WO2015078271A1 - 散光矫正型人工晶体及其设计和生产方法 - Google Patents

散光矫正型人工晶体及其设计和生产方法 Download PDF

Info

Publication number
WO2015078271A1
WO2015078271A1 PCT/CN2014/090351 CN2014090351W WO2015078271A1 WO 2015078271 A1 WO2015078271 A1 WO 2015078271A1 CN 2014090351 W CN2014090351 W CN 2014090351W WO 2015078271 A1 WO2015078271 A1 WO 2015078271A1
Authority
WO
WIPO (PCT)
Prior art keywords
intraocular lens
astigmatism
outer edge
optical portion
optical
Prior art date
Application number
PCT/CN2014/090351
Other languages
English (en)
French (fr)
Inventor
王曌
甄彦杰
Original Assignee
爱博诺德(北京)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱博诺德(北京)医疗科技有限公司 filed Critical 爱博诺德(北京)医疗科技有限公司
Publication of WO2015078271A1 publication Critical patent/WO2015078271A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses

Definitions

  • the present invention mainly relates to an astigmatism-corrected intraocular lens.
  • the present invention relates to a Toric intraocular lens for correcting astigmatism having the same outer thickness of the optical portion, and a method of designing and producing the same.
  • An intraocular lens is an artificial lens that can be implanted into the eye.
  • the form of the intraocular lens 1 is generally composed of a circular optical portion 2 and a support weir 5 provided around the optical portion 2.
  • the optical portion 2 of the intraocular lens 1 is composed of an effective optical zone 3 and an optical portion edge portion 4.
  • Refractive error is a factor that has a significant impact on imaging quality.
  • Astigmatism is a common phenomenon of refractive error in the human eye. It means that the refractive power of the eyeballs is different in different meridians, or the diopter of the same meridian is different, so that it enters the eye.
  • the parallel rays do not form a focal point on the retina, but form a focal line.
  • Astigmatism is clinically divided into two types: regular astigmatism and irregular astigmatism.
  • the two meridians with the largest difference in refractive power are the main radial lines, and the two main meridians are perpendicular to each other, which is regular astigmatism; the astigmatism curvature of each meridian is inconsistent and is irregular astigmatism.
  • the regular astigmatism can be corrected by the lens.
  • corneal astigmatism is greater than 1.5D, accounting for 15%-29%, seriously affecting people's visual quality.
  • the current treatment of cataract with astigmatism is to achieve normal refractive and correct corneal astigmatism by implanting an astigmatic intraocular lens (Toric IOL) into the eye.
  • Toric IOL astigmatic intraocular lens
  • Toric IOL The development of Toric IOL was originally proposed by Kimiya Shimizu of Japan. The US FDA officially approved it in 1998 and applied it to the clinic. Since then, major IOL manufacturers have launched their own Toric IOLs. These Toric IOLs are one-piece and three-piece; soft and rigid; materials are hydrophilic and hydrophobic; combined with aspherical, multifocal, and improved "L” " ⁇ or "C” ⁇ to improve the stability of the Toric IOL in the human eye.
  • the core of the Toric intraocular lens that achieves astigmatism correction is to apply the toroidal in the optical surface to the intraocular lens, add the cylindrical degree to the original diopter of the artificial lens, and use the toric surface in each The diopter in the direction of the warp is inconsistent to correct the astigmatism of the cornea in cataract patients.
  • the definition of the Toric shape is well known to those skilled in the art, that is, the curve l (bus bar) in the YZ plane rotates around the line l' (rotation axis) perpendicular to the Z axis along the Y axis. Made (see Optical Design Program Users Guide page 272, Toroidal section).
  • the curve l can be a circle or an aspheric curve, and the distance from the line l' to the center of the bus bar is the radius of the rotation axis, as shown in Fig. 2 (illustration of the principle of obtaining the toric surface).
  • busbar is a spherical curve or an aspherical curve
  • the corresponding formula can be found in optical tools such as Daniel Malacara, Handbook of optical design, Chapter 2, Equation A2.2 and Equation A2.5 (see Appendix)
  • theoretical calculations can be known: for the toric intraocular lens, the radius of curvature of the main mirror and the cylinder direction and the center thickness of the intraocular lens (or the edge thickness of the main mirror direction) are determined, and the points on the outer edge of the optics of the intraocular lens The thickness at the location is determined.
  • Figure 3 shows the variation of the radius of curvature and thickness of the Toric IOL at different angles.
  • the radius of curvature of the lens in each radial direction is different and the thickness is different at any radius (Fig. 3 radius r).
  • the radius of curvature of the main mirror direction is the largest (R 0
  • the thickest (d 0 ) the radius of curvature of the lenticular direction is the smallest (R 90 )
  • the thinnest (d 90 ) the radius of curvature and the thickness of the remaining directions are between the two, gradually changing.
  • the thickness of the outer edge of the optics of the Toric intraocular lens also conforms to this rule, that is, the thickness is uneven, the direction of the main mirror is the thickest, the direction of the lenticule is the thinnest, and the thickness in the other direction is between the two.
  • FIG. 4 shows a thickness d (in millimeters) of the outer edge of the optical portion of the toric intraocular lens having a refractive index of 1.48, a diopter of 20 D, a cylindrical mirror of 1.5 D, and a thickness of 0.3 mm in the main mirror direction, with a circumferential position angle A.
  • the circumferential thickness unevenness of the outer edge of the optical portion causes the following problems to the toric intraocular lens: (1) the Toric intraocular lens is unevenly applied in all directions in the human eye capsule, resulting in Toric artificial The rotation of the crystal is offset, which affects the astigmatism correction effect.
  • the bladder applies pressure to the artificial lens supporting jaw 5, and the artificial lens correspondingly generates a reaction force to maintain the position of the intraocular lens in the capsule.
  • the force analysis of the Toric IOL in the capsular bag can be seen in Figure 5.
  • the bladder 9 applies a compressive force F to the intraocular lens optical portion 2 by compressing the support ridge, and the force can be decomposed into component forces in various directions, such as the force F t in the thinnest direction of the Toric intraocular lens and the thickest direction.
  • the force F i as shown in Figure 5 (F 1t , F 2t ; and F 1i , F 2i ); the Toric IOL material produces a reaction force f i and f t for the compressive force of the pouch, as shown in Figure 5. Shown (f 1t , f 2t ; and f 1i , f 2i ), due to the uneven thickness of the edge portion of the Toric intraocular lens, the support force f t in the thin direction becomes smaller, and the pressure applied by the capsule cannot be completely offset in the two thin directions. The resultant force f produced by the Toric intraocular lens in all directions is different from the compression force F of the capsule. The two uncompensated forces form the rotational force of the Toric intraocular lens in the circumferential direction, causing the Toric intraocular lens to rotate. .
  • the astigmatism-corrected intraocular lens has strict requirements on the alignment of the crystal astigmatism axis and the corneal astigmatism axis.
  • Clinical practice has shown that implanting a Toric intraocular lens and rotating the Toric intraocular lens by 1° will result in a loss of 3.3% of the crystal lens.
  • Rotation of Toric IOLs >30° or more results in complete failure of astigmatism correction, so this circumferential rotation of the Toric IOL can have a severe impact on astigmatism correction.
  • the rotation of the Toric intraocular lens caused by the uneven force of the capsular bag caused by the uneven thickness of the outer edge of the optical portion is accumulated over time, and will accumulate and accumulate as the implantation time of the Toric intraocular lens increases.
  • the enamel of the IOL needs to be guaranteed to a certain thickness.
  • the Toric IOL has a limitation on the positional design of the crucible.
  • the uneven thickness of the edge portion makes the Toric IOL must be designed in the thickest direction of the outer edge of the optics of the Toric IOL to ensure sufficient thickness and sufficient support. This limits the choice of doctors and patients.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a Toric intraocular lens having the same outer thickness of an optical portion, in order to improve the positional stability of the Toric intraocular lens in the capsular bag, thereby improving the long-term astigmatism correction effect of the toric intraocular lens. And remove the restrictions on the design of the position.
  • optical portion refers to an optical lens having a circular central cross section 8-8' formed by the effective optical zone of the intraocular lens and the peripheral portion of the optical portion (see FIG. 1 and FIG. 6 is indicated by reference numeral 2).
  • the term "effective optical zone" as used in this application refers to the portion of the central portion of the intraocular lens that has optical properties that enable the primary function of adjusting the refractive power of the artificial lens and/or correcting astigmatism.
  • the diameter of the optical portion of the toric intraocular lens used in the embodiment of the present invention is about 6 mm (up to 6.5 mm), wherein the effective optical zone refers to the edge portion of the optical portion of the toric intraocular lens.
  • the circular portion has a diameter of 4.25 mm or more.
  • optical portion edge portion refers to a circular annular edge region which is disposed at the periphery of the effective optical region of the intraocular lens optical portion and which does not affect the optical characteristics of the artificial lens.
  • optical zone outer edge refers to the vertical section of the perimeter edge of the circular effective optical zone to the intraocular lens that is circular in the longitudinal center section 8-8' of the optic.
  • the distance between the vertical sections O'-O" passing through the optical center O of the optics is the radius limit
  • the equidistant circumferential position on the determined optics optics is shown in Figure 6 of the specification.
  • optical portion outer edge refers to an intraocular lens that is circular in the longitudinal center section of the optical portion, with a vertical section of the peripheral edge of the circular optic portion to the optical center passing through the optical portion.
  • the distance between the vertical sections O'-O" of O is the equi-radius circumferential position on the intraocular lens optic defined by the radius.
  • optical front surface refers to the surface of the optic that is closer to the cornea of the human eye in the axial direction after implantation of the intraocular lens in the human eye.
  • optical portion rear surface refers to the surface of the optical portion opposite to the front surface of the above optical portion in the intraocular lens.
  • refers to the connection to the intraocular lens optic portion, both to support the optic portion and to transmit contractile forces generated by contraction and varicose of the ciliary muscle to the optic portion. The part of the role.
  • optical surface front surface vertex refers to a center point on the front surface of the optical portion of the intraocular lens. It can also be said that the apex of the front surface of the optical portion refers to the point at which the distance between the front surface of the optical portion of the intraocular lens and the longitudinal center plane of the optical portion of the intraocular lens is the farthest (see the reference numerals in FIG. 7). O');
  • optical surface rear surface apex refers to a center point on the rear surface of the optical portion of the intraocular lens.
  • the apex of the rear surface of the optical portion refers to the point on the rear surface of the optical portion of the intraocular lens that is the farthest from the longitudinal center plane of the optical portion of the intraocular lens (see the reference numeral in FIG. 7). O′′).
  • optical zone busbar refers to a curve that moves in accordance with the definition of a toric surface as described above to produce an effective optical zone surface.
  • langing curve refers to a curve extending from the outer edge of the effective optical zone corresponding to the specific effective optical zone busbar to the outer edge of the optical section in the edge portion of the optical portion.
  • adaptive matching flanging design refers to a design that smoothly connects the effective optical zone busbars with their corresponding flanging curves, ie the effective optical zone busbars at the connection points and their corresponding turns The design of the tangent of the edge curve coincides.
  • the present invention relates to the following aspects:
  • An astigmatism-correcting intraocular lens comprising:
  • An optical portion composed of an effective optical zone and an edge portion of the optical portion
  • the effective optical zone has a diameter of 4.25 mm or more and the effective optical zone has a toric design
  • the outer edge of the optical portion of the astigmatism-corrected intraocular lens has the same thickness and the outer edge of the optical portion has a thickness of 0.25 mm to 0.45 mm.
  • the front surface and the rear surface of the optical portion of the astigmatism-correcting intraocular lens include a spherical surface, an aspheric surface, and a complex surface.
  • a multi-focal surface of a curved surface, a multi-region refractive design, and a multi-region diffraction design, and at least one of a front surface and a rear surface of the optical portion of the astigmatism-corrected intraocular lens The surface contains a toric design.
  • edge portion of the optical portion is a flange design portion.
  • the astigmatic correction type intraocular lens according to any one of the preceding aspects 1-11, characterized in that The astigmatism-corrected intraocular lens is a one-piece intraocular lens or a three-piece intraocular lens.
  • the astigmatism-corrected intraocular lens according to any one of the preceding aspects, wherein the astigmatism-corrected intraocular lens comprises a silica gel, a hydrogel, and a hydrophobicity having a refractive index between 1.45 and 1.56.
  • the astigmatism-corrected intraocular lens comprises a silica gel, a hydrogel, and a hydrophobicity having a refractive index between 1.45 and 1.56.
  • the radius of curvature of the flanging curve is set such that the tangent of the effective optical zone busbar at the joint location coincides with the tangent of its corresponding flanging curve.
  • connection locations are on a circumference of different diameters in the optic and the flanging curves have the same radius of curvature.
  • the invention provides a thick Toric intraocular lens with an outer edge of the optical portion, and adopts an adaptive matching flanging design at the outer edge of the effective optical region of the Toric artificial crystal to make the Toric crystal have different thicknesses at various angular positions of the outer edge of the effective optical region.
  • the thickness is adaptively thickened to the same height to ensure the thickness of the outer edge of the toric intraocular lens, and the positional stability of the toric intraocular lens in the capsular bag is improved, thereby improving the long-term astigmatism correction effect of the toric intraocular lens and releasing the sputum position. Design restrictions.
  • FIG. 1 is a schematic perspective view of a Toric intraocular lens as viewed from a front surface of a prior art Toric intraocular lens, wherein the ridge is unfolded and not folded onto the surface of the optic portion of the Toric intraocular lens;
  • Figure 2 is a schematic illustration of the principle of obtaining a Toric IOL toric surface
  • FIG. 3 is a view schematically showing changes in the radius of curvature of the prior art Toric intraocular lens at different angles and the thickness of the outer edge of the optical portion;
  • Figure 4 shows schematically a refractive index of 1.48, a diopter of 20D, a cylindrical mirror of 1.5D, the main A graph of the thickness of the outer edge of the optical portion of the prior art Toric intraocular lens with a thickness of 0.3 mm in the mirror direction as a function of the circumferential position angle;
  • Figure 5 is a schematic illustration of the force of a Toric intraocular lens in a human eye capsule after being implanted in a human eye;
  • Figure 6 is a schematic perspective view of a one-piece Toric intraocular lens according to an embodiment of the present invention as seen from the front surface of the Toric intraocular lens of the present invention
  • FIG. 7 is a cross-sectional view of the optical portion of the Toric intraocular lens taken along the line A-A' shown in FIG. 6, for the sake of clarity, the crucible connected to the outer edge of the optical portion of the Toric intraocular lens is not shown in the figure;
  • Figure 8 is a schematic illustration of an adaptive matching (circular flange) between a Toric intraocular lens and a flanging curve at the outer edge of its effective optical zone, in accordance with one embodiment of the present invention
  • FIG. 9 is a schematic illustration of an adaptive matching (same curvature radius arc cuff) between a Toric intraocular lens and a flanging curve at the outer edge of its effective optical zone, in accordance with one embodiment of the present invention, in which An adaptive matching connection of the effective optical zone busbars in the AA' section (solid line) and the BB' section (dashed line) and their corresponding flanging curves is shown;
  • FIG. 10 is a view schematically showing an adaptive matching (different curvature radius arc flanging) between a Toric intraocular lens and a flanging curve at the outer edge of its effective optical zone according to another embodiment of the present invention.
  • the adaptive matching connection of the effective optical zone busbars in the AA' section (solid line) and the BB' section (dashed line) and their corresponding flanging curves is shown;
  • FIG 11 is a schematic illustration of a transition of a Toric IOL taken along line AA' shown in Figure 6 at the outer edge of its effective optical zone and the cuff curve, in accordance with yet another embodiment of the present invention. (curve flanging design with straight lines); and
  • Figure 12 is a schematic illustration of a transition of a Toric IOL taken along line AA' shown in Figure 6 at the outer edge of its effective optical zone and the cuff curve, in accordance with yet another embodiment of the present invention. (Curve flange design of any shape).
  • B-B' is a hatching in the direction of an arbitrary angle (for example, an angle ⁇ with respect to the direction of the main mirror).
  • the toric intraocular lens of the present invention is made of a hydrophobic acrylate material having a refractive index between 1.45 and 1.56.
  • the toric intraocular lens of the present invention may also be made of other conventional materials such as silica gel, hydrogel, or polymethyl methacrylate.
  • the surface shapes of the front surface and the rear surface of the toric intraocular optical portion in the embodiment of the present invention may include a spherical surface, an aspheric surface, a toric surface, a multi-focal surface of a multi-region refractive design, and a multi-focal surface of a multi-region diffraction design.
  • One or more of the above, and at least one of the front surface and the back surface of the toric intraocular optical portion in the embodiment of the present invention comprises a toric design.
  • the toric intraocular lens of the invention may be a one-piece intraocular lens or a three-piece person Work crystal.
  • the optical portion of the toric intraocular lens of the present invention has a circular shape.
  • the edge portion of the optic portion of the toric intraocular lens of the present invention is a flanged design portion, and the purpose of the design is to adaptively thicken the Toric crystal to the same height from different thicknesses at various angular positions of the outer edge of the effective optical region.
  • the center portion of the optical portion of the toric intraocular lens of the present invention has a thickness in the range of 0.3 mm to 1.2 mm and the outer edge of the optical portion has a thickness in the range of 0.25 mm to 0.45 mm.
  • the "center thickness of the optical portion” refers to the thickness between the front and rear surfaces of the optical portion corresponding to the position of the center (optical center) of the longitudinal center cross section of the toric intraocular optical portion of the present invention. It is well known to those skilled in the art that the size of the center thickness of the optical portion of the toric intraocular lens of the present invention and the thickness of the outer edge of the optical portion of the toric intraocular lens of the present invention mainly depend on the material and the selected material. The diopter reached.
  • the toric intraocular lenses in the embodiments of the present invention are capable of achieving the diopter of 15.0D-26.0D which is currently most used clinically.
  • FIG. 6 is a schematic perspective view of a one piece Toric intraocular lens in accordance with one embodiment of the present invention.
  • Fig. 7 is a schematic cross-sectional view showing the optical portion of the Toric intraocular lens taken along the line A-A' shown in Fig. 6.
  • the crucible connected to the outer edge 11 of the Toric intraocular lens portion is not shown.
  • the A-A' direction is a section along the direction of the main mirror of the Toric intraocular lens.
  • the optical portion 2 of the astigmatic correction type intraocular lens shown in Figs. 6 and 7 is composed of an effective optical zone 3 and an optical portion edge portion 4.
  • the effective optical zone 3 has a diameter of 4.25 mm or more, and preferably, the effective optical zone has a diameter of 5.00 mm or more.
  • the effective optical zone 3 in the front surface 6 of the optical portion 2 of the astigmatism-corrected intraocular lens is designed in a toric surface.
  • the outer edge 11 of the optical portion of the astigmatism-correcting intraocular lens has the same thickness, and the thickness h of the outer edge 11 of the optical portion is 0.25 mm to 0.45 mm. Preferably, the thickness h of the outer edge 11 of the optical portion is 0.25 mm to 0.38 mm.
  • the shape of the front surface 6 and the back surface 7 of the optical portion of the astigmatism-correcting intraocular lens may include a spherical surface, an aspheric surface, a toric surface, a multi-focal surface of a multi-region refractive design, and a multi-region.
  • One or more of the faces of the multifocal plane of the diffractive design, and at least one of the front surface 6 and the back surface 7 of the optical portion of the astigmatism-correcting intraocular lens comprises a toric design.
  • the effective optical zone busbar 12 of the astigmatic correction type intraocular lens and its phase Corresponding cuff curves 13 are connected.
  • the outer edge 10 of the effective optical zone has a thickness d.
  • the effective optical zone busbar 12 of the astigmatism-correcting intraocular lens and its corresponding cuffing curve 13 are smoothly connected, that is, at the connection point 10, the tangent of the effective optical zone busbar 12 and its corresponding flanging curve The tangent of 13 coincides.
  • the flange curve 13 is an arc having a single radius of curvature R.
  • Figure 8 is a schematic illustration of a Toric intraocular lens in accordance with one embodiment of the present invention starting from the outer edge of its effective optical zone with a single radius of curvature arc in the edge portion of the optic;
  • Figure 9 schematically illustrates An adaptive matching of the Toric intraocular lens according to an embodiment of the present invention to the flanging curve at the outer edge of its effective optical zone (the same curvature radius arc cuff), the figure shows the AA' profile (real Adaptive matching connection of effective optical zone busbars in the line) and BB' section (dashed line) and their corresponding flanging curves;
  • FIG. 10 schematically illustrates a Toric intraocular lens in accordance with another embodiment of the present invention Adaptive matching between the outer edge of its effective optic zone and the flanging curve (different curvature radius arc cuffs), which shows the AA' profile (solid line) and the BB' profile (dashed line) Adaptive matching connection of effective optical zone busbars and their corresponding flanging curves;
  • Figure 11 schematically illustrates a Toric intraocular lens at its outer edge of the effective optical zone and flanged in accordance with yet another embodiment of the present invention Transition cuff between curves (package A straight curve curve;
  • FIG. 12 schematically illustrates a transition of a Toric intraocular lens with a flanging curve at the outer edge of its effective optical zone according to still another embodiment of the present invention (arbitrarily shaped curve) Flanged).
  • the cuffing curve 13 can also be a circular arc or a curve of any other shape (including straight lines) having different radii of curvature.
  • the arcs of different radii of curvature (R0.5, R1) are outwardly flanged until the outer edge of the same optical portion 11 is reached. Thickness h.
  • the arcs of the same radius of curvature (R0.5) are outwardly flanged until the outer edge of the same optical portion 11 is reached. Thickness h.
  • the present invention also relates to a method of designing an astigmatism correcting intraocular lens 1 having the same outer thickness 11 of the optical portion as described above, the method comprising the steps of:
  • the radius of curvature of the flange curve 13 is set such that the tangent of the effective optical zone busbar 12 at the joint location coincides with the tangent of its corresponding flange curve 13.
  • This design method can be implemented by means of a computer device.
  • the attachment location is at the outer edge 10 of the effective optic zone and the cuff profile 13 has a different radius of curvature, as shown in FIG.
  • the connection position is located on a circumference of different diameters in the optical portion and the flange curve 13 has the same radius of curvature, as shown in FIG. .
  • the present invention also relates to a method of producing an astigmatic correction type intraocular lens 1 having the same outer thickness 11 of the optical portion by the aforementioned design method.
  • This production method can be realized by means of a numerical control machining device.
  • the invention provides a thick Toric intraocular lens with an outer edge of the optical portion, and adopts an adaptive matching flanging design at the outer edge of the effective optical region of the Toric artificial crystal to make the Toric crystal have different thicknesses at various angular positions of the outer edge of the effective optical region.
  • the thickness is adaptively thickened to the same height to ensure the thickness of the outer edge of the toric intraocular lens, and the positional stability of the toric intraocular lens in the capsular bag is improved, thereby improving the long-term astigmatism correction effect of the toric intraocular lens and releasing the sputum position. Design restrictions.
  • adaptive matching flanging design (same curvature radius arc flanging) used in the present invention will be described in further detail below with reference to the embodiments, but those skilled in the art will recognize that the present invention is not limited to the following embodiments. .
  • Optical part outer edge thickness 0.25-0.45mm
  • diopter 15-26D refractive index 1.45-1.56, astigmatism mirror ⁇ 4.5D, burr starting position diameter ⁇ 4.25mm, flanging curve curvature radius R: 0-3.5mm.
  • diopter 15-26D refractive index 1.45-1.56, astigmatism mirror degree ⁇ 4.5D, burr starting position diameter ⁇ 5.0mm, flanging curve curvature radius R: 0-1.5mm.
  • Optical part outer edge thickness 0.25-0.38mm
  • diopter 15-26D refractive index 1.45-1.56, astigmatism mirror ⁇ 4.5D, burr starting position diameter ⁇ 4.25mm, flanging curve curvature radius R: 0-2.4mm.
  • diopter 15-26D refractive index 1.45-1.56, astigmatism mirror ⁇ 4.5D, burr starting position diameter ⁇ 5.0mm, flanging curve curvature radius R: 0-1.0mm.
  • Table 1 Thickness of the outer edge of the optics: 0.25-0.45mm, diopter 15-26D, refractive index 1.45-1.56, astigmatism mirror ⁇ 4.5D, edging circle that can be used when the optical zone diameter is 4.25mm or more Arc maximum radius of curvature R

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种散光矫正型人工晶体(1)及其设计和生产方法,包括由有效光学区(3)和光学部边缘部分(4)构成的光学部(2),在光学部外缘(10)处采用自适应匹配翻边设计,使晶体由有效光学区外缘各个角度位置处的不同厚度向外自适应增厚至同一高度,从而保证人工晶体光学部外缘(10)等厚,提高了人工晶体在囊袋中的位置稳定性,进而提高了人工晶体的长期散光矫正效果,并解除了襻位置设计的限制。

Description

散光矫正型人工晶体及其设计和生产方法 技术领域
本发明主要涉及散光矫正型人工晶体。具体而言,本发明涉及一种光学部外缘厚度相等的用于矫正散光的Toric人工晶体及其设计和生产方法。
背景技术
人工晶体(IOL)是一种能植入眼内的人造透镜。如图1所示,人工晶体1的形态,通常由一个圆形光学部2和设置在光学部2周边的支撑襻5组成。人工晶体1的光学部2由有效光学区3和光学部边缘部分4构成。
屈光不正是对成像质量影响明显的一种因素,其中散光是一种常见的人眼屈光不正现象,指眼球在不同经线上屈光力不一致,或同一经线的屈光度不等,以至于进入眼内的平行光线不能在视网膜上形成焦点,而形成焦线的现象。散光在临床上分为规则散光和不规则散光两种。屈光力差别最大的两条经线为主径线,两条主经线相互垂直,为规则散光;各子午线的散光弯曲度不一致,为不规则散光。其中规则散光可通过镜片矫正。
在正常人群中,角膜散光大于1.5D的占15%-29%,严重影响人们的视觉质量。目前伴散光的白内障最新的治疗方法是通过在眼内植入一个散光型人工晶体(Toric IOL)来达到正常屈光的同时矫正角膜散光的目的。
Toric人工晶体的研制最初是由日本的Kimiya Shimizu提出的,美国FDA于1998年正式审批通过将其应用于临床,此后各大人工晶体生产厂商都相继推出了自己的Toric人工晶体。这些Toric人工晶体有一件式的,也有三件式的;有软性的、硬性的;材料有亲水的、疏水的;有结合了非球面、多焦点的,同时还会采用改进型“L”襻或“C”襻,来提高Toric人工晶体在人眼中的稳定性。不论哪种设计,实现散光矫正的Toric人工晶体的技术核心是将光学面形中的复曲面(toroidal)应用于人工晶体,在人工晶体原始屈光度的基础上附加柱镜度,利用复曲面在各个经线方向上屈光度不一致的特点,矫正白内障患者角膜的散光。
Toric面形(复曲面)的定义对于所属领域的技术人员而言已公知的,即:Y-Z平面内的曲线l(母线)绕着Y轴垂直于Z轴的直线l’(旋转轴)旋转一周而成(参见
Figure PCTCN2014090351-appb-000001
Optical Design Program Users Guide page 272,Toroidal部分)。曲线l可以是圆,也可以是非球面曲线,直线l’到 母线圆心的距离为旋转轴半径,如图2所示(复曲面的获得原理的图解说明)。
无论母线为球面曲线还是为非球面曲线,通过公式推导(相应公式可以在光学工具书,如Daniel Malacara,Handbook of optical design,第二章,公式A2.2和公式A2.5(见附录))和理论计算可获知:对于toric人工晶体而言,确定了主镜和柱镜方向的曲率半径以及人工晶体的中心厚度(或主镜方向的边缘厚度),则人工晶体光学部外缘的各点处的厚度都是确定的。
图3示出了Toric人工晶体在不同角度下的曲率半径与厚度的变化情况。对于toric人工晶体而言,在任一半径上(如图3半径r),镜片在各个径向方向上的曲率半径不同,厚度不同,如图3所示,主镜方向的曲率半径最大(R0),同时最厚(d0),柱镜方向的曲率半径最小(R90),同时最薄(d90),其余方向的曲率半径与厚度处于二者之间,逐渐过渡变化。相应地,Toric人工晶体光学部外缘的厚度也符合这一规律,即厚薄不均,以主镜方向最厚,柱镜方向最薄,其余方向上厚度处于二者之间。再例如,图4示出了折射率为1.48,屈光度20D,柱镜度1.5D,主镜方向厚0.3mm的toric人工晶体光学部外缘的厚度d(单位为毫米)随周向位置角度A(单位为度)的变化曲线图。通过简单的理论计算推导就可发现且如图4所示:toric人工晶体光学部外缘的厚度分布沿周向厚度符合正弦/余弦曲线分布规律。
然而,这种光学部外缘的沿周向厚薄不均的现象会给toric人工晶体带来如下问题:(1)使Toric人工晶体在人眼囊袋内各个方向受力不均,造成Toric人工晶体旋转偏位,影响散光矫正效果。
人工晶体放入人眼囊袋9后,囊袋向人工晶体支撑襻5施加压力,人工晶体相应会产生反作用力,维持人工晶体在囊袋内的位置稳定。Toric人工晶体在囊袋内的受力分析可以参见图5。囊袋9通过压缩支撑襻,对人工晶体光学部2施加压缩力F,该力可分解为各个方向上的分力,比如分解为Toric人工晶体最薄方向上的力Ft和最厚方向上的力Fi,如图5中所示(F1t,F2t;和F1i,F2i);Toric人工晶体材料对囊袋的压缩力产生反作用张力fi与ft,如图5中所示(f1t,f2t;和f1i,f2i),由于Toric人工晶体边缘部分厚薄不均,导致薄方向的支撑力ft变小,囊袋施加的压力在两个薄方向不能完全抵消,Toric人工晶体在各个方向上产生的合力f与囊 袋的压缩力F在大小与方向上均不相同,这两个没有抵消的力形成Toric人工晶体圆周方向的旋转力,造成Toric人工晶体旋转。
散光矫正型人工晶体对晶体散光轴与角膜散光轴的对准有严格的要求,临床实践表明,植入Toric人工晶体,Toric人工晶体每旋转1°,会导致3.3%的晶体柱镜度损失,Toric人工晶体旋转>30°或更多,会导致散光矫正的完全失效,因此Toric人工晶体的这种圆周方向的旋转对散光矫正会产生严重影响。并且这种光学部外缘厚薄不均所导致的囊袋作用力不均引起的Toric人工晶体旋转是日积月累的,会随着Toric人工晶体植入时间的增加而不停累积加重。
(2)受到襻支撑力的限制,人工晶体的襻需要保证一定的厚度。然而,Toric人工晶体对襻的位置设计形成限制,边缘部分厚度不均的现象使Toric人工晶体必须将襻设计在Toric人工晶体光学部外缘最厚方向,以保证足够的厚度和足够的支撑力,由此限制了医生和病人的选择。
发明内容
本发明鉴于上述问题而提出,其目的在于提供一种光学部外缘厚度相等的Toric人工晶体,以期提高Toric人工晶体在囊袋中的位置稳定性,进而提高toric人工晶体的长期散光矫正效果,并解除襻位置设计的限制。
术语定义
在本申请中使用的术语“光学部”指的是由人工晶体的有效光学区及其周围的光学部边缘部分构成的纵向中心剖面8-8’呈圆形的光学透镜(如图1、图6中的附图标记2所示)。
在本申请中使用的术语“有效光学区”指的是位于人工晶体光学部中心的具有光学特性从而能够实现调节人工晶体屈光度和/或矫正散光的主要功能的部分。具体而言,本发明实施例中所使用的toric人工晶体的光学部的直径为约6毫米(最大可达6.5毫米),其中有效光学区指的是位于toric人工晶体的光学部边缘部分以内的圆形部分,其直径大于等于4.25毫米。
在本申请中使用的术语“光学部边缘部分”指的是设置在人工晶体光学部有效光学区外围的不会影响人工晶体的光学特性的圆环形边缘区域。
在本申请中使用的术语“有效光学区外缘”指的是对于光学部的纵向中心剖面8-8’呈圆形的人工晶体而言,以圆形有效光学区周界边缘的垂直切面到经过光学部的光学中心O的垂直切面O′-O″之间的距离为半径限 定出的人工晶体光学部上的等半径周向位置,参见说明书附图6。
在本申请中使用的术语“光学部外缘”指的是对于光学部的纵向中心剖面呈圆形的人工晶体而言,以圆形光学部周界边缘的垂直切面到经过光学部的光学中心O的垂直切面O′-O″之间的距离为半径限定出的人工晶体光学部上的等半径周向位置。
在本申请中使用的术语“光学部前表面”指的是在将人工晶体植入人眼中后沿眼轴方向距离人眼角膜更近的那个光学部表面。
在本申请中使用的术语“光学部后表面”指的是在人工晶体中与上述光学部前表面相对的那个光学部表面。
在本申请中使用的术语“襻”指的是与人工晶体光学部相连、既起到支撑光学部的作用又起到将睫状肌的收缩与曲张所产生的收缩力传递到所述光学部的作用的部分。
在本申请中所使用表示形状的术语例如“凸”,“凹”是相对于人工晶体光学部的纵向中心平面8-8’而言的。
对于本申请中的Toric人工晶体而言,本申请中使用的术语“光学部前表面顶点”指的是所述人工晶体的光学部前表面上的中心点。也可以说,光学部前表面顶点指的是:所述人工晶体的光学部前表面上与该人工晶体光学部分的纵向中心平面之间的距离最远的点(参见图7中的附图标记O′);本申请中使用的术语“光学部后表面顶点”指的是所述人工晶体的光学部后表面上的中心点。也可以说,光学部后表面顶点指的是:所述人工晶体的光学部后表面上与该人工晶体光学部分的纵向中心平面之间的距离最远的点(参见图7中的附图标记O″)。
本申请中使用的术语“有效光学区母线”指的是依上文中所述的复曲面的定义进行运动而产生有效光学区表面的曲线。
本申请中使用的术语“翻边曲线”指的是在光学部边缘部分中与特定的有效光学区母线相对应的自有效光学区外缘延伸至光学部外缘的曲线。
本申请中使用的术语“自适应匹配翻边设计”指的是使有效光学区母线和其相对应的翻边曲线平滑连接的设计,即在连接点处有效光学区母线和其相对应的翻边曲线的切线相重合的设计。
具体而言,本发明涉及以下多个方面的内容:
1.一种散光矫正型人工晶体,所述散光矫正型人工晶体包括:
由有效光学区和光学部边缘部分构成的光学部;
在光学部外缘处与所述光学部相连接的襻,
其中所述有效光学区的直径大于等于4.25毫米且所述有效光学区采用复曲面设计;
其特征在于,
所述散光矫正型人工晶体的光学部外缘的厚度相等且所述光学部外缘的厚度为0.25mm-0.45mm。
2.根据方面1所述的散光矫正型人工晶体,其特征在于,所述光学部呈圆形形状。
3.根据方面1或2所述的散光矫正型人工晶体,其特征在于,所述光学部外缘的厚度为0.25mm-0.38mm。
4.根据前述方面1-3中任一项所述的散光矫正型人工晶体,其特征在于,所述有效光学区的直径大于等于5.00毫米。
5.根据前述方面1-4中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体的光学部前表面和后表面的面形包括球面、非球面、复曲面、多区折射设计的多焦面和多区衍射设计的多焦面的面形中的一种或多种,且所述散光矫正型人工晶体的光学部前表面和后表面中的至少一个表面包含复曲面设计。
6.根据前述方面1-5中任一项所述的散光矫正型人工晶体,其特征在于,所述光学部边缘部分为翻边设计部分。
7.根据前述方面1-6中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体的有效光学区母线和其相对应的所述翻边设计部分中的翻边曲线相连。
8.根据前述方面1-7中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体的有效光学区母线和其相对应的所述翻边设计部分中的翻边曲线平滑连接。
9.根据前述方面1-6,8中任一项所述的散光矫正型人工晶体,其特征在于,所述翻边曲线为具有相同曲率半径的圆弧。
10.根据方面9所述的散光矫正型人工晶体,其特征在于,所述翻边曲线的曲率半径范围为0mm-2.4mm。
11.根据前述方面1-6,8中任一项所述的散光矫正型人工晶体,其特征在于,所述翻边曲线为具有不同曲率半径的圆弧。
12.根据前述方面1-11中任一项所述的散光矫正型人工晶体,其特征 在于,所述散光矫正型人工晶体为一件式人工晶体或者三件式人工晶体。
13.根据前述方面1-12中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体由折射率在1.45到1.56之间的硅胶、水凝胶、疏水性丙烯酸酯、或聚甲基丙烯酸甲酯制成。
14.一种设计根据方面8-13中任一项所述的光学部外缘厚度相等的散光矫正型人工晶体的方法,所述方法包括以下步骤:
设定所述光学部外缘的直径和厚度;
设定所述有效光学区母线和其相对应的翻边曲线的连接位置;以及
设定所述翻边曲线的曲率半径,从而使得所述有效光学区母线在所述连接位置处的切线与其相对应的翻边曲线的切线相重合。
15.根据方面14所述的方法,其特征在于,所述连接位置位于有效光学区外缘处且所述翻边曲线具有不同的曲率半径。
16.根据方面14所述的方法,其特征在于,所述连接位置位于光学部中不同直径的圆周上且所述翻边曲线具有相同的曲率半径。
17.一种采用根据前述方面14-16中任一项所述的设计方法,生产光学部外缘厚度相等的散光矫正型人工晶体的方法。
本发明特别具有以下有益效果:
本发明提出一种光学部外缘等厚的Toric人工晶体,在Toric人工晶体有效光学区外缘处采用自适应匹配翻边设计,使Toric晶体由有效光学区外缘各个角度位置处的不同厚度向外自适应增厚至同一高度,从而保证toric人工晶体光学部外缘等厚,提高toric人工晶体在囊袋中的位置稳定性,进而提高toric人工晶体的长期散光矫正效果,并解除襻位置设计的限制。
附图说明
根据以下的附图以及说明,本发明的特征、优点将变得更加明了,其中:
图1是从现有技术Toric人工晶体前表面观察到的Toric人工晶体的示意性透视图,其中襻展开且未被折叠到Toric人工晶体光学部的表面上;
图2示意性地示出了Toric人工晶体复曲面的获得原理;
图3示意性地示出了现有技术Toric人工晶体在不同角度下的曲率半径与光学部外缘厚度的变化情况;
图4示意性地示出了折射率为1.48,屈光度20D,柱镜度1.5D,主 镜方向厚0.3mm的现有技术Toric人工晶体光学部外缘厚度随周向位置角度的变化曲线图;
图5示意性地示出了在被植入到人眼中之后,Toric人工晶体在人眼囊袋内的受力情况;
图6是从本发明的Toric人工晶体前表面观察到的根据本发明的一个实施例的一件式Toric人工晶体的示意性透视图;
图7是沿图6所示的线A-A′截取获得的Toric人工晶体光学部的剖面示意图,为了清楚起见,该图中未示出与Toric人工晶体光学部外缘相连的襻;
图8示意性地示出了根据本发明的一个实施例的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的自适应匹配(圆弧翻边);
图9示意性地示出了根据本发明的一个实施例的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的自适应匹配(相同曲率半径圆弧翻边),该图中示出了A-A′剖面(实线)和B-B′剖面(虚线)中的有效光学区母线和其相对应的翻边曲线的自适应匹配连接情况;
图10示意性地示出了根据本发明的另一个实施例的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的自适应匹配(不同曲率半径圆弧翻边),该图中示出了A-A′剖面(实线)和B-B′剖面(虚线)中的有效光学区母线和其相对应的翻边曲线的自适应匹配连接情况;
图11示意性地示出了根据本发明的又一个实施例的沿图6所示的线A-A′截取获得的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的过渡翻边(包含直线的曲线翻边设计);和
图12示意性地示出了根据本发明的再一个实施例的沿图6所示的线A-A′截取获得的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的过渡翻边(任意形状的曲线翻边设计)。
在本申请的附图中使用相同的附图标记表示相同或相似的元件。
附图标记说明
1  Toric人工晶体
2  光学部
3  有效光学区
4  光学部边缘部分
5  襻
6  光学部前表面
7  光学部后表面
8-8’  人工晶体光学部的纵向中心平面
9  囊袋
F-囊袋作用在人工晶体上的压缩力
Fi-囊袋对人工晶体压缩力在最厚方向上的分力
Ft-囊袋对人工晶体压缩力在最薄方向上的分力
fi-人工晶体在最厚方向上的反作用张力
ft-人工晶体在最薄方向上的反作用张力
f-人工晶体反作用力的合力
10  有效光学区外缘
11  光学部外缘
12  有效光学区母线
13  翻边曲线
O  光学部(前或后)表面顶点
R  翻边曲线的曲率半径
A-A’  沿Toric人工晶体主镜方向的剖面线
B-B’  任意角度(例如相对于主镜方向呈θ角)方向上的剖面线。
具体实施方式
以下具体实施例只是用于进一步对本发明进行进一步地解释说明,但是本发明并不局限于以下的具体实施方案。任何在这些实施方案基础上的变化,只要符合本发明的原则精神和范围,都将落入本发明专利的涵盖范围内。
本发明的toric人工晶体由折射率在1.45到1.56之间的疏水性丙烯酸酯材料制成。当然,所属领域的技术人员也可以意识到,本发明的toric人工晶体也可以由硅胶、水凝胶、或聚甲基丙烯酸甲酯等其他常规材料制成。
本发明实施例中的toric人工晶体光学部的前表面和后表面的面形可包括球面、非球面、复曲面、多区折射设计的多焦面和多区衍射设计的多焦面的面形中的一种或多种,且本发明实施例中的toric人工晶体光学部的前表面和后表面中的至少一个表面包含复曲面设计。
本发明的toric人工晶体可以是一件式人工晶体,也可以是三件式人 工晶体。根据本发明的一个实施例,本发明的toric人工晶体的光学部呈圆形形状。本发明的toric人工晶体的光学部边缘部分为翻边设计部分,该设计的目的在于使Toric晶体由有效光学区外缘各个角度位置处的不同厚度向外自适应增厚至同一高度。
另外,本发明的toric人工晶体的光学部的中心厚度在0.3毫米-1.2毫米的范围内且光学部外缘的厚度在0.25毫米-0.45毫米的范围内。“光学部的中心厚度”指的是本发明的toric人工晶体光学部纵向中心剖面的圆心(光学中心)位置所对应的光学部前后表面间的厚度。对于所属领域的技术人员已公知的是:本发明的toric人工晶体的光学部的中心厚度的大小和本发明的toric人工晶体的光学部外缘的厚度的大小主要取决于所选用的材料和所达到的屈光度。
本发明实施例中的toric人工晶体均能够达到目前在临床上使用最多的15.0D-26.0D的屈光度。
(I)散光矫正型人工晶体
图6是根据本发明的一个实施例的一件式Toric人工晶体的示意性透视图。图7是沿图6所示的线A-A′截取获得的Toric人工晶体光学部的剖面示意图,为了清楚起见,该图中未示出与Toric人工晶体光学部外缘11相连的襻。由图6中可见,A-A’方向是沿Toric人工晶体主镜方向的剖面线。
图6和图7所示的散光矫正型人工晶体的光学部2由有效光学区3和光学部边缘部分4构成。所述有效光学区3的直径大于等于4.25毫米,优选地,所述有效光学区的直径大于等于5.00毫米。所述散光矫正型人工晶体的光学部2的前表面6中的有效光学区3采用复曲面设计。所述散光矫正型人工晶体的光学部外缘11的厚度相等且所述光学部外缘11的厚度h为0.25mm-0.45mm。优选地,所述光学部外缘11的厚度h为0.25mm-0.38mm。
所属领域的技术人员可以意识到:所述散光矫正型人工晶体的光学部前表面6和后表面7的面形可以包括球面、非球面、复曲面、多区折射设计的多焦面和多区衍射设计的多焦面的面形中的一种或多种,且所述散光矫正型人工晶体的光学部前表面6和后表面7中的至少一个表面包含复曲面设计。
如图7所示,所述散光矫正型人工晶体的有效光学区母线12和其相 对应的翻边曲线13相连。如图7所示,有效光学区外缘10的厚度为d。优选地,所述散光矫正型人工晶体的有效光学区母线12和其相对应的翻边曲线13平滑连接,即在连接点10处,有效光学区母线12的切线和其相对应的翻边曲线13的切线相重合。
如图7所示,在该实施例中,所述翻边曲线13为具有单一曲率半径R的圆弧。
图8示意性地示出了根据本发明的一个实施例的Toric人工晶体自其有效光学区外缘开始在光学部边缘部分中采用单一曲率半径圆弧翻边;图9示意性地示出了根据本发明的一个实施例的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的自适应匹配(相同曲率半径圆弧翻边),该图中示出了A-A′剖面(实线)和B-B′剖面(虚线)中的有效光学区母线和其相对应的翻边曲线的自适应匹配连接情况;图10示意性地示出了根据本发明的另一个实施例的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的自适应匹配(不同曲率半径圆弧翻边),该图中示出了A-A′剖面(实线)和B-B′剖面(虚线)中的有效光学区母线和其相对应的翻边曲线的自适应匹配连接情况;图11示意性地示出了根据本发明的又一个实施例的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的过渡翻边(包含直线的曲线翻边);图12示意性地示出了根据本发明的再一个实施例的Toric人工晶体在其有效光学区外缘处与翻边曲线之间的过渡翻边(任意形状的曲线翻边)。
由图9-12可见,所述翻边曲线13也可以是具有不同曲率半径的圆弧或者其他任何形状的曲线(包括直线)。如图9所示,在有效光学区外缘10处(相同的圆直径(D))以不同曲率半径(R0.5、R1)的圆弧向外翻边,直至达到同一光学部外缘11厚度h。另一种可选方式是,如图10所示,在不同的圆直径处(D1、D2)以相同曲率半径(R0.5)的圆弧向外翻边,直至达到同一光学部外缘11厚度h。
(II)散光矫正型人工晶体光学部2的自适应匹配翻边设计方法和生产方法
优选地,本发明还涉及一种设计前文中所述的光学部外缘11厚度相等的散光矫正型人工晶体1的方法,所述方法包括以下步骤:
设定所述光学部外缘11的直径和厚度h;
设定所述有效光学区母线12和其相对应的翻边曲线13的连接位置; 以及
设定所述翻边曲线13的曲率半径,从而使得所述有效光学区母线12在所述连接位置处的切线与其相对应的翻边曲线13的切线相重合。
该设计方法可借助于计算机设备得以实现。
优选地,所述连接位置位于有效光学区外缘10处且所述翻边曲线13具有不同的曲率半径,如图10所示。另一种可选方式是,根据所述有效光学区母线12的特点,所述连接位置位于光学部中不同直径的圆周上且所述翻边曲线13具有相同的曲率半径,如图9所示。
本发明还涉及一种采用前述设计方法,生产光学部外缘11厚度相等的散光矫正型人工晶体1的方法。该生产方法可借助于数控机加工设备得以实现。
本发明特别具有以下有益效果:
本发明提出一种光学部外缘等厚的Toric人工晶体,在Toric人工晶体有效光学区外缘处采用自适应匹配翻边设计,使Toric晶体由有效光学区外缘各个角度位置处的不同厚度向外自适应增厚至同一高度,从而保证toric人工晶体光学部外缘等厚,提高toric人工晶体在囊袋中的位置稳定性,进而提高toric人工晶体的长期散光矫正效果,并解除襻位置设计的限制。
实施例
以下采用实施例进一步详细地对本发明中所采用的自适应匹配翻边设计(相同曲率半径圆弧翻边)进行描述,但所属领域的技术人员能够意识到:本发明并不限于下面这些实施例。
实施例1
光学部外缘厚度:0.25-0.45mm
(1)屈光度15-26D,折射率1.45-1.56,散光柱镜度≤4.5D,翻边起始位置直径≥4.25mm,翻边曲线曲率半径R:0-3.5mm。
(2)屈光度15-26D,折射率1.45-1.56,散光柱镜度≤4.5D,翻边起始位置直径≥5.0mm,翻边曲线曲率半径R:0-1.5mm。
实施例2
光学部外缘厚度:0.25-0.38mm
(1)屈光度15-26D,折射率1.45-1.56,散光柱镜度≤4.5D,翻边起始位置直径≥4.25mm,翻边曲线曲率半径R:0-2.4mm。
(2)屈光度15-26D,折射率1.45-1.56,散光柱镜度≤4.5D,翻边起始位置直径≥5.0mm,翻边曲线曲率半径R:0-1.0mm。
表1:光学部外缘厚度:0.25-0.45mm,屈光度15-26D,折射率1.45-1.56,散光柱镜度≤4.5D,光学区直径达到4.25mm或5.0mm以上时能使用的翻边圆弧最大曲率半径R
Figure PCTCN2014090351-appb-000002
前文中所描述的实施例仅为示例性的而非限制性的。因此,在不脱离本文所公开的发明构思的情况下,所属领域的技术人员可对上述实施例进行修改或改变。因此,本发明的保护范围仅由所附权利要求书的范围来限定。

Claims (17)

  1. 一种散光矫正型人工晶体,所述散光矫正型人工晶体包括:
    由有效光学区和光学部边缘部分构成的光学部;
    在光学部外缘处与所述光学部相连接的襻,
    其中所述有效光学区的直径大于等于4.25毫米且所述有效光学区采用复曲面设计;
    其特征在于,
    所述散光矫正型人工晶体的光学部外缘的厚度相等且所述光学部外缘的厚度为0.25mm-0.45mm。
  2. 根据权利要求1所述的散光矫正型人工晶体,其特征在于,所述光学部呈圆形形状。
  3. 根据权利要求1或2所述的散光矫正型人工晶体,其特征在于,所述光学部外缘的厚度为0.25mm-0.38mm。
  4. 根据前述权利要求1-3中任一项所述的散光矫正型人工晶体,其特征在于,所述有效光学区的直径大于等于5.00毫米。
  5. 根据前述权利要求1-4中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体的光学部前表面和后表面的面形包括球面、非球面、复曲面、多区折射设计的多焦面和多区衍射设计的多焦面的面形中的一种或多种,且所述散光矫正型人工晶体的光学部前表面和后表面中的至少一个表面包含复曲面设计。
  6. 根据前述权利要求1-5中任一项所述的散光矫正型人工晶体,其特征在于,所述光学部边缘部分为翻边设计部分。
  7. 根据前述权利要求1-6中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体的有效光学区母线和其相对应的所述翻边设计部分中的翻边曲线相连。
  8. 根据前述权利要求1-7中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体的有效光学区母线和其相对应的所述翻边设计部分中的翻边曲线平滑连接。
  9. 根据前述权利要求1-6,8中任一项所述的散光矫正型人工晶体,其特征在于,所述翻边曲线为具有相同曲率半径的圆弧。
  10. 根据权利要求9所述的散光矫正型人工晶体,其特征在于,所述 翻边曲线的曲率半径范围为0mm-2.4mm。
  11. 根据前述权利要求1-6,8中任一项所述的散光矫正型人工晶体,其特征在于,所述翻边曲线为具有不同曲率半径的圆弧。
  12. 根据前述权利要求1-11中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体为一件式人工晶体或者三件式人工晶体。
  13. 根据前述权利要求1-12中任一项所述的散光矫正型人工晶体,其特征在于,所述散光矫正型人工晶体由折射率在1.45到1.56之间的硅胶、水凝胶、疏水性丙烯酸酯、或聚甲基丙烯酸甲酯制成。
  14. 一种设计根据权利要求8-13中任一项所述的光学部外缘厚度相等的散光矫正型人工晶体的方法,所述方法包括以下步骤:
    设定所述光学部外缘的直径和厚度;
    设定所述有效光学区母线和其相对应的翻边曲线的连接位置;以及
    设定所述翻边曲线的曲率半径,从而使得所述有效光学区母线在所述连接位置处的切线与其相对应的翻边曲线的切线相重合。
  15. 根据权利要求14所述的方法,其特征在于,所述连接位置位于有效光学区外缘处且所述翻边曲线具有不同的曲率半径。
  16. 根据权利要求14所述的方法,其特征在于,所述连接位置位于光学部中不同直径的圆周上且所述翻边曲线具有相同的曲率半径。
  17. 一种采用根据前述权利要求14-16中任一项所述的设计方法,生产光学部外缘厚度相等的散光矫正型人工晶体的方法。
PCT/CN2014/090351 2013-11-27 2014-11-05 散光矫正型人工晶体及其设计和生产方法 WO2015078271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310610150.X 2013-11-27
CN201310610150.XA CN104127262B (zh) 2013-11-27 2013-11-27 散光矫正型人工晶体及其设计和生产方法

Publications (1)

Publication Number Publication Date
WO2015078271A1 true WO2015078271A1 (zh) 2015-06-04

Family

ID=51800297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090351 WO2015078271A1 (zh) 2013-11-27 2014-11-05 散光矫正型人工晶体及其设计和生产方法

Country Status (2)

Country Link
CN (1) CN104127262B (zh)
WO (1) WO2015078271A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024373A (zh) * 2019-12-25 2020-04-17 福州锐景达光电科技有限公司 镜头组件焦面测量矫正装置及焦面测量矫正方法
CN111035471A (zh) * 2018-10-12 2020-04-21 富螺(上海)医疗器械有限公司 人工晶体
US10687935B2 (en) 2015-10-05 2020-06-23 Acufocus, Inc. Methods of molding intraocular lenses
EP3557314A4 (en) * 2016-12-07 2020-08-12 Kowa Company, Ltd. TORIC OCULAR LENS
US10765508B2 (en) 2011-12-02 2020-09-08 AcFocus, Inc. Ocular mask having selective spectral transmission
US10869752B2 (en) 2003-05-28 2020-12-22 Acufocus, Inc. Mask for increasing depth of focus
US11311371B2 (en) 2009-08-13 2022-04-26 Acufocus, Inc. Intraocular lens with elastic mask
US11357617B2 (en) 2009-08-13 2022-06-14 Acufocus, Inc. Method of implanting and forming masked intraocular implants and lenses
US11364110B2 (en) 2018-05-09 2022-06-21 Acufocus, Inc. Intraocular implant with removable optic
US11464625B2 (en) 2015-11-24 2022-10-11 Acufocus, Inc. Toric small aperture intraocular lens with extended depth of focus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971154A (zh) * 2018-09-29 2020-11-20 东莞东阳光医疗智能器件研发有限公司 人工晶体半成品成型模具、成型方法及人工晶体半成品
CN110613532B (zh) * 2019-10-24 2022-02-22 西安眼得乐医疗科技有限公司 一种复曲面设计的眼后房型晶状体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082286A1 (fr) * 2004-01-28 2005-09-09 Corneal Industrie Implant oculaire a optique souple
EP2111822A2 (en) * 2008-04-21 2009-10-28 Oculentis B.V. Intraocular lens with a toric optic
CN102014793A (zh) * 2008-05-06 2011-04-13 爱尔康公司 非球面复曲面眼内透镜
CN102171599A (zh) * 2008-10-01 2011-08-31 博士伦公司 具有选定的球面像差特征的复曲面眼用镜片
CN202920413U (zh) * 2012-09-12 2013-05-08 爱博诺德(北京)医疗科技有限公司 一种散光矫正型人工晶体
CN203647535U (zh) * 2013-11-27 2014-06-18 爱博诺德(北京)医疗科技有限公司 散光矫正型人工晶体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133747A (en) * 1990-03-16 1992-07-28 Feaster Fred T Epiphakic intraocular lens and process of implantation
DE102005028933A1 (de) * 2005-06-22 2006-12-28 Acri.Tec Gesellschaft für ophthalmologische Produkte mbH Astigmatische Intraokularlinse
US8439498B2 (en) * 2008-02-21 2013-05-14 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
JP2012040326A (ja) * 2010-08-14 2012-03-01 Tadayuki Nishide レンズ交換可能な眼内レンズとその設置方法
CN103211664B (zh) * 2012-01-19 2015-06-24 爱博诺德(北京)医疗科技有限公司 后房型人工晶体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082286A1 (fr) * 2004-01-28 2005-09-09 Corneal Industrie Implant oculaire a optique souple
EP2111822A2 (en) * 2008-04-21 2009-10-28 Oculentis B.V. Intraocular lens with a toric optic
CN102014793A (zh) * 2008-05-06 2011-04-13 爱尔康公司 非球面复曲面眼内透镜
CN102171599A (zh) * 2008-10-01 2011-08-31 博士伦公司 具有选定的球面像差特征的复曲面眼用镜片
CN202920413U (zh) * 2012-09-12 2013-05-08 爱博诺德(北京)医疗科技有限公司 一种散光矫正型人工晶体
CN203647535U (zh) * 2013-11-27 2014-06-18 爱博诺德(北京)医疗科技有限公司 散光矫正型人工晶体

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10869752B2 (en) 2003-05-28 2020-12-22 Acufocus, Inc. Mask for increasing depth of focus
US11311371B2 (en) 2009-08-13 2022-04-26 Acufocus, Inc. Intraocular lens with elastic mask
US11357617B2 (en) 2009-08-13 2022-06-14 Acufocus, Inc. Method of implanting and forming masked intraocular implants and lenses
US10765508B2 (en) 2011-12-02 2020-09-08 AcFocus, Inc. Ocular mask having selective spectral transmission
US11690707B2 (en) 2015-10-05 2023-07-04 Acufocus, Inc. Methods of molding intraocular lenses
US10687935B2 (en) 2015-10-05 2020-06-23 Acufocus, Inc. Methods of molding intraocular lenses
US11464625B2 (en) 2015-11-24 2022-10-11 Acufocus, Inc. Toric small aperture intraocular lens with extended depth of focus
RU2757562C2 (ru) * 2016-12-07 2021-10-18 Кова Компани, Лтд. Торическая офтальмологическая линза
US11366336B2 (en) 2016-12-07 2022-06-21 Kowa Company, Ltd. Toric ophthalmic lens
EP3557314A4 (en) * 2016-12-07 2020-08-12 Kowa Company, Ltd. TORIC OCULAR LENS
US11364110B2 (en) 2018-05-09 2022-06-21 Acufocus, Inc. Intraocular implant with removable optic
CN111035471A (zh) * 2018-10-12 2020-04-21 富螺(上海)医疗器械有限公司 人工晶体
CN111035471B (zh) * 2018-10-12 2023-12-26 富螺(上海)医疗器械有限公司 人工晶体
CN111024373A (zh) * 2019-12-25 2020-04-17 福州锐景达光电科技有限公司 镜头组件焦面测量矫正装置及焦面测量矫正方法

Also Published As

Publication number Publication date
CN104127262A (zh) 2014-11-05
CN104127262B (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
WO2015078271A1 (zh) 散光矫正型人工晶体及其设计和生产方法
KR102226668B1 (ko) 시력 교정 렌즈 및 그러한 렌즈의 제조 방법
US10226326B2 (en) Microincision lens
US8388130B2 (en) Non-deforming contact lens
EP2762953B1 (en) Asymmetric lens design and method for preventing and/or slowing myopia progression
TWI522096B (zh) 用以進行初期近視調控的系統與使用該系統的方法
US7776086B2 (en) Aspherical corneal implant
US10359645B2 (en) Multifunction contact lens
CN203647535U (zh) 散光矫正型人工晶体
RU2664161C2 (ru) Контактные линзы со стабилизацией против трения
WO2011065986A1 (en) Adjustable multifocal intraocular lens system
EP2335112A1 (en) Toric ophthalmic lenses having selected spherical aberration characteristics
KR20170056675A (ko) 연장된 피사계 심도를 갖는 다초점 안구내 렌즈
WO2019109862A2 (zh) 角膜塑形镜以及用于制造角膜塑形镜的方法
EP3687448A2 (en) Intraocular lenses having an anterior-biased optical design
WO2024132653A2 (en) Spectacle lens design data and method for manufacturing a spectacle lens

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866735

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14866735

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14866735

Country of ref document: EP

Kind code of ref document: A1