtaining step of obtaining an oriented fiber sheet made of a vertically oriented fiber material by cutting the front end portion or the rear end portion of the strip-like fiber material layer along the thickness direction. However, as a manufacturing method according to the modified example, a drawing process for drawing out the fiber material into a sheet shape, and winding the fiber material drawn out in a sheet shape in the drawing process into a core material a plurality of times to obtain an annular fiber material layer A step of immersing the annular fiber layer wound in the winding step in the fixing solution, and front and rear ends in the winding direction of the annular fiber layer impregnated with the fixing solution in the immersion step Cutting step to obtain a belt-like fiber material layer by cutting the portion, and the front end portion or the rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the fiber direction And a sheet acquisition step of obtaining an oriented fiber sheet made of a fiber material oriented in the thickness direction of the sheet (corresponding to claim 1). According to this manufacturing method, in addition to carbon nanotubes, carbon fibers, metal fibers, and synthetic resin fibers coated with metal can be suitably handled, or a combination of two or more types. Further, the core member around which the fiber sheet is wound may be a columnar member.
 次に、本発明の実施例2に係る配向性繊維シートの製造方法を図8~図12に基づき説明する(請求項3に対応する)。 Next, a method for producing an oriented fiber sheet according to Example 2 of the present invention will be described based on FIGS. 8 to 12 (corresponding to claim 3).
 上記実施例1においては、配向性繊維材としてのカーボンナノチューブをシート状に引き出したものを、巻取装置にて、その長手方向に沿って巻き取ったものを用いるようにしたが、本実施例2においては、配向性繊維材としてのカーボンナノチューブをシート状に引き出したものを、ジグザグ状に折り重ねたものを用いるようにしたものである。 In Example 1 described above, the carbon nanotubes as the oriented fiber material drawn out in the form of a sheet were taken up along the longitudinal direction with a winding device, but this example was used. In No. 2, a carbon nanotube as an oriented fiber material drawn out in a sheet shape is folded in a zigzag shape.
 以下、具体的な製造方法について説明する。 Hereinafter, a specific manufacturing method will be described.
 まず、図8に示すように、ステンレス製の薄い鋼板からなる基板Kの表面に、例えばCVD法(化学的気相成長法:熱CVD法も含む)を用いて、垂直配向性のカーボンナノチューブ群Cを所定高さでもって形成する。 First, as shown in FIG. 8, a group of vertically aligned carbon nanotubes is formed on the surface of a substrate K made of a thin stainless steel plate by using, for example, a CVD method (including chemical vapor deposition method: thermal CVD method). C is formed with a predetermined height.
 次に、図9に示すように、基板Kの表面に垂直方向で多数形成されカーボンナノチューブCを、その前端側から全幅でもって(列状ともいえる)をゆっくり引き出し、一枚の布状つまりシート状のカーボンナノチューブ(カーボンナノチューブ層ともいえる)Cを得る。なお、カーボンナノチューブCを前端側から引き出すと、各カーボンナノチューブ同士のファンデルワース力により、順次、カーボンナノチューブが引っ張られ、シート状に引き出される。 Next, as shown in FIG. 9, a large number of carbon nanotubes C formed in the vertical direction on the surface of the substrate K are slowly pulled out from the front end side with a full width (which can be said to be in a line shape) to form a single cloth shape, that is, a sheet Carbon nanotubes (also referred to as carbon nanotube layers) C are obtained. When the carbon nanotubes C are pulled out from the front end side, the carbon nanotubes are sequentially pulled by a van der Waals force between the carbon nanotubes and pulled out into a sheet shape.
 次に、シート状に引き出されたカーボンナノチューブCを、所定長さ間隔でもって折り重ねて、所定厚さの重畳カーボンナノチューブ層(重畳繊維材層の一例)C(C11)を得る。 Next, the carbon nanotubes C drawn out in a sheet shape are folded at a predetermined length interval to obtain a superimposed carbon nanotube layer (an example of a superimposed fiber material layer) C (C11) having a predetermined thickness.
 次に、図10に示すように、容器21内に、シリコンゴムなどの合成樹脂が用いられる固定用液体22を充填するとともに、重畳カーボンナノチューブ層C11を入れて、固定用液体22を当該重畳カーボンナノチューブ層C11に含浸させる。この固定用液体22の含浸を、真空の容器内で行なえば、液体の内部浸透の促進および内部での気泡の発生を抑制することができる。なお、合成樹脂についてはエポキシ樹脂を用いてもよい。 Next, as shown in FIG. 10, the container 21 is filled with a fixing liquid 22 in which a synthetic resin such as silicon rubber is used, and a superposed carbon nanotube layer C11 is placed, and the fixing liquid 22 is added to the superposed carbon. The nanotube layer C11 is impregnated. If the impregnation with the fixing liquid 22 is performed in a vacuum container, the internal penetration of the liquid can be promoted and the generation of bubbles inside the liquid can be suppressed. In addition, you may use an epoxy resin about a synthetic resin.
 次に、図11に示すようには、容器22から重畳カーボンナノチューブ層C11を取り出して、平面視が長方形状の重畳カーボンナノチューブ層C11の前後端部を所定位置(a、b)で切断して帯状カーボンナノチューブ層(帯状繊維材層の一例)C(C12)を得る。 Next, as shown in FIG. 11, the superposed carbon nanotube layer C11 is taken out from the container 22, and the front and rear ends of the superposed carbon nanotube layer C11 having a rectangular shape in plan view are cut at predetermined positions (a, b). A band-shaped carbon nanotube layer (an example of a band-shaped fiber material layer) C (C12) is obtained.
 そして、図12に示すように、上記帯状カーボンナノチューブ層C12を、例えば丸鋸などのカッター23により前端部または後端部の端面側からカーボンナノチューブの向きに直角方向に沿って所定のシート厚さとなるように切断して、シートの厚さ方向に配向されたカーボンナノチューブからなる配向性カーボンナノチューブシート(配向性繊維シート)S2を得る。なお、この切断の厚さを調節することにより、任意の厚さの配向性カーボンナノチューブシートS2が得られることになる。 Then, as shown in FIG. 12, the band-shaped carbon nanotube layer C12 is formed with a predetermined sheet thickness along the direction perpendicular to the direction of the carbon nanotubes from the end surface side of the front end portion or the rear end portion by a cutter 23 such as a circular saw. It cut | disconnects so that it may become, and the oriented carbon nanotube sheet (oriented fiber sheet) S2 which consists of a carbon nanotube oriented in the thickness direction of the sheet | seat is obtained. In addition, by adjusting the thickness of this cutting, an oriented carbon nanotube sheet S2 having an arbitrary thickness can be obtained.
 このように、基板の表面に垂直方向で多数形成された配向性カーボンナノチューブ(繊維材)をその一端側から且つその軸心方向で連なるようにシート状に引き出し、このシート状のカーボンナノチューブを所定長さ毎に折り重ねて所定厚さの重畳カーボンナノチューブ層(重畳繊維材層)を得た後、固定用溶液に浸漬し、次にその前後の屈曲部分を切断して所定厚さの帯状カーボンナノチューブ層(帯状繊維材層)を得、さらにこの帯状カーボンナノチューブ層の前後の端部をカーボンナノチューブの向きに直角方向に沿って(厚さ方向に沿って)所定のシート厚さとなるように切断することにより、シートの厚さ方向に配向された(垂直配向性)のカーボンナノチューブからなる配向性繊維シートを得るようにしたので、従来のように、カーボンナノチューブを四方から側板を用いて押圧する必要がないため、製造方法の簡略化を図ることができる。また、帯状カーボンナノチューブ層を切断することによりカーボンナノチューブシートが得られるので、任意厚さのシートを容易に製造することができる。 In this way, a large number of oriented carbon nanotubes (fibrous materials) formed in the direction perpendicular to the surface of the substrate are drawn out from one end side so as to be continuous in the axial direction, and the sheet-like carbon nanotubes are predetermined. Folded lengthwise to obtain a superimposed carbon nanotube layer (superimposed fiber material layer) with a predetermined thickness, then immersed in a fixing solution, and then cut the bent portions before and after that to form a band-shaped carbon with a predetermined thickness A nanotube layer (strip-like fiber material layer) is obtained, and the front and rear ends of this strip-like carbon nanotube layer are cut along a direction perpendicular to the direction of the carbon nanotubes (along the thickness direction) to a predetermined sheet thickness. As a result, an oriented fiber sheet composed of carbon nanotubes oriented in the thickness direction of the sheet (vertical orientation) was obtained. It is not necessary to press using the side plates of the carbon nanotubes from all sides, it is possible to simplify the manufacturing process. Moreover, since a carbon nanotube sheet | seat is obtained by cut | disconnecting a strip | belt-shaped carbon nanotube layer, a sheet | seat of arbitrary thickness can be manufactured easily.
 ところで、上述した各実施例においては、繊維材としてカーボンナノチューブを用いたものについて説明したが、カーボンナノチューブ以外の炭素繊維でもよい。広く言えば、電気伝導性または熱伝導性を有するものであればよく、具体的には、金属繊維、金属がコーティングされた合成樹脂繊維を用いることができる。また、この他、炭素繊維、金属繊維、および金属がコーティングされた合成樹脂繊維のうち2種以上からなるものを用いることもできる。 By the way, in each of the above-described embodiments, the case where carbon nanotubes are used as the fiber material has been described. However, carbon fibers other than carbon nanotubes may be used. Broadly speaking, any material having electrical conductivity or thermal conductivity may be used. Specifically, a metal fiber or a synthetic resin fiber coated with a metal can be used. In addition, carbon fibers, metal fibers, and synthetic resin fibers coated with metal can be used which are composed of two or more kinds.
 C   カーボンナノチューブ
 C1  環状カーボンナノチューブ層
 C2  帯状カーボンナノチューブ層
 C11 重畳カーボンナノチューブ層
 C12 帯状カーボンナノチューブ層
 K   基板
 S1  カーボンナノチューブシート
 S2  カーボンナノチューブシート
 1   巻取装置
 2   巻取体
 2a  主板材
 2b  側板材
 2c  支持軸材
 3   電動機
 7   容器
 8   固定用液体
11   カッター
21   容器
22   固定用液体
23   カッター
C carbon nanotube C1 annular carbon nanotube layer C2 strip carbon nanotube layer C11 superposed carbon nanotube layer C12 strip carbon nanotube layer K substrate S1 carbon nanotube sheet S2 carbon nanotube sheet 1 winding device 2 winding body 2a main plate material 2b side plate material 2c support shaft Material 3 Electric motor 7 Container 8 Fixing liquid 11 Cutter 21 Container 22 Fixing liquid 23 Cutter

Claims (5)

  1.  繊維材をシート状に引き出す引出工程と、
     この引出工程でシート状に引き出された繊維材を芯材に複数回巻き取り環状繊維材層を得る巻取工程と、
     この巻取工程で巻き取られた環状繊維材層を固定用溶液に浸漬させる浸漬工程と、
     この浸漬工程にて固定用溶液が含浸された環状繊維材層の巻取方向における前後端部を切断して帯状繊維材層を得る切断工程と、
     この切断工程にて得られた帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定の厚さとなるように切断して、シートの厚さ方向に配向された繊維材からなる配向性繊維シートを得るシート取得工程とを具備することを特徴とする配向性繊維シートの製造方法。
    A drawing process for drawing the fiber material into a sheet,
    A winding step of winding the fiber material drawn into a sheet in this drawing step around the core material a plurality of times to obtain an annular fiber layer;
    An immersion step of immersing the annular fiber material layer wound in the winding step in a fixing solution;
    A cutting step of cutting the front and rear end portions in the winding direction of the annular fiber layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber layer,
    Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A method for producing an oriented fiber sheet, comprising: a sheet acquisition step for obtaining an oriented fiber sheet made of a material.
  2.  基板の表面に垂直方向で多数形成された繊維材を当該基板の一端側から且つ繊維材同士が軸心方向で連なるようにシート状に引き出す引出工程と、
     この引出工程でシート状に引き出された繊維材を板材に複数回巻き取り環状繊維材層を得る巻取工程と、
     この巻取工程で巻き取られた環状繊維材層を固定用溶液に浸漬させる浸漬工程と、
     この浸漬工程にて固定用溶液が含浸された環状繊維材層の巻取方向における前後端部を切断して帯状繊維材層を得る切断工程と、
     この切断工程にて得られた帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定の厚さとなるように切断して、シートの厚さ方向に配向された繊維材からなる配向性繊維シートを得るシート取得工程とを具備することを特徴とする配向性繊維シートの製造方法。
    A drawing step of drawing a large number of fiber materials formed in the vertical direction on the surface of the substrate from one end side of the substrate and in a sheet shape so that the fiber materials are connected in the axial direction;
    A winding step of winding the fiber material drawn into a sheet in this drawing step a plate material a plurality of times to obtain an annular fiber material layer;
    An immersion step of immersing the annular fiber material layer wound in the winding step in a fixing solution;
    A cutting step of cutting the front and rear end portions in the winding direction of the annular fiber layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber layer,
    Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A method for producing an oriented fiber sheet, comprising: a sheet acquisition step for obtaining an oriented fiber sheet made of a material.
  3.  基板の表面に垂直方向で多数形成された繊維材を当該基板の一端側から且つ繊維材同士が軸心方向で連なるようにシート状に引き出す引出工程と、
     この引出工程でシート状に引き出された繊維材を往復移動させて複数層に折り重ねられた重畳繊維材層を得る重ね工程と、
     この重ね工程で得られた重畳繊維材層を固定用溶液に浸漬させる浸漬工程と、
     この浸漬工程にて固定用溶液が含浸された重畳繊維材層の上記往復移動方向における前後端部を切断して帯状繊維材層を得る切断工程と、
     この切断工程にて得られた帯状繊維材層の前端部または後端部を繊維の向きに直角方向に沿って所定の厚さとなるように切断して、シートの厚さ方向に配向された繊維材からなる配向性繊維シートを得るシート取得工程とを具備することを特徴とする配向性繊維シートの製造方法。
    A drawing step of drawing a large number of fiber materials formed in the vertical direction on the surface of the substrate from one end side of the substrate and in a sheet shape so that the fiber materials are connected in the axial direction;
    A stacking step of reciprocating the fiber material drawn in a sheet shape in this drawing step to obtain a superimposed fiber material layer folded into a plurality of layers;
    An immersion step of immersing the superimposed fiber material layer obtained in this overlapping step in a fixing solution;
    A cutting step of cutting the front and rear end portions in the reciprocating direction of the superimposed fiber material layer impregnated with the fixing solution in this dipping step to obtain a belt-like fiber material layer;
    Fibers oriented in the thickness direction of the sheet by cutting the front end portion or rear end portion of the belt-like fiber material layer obtained in this cutting step so as to have a predetermined thickness along the direction perpendicular to the direction of the fibers A method for producing an oriented fiber sheet, comprising: a sheet acquisition step for obtaining an oriented fiber sheet made of a material.
  4.  繊維材として、電気伝導性または熱伝導性を有するものを用いたことを特徴とする請求項1乃至3のいずれか一項に記載の配向性繊維シートの製造方法。 The method for producing an oriented fiber sheet according to any one of claims 1 to 3, wherein a fiber material having electrical conductivity or thermal conductivity is used.
  5.  繊維材として、炭素繊維、金属繊維、および金属がコーティングされた合成樹脂繊維のうちいずれか、または2種以上からなるものを用いたことを特徴とする請求項1乃至3のいずれか一項に記載の配向性繊維シートの製造方法。 The fiber material according to any one of claims 1 to 3, wherein one of carbon fiber, metal fiber, and synthetic resin fiber coated with metal, or a material composed of two or more types is used. The manufacturing method of the orientation fiber sheet of description.
PCT/JP2014/080707 2013-11-27 2014-11-20 Method for producing oriented fiber sheet WO2015080008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013244458A JP6242189B2 (en) 2013-11-27 2013-11-27 Method for producing oriented fiber sheet
JP2013-244458 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015080008A1 true WO2015080008A1 (en) 2015-06-04

Family

ID=53198952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080707 WO2015080008A1 (en) 2013-11-27 2014-11-20 Method for producing oriented fiber sheet

Country Status (2)

Country Link
JP (1) JP6242189B2 (en)
WO (1) WO2015080008A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208342A1 (en) * 2015-06-25 2016-12-29 日立造船株式会社 Method for manufacturing carbon nanotube web, method for manufacturing carbon nanotube aggregate, and apparatus for manufacturing carbon nanotube web
WO2017010180A1 (en) * 2015-07-10 2017-01-19 日立造船株式会社 Carbon nanotube web production method, carbon nanotube aggregate production method, and carbon nanotube web production device
CN109153572A (en) * 2016-05-18 2019-01-04 日立造船株式会社 The method for drawing out of carbon nano-tube network, the manufacturing method of carbon nano-tube filament, the manufacturing method of carbon nanotube pieces and the pulling off device of carbon nano-tube network

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796704B1 (en) 2015-10-21 2017-12-01 주식회사 토비스 a manufacturing apparatus of optical-fiber plate and a manufacturing method of optical-fiber plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150665A (en) * 1994-11-30 1996-06-11 Hitachi Chem Co Ltd Production of composite structural material
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof
JP2006205519A (en) * 2005-01-27 2006-08-10 Sekisui Chem Co Ltd Manufacturing method of fiber-reinforced resin molded product, intermediate molded product and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150665A (en) * 1994-11-30 1996-06-11 Hitachi Chem Co Ltd Production of composite structural material
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof
JP2006205519A (en) * 2005-01-27 2006-08-10 Sekisui Chem Co Ltd Manufacturing method of fiber-reinforced resin molded product, intermediate molded product and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208342A1 (en) * 2015-06-25 2016-12-29 日立造船株式会社 Method for manufacturing carbon nanotube web, method for manufacturing carbon nanotube aggregate, and apparatus for manufacturing carbon nanotube web
JP2017007919A (en) * 2015-06-25 2017-01-12 日立造船株式会社 Carbon nanotube web manufacturing process, carbon nanotube aggregate manufacturing process, and carbon nanotube web manufacturing apparatus
WO2017010180A1 (en) * 2015-07-10 2017-01-19 日立造船株式会社 Carbon nanotube web production method, carbon nanotube aggregate production method, and carbon nanotube web production device
JP2017019690A (en) * 2015-07-10 2017-01-26 日立造船株式会社 Manufacturing method of carbon nanotube web, manufacturing method of carbon nanotube aggregate, and manufacturing apparatus of carbon nanotube web
KR20180028448A (en) * 2015-07-10 2018-03-16 히다치 조센 가부시키가이샤 METHOD FOR MANUFACTURING CARBON NANOTUBE WEB, METHOD FOR MANUFACTURING CARBON NANOTUBE COLLECTION, AND DEVICE FOR PRODUCING CARBON NANOTUBE WEB
US20190100435A1 (en) * 2015-07-10 2019-04-04 Hitachi Zosen Corporation Method for producing carbon nanotube web, method for producing carbon nanotube collected product, and apparatus for producing carbon nanotube web
US10899619B2 (en) 2015-07-10 2021-01-26 Hitachi Zosen Corporation Method for producing carbon nanotube web, method for producing carbon nanotube collected product, and apparatus for producing carbon nanotube web
KR102575221B1 (en) * 2015-07-10 2023-09-05 히다치 조센 가부시키가이샤 Method for manufacturing carbon nanotube web, method for manufacturing carbon nanotube aggregate, and apparatus for manufacturing carbon nanotube web
CN109153572A (en) * 2016-05-18 2019-01-04 日立造船株式会社 The method for drawing out of carbon nano-tube network, the manufacturing method of carbon nano-tube filament, the manufacturing method of carbon nanotube pieces and the pulling off device of carbon nano-tube network
EP3459909A4 (en) * 2016-05-18 2020-01-15 Hitachi Zosen Corporation Method for drawing carbon nanotube web, method for manufacturing carbon nanotube yarn, method for manufacturing carbon nanotube sheet, and device for drawing carbon nanotube web
US10981789B2 (en) 2016-05-18 2021-04-20 Hitachi Zosen Corporation Method for drawing carbon nanotube web, method for manufacturing carbon nanotube yarn, method for manufacturing carbon nanotube sheet, and device for drawing carbon nanotube web
CN109153572B (en) * 2016-05-18 2022-06-03 日立造船株式会社 Method for pulling out carbon nanotube net, method for manufacturing carbon nanotube yarn, method for manufacturing carbon nanotube sheet, and device for pulling out carbon nanotube net

Also Published As

Publication number Publication date
JP6242189B2 (en) 2017-12-06
JP2015101039A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
WO2015080008A1 (en) Method for producing oriented fiber sheet
JP6649100B2 (en) Method for producing CNT laminate and method for producing carbon nanotube twisted yarn
US8920661B2 (en) Method for making graphene/carbon nanotube composite structure
US9721726B2 (en) Graphene mounted on aerogel
TWI744279B (en) Method for producting carbon nanotube yarn
Xu et al. Wavy ribbons of carbon nanotubes for stretchable conductors
JP5379196B2 (en) Method for producing graphene-carbon nanotube composite structure
KR101787645B1 (en) Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US20180073166A1 (en) Method for manufacturing a carbon nanotube collected product
JP6057877B2 (en) Method for producing carbon nanotube sheet
WO2016136826A1 (en) Carbon nanotube high-density assembly and method for producing carbon nanotube high-density assembly
CN107207263B (en) Method for manufacturing carbon nanotube sheet and carbon nanotube sheet
JP2021102784A5 (en)
KR101878278B1 (en) Method for preparing graphite film
JP2017106129A (en) Conductive body, distortion sensor and conductive body manufacturing method
US8852376B2 (en) Method for making heaters
JP2014219082A (en) Heat insulation material, heat insulation structure, and heat insulation structure manufacturing method
US20230009040A1 (en) Production method of long member made of carbon nanotubes
JP6714467B2 (en) Method for producing carbon nanotube composite material
WO2015064481A1 (en) Method for producing carbon nanotube sheet
EP3758445A1 (en) Heating roller and spun yarn drawing device
JP2018188711A (en) Metal-carbon particle composite material and production method thereof
TW202112549A (en) Layered body and layered body production method
TWI551736B (en) Method for growing two-dimensional crystal
JP5147121B2 (en) Superconducting film structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865658

Country of ref document: EP

Kind code of ref document: A1