WO2015079605A1 - 蓄電装置の充放電制御システム - Google Patents

蓄電装置の充放電制御システム Download PDF

Info

Publication number
WO2015079605A1
WO2015079605A1 PCT/JP2014/004548 JP2014004548W WO2015079605A1 WO 2015079605 A1 WO2015079605 A1 WO 2015079605A1 JP 2014004548 W JP2014004548 W JP 2014004548W WO 2015079605 A1 WO2015079605 A1 WO 2015079605A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
current value
value
charge
Prior art date
Application number
PCT/JP2014/004548
Other languages
English (en)
French (fr)
Inventor
石井 洋平
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201480065145.8A priority Critical patent/CN105794076B/zh
Priority to JP2015550535A priority patent/JP6195320B2/ja
Priority to US14/912,190 priority patent/US9580067B2/en
Publication of WO2015079605A1 publication Critical patent/WO2015079605A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Definitions

  • the present invention relates to a charge / discharge control system for a power storage device.
  • Patent Document 1 As an engine control device for a hybrid vehicle, the vehicle travels from required power required for vehicle travel obtained from various detection signals of the operation state of an accelerator pedal, a brake pedal, etc., and the vehicle operation state such as the vehicle speed. It is stated that the condition is detected. Based on the detection result, for a driving state where the load fluctuation of the vehicle is greater than a predetermined value and the fluctuation of the required power is large, the fluctuation of the required power is controlled to be absorbed by the engine operation output. It is disclosed that the charging / discharging is suppressed.
  • Patent Document 2 states that as a hybrid vehicle control method, idle rotation is performed without stopping the engine when the required power of the vehicle is less than a threshold and the vehicle speed is low but above the threshold. . Then, it is disclosed that the idling speed is increased as the vehicle speed is increased so that the engine can quickly follow when the required torque changes suddenly, thereby preventing a sudden change in charge / discharge power of the battery and suppressing deterioration. Yes.
  • a charge / discharge control system for a power storage device includes a rotating electrical machine, a power storage device, an AC / DC conversion unit that performs AC / DC conversion processing between AC power of the rotating electrical machine and DC power of the power storage device, and charge / discharge of the power storage device.
  • a control device that controls the amount of direct-current power that is converted into power generated by the rotating electrical machine during braking and supplied to the power storage device in accordance with the charge state of the power storage device. Limit.
  • FIG. It is a figure which shows an example of the relationship between the supply current value supplied to an electrical storage apparatus, and deterioration of an electrical storage apparatus.
  • FIG. It is a diagram showing a relationship between a charge state value of the power storage device and a supply current value supplied to the power storage device.
  • FIG. 1 is a diagram showing a configuration of a charge / discharge control system 10 for a power storage device mounted on a hybrid vehicle.
  • a charge / discharge control system 10 for a power storage device includes a main body 11 and a control device 12 which are controlled objects.
  • the main body 11 includes a rotating electrical machine 13, a power storage device 14, and an AC / DC converter 15 disposed and connected therebetween.
  • the charge / discharge control system 10 of the power storage device controls the appropriate drive of the rotating electrical machine 13 in the discharge control, and reduces the generated power during braking of the rotating electrical machine 13 so as to suppress the deterioration of the power storage device 14 in the charge control. It has a function of limiting according to the state of charge of the power storage device 14.
  • the rotating electrical machine 13 is a motor generator (M / G) that assists the driving force of the engine of a hybrid vehicle (not shown in FIG. 1), and is supplied with electric power from the power storage device 14 via the AC / DC converter 15.
  • M / G motor generator
  • This is a three-phase synchronous rotating electric machine that functions as a motor and functions as a generator when driven by an engine or when braking a hybrid vehicle.
  • the power storage device 14 is a chargeable / dischargeable secondary battery.
  • a lithium ion assembled battery or a nickel hydride assembled battery having a terminal voltage of about 3 to 6V to about 300V, or a capacitor can be used.
  • the AC / DC converter 15 is a circuit that performs AC / DC conversion processing between the three-phase AC power of the rotating electrical machine 13 and the DC power of the power storage device 14.
  • the AC / DC conversion includes conversion of both the three-phase AC power of the rotating electrical machine 13 into the DC power of the power storage device 14 or the DC power of the power storage device 14 into the three-phase AC power of the rotating electrical machine 13.
  • the AC / DC converter 15 can be composed of an inverter circuit.
  • the inverter circuit is a circuit having a function of converting high-voltage DC power on the power storage device 14 side into AC three-phase driving power, or conversely, converting AC three-phase regenerative power from the rotating electrical machine 13 side into high-voltage DC charging power. is there.
  • the inverter circuit includes a plurality of switching elements and a plurality of diodes.
  • the AC / DC converter 15 may include a voltage converter.
  • the voltage converter stores the system voltage of the inverter circuit accordingly. Adjust to the DC voltage on the side of device 1-4.
  • the voltage converter includes a reactor and a switching element.
  • the AC generated power generated by the rotating electrical machine 13 is converted into DC power having a DC system voltage by the function of the inverter circuit, and the DC having the system voltage by the function of the voltage converter.
  • the electric power is converted into DC power having the voltage of the power storage device 14.
  • the AC generated power generated when the rotating electrical machine 13 is braked is converted to DC power determined by the charging current to the power storage device 14 and the voltage of the power storage device 14 via the AC / DC converter 15.
  • the power storage device 14 is charged using the current at the time as the charging current.
  • the AC generated power is converted into DC power with a conversion efficiency that takes into account the loss in the AC / DC converter 15.
  • the current value converted from the generated power is simply referred to as a generated current value.
  • the system voltage value 200V
  • the voltage value between terminals of the power storage device 14 100V
  • the power usage rate of the inverter circuit and the voltage converter 100%
  • the conversion efficiency 100%.
  • the AC generated power of the rotating electrical machine 13 is converted into DC power by an inverter circuit.
  • the system voltage value at that time is 200 V and the direct current value is 30 A.
  • the In this example, the generated current value is calculated as 60A.
  • These voltage values and current values are examples, and other voltage values and current values may be used.
  • the AC / DC converter 15 can control the power utilization rate to a predetermined value under the control of the control device 12.
  • the power utilization rate can be set to a predetermined value by changing the duty ratio using PWM control of the inverter circuit.
  • the AC / DC conversion unit 15 performs the control to reduce the power usage rate as a desired supply current value. It can output to the power storage device 14 side.
  • Control device 12 controls charging / discharging of power storage device 14 via AC / DC converter 15.
  • a computer suitable for mounting a hybrid vehicle can be used.
  • the control device 12 has a discharge control unit 1-6 that controls the discharge of the power storage device 14 via the AC / DC conversion unit 15. In addition, when the rotating electrical machine 13 is braked, it has the following functions for controlling the charging of the power storage device 14 ⁇ via the AC / DC converter 15. That is, the control device 12 calculates a charging current value necessary for setting the current charging state of the power storage device 14 to a predetermined target charging state, and a charging state acquisition unit 17 that acquires the charging state of the power storage devices 1 to 4.
  • a charging current value calculation unit 18 that performs power generation, a power generation current value calculation unit 19 that calculates a converted generation current value when the power usage rate of the AC / DC conversion unit 15 is 100%, and an AC / DC conversion unit based on the calculated charging current value 15 includes a conversion instruction unit 20 for instructing the contents of the AC / DC conversion process.
  • control device 12 can be realized by software installed in the control device 12, and more specifically, can be realized by the control device 12 executing a charge / discharge control program. A part of the above functions may be realized by hardware.
  • FIG. 2 is a flowchart showing a procedure of charge / discharge control of the control device 12
  • the AC / DC converter 15 and the like are initialized.
  • acquisition of data and commands is executed (S10).
  • This acquisition is performed at predetermined control intervals.
  • the control interval can be set according to the required control accuracy. For example, when high speed control is necessary, the cycle can be several ms, and when moderate control is sufficient, the cycle can be several seconds.
  • the control interval may be different between discharge control and charge control. For example, during discharge control for assisting the engine in a hybrid vehicle, the control interval is shortened as high-speed control that can follow changes in the running state of the hybrid vehicle, and charging control during braking of the rotating electrical machine 13 is performed during the braking period of the hybrid vehicle. Depending on the case, the control interval may be lengthened appropriately.
  • S10 it is determined whether or not the command is a charge command (S11). If the determination is negative, since the command is a discharge command, the process proceeds to S12, and discharge control for driving the rotating electrical machine 13 is performed.
  • the procedure of S12 is executed by the function of the discharge control unit 16 of the control device 12. In the discharge control, three-phase AC power is supplied from the power storage device 14 to the rotating electrical machine 13 via the AC / DC converter 15 in accordance with the vehicle speed in the hybrid vehicle, the degree of depression of the accelerator pedal, and the like. Torque required to assist the engine is output.
  • FIG. 3 is a flowchart showing a detailed procedure of charge control.
  • the current SOC of the power storage device 14 is acquired (S20).
  • the current SOC data is one of the data in S10 of FIG.
  • This processing procedure is executed by the function of the charge state acquisition unit 17 of the control device 12.
  • SOC is an abbreviation for State Of Charge, and is a value indicating the state of charge of power storage device 14.
  • the amount of charge is indicated by (current value A ⁇ time h).
  • the SOC acquires the charging current value and charging time input to the power storage device 14 and the discharge current value and discharging time output from the power storage device 14 every moment, and the charging current value input to the power storage device 14
  • the product of the charging time is added, and the product of the discharge current value output from the power storage device 14 and the discharge time is subtracted and subtracted and calculated based on (current value A ⁇ time h).
  • the SOC may be calculated by obtaining in advance the relationship between the open circuit voltage (Open circuit voltage: OCV), which is the voltage value at that time, and the SOC.
  • OCV open circuit voltage
  • the target SOC is set according to conditions under which the rotating electrical machine 13 can assist the engine in traveling of the hybrid vehicle. For example, if the SOC is less than 60%, the charge amount of the power storage device 14 is not sufficient, and the rotating electrical machine 1 3 cannot sufficiently assist the engine, but if the SOC is 60% or more, the rotating electrical machine 13 can drive the engine. If the force can be output, the target SOC is set to 60%.
  • the target SOC can be set as one value, but it can also be set within a range between a predetermined upper limit value and lower limit value (see FIG. 6 described later).
  • the lower limit of the range set by the width is set as the target SOC.
  • FIG. 4 is an example of a model diagram showing the estimation of the braking period.
  • the horizontal axis in FIG. 4 is time t, and the vertical axis is the rotational speed N of the rotating electrical machine 13.
  • the rotation speed N is a value proportional to the vehicle speed of the hybrid vehicle.
  • the rotational speed N0 is one of the data in S10 of FIG.
  • the braking request by the user is made when the user steps on the brake pedal of the hybrid vehicle.
  • the estimated braking period is simply referred to as a braking period.
  • This processing procedure is executed by the function of the charging current value calculation unit 18 of the control device 12.
  • the generated current value IG is calculated (S24). This processing procedure is executed by the function of the generated current value calculation unit 19 of the control device 12.
  • the supply current value IB supplied to the power storage device 14 via the AC / DC converter 15 is changed to the charging current value IC calculated in S23 instead of the generated current value IG calculated in S24.
  • the AC / DC conversion unit 15 performs the AC / DC conversion process so as to reduce the power utilization rate and supply the limited current (S26).
  • the current value supplied to power storage device 14 can be suppressed while the current SOC is set as the target SOC.
  • deterioration of the power storage device 14 can be suppressed.
  • the conversion current value IG calculated in S24 is equal to or less than the charging current value IC calculated in S23, the determination in S25 is denied and AC / DC conversion is performed for the entire amount of the generation current value IG.
  • the current SOC is equal to or higher than the target SOC.
  • the range in which discharge control can be performed is expanded, and as a result, ⁇ SOC during the next braking can be reduced. Therefore, the AC / DC conversion process is performed by narrowing the supply current value IB supplied to the power storage device 14 to a current value equal to or less than a predetermined deterioration allowable threshold value IBth (S28).
  • FIG. 5 is an example of a diagram modeling the relationship between the supply current value IB to the power storage device 14 and the degree of deterioration.
  • the horizontal axis represents logarithmic IB, and the vertical axis represents the degree of deterioration of the power storage device 14.
  • the degree of deterioration is indicated by a reduction amount from a value based on the initial value immediately after manufacture, with respect to the maximum possible charge amount when the SOC is charged from 0% to 100%.
  • the degree of deterioration advances when the supply current value IB increases, but the deterioration hardly progresses at a current amount smaller than IB0, and the degree of deterioration starts to increase when IB0 is exceeded.
  • the deterioration allowable threshold value IBth is a current value at which the deterioration degree becomes the deterioration allowable degree.
  • the deterioration tolerance can be set in advance according to the specifications of the power storage device 14.
  • the state of deterioration changes depending on the environmental temperature of the power storage device 14. That is, as shown in FIG. 5, as the temperature becomes lower, the deterioration allowable threshold moves to the small current side. Further, the degree of deterioration increases as the frequency of charging / discharging increases. Therefore, in order to keep the degradation degree of the power storage device 14 small, it is preferable that the temperature is not lowered, the charge / discharge current value is made small, and the charge / discharge frequency is reduced. That is, it is preferable to charge or discharge at a current value as low as possible, preferably a constant current value, avoiding rapid charge / discharge.
  • FIG. 6 is a table summarizing the setting of the supply current value IB of FIG.
  • the horizontal axis of FIGS. 6A and 6B is the SOC, and here, the target SOC is not shown as a single value, but as a range between the lower limit value and the upper limit value.
  • the vertical axis of (b) is the supply current value IB to the power storage device 14.
  • the power storage device 14 When the time t has elapsed from the start of braking, the power storage device 14 is charged with the supply current value IB, so that the SOC increases.
  • the rotational speed N of the rotating electrical machine 13 decreases.
  • the generated current value generated by the electromotive force e is proportional to the electromotive force e when the internal resistance is constant. Therefore, the generated current value also decreases as the rotational speed N decreases.
  • IG calculated in S24 decreases as time t elapses from the start of braking, and the determination of S 25 is denied.
  • the supply current value IB to the power storage device 14 becomes the total amount of IG due to S27, but IG becomes smaller as the time t from the start of braking elapses.
  • the change in IG is indicated by a one-dot chain line in FIG.
  • IB IG is set in S27, so that the supply current value IB to the power storage device 14 becomes gradually smaller. Since control is performed at a predetermined control interval, IB decreases step by step at each control interval. In FIG. 6B, in the SOC range close to the lower limit value of the target SOC, the supply current value IB gradually decreases from IC as shown by the broken line.
  • the charging mode at a constant current value is preferable to the charging mode that changes stepwise.
  • the supply current value IB indicated by the solid line is obtained by combining some of the step changes indicated by the broken line into one and the same current value. It is designed to be close to current charging. In this way, when the supply current value IB supplied to the power storage device 14 is within a predetermined threshold current difference between adjacent control intervals, the supply current value of the subsequent control interval is set to the supply current value of the previous control interval. By making it the same, the deterioration of the power storage device 14 can be reduced.
  • the power storage device 14 is charged, and the SOC of the power storage device 14 increases.
  • the determination in S21 is denied.
  • the supply current value IB is narrowed down to a current value equal to or less than the allowable deterioration threshold value IBth and supplied to the power storage device 14.
  • the SOC can be increased while avoiding deterioration due to overcharge or the like, and the range in which discharge control can be performed is expanded.
  • the magnitude of the supply current value IB in the target SOC range is shown as being equal to or less than the allowable degradation threshold value IBth.
  • the supply current value IB can be further reduced.
  • the magnitude of the supply current value IB in the range exceeding the upper limit value of the target SOC is IB0 in FIG. IB0 is a current value at which deterioration hardly progresses.
  • the configuration in which a desired supply current value for the power storage device 14 is obtained by PWM control of the AC / DC conversion unit 15 has been described.
  • other configurations may be used as long as the current value is limited.
  • the configuration may be such that the magnitude of the exciting current of the rotating electrical machine is controlled to control the magnitude of the generated power output from the rotating electrical machine, and the AC / DC converter 15 converts the AC generated power into the DC generated power as it is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

 蓄電装置の充放電制御システム(10)は、回転電機(13)と、蓄電装置(14)と、回転電機(13)の交流電力と蓄電装置(14)の直流電力の間の交直変換処理を行う交直変換部(15)と、交直変換部(15)を介して蓄電装置(14)の充放電を制御する制御装置(12)と、を備え、制御装置(12)は、充電制御において、回転電機(13)が制動時に発電する発電電力を変換して蓄電装置(14)に供給する直流電力の大きさを、蓄電装置(14)の充電状態に応じて制限する。

Description

蓄電装置の充放電制御システム
 本発明は、蓄電装置の充放電制御システムに関する。
 蓄電装置は、大電流による充放電や充放電の頻度が多いと劣化が進むことが知られている。例えば、特許文献1には、ハイブリッド車のエンジン制御装置として、アクセルペダル、ブレーキペダル等の操作状態や車速等の車両運転状態の各種検出信号から求まる車両走行に必要な要求電力等から車両の走行状態を検出することが述べられている。その検出結果から、車両の負荷変動が所定値以上で要求電力の変動が大きな走行状態に対しては、要求電力の変動分をエンジンの運転出力で吸収するように制御し、大電力でのバッテリの充放電を抑制することが開示されている。
 特許文献2には、ハイブリッド車の制御方法として、車両の要求パワーが閾値未満で、車速が低速ではあるが閾値以上のときは、エンジンを停止せずにアイドル回転を行うことが述べられている。そして、要求トルクが急変するときにエンジンが迅速に追従できるように、車速が大ほどアイドル回転数を高くし、これによってバッテリの充放電電力の急変を防止し劣化を抑制することが開示されている。
特開平9-098515号公報 特開2005-344605号公報
 回転電機の制動エネルギで充電される蓄電装置の劣化を抑制することが望まれる。
 本発明に係る蓄電装置の充放電制御システムは、回転電機と、蓄電装置と、回転電機の交流電力と蓄電装置の直流電力の間の交直変換処理を行う交直変換部と、蓄電装置の充放電を制御する制御装置と、を備え、制御装置は、充電制御において、回転電機が制動時に発電する発電電力を変換して蓄電装置に供給する直流電力の大きさを、蓄電装置の充電状態に応じて制限する。
 上記構成によれば、回転電機の制動エネルギで充電される蓄電装置の劣化を抑制することができる。
本発明に係る実施の形態の蓄電装置の充放電制御システムの構成を示す図である。 本発明に係る実施の形態の蓄電装置の充放電制御システムにおいて、充放電制御の手順を示すフローチャートである。 本発明に係る実施の形態の蓄電装置の充放電制御システムにおいて、放電制御の詳細な手順を示すフローチャートである。 本発明に係る実施の形態の蓄電装置の充放電制御システムにおいて、回転電機の制動時の回転数の時間変化のモデル図である。 蓄電装置に供給される供給電流値と蓄電装置の劣化の関係の一例を示す図である。 本発明に係る実施の形態の蓄電装置の充放電制御システムにおいて、蓄電装置の充電状態値と、蓄電装置に供給される供給電流値の関係を示す図である。
 以下に図面を用いて、本発明に係る実施形態を詳細に説明する。以下では、ハイブリッド車両に搭載される蓄電装置の充放電制御システムを述べるが、これは説明のための例示であって、回転電機と蓄電装置を含むシステムであればよい。以下で述べる数値等は、説明のための例示であって、蓄電装置の充放電制御システムの仕様等により、適宜変更が可能である。また、以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。
 図1は、ハイブリッド車両に搭載される蓄電装置の充放電制御システム10の構成を示す図である。蓄電装置の充放電制御システム10は、制御対象である本体部11と制御装置12とで構成される。本体部11は、回転電機13と、蓄電装置14と、その間に配置接続される交直変換部15を含む。この蓄電装置の充放電制御システム10は、放電制御において回転電機13の適切な駆動を制御し、充電制御において、蓄電装置14の劣化を抑制するように、回転電機13の制動時の発電電力を蓄電装置14の充電状態に応じて制限する機能を有する。
 回転電機13は、図1では図示を省略したハイブリッド車両のエンジンの駆動力をアシストするモータ・ジェネレータ(M/G)であって、蓄電装置14から交直変換部15を介して電力が供給されるときはモータとして機能し、エンジンによる駆動時、あるいはハイブリッド車両の制動時には発電機として機能する三相同期型回転電機である。
 蓄電装置14は、充放電可能な2次電池である。蓄電装置14としては、例えば、約3 6Vから約300Vの端子電圧を有するリチウムイオン組電池あるいはニッケル水素組電池、またはキャパシタ等を用いることができる。
 交直変換部15は、回転電機13の三相交流電力と蓄電装置14の直流電力の間の交直変換処理を行う回路である。交直変換は、回転電機13の三相交流電力を蓄電装置14の直流電力へ、または、蓄電装置14の直流電力を回転電機13の三相交流電力への双方の変換を含む。
 交直変換部15は、インバータ回路で構成することができる。インバータ回路は、蓄電装置14側の高圧直流電力を交流三相駆動電力に変換し、あるいは逆に、回転電機13側からの交流三相回生電力を高圧直流充電電力に変換する機能を有する回路である。インバータ回路は、複数のスイッチング素子と複数のダイオードとを含んで構成される。
 交直変換部15は、電圧変換器を含むことができる。蓄電装置14の直流電圧がインバータ回路の正極側と負極側の間の電圧であるシステム電圧よりも高い場合、あるいは低い場合に、それぞれに応じて、電圧変換器は、インバータ回路のシステム電圧を蓄電装置1 4側の直流電圧に合わせる。電圧変換器は、リアクトルと、スイッチング素子とを含んで構成される。
 回転電機13が発電機として機能するとき、回転電機13が発生する交流発電電力は、インバータ回路の機能によって直流のシステム電圧を有する直流電力に変換され、電圧変換器の機能によってシステム電圧を有する直流電力は蓄電装置14の電圧を有する直流電力に変換される。これを電流で見ると、回転電機13が制動時に発生する交流発電電力は、交直変換部15を介して、蓄電装置14への充電電流と蓄電装置14の電圧で決まる直流電力に変換され、そのときの電流を充電電流として蓄電装置14への充電が行われる。交流発電電力は、交直変換部15での損失等を考慮した変換効率で直流電力に変換される。以下では、この発電電力から換算された電流値を、単に発電電流値と呼ぶ。
 例えば、システム電圧値=200V、蓄電装置14の端子間電圧値=100Vとし、インバータ回路および電圧変換器の電力利用率=100%、変換効率=100%と仮定する。回転電機13の交流発電電力はインバータ回路によって直流電力に変換される。そのときのシステム電圧値=200V、直流電流値=30Aと仮定する。この(システム電圧値=200V、直流電流値=30A)の直流電力は、電圧変換器によって、蓄電装置14の端子間電圧=100V、直流電流値=60Aに変換されて蓄電装置14側に出力される。この例の場合、発電電流値は60Aと算出される。これらの電圧値、電流値は例示であって、他の電圧値、電流値であってもよい。
 交直変換部15は、制御装置12の制御の下で、電力利用率を所定の値に制御できる。例えば、インバータ回路のPWM制御を用いて、デューティ比を変更する等で電力利用率を所定の値とすることができる。例えば、電力利用率=100%のときの発電電流値が蓄電装置14の劣化抑制の観点から大きすぎるときは、交直変換部15は、電力利用率を低下させる制御によって、所望の供給電流値として蓄電装置14側に出力することができる。
 制御装置12は、交直変換部15を介して蓄電装置14の充放電を制御する。かかる制御装置12としては、ハイブリッド車両の搭載に適したコンピュータを用いることができる。
 制御装置12は、交直変換部15を介して蓄電装置14の放電を制御する放電制御部1 6を有する。また、回転電機13が制動のときに、交直変換部15を介して蓄電装置14 への充電を制御するために以下の機能を有する。すなわち、制御装置12は、蓄電装置1 4の充電状態を取得する充電状態取得部17と、蓄電装置14の現在の充電状態を予め定めた目標充電状態にするために必要な充電電流値を算出する充電電流値算出部18と、交直変換部15の電力利用率=100%のときの換算発電電流値を算出する発電電流値算出部19と、算出された充電電流値に基づいて交直変換部15に対し交直変換処理の内容を指示する変換指示部20を含んで構成される。
 かかる制御装置12の機能は、制御装置12に搭載されたソフトウェアで実現でき、具体的には、制御装置12が充放電制御プログラムを実行することで実現できる。上記機能の一部をハードウェアで実現するものとしてもよい。
 上記構成につき、特に、制御装置12の各機能について、図2以下を用いてさらに詳細に説明する。図2は、制御装置12の充放電制御の手順を示すフローチャートであり、図3は、制御装置12の充電制御の詳細な手順を示すフローチャートである。図4~図6は、図3の説明に用いる図である。
 制御装置12に搭載される充放電プログラムが起動されると、交直変換部15等の初期化が行われる。次に、図2のフローチャートに示されるように、データおよびコマンドの取得が実行される(S10)。この取得は、予め定められた制御間隔毎に行われる。制御間隔としては、要求される制御精度に応じて設定できる。例えば、高速制御が必要な場合には数ms周期とでき、緩やかな制御で十分なときは数秒周期とすることができる。制御間隔を放電制御と充電制御とで異ならせてもよい。例えば、ハイブリッド車両においてエンジンのアシストを行う放電制御のときは、ハイブリッド車両の走行状態の変化に追従できる高速制御として制御間隔を短くし、回転電機13の制動時の充電制御はハイブリッド車両の制動期間に応じて制御間隔を適度に長くしてもよい。
 S10で取得されるデータは、本体部11の構成要素である回転電機13の状態値、蓄電装置14の状態値、蓄電装置の充放電制御システム10に対するユーザの要求値等である。充電制御において取得されるデータについては、図3において説明する。コマンドは、今の場合、放電制御を実行させるための放電コマンドとその電力値または充電制御を実行させるための充電コマンドとその電力値である。
 S10の次に、コマンドが充電コマンドか否かが判断される(S11)。判断が否定されると、コマンドは放電コマンドであるので、S12に進み、回転電機13の駆動のための放電制御が行われる。S12の手順は、制御装置12の放電制御部16の機能によって実行される。放電制御においては、ハイブリッド車両における車速、アクセルペダルの踏度等に応じて、蓄電装置14から交直変換部15を介して回転電機13に三相交流電力が供給され、これによって、回転電機13からエンジンのアシストに必要なトルクが出力される。
 S11の判断が肯定されると、蓄電装置14の劣化を抑制する充電制御が行われる(S 13)。充電制御の詳細については図3で説明する。S12,S13が行われた後、制御間隔が経過すると、S10に戻る。充放電制御においては、上記の手順が所定の制御間隔で繰り返し実行される。
 図3は、充電制御の詳細な手順を示すフローチャートである。ここで、蓄電装置14の現在のSOCの取得が行われる(S20)。現在のSOCのデータは、図2のS10におけるデータの1つである。この処理手順は、制御装置12の充電状態取得部17の機能によって実行される。SOCは、State Of Chargeの略で、蓄電装置14の充電状態を示す値である。蓄電装置14は、満充電の状態がSOC=100%で、完全放電の状態がSOC=0%である。充電量は(電流値A×時間h)で示される。
 SOCは、蓄電装置14に入力される充電電流値と充電時間と、蓄電装置14から出力される放電電流値と放電時間とを、時々刻々取得し、蓄電装置14に入力された充電電流値と充電時間の積を加算し、蓄電装置14から出力された放電電流値と放電時間の積を減算して、差し引いて積算された(電流値A×時間h)に基づいて算出される。また、充放電が長時間停止している状態では、そのときの電圧値である開放電圧(Open cir cuit Voltage:OCV)とSOCの関係を予め求めておいてSOCを算出してもよい。S20では、その算出されたSOCの現在値を取得する。
 蓄電装置14は、充放電を繰り返すと劣化が生じ、SOC=100%のときの充電量が低下し、充放電可能な容量が低下する。一般に、劣化は、充放電電流値が大きいほど進みやすい。すなわち、大電流値の急速充放電は、蓄電装置14の劣化が進みやすい。したがって、蓄電装置14の劣化を抑制するには、少ない充放電電流で長時間かけてゆっくりと充放電することが望ましい。
 蓄電装置14の現在のSOCが取得されると、予め定めた目標SOCとの比較が行われ、現在のSOCが目標SOC未満か否かが判断される(S21)。目標SOCは、回転電機13がハイブリッド車両の走行においてエンジンをアシストできる条件によって設定される。例えば、SOCが60%未満では蓄電装置14の充電量が十分でなく、回転電機1 3がエンジンを十分にはアシストできないが、SOCが60%以上あれば、回転電機13 がエンジンをアシストできる駆動力を出力できる場合には、目標SOC=60%と設定される。このように目標SOCは1つの値として設定できるが、予め定めた上限値と下限値の幅で設定することもできる(後述の図6参照)。以下では特に断らない限り、幅で設定された範囲の下限値を目標SOCとする。
 S21の判断が否定されるときについては後述することにして、判断が肯定されると、次に、制動期間の推定が行われる(S22)。図4は、制動期間の推定を示すモデル図の例である。図4の横軸は時間tで、縦軸は回転電機13の回転数Nである。回転数Nは、ハイブリッド車両の車速に比例する値である。時間t=0は、ユーザの要求等で回転電機13の制動が開始した時間で、制動期間の始期である。今の場合、充電制御を開始する現在の時間である。時間t=t0は制動期間の終期であり、回転電機13が停止した時である。回転数N0は時間t=0における回転電機13の回転数である。回転数N0は、図2のS10におけるデータの1つである。
 ユーザによる制動要求は、ハイブリッド車両のブレーキペダルをユーザが踏むことで行われる。ブレーキペダルの踏度が大きいほど、減速度、すなわち、減速加速度(-α)の絶対値が大きくなる。減速度(-α)を一定値とすると、時間tにおける回転数Nは、N =N0-αtとなる。回転数N=0となる時間t0は、N=N0-αt0=0とおいて、t0 =N0/αと求められる。t=0からt=t0の間の期間が推定された制動期間である。本例では、車両の減速度が一定である線形モデルでの制動期間の推定例を示したが、線形モデル以外のモデル式を用いてもよい。以下では、推定された制動期間を、単に制動期間と呼ぶ。
 再び図3に戻り、制動期間が求められると、蓄電装置14の現在のSOC、つまりt= 0のときのSOCを目標SOCにするために必要な充電電流値ICの算出が行われる(S 23)。この処理手順は、制御装置12の充電電流値算出部18の機能によって実行される。
 現在のSOCを目標SOCにするために必要な充電電流値ICは次のようにして算出される。すなわち、目標SOCと現在のSOCとの差を不足充電量として求める。不足充電量=ΔSOC=(目標SOC-現在のSOC)である。この不足充電量をS22で求めた制動期間の長さt0で除算した値が、現在のSOCを目標SOCにするために必要な充電電流値ICである。したがって、IC={(ΔSOC×満充電容量)/t0}として算出される。
 算出の一例を挙げると、蓄電装置14の満充電量=5Ah=(5A×3,600s)= 18,000As)とし、目標SOC=60%、現在のSOC=58%とすると、ΔSO C=(18,000As×2%)=360Asである。図4において、回転数N0で回転していた回転電機13が制動開始後9sで停止したとするとt0=9sである。この場合、IC=(360As/9s)=40Aとなる。これらの数値は例示であって、これら以外の数値であってもよい。
 S23と並行して、またはS23の前に、発電電流値IGの算出が行われる(S24) 。この処理手順は、制御装置12の発電電流値算出部19の機能によって実行される。発電電流値IGは、回転電機13が制動時に発生する発電電力を蓄電装置14の電圧レベルに換算したときの電流値である。交直変換部15の説明で述べた例では、IG=60Aである。
 ICとIGが求まると、次にその大小関係が比較され、IGがICを超えるか否かが判断される(S25)。
 S25の判断が肯定されると、交直変換部15を介して蓄電装置14に供給する供給電流値IBを、S24で算出された発電電流値IGではなく、S23で算出された充電電流値ICに制限して、交直変換部15に対し、電力利用率を低下させて制限された電流を供給するように交直変換処理を行わせる(S26)。上記の例では、IG=60A,IC=40 Aであるので、S25の判断が肯定され、供給電流値IBは、IG=60Aではなく、交直変換部15の電力利用率を66%に低下させて、IB=IC=40Aが交直変換部15から蓄電装置14に供給される。これにより、現在のSOCを目標SOCとしながら、蓄電装置14に供給される電流値を抑制できる。これによって、蓄電装置14の劣化を抑制できる。
 上記の例とは異なり、S24で算出された換算発電電流値IGがS23で算出された充電電流値IC以下のときはS25の判断が否定されて、発電電流値IGの全量について交直変換が行われ、蓄電装置14への供給電流値IB=IGとされる(S27)。これによって、現在のSOCを目標SOCに最大限近づけることができる。
 すでに述べたS21において、判断が否定されるときは、現在のSOCが目標SOC以上となるときである。この場合には、SOCを上昇させる必要がないが、過充電にならない範囲でSOCを上昇させておくことで、放電制御を実行できる範囲が広がり、ひいては、次の制動時におけるΔSOCを小さくできる。そこで、蓄電装置14に供給する供給電流値IBを予め定めた劣化許容閾値IBth以下の電流値に絞って交直変換処理を行わせる( S28)。
 図5は、蓄電装置14への供給電流値IBと劣化度との関係をモデル化した図の例である。横軸は対数で取ったIB、縦軸は蓄電装置14の劣化度である。劣化度は、SOC0 %から100%に充電したときの最大可能充電量について、製造直後の初期値を基準とした値からの減少量で示す。図5に示すモデルでは、供給電流値IBが増加すると劣化度は進むが、IB0よりも小さい電流量ではほとんど劣化が進展せず、IB0を越えると劣化度が増加し始める。劣化許容閾値IBthは、劣化度が劣化許容度になる電流値である。劣化許容度は、蓄電装置14の仕様によって予め設定できる。
 蓄電装置14の環境温度によって劣化度の様子が変化する。すなわち、図5に示すように、温度が低温になるにつれて、劣化許容閾値が小電流側に移動する。また、劣化度は、充放電の頻度が多いほど高くなる。したがって、蓄電装置14の劣化度を小さく抑えるには、温度が低温にならないようにし、充放電電流値を小さくし、充放電頻度を減らすことがよい。つまり、急速充放電をさけて、できるだけ低電流値で、好ましくは定電流値で充電または放電を行うことがよい。
 図6は、図3の供給電流値IBの設定を蓄電装置14のSOCについてまとめた図である。図6(a),(b)の横軸はSOCで、ここでは、目標SOCを1つの値でなく、下限値と上限値の幅で示してある。(b)の縦軸は蓄電装置14への供給電流値IBである。
 現在のSOCが目標SOCの下限値未満で図3におけるS25の判断が肯定された場合、S25によってIB=ICに制限されて蓄電装置14の充電が行われる。そのことが、図6(b)において、目標SOCの下限値未満の低いSOCの範囲で、IB=ICの実線で示される。
 ICは、推定制動期間の終期であるt=t0で蓄電装置14のSOCは目標SOCの下限値に達するように設定された充電電流値である。すなわち、回転電機13の制動期間内に目標SOCの下限値まで充電しようというものであるから、蓄電装置14の劣化の面から見ると、劣化許容閾値IBthよりも大きな値となることがある。それでもICはIGに比べ制限された値であるので、IGをそのまま蓄電装置14に供給される場合に比べると、劣化度を低く抑制することができる。
 制動開始から時間tが経過すると、蓄電装置14へ供給電流値IBの充電が行われるので、SOCが上昇する。一方で、図4で説明したように、回転電機13の回転数Nが低下する。回転電機13が発電機として機能するとき、その起電力eは、回転電機13の起電力定数をKeとして、e=KeNの関係であるので、回転数Nが低下するに従い小さな値になる。起電力eにより発生する発電電流値は、内部抵抗を一定とすると、起電力eに比例する。したがって、発電電流値も回転数Nが低下するに従い小さな値になる。このことにより、制動開始から時間tが経過するにつれてS24で算出されるIGが小さくなり、S 25の判断が否定されるようになる。
 S25の判断が否定されると、S27により、蓄電装置14への供給電流値IBはIGの全量となるが、IGは制動開始からの時間tが経過するにつれて小さくなる。図6(b) に参考としてIGの変化を一点鎖線で示した。S25の判断が否定されたのちは、S27 によって、IB=IGとされるので、蓄電装置14への供給電流値IBは、次第に小さい値となる。制御は、所定の制御間隔で行われるので、IBはその制御間隔ごとに段階的に低下する。図6(b)では、目標SOCの下限値に近いSOCの範囲において、供給電流値IBは、破線で示されるようにICから段階的に次第に小さくなる。
 図5に関連して説明したように、蓄電装置14の劣化を抑制するには、段階的に変化する充電モードよりは、定電流値での充電モードが好ましい。図6(b)では、目標SOC の下限値に近いSOCの範囲において、実線で示した供給電流値IBは、破線で示される段階的変化のいくつかを1つの同じ電流値にまとめ、できるだけ定電流充電に近づけるようにしたものである。このように、蓄電装置14に供給する供給電流値IBが隣り合う制御間隔の間で予め定めた閾値電流差以内のときは、後の制御間隔の供給電流値を前の制御間隔の供給電流値と同じにすることで、蓄電装置14の劣化を低減できる。
 このようにS26,S27の処理を実行することで、蓄電装置14の充電が行われ、蓄電装置14のSOCが上昇する。そして目標SOCの下限に達すると、S21における判断が否定される。ここでは、S28の処理として、供給電流値IBを劣化許容閾値IBth以下の電流値に絞って蓄電装置14に供給する。これによって、過充電等による劣化を避けながらSOCを上昇させることができ、放電制御を実行できる範囲が広がる。図6(b) では、目標SOCの範囲における供給電流値IBの大きさを劣化許容閾値IBth以下のものとして示した。
 さらに現在のSOCが上昇して目標SOCの範囲の上限値を超えるときは、供給電流値IBをもっと絞ることができる。図6(b)では、目標SOCの上限値を超える範囲における供給電流値IBの大きさを図5のIB0とした。IB0は、ほとんど劣化が進展しない電流値である。供給電流値IB=IB0に設定することで、実質的に劣化度進展=0の状態を維持しながらIB0の大きさで充電することができる。
 再び図3に戻り、S25からS28の処理手順は、制御装置12の変換指示部20の機能によって実行される。S26からS28の処理が完了し、制御間隔の時間が経過するとS20に戻り、上記の処理手順が繰り返される。
 上記では、交直変換部15のPWM制御によって蓄電装置14に対する所望の供給電流値を得る構成を記載したが、実施する際には、電流値制限を行う構成であれば、他の構成でも構わない。例えば、回転電機の励磁電流の大きさを制御して回転電機から出力される発電電力の大きさを制御し、交直変換部15はその交流発電電力をそのまま直流発電電力に変換する構成でもよい。
 10 充放電制御システム、11 本体部、12 制御装置、13 回転電機、14 蓄電装置、15 交直変換部、16 放電制御部、17 充電状態取得部、18 充電電流値算出部、19 発電電流値算出部、20 変換指示部。

Claims (7)

  1.  回転電機と、
     蓄電装置と、
     前記回転電機の交流電力と前記蓄電装置の直流電力の間の交直変換処理を行う交直変換部と、
     前記蓄電装置の充放電を制御する制御装置と、
     を備え、
     前記制御装置は、
     充電制御において、前記回転電機が制動時に発電する発電電力を変換して前記蓄電装置に供給する直流電力の大きさを、前記蓄電装置の充電状態に応じて制限する、蓄電装置の充放電制御システム。
  2.  請求項1に記載の蓄電装置の充放電制御システムにおいて、
     前記制御装置は、
     前記蓄電装置の現在の充電状態を取得する充電状態取得部と、
     予め定めた基準に従って前記蓄電装置の前記現在の充電状態に応じた充電電流値を算出する充電電流値算出部と、
     前記回転電機が前記制動時に発生する前記発電電力から発電電流値を算出する発電電流値算出部と、
     前記発電電流値と前記算出された充電電流値とを比較し、前記発電電流値が前記算出された充電電流値を超えるときは、前記蓄電装置に供給する供給電流値を前記算出された充電電流値に制限して前記交直変換処理を行わせ、前記発電電流値が前記算出された充電電流値以下のときは、前記発電電流値の全量について前記交直変換を行わせる変換指示部と、
     を有する、蓄電装置の充放電制御システム。
  3.  請求項1に記載の蓄電装置の充放電制御システムにおいて、
     前記回転電機は、発電する発電電力値を前記制御装置の制御の下で制御可能で、
     前記制御装置は、
     前記蓄電装置の現在の充電状態を取得する充電状態取得部と、
     予め定めた基準に従って前記蓄電装置の前記現在の充電状態に応じた充電電流値を算出する充電電流値算出部と、
     前記回転電機が前記制動時に発生する前記制動時に発生する前記発電電力から発電電流値を算出する発電電流値算出部と、
     を有し、前記発電電流値と前記算出された充電電流値とを比較し、前記発電電流値が前記算出された充電電流値を超えるときは、前記蓄電装置に供給する供給電流値を前記算出された充電電流値に制限して回転電機の発電電力値を制御する、蓄電装置の充放電制御システム。
  4.  請求項2に記載の蓄電装置の充放電制御システムにおいて、
     前記充電電流値算出部は、
     前記蓄電装置について予め定めた目標充電状態値と前記現在の充電状態値を比較し、前記現在の充電状態値が前記目標充電状態値以下のときにその差である不足充電量を算出し、前記回転電機の制動期間について推定される推定制動期間内で前記不足充電量を充電するために必要な充電電流値を算出する、蓄電装置の充放電制御システム。
  5.  請求項2に記載の蓄電装置の充放電制御システムにおいて、
     前記制御装置は、
     前記現在の充電状態値が前記目標充電状態値以上のときに、前記蓄電装置に供給する前記供給電流値を予め定めた劣化許容閾値以下の前記供給電流値に絞って前記交直変換処理を行わせる、蓄電装置の充放電制御システム。
  6.  請求項5に記載の蓄電装置の充放電制御システムにおいて、
     前記制御装置は、
     前記目標充電状態値を予め定めた上限値と下限値の幅で設定し、
     前記現在の充電状態値が前記目標充電状態値の前記下限値を超え前記上限値以下のときに、前記劣化許容閾値以下の第1供給電流値に絞り、前記現在の充電状態値が前記目標充電状態値の前記上限値を超えるときに、前記劣化許容閾値以下であって前記第1供給電流値よりもさらに小さな値の第2供給電流値に絞って前記交直変換処理を行わせる、蓄電装置の充放電制御システム。
  7.  請求項2に記載の蓄電装置の充放電制御システムにおいて、
     前記制御装置は、
     予め定めた制御間隔で前記交直変換処理を行わせ、
     前記蓄電装置に供給する前記供給電流値が隣り合う制限間隔の間で予め定めた閾値電流差以内のときは、後の前記制御間隔の前記供給電流値を前の前記制御間隔の前記供給電流値と同じにする、蓄電装置の充放電制御システム。
PCT/JP2014/004548 2013-11-29 2014-09-04 蓄電装置の充放電制御システム WO2015079605A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480065145.8A CN105794076B (zh) 2013-11-29 2014-09-04 蓄电装置的充放电控制系统
JP2015550535A JP6195320B2 (ja) 2013-11-29 2014-09-04 蓄電装置の充放電制御システム
US14/912,190 US9580067B2 (en) 2013-11-29 2014-09-04 Charging/discharging control system for electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-246944 2013-11-29
JP2013246944 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015079605A1 true WO2015079605A1 (ja) 2015-06-04

Family

ID=53198586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004548 WO2015079605A1 (ja) 2013-11-29 2014-09-04 蓄電装置の充放電制御システム

Country Status (4)

Country Link
US (1) US9580067B2 (ja)
JP (1) JP6195320B2 (ja)
CN (1) CN105794076B (ja)
WO (1) WO2015079605A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300505B (zh) * 2016-08-01 2019-05-03 珠海格力电器股份有限公司 移动设备的电量处理方法和系统及移动设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325553A (ja) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd 空気調和機
JP2011255824A (ja) * 2010-06-10 2011-12-22 Mitsubishi Motors Corp ハイブリッド車の制御装置
JP2013071622A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp ハイブリッド車両の制御装置およびハイブリッド車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998515A (ja) 1995-07-25 1997-04-08 Nippon Soken Inc ハイブリッド車のエンジン制御装置
JP4135681B2 (ja) 2004-06-02 2008-08-20 トヨタ自動車株式会社 動力出力装置およびこれを搭載するハイブリッド車並びにこれらの制御方法
JP5570782B2 (ja) * 2009-10-16 2014-08-13 三洋電機株式会社 電源装置及びこれを備える車両並びに電源装置の充放電制御方法
CN102844956B (zh) * 2010-04-28 2015-05-13 丰田自动车株式会社 蓄电装置的控制装置以及搭载该蓄电装置的控制装置的车辆
EP2546089A3 (en) * 2011-07-15 2017-08-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regeneration control device of electrically powered vehicle
JP2013027064A (ja) * 2011-07-15 2013-02-04 Mitsubishi Motors Corp 電動車両の回生制御装置
JP2013074785A (ja) * 2011-09-26 2013-04-22 Hyundai Motor Co Ltd 車両のバッテリー充電制御方法およびその装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325553A (ja) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd 空気調和機
JP2011255824A (ja) * 2010-06-10 2011-12-22 Mitsubishi Motors Corp ハイブリッド車の制御装置
JP2013071622A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp ハイブリッド車両の制御装置およびハイブリッド車両

Also Published As

Publication number Publication date
US9580067B2 (en) 2017-02-28
US20160200313A1 (en) 2016-07-14
CN105794076B (zh) 2018-12-25
JPWO2015079605A1 (ja) 2017-03-16
CN105794076A (zh) 2016-07-20
JP6195320B2 (ja) 2017-09-13

Similar Documents

Publication Publication Date Title
US9744874B2 (en) Electric vehicle and control method for electric vehicle
US8755964B2 (en) Hybrid vehicle
EP2918442B1 (en) Charge/discharge system
US11535121B2 (en) Electric powered vehicle and control method for electric powered vehicle
JP5510283B2 (ja) 車両用蓄電部保護システム
US9868434B2 (en) Vehicle and control method for vehicle
WO2008066092A1 (en) Secondary battery charge/discharge control device and vehicle using the same
JP2010143310A (ja) シリーズハイブリッド電気自動車の発電制御装置
US9834100B2 (en) Charge/discharge system
JP5747724B2 (ja) 車両および車両の制御方法
US9868448B2 (en) Hybrid vehicle
US9840247B2 (en) Hybrid vehicle
JP2010022128A (ja) 蓄電装置充放電制御システム
JP6195320B2 (ja) 蓄電装置の充放電制御システム
JP5879768B2 (ja) ハイブリッド車両
US9663100B2 (en) Hybrid vehicle
US8868272B2 (en) Electric vehicle and method of controlling the same
JP6322417B2 (ja) 電圧変動制御装置
JP2016124481A (ja) 車両用電源制御装置
JP2016055837A (ja) 車両用電源制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14912190

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015550535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865661

Country of ref document: EP

Kind code of ref document: A1