WO2015075469A1 - Cell - Google Patents
Cell Download PDFInfo
- Publication number
- WO2015075469A1 WO2015075469A1 PCT/GB2014/053452 GB2014053452W WO2015075469A1 WO 2015075469 A1 WO2015075469 A1 WO 2015075469A1 GB 2014053452 W GB2014053452 W GB 2014053452W WO 2015075469 A1 WO2015075469 A1 WO 2015075469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- car
- cell
- nucleic acid
- acid sequence
- spacer
- Prior art date
Links
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 claims abstract description 600
- 210000004027 cell Anatomy 0.000 claims abstract description 215
- 125000006850 spacer group Chemical group 0.000 claims abstract description 198
- 239000000427 antigen Substances 0.000 claims abstract description 175
- 102000036639 antigens Human genes 0.000 claims abstract description 172
- 108091007433 antigens Proteins 0.000 claims abstract description 172
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 125
- 230000003213 activating effect Effects 0.000 claims abstract description 98
- 239000012528 membrane Substances 0.000 claims abstract description 38
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 200
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 115
- 150000007523 nucleic acids Chemical group 0.000 claims description 112
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 110
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 110
- 239000013598 vector Substances 0.000 claims description 61
- 206010028980 Neoplasm Diseases 0.000 claims description 48
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims description 33
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims description 33
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 27
- 230000006044 T cell activation Effects 0.000 claims description 24
- 201000010099 disease Diseases 0.000 claims description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- 201000011510 cancer Diseases 0.000 claims description 12
- 230000004186 co-expression Effects 0.000 claims description 12
- 210000000822 natural killer cell Anatomy 0.000 claims description 12
- 230000001177 retroviral effect Effects 0.000 claims description 12
- 229920001184 polypeptide Polymers 0.000 claims description 11
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 11
- 238000003776 cleavage reaction Methods 0.000 claims description 9
- 230000007017 scission Effects 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims description 8
- 230000013595 glycosylation Effects 0.000 claims description 7
- 238000006206 glycosylation reaction Methods 0.000 claims description 7
- 108020004707 nucleic acids Proteins 0.000 claims description 7
- 102000039446 nucleic acids Human genes 0.000 claims description 7
- 238000010361 transduction Methods 0.000 claims description 7
- 230000026683 transduction Effects 0.000 claims description 7
- 108010002082 endometriosis protein-1 Proteins 0.000 claims description 6
- 238000001890 transfection Methods 0.000 claims description 5
- 108020004705 Codon Proteins 0.000 claims description 4
- 230000006801 homologous recombination Effects 0.000 claims description 4
- 238000002744 homologous recombination Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000013603 viral vector Substances 0.000 claims description 4
- 239000003814 drug Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 67
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 66
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 66
- 102100021657 Tyrosine-protein phosphatase non-receptor type 6 Human genes 0.000 description 46
- 101000617285 Homo sapiens Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 45
- 108090000623 proteins and genes Proteins 0.000 description 45
- 230000004913 activation Effects 0.000 description 43
- 102000005962 receptors Human genes 0.000 description 42
- 108020003175 receptors Proteins 0.000 description 42
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 38
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 38
- 230000006870 function Effects 0.000 description 38
- 102000004169 proteins and genes Human genes 0.000 description 37
- 235000018102 proteins Nutrition 0.000 description 34
- 230000008685 targeting Effects 0.000 description 30
- 101100454807 Caenorhabditis elegans lgg-1 gene Proteins 0.000 description 29
- 108010076504 Protein Sorting Signals Proteins 0.000 description 29
- 108010065323 Tumor Necrosis Factor Ligand Superfamily Member 13 Proteins 0.000 description 29
- 239000003795 chemical substances by application Substances 0.000 description 28
- 230000014509 gene expression Effects 0.000 description 27
- 230000004044 response Effects 0.000 description 27
- 238000005204 segregation Methods 0.000 description 25
- 150000001413 amino acids Chemical group 0.000 description 24
- 230000000694 effects Effects 0.000 description 23
- BGFTWECWAICPDG-UHFFFAOYSA-N 2-[bis(4-chlorophenyl)methyl]-4-n-[3-[bis(4-chlorophenyl)methyl]-4-(dimethylamino)phenyl]-1-n,1-n-dimethylbenzene-1,4-diamine Chemical compound C1=C(C(C=2C=CC(Cl)=CC=2)C=2C=CC(Cl)=CC=2)C(N(C)C)=CC=C1NC(C=1)=CC=C(N(C)C)C=1C(C=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 BGFTWECWAICPDG-UHFFFAOYSA-N 0.000 description 22
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 22
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 description 22
- 210000000225 synapse Anatomy 0.000 description 22
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 20
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 20
- 239000012636 effector Substances 0.000 description 20
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 18
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 18
- 238000013461 design Methods 0.000 description 18
- 230000011664 signaling Effects 0.000 description 18
- 101000795167 Homo sapiens Tumor necrosis factor receptor superfamily member 13B Proteins 0.000 description 16
- 102100029675 Tumor necrosis factor receptor superfamily member 13B Human genes 0.000 description 16
- 230000003834 intracellular effect Effects 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 102000000588 Interleukin-2 Human genes 0.000 description 14
- 108010002350 Interleukin-2 Proteins 0.000 description 14
- 102100020943 Leukocyte-associated immunoglobulin-like receptor 1 Human genes 0.000 description 14
- 108091008874 T cell receptors Proteins 0.000 description 14
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 14
- 101001138062 Homo sapiens Leukocyte-associated immunoglobulin-like receptor 1 Proteins 0.000 description 13
- 238000013459 approach Methods 0.000 description 13
- 238000000684 flow cytometry Methods 0.000 description 13
- 231100000419 toxicity Toxicity 0.000 description 13
- 230000001988 toxicity Effects 0.000 description 13
- 235000002374 tyrosine Nutrition 0.000 description 13
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 12
- 230000004927 fusion Effects 0.000 description 12
- 210000000428 immunological synapse Anatomy 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 12
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 230000003389 potentiating effect Effects 0.000 description 11
- 210000003289 regulatory T cell Anatomy 0.000 description 11
- 230000004936 stimulating effect Effects 0.000 description 11
- 101000588258 Taenia solium Paramyosin Proteins 0.000 description 10
- 235000001014 amino acid Nutrition 0.000 description 10
- 229940024606 amino acid Drugs 0.000 description 10
- 238000010186 staining Methods 0.000 description 10
- 238000002965 ELISA Methods 0.000 description 9
- 210000003719 b-lymphocyte Anatomy 0.000 description 9
- 108020001507 fusion proteins Proteins 0.000 description 9
- 102000037865 fusion proteins Human genes 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 239000003550 marker Substances 0.000 description 8
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 7
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 7
- 102000002727 Protein Tyrosine Phosphatase Human genes 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 230000005754 cellular signaling Effects 0.000 description 7
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 108020000494 protein-tyrosine phosphatase Proteins 0.000 description 7
- 210000000130 stem cell Anatomy 0.000 description 7
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 6
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 6
- 230000006399 behavior Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 5
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 5
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 5
- 101000738335 Homo sapiens T-cell surface glycoprotein CD3 zeta chain Proteins 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 102000014400 SH2 domains Human genes 0.000 description 5
- 108050003452 SH2 domains Proteins 0.000 description 5
- 102100037906 T-cell surface glycoprotein CD3 zeta chain Human genes 0.000 description 5
- 238000003501 co-culture Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 210000003071 memory t lymphocyte Anatomy 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 238000010230 functional analysis Methods 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 210000005259 peripheral blood Anatomy 0.000 description 4
- 239000011886 peripheral blood Substances 0.000 description 4
- 230000002463 transducing effect Effects 0.000 description 4
- 108010022379 (N-acetylneuraminyl)-galactosylglucosylceramide N-acetylgalactosaminyltransferase Proteins 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 3
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 3
- 108010065524 CD52 Antigen Proteins 0.000 description 3
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 3
- 101100166600 Homo sapiens CD28 gene Proteins 0.000 description 3
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 3
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 108010017736 Leukocyte Immunoglobulin-like Receptor B1 Proteins 0.000 description 3
- 102100025584 Leukocyte immunoglobulin-like receptor subfamily B member 1 Human genes 0.000 description 3
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 3
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 3
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 3
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 3
- 108010067787 Proteoglycans Proteins 0.000 description 3
- 102000016611 Proteoglycans Human genes 0.000 description 3
- 102100028516 Receptor-type tyrosine-protein phosphatase U Human genes 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000002224 dissection Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 108010076477 haematoside synthetase Proteins 0.000 description 3
- 239000012642 immune effector Substances 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 239000002955 immunomodulating agent Substances 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229960004641 rituximab Drugs 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 210000001541 thymus gland Anatomy 0.000 description 3
- 108010087967 type I signal peptidase Proteins 0.000 description 3
- 108010015889 zeta receptor Proteins 0.000 description 3
- BKZOUCVNTCLNFF-IGXZVFLKSA-N (2s)-2-[(2r,3r,4s,5r,6s)-2-hydroxy-6-[(1s)-1-[(2s,5r,7s,8r,9s)-2-[(2r,5s)-5-[(2r,3s,4r,5r)-5-[(2s,3s,4s,5r,6s)-6-hydroxy-4-methoxy-3,5,6-trimethyloxan-2-yl]-4-methoxy-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-7-methoxy-2,8-dimethyl-1,10-dioxaspiro[4.5]dec Chemical compound O([C@@H]1[C@@H]2O[C@H]([C@@H](C)[C@H]2OC)[C@@]2(C)O[C@H](CC2)[C@@]2(C)O[C@]3(O[C@@H]([C@H](C)[C@@H](OC)C3)[C@@H](C)[C@@H]3[C@@H]([C@H](OC)[C@@H](C)[C@](O)([C@H](C)C(O)=O)O3)C)CC2)[C@](C)(O)[C@H](C)[C@@H](OC)[C@@H]1C BKZOUCVNTCLNFF-IGXZVFLKSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 2
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 2
- 101001027081 Homo sapiens Killer cell immunoglobulin-like receptor 2DL1 Proteins 0.000 description 2
- 101000945331 Homo sapiens Killer cell immunoglobulin-like receptor 2DL4 Proteins 0.000 description 2
- 101000945337 Homo sapiens Killer cell immunoglobulin-like receptor 2DL5A Proteins 0.000 description 2
- 101000945335 Homo sapiens Killer cell immunoglobulin-like receptor 2DL5B Proteins 0.000 description 2
- 101000945351 Homo sapiens Killer cell immunoglobulin-like receptor 3DL1 Proteins 0.000 description 2
- 101000945493 Homo sapiens Killer cell immunoglobulin-like receptor 3DL3 Proteins 0.000 description 2
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 2
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 101000818543 Homo sapiens Tyrosine-protein kinase ZAP-70 Proteins 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 108010043610 KIR Receptors Proteins 0.000 description 2
- 102000002698 KIR Receptors Human genes 0.000 description 2
- 102100037363 Killer cell immunoglobulin-like receptor 2DL1 Human genes 0.000 description 2
- 102100033633 Killer cell immunoglobulin-like receptor 2DL4 Human genes 0.000 description 2
- 102100033628 Killer cell immunoglobulin-like receptor 2DL5B Human genes 0.000 description 2
- 102100033627 Killer cell immunoglobulin-like receptor 3DL1 Human genes 0.000 description 2
- 102100034834 Killer cell immunoglobulin-like receptor 3DL3 Human genes 0.000 description 2
- 102100030928 Lactosylceramide alpha-2,3-sialyltransferase Human genes 0.000 description 2
- BKZOUCVNTCLNFF-UHFFFAOYSA-N Lonomycin Natural products COC1C(C)C(C2(C)OC(CC2)C2(C)OC3(OC(C(C)C(OC)C3)C(C)C3C(C(OC)C(C)C(O)(C(C)C(O)=O)O3)C)CC2)OC1C1OC(C)(O)C(C)C(OC)C1C BKZOUCVNTCLNFF-UHFFFAOYSA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 102100034256 Mucin-1 Human genes 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 208000006265 Renal cell carcinoma Diseases 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 102100036049 T-complex protein 1 subunit gamma Human genes 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- 102100021125 Tyrosine-protein kinase ZAP-70 Human genes 0.000 description 2
- SAZUGELZHZOXHB-UHFFFAOYSA-N acecarbromal Chemical compound CCC(Br)(CC)C(=O)NC(=O)NC(C)=O SAZUGELZHZOXHB-UHFFFAOYSA-N 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 101150062912 cct3 gene Proteins 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000005574 cross-species transmission Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 230000030609 dephosphorylation Effects 0.000 description 2
- 238000006209 dephosphorylation reaction Methods 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 210000002602 induced regulatory T cell Anatomy 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 108091008042 inhibitory receptors Proteins 0.000 description 2
- 230000004073 interleukin-2 production Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- CJWXCNXHAIFFMH-AVZHFPDBSA-N n-[(2s,3r,4s,5s,6r)-2-[(2r,3r,4s,5r)-2-acetamido-4,5,6-trihydroxy-1-oxohexan-3-yl]oxy-3,5-dihydroxy-6-methyloxan-4-yl]acetamide Chemical compound C[C@H]1O[C@@H](O[C@@H]([C@@H](O)[C@H](O)CO)[C@@H](NC(C)=O)C=O)[C@H](O)[C@@H](NC(C)=O)[C@@H]1O CJWXCNXHAIFFMH-AVZHFPDBSA-N 0.000 description 2
- 210000003800 pharynx Anatomy 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- TYKASZBHFXBROF-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 2-(2,5-dioxopyrrol-1-yl)acetate Chemical compound O=C1CCC(=O)N1OC(=O)CN1C(=O)C=CC1=O TYKASZBHFXBROF-UHFFFAOYSA-N 0.000 description 1
- VWEWCZSUWOEEFM-WDSKDSINSA-N Ala-Gly-Ala-Gly Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(O)=O VWEWCZSUWOEEFM-WDSKDSINSA-N 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 1
- -1 BTLA4 Proteins 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108700031361 Brachyury Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 108700012439 CA9 Proteins 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 108091007741 Chimeric antigen receptor T cells Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 206010055114 Colon cancer metastatic Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 108700022150 Designed Ankyrin Repeat Proteins Proteins 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101150027879 FOXP3 gene Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 102100027581 Forkhead box protein P3 Human genes 0.000 description 1
- 241001123946 Gaga Species 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 description 1
- 101100112778 Homo sapiens CD247 gene Proteins 0.000 description 1
- 101000861452 Homo sapiens Forkhead box protein P3 Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000845170 Homo sapiens Thymic stromal lymphopoietin Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 102000004422 Phospholipase C gamma Human genes 0.000 description 1
- 108010056751 Phospholipase C gamma Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 102100024554 Tetranectin Human genes 0.000 description 1
- 102100031294 Thymic stromal lymphopoietin Human genes 0.000 description 1
- 206010062129 Tongue neoplasm Diseases 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 108091005906 Type I transmembrane proteins Proteins 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 101710128901 Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 201000005179 adrenal carcinoma Diseases 0.000 description 1
- 201000005188 adrenal gland cancer Diseases 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000002869 basic local alignment search tool Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 210000003445 biliary tract Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 208000025188 carcinoma of pharynx Diseases 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000009956 central mechanism Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 108091008034 costimulatory receptors Proteins 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 210000005220 cytoplasmic tail Anatomy 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000037189 immune system physiology Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 210000004964 innate lymphoid cell Anatomy 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 108010025001 leukocyte-associated immunoglobulin-like receptor 1 Proteins 0.000 description 1
- 230000007056 liver toxicity Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000003738 lymphoid progenitor cell Anatomy 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 210000001806 memory b lymphocyte Anatomy 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 238000009126 molecular therapy Methods 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 230000006548 oncogenic transformation Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000005000 reproductive tract Anatomy 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 108010056030 retronectin Proteins 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 108010013645 tetranectin Proteins 0.000 description 1
- 229940126622 therapeutic monoclonal antibody Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 206010044412 transitional cell carcinoma Diseases 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/10—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the structure of the chimeric antigen receptor [CAR]
- A61K2239/11—Antigen recognition domain
- A61K2239/13—Antibody-based
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/463—Cellular immunotherapy characterised by recombinant expression
- A61K39/4631—Chimeric Antigen Receptors [CAR]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
- A61K39/464411—Immunoglobulin superfamily
- A61K39/464412—CD19 or B4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
- A61K39/464429—Molecules with a "CD" designation not provided for elsewhere
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70517—CD8
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70521—CD28, CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70589—CD45
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0637—Immunosuppressive T lymphocytes, e.g. regulatory T cells or Treg
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0638—Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0646—Natural killers cells [NK], NKT cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03048—Protein-tyrosine-phosphatase (3.1.3.48)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/10041—Use of virus, viral particle or viral elements as a vector
- C12N2740/10043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15041—Use of virus, viral particle or viral elements as a vector
- C12N2740/15043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- the present invention relates to a cell which comprises more than one chimeric antigen receptor (CAR).
- the cell may be capable of specifically recognising a target cell, due to a differential pattern of expression (or non-expression) of two or more antigens by the target cell.
- immunotherapeutic agents have been described for use in cancer treatment, including therapeutic monoclonal antibodies (mAbs), immunoconjugated mAbs, radioconjugated mAbs and bi-specific T-cell engagers.
- mAbs therapeutic monoclonal antibodies
- immunoconjugated mAbs immunoconjugated mAbs
- radioconjugated mAbs bi-specific T-cell engagers.
- these immunotherapeutic agents target a single antigen: for instance, Rituximab targets CD20; Myelotarg targets CD33; and Alemtuzumab targets CD52.
- B-chronic lymphocytic leukaemia (B-CLL) is a common leukaemia which is currently treated by targeting CD19. This treats the lymphoma but also depletes the entire B-cell compartment such that the treatment has a considerable toxic effect.
- B-CLL has an unusual phenotype in that CD5 and CD19 are co- expressed. By targeting only cells which express CD5 and CD19, it would be possible to considerably reduce on-target off-tumour toxicity.
- Chimeric antigen receptors are proteins which graft the specificity of a monoclonal antibody (mAb) to the effector function of a T-cell. Their usual form is that of a type I transmembrane domain protein with an antigen recognizing amino terminus, a spacer, a transmembrane domain all connected to a compound endodomain which transmits T-cell survival and activation signals (see Figure 1A).
- scFv single-chain variable fragments
- CAR-expressing T cells is also associated with on-target, off tumour toxicity.
- CAR-based approach targeting carboxy anyhydrase-IX (CAIX) to treat renal cell carcinoma resulted in liver toxicity which is thought to be caused by the specific attack on bile duct epithelial cells (Lamers et al (2013) ol. Ther. 21 :904-912).
- CAR T cells In order to address the problem of "on target, off tumour” toxicity, CAR T cells have been developed with dual antigen specificty. In the “dual targeting” approach, two complementary CARs are co-expressed in the same T-cell population, each directed to a distant tumour target and engineered to provide complementary signals.
- Figure 1 (a) Generalized architecture of a CAR: A binding domain recognizes antigen; the spacer elevates the binding domain from the cell surface; the trans-membrane domain anchors the protein to the membrane and the endodomain transmits signals, (b) to (d): Different generations and permutations of CAR endodomains: (b) initial designs transmitted ITAM signals alone through FCER1-Y or ⁇ 3 endodomain, while later designs transmitted additional (c) one or (d) two co-stimulatory signals in cis.
- FIG. 2 Schematic diagram illustrating the invention
- the invention relates to engineering T-cells to respond to logical rules of target cell antigen expression. This is best illustrated with an imaginary FACS scatter-plot.
- Target cell populations express both, either or neither of antigens "A" and "B".
- Different target populations (marked in red) are killed by T-cells transduced with a pair of CARs connected by different gates.
- OR gated receptors both single-positive and double-positive cells will be killed.
- AND gated receptors only double-positive target cells are killed. With AND NOT gating, double-positive targets are preserved while single-positive targets
- SupT1 cells were used as target cells. These cells were transduced to express either CD19, CD33 or both CD19 and CD33. Target cells were stained with appropriate antibodies and analysed by flow cytometry.
- FIG. 4 Cassette design for an OR gate
- a single open reading frame provides both CARs with an in-frame FMD-2A sequence resulting in two proteins.
- Signall is a signal peptide derived from lgG1 (but can be any effective signal peptide).
- scFvl is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target).
- STK is the CD8 stalk but may be any suitable extracellular domain.
- CD28tm is the CD28 trans-membrane domain but can by any stable type I protein transmembrane domain and CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs.
- Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signah .
- scFv recognizes CD33 but as for scFvl is arbitrary.
- HC2CH3 is the hinge-CH2-CH3 of human lgG1 but can be any extracellular domain which does not cross-pair with the spacer used in the first CAR.
- CD28tm' and CD3Z' code for the same protein sequence as CD28tm and CD3Z but are codon-wobbled to prevent homologous recombination.
- FIG. 5 Schematic representation of the chimeric antigen receptors (CARs) for an OR gate Stimulatory CARs were constructed consisting of either an N-terminal A) anti-CD19 scFv domain followed by the extracellular hinge region of human CD8 or B) anti-CD33 scFv domain followed by the extracellular hinge, CH2 and CH3 (containing a pvaa mutation to reduce FcR binding) region of human IgGl Both receptors contain a human CD28 transmembrane domain and a human CD3 Zeta (CD247) intracellular domain. "S” depicts the presence of disulphide bonds.
- Figure 6 Expression data showing co-expression of both CARs on the surface of one T-cell.
- Figure 7 Functional analysis of the OR gate Effector cells (5x10 cells) expressing the OR gate construct were co-incubated with a varying number of target cells and IL-2 was analysed after 16 hours by ELISA.
- the graph displays the average maximum IL-2 secretion from a chemical stimulation (PMA and lonomycin) of the effector cells alone and the average background IL-2 from effector cells without any stimulus from three replicates.
- FIG. 8 Cartoon showing both versions of the cassette used to express both AND gates
- Signal 1 is a signal peptide derived from lgG1 (but can be any effective signal peptide).
- scFvl is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target).
- STK is the CD8 stalk but may be any non-bulky extracellular domain.
- CD28tm is the CD28 trans-membrane domain but can by any stable type I protein transmembrane domain and
- CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs.
- Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signaH .
- scFv recognizes CD33 but as for scFvl is arbitrary.
- HC2CH3 is the hinge-CH2-CH3 of human lgG1 but can be any bulky extracellular domain.
- CD45 and CD148 are the transmembrane and endodomains of CD45 and CD148 respectively but can be derived from any of this class of protein.
- Figure 9 Schematic representation of the protein structure of chimeric antigen receptors (CARs) for the AND gates
- the stimulatory CAR consisting of an N-terminal anti-CD19 scFv domain followed by the extracellular stalk region of human CD8, human CD28 transmembrane domain and human CD3 Zeta (CD247) intracellular domain.
- Two inhibitory CARs were tested. These consist of an N-terminal anti-CD33 scFv domain followed by the extracellular hinge, CH2 and CH3 (containing a pvaa mutation to reduce FcR binding) region of human lgG1 followed by the transmembrane and intracellular domain of either human CD148 or CD45. "S” depicts the presence of disulphide bonds.
- Figure 10 Co-expression of activation and inhibitory CARs
- BW5147 cells were used as effector cells and were transduced to express both the activation anti-CD19 CAR and one of the inhibitory anti-CD33 CARs. Effector cells were stained with CD19-mouse-Fc and CD33-rabbit-Fc and with appropriate secondary antibodies and analysed by flow cytometry.
- FIG. 11 Functional analysis of the AND gates Effector cells (5x10 cells) expressing activation anti-CD19 CAR and the inhibitory anti- CD33 CAR with the A) CD148 or B) CXD45 intracellular domain were co- incubated with a varying number of target cells and IL-2 was analysed after 16hours by ELISA.
- the graph displays the maximum IL-2 secretion from a chemical stimulation (PMA and Ionomycin) of the effector cells alone and the background IL-2 from effector cells without any stimulus from three replicates.
- Figure 12 Cartoon showing three versions of the cassette used to generate the AND NOT gate
- SignaM is a signal peptide derived from lgG1 (but can be any effective signal peptide).
- scFvl is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target).
- STK is the human CD8 stalk but may be any non-bulky extracellular domain.
- CD28tm is the CD28 trans-membrane domain but can by any stable type I protein transmembrane domain and CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs.
- Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signall scFv recognizes CD33 but as for scFvl is arbitrary.
- muSTK is the mouse CD8 stalk but can be any spacer which co-localises but does not cross-pair with that of the activating CAR.
- dPTPN6 is the phosphatase domain of PTPN6.
- LAIR1 is the transmembrane and endodomain of LAIR1.
- 2Aw is a codon-wobbled version of the FMD-2A sequence.
- SH2-CD148 is the SH2 domain of PTPN6 fused with the phosphatase domain of CD148.
- FIG. 13 Schematic representation of the chimeric antigen receptors (CARs) for the NOT AND gates
- a stimulatory CAR consisting of an N-terminal anti-CD19 scFv domain followed by the stalk region of human CD8, human CD28 transmembrane domain and human CD247 intracellular domain.
- Figure 14 Functional analysis of the NOT AND gate Effector cells (5x10 cells) expressing the A) full length SHP-1 or B) truncated form of SHP-
- the graph displays the average maximum IL-2 secretion from a chemical stimulation (PMA and lonomycin) of the effector cells alone and the average background IL-
- Figure 16 Amino acid sequence of a CD148 and a CD145 based AND gate
- Figure 17 Amino acid sequence of two AND NOT gates
- Figure 18 Dissection of AND gate function
- Figure 20 Generalizability of the AND gate
- A Cartoon of AND gate modified so the second CAR's specificity is changed from the original specificity of CD33, to generate 3 new CARs: CD19 AND GD2, CD19 AND EGFRvlll, CD19 AND CD5.
- B. CD19 AND GD2 AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y-axis) for the GD2 CAR. Right: function in response to single positive and double positive targets.
- C Generalizability of the AND gate
- A Cartoon of AND gate modified so the second CAR's specificity is changed from the original specificity of CD33, to generate 3 new CARs: CD19 AND GD2, CD19 AND EGFRvlll, CD19 AND CD5.
- B. CD19 AND GD2 AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining
- CD19 AND EGFRvlll AND gate Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y- axis) for the EGFRvlll CAR. Right: function in response to single positive and double positive targets.
- D. CD19 AND CD5 AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y-axis) for the CD5 CAR. Right: function in response to single positive and double positive targets.
- a cartoon of the gates tested is shown to the right, and function in response to single positive and double positive targets is shown to the left.
- A. PTPN6 based AND NOT gate whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an ITAM containing activating endodomain; is co-expressed with a second CAR that recognizes CD33, has a mouse CD8 stalk spacer and has an endodomain comprising of a PTPN6 phosphatase domain.
- B. ITIM based AND NOT gate is identical to the PTPN6 gate, except the endodomain is replaced by the endodomain from LAIR1.
- CD148 boosted AND NOT gate is identical to the ITIM based gate except an additional fusion between the PTPN6 SH2 and the endodomain of CD148 is expressed. All three gates work as expected with activation in response to CD19 but not in response to CD19 and CD33 together.
- Figure 22 Dissection of PTPN6 based AND NOT gate function
- the original PTPN6 based AND NOT gate is compared with several controls to demonstrate the model.
- a cartoon of the gates tested is shown to the right, and function in response to single positive and double positive targets is shown to the left.
- A. Original AND NOT gate whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an ITAM containing activating endodomain; is co-expressed with a second CAR recognizes CD33, has a mouse CD8 stalk spacer and has an endodomain comprising of a PTPN6 phosphatase domain.
- Original AND NOT gate functions as expected triggering in response to CD19, but not in response to both CD19 and CD33.
- the gate in B. triggers both in response to CD19 along or CD19 and CD33 together.
- the gate in C. does not trigger in response to one or both targets.
- This gate is composed of two CARs: the first recognizes CD19, has a human CD8 stalk spacer and an ITAM containing endodomain; the second CAR recognizes CD33, has an Fc spacer and an ITIM containing endodomain. Both gates respond to CD19 single positive targets, while only the original gate is inactive in response to CD19 and CD33 double positive targets.
- CARs recognize either CD19 or CD33.
- the immunological synapse can be imagined between the blue line, which represents the target cell membrane and the red line, which represents the T-cell membrane.
- '45' is the native CD45 protein present on T-cells.
- ⁇ 8' is a CAR ectodomain with human CD8 stalk as the spacer.
- 'Fc' is a CAR ectodomain with human HCH2CH3 as the spacer.
- 'M8' is a CAR ectodomain with murine CD8 stalk as the spacer.
- '19' represents CD19 on the target cell surface.
- '33' represents CD33 on the target cell surface.
- the symbol ' ⁇ ' represents an activating endodomain containing ITAMS.
- the symbol ' ⁇ ' represents a phosphatase with slow kinetics - a 'ligation on' endodomain such as one comprising of the catalytic domain of PTPN6 or an ITIM.
- the symbol '0' represents a phosphatase with fast kinetics - a 'ligation off' endodomain such as the endodomain of CD45 or CD148. This symbol is enlarged in the figure to emphasize its potent activity.
- target cells are both CD19 and CD33 negative.
- targets are CD19 negative and CD33 positive.
- target cells are CD19 positive and CD33 negative.
- target cells are positive for both CD19 and CD33.
- Figure 25 Design of APRIL-based CARs.
- the CAR design was modified so that the scFv was replaced with a modified form of A proliferation-inducing ligand (APRIL), which interacts with interacts with BCMA, TACI and proteoglycans, to act as an antigen binding domain: APRIL was truncated so that the proteoglycan binding amino-terminus is absent. A signal peptide was then attached to truncated APRIL amino-terminus to direct the protein to the cell surface. Three CARs were generated with this APRIL based binding domain: A. In the first CAR, the human CD8 stalk domain was used as a spacer domain. B. In the second CAR, the hinge from lgG1 was used as a spacer domain. C.
- APRIL A proliferation-inducing ligand
- the hinge, CH2 and CH3 domains of human lgG1 modified with the pva/a mutations described by Hombach et al (2010 Gene Ther. 17: 1206- 1213) to reduce Fc Receptor binding was used as a spacer (henceforth referred as Fc- pvaa).
- Fc- pvaa spacer
- these spacers were connected to the CD28 transmembrane domain and then to a tripartite endodomain containing a fusion of the CD28, OX40 and the CD3-Zeta endodomain (Pule et al, Molecular therapy, 2005: Volume 12; Issue 5; Pages 933-41).
- Figure 26 Annotated Amino acid sequence of the above three APRIL-CARS
- A Shows the annotated amino acid sequence of the CD8 stalk APRIL CAR
- B Shows the annotated amino acid sequence of the APRIL lgG1 hinge based CAR
- C Shows the annotated amino acid sequence of the APRIL Fc-pvaa based CAR.
- Figure 27 Expression and ligand binding of different APRIL based CARs
- the transduced T-cells were stained with either recombinant BCMA or TACI fused to mouse lgG2a Fc fusion along with an anti-mouse secondary and anti-CD34. All three receptor formats showed binding to both BCMA and TACI. A surprising finding was that binding to BCMA seemed greater than to TACI. A further surprising finding was that although all three CARs were equally expressed, the CD8 stalk and lgG1 hinge CARs appeared better at recognizing BCMA and TACI than that with the Fc spacer.
- Figure 28 Function of the different CAR constructs.
- Functional assays were performed with the three different APRIL based CARs.
- Normal donor peripheral blood T-cells either non-transduced (NT), or transduced to express the different CARs. Transduction was performed using equal titer supernatant. These T-cells were then CD56 depleted to remove non-specific NK activity and used as effectors.
- SupT1 cells either non-transduced (NT), or transduced to express BCMA or TACI were used as targets. Data shown is mean and standard deviation from 5 independent experiments.
- A. Specific killing of BCMA and TACI expressing T-cells was determined using Chromium release.
- B. Interferon- ⁇ release was also determined. Targets and effectors were co-cultured at a ratio of 1 :1.
- C. Proliferation / survival of CAR T-cells were also determined by counting number of CAR T- cells in the same co-culture incubated for a further 6 days. All 3 CARs direct responses against BCMA and TACI expressing targets. The responses to BCMA were greater than for TACI.
- PBMCs were isolated from blood and stimulated using PHA and IL-2. Two days later the cells were transduced on retronectin coated plates with retro virus containing the CD19:CD33 AND gate construct. On day 5 the expression level of the two CARs translated by the AND gate construct was evaluated via flow cytometry and the cells were depleted of CD56+ cells (predominantly NK cells). On day 6 the PBMCs were placed in a co-culture with target cells at a 1 :2 effector to target cell ratio. On day 8 the supernatant was collected and analysed for IFN-gamma secretion via ELISA.
- Figure 30 A selection / hierarchy of possible spacer domains of increasing size is shown.
- the ectodomain of CD3-Zeta is suggested as the shortest possible spacer, followed by the (b) the lgG1 hinge, (c) murine or human CD8 stalk and the CD28 ectodomains are considered intermediate in size and co-segregate, (d) The hinge, CH2 and CH3 domain of lgG1 is bigger and bulkier, and (e) the hinge, CH2, CH3 and CH4 domain of IgM is bigger still. Given the properties of the target molecules, and the epitope of the binding domains on said target molecules, it is possible to use this hierarchy of spacers to create a CAR signaling system which either co-segregates or segregates apart upon synapse formation.
- Figure 31 Design rules for building logic gated CAR T-cells.
- Target cells express arbitrary target antigens A, and B.
- T-cells express two CARs which comprise of anti-A and anti-B recognition domains, spacers and endodomains.
- An OR gate requires (1) spacers simply which allow antigen recognition and CAR activation, and (2) both CARs to have activator/ endodomains;
- An AND NOT gate requires (1 ) spacers which result in co-segregation of both CARs upon recognition of both antigens and (2) one CAR with an activatory endodomain, and the other whose endodomain comprises or recruits a weak phosphatase;
- An AND gate requires (1 ) spacers which result in segregation of both CARs into different parts of the immunological synapse upon recognition of both antigens and (2) one CAR with an activatory endodomain, and the other whose endodomain comprises of a potent phosphatase.
- the present inventors have developed a panel of "logic-gated" chimeric antigen receptor pairs which, when expressed by a cell, such as a T cell, are capable of detecting a particular pattern of expression of at least two target antigens. If the at least two target antigens are arbitrarily denoted as antigen A and antigen B, the three possible options are as follows:
- the present invention provides a cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising:
- the antigen binding domains of the first and second CARs bind to different antigens, and wherein the spacer of the first CAR is different to the spacer of the second CAR, such that the first and second CARs do not form heterodimers, and wherein
- one of the first or second CARs is an activating CAR comprising an activating intracellular T cell signaling domain and the other CAR is an inhibitory CAR comprising a "ligation-off" (as defined herein) inhibitory intracellular T cell signaling domain.
- the cell may be an immune effector cell, such as a T-cell or natural killer (NK) cell.
- an immune effector cell such as a T-cell or natural killer (NK) cell.
- NK natural killer
- the spacer of the first CAR may have a different length and/or charge and/or shape and/or configuration and/or glycosylation to the spacer of the second CAR, such that when the first CAR and the second CAR bind their respective target antigens, the first CAR and second CAR become spatially separated on the T cell. Ligation of the first and second CARs to their respective antigens causes them to be compartmentalized together or separately in the immunological synapse resulting in control of activation. This may be understood when one considers the kinetic separation model of T-cell activation (see below).
- the first spacer or the second spacer may comprise a CD8 stalk and the other spacer may comprise the hinge, CH2 and CH3 domain of an lgG1.
- one of the first or second CARs is an activating CAR comprising an activating endodomain
- the other CAR is a "ligation-off' inhibitory CAR comprising an inhibitory endodomain.
- the ligation-off inhibitory CAR inhibits T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but does not significantly inhibit T-cell activation by the activating CAR when the inhibitory CAR is ligated. Since the spacer of the first CAR has a different length and/or charge and/or shape and/or configuration and/or glycosylation from the spacer of the second CAR, when both CARs are ligated they segregate. This causes the inhibitory CAR to be spatially separated from the activating CAR, so that T cell activation can occur. T cell activation therefore only occurs in response to a target cell bearing both cognate antigens.
- the inhibitory endodomain may comprise all or part of the endodomain from a receptor-like tyrosine phosphatase, such as CD148 or CD45.
- the antigen-binding domain of the first CAR may bind CD5 and the antigen-binding domain of the second CAR may bind CD19.
- CLL chronic lymphocytic leukaemia
- This disease can be treated by targeting CD19 alone, but at the cost of depleting the entire B-cell compartment.
- CLL cells are unusual in that they co-express CD5 and CD19. Targeting this pair of antigens with an AND gate will increase specificity and reduce toxicity.
- the present invention provides a nucleic acid sequence encoding both the first and second chimeric antigen receptors (CARs) as defined in the first aspect of the invention.
- the nucleic acid sequence may have the following structure:AgB1-spacer1-TM1- endo1-coexpr-AgB2-spacer2-TM2-endo2 in which
- AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;
- coexpr is a nucleic acid sequence allowing co-expression of two CARs (e.g. a cleavage site);
- AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;
- nucleic acid sequence when expressed in a T cell, encodes a polypeptide which is cleaved at the cleavage site such that the first and second CARs are co-expressed at the T cell surface.
- the nucleic acid sequence allowing co-expression of two CARs may encode a self-cleaving peptide or a sequence which allows alternative means of co-expressing two CARs such as an internal ribosome entry sequence or a 2 nd promoter or other such means whereby one skilled in the art can express two proteins from the same vector.
- Alternative codons may be used in regions of sequence encoding the same or similar amino acid sequences, in order to avoid homologous recombination.
- the present invention provides a kit which comprises
- nucleic acid sequence encoding the first chimeric antigen receptor (CAR) as defined in the first aspect of the invention, which nucleic acid sequence has the following structure:
- AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;
- TM1 is a a nucleic acid sequence encoding the transmembrane domain of the first CAR
- endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR
- nucleic acid sequence encoding the second chimeric antigen receptor (CAR) as defined in the first aspect of the invention, which nucleic acid sequence has the following structure:
- AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;
- TM2 is a a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR.
- the present invention provides a kit comprising: a first vector which comprises the first nucleic acid sequence as defined above; and a second vector which comprises the first nucleic acid sequence as defined above.
- the vectors may be plasmid vectors, retroviral vectors or transposon vectors.
- the vectors may be lentiviral vectors.
- the present invention provides a vector comprising a nucleic acid sequence according to the second aspect of the invention.
- the vector may be a lentiviral vector.
- the vector may be a plasmid vector, a retroviral vector or a transposon vector.
- the present invention involves co-expressing more than two CARs in such a fashion that a complex pattern of more than two antigens can be recognized on the target cell.
- the present invention provides a method for making a T cell according to the first aspect of the invention, which comprises the step of introducing one or more nucleic acid sequence (s) encoding the first and second CARs; or one or more vector(s) as defined above into a T cell.
- the T cell may be from a sample isolated from a patient, a related or unrelated haematopoietic transplant donor, a completely unconnected donor, from cord blood, differentiated from an embryonic cell line, differentiated from an inducible progenitor cell line, or derived from a transformed T cell line.
- the present invention provides a pharmaceutical composition comprising a plurality of T cells according to the first aspect of the invention.
- the present invention provides a method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to the eighth aspect of the invention to a subject.
- the method may comprise the following steps:
- transduction or transfection of the T cells with one or more nucleic acid sequence(s) encoding the first and second CAR or one or more vector(s) comprising such nucleic acid sequence(s);
- the disease may be a cancer.
- the present invention provides a pharmaceutical composition according to the eighth aspect of the invention for use in treating and/or preventing a disease.
- the disease may be a cancer.
- the present invention provides use of a T cell according to the first aspect of the invention in the manufacture of a medicament for treating and/or preventing a disease.
- the disease may be a cancer.
- the present invention also provides a nucleic acid sequence which comprises:
- the present invention also provides a vector and a cell comprising such a nucleic acid.
- the kinetic-segregation based AND gate of the present invention offers a significant technical advantage to the previously described "co-CAR", i.e. the dual targeting approach in which two antigens are recognized by two CARs which supply either an activating or a co- stimulating signal to the T-cell.
- co-CAR i.e. the dual targeting approach in which two antigens are recognized by two CARs which supply either an activating or a co- stimulating signal to the T-cell.
- co-CAR although greatest activity might be expected against target cells bearing both antigens, considerable activity against tissues bearing only antigen recognized by the activating CAR can be expected. This activity can be expected to be at least that of a first-generation CAR.
- First generation CARs have resulted in considerable toxicity: for instance biliary toxicity was observed in clinical testing of a first generation CAR recognizing Carbonic anhydrase IX which was unexpectedly expressed on biliary epithelium (Rotterdam ref).
- terminally differentiated effectors do not require or respond to co-stimulatory signals, so any terminally differentiated CAR T-cells would act maximally despite the absence of a co-stimulatory CAR signal.
- co-stimulatory signals lead to long-lasting effects on the T-cell population. These effects long outlast the T-cell / target synapse interaction.
- the co-CAR approach hence can be expected to result at best to a reduction but not abolition of toxicity towards single antigen expressing normal tissue.
- the present invention uses kinetic segregation at the immunological synapse formed between the T-cell / target cell to regulate T-cell triggering itself. Consequently tight absolute control of triggering in the absence of the second antigen is achieved. Hence the totality of T-cell activation is restricted to target cells expressing both antigens, the AND gate should function irrespective of the effector cell type or differentiation state, and no "spill-over" effect AND gate T-cell activation is possible.
- the present invention also relates to the aspects listed in the following numbered paragraphs:
- a T cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising:
- the antigen binding domains of the first and second CARs bind to different antigens, wherein the spacer of the first CAR is different to the spacer of the second CAR and wherein one of the first or second CARs is an activating CAR comprising an activating endodomain and the other CAR is either an activating CAR comprising an activating endodomain or an inhibitory CAR comprising a ligation-on or ligation-off inhibitory endodomain.
- a T cell according to paragraph 1 wherein the spacer of the first CAR has a different length and/or charge and/or size and/or configuration and/or glycosylation of the spacer of the second CAR, such that when the first CAR and the second CAR bind their respective target antigens, the first CAR and second CAR become spatially separated on the T cell membrane.
- a T cell according to paragraph 1 wherein both the first and second CARs are activating CARs. 5. A T cell according to paragraph 4, wherein one CAR binds CD19 and the other CAR binds CD20.
- inhibitory endodomain comprises all or part of the endodomain from CD148 or CD45.
- the first and second spacers are sufficiently different so as to prevent cross-pairing of the first and second CARs but are sufficiently similar to result in co-localisation of the first and second CARs following ligation.
- a T cell according to paragraph 9 wherein one of the first or second CARs in an activating CAR comprising an activating endodomain, and the other CAR is an inhibitory CAR comprising a ligation-on inhibitory endodomain, which inhibitory CAR does not significantly inhibit T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but inhibits T-cell activation by the activating CAR when the inhibitory CAR is ligated.
- the ligation-on inhibitory endodomain comprises at least part of a phosphatase.
- a T cell according to paragraph 11 wherein the ligation-on inhibitory endodomain comprises all or part of PTPN6.
- a T cell which comprises more than two CARs as defined in the preceding paragraphs such that it is specifically stimulated by a cell, such as a T cell, bearing a distinct pattern of more than two antigens.
- AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;
- coexpr is a nucleic acid sequence enabling co-expression of both CARs
- AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR;
- nucleic acid sequence when expressed in a T cell, encodes a polypeptide which is cleaved at the cleavage site such that the first and second CARs are co-expressed at the T cell surface.
- nucleic acid sequence encoding the first chimeric antigen receptor (CAR) as defined in any of paragraphs 1 to 16, which nucleic acid sequence has the following structure:
- AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;
- TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR
- endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR
- nucleic acid sequence encoding the second chimeric antigen receptor (CAR) as defined in any of paragraphs 1 to 16, which nucleic acid sequence has the following structure:
- AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;
- TM2 is a a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR.
- kits comprising: a first vector which comprises the first nucleic acid sequence as defined in paragraph 21 ; and a second vector which comprises the first nucleic acid sequence as defined in paragraph 21.
- the vectors are integrating viral vectors or transposons.
- a vector comprising a nucleic acid sequence according to any of paragraphs 17 to 20.
- T cell is from a sample isolated from a subject.
- a pharmaceutical composition comprising a plurality of T cells according to any of paragraphs 1 to 16.
- a method for treating and/or preventing a disease which comprises the step of administering a pharmaceutical composition according to paragraph 28 to a subject.
- transduction or transfection of the T cells with: a nucleic acid sequence according to any of paragraphs 17 to 20; a first nucleic acid sequence and a second nucleic acid sequence as defined in paragraph 21 ; a first vector and a second vector as defined in paragraph 22 or 23 or a vector according to paragraph 24 or 25; and
- a pharmaceutical composition according to paragraph 28 for use in treating and/or preventing a disease 32.
- a pharmaceutical composition according to paragraph 28 for use in treating and/or preventing a disease 33.
- CARs which are shown schematically in Figure 1 , are chimeric type I trans-membrane proteins which connect an extracellular antigen-recognizing domain (binder) to an intracellular signalling domain (endodomain).
- the binder is typically a single-chain variable fragment (scFv) derived from a monoclonal antibody (mAb), but it can be based on other formats which comprise an antibody-like antigen binding site.
- scFv single-chain variable fragment
- mAb monoclonal antibody
- a spacer domain is usually necessary to isolate the binder from the membrane and to allow it a suitable orientation.
- a common spacer domain used is the Fc of IgGl More compact spacers can suffice e.g. the stalk from CD8a and even just the lgG1 hinge alone, depending on the antigen.
- a trans- membrane domain anchors the protein in the cell membrane and connects the spacer to the endodomain.
- TNF receptor family endodomains such as the closely related OX40 and 41 BB which transmit survival signals.
- OX40 and 41 BB which transmit survival signals.
- CARs have now been described which have endodomains capable of transmitting activation, proliferation and survival signals.
- CAR-encoding nucleic acids may be transferred to T cells using, for example, retroviral vectors. Lentiviral vectors may be employed. In this way, a large number of cancer-specific T cells can be generated for adoptive cell transfer. When the CAR binds the target-antigen, this results in the transmission of an activating signal to the T-cell it is expressed on. Thus the CAR directs the specificity and cytotoxicity of the T cell towards tumour cells expressing the targeted antigen.
- the first aspect of the invention relates to a T-cell which co-expresses a first CAR and a second CAR such that a T-cell can recognize a desired pattern of expression on target cells in the manner of a logic gate as detailed in the truth tables: table 1 , 2 and 3.
- Both the first and second (and optionally subsequent) CARs comprise:
- the first and second CAR of the T cell of the present invention may be produced as a polypeptide comprising both CARs, together with a cleavage site.
- SEQ ID No. 1 to 5 give examples of such polypeptides, which each comprise two CARs.
- the CAR may therefore comprise one or other part of the following amino acid sequences, which corresponds to a single CAR.
- SEQ ID No 1 is a CAR OR gate which recognizes CD19 OR CD33
- SEQ ID No 2 Is a CAR AND gate which recognizes CD19 AND CD33 using a CD148 phosphatase
- SEQ ID No 3 Is an alternative implementation of the CAR AND GATE which recognizes CD19 AND CD33 which uses a CD45 phosphatase
- SEQ ID No 4 Is a CAR AND NOT GATE which recognizes CD19 AND NOT CD33 based on PTPN6 phosphatase
- SEQ ID No 5 Is an alternative implementation of the CAR AND NOT gate which recognizes CD19 AND NOT CD33 and is based on an ITIM containing endodomain from LAIR1
- the CAR may comprise a variant of the CAR-encoding part of the sequence shown as SEQ ID No. 1 , 2, 3, 4, 5 or 6 having at least 80, 85, 90, 95, 98 or 99% sequence identity, provided that the variant sequence is a CAR having the required properties.
- % sequence identity refers to the percentage of amino acid or nucleotide residues that are identical in the two sequences when they are optimally aligned. Nucleotide and protein sequence homology or identity may be determined using standard algorithms such as a BLAST program (Basic Local Alignment Search Tool at the National Center for Biotechnology Information) using default parameters, which is publicly available at http://blast.ncbi.nlm.nih.gov.
- sequence identity or homology includes: LALIGN (http://www.ebi.ac.uk/Tools/psa/lalign/ and http://www.ebi.ac.uk/Tools/psa/lalign/nucleotide.html), AMAS (Analysis of Multiply Aligned Sequences, at http://www.compbio.dundee.ac.uk/Software/Amas/amas.html), FASTA (http://www.ebi.ac.uk/Tools/ss/fasta/) , Clustal Omega
- the antigen binding domains of the first and second CARs of the present invention bind to different antigens and both CARs comprise an activating endodomain. Both CARs have different spacer domains to prevent cross-pairing of the two different receptors.
- a T cell can hence be engineered to activate upon recognition of either or both antigens. This is useful in the field of oncology as indicated by the Goldie-Coldman hypothesis: sole targeting of a single antigen may result in tumour escape by modulation of said antigen due to the high mutation rate inherent in most cancers. By simultaneously targeting two antigens, the probably of such escape is exponentially reduced.
- Various tumour associated antigens are known as shown in the following Table 4.
- the first CAR and second CAR may bind to two different TAAs associated with that disease.
- tumour escape by modulating a single antigen is prevented, since a second antigen is also targeted.
- both CD19 and CD20 can be simultaneously targeted.
- KS kinetic segregation model
- T-cell receptor or CAR
- CAR T-cell receptor
- ZAP70 recognizes a threshold of phosphorylated ITAMs and propagates a T-cell activation signal.
- This advanced understanding of T-cell activation is exploited by the present invention.
- the invention is based on this understanding of how ectodomains of different length and/or bulk and/or charge and/or configuration and/or glycosylation result in differential segregation upon synapse formation.
- one CAR comprises an activating endodomain and one CAR comprises an inhibitory endodomain whereby the inhibitory CAR constitutively inhibits the first activating CAR, but upon recognition of its cognate antigen releases its inhibition of the activating CAR.
- a T-cell can be engineered to trigger only if a target cell expresses both cognate antigens.
- This behaviour is achieved by the activating CAR comprising an activating endodomain containing ITAM domains for example the endodomain of CD3 Zeta, and the inhibitory CAR comprising the endodomain from a phosphatase able to dephosphorylate an ITAM (e.g. CD45 or CD148).
- ITAM e.g. CD45 or CD148
- the spacer domains of both CARs are significantly different in size and/or shape and/or charge etc.
- the inhibitory CAR is in solution on the T-cell surface and can diffuse in and out of the synapse inhibiting the activating CAR.
- the activating and inhibiting CAR are differentially segregated allowing the activating CAR to trigger T-cell activation unhindered by the inhibiting CAR.
- the design of the present invention is a considerable improvement on previous implementation as described by Wilkie et al. ((2012). J. Clin. Immunol. 32, 1059-1070) and then tested in vivo (Kloss et al (2013) Nat. Biotechnol. 31 , 71-75).
- the first CAR comprises of an activating endodomain, and the second a co-stimulatory domain.
- a T-cell only receives an activating and co-stimulatory signal when both antigens are present.
- the T-cell still will activate in the sole presence of the first antigen resulting in the potential for off-target toxicity.
- the implementation of the present invention allows for multiple compound linked gates whereby a cell can interpret a complex pattern of antigens.
- one CAR comprises an activating endodomain and one CAR comprises an inhibitory endodomain such that this inhibitory CAR is only active when it recognizes its cognate antigen.
- a T-cell engineered in this manner is activated in response to the sole presence of the first antigen but is not activated when both antigens are present.
- This invention is implemented by inhibitory CARs with a spacer that co-localise with the first CAR but either the phosphatase activity of the inhibitory CAR should not be so potent that it inhibits in solution, or the inhibitory endodomain in fact recruits a phosphatase solely when the inhibitory CAR recognizes its cognate target.
- Such endodomains are termed "ligation-on" or semi-inhibitory herein.
- This invention is of use in refining targeting when a tumour can be distinguished from normal tissue by the presence of tumour associated antigen and the loss of an antigen expressed on normal tissue.
- the AND NOT gate is of considerable utility in the field of oncology as it allows targeting of an antigen which is expressed by a normal cell, which normal cell also expresses the antigen recognised by the CAR comprising the activating endodomain.
- An example of such an antigen is CD33 which is expressed by normal stem cells and acute myeloid leukaemia (AML) cells.
- CD34 is expressed on stem cells but not typically expressed on AML cells.
- a T-cell recognizing CD33 AND NOT CD34 would result in destruction of leukaemia cells but sparing of normal stem cells.
- Potential antigen pairs for use with AND NOT gates are shown in Table 6.
- the kinetic segregation model with the above components allows compound gates to be made e.g. a T-cell which triggers in response to patterns of more than two target antigens.
- a T cell which only triggers when three antigens are present (A AND B AND C).
- a cell expresses three CARs, each recognizing antigens A, B and C.
- One CAR is excitatory and two are inhibitory, which each CAR having spacer domains which result in differential segregation. Only when all three are ligated, will the T- cell activate.
- ever more complex boolean logic can be programmed with these simple components of the invention with any number of CARs and spacers.
- the CARs of the T cell of the present invention may comprise a signal peptide so that when the CAR is expressed inside a cell, such as a T-cell, the nascent protein is directed to the endoplasmic reticulum and subsequently to the cell surface, where it is expressed.
- the core of the signal peptide may contain a long stretch of hydrophobic amino acids that has a tendency to form a single alpha-helix.
- the signal peptide may begin with a short positively charged stretch of amino acids, which helps to enforce proper topology of the polypeptide during translocation.
- At the end of the signal peptide there is typically a stretch of amino acids that is recognized and cleaved by signal peptidase.
- Signal peptidase may cleave either during or after completion of translocation to generate a free signal peptide and a mature protein. The free signal peptides are then digested by specific proteases.
- the signal peptide may be at the amino terminus of the molecule.
- the signal peptide may comprise the SEQ ID No. 7, 8 or 9 or a variant thereof having 5, 4, 3, 2 or 1 amino acid mutations (insertions, substitutions or additions) provided that the signal peptide still functions to cause cell surface expression of the CAR.
- the signal peptide of SEQ ID No. 7 is compact and highly efficient. It is predicted to give about 95% cleavage after the terminal glycine, giving efficient removal by signal peptidase.
- the signal peptide of SEQ ID No. 8 is derived from lgG1.
- SEQ ID No. 9 MAVPTQVLGLLLLWLTDARC
- the signal peptide of SEQ ID No. 9 is derived from CD8.
- the signal peptide for the first CAR may have a different sequence from the signal peptide of the second CAR (and from the 3 rd CAR and 4 th CAR etc).
- the antigen binding domain is the portion of the CAR which recognizes antigen.
- Numerous antigen-binding domains are known in the art, including those based on the antigen binding site of an antibody, antibody mimetics, and T-cell receptors.
- the antigen- binding domain may comprise; a single-chain variable fragment (scFv) derived from a monoclonal antibody; a natural ligand of the target antigen; a peptide with sufficient affinity for the target; a single domain antibody; an artificial single binder such as a Darpin (designed ankyrin repeat protein); or a single-chain derived from a T-cell receptor.
- scFv single-chain variable fragment
- the antigen binding domain may comprise a domain which is not based on the antigen binding site of an antibody.
- the antigen binding domain may comprise a domain based on a protein/peptide which is a soluble ligand for a tumour cell surface receptor (e.g. a soluble peptide such as a cytokine or a chemokine); or an extracellular domain of a membrane anchored ligand or a receptor for which the binding pair counterpart is expressed on the tumour cell.
- a soluble ligand for a tumour cell surface receptor e.g. a soluble peptide such as a cytokine or a chemokine
- Examples 11 to 13 relate to a CAR which binds BCMA, in which the antigen binding doaimn comprises APRIL, a ligand for BCMA.
- the antigen binding domain may be based on a natural ligand of the antigen.
- the antigen binding domain may comprise an affinity peptide from a combinatorial library or a cfe novo designed affinity protein/peptide.
- CARs comprise a spacer sequence to connect the antigen-binding domain with the transmembrane domain and spatially separate the antigen-binding domain from the endodomain.
- a flexible spacer allows the antigen-binding domain to orient in different directions to facilitate binding.
- the first and second CARs comprise different spacer molecules.
- the spacer sequence may, for example, comprise an lgG1 Fc region, an lgG1 hinge or a human CD8 stalk or the mouse CD8 stalk.
- the spacer may alternatively comprise an alternative linker sequence which has similar length and/or domain spacing properties as an lgG1 Fc region, an lgG1 hinge or a CD8 stalk.
- a human lgG1 spacer may be altered to remove Fc binding motifs.
- amino acid sequences for these spacers are given below:
- SEQ ID No. 12 (human lgG1 hinge):
- CARs are typically homodimers (see Figure 1a)
- cross-pairing may result in a heterodimeric chimeric antigen receptor. This is undesirable for various reasons, for example: (1) the epitope may not be at the same "level" on the target cell so that a cross- paired CAR may only be able to bind to one antigen; (2) the VH and VL from the two different scFv could swap over and either fail to recognize target or worse recognize an unexpected and unpredicted antigen.
- the spacer of the first CAR is sufficiently different from the spacer of the second CAR in order to avoid cross-pairing.
- the amino acid sequence of the first spacer may share less that 50%, 40%, 30% or 20% identity at the amino acid level with the second spacer.
- the spacer of the first CAR has a different length, and/or charge and/or shape and/or configuration and/or glycosylation, such that when both first and second CARs bind their target antigen, the difference in spacer charge or dimensions results in spatial separation of the two types of CAR to different parts of the membrane to result in activation as predicted by the kinetic separation model.
- the different length, shape and/or configuration of the spacers is carefully chosen bearing in mind the size and binding epitope on the target antigen to allow differential segregation upon cognate target recognition. For example the lgG1 Hinge, CD8 stalk, lgG1 Fc, ectodomain of CD34, ectodomain of CD45 are expected to differentially segregate.
- Human-CD28STK Human-lgM-Hinge-CH2CH3CD4 In other aspects of the invention (for example the AND NOT gate), it is important that the spacer be sufficiently different as to prevent cross-pairing, but to be sufficiently similar to co- localise. Pairs of orthologous spacer sequences may be employed. Examples are murine and human CD8 stalks, or alternatively spacer domains which are monomeric - for instance the ectodomain of CD2.
- the transmembrane domain is the sequence of the CAR that spans the membrane.
- a transmembrane domain may be any protein structure which is thermodynamically stable in a membrane. This is typically an alpha helix comprising of several hydrophobic residues.
- the transmembrane domain of any transmembrane protein can be used to supply the transmembrane portion of the invention.
- the presence and span of a transmembrane domain of a protein can be determined by those skilled in the art using the TMHMM algorithm (http://www.cbs.dtu.dk services TMHMM-2.0/).
- transmembrane domain of a protein is a relatively simple structure, i.e a polypeptide sequence predicted to form a hydrophobic alpha helix of sufficient length to span the membrane
- an artificially designed TM domain may also be used (US 7052906 B1 describes synthetic transmembrane components).
- the transmembrane domain may be derived from CD28, which gives good receptor stability.
- the endodomain is the signal-transmission portion of the CAR. After antigen recognition, receptors cluster, native CD45 and CD148 are excluded from the synapse and a signal is transmitted to the cell.
- the most commonly used endodomain component is that of CD3- zeta which contains 3 ITAMs. This transmits an activation signal to the T cell after antigen is bound.
- CD3-zeta may not provide a fully competent activation signal and additional co- stimulatory signaling may be needed.
- chimeric CD28 and OX40 can be used with CD3-Zeta to transmit a proliferative / survival signal, or all three can be used together.
- the T cell of the present invention comprises a CAR with an activating endodomain
- it may comprise the CD3-Zeta endodomain alone, the CD3-Zeta endodomain with that of either CD28 or OX40 or the CD28 endodomain and OX40 and CD3-Zeta endodomain.
- Any endodomain which contains an ITAM motif can act as an activation endodomain in this invention.
- proteins are known to contain endodomains with one or more ITAM motifs. Examples of such proteins include the CD3 epsilon chain, the CD3 gamma chain and the CD3 delta chain to name a few.
- the ITAM motif can be easily recognized as a tyrosine separated from a leucine or isoleucine by any two other amino acids, giving the signature YxxL/l. Typically, but not always, two of these motifs are separated by between 6 and 8 amino acids in the tail of the molecule (YxxL/lx(6-8)YxxL/l). Hence, one skilled in the art can readily find existing proteins which contain one or more ITA to transmit an activation signal. Further, given the motif is simple and a complex secondary structure is not required, one skilled in the art can design polypeptides containing artificial ITAMs to transmit an activation signal (see WO 2000063372, which relates to synthetic signalling molecules).
- the transmembrane and intracellular T-cell signalling domain (endodomain) of a CAR with an activating endodomain may comprise the sequence shown as SEQ ID No. 15, 16 or 17 or a variant thereof having at least 80% sequence identity.
- SEQ ID No. 15 comprising CD28 transmembrane domain and CD3 Z endodomain
- SEQ ID No. 16 comprising CD28 transmembrane domain and CD28 and CD3 Zeta endodomains
- SEQ ID No. 17 comprising CD28 transmembrane domain and CD28, OX40 and CD3 Zeta endodomains.
- a variant sequence may have at least 80%, 85%, 90%, 95%, 98% or 99% sequence identity to SEQ ID No. 15, 16 or 17, provided that the sequence provides an effective trans- membrane domain and an effective intracellular T cell signaling domain.
- one of the CARs comprises an inhibitory endodomain such that the inhibitory CAR inhibits T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but does not significantly inhibit T-cell activation by the activating CAR when the inhibitory CAR is Iigated. This is termed a "ligation-off inhibitory endodomain.
- the spacer of the inhibitory CAR is of a different length, charge, shape and/or configuration and/or glycosylation from the spacer of the activating CAR, such that when both receptors are Iigated, the difference in spacer dimensions results in isolation of the activating CARs and the inhibitory CARs in different membrane compartments of the immunological synapse, so that the activating endodomain is released from inhibition by the inhibitory endodomain.
- the inhibitory endodomains for use in a ligation-off inhibitory CAR may therefore comprise any sequence which inhibits T-cell signaling by the activating CAR when it is in the same membrane compartment (i.e. in the absence of the antigen for the inhibitory CAR) but which does not significantly inhibit T cell signaling when it is isolated in a separate part of the membrane from the inhibitory CAR.
- the ligation-off inhibitory endodomain may be or comprise a tyrosine phosphatase, such as a receptor-like tyrosine phosphatase.
- An inhibitory endodomain may be or comprise any tyrosine phosphatase that is capable of inhibiting the TCR signalling when only the stimulatory receptor is Iigated.
- An inhibitory endodomain may be or comprise any tyrosine phosphatase with a sufficiently fast catalytic rate for phosphorylated ITAMs that is capable of - inhibiting the TCR signalling when only the stimulatory receptor is Iigated.
- the inhibitory endodomain of an AND gate may comprise the endodomain of CD148 or CD45.
- CD148 and CD45 have been shown to act naturally on the phosphorylated tyrosines up-stream of TCR signalling.
- CD148 is a receptor-like protein tyrosine phosphatase which negatively regulates TCR signaling by interfering with the phosphorylation and function of PLCyl and LAT.
- CD45 present on all hematopoetic cells is a protein tyrosine phosphatase which is capable of regulating signal transduction and functional responses, again by phosphorylating PLC ⁇ 1.
- An inhibitory endodomain may comprise all of part of a receptor-like tyrosine phosphatase.
- the phospatase may interfere with the phosphorylation and/or function of elements involved in T-cell signalling, such as PLCyl and/or LAT.
- the transmembrane and endodomain of CD45 and CD148 is shown as SEQ ID No. 18 and No.19 respectively.
- An inhibitory CAR may comprise all or part of SEQ ID No 18 or 19 (for example, it may comprise the phosphatas
- Target cell populations can be created by transducing a suitable cell line such as a SupT1 cell line either singly or doubly to establish cells negative for both antigens (the wild-type), positive for either and positive for both (e.g. CD19-CD33-, CD19+CD33-, CD19-CD33+ and CD19+CD33+).
- a suitable cell line such as a SupT1 cell line either singly or doubly to establish cells negative for both antigens (the wild-type), positive for either and positive for both (e.g. CD19-CD33-, CD19+CD33-, CD19-CD33+ and CD19+CD33+).
- T cells such as the mouse T cell line BW5147 which releases IL-2 upon activation may be transduced with pairs of CARs and their ability to function in a logic gate measured through measurement of IL-2 release (for example by ELISA).
- IL-2 release for example by ELISA
- both CD148 and CD45 endodomains can function as inhibitory CARs in combination with an activating CAR containing a CD3 Zeta endodomain.
- These CARs rely upon a short/non-bulky CD8 stalk spacer on one CAR and a bulky Fc spacer on the other CAR to achieve AND gating.
- one of the CARs comprises a "ligation-on" inhibitory endodomain such that the inhibitory CAR does not significantly inhibit T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but inhibits T-cell activation by the activating CAR when the inhibitory CAR is ligated.
- the "ligation-on" inhibitory endodomain may be or comprise a tyrosine phosphatase that is incapable of inhibiting the TCR signalling when only the stimulatory receptor is ligated.
- the "ligation-on" inhibitory endodomain may be or comprise a tyrosine phosphatase with a sufficiently slow catalytic rate for phosphorylated ITAMs that is incapable of inhibiting the TCR signalling when only the stimulatory receptor is ligated but it is capable of inhibiting the TCR signalling response when concentrated at the synapse. Concentration at the synapse is achieved through inhibitory receptor ligation.
- a tyrosine phosphatase has a catalytic rate which is too fast for a "ligation-on” inhibitory endodomain, then it is possible to tune-down the catalytic rates of phosphatase through modification such as point mutations and short linkers (which cause steric hindrance) to make it suitable for a "ligation-on” inhibitory endodomain.
- the endodomain may be or comprise a phosphatase which is considerably less active than CD45 or CD148, such that significant dephosphorylation of ITAMS only occurs when activating and inhibitory endodomains are co-localised.
- the inhibitory endodomain of a NOT AND gate may comprise all or part of a protein-tyrosine phosphatase such as PTPN6.
- PTPs Protein tyrosine phosphatases
- SH2 Src homolog
- the inhibitor domain may comprise all of PTPN6 (SEQ ID No. 20) or just the phosphatase domain (SEQ ID No. 21).
- a second embodiment of a ligation-on inhibitory endodomain is an ITIM (Immunoreceptor Tyrosine-based Inhibition motif) containing endodomain such as that from CD22, LAIR-1 , the Killer inhibitory receptor family (KIR), LILRB1 , CTLA4, PD-1, BTLA etc.
- ITIMs When phosphorylated, ITIMs recruits endogenous PTPN6 through its SH2 domain. If co-localised with an ITAM containing endodomain, dephosphorylation occurs and the activating CAR is inhibited.
- ITIM is a conserved sequence of amino acids (S/l/V/LxYxxl/V/L) that is found in the cytoplasmic tails of many inhibitory receptors of the immune system.
- One skilled in the art can easily find protein domains containing an ITIM.
- a list of human candidate ITIM- containing proteins has been generated by proteome-wide scans (Staub, et al (2004) Cell. Signal. 16, 435- ⁇ -56). Further, since the consensus sequence is well known and little secondary structure appears to be required, one skilled in the art could generate an artificial ITIM.
- ITIM endodomains from PDCD1 , BTLA4, LILRB1 , LAIR1 , CTLA4, KIR2DL1 , KIR2DL4, KIR2DL5, KIR3DL1 and KIR3DL3 are shown in SEQ ID 22 to 31 respectively
- a third embodiment of a ligation-on inhibitory endodomain is an ITIM containing endodomain co-expressed with a fusion protein.
- the fusion protein may comprise at least part of a protein-tyrosine phosphatase and at least part of a receptor-like tyrosine phosphatase.
- the fusion may comprise one or more SH2 domains from the protein-tyrosine phosphatase.
- the fusion may be between a PTPN6 SH2 domain and CD45 endodomain or between a PTPN6 SH2 domain and CD148 endodomain.
- the ITIM domains recruit the fusion protein bring the highly potent CD45 or CD148 phosphatase to proximity to the activating endodomain blocking activation.
- SEQ ID 22 to 31 may comprise all or part of SEQ ID 22 to 31. It may comprise all or part of SEQ ID 22 to 31 co- expressed with either SEQ ID 32 or 33. It may comprise a variant of the sequence or part thereof having at least 80% sequence identity, as long as the variant retains the capacity to inhibit T cell signaling by the activating CAR upon ligation of the inhibitory CAR.
- the PTPN6 endodomain can function as a semi-inhibitory CAR in combination with an activating CAR containing a CD3 Zeta endodomain.
- These CARs rely upon a human CD8 stalk spacer on one CAR and a mouse CD8 stalk spacer on the other CAR.
- the orthologous sequences prevent cross pairing.
- the similarity between the spacers results in co-segregation of the different receptors in the same membrane compartments. This results in inhibition of the CD3 Zeta receptor by the PTPN6 endodomain.
- the PTPN6 endodomain is not sufficiently active to prevent T cell activation. In this way, activation only occurs if the activating CAR is ligated and the inhibitory CAR is not ligated (AND NOT gating). It can be readily seen that this modular system can be used to test alternative spacer pairs and inhibitory domains. If the spacers do not achieve co-segregation following ligation of both receptors, the inhibition would not be effective and so activation would occur. If the semi-inhibitory endodomain under test is ineffective, activation would be expected in the presence of ligation of the activating CAR irrespective of the ligation status of the semi-inhibitory CAR.
- the second aspect of the invention relates to a nucleic acid which encodes the first and second CARs.
- the nucleic acid may produce a polypeptide which comprises the two CAR molecules joined by a cleavage site.
- the cleavage site may be self-cleaving, such that when the polypeptide is produced, it is immediately cleaved into the first and second CARs without the need for any external cleavage activity.
- Various self-cleaving sites are known, including the Foot-and-Mouth disease virus (FMDV) 2a self-cleaving peptide, which has the sequence shown as SEQ ID No. 34:
- FMDV Foot-and-Mouth disease virus
- the co-expressing sequence may be an internal ribosome entry sequence (IRES).
- the co-expressing sequence may be an internal promoter.
- the first aspect of the invention relates to a cell which co-expresses a first CAR and a second CAR at the cell surface.
- the cell may be any eukaryotic cell capable of expressing a CAR at the cell surface, such as an immunological cell.
- the cell may be an immune effector cell such as a T cell or a natural killer (NK) cell
- T cells or T lymphocytes are a type of lymphocyte that play a central role in cell-mediated immunity. They can be distinguished from other lymphocytes, such as B cells and natural killer cells (NK cells), by the presence of a T-cell receptor (TCR) on the cell surface.
- TCR T-cell receptor
- Helper T helper cells assist other white blood cells in immunologic processes, including maturation of B cells into plasma cells and memory B cells, and activation of cytotoxic T cells and macrophages.
- TH cells express CD4 on their surface.
- TH cells become activated when they are presented with peptide antigens by MHC class II molecules on the surface of antigen presenting cells (APCs).
- APCs antigen presenting cells
- These cells can differentiate into one of several subtypes, including TH1 , TH2, TH3, TH17, Th9, or TFH, which secrete different cytokines to facilitate different types of immune responses.
- Cytotoxic T cells destroy virally infected cells and tumor cells, and are also implicated in transplant rejection.
- CTLs express the CD8 at their surface. These cells recognize their targets by binding to antigen associated with MHC class I, which is present on the surface of all nucleated cells.
- MHC class I MHC class I
- IL-10 adenosine and other molecules secreted by regulatory T cells, the CD8+ cells can be inactivated to an anergic state, which prevent autoimmune diseases such as experimental autoimmune encephalomyelitis.
- Memory T cells are a subset of antigen-specific T cells that persist long-term after an infection has resolved. They quickly expand to large numbers of effector T cells upon re- exposure to their cognate antigen, thus providing the immune system with "memory" against past infections.
- Memory T cells comprise three subtypes: central memory T cells (TCM cells) and two types of effector memory T cells (TEM cells and TEMRA cells). Memory cells may be either CD4+ or CD8+. Memory T cells typically express the cell surface protein CD45RO.
- Treg cells Regulatory T cells
- suppressor T cells are crucial for the maintenance of immunological tolerance. Their major role is to shut down T cell-mediated immunity toward the end of an immune reaction and to suppress auto-reactive T cells that escaped the process of negative selection in the thymus.
- Treg cells Two major classes of CD4+ Treg cells have been described—natural occurring Treg cells and adaptive Treg cells.
- Naturally occurring Treg cells arise in the thymus and have been linked to interactions between developing T cells with both myeloid (CD11 c+) and plasmacytoid (CD123+) dendritic cells that have been activated with TSLP.
- Naturally occurring Treg cells can be distinguished from other T cells by the presence of an intracellular molecule called FoxP3. Mutations of the FOXP3 gene can prevent regulatory T cell development, causing the fatal autoimmune disease IPEX.
- Adaptive Treg cells may originate during a normal immune response.
- the T cell of the invention may be any of the T cell types mentioned above, in particular a CTL.
- Natural killer (NK) cells are a type of cytolytic cell which forms part of the innate immune system. NK cells provide rapid responses to innate signals from virally infected cells in an MHC independent manner
- NK cells (belonging to the group of innate lymphoid cells) are defined as large granular lymphocytes (LGL) and constitute the third kind of cells differentiated from the common lymphoid progenitor generating B and T lymphocytes. NK cells are known to differentiate and mature in the bone marrow, lymph node, spleen, tonsils and thymus where they then enter into the circulation.
- the CAR cells of the invention may be any of the cell types mentioned above.
- CAR- expressing cells such as CAR-expressing T or NK cells, may either be created ex vivo either from a patient's own peripheral blood (1 st party), or in the setting of a haematopoietic stem cell transplant from donor peripheral blood (2 nd party), or peripheral blood from an unconnected donor (3 rd party).
- the present invention also provide a cell composition comprising CAR expressing T cells and/or CAR expressing NK cells according to the present invention.
- the cell composition may be made by tranducing or transfecting a blood-sample ex vivo with a nucleic acid according to the present invention.
- CAR-expressing cells may be derived from ex vivo differentiation of inducible progenitor cells or embryonic progenitor cells to the relevant cell type, such as T cells.
- an immortalized cell line such as a T-cell line which retains its lytic function and could act as a therapeutic may be used.
- CAR cells are generated by introducing DNA or RNA coding for the CARs by one of many means including transduction with a viral vector, transfection with DNA or RNA.
- a CAR T cell of the invention may be an ex vivo T cell from a subject.
- the T cell may be from a peripheral blood mononuclear cell (PBMC) sample.
- T cells may be activated and/or expanded prior to being transduced with CAR-encoding nucleic acid, for example by treatment with an anti-CD3 monoclonal antibody.
- PBMC peripheral blood mononuclear cell
- a CAR T cell of the invention may be made by:
- T cells (ii) transduction or transfection of the T cells with one or more nucleic acid sequence(s) encoding the first and second CAR.
- the T cells may then by purified, for example, selected on the basis of co-expression of the first and second CAR.
- the second aspect of the invention relates to one or more nucleic acid sequence(s) which codes for a first CAR and a second CAR as defined in the first aspect of the invention.
- the nucleic acid sequence may comprise one of the following sequences, or a variant thereof
- the nucleic acid sequence may encode the same amino acid sequence as that encoded by SEQ ID No. 35, 36, 37, 38, 39 or 40, but may have a different nucleic acid sequence, due to the degeneracy of the genetic code.
- the nucleic acid sequence may have at least 80, 85, 90, 95, 98 or 99% identity to the sequence shown as SEQ ID No. 35, 36, 37, 38, 39 or 40, provided that it encodes a first CAR and a second CAR as defined in the first aspect of the invention.
- the present invention also provides a vector, or kit of vectors which comprises one or more CAR-encoding nucleic acid sequence(s).
- a vector or kit of vectors which comprises one or more CAR-encoding nucleic acid sequence(s).
- Such a vector may be used to introduce the nucleic acid sequence(s) into a host cell so that it expresses the first and second CARs.
- the vector may, for example, be a plasmid or a viral vector, such as a retroviral vector or a lentiviral vector, or a transposon based vector or synthetic mRNA.
- the vector may be capable of transfecting or transducing a T cell.
- the present invention also relates to a pharmaceutical composition containing a plurality of CAR-expressing cells, such as T cells or NK cells according to the first aspect of the invention.
- the pharmaceutical composition may additionally comprise a pharmaceutically acceptable carrier, diluent or excipient.
- the pharmaceutical composition may optionally comprise one or more further pharmaceutically active polypeptides and/or compounds.
- Such a formulation may, for example, be in a form suitable for intravenous infusion.
- the T cells of the present invention may be capable of killing target cells, such as cancer cells.
- the target cell may be recognisable by a defined pattern of antigen expression, for example the expression of antigen A AND antigen B; the expression of antigen A OR antigen B; or the expression of antigen A AND NOT antigen B or complex iterations of these gates.
- T cells of the present invention may be used for the treatment of an infection, such as a viral infection.
- T cells of the invention may also be used for the control of pathogenic immune responses, for example in autoimmune diseases, allergies and graft-vs-host rejection.
- T cells of the invention may be used for the treatment of a cancerous disease, such as bladder cancer, breast cancer, colon cancer, endometrial cancer, kidney cancer (renal cell), leukemia, lung cancer, melanoma, non-Hodgkin lymphoma, pancreatic cancer, prostate cancer and thyroid cancer.
- a cancerous disease such as bladder cancer, breast cancer, colon cancer, endometrial cancer, kidney cancer (renal cell), leukemia, lung cancer, melanoma, non-Hodgkin lymphoma, pancreatic cancer, prostate cancer and thyroid cancer.
- T cells of the invention may be used to treat: cancers of the oral cavity and pharynx which includes cancer of the tongue, mouth and pharynx; cancers of the digestive system which includes oesophageal, gastric and colorectal cancers; cancers of the liver and biliary tree which includes hepatocellular carcinomas and cholangiocarcinomas; cancers of the respiratory system which includes bronchogenic cancers and cancers of the larynx; cancers of bone and joints which includes osteosarcoma; cancers of the skin which includes melanoma; breast cancer; cancers of the genital tract which include uterine, ovarian and cervical cancer in women, prostate and testicular cancer in men; cancers of the renal tract which include renal cell carcinoma and transitional cell carcinomas of the utterers or bladder; brain cancers including gliomas, glioblastoma multiforme and medullobastomas; cancer
- receptors based on anti-CD19 and anti-CD33 were arbitrarily chosen.
- CD19 and CD33 were cloned. These proteins were truncated so that they do not signal and could be stably expressed for prolonged periods.
- these vectors were used to transduce the SupT1 cell line either singly or doubly to establish cells negative for both antigen (the wild-type), positive for either and positive for both.
- the expression data are shown in Figure 3.
- Example 2 Design and function of the OR gate
- a pair of receptors recognizing CD19 and CD33 were co- expressed. Different spacers were used to prevent cross-pairing. Both receptors had a trans-membrane domain derived from CD28 to improve surface stability and an endodomain derived from that of CD3 Zeta to provide a simple activating signal. In this way, a pair of independent 1 st generation CARs were co-expressed.
- the retroviral vector cassette used to co-express the sequences utilizes a foot-and-mouth 2A self-cleaving peptide to allow co- expression 1 : 1 of both receptors.
- the cassette design is shown in Figure 4, and the protein structures in Figure 5. The nucleotide sequence of homologous regions was codon-wobbled to prevent recombination during retroviral vector reverse transcription.
- Example 3 Testing the OR gate
- T-cell line BW5147 This cell line releases IL2 upon activation allowing a simple quantitative readout.
- T-cells were co- cultured with increasing amounts of the artificial target cells described above.
- T-cells responded to target cells expressing either antigen, as shown by IL2 release measured by ELISA. Both CARs were shown to be expressed on the cell surfaces and the T-cells were shown to respond to either or both antigens. These data are show in Figure 7.
- the AND gate combines a simple activating receptor with a receptor which basally inhibits activity, but whose inhibition is turned off once the receptor is ligated. This was achieved by combining a standard 1 st generation CAR with a short / non-bulky CD8 stalk spacer and a CD3 Zeta endodomain with a second receptor with a bulky Fc spacer whose endodomain contained either CD148 or CD45 endodomains. When both receptors are ligated, the difference in spacer dimensions results in isolation of the different receptors in different membrane compartments, releasing the CD3 Zeta receptor from inhibition by the CD148 or CD45 endodomains. In this way, activation only occurs once both receptors are activated.
- CD148 and CD45 were chosen for this as they function in this manner natively: for instance, the very bulky CD45 ectodomain excludes the entire receptor from the immunological synapse.
- the expression cassette is depicted in Figure 8 and the subsequent proteins in Figure 9. Surface staining for the different specificity showed that both receptor pairs could be effectively expressed on the cell surface shown in Figure 10.
- Function in BW5147 shows that the T-cell is only activated in the presence of both antigens (Figure 11).
- the two targeting scFvs were swapped such that now, the activation (ITAM) signal was transmitted upon recognition of CD33, rather than CD19; and the inhibitory (CD148) signal was transmitted upon recognition of CD19, rather than of CD33. Since CD45 and CD148 endodomains are considered to be functionally similar, experimentation was restricted to AND gates with CD148 endodomain. This should still result in a functional AND gate. T-cells expressing the new logic gate where challenged with targets bearing either CD19 or CD33 alone, or both.
- the second scFv from the original CD148 AND gate was replaced with the anti-GD2 scFv huK666 (SEQ ID 41 and SEQ ID 42), or with the anti-CD5 scFv (SEQ ID 43 and SEQ ID 44), or the anti-EGFRvlll scFv MRU (SEQ ID 45 AND SEQ ID 46) to generate the following CAR AND gates: CD19 AND GD2; CD19 AND CD5; CD19 AND EGFRvlll.
- the following artificial antigen expressing cell lines were also generated: by transducing SupT1 , and our SupT1.CD19 with GM3 and GD2 synthases SupT1.GD2 and SupT1.CD19.GD2 were generated.
- Example 6 Experimental proof of Kinetic segregation model of CAR AND gate The aim was to prove the model that differential segregation caused by different spacers is the central mechanism behind the ability to generate these logic CAR gates.
- the model is that if only the activating CAR is ligated, the potent inhibiting 'ligation off' type CAR is in solution in the membrane and can inhibit the activating CAR. Once both CARs are ligated, if both CAR spacers are sufficiently different, they will segregate within the synapse and not co-localize. Hence, a key requirement is that the spacers are sufficiently different. If the model is correct, if both spacers are sufficiently similar so they co-localize when both receptors are ligated, the gate will fail to function.
- the "bulky" Fc spacer in the original CAR we replaced with a murine CD8 spacer. It was predicted that this has the similar length, bulk and charge as human CD8 but so should not cross-pair with it.
- the new gate had a first CAR which recognizes CD19, a human CD8 stalk spacer and an activatory endodomain; while the second CAR recognizes CD33, has a mouse CD8 stalk spacer and a CD148 endodomain (Figure 18C).
- T-cells were transduced to express this new CAR gate. These T-cells were then challenged with SupT1 cells expressing CD19 alone, CD33 alone or CD19 and CD33 together.
- Example 7 Design and function of an AND NOT gate Phosphatases such as CD45 and CD148 are so potent that even a small amount entering an immunological synapse can inhibit ITAM activation. This is the basis of inhibition of the logical AND gate.
- Other classes of phosphatases are not as potent e.g. PTPN6 and related phosphatases. It was predicted that a small amount of PTPN6 entering a synapse by diffusion would not inhibit activation. In addition, it was predicted that if an inhibitory CAR had a sufficiently similar spacer to an activating CAR, it could co-localize within a synapse if both CARs were ligated.
- the second signal needs to "veto" activation. This is done by bringing an inhibitory signal into the immunological synapse, for example by bringing in the phosphatase of an enzyme such as PTPN6.
- ITIMs Immune Tyrosinase Inhibitory Motifs
- ITAMS Immune Tyrosinase Inhibitory Motifs
- phosphorylated ITIMs recruit phosphatases like PTPN6 through their cognate SH2 domains.
- An ITIM can function as an inhibitory endodomain, as long as the spacers on the activating and inhibiting CARs can co- localize.
- an AND NOT gate was generated as follows: two CARs co-expressed - the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with a mouse CD8 stalk spacer and an ITIM containing endodomain derived from that of LAIR1 (SEQ ID 39, Figure 13 A with C).
- a further, more complex AND NOT gate was also developed, whereby an ITIM is enhanced by the presence of an additional chimeric protein: an intracellular fusion of the SH2 domain of PTPN6 and the endodomain of CD148.
- an additional chimeric protein an intracellular fusion of the SH2 domain of PTPN6 and the endodomain of CD148.
- three proteins are expressed - the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co- expressed with an anti-CD33 CAR with a mouse CD8 stalk spacer and an ITIM containing endodomain derived from that of LAIR1.
- a further 2A peptide allows co-expression of the PTPN6-CD148 fusion (SEQ ID 40, Figure 13 A and D). It was predicted that these AND NOT gates would have a different range of inhibition: PTPN6-CD148 > PTPN6 > > ITIM.
- T-cells were transduced with these gates and challenged with targets expressing either CD 9 or CD33 alone, or both CD19 and CD33 together. All three gates responded to targets expressing only CD19, but not targets expressing both CD19 and CD33 together ( Figure 21), confirming that all three of the AND NOT gates were functional.
- Example 8 Experimental proof of Kinetic segregation model of PTPN6 based AND NOT gate.
- the model of the AND NOT gate centres around the fact that the nature of the spacers used in both CARs is pivotal for the correct function of the gate.
- both CAR spacers are sufficiently similar that when both CARs are ligated, both co-localize within the synapse so the high concentration even the weak PTPN6 is sufficient to inhibit activation. If the spacers were different, segregation in the synapse will isolate the PTPN6 from the ITAM allowing activation disrupting the AND NOT gate. To test this, a control was generated replacing the murine CD8 stalk spacer with that of Fc.
- test gate consisted of two CARs, the first recognizes CD19, has a human CD8 stalk spacer and an ITAM endodomain; while the second CAR recognizes CD33, has an Fc spacer and an endodomain comprising of the phosphatase from PTPN6.
- This gate activates in response to CD19, but also activates in response to CD19 and CD33 together ( Figure 22B, where function of this gate is compared with that of the original AND NOT, and the control AND gate variant described in Example 6).
- This experimental data proves the model that for a functional AND NOT gate with PTPN6, co-localizing spacers are needed.
- Example 9 Experimental proof of kinetic segregation model of ITIM based AND NOT gate. Similar to the PTPN6 based AND NOT gate, the ITIM based gate also requires co- localization in an immunological synapse to function as an AND NOT gate. To prove this hypothesis, a control ITIM based gate was generated as follows: two CARs co-expressed - the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co- expressed with an anti-CD33 CAR with an Fc spacer and an ITIM containing endodomain derived from that of LAIR1. The activity of this gate was compared with that of the original ITIM based AND NOT gate.
- the modified gate activated in response to targets expressing CD19, but also activated in response to cells expressing both CD19 and CD33.
- Example 10 Summary of model of CAR logic gates generated by kinetic segregation
- FIG. 24 shows a cell expressing two CARs, each recognizing a different antigen.
- CARs recognize a target antigen on a cell
- a synapse forms and native CD45 and CD148 are excluded from the synapse due to the bulk of their ectodomain. This sets the stage for T-cell activation.
- the cognate CAR is ligated and the cognate CAR segregates into the synapse.
- the unligated CAR remains in solution on the T-cell membrane and can diffuse in and out of the synapse so that an area of high local concentration of ligated CAR with low concentration of unligated CAR forms.
- the ligated CAR has an ITAM and the non-ligated CAR has ligation off' type inhibitory endodomain such as that of CD148, the amount of non-ligated CAR is sufficient to inhibit activation and the gate is off.
- the ligated CAR has an ITAM and the non-ligated CAR has a 'ligation on' type inhibitory endodomain such as PTPN6, the amount of non-ligated CAR is insufficient to inhibit and the gate is on.
- both cognate CARs When challenged by a target cell bearing both cognate antigens, both cognate CARs are ligated and form part of an immunological synapse.
- the CAR spacers are sufficiently similar, the CARs co-localize in the synapse but if the CAR spacers are sufficiently different the CARs segregate within the synapse. In this latter case, areas of membrane form whereby high concentrations of one CAR are present but the other CAR is absent.
- the gate since segregation is complete, even if the inhibitory endodomain is a 'ligation off' type, the gate is on. In the former case, areas of membrane form with high concentrations of both CARs mixed together. In this case, since both endodomains are concentrated, even if the inhibitory endodomain is 'ligation on' type, the gate is off.
- anti-A and anti-B CARs must be generated such that (1) each CAR has a spacer which simply allows antigen access and synapse formation such that the CAR functions, and (2) Each CAR has an activating endodomain;
- anti-A and anti-B CARs must be generated such that (1) both CARs have spacers which do not cross-pair, but which will allow the CARs to co-segregate upon recognition of both cognate antigens on the target cell, (2) and one CAR has an activating endodomain, while the other CAR has an endodomain which comprises or recruits a weak phosphatase (e.g.
- anti-A and anti-B CARs must be generated such that (1) one CAR has a spacer sufficiently different from the other CAR such that both CARs will not co-segregate upon recognition of both cognate antigens on the target cell, (2) one CAR has an activating endodomain, while the other car has an endodomain which comprises of a potent phosphatase (e.g. that of CD45 or CD148).
- a potent phosphatase e.g. that of CD45 or CD148
- the correct spacers to achieve the desired effect can be selected from a set of spacers with known size/shape etc as well as taking into consideration size/shape etc of the target antigen (for instance see figure 30) and the location of the cognate epitope on the target antigen.
- SEQ ID No 41 SFG . aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCDl 8 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLL IYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSG GGGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGS ETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDY GQGTSVTVSSDP TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVLACYSLLVTVAF IIFWVRRVKFSRSADAPAYQQQ
- SEQ ID No. 43 SFG. aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148
- SEQ ID No. 45 SFG . aCDl9-CD8STK-CD28tmZ-2A-aEGFRvIII-HCH2CH3pvaa- dCDl48
- SEQ ID No. 46 SFG . aCD19-CD8STK-CD28tmZ-2A-aEGFRvIII-HCH2CH3pvaa- dCD1 8
- APRIL in its natural form is a secreted type II protein.
- the use of APRIL as a BCMA binding domain for a CAR requires conversion of this type II secreted protein to a type I membrane bound protein and for this protein to be stable and to retain binding to BCMA in this form.
- the extreme amino-terminus of APRIL was deleted to remove binding to proteoglycans.
- a signal peptide was added to direct the nascent protein to the endoplasmic reticulum and hence the cell surface.
- an APRIL based CAR was generated comprising (i) a human lgG1 spacer altered to remove Fc binding motifs; (ii) a CD8 stalk; and (iii) the lgG1 hinge alone (cartoon in Figure 25 and amino acid sequences in Figure 26).
- These CARs were expressed in a bicistronic retroviral vector ( Figure 27A) so that a marker protein - truncated CD34 could be co-expressed as a convenient marker gene.
- Figure 27A bicistronic retroviral vector
- the aim of this study was to test whether the APRIL based CARs which had been constructed were expressed on the cell surface and whether APRIL had folded to form the native protein.
- T-cells were transduced with these different CAR constructs and stained using a commercially available anti-APRIL mAb, along with staining for the marker gene and analysed by flow-cytometry.
- the results of this experiment are shown in Figure 27B where APRIL binding is plotting against marker gene fluorescence.
- Recombinant BCMA and TACI were generated as fusions with mouse lgG2a-Fc. These recombinant proteins were incubated with the transduced T-cells. After this, the cells were washed and stained with an anti-mouse fluorophore conjugated antibody and an antibody to detect the marker gene conjugated to a different fluorophore. The cells were analysed by flow cytometry and the results are presented in Figure 27C. The different CARs were able to bind both BCMA and TACI. Surprisingly, the CARs were better able to bind BCMA than TACI.
- Example 13 APRIL based chimeric antigen receptors are active against BCMA expressing cells T-cells from normal donors were transduced with the different APRIL CARs and tested against SupT1 cells either wild-type, or engineered to express BCMA and TACI.
- Assays were used to determine function. A classical chromium release assay was performed. Here, the target cells (the SupT1 cells) were labelled with 51 Cr and mixed with effectors (the transduced T-cells) at different ratio. Lysis of target cells was determined by counting 51 Cr in the co-culture supernatant ( Figure 28A shows the cumulative data).
- PBMCs peripheral blood mononuclear cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Transplantation (AREA)
Abstract
Description
Claims
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014351557A AU2014351557B2 (en) | 2013-11-21 | 2014-11-21 | Cell |
EP14806355.5A EP3071222B1 (en) | 2013-11-21 | 2014-11-21 | Cell |
JP2016532594A JP6538684B2 (en) | 2013-11-21 | 2014-11-21 | cell |
SG11201603479TA SG11201603479TA (en) | 2013-11-21 | 2014-11-21 | Cell |
PL14806355T PL3071222T3 (en) | 2013-11-21 | 2014-11-21 | Cell |
DK14806355.5T DK3071222T3 (en) | 2013-11-21 | 2014-11-21 | CELL |
RU2016124280A RU2717984C2 (en) | 2013-11-21 | 2014-11-21 | Cell |
CN201480063900.9A CN105792840B (en) | 2013-11-21 | 2014-11-21 | Cells |
ES14806355T ES2832586T3 (en) | 2013-11-21 | 2014-11-21 | Cell |
MX2016006057A MX2016006057A (en) | 2013-11-21 | 2014-11-21 | Cell. |
BR112016011460A BR112016011460A2 (en) | 2013-11-21 | 2014-11-21 | cell |
US15/037,414 US10172886B2 (en) | 2013-11-21 | 2014-11-21 | Cell |
KR1020167016452A KR101991555B1 (en) | 2013-11-21 | 2014-11-21 | Cell |
CA2929984A CA2929984C (en) | 2013-11-21 | 2014-11-21 | A t cell or natural killer (nk) cell which co-expresses two chimeric antigen receptors (cars) |
IL245572A IL245572B (en) | 2013-11-21 | 2016-05-10 | Cell |
HK16111856.2A HK1223553A1 (en) | 2013-11-21 | 2016-10-13 | Cell |
US16/395,754 US20200016204A1 (en) | 2013-11-21 | 2019-04-26 | Cell |
US17/012,806 US20210154229A1 (en) | 2013-11-21 | 2020-09-04 | Cell |
US18/321,517 US20240033292A1 (en) | 2013-11-21 | 2023-05-22 | Cell |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB201320573A GB201320573D0 (en) | 2013-11-21 | 2013-11-21 | T Cell |
GB1320573.7 | 2013-11-21 | ||
GB201410934A GB201410934D0 (en) | 2014-06-19 | 2014-06-19 | T cell |
GB1410934.2 | 2014-06-19 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/037,414 A-371-Of-International US10172886B2 (en) | 2013-11-21 | 2014-11-21 | Cell |
US201816192414A Continuation | 2013-11-21 | 2018-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015075469A1 true WO2015075469A1 (en) | 2015-05-28 |
Family
ID=52003983
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2014/053452 WO2015075469A1 (en) | 2013-11-21 | 2014-11-21 | Cell |
PCT/GB2014/053453 WO2015075470A1 (en) | 2013-11-21 | 2014-11-21 | Cell |
PCT/GB2014/053451 WO2015075468A1 (en) | 2013-11-21 | 2014-11-21 | Cell |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2014/053453 WO2015075470A1 (en) | 2013-11-21 | 2014-11-21 | Cell |
PCT/GB2014/053451 WO2015075468A1 (en) | 2013-11-21 | 2014-11-21 | Cell |
Country Status (20)
Country | Link |
---|---|
US (10) | US20160296562A1 (en) |
EP (6) | EP3071221A1 (en) |
JP (4) | JP6433498B2 (en) |
KR (2) | KR101991555B1 (en) |
CN (2) | CN105792840B (en) |
AU (2) | AU2014351557B2 (en) |
BR (2) | BR112016011460A2 (en) |
CA (2) | CA2930215C (en) |
CL (2) | CL2016001135A1 (en) |
DK (2) | DK3071222T3 (en) |
ES (2) | ES2832586T3 (en) |
HK (2) | HK1223554A1 (en) |
HU (1) | HUE051523T2 (en) |
IL (2) | IL245573B (en) |
MX (2) | MX2016006057A (en) |
PL (2) | PL3071223T3 (en) |
PT (2) | PT3071223T (en) |
RU (2) | RU2732236C2 (en) |
SG (2) | SG11201603479TA (en) |
WO (3) | WO2015075469A1 (en) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016174409A1 (en) * | 2015-04-27 | 2016-11-03 | Ucl Business Plc | Nucleic acid construct |
WO2017068361A1 (en) * | 2015-10-23 | 2017-04-27 | Autolus Ltd | Cell |
JP2018516082A (en) * | 2015-05-29 | 2018-06-21 | ジュノー セラピューティクス インコーポレイテッド | Compositions and methods for modulating inhibitory interactions in genetically engineered cells |
JP2018517415A (en) * | 2015-06-10 | 2018-07-05 | ナントクエスト インコーポレイテッド | Modified NK-92 cells for treating cancer |
JP2018523484A (en) * | 2015-08-20 | 2018-08-23 | オートラス リミテッド | cell |
WO2018211245A1 (en) | 2017-05-15 | 2018-11-22 | Autolus Limited | Cell |
US10172885B2 (en) | 2013-11-21 | 2019-01-08 | Ucl Business Plc | Cell |
JP2019513347A (en) * | 2016-03-04 | 2019-05-30 | ノバルティス アーゲー | Cells expressing multiple chimeric antigen receptor (CAR) molecules and uses thereof |
GB201909144D0 (en) | 2019-06-25 | 2019-08-07 | Autolus Ltd | Culture medium |
GB201910185D0 (en) | 2019-07-16 | 2019-08-28 | Autolus Ltd | Method |
US10428305B2 (en) | 2014-05-15 | 2019-10-01 | National University Of Singapore | Modified natural killer cells that express IL15 and uses thereof |
WO2019220110A1 (en) | 2018-05-15 | 2019-11-21 | Autolus Limited | A cd79-specific chimeric antigen receptor |
WO2019220109A1 (en) | 2018-05-15 | 2019-11-21 | Autolus Limited | Chimeric antigen receptor |
US10538739B2 (en) | 2013-01-28 | 2020-01-21 | St. Jude Children's Research Hospital, Inc. | Chimeric receptor with NKG2D specificity for use in cell therapy against cancer and infectious disease |
WO2020035676A1 (en) | 2018-08-13 | 2020-02-20 | Autolus Limited | Car t-cells comprising an anti cd33, an anti cll1 and at least one further car anti cd123 and/or ftl3 |
WO2020065330A2 (en) | 2018-09-27 | 2020-04-02 | Autolus Limited | Chimeric antigen receptor |
WO2020074906A1 (en) | 2018-10-10 | 2020-04-16 | Autolus Limited | Methods and reagents for analysing nucleic acids from single cells |
WO2020152197A1 (en) | 2019-01-23 | 2020-07-30 | Miltenyi Biotec B.V. & Co. KG | A combination of compositions for elimination and enhanced engraftment of hematopoietic stem cells in the bone marrow of a subject |
WO2020183131A1 (en) | 2019-03-08 | 2020-09-17 | Autolus Limited | Compositions and methods comprising engineered chimeric antigen receptor and modulator of car |
EP3568406A4 (en) * | 2017-01-10 | 2020-10-21 | The General Hospital Corporation | T cells expressing a chimeric antigen receptor |
EP3730609A1 (en) | 2015-06-01 | 2020-10-28 | UCL Business Ltd | Cell |
WO2021009510A1 (en) | 2019-07-16 | 2021-01-21 | Autolus Limited | Method for preconditioning a subject who is about to receive a t-cell therapy |
WO2021035093A1 (en) * | 2019-08-20 | 2021-02-25 | Senti Biosciences, Inc. | Chimeric inhibitory receptor |
US10975162B2 (en) | 2014-03-06 | 2021-04-13 | Autolus Limited | Chimeric antigen receptor |
WO2021156277A1 (en) | 2020-02-04 | 2021-08-12 | Miltenyi Biotec B.V. & Co. KG | Immune cell expressing adapter chimeric antigen receptor for sensing soluble antigens |
US11141436B2 (en) | 2019-03-05 | 2021-10-12 | Nkarta, Inc. | Immune cells engineered to express CD19-directed chimeric antigen receptors and uses thereof in immunotherapy |
US11173179B2 (en) | 2015-06-25 | 2021-11-16 | Icell Gene Therapeutics Llc | Chimeric antigen receptor (CAR) targeting multiple antigens, compositions and methods of use thereof |
WO2021229218A1 (en) | 2020-05-13 | 2021-11-18 | Autolus Limited | Method |
EP3915578A1 (en) | 2020-05-28 | 2021-12-01 | Miltenyi Biotec B.V. & Co. KG | Chimeric antigen receptor with a spacer comprising c2-set ig-like domains |
WO2021250420A1 (en) | 2020-06-12 | 2021-12-16 | Autolus Limited | Culture medium |
US11219646B2 (en) * | 2016-09-30 | 2022-01-11 | Baylor College Of Medicine | Chimeric antigen receptor therapy with reduced cytotoxicity for viral disease |
WO2022096664A1 (en) | 2020-11-09 | 2022-05-12 | Miltenyi Biotec B.V. & Co. KG | Methods and compositions for eliminating engineered immune cells |
US11365236B2 (en) | 2017-03-27 | 2022-06-21 | Nkarta, Inc. | Truncated NKG2D chimeric receptors and uses thereof in natural killer cell immunotherapy |
US11385233B2 (en) | 2015-03-05 | 2022-07-12 | Autolus Limited | Methods of depleting malignant T-cells |
WO2023023602A1 (en) * | 2021-08-19 | 2023-02-23 | Boan Boston Llc | Fusion proteins for dephosphorylating proteins that regulate t cell activation through the tcr signaling pathway |
WO2023057285A1 (en) | 2021-10-06 | 2023-04-13 | Miltenyi Biotec B.V. & Co. KG | Method for targeted gene insertion into immune cells |
US11655452B2 (en) | 2015-06-25 | 2023-05-23 | Icell Gene Therapeutics Inc. | Chimeric antigen receptors (CARs), compositions and methods of use thereof |
US11673935B2 (en) * | 2015-01-26 | 2023-06-13 | The University Of Chicago | Car T-cells recognizing cancer-specific IL 13Ra2 |
WO2023218381A1 (en) | 2022-05-11 | 2023-11-16 | Autolus Limited | Cd19/22 car t-cell treatment of high risk or relapsed pediatric acute lymphoblastic leukemia |
US11820819B2 (en) | 2016-06-24 | 2023-11-21 | Icell Gene Therapeutics Inc. | Chimeric antigen receptors (CARs), compositions and methods thereof |
US11827904B2 (en) * | 2015-04-29 | 2023-11-28 | Fred Hutchinson Cancer Center | Modified stem cells and uses thereof |
WO2024009093A1 (en) | 2022-07-06 | 2024-01-11 | Autolus Limited | Engineered trispecific tancar expressing cells targeting cd33, cd123 and cll1 and uses thereof in cancer therapy |
US11885806B2 (en) | 2014-03-05 | 2024-01-30 | Autolus Limited | Method for depleting malignant T-cells |
US11896616B2 (en) | 2017-03-27 | 2024-02-13 | National University Of Singapore | Stimulatory cell lines for ex vivo expansion and activation of natural killer cells |
WO2024078995A1 (en) | 2022-10-15 | 2024-04-18 | Miltenyi Biotec B.V. & Co. KG | Transduction of gammadelta t cells with pseudotyped retroviral vectors |
US11993652B2 (en) | 2013-12-20 | 2024-05-28 | Fred Hutchinson Cancer Center | Tagged chimeric effector molecules and receptors thereof |
US12005081B2 (en) | 2019-04-30 | 2024-06-11 | Senti Biosciences, Inc. | Chimeric receptors and methods of use thereof |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2419143B8 (en) | 2009-04-13 | 2018-06-27 | INSERM - Institut National de la Santé et de la Recherche Médicale | Hpv particles and uses thereof |
CN105979967A (en) | 2013-09-18 | 2016-09-28 | 奥拉生物科学公司 | Virus-like particle conjugates for diagnosis and treatment of tumors |
GB201317928D0 (en) * | 2013-10-10 | 2013-11-27 | Ucl Business Plc | Molecule |
JP6943568B2 (en) | 2013-12-06 | 2021-10-06 | アメリカ合衆国 | Thymic interstitial lymphocyte neoplastic factor receptor-specific chimeric antigen receptor and method of using it |
IL297591A (en) | 2014-04-10 | 2022-12-01 | Seattle Childrens Hospital Dba Seattle Childrens Res Inst | Drug related transgene expression |
GB201506423D0 (en) | 2015-04-15 | 2015-05-27 | Tc Biopharm Ltd | Gamma delta T cells and uses thereof |
KR20170032406A (en) | 2014-07-15 | 2017-03-22 | 주노 쎄러퓨티크스 인코퍼레이티드 | Engineered cells for adoptive cell therapy |
GB201415347D0 (en) * | 2014-08-29 | 2014-10-15 | Ucl Business Plc | Signalling system |
WO2016097231A2 (en) * | 2014-12-17 | 2016-06-23 | Cellectis | INHIBITORY CHIMERIC ANTIGEN RECEPTOR (iCAR OR N-CAR) EXPRESSING NON-T CELL TRANSDUCTION DOMAIN |
BR112017013690A2 (en) | 2014-12-24 | 2018-03-06 | Ucl Business Plc | cell |
CA2973642A1 (en) | 2015-01-26 | 2016-08-04 | Rinat Neuroscience Corporation | Mab-driven chimeric antigen receptor systems for sorting/depleting engineered immune cells |
CA2975851A1 (en) | 2015-02-06 | 2016-08-11 | National University Of Singapore | Methods for enhancing efficacy of therapeutic immune cells |
EP4091616A1 (en) * | 2015-02-27 | 2022-11-23 | iCell Gene Therapeutics LLC | Chimeric antigen receptors (car) targeting hematologic malignancies, compositions and methods of use thereof |
DK3280729T3 (en) | 2015-04-08 | 2022-07-25 | Novartis Ag | CD20 TREATMENTS, CD22 TREATMENTS AND COMBINATION TREATMENTS WITH A CD19 CHIMERIC ANTIGEN RECEPTOR (CAR) EXPRESSING CELL |
MA41962A (en) | 2015-04-23 | 2018-02-28 | Baylor College Medicine | CHEMERICAL ANTIGENIC RECEPTOR TARGETING CD5 FOR ADOPTIVE T-CELL THERAPY |
GB201507119D0 (en) * | 2015-04-27 | 2015-06-10 | Ucl Business Plc | Nucleic Acid Construct |
GB201507111D0 (en) * | 2015-04-27 | 2015-06-10 | Ucl Business Plc | Nucleic acid construct |
GB201507115D0 (en) * | 2015-04-27 | 2015-06-10 | Ucl Business Plc | Nucleic Acid Construct |
GB201507368D0 (en) * | 2015-04-30 | 2015-06-17 | Ucl Business Plc | Cell |
PT3294764T (en) * | 2015-05-15 | 2021-02-15 | Hope City | Chimeric antigen receptor compositions |
MA42895A (en) | 2015-07-15 | 2018-05-23 | Juno Therapeutics Inc | MODIFIED CELLS FOR ADOPTIVE CELL THERAPY |
GB201513540D0 (en) | 2015-07-31 | 2015-09-16 | King S College London | Therapeutic agents |
MX2018001568A (en) | 2015-08-07 | 2019-04-25 | Seattle Children´S Hospital Dba Seattle Children´S Res Institute | Bispecific car t-cells for solid tumor targeting. |
WO2017075440A1 (en) | 2015-10-30 | 2017-05-04 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Targeted cancer therapy |
WO2017193059A1 (en) | 2016-05-06 | 2017-11-09 | The Regents Of The University Of California | Systems and methods for targeting cancer cells |
WO2017201019A1 (en) * | 2016-05-17 | 2017-11-23 | Chimera Bioengineering, Inc. | Methods for making novel antigen binding domains |
JP7160482B2 (en) * | 2016-09-02 | 2022-10-25 | レンティジェン・テクノロジー・インコーポレイテッド | Compositions and methods for treating cancer with DUOCAR |
WO2018045811A1 (en) * | 2016-09-09 | 2018-03-15 | 科济生物医药(上海)有限公司 | Fusion protein and applications thereof |
TW202340473A (en) | 2016-10-07 | 2023-10-16 | 瑞士商諾華公司 | Treatment of cancer using chimeric antigen receptors |
CA3042613A1 (en) * | 2016-11-11 | 2018-05-17 | Autolus Limited | Chimeric antigen receptor |
KR20240099512A (en) | 2016-11-22 | 2024-06-28 | 싱가포르국립대학교 | Blockade of cd7 expression and chimeric antigen receptors for immunotherapy of t-cell malignancies |
US11408005B2 (en) | 2016-12-12 | 2022-08-09 | Seattle Children's Hospital | Chimeric transcription factor variants with augmented sensitivity to drug ligand induction of transgene expression in mammalian cells |
CN110582509A (en) * | 2017-01-31 | 2019-12-17 | 诺华股份有限公司 | Treatment of cancer using chimeric T cell receptor proteins with multispecific properties |
IL270415B2 (en) * | 2017-05-12 | 2024-08-01 | Crispr Therapeutics Ag | Materials and methods for engineering cells and uses thereof in immuno-oncology |
JP7132249B2 (en) * | 2017-05-15 | 2022-09-06 | オートラス リミテッド | Cells containing chimeric antigen receptors (CAR) |
GB201707783D0 (en) * | 2017-05-15 | 2017-06-28 | Autolus Ltd | Cell |
WO2019025800A1 (en) * | 2017-08-02 | 2019-02-07 | Autolus Limited | Cells expressing a chimeric antigen receptor or engineered tcr and comprising a nucleotide sequence which is selectively expressed |
CN111247241A (en) | 2017-08-10 | 2020-06-05 | 新加坡国立大学 | T cell receptor-deficient chimeric antigen receptor T cells and methods of use thereof |
WO2019068007A1 (en) | 2017-09-28 | 2019-04-04 | Immpact-Bio Ltd. | A universal platform for preparing an inhibitory chimeric antigen receptor (icar) |
EP3694886A4 (en) * | 2017-10-12 | 2021-09-22 | iCell Gene Therapeutics, LLC | Compound chimeric antigen receptor (ccar) targeting multiple antigens, compositions and methods of use thereof |
WO2019084273A1 (en) | 2017-10-25 | 2019-05-02 | Actinium Pharmaceuticals, Inc. | Anti-cd45-based lymphodepletion methods and uses thereof in conjunction with act-based cancer therapies |
GB201717524D0 (en) | 2017-10-25 | 2017-12-06 | Autolus Ltd | Vectors |
GB201803079D0 (en) * | 2018-02-26 | 2018-04-11 | Autolus Ltd | Cell |
EP3743446A1 (en) * | 2018-03-12 | 2020-12-02 | Nantkwest, Inc. | Use of cd33car modified high affinity nk cells (t-hank) to reduce myeloid-derived suppressor cells suppressor activity (or reduce negative impact on nk cell activity) |
CN110615842B (en) * | 2018-06-20 | 2023-05-09 | 上海隆耀生物科技有限公司 | Chimeric antigen receptor containing co-stimulatory receptor and application thereof |
EP3632461A1 (en) * | 2018-10-05 | 2020-04-08 | St. Anna Kinderkrebsforschung | A group of chimeric antigen receptors (cars) |
KR20210072797A (en) * | 2018-10-05 | 2021-06-17 | 세인트 안나 킨더크렙스포르슝 | Chimeric antigen receptor (CAR) group |
EP3632460A1 (en) * | 2018-10-05 | 2020-04-08 | St. Anna Kinderkrebsforschung | A group of chimeric antigen receptors (cars) |
CN113164576A (en) * | 2018-10-05 | 2021-07-23 | 圣安娜儿童癌症研究中心 | Chimeric Antigen Receptor (CAR) groups |
WO2020123691A2 (en) | 2018-12-12 | 2020-06-18 | Kite Pharma, Inc | Chimeric antigen and t cell receptors and methods of use |
GB201903237D0 (en) | 2019-03-08 | 2019-04-24 | Autolus Ltd | Method |
MX2021013225A (en) | 2019-05-01 | 2022-01-06 | Pact Pharma Inc | Compositions and methods for the treatment of cancer using a cdb engineered t cell therapy. |
US20230030702A1 (en) * | 2019-09-05 | 2023-02-02 | Migal Galilee Research Institute Ltd | Blocking chimeric antigen receptors for prevention of undesired activation of effector and regulatory immune cells |
JP2022552949A (en) * | 2019-10-08 | 2022-12-21 | プロヴィンシャル ヘルス サービシーズ オーソリティ | chimeric cytokine receptor |
BR112022009679A2 (en) | 2019-11-26 | 2022-08-09 | Novartis Ag | CD19 AND CD22 CHIMERIC ANTIGEN RECEPTORS AND USES THEREOF |
JP2023506184A (en) * | 2019-12-11 | 2023-02-15 | エイ2・バイオセラピューティクス・インコーポレイテッド | LILRB1-based chimeric antigen receptor |
CN115397845A (en) * | 2020-02-20 | 2022-11-25 | 森迪生物科学公司 | Inhibitory chimeric receptor architectures |
JP2023515471A (en) * | 2020-02-20 | 2023-04-13 | センティ バイオサイエンシズ インコーポレイテッド | Inhibitory chimeric receptor construct |
CN116490518A (en) | 2020-07-17 | 2023-07-25 | 西穆尔克斯股份有限公司 | Chimeric MyD88 receptor for redirecting immunosuppressive signaling and related compositions and methods |
AU2021329375A1 (en) | 2020-08-20 | 2023-04-20 | A2 Biotherapeutics, Inc. | Compositions and methods for treating ceacam positive cancers |
HRP20240903T1 (en) | 2020-08-20 | 2024-10-11 | A2 Biotherapeutics, Inc. | Compositions and methods for treating egfr positive cancers |
EP4100028A4 (en) | 2020-08-20 | 2023-07-26 | A2 Biotherapeutics, Inc. | Compositions and methods for treating mesothelin positive cancers |
US12012612B2 (en) * | 2020-09-21 | 2024-06-18 | A2 Biotherapeutics, Inc. | Engineered immune cells with receptor signal strength modulated by a hinge |
US20230374161A1 (en) * | 2020-10-15 | 2023-11-23 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for inhibition of natural killer cell receptors |
EP4263600A1 (en) | 2020-12-18 | 2023-10-25 | Century Therapeutics, Inc. | Chimeric antigen receptor systems with adaptable receptor specificity |
WO2022177979A1 (en) | 2021-02-16 | 2022-08-25 | A2 Biotherapeutics, Inc. | Compositions and methods for treating her2 positive cancers |
GB202112923D0 (en) | 2021-09-10 | 2021-10-27 | Ucl Business Ltd | Binding domain |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4418900A (en) | 1999-04-16 | 2000-11-02 | Celltech Therapeutics Limited | Synthetic transmembrane components |
GB9908807D0 (en) | 1999-04-16 | 1999-06-09 | Celltech Therapeutics Ltd | Synthetic signalling molecules |
AU2001297703B2 (en) * | 2000-11-07 | 2006-10-19 | City Of Hope | CD19-specific redirected immune cells |
US20030232430A1 (en) * | 2001-11-26 | 2003-12-18 | Advanced Cell Technology | Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells |
EP2389443B1 (en) * | 2009-01-23 | 2018-11-14 | Roger Williams Hospital | Retroviral vectors encoding multiple highly homologous non-viral polypeptides and the use of same |
ES2754394T3 (en) * | 2010-09-08 | 2020-04-17 | Chemotherapeutisches Forschungsinstitut Georg Speyer Haus | Chimeric antigen receptors with an optimized hinge region |
JP6850528B2 (en) * | 2012-02-13 | 2021-03-31 | シアトル チルドレンズ ホスピタル ドゥーイング ビジネス アズ シアトル チルドレンズ リサーチ インスティテュート | Bispecific chimeric antigen receptor and its therapeutic use |
WO2013126726A1 (en) | 2012-02-22 | 2013-08-29 | The Trustees Of The University Of Pennsylvania | Double transgenic t cells comprising a car and a tcr and their methods of use |
EP2968492B1 (en) * | 2013-03-15 | 2021-12-15 | Memorial Sloan-Kettering Cancer Center | Compositions and methods for immunotherapy |
ES2832586T3 (en) | 2013-11-21 | 2021-06-10 | Autolus Ltd | Cell |
IL297591A (en) * | 2014-04-10 | 2022-12-01 | Seattle Childrens Hospital Dba Seattle Childrens Res Inst | Drug related transgene expression |
GB201507115D0 (en) | 2015-04-27 | 2015-06-10 | Ucl Business Plc | Nucleic Acid Construct |
GB201507119D0 (en) | 2015-04-27 | 2015-06-10 | Ucl Business Plc | Nucleic Acid Construct |
GB201518817D0 (en) | 2015-10-23 | 2015-12-09 | Autolus Ltd | Cell |
-
2014
- 2014-11-21 ES ES14806355T patent/ES2832586T3/en active Active
- 2014-11-21 RU RU2016124278A patent/RU2732236C2/en active
- 2014-11-21 BR BR112016011460A patent/BR112016011460A2/en not_active IP Right Cessation
- 2014-11-21 DK DK14806355.5T patent/DK3071222T3/en active
- 2014-11-21 AU AU2014351557A patent/AU2014351557B2/en active Active
- 2014-11-21 US US15/037,391 patent/US20160296562A1/en not_active Abandoned
- 2014-11-21 SG SG11201603479TA patent/SG11201603479TA/en unknown
- 2014-11-21 HU HUE14806355A patent/HUE051523T2/en unknown
- 2014-11-21 MX MX2016006057A patent/MX2016006057A/en active IP Right Grant
- 2014-11-21 EP EP14806354.8A patent/EP3071221A1/en not_active Withdrawn
- 2014-11-21 WO PCT/GB2014/053452 patent/WO2015075469A1/en active Application Filing
- 2014-11-21 DK DK14806356.3T patent/DK3071223T3/en active
- 2014-11-21 ES ES14806356T patent/ES2861501T3/en active Active
- 2014-11-21 WO PCT/GB2014/053453 patent/WO2015075470A1/en active Application Filing
- 2014-11-21 PT PT148063563T patent/PT3071223T/en unknown
- 2014-11-21 US US15/037,414 patent/US10172886B2/en active Active
- 2014-11-21 PT PT148063555T patent/PT3071222T/en unknown
- 2014-11-21 JP JP2016532581A patent/JP6433498B2/en active Active
- 2014-11-21 RU RU2016124280A patent/RU2717984C2/en active
- 2014-11-21 EP EP19203534.3A patent/EP3626261A1/en not_active Withdrawn
- 2014-11-21 KR KR1020167016452A patent/KR101991555B1/en active IP Right Grant
- 2014-11-21 PL PL14806356T patent/PL3071223T3/en unknown
- 2014-11-21 BR BR112016011459A patent/BR112016011459A2/en not_active IP Right Cessation
- 2014-11-21 US US15/037,405 patent/US10172885B2/en active Active
- 2014-11-21 CN CN201480063900.9A patent/CN105792840B/en active Active
- 2014-11-21 JP JP2016532594A patent/JP6538684B2/en active Active
- 2014-11-21 EP EP20209028.8A patent/EP3858378A1/en active Pending
- 2014-11-21 CA CA2930215A patent/CA2930215C/en active Active
- 2014-11-21 PL PL14806355T patent/PL3071222T3/en unknown
- 2014-11-21 WO PCT/GB2014/053451 patent/WO2015075468A1/en active Application Filing
- 2014-11-21 CN CN201480063899.XA patent/CN105848673B/en active Active
- 2014-11-21 EP EP21150742.1A patent/EP3858379A1/en active Pending
- 2014-11-21 AU AU2014351558A patent/AU2014351558B2/en active Active
- 2014-11-21 EP EP14806355.5A patent/EP3071222B1/en active Active
- 2014-11-21 CA CA2929984A patent/CA2929984C/en active Active
- 2014-11-21 EP EP14806356.3A patent/EP3071223B1/en active Active
- 2014-11-21 SG SG11201603484PA patent/SG11201603484PA/en unknown
- 2014-11-21 MX MX2016006303A patent/MX2016006303A/en active IP Right Grant
- 2014-11-21 KR KR1020167016454A patent/KR101962524B1/en active IP Right Grant
-
2016
- 2016-05-10 IL IL245573A patent/IL245573B/en active IP Right Grant
- 2016-05-10 IL IL245572A patent/IL245572B/en active IP Right Grant
- 2016-05-12 CL CL2016001135A patent/CL2016001135A1/en unknown
- 2016-05-12 CL CL2016001134A patent/CL2016001134A1/en unknown
- 2016-10-13 HK HK16111857.1A patent/HK1223554A1/en unknown
- 2016-10-13 HK HK16111856.2A patent/HK1223553A1/en unknown
-
2018
- 2018-08-10 US US16/100,832 patent/US20190038672A1/en not_active Abandoned
- 2018-12-25 JP JP2018240817A patent/JP2019041775A/en not_active Withdrawn
-
2019
- 2019-04-23 US US16/392,250 patent/US20200016203A1/en not_active Abandoned
- 2019-04-26 US US16/395,754 patent/US20200016204A1/en not_active Abandoned
-
2020
- 2020-09-04 US US17/012,806 patent/US20210154229A1/en not_active Abandoned
- 2020-10-29 US US17/084,535 patent/US20210187026A1/en active Pending
- 2020-12-23 JP JP2020213272A patent/JP2021045172A/en active Pending
-
2023
- 2023-01-23 US US18/158,310 patent/US20240033289A1/en active Pending
- 2023-05-22 US US18/321,517 patent/US20240033292A1/en active Pending
Non-Patent Citations (7)
Title |
---|
CHRISTOPHER C KLOSS ET AL: "Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells", NATURE BIOTECHNOLOGY., vol. 31, no. 1, 16 December 2012 (2012-12-16), US, pages 71 - 75, XP055130697, ISSN: 1087-0156, DOI: 10.1038/nbt.2459 * |
E. LANITIS ET AL: "Chimeric Antigen Receptor T Cells with Dissociated Signaling Domains Exhibit Focused Antitumor Activity with Reduced Potential for Toxicity In Vivo", CANCER IMMUNOLOGY RESEARCH, vol. 1, no. 1, 7 April 2013 (2013-04-07), pages 43 - 53, XP055170306, ISSN: 2326-6066, DOI: 10.1158/2326-6066.CIR-13-0008 * |
FEDOROV VICTOR ET AL: "Inhibitory chimeric antigen receptors (iCARs) limit undesirable side effects of T-cell therapies", EXPERIMENTAL HEMATOLOGY, vol. 41, no. 8, 1 August 2013 (2013-08-01), XP028688249, ISSN: 0301-472X, DOI: 10.1016/J.EXPHEM.2013.05.298 * |
L CHICAYBAM ET AL: "A conditional system for the activation of lymphocytes expressing activating and inhibitory CARs", HUMAN GENE THERAPY, vol. 21, no. 10, 1 October 2010 (2010-10-01), pages 1418, XP055171045 * |
SCOTT WILKIE ET AL: "Dual Targeting of ErbB2 and MUC1 in Breast Cancer Using Chimeric Antigen Receptors Engineered to Provide Complementary Signaling", JOURNAL OF CLINICAL IMMUNOLOGY, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 32, no. 5, 17 April 2012 (2012-04-17), pages 1059 - 1070, XP035113362, ISSN: 1573-2592, DOI: 10.1007/S10875-012-9689-9 * |
SHAUN CORDOBA ET AL: "Chimeric Antigen Receptor Logical AND Gate Based on CD45/CD148 Phosphatases", MOLECULAR THERAPY, vol. 22, no. Suppl. 1, 1 May 2014 (2014-05-01), pages S59, XP055170616, ISSN: 1525-0016 * |
T. FURUKAWA ET AL: "Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 91, no. 23, 8 November 1994 (1994-11-08), pages 10928 - 10932, XP055171132, ISSN: 0027-8424, DOI: 10.1073/pnas.91.23.10928 * |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11873512B2 (en) | 2013-01-28 | 2024-01-16 | St. Jude Children's Research Hospital, Inc. | Chimeric receptor with NKG2D specificity for use in cell therapy against cancer and infectious disease |
US10836999B2 (en) | 2013-01-28 | 2020-11-17 | St. Jude Children's Research Hospital, Inc. | Chimeric receptor with NKG2D specificity for use in cell therapy against cancer and infectious disease |
US10829737B2 (en) | 2013-01-28 | 2020-11-10 | St. Jude Children's Research Hospital, Inc. | Chimeric receptor with NKG2D specificity for use in cell therapy against cancer and infectious disease |
US10801012B2 (en) | 2013-01-28 | 2020-10-13 | St. Jude Children's Research Hospital, Inc. | Chimeric receptor with NKG2D specificity for use in cell therapy against cancer and infectious disease |
US10774309B2 (en) | 2013-01-28 | 2020-09-15 | St. Jude Children's Research Hospital, Inc. | Natural killer cell immunotherapy for treating cancer |
US10538739B2 (en) | 2013-01-28 | 2020-01-21 | St. Jude Children's Research Hospital, Inc. | Chimeric receptor with NKG2D specificity for use in cell therapy against cancer and infectious disease |
US10172885B2 (en) | 2013-11-21 | 2019-01-08 | Ucl Business Plc | Cell |
US11993652B2 (en) | 2013-12-20 | 2024-05-28 | Fred Hutchinson Cancer Center | Tagged chimeric effector molecules and receptors thereof |
US11885806B2 (en) | 2014-03-05 | 2024-01-30 | Autolus Limited | Method for depleting malignant T-cells |
US11885807B2 (en) | 2014-03-05 | 2024-01-30 | Autolus Limited | Method for depleting malignant T-cells |
US11982673B2 (en) | 2014-03-05 | 2024-05-14 | Autolus Limited | Methods |
US11982672B2 (en) | 2014-03-05 | 2024-05-14 | Autolus Limited | Methods |
US10975162B2 (en) | 2014-03-06 | 2021-04-13 | Autolus Limited | Chimeric antigen receptor |
US11879016B2 (en) | 2014-03-06 | 2024-01-23 | Autolus Limited | Chimeric antigen receptor |
US10428305B2 (en) | 2014-05-15 | 2019-10-01 | National University Of Singapore | Modified natural killer cells that express IL15 and uses thereof |
US11560548B2 (en) | 2014-05-15 | 2023-01-24 | National University Of Singapore | Immune cells expressing membrane-bound interleukin 15 (mbIL15) and uses thereof |
US10774311B2 (en) | 2014-05-15 | 2020-09-15 | National University Of Singapore | Natural killer cells modified to express membrane-bound interleukin 15 and uses thereof |
US11673935B2 (en) * | 2015-01-26 | 2023-06-13 | The University Of Chicago | Car T-cells recognizing cancer-specific IL 13Ra2 |
US11385233B2 (en) | 2015-03-05 | 2022-07-12 | Autolus Limited | Methods of depleting malignant T-cells |
US11613559B2 (en) | 2015-04-27 | 2023-03-28 | Autolus Limited | Nucleic acid construct |
WO2016174409A1 (en) * | 2015-04-27 | 2016-11-03 | Ucl Business Plc | Nucleic acid construct |
US11827904B2 (en) * | 2015-04-29 | 2023-11-28 | Fred Hutchinson Cancer Center | Modified stem cells and uses thereof |
JP2021129588A (en) * | 2015-05-29 | 2021-09-09 | ジュノー セラピューティクス インコーポレイテッド | Composition and methods for regulating inhibitory interactions in genetically engineered cells |
JP2018516082A (en) * | 2015-05-29 | 2018-06-21 | ジュノー セラピューティクス インコーポレイテッド | Compositions and methods for modulating inhibitory interactions in genetically engineered cells |
EP3730609A1 (en) | 2015-06-01 | 2020-10-28 | UCL Business Ltd | Cell |
US11345734B2 (en) | 2015-06-01 | 2022-05-31 | Autolus Limited | Chimeric T cell |
JP2018517415A (en) * | 2015-06-10 | 2018-07-05 | ナントクエスト インコーポレイテッド | Modified NK-92 cells for treating cancer |
US11788059B2 (en) | 2015-06-10 | 2023-10-17 | Immunity Bio, Inc. | Modified NK-92 cells for treating cancer |
US11173179B2 (en) | 2015-06-25 | 2021-11-16 | Icell Gene Therapeutics Llc | Chimeric antigen receptor (CAR) targeting multiple antigens, compositions and methods of use thereof |
US11655452B2 (en) | 2015-06-25 | 2023-05-23 | Icell Gene Therapeutics Inc. | Chimeric antigen receptors (CARs), compositions and methods of use thereof |
JP2018523484A (en) * | 2015-08-20 | 2018-08-23 | オートラス リミテッド | cell |
US11365262B2 (en) | 2015-08-20 | 2022-06-21 | Autolus Limited | Cell |
JP7395249B2 (en) | 2015-08-20 | 2023-12-11 | オートラス リミテッド | cell |
WO2017068361A1 (en) * | 2015-10-23 | 2017-04-27 | Autolus Ltd | Cell |
US20180305433A1 (en) * | 2015-10-23 | 2018-10-25 | Autolus Limited | Cell |
JP2019513347A (en) * | 2016-03-04 | 2019-05-30 | ノバルティス アーゲー | Cells expressing multiple chimeric antigen receptor (CAR) molecules and uses thereof |
US11820819B2 (en) | 2016-06-24 | 2023-11-21 | Icell Gene Therapeutics Inc. | Chimeric antigen receptors (CARs), compositions and methods thereof |
US11219646B2 (en) * | 2016-09-30 | 2022-01-11 | Baylor College Of Medicine | Chimeric antigen receptor therapy with reduced cytotoxicity for viral disease |
AU2018207300B2 (en) * | 2017-01-10 | 2023-08-24 | The General Hospital Corporation | T cells expressing a chimeric antigen receptor |
EP3568406A4 (en) * | 2017-01-10 | 2020-10-21 | The General Hospital Corporation | T cells expressing a chimeric antigen receptor |
US11896616B2 (en) | 2017-03-27 | 2024-02-13 | National University Of Singapore | Stimulatory cell lines for ex vivo expansion and activation of natural killer cells |
US11365236B2 (en) | 2017-03-27 | 2022-06-21 | Nkarta, Inc. | Truncated NKG2D chimeric receptors and uses thereof in natural killer cell immunotherapy |
WO2018211245A1 (en) | 2017-05-15 | 2018-11-22 | Autolus Limited | Cell |
WO2019220110A1 (en) | 2018-05-15 | 2019-11-21 | Autolus Limited | A cd79-specific chimeric antigen receptor |
WO2019220109A1 (en) | 2018-05-15 | 2019-11-21 | Autolus Limited | Chimeric antigen receptor |
US11590170B2 (en) | 2018-05-15 | 2023-02-28 | Autolus Limited | Chimeric antigen receptor |
US11963981B2 (en) | 2018-05-15 | 2024-04-23 | Autolus Limited | Chimeric antigen receptor |
WO2020035676A1 (en) | 2018-08-13 | 2020-02-20 | Autolus Limited | Car t-cells comprising an anti cd33, an anti cll1 and at least one further car anti cd123 and/or ftl3 |
US12049510B2 (en) | 2018-09-27 | 2024-07-30 | Autolus Limited | Chimeric antigen receptor |
WO2020065330A2 (en) | 2018-09-27 | 2020-04-02 | Autolus Limited | Chimeric antigen receptor |
WO2020074906A1 (en) | 2018-10-10 | 2020-04-16 | Autolus Limited | Methods and reagents for analysing nucleic acids from single cells |
WO2020152197A1 (en) | 2019-01-23 | 2020-07-30 | Miltenyi Biotec B.V. & Co. KG | A combination of compositions for elimination and enhanced engraftment of hematopoietic stem cells in the bone marrow of a subject |
US11154575B2 (en) | 2019-03-05 | 2021-10-26 | Nkarta, Inc. | Cancer immunotherapy using CD19-directed chimeric antigen receptors |
US11253547B2 (en) | 2019-03-05 | 2022-02-22 | Nkarta, Inc. | CD19-directed chimeric antigen receptors and uses thereof in immunotherapy |
US11141436B2 (en) | 2019-03-05 | 2021-10-12 | Nkarta, Inc. | Immune cells engineered to express CD19-directed chimeric antigen receptors and uses thereof in immunotherapy |
WO2020183131A1 (en) | 2019-03-08 | 2020-09-17 | Autolus Limited | Compositions and methods comprising engineered chimeric antigen receptor and modulator of car |
US12005081B2 (en) | 2019-04-30 | 2024-06-11 | Senti Biosciences, Inc. | Chimeric receptors and methods of use thereof |
WO2020260875A1 (en) | 2019-06-25 | 2020-12-30 | Autolus Limited | Culture medium |
GB201909144D0 (en) | 2019-06-25 | 2019-08-07 | Autolus Ltd | Culture medium |
GB201910185D0 (en) | 2019-07-16 | 2019-08-28 | Autolus Ltd | Method |
WO2021009510A1 (en) | 2019-07-16 | 2021-01-21 | Autolus Limited | Method for preconditioning a subject who is about to receive a t-cell therapy |
WO2021035093A1 (en) * | 2019-08-20 | 2021-02-25 | Senti Biosciences, Inc. | Chimeric inhibitory receptor |
WO2021156277A1 (en) | 2020-02-04 | 2021-08-12 | Miltenyi Biotec B.V. & Co. KG | Immune cell expressing adapter chimeric antigen receptor for sensing soluble antigens |
WO2021229218A1 (en) | 2020-05-13 | 2021-11-18 | Autolus Limited | Method |
EP3915578A1 (en) | 2020-05-28 | 2021-12-01 | Miltenyi Biotec B.V. & Co. KG | Chimeric antigen receptor with a spacer comprising c2-set ig-like domains |
WO2021250420A1 (en) | 2020-06-12 | 2021-12-16 | Autolus Limited | Culture medium |
WO2022096664A1 (en) | 2020-11-09 | 2022-05-12 | Miltenyi Biotec B.V. & Co. KG | Methods and compositions for eliminating engineered immune cells |
WO2023023602A1 (en) * | 2021-08-19 | 2023-02-23 | Boan Boston Llc | Fusion proteins for dephosphorylating proteins that regulate t cell activation through the tcr signaling pathway |
WO2023057285A1 (en) | 2021-10-06 | 2023-04-13 | Miltenyi Biotec B.V. & Co. KG | Method for targeted gene insertion into immune cells |
WO2023218381A1 (en) | 2022-05-11 | 2023-11-16 | Autolus Limited | Cd19/22 car t-cell treatment of high risk or relapsed pediatric acute lymphoblastic leukemia |
WO2024009093A1 (en) | 2022-07-06 | 2024-01-11 | Autolus Limited | Engineered trispecific tancar expressing cells targeting cd33, cd123 and cll1 and uses thereof in cancer therapy |
WO2024078995A1 (en) | 2022-10-15 | 2024-04-18 | Miltenyi Biotec B.V. & Co. KG | Transduction of gammadelta t cells with pseudotyped retroviral vectors |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240033292A1 (en) | Cell | |
US20180305433A1 (en) | Cell | |
WO2016174407A1 (en) | Nucleic acid construct for expressing more than one chimeric antigen receptor | |
US20200338124A1 (en) | Cell | |
EP3288970A1 (en) | Nucleic acid construct for expressing more than one chimeric antigen receptor | |
NZ719859B2 (en) | Cell co-expressing first and second chimeric antigen receptors. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14806355 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2929984 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/006057 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 245572 Country of ref document: IL |
|
REEP | Request for entry into the european phase |
Ref document number: 2014806355 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014806355 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15037414 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2016532594 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014351557 Country of ref document: AU Date of ref document: 20141121 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016011460 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167016452 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016124280 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016011460 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160519 |