WO2015077782A1 - Wireless charging coil - Google Patents

Wireless charging coil Download PDF

Info

Publication number
WO2015077782A1
WO2015077782A1 PCT/US2014/067440 US2014067440W WO2015077782A1 WO 2015077782 A1 WO2015077782 A1 WO 2015077782A1 US 2014067440 W US2014067440 W US 2014067440W WO 2015077782 A1 WO2015077782 A1 WO 2015077782A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stamped
wireless charging
trace
coils
Prior art date
Application number
PCT/US2014/067440
Other languages
French (fr)
Inventor
Arthur Kurz
Bernard Duetsch
Joshua KURZ
Original Assignee
A.K. Stamping Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/470,381 external-priority patent/US9859052B2/en
Application filed by A.K. Stamping Company, Inc. filed Critical A.K. Stamping Company, Inc.
Priority to CN201480074077.1A priority Critical patent/CN105934804B/en
Priority to ES14863209T priority patent/ES2883127T3/en
Priority to JP2016554831A priority patent/JP6537522B2/en
Priority to KR1020167016360A priority patent/KR102035382B1/en
Priority to CA2931471A priority patent/CA2931471C/en
Priority to EP14863209.4A priority patent/EP3074987B1/en
Priority to EP21177116.7A priority patent/EP3940728A3/en
Priority to DK14863209.4T priority patent/DK3074987T3/en
Priority to PL14863209T priority patent/PL3074987T3/en
Publication of WO2015077782A1 publication Critical patent/WO2015077782A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • H01F27/2852Construction of conductive connections, of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present disclosure relates to a wireless charging coil and methods for manufacturing thereof. More specifically, the present disclosure relates to a bifilar parallel wound, series connected wireless charging coil.
  • Wireless power transfer is the transfer of electrical power from a base station (transferring power) to a mobile device (consuming power) through electromagnetic induction (inductive power) and/or resonant frequency method.
  • Wireless power transfer is becoming increasingly popular in mobile devices, and particularly in smartphones.
  • a popular standard for inductive charging technology is the Qi interface standard developed by the Wireless Power Consortium, which has several protocols to allow the wireless transfer of electrical power between electronic devices.
  • Other standards may make use of electromagnetic induction or resonant frequency to wirelessly charge devices.
  • a mobile device (or any other electronic device) must meet certain requirements and performance standards in order to be Qi compliant.
  • the present disclosure relates to wireless charging coils and methods for making thereof. More specifically, the present disclosure relates to a planar bifilar parallel-wound, series connected wireless charging coil.
  • the coil has a thinner thickness (e.g., low profile), an increased density (e.g., high fill factor), and higher efficiency (e.g., lower resistance) than conventional wireless charging coils.
  • FIG. 1 is a diagram showing processing steps for manufacturing a wireless charging coil
  • FIG. 2 is a schematic view of a first stamped coil with tie bars
  • FIG. 3 is a schematic view of a second stamped coil with tie bars
  • FIG. 4 is a schematic view of an assembled coil after the tie bars of the first and second stamped coils have been removed;
  • FIG. 5 is a schematic view of the assembled wireless charging coil with jumpers attached
  • FIG. 6 is a close up view of portion A of FIG. 5;
  • FIG. 7 is a schematic view of an electrical component assembly including a wireless charging coil and NFC antenna
  • FIG. 8 is a schematic view of an assembled wireless charging coil with planar bifilar coils
  • FIG. 9 is a cross-sectional view of a portion of the wireless charging coil of FIG. 8;
  • FIG. 10 is a schematic view of an assembled wireless charging coil with stacked bifilar coils;
  • FIG. 11 is a cross-sectional view of a portion of the wireless charging coil of FIG. 10;
  • FIG. 12 is a perspective view of an electrical component assembly
  • FIG. 13 is an exploded view of the electrical component assembly of FIG. 12
  • FIG. 14 is a perspective view of a resonant coil
  • FIG. 15 is a perspective view of a resonant coil assembly
  • FIG. 16 is a perspective view of a folded stamped resonant coil
  • FIG. 17 is a perspective view of the coil of FIG. 16 partially opened
  • FIG. 18 is a perspective view of the coil of FIG. 16 fully opened
  • FIG. 19 is an exploded view of a low profile electrical component assembly
  • FIG. 20 is a perspective view of the filler material of FIG. 19;
  • FIG. 21 is a diagram showing processing steps for manufacturing a wireless charging coil with adhesive
  • FIG. 22 is a partial cross-sectional view of a first stamped coil when applied to a first laminate
  • FIG. 23 is a partial cross-sectional view of an assembled coil positioned between a first and second laminate
  • FIG. 24 is partial cross-sectional view of an assembled coil
  • FIG. 25 is a partial top view of the assembled coil of FIG. 24.
  • FIG. 26 is a top view of an assembled coil of the present disclosure.
  • the stamped metal wireless charging coil comprises a series of parallel traces connected in a bifilar fashion.
  • the wireless charging coil includes first and second coils that are parallel, closely spaced, and connected in series such that the first and second coils have parallel currents.
  • the first and second coils could be stacked or planar and connected in series and/or parallel to meet performance requirements (e.g., electrical requirements, power requirements, etc.).
  • the wireless charging coil could be used in any battery powered device, particularly in mobile devices (e.g., smartphones, tablets, watches, etc.).
  • the wireless charging coil can be made to be Qi compliant, but could be adjusted to comply with any wireless transfer protocol.
  • a wireless charging coil with a greater amount of conductive material, such as copper, can be positioned within a given space by varying (e.g., increasing) the thickness of the coil, which increases energy availability.
  • the wireless charging coils described herein exhibit an increased magnetic coupling effectiveness (e.g., magnetic field strength) and thereby transmit energy at a higher efficiency.
  • FIG. 1 is a diagram showing processing steps 10 for manufacturing a wireless charging coil of the present disclosure.
  • a metal sheet is stamped to form a first coil with tie bars.
  • the metal sheet could be any of a variety of materials suitable for wireless power transfer (e.g., copper, copper alloy, aluminum, aluminum alloy, etc.).
  • a metal sheet e.g., the same metal sheet or a different metal sheet
  • the first coil is stamped to remove the tie bars.
  • the second coil is stamped to remove the tie bars.
  • the first and second coils are assembled together.
  • the assembled coil is applied to a ferrite substrate.
  • jumpers e.g., leads
  • are attached to electrically connect the first and second coils in series e.g., an inside end of the first coil is electrically connected to the outside end of the second coil via a jumper).
  • the steps described above could be interchanged, consolidated, or omitted completely.
  • the coils could be stamped without first forming tie bars, and/or the first and second coils could be applied directly to the ferrite (without being assembled first), etc.
  • the coil could be photo-chemically etched or machined instead of stamped, or made by any other suitable manufacturing process.
  • FIG. 2 is a view of a first stamped coil 30 with tie bars.
  • the first coil 30 can be a generally rectangular planar spiral trace 31, although the trace 31 could form any suitable shape (e.g., circular planar spiral).
  • the dimensions of the coil 30 could vary depending on the application of the coil 30 (e.g., as used in mobile devices, wearable devices, cars, etc.).
  • the coil 30 could be of any suitable thickness, such as between 0.003 in. and 0.020 in., etc., but could be thicker for higher powered applications.
  • the coil 30 could be of any suitable overall dimensions, such as between 0.25 in. and 4 in. in width and/or between 0.25 in. and 4 in. in height.
  • the trace 31 could also be of any suitable dimensions. For example, the trace 31 could be between 0.005 in.
  • the coil 30 could be made of any suitable material for wireless power transfer, such as, for example, copper, copper alloy, aluminum, aluminum alloy, tempered copper alloy (e.g., CI 10), etc.
  • the trace 31 of the coil 30 revolves around a center any number of times (e.g., 5, 10, etc.), such as to comply with any inductive or resonant power requirements.
  • the trace 31 spirals to form an inside portion 32 at the center of the coil 30.
  • the coil 30 has an inside end 34 and an outside end 36.
  • the spaces 38 between the trace 31 are configured to be wide enough (e.g., 0.0285 in.) to accommodate the second stamped coil (described in more detail below).
  • Tie bars 40 can be positioned at a plurality of locations throughout these spaces 38 to maintain the general shape of the coil 30 (e.g., prevent unwinding or deformation of the shape), such as during transportation of the coil 30 between locations or between stations.
  • the outside end 36 could extend out at an angle, such as a generally ninety degree angle.
  • the inside end 34 and outside end 36 can be disposed towards the same side of the coil 50, but could be at any of a variety of locations in the coil 50.
  • FIG. 3 is a view of a second stamped coil 50 with tie bars.
  • the second coil 50 shares most of the same features and characteristics of the first coil shown in FIG. 2.
  • the second coil 50 can be a generally rectangular planar spiral trace 51, although the trace 51 could form any suitable shape (e.g., circular planar spiral).
  • the dimensions of the coil 50 could vary depending on the application of the coil 50 (e.g., as used in mobile devices, wearable devices, cars, etc.).
  • the coil 50 could be of any suitable thickness, such as between 0.003 in. and 0.020 in., etc., but could be thicker for higher powered applications.
  • the coil 50 could be of any suitable overall dimensions, such as between 0.25 in. and 4 in. in width and/or between 0.25 in. and 4 in. in height.
  • the trace 51 could also be of any suitable dimensions.
  • the trace 51 could be between 0.005 in. and 0.250 in. in width.
  • the dimensions could vary depending on physical and performance dimensions of the mobile device (e.g., required frequency).
  • the coil 50 could be made of any suitable material for wireless power transfer, such as, for example, copper, copper alloy, aluminum, aluminum alloy, tempered copper alloy (e.g., CI 10), etc.
  • the trace 51 of the coil 50 revolves around a center any number of times (e.g., 5, 10, etc.), such as to comply with any inductive or resonant power requirements.
  • the trace 51 spirals to form an inside portion 52 at the center of the coil 50.
  • the coil 50 has an inside end 54 and an outside end 56.
  • the spaces 58 between the trace 51 are configured to be wide enough (e.g., 0.0285 in.) to accommodate the first stamped coil 30 (described above).
  • Tie bars 60 can be positioned at a plurality of locations throughout these spaces 58 to maintain the general shape of the coil 50 (e.g., prevent unwinding or deformation of the shape), such as during transportation of the coil 50 between locations or between stations.
  • the outside end 56 does not extend out as with the first coil 30 (but could).
  • the inside end 54 and outside end 56 can be disposed towards the same side of the coil 50, but could be at any of a variety of locations in the coil 50.
  • FIG. 4 is a view of an assembled coil 170 after the tie bars of the first and second stamped coils 130, 150 have been removed.
  • the first and second coils 130, 150 fit into each other. More specifically, the first coil 130 fits into the space formed between the trace 151 of the second coil 150, and conversely, the second coil 150 fits into the space formed between the trace 131 of the first coil 130.
  • there are small gaps between the trace 131 of the first coil 130 and the trace 151 of the second coil 150 e.g., 0.003 in., 0.004 in., etc.
  • the first and second coils 130, 150 together form a parallel planar spiral.
  • the inside end 134 of the first coil 130 is adjacent to the inside end 154 of the second coil 150, and the outside end 136 of the first coil 130 is adjacent to the outside end 156 of the second coil 150.
  • the ends could be any relative distance from one another.
  • This stamping method could have an average space width variation of at least approximately 0.003 in. for the assembled coil 170. The maximum and minimum variance are dependent on the assembled coil 170 dimensions (e.g., overall height and width).
  • the tight tolerances and rectangular cross-sectional shape of the traces 130, 131 could result in a fill ratio (e.g., 85%) greater than current industry coils (e.g., 65%), such as wound coils, etched coils, etc.
  • a fill ratio e.g., 85%
  • current industry coils e.g., 65%
  • current industry coils e.g., 65%
  • the rectangular cross-sectional shape achieved from stamping provides a potentially greater fill ratio than the circular cross- sectional shape of a round wire (e.g., round copper wire).
  • a 0.010 in. diameter insulated round wire 0.009 diameter in. wire with 0.0005 in. insulation
  • the wireless charging coil 170 can operate under higher ambient temperatures than other current industry wires (e.g., Litz wire), and is not susceptible to degradation by vibration, shock, or heat. This is partly because the wireless charging coil 170 is made of a single-monolithic conductor (e.g., not a multi-strand wire). This can be compared to the individual strands of a Litz wire, which has insulation material separating each of the individual wire strands which cannot withstand higher temperatures.
  • other current industry wires e.g., Litz wire
  • the wireless charging coil 170 is made of a single-monolithic conductor (e.g., not a multi-strand wire). This can be compared to the individual strands of a Litz wire, which has insulation material separating each of the individual wire strands which cannot withstand higher temperatures.
  • FIG. 5 is a view of the assembled wireless charging coil 270 with jumpers attached.
  • a jumper could be attached to the first outside end 236.
  • the inside end 234 of the first coil 230 is electrically connected to the outside end 256 of the second coil 250 by a first jumper 274.
  • These ends 234, 256 are relatively proximate to one another, and disposed on the same side of the coil 270 to allow for a short jumper 274.
  • a second jumper 276 is then used to electrically connect the inside end 254 of the second coil with the mobile device circuitry.
  • the outside end 236 and inside end 254 are relatively proximate and disposed towards the same side of the coil 270, to provide for a short jumper 276 and for ease of electrical wiring with the electronic device.
  • the result is a pair of parallel, closely spaced coils 230, 250 connected in series such that the first and second traces 230, 250 have parallel currents (e.g., the currents of each trace are in the same clockwise or counterclockwise direction).
  • the inside portion 272 of the assembled coil 270 is insulated (e.g., by plastic and glue) to ensure proper performance.
  • the assembled wireless charging coil 270 can have any number of windings, depending upon electrical requirements.
  • the wireless charging coil 270 could be used in any battery powered device, such as smartphones.
  • the assembled coil 270 could be of any suitable overall dimensions (e.g., 1.142 in. width and 1.457 in. height, etc.).
  • the coil length could be of any suitable length (e.g., 48.459 in.).
  • FIG. 6 is a close up view of portion A of FIG. 5. As shown, there are very small gaps
  • the assembled wireless charging coil 270 could provide direct current (DC) resistance
  • the traces 230, 250 could have a cross section of 0.0001234 in. 2 (e.g., 0.005 in. thickness and 0.0246 in. width, or 0.004 in. thickness and 0.0308 in.
  • the traces 230, 250 could have a cross section of 0.0000953 in. 2 (e.g., 0.005 in. thickness and 0.019 in. width, or 0.004 in. thickness and 0.0238 in. width, etc.).
  • the stamped wireless charging coil 270 can achieve a high trace thickness and/or high overall aspect ratio compared to other current industry methods (e.g., printed circuit board (PCB) etched coils).
  • PCB printed circuit board
  • FIG. 7 is a view of an electrical component assembly 390 including a wireless charging coil 370. More specifically, the wireless charging coil 370 is attached to ferrite substrate 392 and in conjunction with a near field communication (NFC) antenna 394 having contact paddles.
  • the wireless charging coil 370 and NFC antenna 394 could have contact pads (e.g., gold) to connect the wireless charging coil 370 and NFC antenna 394 to the circuitry of the mobile device.
  • the assembly comprises a first jumper 374, a second jumper 376, and a third jumper 377 connecting the various ends of the coil 370, as explained above in more detail.
  • the wireless charging coil 370 is within the NFC antenna 394 with jumpers 376, 377 that extend to the outside of the NFC antenna 394.
  • the wireless charging coil 370 and jumpers 376, 377 could be placed at any location relative to the NFC antenna 394.
  • the total thickness of the assembly could vary depending on various potential needs and requirements.
  • the jumpers could be 0.05-0.08 mm thick
  • the film could be 0.03 mm thick
  • the NFC antenna 394 and coil 370 could be 0.08 mm thick
  • the ferrite 392 could be 0.2 mm thick for a total wireless charging coil thickness of approximately 0.36 mm.
  • FIG. 8 is a schematic view of an assembled wireless charging coil 470 with planar bifilar coils.
  • the wireless charging coil 470 includes a first coil 430 (e.g., trace) and a second coil 450 (e.g., trace).
  • the assembled coil 470 is manufactured and operates in the manner discussed above with respect to FIGS. 1-7.
  • the first coil 430 and the second coil 450 can have any desired thickness, such as to meet different power requirements.
  • the first coil 430 and second coil 450 could be connected in series or parallel.
  • the width of the first and/or second coil 430, 450 could vary along the length of the coil to optimize performance of the assembled wireless charging coil 470.
  • the thickness of the first and second coils 430, 450 could change over the length of the coil.
  • the width (and/or thickness) of the first coil 430 could gradually increase (or narrow) from a first end 434 towards a middle of the coil 430, and the width (and/or thickness) could likewise gradually narrow (or increase) from the middle to the second end 436 of the coil 430 (e.g., a spiral coil of wide-narrow- wide), thereby varying the cross-sectional area throughout.
  • Any variation of width (e.g., cross-section) or thickness could be used, and/or these dimensions could be maintained constant over portions of the coil, according to desired performance characteristics .
  • the spaces between the windings of the coil could be varied to optimize performance of the wireless charging coil 470.
  • the gap width between the traces could be wider towards the outside of the first coil 430 and narrower towards the inside of the first coil 430 (or the opposite).
  • the distance between the first coil 430 and second coil 450 in the assembled coil 470 could also be varied to optimize performance.
  • the geometry of the edges of the coil could be varied (e.g., scalloped, castellated, etc.), such as to reduce eddy currents.
  • FIG. 9 is a cross-sectional view of a portion of the wireless charging coil of FIG. 8.
  • the first coil 430 comprises sections 414-424 and the second coil 450 comprises sections 402- 412.
  • the cross-section of the first coil 430 becomes gradually wider and then narrower from a first end to a second end of the first coil 430.
  • sections 414 and 424 are the narrowest (e.g., 0.025 in.), followed by sections 404 and 422 (e.g., 0.030 in.), and sections 418 and 420 are the widest (e.g., 0.035 in.).
  • the cross-section of the second coil 450 becomes gradually wider and then narrower from a first end to a second end of the second coil 450.
  • sections 402 and 412 are the narrowest, and sections 406 and 408 are the widest. Changes in the dimensions of the cross section of the antenna can likewise be varied in other manners.
  • FIG. 10 is a schematic view of an assembled wireless charging coil 570 with stacked bifilar coils.
  • the wireless charging coil 570 includes a first coil 530 and a second coil 550.
  • the assembled coil 570 is manufactured and operates in the manner discussed above with respect to FIGS. 1-7, as well as that discussed in FIGS. 8-9, except that the first and second coils 530, 550 are stacked instead of planar.
  • the first coil 530 includes a first end 534 and a second end 536
  • the second coil 550 includes a first end 554 and a second end 556.
  • varying the skew or offset (e.g., stacking distance) of the first coil 530 relative to the second coil 550 can affect the performance of the wireless charging coil 570.
  • the first coil 530 and second coil 550 could be connected in series or parallel.
  • FIG. 11 is a cross-sectional view of a portion of the wireless charging coil of FIG. 10.
  • This coil 570 is similar to that of FIGS. 8-9, including a first coil 530 with sections 514-524 and a second coil 550 with sections 502-512, except that the first and second coils 530, 550 are stacked instead of planar.
  • FIGS. 12-13 are views showing an electrical component assembly 690. More specifically, FIG. 12 is a perspective view of an electrical component assembly 690.
  • the electrical component assembly 690 comprises a ferrite shield 692, a pressure sensitive adhesive (PSA) layer 602 positioned on the ferrite shield 692, an assembled coil 670 (e.g., bifilar coil) positioned therebetween, and jumpers 674, 676 positioned on the PSA layer 602.
  • FIG. 13 is an exploded view of the electrical component assembly 690 of FIG. 12.
  • the bifilar coil 670 includes a first coil 630 having an inside end 634 and an outside end 636 interconnected with a second coil 650 having an inside end 654 and an outside end 656. The inside and outside ends are on the same side of the assembled coil 670 for ease of use and assembly (e.g., minimize the distance to electrically connect the ends).
  • Ferrite shield 692 includes a first hole 696 and a second hole 698 positioned to correlate with the placement of the inside end 634 of the first coil 630 and the inside end 654 of the second coil 650 (e.g., when the coil 670 is placed onto the ferrite shield 692.
  • holes 696, 698 are shown as circular, any shape and size openings could be used (e.g., one rectangular opening, etc.). These holes 696, 698 facilitate assembly and welding of the electrical component assembly 690.
  • PSA layer 602 and ferrite shield 692 are similarly sized to one another, and although shown as rectangular, both could be of any shape (e.g., circular). PSA layer secures the relative placement of the assembled coil 670 to the ferrite shield 692.
  • PSA layer 602 could have adhesive on one or both sides, and could include a polyethylene terephthalate (PET) film area 604 free of adhesive on one or both sides. PET film area 604 facilitates assembly and welding of the electrical component assembly 690
  • PSA layer 602 includes a first hole 606 and a second hole 608 in the PET film area 608 which correlate in position with the placement of the inside end 634 of the first coil 630 and the inside end 654 of the second coil 650 (as well as the first hole 696 and second hole 698 of the ferrite substrate 692).
  • holes 606, 608 are shown as circular, any shape and size openings could be used (e.g., one rectangular opening). Holes 606, 608 provide access through the PSA layer 602 to electrically connect jumpers 674, 676 with the inside ends 634, 654 of the assembled coil 670.
  • the PET film area 604 facilitates attachment of the jumpers 674, 676 to the assembly 690.
  • FIG. 14 is a perspective view of a resonant coil 730.
  • Resonant coil 730 could be a generally rectangular planar spiral trace 731, although the trace 731 could form any suitable shape.
  • the resonant coil 730 includes an inside end 734 and an outside end 736.
  • the trace 731 is stamped on a strip or sheet of metal (e.g., copper, aluminum, etc.).
  • the dimensions of the coil 730 could vary depending on the application of the coil 730.
  • the coil 730 could be of any suitable thickness, and of any suitable overall dimensions.
  • the trace 731 could also be of any suitable dimensions. The dimensions could vary depending on physical and performance requirements.
  • the coil 730 could be made of any suitable material for wireless power transfer, such as, for example, copper, copper alloy, aluminum, aluminum alloy, tempered copper alloy (e.g., CI 10), etc.
  • the gaps between the windings of the trace 731 are larger for a resonant coil than for other types of inductive coils due to performance requirements.
  • Stamping provides a scalable process for high volume production with high yields.
  • the stamped trace 731 is not prone to unwinding and can allow for a thicker trace. This is advantageous compared with other existing technologies. For example, winding wire (e.g., copper) to a specific pattern on a surface is difficult and the wound wire can unwind. Further, etched copper is expensive and could be limited to a maximum thickness (e.g., 0.004 in. thick).
  • the trace 731 of the resonant coil 730 includes a first side 737 and a second side 739 offset from the first side 737 by angled portions 741 of the trace 731.
  • the angled portions 741 are aligned with one another (e.g., occur along line B-B), and angled in the same direction. In other words, angled portions 741 are all angled toward a particular side of the coil 730 (e.g., towards one side of line A-A), such that a first portion 737 (e.g., upper portion) of the coil 730 is shifted relative to a second portion 739 (e.g., lower portion) of the coil 730.
  • FIG. 15 is a perspective view of a resonant coil assembly 790, including the first resonant coil 730 from FIG. 14.
  • the resonant coil assembly 790 includes a first coil 730 and a second coil 750, which are identical to one another (which minimizes manufacturing costs).
  • the resonant coil assembly 790 could be laminated such that the first coil 730 and second coil 750 are laminated to a film 702 (e.g., PET film), such as by an adhesive (e.g., heat activated, pressure sensitive, etc.) to provide more stability in downstream operations.
  • the first coil 730 could be adhered to one side of the film 702 and the second coil 750 could be adhered to the opposite side of the film 702.
  • the first coil 730 includes an outside end 736 and an inside end 734
  • the second coil 750 includes an outside end 756 and an inside end 754.
  • the first coil 730 and second coil 750 could be exactly the same size and shape coil, except that the second coil 750 is rotated 180 degrees about line D-D.
  • the trace 731 of the first coil 730 is positioned between the gap formed by the windings of the trace 751 of the second coil 750 (and vice- versa), except at the angled portions of each coil along line D-D, where the traces cross one another.
  • the inside end 734 of the first coil 730 could be adjacent to (and in electrical connection with) the inside end 754 of the second coil 750
  • the outside end 736 of the first coil 730 could be adjacent to the outside end 756 of the second coil 750.
  • FIGS. 16-18 are views of a stamped resonant coil 870.
  • FIG. 16 is a perspective view of a folded stamped resonant coil 870.
  • the coil 870 comprises connector sheet 871, a first set of traces 831 of a first coil portion 830 with ends thereof connected to an edge of the connector sheet 871 at connection points 873, and a second set of traces 851 of a second coil portion 850 with ends thereof connected to the same edge of the connector sheet 871 at connection points 873.
  • a (single) sheet of metal is stamped to form the first set of traces 831 and the second set of traces 851 (e.g., such that the arcs of each trace of the first and second sets of traces 831, 851 are oriented in the same direction).
  • the ends of the first and second set of traces 831, 851 are then connected to the same edge of connector sheet 871 (e.g., insulation material).
  • the connector sheet 871 facilitates wiring of the sets of traces 831, 851 to each other, as well as facilitates the connection of the stamped resonant coil 870 to electronic circuitry.
  • the ends of the first and second set of traces 831, 851 are then wired to each other, such as by using a series of jumpers and/or traces.
  • the jumpers and/or traces could be in the connector sheet 871 and could run parallel to the connector sheet (and perpendicular to the first and second sets of traces 831, 851).
  • FIG. 19 is an exploded view of a low profile electrical component assembly 990. More specifically, the low profile electrical component assembly 990 comprises a substrate 992 (e.g., PET layer), a filler material layer 933 (e.g., rubber, foam, durometer, etc.), a coil 930 (e.g., resonant coil), and a protective layer 902.
  • the protective layer 902 could be partly translucent and could comprise a tab (e.g., for applying or removing).
  • FIG. 20 is a perspective view of the filler material 933 of FIG. 19.
  • Filler material 933 comprises grooves 935 which correspond in size and shape to that of the coil 930.
  • the coil 930 is nested in filler material 933, which protects the coil shape from bending and/or deformation. Such an assembly facilitates handling of the coil 930 for subsequent operations.
  • FIG. 21 is a diagram showing processing steps 1000 for manufacturing a wireless charging coil with adhesive (e.g., glue).
  • a metal sheet is stamped to form a first coil with tie bars.
  • a metal sheet is stamped to form a second coil with tie bars.
  • a first coil is applied to a first laminate (e.g., plastic substrate, Transilwrap) with an adhesive layer to adhere thereto.
  • a second coil is applied to a second laminate (e.g., plastic substrate, Transilwrap) with an adhesive layer to adhere thereto.
  • the first coil is stamped to remove tie bars.
  • the second coil is stamped to remove tie bars.
  • the first coil and second coil are fixed in place as a result of the adhesive layer on the plastic laminate.
  • the first coil with the laminate adhered thereto is assembled with the second coil with the laminate adhered thereto. More specifically, as discussed above, the first coil with a spiral trace fits into the space formed between a trace of a second coil , and conversely, the second coil fits into the space formed between the trace of the first coil, thereby forming an assembled coil. As a result, the assembled coil is positioned between (e.g., sandwiched between) the first laminate and the second laminate.
  • a heat press is applied to the assembled coil to displace and set the adhesive layer from the first and second laminates. More specifically, the heat applied should be hot enough to melt the adhesive (e.g., more than 220-250 °F), but not hot enough to melt the plastic laminate.
  • the pressure applied pushes the first coil towards the second laminate, such that the adhesive of the second laminate positioned in between the trace of the second coil is displaced and forced between the spaces between the first trace of the first coil and the second trace of the second coil. Squeezing the first and second coils together (e.g., with heat and/or pressure) migrates the adhesive to the spaces in between the traces (e.g., to insulate them from one another).
  • the pressure, heat, and duration could vary depending on the desired cycle time for manufacturing the assembled coil. It is noted that such a process could result in a planar offset of the first coil from the second coil when assembled together.
  • FIG. 22 is a partial cross- sectional view of a first stamped coil 1130 when applied to a first laminate 1123.
  • the first laminate 1123 includes an adhesive layer 1127 applied to a surface thereof.
  • some of the adhesive 1127 is displaced to the sides, such that the displaced adhesive 1127 accumulates against the sides of the trace 1131 of the first stamped coil 1130. Accordingly, the adhesive 1127 on the sides and underneath the trace 1131 of the first stamped coil 1130 prevents the trace 1131 from moving relative to the first laminate 1123.
  • FIG. 23 is a partial cross-sectional view of an assembled coil positioned between a first laminate 1123 and second laminate 1125.
  • the first coil 1130 with a first trace 1131 fits into the space formed between a second trace 1151 of a second coil 1150
  • the second coil 1150 fits into the space formed between the first trace 1131 of the first coil 1130, thereby forming an assembled coil 1170.
  • the assembled coil 1170 is positioned between (e.g., sandwiched between) the first laminate 1123 and the second laminate 1125. This displaces the first adhesive 1127 between the first trace 1131 of the first coil 1130, and displaces the second adhesive 1129 between the second trace 1151 of the second coil 1150.
  • the adhesive covers the surface of the traces 1131, 1151 (e.g., by melting), and acts as an insulator and stabilizer for the traces 1131, 1151.
  • the first and second coils 1130, 1150 are bonded together. This prevents relative movement of the traces 1131, 1151, which prevents the first stamped coil 1130 from contacting the second stamped coil 1150 and shorting out the assembled coil 1170.
  • the first and second stamped coils 1130, 1150 could each be 0.0125 in. thick, and each adhesive layer 1127, 1129 could be 0.0055 in. thick, for a total thickness of 0.0225 in.
  • FIGS. 24-25 are partial views of an assembled coil 1170. More specifically, FIG. 24 is partial cross-sectional view of an assembled coil 1170, and FIG. 25 is a partial top view of the assembled coil 1170 of FIG. 24.
  • the first stamped coil 1030 includes a planar spiral trace 1031, which spirals to form an inside portion 1032 at the center of the coil 1030.
  • the assembled coil 1170 comprises (as discussed above) a first coil 1130 with a spiral trace 1131, which fits into the space formed between a trace 1151 of a second coil 1150, and conversely, the second coil 1150 fits into the space formed between the trace 1131 of the first coil 1130. Accordingly, the first and second coils 1130, 1150 form a parallel planar spiral.
  • a first laminate 1123 e.g., Transilwrap
  • a second laminate 1125 e.g., Transilwrap
  • the first and second stamped coils 1130, 1150 are positioned between the first and second laminates 1123, 1125.
  • the adhesive 1127 (dyed black for clarity) is displaced to fill the spaces between the first and second traces 1131, 1151.
  • FIG. 25 shows the displacement of adhesive 1127 when the first coil 1130 and second coil 1150 are assembled. More specifically, the adhesive 1127 (dyed black for clarity) is shown between the first trace 1131 and the second trace 1151. Further, in the particular example shown, more pressure has been exerted on the left side first and second traces 1131a, 1151a, than the right side traces 1131b, 1151b. As a result, less adhesive 1127 has been displaced on the right side than the left side, thereby making the right side trace 1151b less visible than the left side trace 1151a (as a result of the black dyed adhesive 1127).
  • FIG. 26 is a top view of an assembled coil 1270 of the present disclosure.
  • the assembled coil 1270 comprises a first coil 1030 with a first spiral trace 1031 having an inside end 1034 and an outside end 1036, a second coil 1050 with a second spiral trace 1051 having an inside end 1054 and an outside end 1056, a first jumper 1277 attached to the outside end 1236 of the first coil 1230, a second jumper 1274 attached to the inside end 1234 of the first coil 1230 and the outside end 1256 of the second coil 1250, and a third jumper 1276 attached to the inside end 1254 of the second coil 1250.
  • the first and second spiral coils 1030, 1050 forming an inside portion 1272.
  • a laminate 1227 covers the assembled coil 1270 including the inside portion 1272.
  • the adhesive layer of the laminate 1227 stabilizes the first coil 1230 and second coil 1250 and insulates them. This prevents relative movement of the first and second coil 1230, 1250 and prevents the first and second coils 1230, 1250 from accidentally contacting one another and shorting out the assembled coil 1270
  • the laminate 1227 could define one or more cutouts. More specifically, the laminate 1227 could define an inside cutout 1223 to provide access to (e.g., expose) the first inside end 1234 of the first coil 1230 and the second inside end 1254 of the second coil 1250. The laminate 1227 could also define an outside cutout 1225 to provide access to (e.g., expose) the first outside end 1236 of the first coil 1230 and the second outside end 1256 of the second coil 1250. The first cutout 1223 could extend to substantially of the inside portion 1272.
  • the assembled coil 1270 (and the first and second coils 1230, 1250 thereof) could be of any material and/or style (e.g., A6 style coil).
  • the wireless charging coil e.g., bifilar coil
  • the first and second coils of the wireless charging coil could be electrically connected to each other in series or parallel depending on electrical requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

A wireless charging coil is provided herein. More specifically, provided herein is a wireless charging coil comprising a first stamped coil having a first spiral trace, the first spiral trace defining a first space between windings, and a second stamped coil having a second spiral trace, the second spiral trace defining a second space between windings, the first stamped coil and second stamped coil in co-planar relation, the first stamped coil positioned within the second space of the second stamped coil, and the second stamped coil positioned within the first space of the first stamped coil, the first and second coils electronically connected and an adhesive covering and surrounding the first stamped coil and the second stamped coil to bond the coils together and to insulate the coils.

Description

WIRELESS CHARGING COIL
SPECIFICATION BACKGROUND
FIELD OF THE DISCLOSURE
The present disclosure relates to a wireless charging coil and methods for manufacturing thereof. More specifically, the present disclosure relates to a bifilar parallel wound, series connected wireless charging coil.
RELATED ART
Wireless power transfer is the transfer of electrical power from a base station (transferring power) to a mobile device (consuming power) through electromagnetic induction (inductive power) and/or resonant frequency method. Wireless power transfer is becoming increasingly popular in mobile devices, and particularly in smartphones. A popular standard for inductive charging technology is the Qi interface standard developed by the Wireless Power Consortium, which has several protocols to allow the wireless transfer of electrical power between electronic devices. Other standards may make use of electromagnetic induction or resonant frequency to wirelessly charge devices. A mobile device (or any other electronic device) must meet certain requirements and performance standards in order to be Qi compliant.
Consumers generally want their mobile devices to be small and thin but also powerful and efficient, which are often counteracting goals. More specifically, charging coils must vary the material thickness to lower resistance and increase efficiency. Further, maximizing these goals can lead to performance and manufacturing limitations.
What would be desirable, but has not yet been developed, is a thinner and more efficient wireless charging coil for wireless power transfer between electronic devices. SUMMARY
The present disclosure relates to wireless charging coils and methods for making thereof. More specifically, the present disclosure relates to a planar bifilar parallel-wound, series connected wireless charging coil. The coil has a thinner thickness (e.g., low profile), an increased density (e.g., high fill factor), and higher efficiency (e.g., lower resistance) than conventional wireless charging coils.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing features of the disclosure will be apparent from the following Detailed Description, taken in connection with the accompanying drawings, in which:
FIG. 1 is a diagram showing processing steps for manufacturing a wireless charging coil;
FIG. 2 is a schematic view of a first stamped coil with tie bars;
FIG. 3 is a schematic view of a second stamped coil with tie bars;
FIG. 4 is a schematic view of an assembled coil after the tie bars of the first and second stamped coils have been removed;
FIG. 5 is a schematic view of the assembled wireless charging coil with jumpers attached;
FIG. 6 is a close up view of portion A of FIG. 5;
FIG. 7 is a schematic view of an electrical component assembly including a wireless charging coil and NFC antenna;
FIG. 8 is a schematic view of an assembled wireless charging coil with planar bifilar coils;
FIG. 9 is a cross-sectional view of a portion of the wireless charging coil of FIG. 8; FIG. 10 is a schematic view of an assembled wireless charging coil with stacked bifilar coils;
FIG. 11 is a cross-sectional view of a portion of the wireless charging coil of FIG. 10;
FIG. 12 is a perspective view of an electrical component assembly;
FIG. 13 is an exploded view of the electrical component assembly of FIG. 12
FIG. 14 is a perspective view of a resonant coil;
FIG. 15 is a perspective view of a resonant coil assembly;
FIG. 16 is a perspective view of a folded stamped resonant coil;
FIG. 17 is a perspective view of the coil of FIG. 16 partially opened;
FIG. 18 is a perspective view of the coil of FIG. 16 fully opened;
FIG. 19 is an exploded view of a low profile electrical component assembly; and
FIG. 20 is a perspective view of the filler material of FIG. 19;
FIG. 21 is a diagram showing processing steps for manufacturing a wireless charging coil with adhesive; FIG. 22 is a partial cross-sectional view of a first stamped coil when applied to a first laminate;
FIG. 23 is a partial cross-sectional view of an assembled coil positioned between a first and second laminate;
FIG. 24 is partial cross-sectional view of an assembled coil;
FIG. 25 is a partial top view of the assembled coil of FIG. 24; and
FIG. 26 is a top view of an assembled coil of the present disclosure.
DETAILED DESCRIPTION
The present disclosure relates to a wireless charging coil and methods of making same. As discussed in more detail below in connection with FIGS. 1 - 7, the stamped metal wireless charging coil comprises a series of parallel traces connected in a bifilar fashion. In other words, the wireless charging coil includes first and second coils that are parallel, closely spaced, and connected in series such that the first and second coils have parallel currents. The first and second coils could be stacked or planar and connected in series and/or parallel to meet performance requirements (e.g., electrical requirements, power requirements, etc.). The wireless charging coil could be used in any battery powered device, particularly in mobile devices (e.g., smartphones, tablets, watches, etc.). The wireless charging coil can be made to be Qi compliant, but could be adjusted to comply with any wireless transfer protocol. A wireless charging coil with a greater amount of conductive material, such as copper, can be positioned within a given space by varying (e.g., increasing) the thickness of the coil, which increases energy availability. Compared with other wireless charging coils, the wireless charging coils described herein exhibit an increased magnetic coupling effectiveness (e.g., magnetic field strength) and thereby transmit energy at a higher efficiency.
FIG. 1 is a diagram showing processing steps 10 for manufacturing a wireless charging coil of the present disclosure. In step 12, a metal sheet is stamped to form a first coil with tie bars. The metal sheet could be any of a variety of materials suitable for wireless power transfer (e.g., copper, copper alloy, aluminum, aluminum alloy, etc.). In step 14, a metal sheet (e.g., the same metal sheet or a different metal sheet) is stamped to form a second coil with tie bars. In step 16, the first coil is stamped to remove the tie bars. In step 18, the second coil is stamped to remove the tie bars. In step 20, the first and second coils are assembled together. In step 22, the assembled coil is applied to a ferrite substrate. In step 24, jumpers (e.g., leads) are attached to electrically connect the first and second coils in series (e.g., an inside end of the first coil is electrically connected to the outside end of the second coil via a jumper).
The steps described above could be interchanged, consolidated, or omitted completely. For example, the coils could be stamped without first forming tie bars, and/or the first and second coils could be applied directly to the ferrite (without being assembled first), etc. Additionally, the coil could be photo-chemically etched or machined instead of stamped, or made by any other suitable manufacturing process.
FIG. 2 is a view of a first stamped coil 30 with tie bars. The first coil 30 can be a generally rectangular planar spiral trace 31, although the trace 31 could form any suitable shape (e.g., circular planar spiral). The dimensions of the coil 30 could vary depending on the application of the coil 30 (e.g., as used in mobile devices, wearable devices, cars, etc.). The coil 30 could be of any suitable thickness, such as between 0.003 in. and 0.020 in., etc., but could be thicker for higher powered applications. The coil 30 could be of any suitable overall dimensions, such as between 0.25 in. and 4 in. in width and/or between 0.25 in. and 4 in. in height. The trace 31 could also be of any suitable dimensions. For example, the trace 31 could be between 0.005 in. and 0.250 in. in width. The dimensions could vary depending on physical and performance requirements of the mobile device (e.g., required frequency). The coil 30 could be made of any suitable material for wireless power transfer, such as, for example, copper, copper alloy, aluminum, aluminum alloy, tempered copper alloy (e.g., CI 10), etc.
The trace 31 of the coil 30 revolves around a center any number of times (e.g., 5, 10, etc.), such as to comply with any inductive or resonant power requirements. The trace 31 spirals to form an inside portion 32 at the center of the coil 30. As a result, the coil 30 has an inside end 34 and an outside end 36. The spaces 38 between the trace 31 are configured to be wide enough (e.g., 0.0285 in.) to accommodate the second stamped coil (described in more detail below). Tie bars 40 can be positioned at a plurality of locations throughout these spaces 38 to maintain the general shape of the coil 30 (e.g., prevent unwinding or deformation of the shape), such as during transportation of the coil 30 between locations or between stations. The outside end 36 could extend out at an angle, such as a generally ninety degree angle. The inside end 34 and outside end 36 can be disposed towards the same side of the coil 50, but could be at any of a variety of locations in the coil 50.
FIG. 3 is a view of a second stamped coil 50 with tie bars. The second coil 50 shares most of the same features and characteristics of the first coil shown in FIG. 2. The second coil 50 can be a generally rectangular planar spiral trace 51, although the trace 51 could form any suitable shape (e.g., circular planar spiral). The dimensions of the coil 50 could vary depending on the application of the coil 50 (e.g., as used in mobile devices, wearable devices, cars, etc.). The coil 50 could be of any suitable thickness, such as between 0.003 in. and 0.020 in., etc., but could be thicker for higher powered applications. The coil 50 could be of any suitable overall dimensions, such as between 0.25 in. and 4 in. in width and/or between 0.25 in. and 4 in. in height. The trace 51 could also be of any suitable dimensions. For example the trace 51 could be between 0.005 in. and 0.250 in. in width. The dimensions could vary depending on physical and performance dimensions of the mobile device (e.g., required frequency). The coil 50 could be made of any suitable material for wireless power transfer, such as, for example, copper, copper alloy, aluminum, aluminum alloy, tempered copper alloy (e.g., CI 10), etc.
The trace 51 of the coil 50 revolves around a center any number of times (e.g., 5, 10, etc.), such as to comply with any inductive or resonant power requirements. The trace 51 spirals to form an inside portion 52 at the center of the coil 50. As a result, the coil 50 has an inside end 54 and an outside end 56. The spaces 58 between the trace 51 are configured to be wide enough (e.g., 0.0285 in.) to accommodate the first stamped coil 30 (described above). Tie bars 60 can be positioned at a plurality of locations throughout these spaces 58 to maintain the general shape of the coil 50 (e.g., prevent unwinding or deformation of the shape), such as during transportation of the coil 50 between locations or between stations. The outside end 56 does not extend out as with the first coil 30 (but could). The inside end 54 and outside end 56 can be disposed towards the same side of the coil 50, but could be at any of a variety of locations in the coil 50.
FIG. 4 is a view of an assembled coil 170 after the tie bars of the first and second stamped coils 130, 150 have been removed. As shown, the first and second coils 130, 150 fit into each other. More specifically, the first coil 130 fits into the space formed between the trace 151 of the second coil 150, and conversely, the second coil 150 fits into the space formed between the trace 131 of the first coil 130. However, when assembled, there are small gaps between the trace 131 of the first coil 130 and the trace 151 of the second coil 150 (e.g., 0.003 in., 0.004 in., etc.), as discussed below in more detail. As a result, together the first and second coils 130, 150 together form a parallel planar spiral. Also shown, the inside end 134 of the first coil 130 is adjacent to the inside end 154 of the second coil 150, and the outside end 136 of the first coil 130 is adjacent to the outside end 156 of the second coil 150. However, the ends could be any relative distance from one another. This stamping method could have an average space width variation of at least approximately 0.003 in. for the assembled coil 170. The maximum and minimum variance are dependent on the assembled coil 170 dimensions (e.g., overall height and width).
The tight tolerances and rectangular cross-sectional shape of the traces 130, 131 could result in a fill ratio (e.g., 85%) greater than current industry coils (e.g., 65%), such as wound coils, etched coils, etc. For example, the rectangular cross-sectional shape achieved from stamping (see FIG. 9 below) provides a potentially greater fill ratio than the circular cross- sectional shape of a round wire (e.g., round copper wire). More specifically, a 0.010 in. diameter insulated round wire (0.009 diameter in. wire with 0.0005 in. insulation) could provide a 65% fill ratio, compared to a stamped coil with a rectangular cross section having a 0.006 thickness and 0.003 spacing gap. Further, the wireless charging coil 170 can operate under higher ambient temperatures than other current industry wires (e.g., Litz wire), and is not susceptible to degradation by vibration, shock, or heat. This is partly because the wireless charging coil 170 is made of a single-monolithic conductor (e.g., not a multi-strand wire). This can be compared to the individual strands of a Litz wire, which has insulation material separating each of the individual wire strands which cannot withstand higher temperatures.
FIG. 5 is a view of the assembled wireless charging coil 270 with jumpers attached. Although not shown, a jumper could be attached to the first outside end 236. As shown, the inside end 234 of the first coil 230 is electrically connected to the outside end 256 of the second coil 250 by a first jumper 274. These ends 234, 256 are relatively proximate to one another, and disposed on the same side of the coil 270 to allow for a short jumper 274. A second jumper 276 is then used to electrically connect the inside end 254 of the second coil with the mobile device circuitry. The outside end 236 and inside end 254 are relatively proximate and disposed towards the same side of the coil 270, to provide for a short jumper 276 and for ease of electrical wiring with the electronic device. The result is a pair of parallel, closely spaced coils 230, 250 connected in series such that the first and second traces 230, 250 have parallel currents (e.g., the currents of each trace are in the same clockwise or counterclockwise direction).
When fully assembled with the other components of the electronic device, the inside portion 272 of the assembled coil 270 is insulated (e.g., by plastic and glue) to ensure proper performance. The assembled wireless charging coil 270 can have any number of windings, depending upon electrical requirements. The wireless charging coil 270 could be used in any battery powered device, such as smartphones. The assembled coil 270 could be of any suitable overall dimensions (e.g., 1.142 in. width and 1.457 in. height, etc.). The coil length could be of any suitable length (e.g., 48.459 in.).
FIG. 6 is a close up view of portion A of FIG. 5. As shown, there are very small gaps
278 (e.g., voids) between the trace 231 of the first coil 230 and the trace 251 of the second coil 250 (e.g., 0.003 in., 0.004 in., etc.), although there could be increased gaps 280 at the corners to account for the bends in the traces 231, 251 (e.g., such that the gap increase alternates). These tight tolerances could result in a fill ratio greater than current industry methods.
The assembled wireless charging coil 270 could provide direct current (DC) resistance
(ohms), alternating current (AC) resistance, and/or AC/DC resistance ratios at a number of different values depending on the dimensions of the charging coil 270 and material(s) used in construction of the charging coil. The values could be adjusted to achieve high AC/DC ratios to meet induction standards. The coil dimensions could be varied to achieve varying resistance depending on the performance characteristics required. For example, for a resistance of 0.232 ohms using CI 10 alloy, the traces 230, 250 could have a cross section of 0.0001234 in.2 (e.g., 0.005 in. thickness and 0.0246 in. width, or 0.004 in. thickness and 0.0308 in. width, etc.), and for a resistance of 0.300 ohms using CI 10 alloy, the traces 230, 250 could have a cross section of 0.0000953 in.2 (e.g., 0.005 in. thickness and 0.019 in. width, or 0.004 in. thickness and 0.0238 in. width, etc.). The stamped wireless charging coil 270 can achieve a high trace thickness and/or high overall aspect ratio compared to other current industry methods (e.g., printed circuit board (PCB) etched coils).
FIG. 7 is a view of an electrical component assembly 390 including a wireless charging coil 370. More specifically, the wireless charging coil 370 is attached to ferrite substrate 392 and in conjunction with a near field communication (NFC) antenna 394 having contact paddles. The wireless charging coil 370 and NFC antenna 394 could have contact pads (e.g., gold) to connect the wireless charging coil 370 and NFC antenna 394 to the circuitry of the mobile device. The assembly comprises a first jumper 374, a second jumper 376, and a third jumper 377 connecting the various ends of the coil 370, as explained above in more detail. There could be a film (e.g., clear plastic) over the wireless charging coil 370 and NFC antenna 394, with the jumpers 374, 376, 377 on top of the film and only going through the film at the points of connection. This prevents accidentally shorting any of the electrical connections of the coil 370. Alternatively, the jumpers 374, 376, 377 could be insulated so that a film is not needed. To minimize space, the wireless charging coil 370 is within the NFC antenna 394 with jumpers 376, 377 that extend to the outside of the NFC antenna 394. However, the wireless charging coil 370 and jumpers 376, 377 could be placed at any location relative to the NFC antenna 394.
The total thickness of the assembly could vary depending on various potential needs and requirements. For example, the jumpers could be 0.05-0.08 mm thick, the film could be 0.03 mm thick, the NFC antenna 394 and coil 370 could be 0.08 mm thick, and the ferrite 392 could be 0.2 mm thick for a total wireless charging coil thickness of approximately 0.36 mm.
FIG. 8 is a schematic view of an assembled wireless charging coil 470 with planar bifilar coils. As discussed above, the wireless charging coil 470 includes a first coil 430 (e.g., trace) and a second coil 450 (e.g., trace). The assembled coil 470 is manufactured and operates in the manner discussed above with respect to FIGS. 1-7. The first coil 430 and the second coil 450 can have any desired thickness, such as to meet different power requirements. The first coil 430 and second coil 450 could be connected in series or parallel.
The width of the first and/or second coil 430, 450 could vary along the length of the coil to optimize performance of the assembled wireless charging coil 470. Similarly, the thickness of the first and second coils 430, 450 could change over the length of the coil. For example, the width (and/or thickness) of the first coil 430 could gradually increase (or narrow) from a first end 434 towards a middle of the coil 430, and the width (and/or thickness) could likewise gradually narrow (or increase) from the middle to the second end 436 of the coil 430 (e.g., a spiral coil of wide-narrow- wide), thereby varying the cross-sectional area throughout. Any variation of width (e.g., cross-section) or thickness could be used, and/or these dimensions could be maintained constant over portions of the coil, according to desired performance characteristics .
Additionally (or alternatively), the spaces between the windings of the coil could be varied to optimize performance of the wireless charging coil 470. For example, the gap width between the traces could be wider towards the outside of the first coil 430 and narrower towards the inside of the first coil 430 (or the opposite). Similarly, the distance between the first coil 430 and second coil 450 in the assembled coil 470 could also be varied to optimize performance. Further, the geometry of the edges of the coil could be varied (e.g., scalloped, castellated, etc.), such as to reduce eddy currents.
FIG. 9 is a cross-sectional view of a portion of the wireless charging coil of FIG. 8. The first coil 430 comprises sections 414-424 and the second coil 450 comprises sections 402- 412. As shown, the cross-section of the first coil 430 becomes gradually wider and then narrower from a first end to a second end of the first coil 430. As a result, sections 414 and 424 are the narrowest (e.g., 0.025 in.), followed by sections 404 and 422 (e.g., 0.030 in.), and sections 418 and 420 are the widest (e.g., 0.035 in.). In the same way, the cross-section of the second coil 450 becomes gradually wider and then narrower from a first end to a second end of the second coil 450. As a result, sections 402 and 412 are the narrowest, and sections 406 and 408 are the widest. Changes in the dimensions of the cross section of the antenna can likewise be varied in other manners.
FIG. 10 is a schematic view of an assembled wireless charging coil 570 with stacked bifilar coils. As discussed above, the wireless charging coil 570 includes a first coil 530 and a second coil 550. The assembled coil 570 is manufactured and operates in the manner discussed above with respect to FIGS. 1-7, as well as that discussed in FIGS. 8-9, except that the first and second coils 530, 550 are stacked instead of planar. The first coil 530 includes a first end 534 and a second end 536, and the second coil 550 includes a first end 554 and a second end 556. Further, varying the skew or offset (e.g., stacking distance) of the first coil 530 relative to the second coil 550 can affect the performance of the wireless charging coil 570. The first coil 530 and second coil 550 could be connected in series or parallel.
FIG. 11 is a cross-sectional view of a portion of the wireless charging coil of FIG. 10. This coil 570 is similar to that of FIGS. 8-9, including a first coil 530 with sections 514-524 and a second coil 550 with sections 502-512, except that the first and second coils 530, 550 are stacked instead of planar.
FIGS. 12-13 are views showing an electrical component assembly 690. More specifically, FIG. 12 is a perspective view of an electrical component assembly 690. The electrical component assembly 690 comprises a ferrite shield 692, a pressure sensitive adhesive (PSA) layer 602 positioned on the ferrite shield 692, an assembled coil 670 (e.g., bifilar coil) positioned therebetween, and jumpers 674, 676 positioned on the PSA layer 602. FIG. 13 is an exploded view of the electrical component assembly 690 of FIG. 12. The bifilar coil 670 includes a first coil 630 having an inside end 634 and an outside end 636 interconnected with a second coil 650 having an inside end 654 and an outside end 656. The inside and outside ends are on the same side of the assembled coil 670 for ease of use and assembly (e.g., minimize the distance to electrically connect the ends).
Ferrite shield 692 includes a first hole 696 and a second hole 698 positioned to correlate with the placement of the inside end 634 of the first coil 630 and the inside end 654 of the second coil 650 (e.g., when the coil 670 is placed onto the ferrite shield 692. Although holes 696, 698 are shown as circular, any shape and size openings could be used (e.g., one rectangular opening, etc.). These holes 696, 698 facilitate assembly and welding of the electrical component assembly 690.
PSA layer 602 and ferrite shield 692 are similarly sized to one another, and although shown as rectangular, both could be of any shape (e.g., circular). PSA layer secures the relative placement of the assembled coil 670 to the ferrite shield 692. PSA layer 602 could have adhesive on one or both sides, and could include a polyethylene terephthalate (PET) film area 604 free of adhesive on one or both sides. PET film area 604 facilitates assembly and welding of the electrical component assembly 690
PSA layer 602 includes a first hole 606 and a second hole 608 in the PET film area 608 which correlate in position with the placement of the inside end 634 of the first coil 630 and the inside end 654 of the second coil 650 (as well as the first hole 696 and second hole 698 of the ferrite substrate 692). Although holes 606, 608 are shown as circular, any shape and size openings could be used (e.g., one rectangular opening). Holes 606, 608 provide access through the PSA layer 602 to electrically connect jumpers 674, 676 with the inside ends 634, 654 of the assembled coil 670. The PET film area 604 facilitates attachment of the jumpers 674, 676 to the assembly 690.
FIG. 14 is a perspective view of a resonant coil 730. Resonant coil 730 could be a generally rectangular planar spiral trace 731, although the trace 731 could form any suitable shape. The resonant coil 730 includes an inside end 734 and an outside end 736. The trace 731 is stamped on a strip or sheet of metal (e.g., copper, aluminum, etc.). The dimensions of the coil 730 could vary depending on the application of the coil 730. The coil 730 could be of any suitable thickness, and of any suitable overall dimensions. The trace 731 could also be of any suitable dimensions. The dimensions could vary depending on physical and performance requirements. The coil 730 could be made of any suitable material for wireless power transfer, such as, for example, copper, copper alloy, aluminum, aluminum alloy, tempered copper alloy (e.g., CI 10), etc. The gaps between the windings of the trace 731 are larger for a resonant coil than for other types of inductive coils due to performance requirements.
Stamping provides a scalable process for high volume production with high yields. The stamped trace 731 is not prone to unwinding and can allow for a thicker trace. This is advantageous compared with other existing technologies. For example, winding wire (e.g., copper) to a specific pattern on a surface is difficult and the wound wire can unwind. Further, etched copper is expensive and could be limited to a maximum thickness (e.g., 0.004 in. thick).
The trace 731 of the resonant coil 730 includes a first side 737 and a second side 739 offset from the first side 737 by angled portions 741 of the trace 731. The angled portions 741 are aligned with one another (e.g., occur along line B-B), and angled in the same direction. In other words, angled portions 741 are all angled toward a particular side of the coil 730 (e.g., towards one side of line A-A), such that a first portion 737 (e.g., upper portion) of the coil 730 is shifted relative to a second portion 739 (e.g., lower portion) of the coil 730.
FIG. 15 is a perspective view of a resonant coil assembly 790, including the first resonant coil 730 from FIG. 14. The resonant coil assembly 790 includes a first coil 730 and a second coil 750, which are identical to one another (which minimizes manufacturing costs). The resonant coil assembly 790 could be laminated such that the first coil 730 and second coil 750 are laminated to a film 702 (e.g., PET film), such as by an adhesive (e.g., heat activated, pressure sensitive, etc.) to provide more stability in downstream operations. The first coil 730 could be adhered to one side of the film 702 and the second coil 750 could be adhered to the opposite side of the film 702.
The first coil 730 includes an outside end 736 and an inside end 734, and the second coil 750 includes an outside end 756 and an inside end 754. The first coil 730 and second coil 750 could be exactly the same size and shape coil, except that the second coil 750 is rotated 180 degrees about line D-D. In this way, the trace 731 of the first coil 730 is positioned between the gap formed by the windings of the trace 751 of the second coil 750 (and vice- versa), except at the angled portions of each coil along line D-D, where the traces cross one another. The inside end 734 of the first coil 730 could be adjacent to (and in electrical connection with) the inside end 754 of the second coil 750, and the outside end 736 of the first coil 730 could be adjacent to the outside end 756 of the second coil 750.
FIGS. 16-18 are views of a stamped resonant coil 870. FIG. 16 is a perspective view of a folded stamped resonant coil 870. The coil 870 comprises connector sheet 871, a first set of traces 831 of a first coil portion 830 with ends thereof connected to an edge of the connector sheet 871 at connection points 873, and a second set of traces 851 of a second coil portion 850 with ends thereof connected to the same edge of the connector sheet 871 at connection points 873. To create the stamped resonant coil 870, a (single) sheet of metal is stamped to form the first set of traces 831 and the second set of traces 851 (e.g., such that the arcs of each trace of the first and second sets of traces 831, 851 are oriented in the same direction). The ends of the first and second set of traces 831, 851 are then connected to the same edge of connector sheet 871 (e.g., insulation material). The connector sheet 871 facilitates wiring of the sets of traces 831, 851 to each other, as well as facilitates the connection of the stamped resonant coil 870 to electronic circuitry. The ends of the first and second set of traces 831, 851 are then wired to each other, such as by using a series of jumpers and/or traces. For example, the jumpers and/or traces could be in the connector sheet 871 and could run parallel to the connector sheet (and perpendicular to the first and second sets of traces 831, 851).
FIG. 17 is a perspective view of the coil 870 of FIG. 16 partially opened. As shown, the first set of traces 831 of the first coil portion 830 are bent at connection points 873. FIG. 18 is a perspective view of the coil 870 of FIG. 16 fully opened. As shown, the first set of traces 831 of the first coil portion 830 continue to be bent at connection points 873 until the first coil portion 830 is planar with the second coil portion 850. Bending of the traces could result in fracturing on the outside surface thereof, in which case, ultrasonic welding could be used to ensure electrical conductivity. Alternatively, the first and second sets of traces 831, 851 could connect to opposing edges of the connector sheet 871, such that bending could not be required. Stamping (and bending) in this way reduces the amount of scrap generated, thereby increasing material utilization. FIG. 19 is an exploded view of a low profile electrical component assembly 990. More specifically, the low profile electrical component assembly 990 comprises a substrate 992 (e.g., PET layer), a filler material layer 933 (e.g., rubber, foam, durometer, etc.), a coil 930 (e.g., resonant coil), and a protective layer 902. The protective layer 902 could be partly translucent and could comprise a tab (e.g., for applying or removing).
FIG. 20 is a perspective view of the filler material 933 of FIG. 19. Filler material 933 comprises grooves 935 which correspond in size and shape to that of the coil 930. In this way, the coil 930 is nested in filler material 933, which protects the coil shape from bending and/or deformation. Such an assembly facilitates handling of the coil 930 for subsequent operations.
FIG. 21 is a diagram showing processing steps 1000 for manufacturing a wireless charging coil with adhesive (e.g., glue). In step 1002, a metal sheet is stamped to form a first coil with tie bars. In step 1004, a metal sheet is stamped to form a second coil with tie bars. In step 1006, a first coil is applied to a first laminate (e.g., plastic substrate, Transilwrap) with an adhesive layer to adhere thereto. In step 1008, a second coil is applied to a second laminate (e.g., plastic substrate, Transilwrap) with an adhesive layer to adhere thereto. In step 1010, the first coil is stamped to remove tie bars. In step 1012, the second coil is stamped to remove tie bars. Accordingly, the first coil and second coil are fixed in place as a result of the adhesive layer on the plastic laminate. In step 1014 the first coil with the laminate adhered thereto, is assembled with the second coil with the laminate adhered thereto. More specifically, as discussed above, the first coil with a spiral trace fits into the space formed between a trace of a second coil , and conversely, the second coil fits into the space formed between the trace of the first coil, thereby forming an assembled coil. As a result, the assembled coil is positioned between (e.g., sandwiched between) the first laminate and the second laminate.
In step 1016, a heat press is applied to the assembled coil to displace and set the adhesive layer from the first and second laminates. More specifically, the heat applied should be hot enough to melt the adhesive (e.g., more than 220-250 °F), but not hot enough to melt the plastic laminate. The pressure applied pushes the first coil towards the second laminate, such that the adhesive of the second laminate positioned in between the trace of the second coil is displaced and forced between the spaces between the first trace of the first coil and the second trace of the second coil. Squeezing the first and second coils together (e.g., with heat and/or pressure) migrates the adhesive to the spaces in between the traces (e.g., to insulate them from one another). This covers or coats the traces of the first coil and the second coil, and bonds the first coil to the second coil. The pressure, heat, and duration could vary depending on the desired cycle time for manufacturing the assembled coil. It is noted that such a process could result in a planar offset of the first coil from the second coil when assembled together.
FIG. 22 is a partial cross- sectional view of a first stamped coil 1130 when applied to a first laminate 1123. The first laminate 1123 includes an adhesive layer 1127 applied to a surface thereof. When the first stamped coil 1130 is applied to the first laminate 1123, some of the adhesive 1127 is displaced to the sides, such that the displaced adhesive 1127 accumulates against the sides of the trace 1131 of the first stamped coil 1130. Accordingly, the adhesive 1127 on the sides and underneath the trace 1131 of the first stamped coil 1130 prevents the trace 1131 from moving relative to the first laminate 1123.
FIG. 23 is a partial cross-sectional view of an assembled coil positioned between a first laminate 1123 and second laminate 1125. As described above, when assembled, the first coil 1130 with a first trace 1131 fits into the space formed between a second trace 1151 of a second coil 1150, and conversely, the second coil 1150 fits into the space formed between the first trace 1131 of the first coil 1130, thereby forming an assembled coil 1170. As a result, the assembled coil 1170 is positioned between (e.g., sandwiched between) the first laminate 1123 and the second laminate 1125. This displaces the first adhesive 1127 between the first trace 1131 of the first coil 1130, and displaces the second adhesive 1129 between the second trace 1151 of the second coil 1150.
When the first and second adhesive layers 1127, 1129 are set (e.g., by pressure and/or heat), the adhesive covers the surface of the traces 1131, 1151 (e.g., by melting), and acts as an insulator and stabilizer for the traces 1131, 1151. In other words, the first and second coils 1130, 1150 are bonded together. This prevents relative movement of the traces 1131, 1151, which prevents the first stamped coil 1130 from contacting the second stamped coil 1150 and shorting out the assembled coil 1170. As an example, the first and second stamped coils 1130, 1150 could each be 0.0125 in. thick, and each adhesive layer 1127, 1129 could be 0.0055 in. thick, for a total thickness of 0.0225 in. After pressure and/or heat have been applied, the total thickness could be 0.0205 in., with a total adhesive displacement of 0.002 in. FIGS. 24-25 are partial views of an assembled coil 1170. More specifically, FIG. 24 is partial cross-sectional view of an assembled coil 1170, and FIG. 25 is a partial top view of the assembled coil 1170 of FIG. 24. As described in detail above, the first stamped coil 1030 includes a planar spiral trace 1031, which spirals to form an inside portion 1032 at the center of the coil 1030. The assembled coil 1170 comprises (as discussed above) a first coil 1130 with a spiral trace 1131, which fits into the space formed between a trace 1151 of a second coil 1150, and conversely, the second coil 1150 fits into the space formed between the trace 1131 of the first coil 1130. Accordingly, the first and second coils 1130, 1150 form a parallel planar spiral.
As discussed above, a first laminate 1123 (e.g., Transilwrap) with a first adhesive layer is applied to the first stamped coil 1130, and a second laminate 1125 (e.g., Transilwrap) with a second adhesive layer applied to the second stamped coil 1150. As a result, the first and second stamped coils 1130, 1150 are positioned between the first and second laminates 1123, 1125. When the first and second coils 1130, 1150 are assembled with one another, the adhesive 1127 (dyed black for clarity) is displaced to fill the spaces between the first and second traces 1131, 1151.
FIG. 25 shows the displacement of adhesive 1127 when the first coil 1130 and second coil 1150 are assembled. More specifically, the adhesive 1127 (dyed black for clarity) is shown between the first trace 1131 and the second trace 1151. Further, in the particular example shown, more pressure has been exerted on the left side first and second traces 1131a, 1151a, than the right side traces 1131b, 1151b. As a result, less adhesive 1127 has been displaced on the right side than the left side, thereby making the right side trace 1151b less visible than the left side trace 1151a (as a result of the black dyed adhesive 1127).
FIG. 26 is a top view of an assembled coil 1270 of the present disclosure. As discussed above, the assembled coil 1270 comprises a first coil 1030 with a first spiral trace 1031 having an inside end 1034 and an outside end 1036, a second coil 1050 with a second spiral trace 1051 having an inside end 1054 and an outside end 1056, a first jumper 1277 attached to the outside end 1236 of the first coil 1230, a second jumper 1274 attached to the inside end 1234 of the first coil 1230 and the outside end 1256 of the second coil 1250, and a third jumper 1276 attached to the inside end 1254 of the second coil 1250. The first and second spiral coils 1030, 1050 forming an inside portion 1272. A laminate 1227 (e.g., film, adhesive film, plastic film, etc.) covers the assembled coil 1270 including the inside portion 1272. As explained above, the adhesive layer of the laminate 1227 stabilizes the first coil 1230 and second coil 1250 and insulates them. This prevents relative movement of the first and second coil 1230, 1250 and prevents the first and second coils 1230, 1250 from accidentally contacting one another and shorting out the assembled coil 1270
The laminate 1227 could define one or more cutouts. More specifically, the laminate 1227 could define an inside cutout 1223 to provide access to (e.g., expose) the first inside end 1234 of the first coil 1230 and the second inside end 1254 of the second coil 1250. The laminate 1227 could also define an outside cutout 1225 to provide access to (e.g., expose) the first outside end 1236 of the first coil 1230 and the second outside end 1256 of the second coil 1250. The first cutout 1223 could extend to substantially of the inside portion 1272. The assembled coil 1270 (and the first and second coils 1230, 1250 thereof) could be of any material and/or style (e.g., A6 style coil).
For any of the embodiments discussed above, the wireless charging coil (e.g., bifilar coil) could be constructed and then (e.g., at a different location and/or time) the first and second coils of the wireless charging coil, whether stacked or planar, could be electrically connected to each other in series or parallel depending on electrical requirements.
Having thus described the system and method in detail, it is to be understood that the foregoing description is not intended to limit the spirit or scope thereof. It will be understood that the embodiments of the present disclosure described herein are merely exemplary and that a person skilled in the art may make any variations and modification without departing from the spirit and scope of the disclosure. All such variations and modifications, including those discussed above, are intended to be included within the scope of the disclosure.

Claims

CLAIMS What is claimed is:
1. A wireless charging coil comprising:
a first stamped coil having a first spiral trace, the first spiral trace defining a first space between windings; and
a second stamped coil having a second spiral trace, the second spiral trace defining a second space between windings,
the first stamped coil and second stamped coil in co-planar relation, the first stamped coil positioned within the second space of the second stamped coil, and the second stamped coil positioned within the first space of the first stamped coil, the first and second coils electronically connected; and
an adhesive covering and surrounding the first stamped coil and the second stamped coil to bond the coils together and to insulate the coils.
2. The wireless charging coil of Claim 1, further comprising a first laminate and a second laminate, wherein the first stamped coil and the second stamped coil are positioned between the first laminate and the second laminate.
3. The wireless charging coil of Claim 1, wherein the first stamped coil and second stamped coil are connected in series.
4. The wireless charging coil of Claim 1, wherein the first stamped coil and second stamped coil are connected in parallel.
5. The wireless charging coil of Claim 1, wherein the first stamped coil includes an inside end and an outside end, the inside end disposed on the same side of the first stamped coil as the outside end.
6. The wireless charging coil of Claim 5, further comprising a first jumper attached to the outside end of the first coil.
7. The wireless charging coil of Claim 6, wherein the second stamped coil includes an inside end and an outside end, and further comprising a second jumper attached to the inside end of the first coil and the outside end of the second coil.
8. The wireless charging coil of Claim 7, further comprising a third jumper attached to the inside end of the second coil.
9. A method of making a wireless charging coil comprising:
stamping a metal sheet to form a first coil having a first spiral trace, the first spiral trace defining a first space between windings;
applying the first stamped coil to a first laminate via an adhesive thereof;
stamping a metal sheet to form a second coil having a second spiral trace, the second spiral trace defining a second space between windings;
applying the second stamped coil to a second laminate via an adhesive thereof;
interpositioning the first stamped coil and the second stamped coil to form a planar coil assembly with the first stamped coil positioned within the second space of the second stamped coil, and the second stamped coil positioned within the first space of the first stamped coil, and the first stamped coil and the second stamped coil positioned between the first and second laminates;
heating and pressing the planar coil assembly to displace and set the adhesive of the first and second laminates to surround and bond together the first and second coils.
10. The method of Claim 9, wherein heat applied by the heat press melts the adhesive but does not melt the laminate.
11. The method of Claim 10, wherein pressure applied by the heat press displaces and forces the adhesive between the first trace of the first coil and the second trace of the second coil to insulate the coils.
12. The method of Claim 9, wherein stamping the metal sheet forms the first coil with tie bars.
13. The method of Claim 12, further comprising stamping the first coil to remove the tie bars.
14. The method of Claim 9, wherein the first stamped coil and second stamped coil are connected in series.
15. The method of Claim 9, wherein the first stamped coil and second stamped coil are connected in parallel.
16. The wireless charging coil of Claim 9, wherein the first stamped coil includes an inside end and an outside end, the inside end disposed on the same side of the first stamped coil as the outside end.
17. The wireless charging coil of Claim 16, further comprising a first jumper attached to the outside end of the first coil.
18. The wireless charging coil of Claim 17, wherein the second stamped coil includes an inside end and an outside end, and further comprising a second jumper attached to the inside end of the first coil and the outside end of the second coil.
19. The wireless charging coil of Claim 18, further comprising a third jumper attached to the inside end of the second coil.
PCT/US2014/067440 2013-11-25 2014-11-25 Wireless charging coil WO2015077782A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201480074077.1A CN105934804B (en) 2013-11-25 2014-11-25 Wireless charging coil
ES14863209T ES2883127T3 (en) 2013-11-25 2014-11-25 Wireless charging coil
JP2016554831A JP6537522B2 (en) 2013-11-25 2014-11-25 Wireless charging coil
KR1020167016360A KR102035382B1 (en) 2013-11-25 2014-11-25 Wireless charging coil
CA2931471A CA2931471C (en) 2013-11-25 2014-11-25 Wireless charging coil
EP14863209.4A EP3074987B1 (en) 2013-11-25 2014-11-25 Wireless charging coil
EP21177116.7A EP3940728A3 (en) 2013-11-25 2014-11-25 Wireless charging coil
DK14863209.4T DK3074987T3 (en) 2013-11-25 2014-11-25 WIRELESS CHARGING COIL
PL14863209T PL3074987T3 (en) 2013-11-25 2014-11-25 Wireless charging coil

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361908573P 2013-11-25 2013-11-25
US61/908,573 2013-11-25
US201462004587P 2014-05-29 2014-05-29
US62/004,587 2014-05-29
US14/470,381 2014-08-27
US14/470,381 US9859052B2 (en) 2013-11-25 2014-08-27 Wireless charging coil
US201462077721P 2014-11-10 2014-11-10
US62/077,721 2014-11-10

Publications (1)

Publication Number Publication Date
WO2015077782A1 true WO2015077782A1 (en) 2015-05-28

Family

ID=54342820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/067440 WO2015077782A1 (en) 2013-11-25 2014-11-25 Wireless charging coil

Country Status (11)

Country Link
EP (2) EP3074987B1 (en)
JP (1) JP6537522B2 (en)
KR (1) KR102035382B1 (en)
CN (1) CN105934804B (en)
CA (1) CA2931471C (en)
DK (1) DK3074987T3 (en)
ES (1) ES2883127T3 (en)
PL (1) PL3074987T3 (en)
PT (1) PT3074987T (en)
TW (1) TWI665689B (en)
WO (1) WO2015077782A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126419A1 (en) * 2016-01-21 2017-07-27 株式会社村田製作所 Coil antenna, power transmission device, and power reception device
KR20170112879A (en) * 2016-03-25 2017-10-12 삼성전기주식회사 A coil device and an apparatus comprising the same
JP2018081960A (en) * 2016-11-14 2018-05-24 矢崎総業株式会社 Coil unit and non-contact power supply system
JP2018082092A (en) * 2016-11-17 2018-05-24 Tdk株式会社 Coil component and coil device
CN109308967A (en) * 2018-09-27 2019-02-05 深圳市方昕科技有限公司 Applied to the coil device of wireless charging, system and aligning method
WO2019086455A1 (en) 2017-10-30 2019-05-09 Valeo Comfort And Driving Assistance An inductive charging antenna construction and a method for manufacturing the same, and a wireless power module
WO2019219754A1 (en) 2018-05-17 2019-11-21 Valeo Comfort And Driving Assistance Inductive charging antenna structure, wireless charging module and motor vehicle
WO2021080046A1 (en) * 2019-10-25 2021-04-29 엘지전자 주식회사 Mobile terminal
US11007887B2 (en) 2019-07-11 2021-05-18 Lear Corporation Tubular induction coil for wireless charging of a vehicle battery
US11222745B2 (en) 2017-12-18 2022-01-11 Swcc Showa Cable Systems Co., Ltd. Coil and non-contact power supply device
US11380480B2 (en) 2019-07-10 2022-07-05 Lear Corporation Strip induction coil for wireless charging of a vehicle battery
US11664850B2 (en) 2018-08-31 2023-05-30 3M Innovative Properties Company Coil and method of making same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490656B2 (en) * 2013-11-25 2016-11-08 A.K. Stamping Company, Inc. Method of making a wireless charging coil
TWI622076B (en) * 2016-10-27 2018-04-21 佳世達科技股份有限公司 Display device
CN109952071B (en) * 2016-11-21 2022-04-26 圣犹达医疗用品国际控股有限公司 Fluorescent magnetic field generator
KR102348415B1 (en) * 2017-06-01 2022-01-10 주식회사 아모센스 wireless power transfer module
JP6499723B2 (en) * 2017-06-29 2019-04-10 昭和電線ケーブルシステム株式会社 Non-contact power feeding device, coil and coil manufacturing method
KR102433115B1 (en) * 2017-10-11 2022-08-17 주식회사 위츠 Coil assembly
KR20190047857A (en) * 2017-10-30 2019-05-09 엘지이노텍 주식회사 Wireless charging coil, manufacturing method thereof and wireless charging apparatus having the same
TWI638373B (en) * 2018-02-09 2018-10-11 合利億股份有限公司 Stamping process for wireless charging coil and manufacture method of wireless charging coil
CN110136954B (en) * 2018-02-09 2021-12-14 合利亿股份有限公司 Stamping process of wireless charging coil and manufacturing method of wireless charging coil
CN108511182B (en) * 2018-03-07 2019-08-16 东莞领益精密制造科技有限公司 Wireless charging coil stamped technique
JPWO2019189760A1 (en) * 2018-03-30 2021-04-08 大日本印刷株式会社 Coil and coil pair, power transmission device and power receiving device, and power transmission system
CN108711494B (en) * 2018-05-18 2019-06-11 东莞领益精密制造科技有限公司 A kind of charge coil and its manufacturing method of twin coil
US11798728B2 (en) * 2018-09-12 2023-10-24 DSBJ Pte. Ltd. Balanced, symmetrical coil
JP2020061517A (en) * 2018-10-12 2020-04-16 トヨタ自動車株式会社 Coil unit
KR102566140B1 (en) * 2018-11-22 2023-08-11 삼성전자주식회사 Antenna structure and electronic device therewith
TW202026824A (en) 2019-01-07 2020-07-16 哈帝斯科技股份有限公司 Wireless charging mousepad structures and processes
CN109921522A (en) * 2019-03-07 2019-06-21 上海德门电子科技有限公司 Coil device with wireless charging function
WO2021171204A1 (en) 2020-02-28 2021-09-02 3M Innovative Properties Company Antenna for transfer of information or energy
CN112259349B (en) * 2020-10-14 2022-04-05 浙江大学 Self-resonance coil of wireless power transmission system
KR102408962B1 (en) * 2022-01-18 2022-06-22 주식회사 파인테크닉스 Manufacturing method for wireless charging coil and wireless charging coil manufactured by the same
CN117524723B (en) * 2023-11-15 2024-05-24 南京大麦医疗科技有限公司 Manufacturing method of magnetic therapy coil assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214315A (en) * 1962-03-28 1965-10-26 Burton Solomon Method for forming stamped electrical circuits
US5142767A (en) * 1989-11-15 1992-09-01 Bf Goodrich Company Method of manufacturing a planar coil construction
GB2369251B (en) * 2000-05-22 2004-03-24 Payton Ltd Planar coil circuit
US20040231138A1 (en) * 2003-05-14 2004-11-25 Tetsuichiro Kasahara Method of manufacturing a plane coil
US20110102125A1 (en) * 2008-07-04 2011-05-05 Panasonic Electric Works Co., Ltd., Plane coil
US20130181668A1 (en) * 2010-12-01 2013-07-18 Panasonic Corporation Non-contact charging module and non-contact charging instrument

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326736A (en) * 1996-06-03 1997-12-16 Mitsubishi Electric Corp Secondary side circuit equipment for wireless transmission/reception system and induction coil for wireless transmission/reception system
JP2000114047A (en) * 1998-10-07 2000-04-21 Alps Electric Co Ltd Thin-film transformer and manufacture thereof
JP3680627B2 (en) * 1999-04-27 2005-08-10 富士電機機器制御株式会社 Noise filter
JP2003257770A (en) * 2001-12-27 2003-09-12 Shinko Electric Ind Co Ltd Manufacturing method for flat coil
JP4842052B2 (en) * 2006-08-28 2011-12-21 富士通株式会社 Inductor element and integrated electronic component
JP4947637B2 (en) * 2007-01-09 2012-06-06 ソニーモバイルコミュニケーションズ株式会社 Non-contact power transmission coil, portable terminal and terminal charging device
TWI336922B (en) * 2007-01-12 2011-02-01 Via Tech Inc Spiral inductor with multi-trace structure
TWI451458B (en) * 2009-08-25 2014-09-01 Access Business Group Int Llc Flux concentrator and method of making a magnetic flux concentrator
KR101118471B1 (en) * 2009-09-30 2012-03-12 한국전기연구원 Spiral Antenna and wireless power transmission device using spiral antenna
WO2011114859A1 (en) * 2010-03-18 2011-09-22 エルメック株式会社 Inductor for common-mode filter, and common-mode filter
JP2011258807A (en) * 2010-06-10 2011-12-22 Showa Aircraft Ind Co Ltd Non-contact power feeding device
JP4835787B1 (en) * 2010-12-01 2011-12-14 パナソニック株式会社 Non-contact charging module and non-contact charging device
CN102315699B (en) * 2011-09-16 2014-11-05 海尔集团公司 Realizing device for wireless charging
JP2013078234A (en) * 2011-09-30 2013-04-25 Panasonic Corp Planar coil, coil module with the same, power reception apparatus for contactless power transmission apparatus with the same, and contactless power transmission apparatus with the same
KR101339486B1 (en) * 2012-03-29 2013-12-10 삼성전기주식회사 Thin film coil and electronic device having the same
US9325187B2 (en) * 2012-05-21 2016-04-26 Lg Electronics Inc. Structure of transmission and reception unit in wireless charging system
KR101408505B1 (en) * 2012-11-07 2014-06-17 삼성전기주식회사 Common mode filter and manufacturing method thereof
JP2014027880A (en) * 2013-11-08 2014-02-06 Panasonic Corp Noncontact charging module and noncontact charger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214315A (en) * 1962-03-28 1965-10-26 Burton Solomon Method for forming stamped electrical circuits
US5142767A (en) * 1989-11-15 1992-09-01 Bf Goodrich Company Method of manufacturing a planar coil construction
GB2369251B (en) * 2000-05-22 2004-03-24 Payton Ltd Planar coil circuit
US20040231138A1 (en) * 2003-05-14 2004-11-25 Tetsuichiro Kasahara Method of manufacturing a plane coil
US20110102125A1 (en) * 2008-07-04 2011-05-05 Panasonic Electric Works Co., Ltd., Plane coil
US20130181668A1 (en) * 2010-12-01 2013-07-18 Panasonic Corporation Non-contact charging module and non-contact charging instrument

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126419A1 (en) * 2016-01-21 2017-07-27 株式会社村田製作所 Coil antenna, power transmission device, and power reception device
KR20170112879A (en) * 2016-03-25 2017-10-12 삼성전기주식회사 A coil device and an apparatus comprising the same
KR102552028B1 (en) 2016-03-25 2023-07-06 주식회사 위츠 A coil device and an apparatus comprising the same
JP2018081960A (en) * 2016-11-14 2018-05-24 矢崎総業株式会社 Coil unit and non-contact power supply system
JP2018082092A (en) * 2016-11-17 2018-05-24 Tdk株式会社 Coil component and coil device
WO2019086455A1 (en) 2017-10-30 2019-05-09 Valeo Comfort And Driving Assistance An inductive charging antenna construction and a method for manufacturing the same, and a wireless power module
US11222745B2 (en) 2017-12-18 2022-01-11 Swcc Showa Cable Systems Co., Ltd. Coil and non-contact power supply device
WO2019219754A1 (en) 2018-05-17 2019-11-21 Valeo Comfort And Driving Assistance Inductive charging antenna structure, wireless charging module and motor vehicle
US11664850B2 (en) 2018-08-31 2023-05-30 3M Innovative Properties Company Coil and method of making same
CN109308967A (en) * 2018-09-27 2019-02-05 深圳市方昕科技有限公司 Applied to the coil device of wireless charging, system and aligning method
US11380480B2 (en) 2019-07-10 2022-07-05 Lear Corporation Strip induction coil for wireless charging of a vehicle battery
US11007887B2 (en) 2019-07-11 2021-05-18 Lear Corporation Tubular induction coil for wireless charging of a vehicle battery
WO2021080046A1 (en) * 2019-10-25 2021-04-29 엘지전자 주식회사 Mobile terminal

Also Published As

Publication number Publication date
ES2883127T3 (en) 2021-12-07
EP3940728A3 (en) 2022-02-23
PL3074987T3 (en) 2021-12-20
EP3074987A1 (en) 2016-10-05
JP6537522B2 (en) 2019-07-03
EP3074987A4 (en) 2017-07-05
TWI665689B (en) 2019-07-11
DK3074987T3 (en) 2021-08-16
PT3074987T (en) 2021-08-19
EP3074987B1 (en) 2021-06-02
EP3940728A2 (en) 2022-01-19
CN105934804B (en) 2019-07-12
CN105934804A (en) 2016-09-07
TW201530579A (en) 2015-08-01
KR102035382B1 (en) 2019-11-18
CA2931471A1 (en) 2015-05-28
JP2016539516A (en) 2016-12-15
CA2931471C (en) 2020-11-10
KR20160089425A (en) 2016-07-27

Similar Documents

Publication Publication Date Title
US11862383B2 (en) Wireless charging coil
CA2931471C (en) Wireless charging coil
US11004599B2 (en) Wireless charging coil
CN103915903A (en) Coil for cordless charging and cordless charging apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2931471

Country of ref document: CA

Ref document number: 2016554831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014863209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014863209

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167016360

Country of ref document: KR

Kind code of ref document: A