WO2015072629A1 - Ultra-low nitrogen oxide combustion apparatus using internal recirculation of combustion gas and method therefor - Google Patents

Ultra-low nitrogen oxide combustion apparatus using internal recirculation of combustion gas and method therefor Download PDF

Info

Publication number
WO2015072629A1
WO2015072629A1 PCT/KR2014/002163 KR2014002163W WO2015072629A1 WO 2015072629 A1 WO2015072629 A1 WO 2015072629A1 KR 2014002163 W KR2014002163 W KR 2014002163W WO 2015072629 A1 WO2015072629 A1 WO 2015072629A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injector
nitrogen oxide
low nitrogen
fuel
primary
Prior art date
Application number
PCT/KR2014/002163
Other languages
French (fr)
Korean (ko)
Inventor
김세원
이창엽
권민준
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2015072629A1 publication Critical patent/WO2015072629A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/68Treating the combustion air or gas, e.g. by filtering, or moistening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/20Burner staging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06043Burner staging, i.e. radially stratified flame core burners

Definitions

  • the present invention relates to an ultra-low nitrogen oxide combustion apparatus through internal recirculation of combustion gas, and more particularly, an internal combustion gas that is generated in a combustion chamber to be delivered without a separate device inside the combustion chamber instead of an external connection passage of the combustion chamber.
  • the present invention relates to an ultra low nitrogen oxide combustion apparatus using a recycling technology.
  • the main environmental pollutants include nitrogen oxides (NOx) and carbon dioxide (CO 2 ), as well as carbon monoxide (CO) and soot caused by incomplete combustion of fuels.
  • NOx nitrogen oxides
  • Combustors using conventional fossil fuels inevitably generate nitrogen oxides (NOx) having a chemical formula of NO and NO2 by chemical reactions during combustion.
  • Low NOx combustion technology to suppress this occurrence is being developed to improve the structure of the combustor, such as the mixture of fuel and air, air-fuel ratio.
  • Nitrogen oxides generated during the combustion process react with other oxygen in the atmosphere, causing environmental problems such as smog and increased ozone in the atmosphere.
  • emissions from these combustion processes harm the environment and human health, so countries are tightening regulations on more and more stringent standards.
  • Types of nitrogen oxides may be classified into thermal NOx, prompt NOx, and fuel NOx depending on the cause.
  • Thermal nitrogen oxides are produced by the reaction of nitrogen in the air with oxygen at a high temperature of 1600 ° C or higher, rapid nitrogen oxides are produced at the beginning of combustion during the combustion of hydrocarbon-based fuels, and fuel nitrogen oxides are reactions of nitrogen components contained in the fuel. Is generated by Even in such a countermeasure against nitrogen oxides, since gaseous fuels such as natural gas do not contain nitrogen in the fuel, it may be effective to control matters related to Thermal NOx and Prompt NOx.
  • Nitrogen oxides are known to cause photochemical smog and acid rain and seriously affect plants and animals. For many years, many researchers have studied various ways to reduce NOx.
  • step 10-2005-0117417 in order to reduce the amount of nitrogen oxides (NOx) generated, combustion air is supplied in three stages by mixing general air and exhaust gas, but by varying the mixing ratio of each stage.
  • the present invention provides a three-stage burner for exhaust gas recirculation for liquid and gas to minimize local high temperature generation by combustion and to extend the combustion zone to achieve uniform heating in the boiler.
  • the exhaust gas is re-introduced into the combustion furnace by providing a plurality of exhaust gas supply pipes, a recirculation duct, and a damper as elements for recycling the exhaust gas, but separately from the outside of the combustion furnace.
  • a damper as elements for recycling the exhaust gas, but separately from the outside of the combustion furnace.
  • the internal recirculation technology is provided so that the combustion gas generated in the combustion chamber is delivered without a separate device inside the combustion chamber, not the external connection passage of the combustion chamber.
  • a specific configuration for forming a lean flame in the center of a combustion furnace or a description of specific factors that can reduce the formation of nitrogen oxides is insufficient.
  • the present invention allows the oxidant to be supplied to the central region of the combustion furnace, and at the same time, the combustion gas generated in the combustion chamber in which the multiple flame fields are formed is separated in the combustion chamber instead of the external connection passage of the combustion chamber. It is an object of the present invention to provide an ultra low nitrogen oxide combustion apparatus employing an internal recirculation technology that can be delivered without.
  • an object of the present invention is to form a flame field of high efficiency and low pollution structure through a multi-stage fuel supply nozzle structure consisting of a primary fuel injector for supplying the main fuel and a secondary fuel injector for supplying the auxiliary fuel.
  • the ultra low nitrogen oxide combustion apparatus includes a primary fuel injector for supplying the main fuel into the combustion furnace; At least one secondary fuel injector disposed around the primary fuel injector, the leading end of the secondary fuel injector being arranged to enter the interior of the combustion furnace; A recycling induction unit configured to recycle the combustion gas generated in the combustion furnace to the combustion furnace by a hydrodynamic force; A fuel supply unit supplying fuel to the primary fuel injector and the secondary fuel injector; An oxidant supply unit supplying an oxidant to a space between the primary fuel injector and the secondary fuel injector; And an air multistage sleeve disposed to surround the primary fuel injector for air multistage, wherein the oxidant supplied from the oxidant supply unit is supplied to the multistage through the inside and the outside of the air multistage sleeve.
  • the diameter of the discharge port of the primary fuel injector is defined as B
  • the diameter of the air multistage sleeve is defined as D
  • the inner diameter of the recirculation induction part is defined as C
  • the first performance index indicating the premixed strength, ⁇ 1 is It may be preferable to set to.
  • the value of the first figure of merit may be in the range of 0.3 to 0.5.
  • the ultra low nitrogen oxide combustion apparatus a swirler disposed at the front end of the primary fuel injector; And a central oxidant injector for transferring the oxidant supplied from the oxidant supply unit into the combustion furnace along the inside of the primary fuel injector.
  • a second performance index indicating a nozzle shape coefficient, ⁇ 2 is set by the following equation, It may be desirable for the value to be in the range of 1.5 to 2.0.
  • a third performance index indicating a swirl flow coefficient, ⁇ 3 is set by the following equation. It may be preferable that the value of the third performance index is in the range of 0.55 to 0.75.
  • the fourth performance index, ⁇ 4 representing the recycle flow velocity
  • the fifth performance index, ⁇ 5 representing the combustor outlet flow rate, is set by the following equation.
  • the ultra-low nitrogen oxide combustion apparatus further includes a recirculation promoting protrusion disposed on an outer surface of the air multistage sleeve, wherein the recirculation promoting protrusion increases a flow rate of the combustion gas flowing between the recirculation induction portion and the air multistage sleeve. It may be desirable.
  • the secondary fuel injector may be disposed in plural to maintain a constant interval on the same circumference around the primary fuel injector, and the secondary fuel injector may inject fuel in a radial direction thereof. have.
  • the radial injection angle of the secondary fuel injector may be desirable for the radial injection angle of the secondary fuel injector to inject fuel between an angle toward the adjacent secondary fuel injector and an angle toward the alternately adjacent secondary fuel injector.
  • the axial fuel injection angle of the secondary fuel injector is in the range of 10 ° to 80 °.
  • Fuel injection speed of the primary fuel injector Is preferably set in the range of 20 to 50.
  • Fuel injection velocity of secondary fuel injector Is preferably set in the range of the following formula.
  • the recirculation induction part may change the direction of movement of the combustion gas flowing in connection with an internal recirculation sleeve disposed obliquely based on the secondary fuel injector, a connection guide extending from a rear end of the internal recirculation sleeve, and a rear end of the connection guide. It may be desirable to include a spray nozzle.
  • the injection nozzle may be inclinedly disposed between the primary fuel injector and the recycle induction part to reduce the width between the primary fuel injector and the recycle induction part, which is a flow space of the oxidant.
  • the primary fuel injector may be preferable to inject the main fuel supplied in the radial and tangential direction.
  • the front end of the secondary fuel injector is arranged to enter the interior of the combustion furnace more than the front end of the primary fuel injector.
  • the primary fuel injector forms a primary space, which is a fuel rich region, in the combustion furnace, and the secondary fuel injector forms a secondary space, a fuel lean region, at a rear end of the primary space. It may be desirable to form
  • the ultra low nitrogen oxide combustion apparatus allows the combustion gas generated in the combustion chamber in which the multiple flame fields are formed to be delivered without an additional device inside the combustion chamber instead of the external connection passage of the combustion chamber by applying an internal recirculation technology.
  • the combustion gas in the furnace is mixed with an oxidant sucked by thermal and hydrodynamic induction technology without external power, thereby enabling ultra low nitrogen oxide operation.
  • the present invention provides an air supply process for forming lean flames by supplying oxidants to the flame center or prevents increased nitrogen oxide production by localized hot spots at the flame center. This suppresses overheating of the swirler and fuel injector tip.
  • the present invention enables the smooth recirculation flow of the combustion gas generated in the combustion furnace through the structure of the recirculation induction section and the air multi-stage sleeve, so that the flame of the flame due to the flow against the recirculation flow of the center, which is important for the conventional flame Prevents instability from occurring
  • the present invention undergoes a process in which the combustion gas passing through the recirculation induction part is resupplied to the combustion furnace together with the oxidant and combusted to achieve a stable flame.
  • FIG. 2 is a view of the combustion apparatus of FIG. 1 viewed from the inside of a combustion furnace, and illustrates an embodiment in which auxiliary fuel is injected from a secondary fuel injector;
  • FIG. 2 is a view of the combustion apparatus of FIG. 1 viewed from the inside of a combustion furnace, and illustrates an embodiment in which auxiliary fuel is injected from a secondary fuel injector;
  • FIG. 3 is a view of the combustion apparatus of FIG. 1 viewed from the inside of a combustion furnace, and shows another embodiment in which auxiliary fuel is injected from a secondary fuel injector;
  • FIG. 3 is a view of the combustion apparatus of FIG. 1 viewed from the inside of a combustion furnace, and shows another embodiment in which auxiliary fuel is injected from a secondary fuel injector;
  • 5a to 5f are graphs showing the important performance index of the ultra-low nitrogen oxide combustion apparatus of the present invention.
  • FIG. 6 is an overall configuration diagram of an ultra low nitrogen oxide combustion apparatus according to a second embodiment of the present invention.
  • Each component constituting the ultra low nitrogen oxide combustion apparatus of the present invention may be used integrally or separately separated as necessary. In addition, some components may be omitted depending on the form of use.
  • the ultra low nitrogen oxide combustion apparatus 100 surrounds the primary fuel injector 10 and the primary fuel injector 10 disposed in the center of the opening formed in front of the combustion furnace 1, and closely adheres to the inside of the opening. Disposed between the secondary fuel injector 20, the swirler 30 disposed at the tip of the primary fuel injector 10, the primary fuel injector 10 and the secondary fuel injector 20 The recycling induction part 40, the primary fuel injector 10, and the air multistage sleeve 60 disposed to surround the swirler 30, and the recirculation promoting protrusion 90 disposed on the outer surface of the air multistage sleeve 60. ). The recycle induction part 40 is disposed adjacent to the secondary fuel injector 20.
  • the primary fuel injector 10 includes a transfer part 13 connected to the first fuel line 51 and an enlarged part 11 directly connected to the transfer part 13.
  • the transfer part 13 is for safely transporting the main fuel to the enlarged part 11, preferably made of a durable material, and may have a uniform diameter.
  • the enlarged portion 11 may have a shape in which its diameter gradually increases, and injects the supplied main fuel through its outer circumferential surface. That is, fuel entering the enlarged portion 11 through an injection hole (not shown) formed on the outer circumferential surface of the expanded portion 11 is radially injected into the internal space between the fuel injectors 10 and 20 (see FIG. 1). See reference numeral 15). That is, the fuel in the enlarged portion 11 is injected along the radial direction of the enlarged portion 11 on the oxidant introduced.
  • the central oxidant injector 85 may be disposed along the inside of the primary fuel injector 10.
  • the nozzle can be inserted into the end of the central oxidant injection unit 85 to control the air supply amount.
  • the central oxidant injector 85 allows the oxidant supplied from the oxidant supply unit 80 to flow along the central axis of the primary fuel injector 10, and then, as the flame center of the combustion furnace 1, the primary space 72. Have it supplied.
  • the secondary fuel injectors 20 are arranged at regular intervals on the same circumference with respect to the primary fuel injectors 10. Specifically, six to twelve secondary fuel injectors 20 are arranged, and preferably eight secondary fuel injectors 20 are arranged at equal intervals.
  • the tip of the secondary fuel injector 20 is arranged to further enter the interior of the combustion furnace 1 as compared to the tip of the primary fuel injector 10.
  • the tip structure of the secondary fuel injector 20 may be inclined in one direction to be inclined. Specifically, it may be determined to be inclined in a form gradually away from the opening 3 in the direction toward the center of the combustion furnace 1.
  • Fuel injected from the secondary fuel injector 20 may be injected in a radial direction of the secondary fuel injector 20.
  • the secondary fuel injector 20 causes the auxiliary fuel to be injected in the radial direction instead of the axial direction to generate a rotational flow in the combustion furnace 1.
  • the auxiliary fuel may be discharged in a clockwise or counterclockwise direction on the circumference of the plurality of secondary fuel injectors 20 (see reference numeral 25 of FIG. 2 or reference numeral 25 'of FIG. 3). As an example, the figure shows the form sprayed clockwise.
  • the fuel injection direction from any one of the plurality of secondary fuel injectors 20 is set to face another adjacent secondary fuel injector 20 (see FIG. 2).
  • the fuel injection direction from any one of the plurality of secondary fuel injectors 20 is set to face the alternately adjacent other secondary fuel injectors 20 (see FIG. 3).
  • the radial injection angle from any one of the plurality of secondary fuel injectors 20 is determined between the angle toward the adjacent secondary fuel injector and the angle toward the alternately adjacent secondary fuel injector. Can be sprayed.
  • the fuel is injected only from four secondary fuel injectors 20 out of the eight secondary fuel injectors 20 arranged, but this is to clearly indicate the injection direction. It is assumed that fuel is injected from the carcass 20.
  • the primary fuel injector 10 and the secondary fuel injector 20 are both configured as hollow cylindrical tubes.
  • the oxidant is supplied from the oxidant supply unit 80 to the space between the primary fuel injector 10 and the secondary fuel injector 20.
  • the oxidant is supplied into the combustion furnace 1 directly through the swirler 30 with the axial or tangential momentum formed therein, or directly through the swirler 30.
  • Liquid fuel is divided into primary fuel and secondary fuel from the fuel supply unit 50 to the primary fuel injector 10 and the secondary fuel injector 20.
  • the fuel injectors 10 and 20 are branched to the first line 51 and the second line 52.
  • Solenoid valves 55 and 56 may be installed in the lines 51 and 52, respectively, to properly supply and shut off the liquid fuel supplied to the main fuel and the secondary fuel.
  • the swirler 30 is disposed at the front end of the primary fuel injector 10 so that the premixer can be supplied diagonally to the axial direction of the primary fuel injector 10.
  • the premixer supplied in an oblique line makes a swirl flow and enables the generation of vortices (see reference numeral 32 in FIG. 2).
  • the swirler 30 may include a hollow cylindrical body and a wing-shaped guide plate disposed diagonally with respect to the axial direction inside the body. Inside the body is formed a hollow cylindrical insertion hole (not shown) connected to one side end of the guide plate. As the primary fuel injector 10 penetrates and is fixed to the insertion hole, the swirler 30 is disposed to surround the front end of the primary fuel injector 10.
  • the recirculation induction part 40 is an internal recirculation sleeve 41 and an internal recirculation sleeve 41 which are disposed to be inclined relative to the secondary fuel injector 20 on an opening (not shown) of the combustion furnace 1.
  • the inner recirculation sleeve 41 is disposed to be inclined toward the center of the opening 3 from the front end to the rear end, which is the first inlet of the combustion gas. That is, the inner width becomes wider toward the rear end of the inner recirculation sleeve 41.
  • the connecting guide 43 maintains a constant width as to allow a gentle flow of the combustion gas introduced through the inner recirculation sleeve 41.
  • the injection nozzle 45 injects the combustion gas flowing in the combustion furnace 1 through the internal recycling sleeve 41 and the connection guide 43 into the space between the primary fuel injector 10 and the recycling induction part 40. Let's do it.
  • the injected combustion gas flows into the combustion furnace 1 together with the oxidant.
  • the injection nozzle 45 is inclined between the primary fuel injector 10 and the recirculation induction part 40. That is, the orifice-shaped structure is realized by reducing the width between the primary fuel injector 10 and the recycling induction part 40.
  • the arrangement of the injection nozzles 45 as described above allows the flow rate of the oxidant supplied to the space between the primary fuel injector 10 and the secondary fuel injector 20 to be increased into the combustion furnace 1 at a high speed. Let it flow
  • the inclined member 47 is a structure that is disposed on the boundary between the connection guide 43 and the injection nozzle 45 to adjust the width through which the combustion gas can flow, thereby adjusting the flow rate.
  • the air multistage sleeve 60 is a hollow cylindrical structure configured to separately supply the oxidant supplied from the oxidant supply unit 80 to the inside and the outside of the air multistage sleeve 60, thereby enabling the multistage supply of the oxidant. As a result, it is easy to form a multi-stage flame inside the combustion furnace 1.
  • the recirculation promoting protrusion 90 is disposed on the outer circumferential surface of the air multistage sleeve 60. Specifically, the recirculation promoting protrusion 90 performs a function of narrowing the space between the injection nozzle 45 and the air stage sleeve 60 constituting the recirculation induction part 40.
  • the flow rate of the combustion gas flowing through the recirculation induction part 40 from the combustion furnace 1 is increased while passing near the recirculation promoting protrusion 90. This prevents the separation of the combustion gas re-introduced into the combustion furnace 1 through the recirculation induction part 40, and consequently promotes the recirculation of the combustion gas.
  • A diameter of swirler 30, B: diameter of fuel head, C: internal diameter of recirculation induction part 40, D: diameter of air multistage sleeve 60, E: distance between FIR ports, F: fuel Diameter of pipe
  • the diameter of the fuel head is the diameter of the discharge port of the primary fuel injector 10 and the diameter of the portion of the enlarged portion 11 coupled to the swirler 30, and the diameter of the fuel pipe is the primary fuel portion.
  • the diameter of the conveying part 13 into which fuel flows in the carcass 10 and the distance between the FIR ports means the distance between the injection nozzles 45 of the recirculation induction part 40.
  • the first performance index, ⁇ 1 indicates the premixed strength, and can be set by the following equation.
  • the first figure of merit refers to the ratio of the internal burner area to the total oxidant feed area and represents the ratio of the premixed air area to the pure oxidant supply area.
  • the value of the first index of performance is in the range of 0.3 to 0.5 to maintain the generation rate of nitrogen oxide at 20 or less. Preferably 0.4.
  • 2nd performance index, (eta) 2 shows a nozzle shape coefficient, and can be set with the following formula.
  • the second performance index refers to the ratio between the swirler diameter and the fuel head diameter and is used as a design index of the rapid premix burner head.
  • the value of the second performance index is preferably in the range between 1.5 and 2.0.
  • the third performance index, ⁇ 3 represents the swirl flow coefficient and can be set by the following equation.
  • the third performance index refers to the ratio of the swirl area to the total oxidant supply area, and may indicate the turning strength as the ratio of the area occupied by the swirler in the total oxidant supply area.
  • the value of the third performance index may be present in a range of 0.55 to 0.75. Preferably about 1.42.
  • the fourth performance index, ⁇ 4 indicates the recycle flow rate, and can be set by the following equation.
  • the fourth performance index means the flow rate through the area excluding the area of the transfer part 13 among the areas between the ends of the injection nozzle 45.
  • the value of the fourth performance index is in the range of 45 to 60 to maintain the generation rate of nitrogen oxide at 20 or less.
  • the fifth performance index, eta 5 represents the combustor outlet flow rate, and can be set by the following equation.
  • the fifth performance index means a flow rate through an area excluding the area of the fuel head among the inner areas of the connection guide 43.
  • the value of the fifth performance index is in the range of 30 to 50.
  • the fuel injection speed of the primary fuel injector Is preferably set in the range of 20 to 50.
  • the fuel injection speed of the secondary fuel injector Is preferably set in the range of the following formula.
  • the fuel injected from the secondary fuel injector 20 has a ⁇ value between 10 ° and 80 ° with respect to a plane perpendicular to the axial direction of the secondary fuel injector 20. It may be desirable to spray in the range.
  • the sixth performance index, ⁇ 6 indicates a premixing ratio, and can be set by the following equation.
  • the sixth performance index means the ratio of the premixed fuel flow rate to the total fuel flow rate.
  • the value of the sixth index of performance is in the range of 4 to 22 in order to maintain the generation rate of nitrogen oxide at 20 or less.
  • the lower the premixing ratio may be better nitrogen oxide reduction effect, but there is a disadvantage that the flame instability occurs in less than 5% conditions.
  • the present invention may proceed in consideration of the fuel speed and the shape of the head as an additional figure of merit, but there may be a limitation in including the shape of all the fuel head.
  • the air multistage sleeve 60 is removed differently from the first embodiment 100, while the recirculation promoting protrusion 90 'is provided with a transfer part of the primary fuel injector 10 ( It is characterized in that it is disposed on the outer peripheral surface of 13).
  • the oxidant supplied to the outside of the primary fuel injector 10 is mixed with the combustion gas passed through the recirculation induction part 40 without flowing through the multistage sleeve 60 and flows toward the combustion furnace 1. do.
  • the low nitrogen oxide combustion apparatus 200 differs only in the arrangement position of the air multistage sleeve 60 and in the arrangement position of the recirculation promoting protrusion 90 ′.
  • the core technical features are shared.
  • the oxidant is supplied through the oxidant supply unit 80, and some of the supplied oxidant flows through the central oxidant injector 85 inside the primary fuel injector 10. At the same time, fuel is supplied from the fuel supply unit 50 to the primary fuel injector 10 via the first fuel line 51.
  • the main fuel flowing in the primary fuel injector 10 undergoes a radial injection through the outer circumferential surface of the enlarged portion 11, and the injected main fuel reacts with the oxidant to pre-mix the region ( 78).
  • the enlarged portion 11 has a shape that is enlarged toward the combustion furnace 1 direction, it is possible to form the premixed region 78 over a large portion of the injected fuel.
  • the premixer formed in the premixing region 78 is discharged to the combustion furnace 1 through the swirler 30 to form the primary space 72. Analyzing the air supplied to the primary space 72 is as follows. The premixer formed in the premixing region 78 is transferred into the furnace 1 through the swirler 30 with axial momentum and tangential momentum.
  • the combustion gas passing through the recirculation induction part 40 is supplied to the primary space 72 together with the premixer.
  • the combustion gas discharged from the recirculation induction part 40 to the flow space of the oxidant is increased by the recirculation promoting protrusion 90 so as to increase the flow rates of the combustion gas and the oxidant, and prevent peeling.
  • the premixer and the combustion gas enter the primary space 72 to undergo a process of burning, thereby achieving a stable flame.
  • the primary space 72 is the main flame space region where at least about 50% of fuel is injected and combusted.
  • fuel is supplied from the fuel supply unit 50 to the secondary fuel injector 20 via the second fuel line 52.
  • the auxiliary fuel injected into the upper side of the primary space 72 through the secondary fuel injector 20 forms the secondary space 74 through a process of reacting with the unreacted oxidant in the primary space 72.
  • Some of the combustible gas in the primary space 72 is mixed with the premixer supplied to the outside of the swirler 30 to move to the wake of the primary flame to form a fuel lean flame.
  • the fuel lean flame forms a secondary space 74.
  • the main fuel injected along the radial direction of the primary fuel injector 10 is premixed with the oxidizing agent to form a premixed region 78, and the combustion furnace from the premixed region 78 is fired.
  • the premixer supplied in (1) forms the primary space 72, and injects the auxiliary fuel from the secondary fuel injector 20 to the rear end of the primary space 72 so as to form the final flame.
  • the multi-stage flame space is formed in the combustion furnace 1 by the fuel injected by the primary fuel injector 10 and the secondary fuel injector 20.
  • a secondary space 74 is created at the rear end of the primary space 72.
  • the secondary space 74 is formed in a shape surrounding the primary space 72 in the space further entered into the inner side of the combustion furnace 1.
  • a self-recirculation region 76 is formed in the combustion furnace 1 separately from the multi-stage flame space including the primary and secondary spaces 72 and 74.
  • the magnetic recirculation region 76 is formed at the inner edge region of the combustion furnace 1 so that combustion gas may flow in a vortex form.
  • the fuel injected from the primary fuel injector 10 forms the primary space 72, which is a stable fuel rich region, by the multi-stage air flow in the combustion furnace 1, and in the secondary fuel injector 20.
  • the injected fuel undergoes a partial oxidation reaction by the atmospheric temperature and residual oxygen caused by the heat transferred from the primary flame of the primary fuel injector 10, and is converted into various combustible gas species so that the flame is in a fuel lean state after the flame.
  • the secondary space 74 which is a space is comprised. Therefore, the flame state composed of multiple stages in the combustion furnace including the fuel rich region and the fuel lean region is clearly formed.
  • the flame of the ultra-low nitrogen oxide combustion apparatus 100 to which this principle is applied is basically a form in which the fuel rich and the fuel lean region are clearly distinguished, thereby minimizing the local high temperature region in the flame to suppress thermal NOx generation as much as possible.
  • the combustion gas generated in the combustion furnace 1 through the recirculation induction part 40 is re-introduced into the combustion furnace 1 together with the oxidant to react without requiring a separate power, thereby reacting the fuel NOx by oxidation of nitrogen components in the fuel.
  • the production can be reduced at source.
  • the ultra-low nitrogen oxide combustion apparatus of the present invention allows the combustion gas generated in the combustion chamber in which the multiple flame fields are formed to be transmitted without using a separate device inside the combustion chamber instead of the external connection passage of the combustion chamber by applying an internal recirculation technology.
  • the pre-mixer is formed through a method of injecting the main fuel into the flame in the axial direction of the fuel injector injected into the combustion furnace, but in the radial or tangential direction, and having the premixer formed therein.
  • the present invention undergoes a process in which the combustion gas passing through the recirculation induction part is resupplied and combusted together with the oxidant to increase the heat capacity of the flame to stably lower the temperature of the flame.

Abstract

An ultra-low nitrogen oxide combustion apparatus according to the present invention comprises: a primary fuel jetting body; one or more secondary fuel jetting bodies; a recirculation guide unit; a fuel supply unit; an oxidant supply unit; and an air multistage sleeve. The primary fuel jetting body supplies main fuel into a combustion furnace. The one or more secondary fuel jetting bodies are arranged around the primary fuel jetting body in such a manner that the front ends thereof are inserted into the combustion furnace. The recirculation guide unit re-supplies combustion gas generated from the combustion furnace to the combustion furnace by hydrodynamic force. The fuel supply unit supplies fuel to the primary fuel jetting body and the secondary fuel jetting bodies. The oxidant supply unit supplies an oxidant to a gap between the primary fuel jetting body and the secondary fuel jetting bodies. The air multistage sleeve is arranged to surround the primary fuel jetting body for air multistage. The oxidant supplied from the oxidant supply unit is supplied in multiple stages through the internal and external portions of the air multistage sleeve. By applying an internal recirculation technique, the present invention can transmit combustion gas, generated in a combustion chamber including multiple flame areas, not to an external link pathway of the combustion chamber, but into the combustion chamber, without an additional separate device.

Description

연소가스의 내부 재순환을 통한 초저질소산화물 연소장치 및 이의 운전방법Ultra low nitrogen oxide combustion apparatus through internal recirculation of combustion gas and its operation method
본 발명은 연소가스의 내부 재순환을 통한 초저질소산화물 연소장치에 관한 것으로서, 보다 상세하게는 연소실 내에서 발생하는 연소가스를 상기 연소실의 외부 연결통로가 아닌 연소실 내부에서 별도의 장치 없이 전달되도록 하는 내부재순환 기술을 적용한 초저질소산화물 연소장치에 관한 것이다.The present invention relates to an ultra-low nitrogen oxide combustion apparatus through internal recirculation of combustion gas, and more particularly, an internal combustion gas that is generated in a combustion chamber to be delivered without a separate device inside the combustion chamber instead of an external connection passage of the combustion chamber. The present invention relates to an ultra low nitrogen oxide combustion apparatus using a recycling technology.
현재 인류의 주된 에너지원은 탄화수소계열의 화석 연료이다. 그러나 이러한 화석연료의 연소 후 생성물에 의한 환경오염 문제가 심각하게 제기되고 있다. 주된 환경 오염원으로는 질소 산화물(NOx), 이산화탄소(CO2) 외에 연료의 불완전 연소로 인해 생기는 일산화탄소(CO)와 매연(soot) 등이 있다.At present, mankind's main energy source is hydrocarbon-based fossil fuels. However, the problem of environmental pollution by the product after combustion of fossil fuels has been seriously raised. The main environmental pollutants include nitrogen oxides (NOx) and carbon dioxide (CO 2 ), as well as carbon monoxide (CO) and soot caused by incomplete combustion of fuels.
기존의 화석 연료를 사용하는 연소기는 연소시의 화학적 반응에 의해 NO 및 NO2 의 화학식을 갖는 질소 산화물(NOx)의 생성이 불가피하다. 이의 발생을 억제하기 위한 저NOx 연소기술은 연료와 공기의 혼합형태, 공연비 등 연소기의 구조 개선을 통해 이루어지도록 발전하고 있다. 연소과정에서 발생하는 질소 산화물은 대기 중의 다른 산소와 반응하여 스모그 및 대기의 오존 증가 등 환경문제를 발생시킨다. 특히 이러한 연소과정에서 발생하는 배출물(emission)의 경우 환경 및 인체의 건강에 해를 끼치므로 각국에서는 점점 더 엄격한 기준으로 규제를 강화하고 있다.Combustors using conventional fossil fuels inevitably generate nitrogen oxides (NOx) having a chemical formula of NO and NO2 by chemical reactions during combustion. Low NOx combustion technology to suppress this occurrence is being developed to improve the structure of the combustor, such as the mixture of fuel and air, air-fuel ratio. Nitrogen oxides generated during the combustion process react with other oxygen in the atmosphere, causing environmental problems such as smog and increased ozone in the atmosphere. In particular, emissions from these combustion processes harm the environment and human health, so countries are tightening regulations on more and more stringent standards.
질소산화물의 종류에는 발생 원인에 따라 열적 질소산화물(Thermal NOx), 급속 질소산화물(Prompt NOx), 및 연료 질소산화물(Fuel NOx)로 분류될 수 있다. 열적 질소산화물은 공기 중의 질소가 산소와 1600℃ 이상의 고온에서 반응하여 생성되는 것이고, 급속 질소산화물은 탄화수소계 연료의 연소시 연소 초기에 생성되는 것이며, 연료 질소산화물은 연료 중에 함유된 질소 성분의 반응에 의해 생성된다. 이와 같은 질소 산화물의 대책에 있어서도 천연가스와 같은 기체연료에는 연료 중에 질소성분이 함유되어 있지 않기 때문에 Thermal NOx 및 Prompt NOx에 관련된 사항을 제어하는 것이 효과적일 수 있다.Types of nitrogen oxides may be classified into thermal NOx, prompt NOx, and fuel NOx depending on the cause. Thermal nitrogen oxides are produced by the reaction of nitrogen in the air with oxygen at a high temperature of 1600 ° C or higher, rapid nitrogen oxides are produced at the beginning of combustion during the combustion of hydrocarbon-based fuels, and fuel nitrogen oxides are reactions of nitrogen components contained in the fuel. Is generated by Even in such a countermeasure against nitrogen oxides, since gaseous fuels such as natural gas do not contain nitrogen in the fuel, it may be effective to control matters related to Thermal NOx and Prompt NOx.
질소산화물은 광화학 스모그 및 산성비의 원인이 되며 동식물에 심각한 영향을 미치는 것으로 알려져 있으며, 오랫동안 많은 연구자들은 NOx를 감소시키는 다양한 방법을 연구하였다.Nitrogen oxides are known to cause photochemical smog and acid rain and seriously affect plants and animals. For many years, many researchers have studied various ways to reduce NOx.
이로 인해 현재 시도되고 있는 저 NOx 방법으로는 배기가스 재순환, 물 또는 스팀분사, 공기 및 연료의 다단 연소, 선택적 비촉매 환원반응(SNCR, selective non-catalytic reduction), 선택적 촉매 환원반응(SCR, selective catalytic reduction) 등이 있다. 최근 선진국에서는 후연소 영역에서 NOx를 제거하는 재연소 방법이 시도되고 있으며, NOx 저감율이나 경제성에 있어서 효율성이 높다고 알려져 있다.Because of this, low NOx methods currently being tried include exhaust gas recirculation, water or steam injection, multistage combustion of air and fuel, selective non-catalytic reduction (SNCR), and selective catalytic reduction (SCR). catalytic reduction). Recently, developed countries have tried to re-burn NOx in the post-combustion area, and are known to have high efficiency in terms of NOx reduction rate and economic efficiency.
상기와 같이 NOx를 저감하기 위한 종래의 방법으로서, 대한민국공개특허 제10-2005-0117417호를 예로 들 수 있다. 상기 제10-2005-0117417호 상에서는 질소 산화물(NOx)의 발생량을 저감할 수 있게 하기 위하여 연소용 공기를 일반공기와 배가스를 혼합하여 3단계로 나누어 공급하되 각 단의 혼합비를 각각 다르게 함으로써, 다단 연소에 의한 국부고온역 생성을 최소화하고, 연소영역을 확장하여 보일러 내부의 균일가열을 이루기 위한, 액체 및 가스용 배가스 재순환 3단버너를 제공한다.As a conventional method for reducing NOx as described above, the Republic of Korea Patent Publication No. 10-2005-0117417 can be exemplified. In step 10-2005-0117417, in order to reduce the amount of nitrogen oxides (NOx) generated, combustion air is supplied in three stages by mixing general air and exhaust gas, but by varying the mixing ratio of each stage. The present invention provides a three-stage burner for exhaust gas recirculation for liquid and gas to minimize local high temperature generation by combustion and to extend the combustion zone to achieve uniform heating in the boiler.
반면, 상기 인용문헌에서는 배기가스를 재순환시키기 위한 요소로서 복수의 배가스 공급관, 재순환덕트, 및 댐퍼 등의 별도의 장치들을 구비함으로써 배기가스를 연소로 내로 재유입되도록 하지만, 상기 연소로의 외부에 별도로 장치되어야 하므로 필요 공간이 많아진다는 단점이 있다.On the other hand, in the above-mentioned literature, the exhaust gas is re-introduced into the combustion furnace by providing a plurality of exhaust gas supply pipes, a recirculation duct, and a damper as elements for recycling the exhaust gas, but separately from the outside of the combustion furnace. There is a disadvantage that the required space is increased because it must be installed.
한편, 본 발명자에 의해 선출원된 등록 특허인 제1203189호를 참조하면, 연소실 내에서 발생하는 연소가스를 연소실의 외부 연결통로가 아닌 연소실 내부에서 별도의 장치 없이 전달되도록 하는 내부재순환 기술을 제공하지만, 연소로의 중심부에서 희박 화염을 형성하게 위한 구체적 구성이나 질소 산화물의 형성을 줄일 수 있는 구체적인 인자에 대한 설명은 부족하다는 한계가 있다.Meanwhile, referring to registered patent No. 1203189 filed by the inventor, the internal recirculation technology is provided so that the combustion gas generated in the combustion chamber is delivered without a separate device inside the combustion chamber, not the external connection passage of the combustion chamber. There is a limitation in that a specific configuration for forming a lean flame in the center of a combustion furnace or a description of specific factors that can reduce the formation of nitrogen oxides is insufficient.
이에 본 발명은 상기의 문제점을 해결하기 위해서, 연소로의 중심 영역으로 산화제를 공급하게 하는 동시에 다중 화염장이 형성된 연소실 내에서 발생하는 연소가스를 상기 연소실의 외부 연결통로가 아닌 연소실 내부에서 별도의 장치 없이 전달되도록 하는 내부재순환 기술을 적용한 초저질소산화물 연소장치를 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention allows the oxidant to be supplied to the central region of the combustion furnace, and at the same time, the combustion gas generated in the combustion chamber in which the multiple flame fields are formed is separated in the combustion chamber instead of the external connection passage of the combustion chamber. It is an object of the present invention to provide an ultra low nitrogen oxide combustion apparatus employing an internal recirculation technology that can be delivered without.
또한, 본 발명은 주연료를 공급하는 1차연료 분사체 및 보조 연료를 공급하는 2차연료 분사체로 이루어진 다단의 연료공급노즐구조를 통해 고효율 및 저공해 구조의 화염장을 형성하는 것을 목적으로 한다.In addition, an object of the present invention is to form a flame field of high efficiency and low pollution structure through a multi-stage fuel supply nozzle structure consisting of a primary fuel injector for supplying the main fuel and a secondary fuel injector for supplying the auxiliary fuel.
상기와 같은 과제를 해결하기 위해, 본 발명에 따른 초저질소산화물 연소장치는 연소로 내부로 주연료를 공급하는 1차연료 분사체; 상기 1차연료 분사체 주위로 적어도 하나 이상으로 배치되며, 그 선단이 상기 연소로의 내부에 진입하도록 배치되는 2차연료 분사체; 상기 연소로에서 발생한 연소가스를 유체역학적 힘에 의해 상기 연소로에 재순환시키는 재순환 유도부; 상기 1차연료 분사체와 2차연료 분사체로 연료를 공급하는 연료공급부; 상기 1차연료 분사체와 상기 2차연료 분사체 사이의 공간으로 산화제를 공급하는 산화제 공급부; 및 공기 다단을 위해 상기 1차연료 분사체를 둘러싸도록 배치되는 공기 다단 슬리브;를 포함하고, 상기 산화제 공급부로부터 공급되는 산화제는 상기 공기 다단 슬리브의 내외부를 통해 다단으로 공급하는 것을 특징으로 한다.In order to solve the above problems, the ultra low nitrogen oxide combustion apparatus according to the present invention includes a primary fuel injector for supplying the main fuel into the combustion furnace; At least one secondary fuel injector disposed around the primary fuel injector, the leading end of the secondary fuel injector being arranged to enter the interior of the combustion furnace; A recycling induction unit configured to recycle the combustion gas generated in the combustion furnace to the combustion furnace by a hydrodynamic force; A fuel supply unit supplying fuel to the primary fuel injector and the secondary fuel injector; An oxidant supply unit supplying an oxidant to a space between the primary fuel injector and the secondary fuel injector; And an air multistage sleeve disposed to surround the primary fuel injector for air multistage, wherein the oxidant supplied from the oxidant supply unit is supplied to the multistage through the inside and the outside of the air multistage sleeve.
상기 1차연료 분사체의 토출구 직경을 B, 상기 공기 다단 슬리브의 직경을 D, 상기 재순환 유도부의 내부 직경을 C로 정의할 때, 예혼합강도를 나타내는 제1 성능 지수, η1는 하기의 식으로 설정되는 것이 바람직할 수 있다.When the diameter of the discharge port of the primary fuel injector is defined as B, the diameter of the air multistage sleeve is defined as D, and the inner diameter of the recirculation induction part is defined as C, the first performance index indicating the premixed strength, η 1 is It may be preferable to set to.
Figure PCTKR2014002163-appb-I000001
Figure PCTKR2014002163-appb-I000001
상기 제1 성능 지수의 값은 0.3 내지 0.5의 범위인 것이 바람직할 수 있다.The value of the first figure of merit may be in the range of 0.3 to 0.5.
상기 초저질소산화물 연소장치는, 상기 1차연료 분사체의 선단에 배치되는 스월러; 및 상기 산화제 공급부로부터 공급되는 산화제를 상기 1차 연료 분사체의 내부를 따라 상기 연소로 내로 이송하는 중심 산화제 분사부;를 더 포함하는 것이 바람직할 수 있다.The ultra low nitrogen oxide combustion apparatus, a swirler disposed at the front end of the primary fuel injector; And a central oxidant injector for transferring the oxidant supplied from the oxidant supply unit into the combustion furnace along the inside of the primary fuel injector.
상기 1차연료 분사체의 토출구 직경을 B, 상기 스월러의 직경을 A로 정의할 때, 노즐형상계수를 나타내는 제2 성능 지수, η2는 하기의 식으로 설정되며, 상기 제2 성능 지수의 값은 1.5 내지 2.0의 범위인 것이 바람직할 수 있다.When defining the discharge port diameter of the primary fuel injector as B and the diameter of the swirler as A, a second performance index indicating a nozzle shape coefficient, η 2 is set by the following equation, It may be desirable for the value to be in the range of 1.5 to 2.0.
Figure PCTKR2014002163-appb-I000002
Figure PCTKR2014002163-appb-I000002
상기 1차연료 분사체의 토출구 직경을 B, 상기 스월러의 직경을 A, 상기 재순환 유도부의 내부 직경을 C로 정의할 때, 선회류계수를 나타내는 제3 성능 지수, η3는 하기의 식으로 설정되며, 상기 제3 성능 지수의 값을 0.55 내지 0.75 사이의 범위인 것이 바람직할 수 있다.When defining the outlet diameter of the primary fuel injector as B, the diameter of the swirler as A, and the inner diameter of the recycle induction part as C, a third performance index indicating a swirl flow coefficient, η 3 is set by the following equation. It may be preferable that the value of the third performance index is in the range of 0.55 to 0.75.
Figure PCTKR2014002163-appb-I000003
Figure PCTKR2014002163-appb-I000003
FIR 포트 사이의 거리를 E, 연료 파이프의 직경을 E로 정의할 때, 재순환부 유속을 나타내는 제4 성능 지수, η4는 하기의 식으로 설정되는 것이 바람직할 수 있다.When defining the distance between the FIR ports as E and the diameter of the fuel pipe as E, it may be preferable that the fourth performance index, η 4 , representing the recycle flow velocity, is set by the following equation.
Figure PCTKR2014002163-appb-I000004
Figure PCTKR2014002163-appb-I000004
상기 1차연료 분사체의 토출구 직경을 B, 상기 재순환 유도부의 내부 직경을 C로 정의할 때, 연소기 출구 유속을 나타내는 제5성능 지수, η5는 하기의 식으로 설정되는 것이 바람직할 수 있다.When defining the outlet diameter of the primary fuel injector as B and the inner diameter of the recirculation induction part as C, it may be preferable that the fifth performance index, η 5 , representing the combustor outlet flow rate, is set by the following equation.
Figure PCTKR2014002163-appb-I000005
Figure PCTKR2014002163-appb-I000005
상기 초저질소산화물 연소장치는, 상기 공기 다단 슬리브의 외면에 부설되는 재순환 촉진 돌기부;를 더 포함하며, 상기 재순환 촉진 돌기부는 상기 재순환 유도부와 상기 공기 다단 슬리브 사이로 유동하는 상기 연소가스의 유속을 증가시키는 것이 바람직할 수 있다.The ultra-low nitrogen oxide combustion apparatus further includes a recirculation promoting protrusion disposed on an outer surface of the air multistage sleeve, wherein the recirculation promoting protrusion increases a flow rate of the combustion gas flowing between the recirculation induction portion and the air multistage sleeve. It may be desirable.
상기 2차연료 분사체는 상기 1차연료 분사체를 중심으로 하여 동일 원주 상에 일정한 간격을 유지하도록 복수개가 배치되며, 상기 2차연료 분사체는 그 반경 방향으로 연료를 분사하는 것이 바람직할 수 있다.The secondary fuel injector may be disposed in plural to maintain a constant interval on the same circumference around the primary fuel injector, and the secondary fuel injector may inject fuel in a radial direction thereof. have.
상기 2차연료 분사체의 반경방향 분사각도는 인접한 상기 2차연료 분사체를 향하는 각도와 교번적으로 인접한 상기 2차 연료 분사체를 향한 각도 사이에서 연료를 분사하는 것이 바람직할 수 있다.It may be desirable for the radial injection angle of the secondary fuel injector to inject fuel between an angle toward the adjacent secondary fuel injector and an angle toward the alternately adjacent secondary fuel injector.
상기 2차연료 분사체의 축방향 연료 분사 각도는 10°에서 80°범위인 것이 바람직할 수 있다.It is preferable that the axial fuel injection angle of the secondary fuel injector is in the range of 10 ° to 80 °.
상기 1차연료 분사체의 연료분사속도
Figure PCTKR2014002163-appb-I000006
는 바람직하게 20에서 50의 범위로 설정되는 것이 바람직하다.
Fuel injection speed of the primary fuel injector;
Figure PCTKR2014002163-appb-I000006
Is preferably set in the range of 20 to 50.
2차연료 분사체의 연료분사속도,
Figure PCTKR2014002163-appb-I000007
은 바람직하게 하기 식의 범위로 설정되는 것이 바람직하다.
Fuel injection velocity of secondary fuel injector,
Figure PCTKR2014002163-appb-I000007
Is preferably set in the range of the following formula.
Figure PCTKR2014002163-appb-I000008
Figure PCTKR2014002163-appb-I000008
상기 재순환 유도부는 상기 2차연료 분사체를 기준으로 경사지게 배치되는 내부 재순환 슬리브, 상기 내부 재순환 슬리브의 후단으로부터 연장되는 연결 가이드, 상기 연결 가이드의 후단에 연결되어 유동하는 연소가스의 이동방향을 변경하게 하는 분사 노즐을 포함하는 것이 바람직할 수 있다.The recirculation induction part may change the direction of movement of the combustion gas flowing in connection with an internal recirculation sleeve disposed obliquely based on the secondary fuel injector, a connection guide extending from a rear end of the internal recirculation sleeve, and a rear end of the connection guide. It may be desirable to include a spray nozzle.
상기 분사 노즐은 상기 1차연료 분사체와 상기 재순환 유도부 사이에서 경사지게 배치됨으로써 상기 산화제의 유동 공간인 상기 1차연료 분사체와 상기 상기 재순환 유도부 사이의 폭을 감소시키는 것이 바람직할 수 있다.The injection nozzle may be inclinedly disposed between the primary fuel injector and the recycle induction part to reduce the width between the primary fuel injector and the recycle induction part, which is a flow space of the oxidant.
상기 1차연료 분사체는 공급되는 상기 주연료를 그 반경 방향 및 접선 방향으로 분사하는 것이 바람직할 수 있다.The primary fuel injector may be preferable to inject the main fuel supplied in the radial and tangential direction.
상기 2차연료 분사체의 선단은 상기 1차연료 분사체의 선단에 비해 상기 연소로의 내부로 더 진입하여 배치되는 것이 바람직할 수 있다.It may be preferable that the front end of the secondary fuel injector is arranged to enter the interior of the combustion furnace more than the front end of the primary fuel injector.
상기 1차연료 분사체는 상기 연소로 내부에 연료농후영역인 1차 공간을 형성하고, 상기 2차연료 분사체는 상기 1차 공간의 후단부에 연료희박영역인 2차 공간을 형성하여 다단 화염을 형성하는 것이 바람직할 수 있다.The primary fuel injector forms a primary space, which is a fuel rich region, in the combustion furnace, and the secondary fuel injector forms a secondary space, a fuel lean region, at a rear end of the primary space. It may be desirable to form
본 발명에 따른 초저질소산화물 연소장치는 다중 화염장이 형성된 연소실 내에서 발생하는 연소가스를 내부재순환 기술을 적용하여 상기 연소실의 외부 연결통로가 아닌 연소실 내부에서 별도의 장치 없이 전달되게 한다.The ultra low nitrogen oxide combustion apparatus according to the present invention allows the combustion gas generated in the combustion chamber in which the multiple flame fields are formed to be delivered without an additional device inside the combustion chamber instead of the external connection passage of the combustion chamber by applying an internal recirculation technology.
이처럼 내부 재순환 유도체의 형상을 최적화함에 의해 연소로 내의 연소가스가 외부 동력 없이 열 및 유체 역학적 유도 기술에 의해 흡입되는 산화제와 혼합되어 연소됨으로써 초저질소산화물 운전이 가능하게 한다. By optimizing the shape of the internal recycle derivative, the combustion gas in the furnace is mixed with an oxidant sucked by thermal and hydrodynamic induction technology without external power, thereby enabling ultra low nitrogen oxide operation.
본 발명은 산화제를 화염 중심부에 공급함으로써 희박 화염을 형성하기 위한 공기 공급 과정을 가능하게 하거나 화염 중심부의 국부적 고온 열점에 의한 질소 산화물 생성 증가를 방지한다. 이를 통해 스월러 및 연료 분사체 선단의 과열현상을 억제하게 한다.The present invention provides an air supply process for forming lean flames by supplying oxidants to the flame center or prevents increased nitrogen oxide production by localized hot spots at the flame center. This suppresses overheating of the swirler and fuel injector tip.
또한, 본 발명은 재순환 유도부 및 공기 다단 슬리브 등의 구조를 통해서 연소로에서 발생하는 연소가스의 원활한 재순환 유동을 가능하게 하고, 이로써 종래에 보염 역할에 중요한 중심부의 재순환 유동에 반하는 유동으로 인한 화염의 불안정 현상이 발생하는 것을 방지한다.In addition, the present invention enables the smooth recirculation flow of the combustion gas generated in the combustion furnace through the structure of the recirculation induction section and the air multi-stage sleeve, so that the flame of the flame due to the flow against the recirculation flow of the center, which is important for the conventional flame Prevents instability from occurring
또한, 별도의 동력 공급 장치를 요하지 않아 설치의 단순화를 가능하게 하는 동시에, 연소가스의 순환 효율을 증가하게 한다.In addition, a separate power supply device is not required, thereby simplifying the installation and increasing the circulation efficiency of the combustion gas.
또한, 본 발명은 재순환 유도부를 거친 연소가스가 산화제와 함께 연소로 상에 재공급되어 연소되는 과정을 겪게 됨으로써 안정된 화염을 이루도록 한다.In addition, the present invention undergoes a process in which the combustion gas passing through the recirculation induction part is resupplied to the combustion furnace together with the oxidant and combusted to achieve a stable flame.
도 1은 본 발명의 제 1 실시예에 따른 초저질소산화물 연소장치의 전체적인 구성도,1 is an overall configuration of an ultra low nitrogen oxide combustion apparatus according to a first embodiment of the present invention,
도 2는 도 1의 연소장치를 연소로 내부에서 바라본 형태로서, 2차연료 분사체로부터 보조 연료가 분사되는 일 실시예를 보이는 도면,FIG. 2 is a view of the combustion apparatus of FIG. 1 viewed from the inside of a combustion furnace, and illustrates an embodiment in which auxiliary fuel is injected from a secondary fuel injector; FIG.
도 3은 도 1의 연소장치를 연소로 내부에서 바라본 형태로서, 2차연료 분사체로부터 보조 연료가 분사되는 다른 실시예를 보이는 도면,FIG. 3 is a view of the combustion apparatus of FIG. 1 viewed from the inside of a combustion furnace, and shows another embodiment in which auxiliary fuel is injected from a secondary fuel injector; FIG.
도 4는 중요 성능 지수를 구성하는 기호가 도시된 도면,4 is a diagram illustrating symbols constituting a significant figure of merit;
도 5a 내지 도 5f는 본 발명인 초저질소산화물 연소장치의 중요 성능 지수를 나타내는 그래프,5a to 5f are graphs showing the important performance index of the ultra-low nitrogen oxide combustion apparatus of the present invention;
도 6은 본 발명의 제 2 실시예에 따른 초저질소산화물 연소장치의 전체적인 구성도, 및6 is an overall configuration diagram of an ultra low nitrogen oxide combustion apparatus according to a second embodiment of the present invention, and
도 7은 2차연료 분사체의 축방향 연료 분사 각도를 설명하는 도면이다.It is a figure explaining the axial fuel injection angle of a secondary fuel injector.
본 발명의 상기와 같은 목적, 특징 및 다른 장점들은 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명함으로써 더욱 명백해질 것이다. 기술되는 실시예는 발명의 설명을 위해 예시적으로 제공되는 것이며, 본 발명의 기술적 범위를 한정하는 것은 아니다.The above objects, features and other advantages of the present invention will become more apparent by describing the preferred embodiments of the present invention in detail with reference to the accompanying drawings. The described embodiments are provided by way of example for purposes of illustration, and do not limit the technical scope of the present invention.
본 발명의 초저질소산화물 연소장치를 이루는 각 구성요소들은 필요에 따라 일체형으로 사용되거나 각각 분리되어 사용될 수 있다. 또한, 사용 형태에 따라 일부 구성요소를 생략하여 사용이 가능하다.Each component constituting the ultra low nitrogen oxide combustion apparatus of the present invention may be used integrally or separately separated as necessary. In addition, some components may be omitted depending on the form of use.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 따른 초저질소산화물 연소장치를 상세히 설명하기로 한다.Hereinafter, an ultra low nitrogen oxide combustion apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
초저질소산화물 연소장치의 전체적인 구성 설명Overall composition of the ultra low nitrogen oxide combustion device
먼저, 도 1을 참조하여 본 발명의 제 1 실시예에 따른 초저질소산화물 연소장치(100)의 전체적인 구성을 살핀다.First, the overall configuration of the ultra low nitrogen oxide combustion apparatus 100 according to the first embodiment of the present invention will be described with reference to FIG. 1.
초저질소산화물 연소장치(100)는 연소로(1)의 전방에 형성된 개구부의 중앙에 배치되는 1차연료 분사체(10), 1차연료 분사체(10)를 둘러싸는 동시에 개구부 내측에 밀착하게 배치되는 2차연료 분사체(20), 1차연료 분사체(10)의 선단에 배치되는 스월러(30), 1차연료 분사체(10)와 2차연료 분사체(20) 사이에 배치되는 재순환 유도부(40), 1차연료 분사체(10)와 스월러(30)를 둘러싸도록 배치되는 공기 다단 슬리브(60), 및 공기 다단 슬리브(60)의 외면에 부설되는 재순환 촉진 돌기부(90)를 포함한다. 상기 재순환 유도부(40)는 2차연료 분사체(20)에 인접하여 배치된다.The ultra low nitrogen oxide combustion apparatus 100 surrounds the primary fuel injector 10 and the primary fuel injector 10 disposed in the center of the opening formed in front of the combustion furnace 1, and closely adheres to the inside of the opening. Disposed between the secondary fuel injector 20, the swirler 30 disposed at the tip of the primary fuel injector 10, the primary fuel injector 10 and the secondary fuel injector 20 The recycling induction part 40, the primary fuel injector 10, and the air multistage sleeve 60 disposed to surround the swirler 30, and the recirculation promoting protrusion 90 disposed on the outer surface of the air multistage sleeve 60. ). The recycle induction part 40 is disposed adjacent to the secondary fuel injector 20.
1차 연료 분사체(10)는 제 1 연료라인(51)에 연결되는 이송부(13) 및 상기 이송부(13)에 직접 연결되는 확대부(11)를 포함한다. 상기 이송부(13)는 주연료를 확대부(11)까지 안전하게 이송하기 위한 것으로서 내구성이 강한 재질로 제조하는 것이 바람직하고 직경이 균일하게 형성될 수 있다.The primary fuel injector 10 includes a transfer part 13 connected to the first fuel line 51 and an enlarged part 11 directly connected to the transfer part 13. The transfer part 13 is for safely transporting the main fuel to the enlarged part 11, preferably made of a durable material, and may have a uniform diameter.
확대부(11)는 일 실시예로서 점점 그 직경이 확대되는 형상을 가질 수 있고공급된 주연료를 그 외주면을 통해 분사한다. 즉, 확대부(11)의 외주면에 형성된 분사홀(미도시)을 통해 확대부(11) 내로 진입한 연료가 연료 분사체(10,20) 사이의 내부 공간으로 방사상으로 분사된다(도 1의 도면부호 15 참조). 즉, 확대부(11) 내의 연료는 유입되는 산화제 상에 상기 확대부(11)의 반경 방향을 따라 분사된다.In one embodiment, the enlarged portion 11 may have a shape in which its diameter gradually increases, and injects the supplied main fuel through its outer circumferential surface. That is, fuel entering the enlarged portion 11 through an injection hole (not shown) formed on the outer circumferential surface of the expanded portion 11 is radially injected into the internal space between the fuel injectors 10 and 20 (see FIG. 1). See reference numeral 15). That is, the fuel in the enlarged portion 11 is injected along the radial direction of the enlarged portion 11 on the oxidant introduced.
한편, 1차 연료 분사체(10)의 내부를 따라 중심 산화제 분사부(85)가 배치될 수 있다. 여기에서, 중심 산화제 분사부(85)의 끝단에 노즐 삽입이 가능하게 구성함으로써 공기 공급량을 조절할 수 있게 한다. 상기 중심 산화제 분사부(85)는 산화제 공급부(80)로부터 공급되는 산화제를 1차 연료 분사체(10)의 중심축을 따라 유동하게 한 후 연소로(1)의 화염 중심부인 1차 공간(72)에 공급하게 한다. Meanwhile, the central oxidant injector 85 may be disposed along the inside of the primary fuel injector 10. Here, the nozzle can be inserted into the end of the central oxidant injection unit 85 to control the air supply amount. The central oxidant injector 85 allows the oxidant supplied from the oxidant supply unit 80 to flow along the central axis of the primary fuel injector 10, and then, as the flame center of the combustion furnace 1, the primary space 72. Have it supplied.
이를 통해 화염 중심부인 1차 공간(72)에 화염과 산화제의 혼합 효과를 촉진하여 적염 형성을 억제함으로써 청염 형성을 유도한다. 더불어, 화염 중심부 주변의 국부적 고온 영역을 감소함으로써 질소산화물의 발생을 저감하게 한다.This promotes the mixing effect of the flame and the oxidant in the primary space 72, which is the flame center, thereby suppressing the formation of red salts, thereby inducing the formation of blue salts. In addition, the generation of nitrogen oxides is reduced by reducing the local high temperature region around the flame center.
2차연료 분사체(20)는 1차연료 분사체(10)를 중심으로 동일 원주 상에 일정한 간격으로 배치된다. 구체적으로 6개 내지 12개의 2차연료 분사체(20)가 배치되고, 바람직하게는 8개의 2차연료 분사체(20)가 균등한 간격을 유지한 채 배치된다. 상기 2차연료 분사체(20)의 선단은 1차연료 분사체(10)의 선단과 비교하여 연소로(1)의 내부로 더 진입하여 배치된다. 상기 2차연료 분사체(20)의 선단 구조는 일 방향으로 기울어지게 경사각이 정해질 수 있다. 구체적으로는, 연소로(1)의 중심을 향하는 방향으로 점점 개구부(3)로부터 멀어지는 형태로 경사지게 정해질 수 있다.The secondary fuel injectors 20 are arranged at regular intervals on the same circumference with respect to the primary fuel injectors 10. Specifically, six to twelve secondary fuel injectors 20 are arranged, and preferably eight secondary fuel injectors 20 are arranged at equal intervals. The tip of the secondary fuel injector 20 is arranged to further enter the interior of the combustion furnace 1 as compared to the tip of the primary fuel injector 10. The tip structure of the secondary fuel injector 20 may be inclined in one direction to be inclined. Specifically, it may be determined to be inclined in a form gradually away from the opening 3 in the direction toward the center of the combustion furnace 1.
2차연료 분사체(20)로부터 분사되는 연료는 상기 2차연료 분사체(20)의 반경 방향으로 분사될 수 있다. 상기 2차연료 분사체(20)는 그 축 방향이 아닌 반경 방향으로 보조 연료를 분사하게 함으로써 연소로(1) 내에 회전 유동을 발생하게 한다. 본 발명에서는 복수의 2차연료 분사체(20)가 배치되는 원주 상에서 시계 또는 반시계 방향으로 보조 연료가 방출되도록 할 수 있다(도 2의 도면 부호 25 또는 도 3의 도면 부호 25' 참조). 도면 상에서는 일례로서 시계 방향으로 분사되는 형태를 도시하고 있다.Fuel injected from the secondary fuel injector 20 may be injected in a radial direction of the secondary fuel injector 20. The secondary fuel injector 20 causes the auxiliary fuel to be injected in the radial direction instead of the axial direction to generate a rotational flow in the combustion furnace 1. In the present invention, the auxiliary fuel may be discharged in a clockwise or counterclockwise direction on the circumference of the plurality of secondary fuel injectors 20 (see reference numeral 25 of FIG. 2 or reference numeral 25 'of FIG. 3). As an example, the figure shows the form sprayed clockwise.
본 발명에서 복수의 2차연료 분사체(20) 중 어느 하나로부터의 연료 분사 방향은 인접한 다른 2차연료 분사체(20)를 향하도록 설정된다(도 2 참조). 한편, 다른 실시예로서 복수의 2차연료 분사체(20) 중 어느 하나로부터의 연료 분사 방향은 교번적으로 인접한 다른 2차연료 분사체(20)를 향하도록 설정된다(도 3 참조). 또 한편으로, 복수의 2차연료 분사체(20) 중 어느 하나로부터의 반경방향 분사각도는 인접한 2차연료 분사체를 향하는 각도와 교번적으로 인접한 다른 2차연료 분사체를 향한 각도 사이에서 연료를 분사할 수 있다.In the present invention, the fuel injection direction from any one of the plurality of secondary fuel injectors 20 is set to face another adjacent secondary fuel injector 20 (see FIG. 2). On the other hand, as another embodiment, the fuel injection direction from any one of the plurality of secondary fuel injectors 20 is set to face the alternately adjacent other secondary fuel injectors 20 (see FIG. 3). On the other hand, the radial injection angle from any one of the plurality of secondary fuel injectors 20 is determined between the angle toward the adjacent secondary fuel injector and the angle toward the alternately adjacent secondary fuel injector. Can be sprayed.
도 3에서는 배열된 8개의 2차연료 분사체(20) 중 4개의 2차연료 분사체(20)에서만 연료가 분사되는 것을 도시하지만, 이는 분사 방향을 명확하게 표시하기 위한 것으로서 모든 2차연료 분사체(20)에서 연료가 분사되는 것으로 한다. In FIG. 3, the fuel is injected only from four secondary fuel injectors 20 out of the eight secondary fuel injectors 20 arranged, but this is to clearly indicate the injection direction. It is assumed that fuel is injected from the carcass 20.
1차연료 분사체(10) 및 2차연료 분사체(20)는 공히 중공의 원통형 관으로서 구성된다. 1차연료 분사체(10)와 2차연료 분사체(20) 사이의 공간으로는 산화제 공급부(80)로부터 산화제가 공급된다. 상기 산화제는 스월러(30)를 통해 축방향 또는 접선 방향 모멘텀이 형성된 상태로 연소로(1) 내부로 공급되거나 스월러(30)를 통함이 없이 직접적으로 연소로(1) 내로 공급된다. The primary fuel injector 10 and the secondary fuel injector 20 are both configured as hollow cylindrical tubes. The oxidant is supplied from the oxidant supply unit 80 to the space between the primary fuel injector 10 and the secondary fuel injector 20. The oxidant is supplied into the combustion furnace 1 directly through the swirler 30 with the axial or tangential momentum formed therein, or directly through the swirler 30.
상기 1차연료 분사체(10) 및 2차연료 분사체(20)에는 연료공급부(50)로부터 액체 연료가 1차연료(Main fuel)와 2차연료(2nd fuel)로 나뉘어져 공급된다. 연료공급부(50)로부터 필터(미도시)를 거쳐 불순물이 제거되고 펌프(미도시)에 의해 펌핑된 후에 제1라인(51)과 제2라인(52)으로 분기되어 연료 분사체(10,20)에 연결된다. 상기 라인들(51,52)에는 각각 솔레노이드 밸브(55,56)가 설치되어 1차연료(Main fuel)와 2차연료(2nd fuel)로 공급되는 액체연료를 적절히 공급 및 차단하도록 할 수 있다.Liquid fuel is divided into primary fuel and secondary fuel from the fuel supply unit 50 to the primary fuel injector 10 and the secondary fuel injector 20. After the impurities are removed from the fuel supply unit 50 through a filter (not shown) and pumped by a pump (not shown), the fuel injectors 10 and 20 are branched to the first line 51 and the second line 52. ) Solenoid valves 55 and 56 may be installed in the lines 51 and 52, respectively, to properly supply and shut off the liquid fuel supplied to the main fuel and the secondary fuel.
스월러(30)는 1차 연료 분사체(10)의 선단에 배치되어 1차 연료 분사체(10)의 축방향과는 사선으로 예혼합기가 공급될 수 있도록 한다. 더불어, 사선으로 공급되는 예혼합기는 선회 유동을 하며 와류의 발생을 가능하게 한다(도 2의 도면부호 32 참조). 상기의 기능을 구현하기 위하여 스월러(30)는 그 일 실시예로서 중공 원통 형상의 몸체와 상기 몸체 내부에 축 방향과는 사선으로 배치되는 날개 형상의 안내판을 구비할 수 있다. 상기 몸체의 내부로는 안내판의 일측단에 연결고정되는 중공 원통형의 삽입공(미도시)이 형성된다. 삽입공에는 1차연료 분사체(10)가 관통하여 고정됨으로써, 스월러(30)는 1차연료 분사체(10)의 선단부를 둘러싸도록 배치된다.The swirler 30 is disposed at the front end of the primary fuel injector 10 so that the premixer can be supplied diagonally to the axial direction of the primary fuel injector 10. In addition, the premixer supplied in an oblique line makes a swirl flow and enables the generation of vortices (see reference numeral 32 in FIG. 2). In order to implement the above functions, the swirler 30 may include a hollow cylindrical body and a wing-shaped guide plate disposed diagonally with respect to the axial direction inside the body. Inside the body is formed a hollow cylindrical insertion hole (not shown) connected to one side end of the guide plate. As the primary fuel injector 10 penetrates and is fixed to the insertion hole, the swirler 30 is disposed to surround the front end of the primary fuel injector 10.
재순환 유도부(40)는 연소로(1)의 개구부(미도시) 상에서 2차연료 분사체(20)를 기준으로 경사지게 배치되는 내부 재순환 슬리브(41,Forced Internal recirculation sleeve), 내부 재순환 슬리브(41)로부터 연장되는 연결 가이드(43), 연결 가이드(43)의 후단에 연결되어 유동하는 연소가스의 이동방향을 변경하게 하는 분사 노즐(45) 및 재순환 유도부(40)의 내부 하단에 경사지게 배치되는 경사부재(47)를 포함한다.The recirculation induction part 40 is an internal recirculation sleeve 41 and an internal recirculation sleeve 41 which are disposed to be inclined relative to the secondary fuel injector 20 on an opening (not shown) of the combustion furnace 1. The inclined member inclined at an inner lower end of the connection guide 43 extending from the connection guide, the injection nozzle 45 connected to the rear end of the connection guide 43 to change the moving direction of the flowing combustion gas, and the recirculation induction part 40. And (47).
내부 재순환 슬리브(41)는 연소가스의 최초 유입부인 선단에서 후단으로 갈수록 개구부(3) 중심을 향하도록 경사지게 배치된다. 즉, 내부 재순환 슬리브(41)의 후단으로 갈수록 점점 내부 폭이 넓어진다. 연결 가이드(43)는 내부 재순환 슬리브(41)를 통해 유입된 연소가스의 완만한 유동을 가능하게 하는 것으로서 일정한 폭을 유지한다.The inner recirculation sleeve 41 is disposed to be inclined toward the center of the opening 3 from the front end to the rear end, which is the first inlet of the combustion gas. That is, the inner width becomes wider toward the rear end of the inner recirculation sleeve 41. The connecting guide 43 maintains a constant width as to allow a gentle flow of the combustion gas introduced through the inner recirculation sleeve 41.
분사 노즐(45)은 내부 재순환 슬리브(41) 및 연결 가이드(43)를 통해 연소로(1)에서 유동하는 연소가스를 1차연료 분사체(10)와 재순환 유도부(40) 사이의 공간으로 분사하게 한다. 분사된 연소가스는 산화제와 함께 연소로(1) 내부로 유동한다. 상기 분사 노즐(45)은 1차연료 분사체(10)와 재순환 유도부(40) 사이에서 경사지게 배치된다. 즉, 1차연료 분사체(10)와 재순환 유도부(40) 사이의 폭을 감소시킴으로써 오리피스 형태의 구조를 구현한다. 상기와 같은 분사 노즐(45)의 배치 구조는 1차연료 분사체(10)와 2차연료 분사체(20) 사이의 공간으로 공급되는 산화제의 유동 속도를 빠르게 함으로써 고속으로 연소로(1) 내로 유동하게 한다.The injection nozzle 45 injects the combustion gas flowing in the combustion furnace 1 through the internal recycling sleeve 41 and the connection guide 43 into the space between the primary fuel injector 10 and the recycling induction part 40. Let's do it. The injected combustion gas flows into the combustion furnace 1 together with the oxidant. The injection nozzle 45 is inclined between the primary fuel injector 10 and the recirculation induction part 40. That is, the orifice-shaped structure is realized by reducing the width between the primary fuel injector 10 and the recycling induction part 40. The arrangement of the injection nozzles 45 as described above allows the flow rate of the oxidant supplied to the space between the primary fuel injector 10 and the secondary fuel injector 20 to be increased into the combustion furnace 1 at a high speed. Let it flow
즉, 1차연료 분사체(10)와 분사 노즐(45) 사이의 공간이 좁아짐으로써 베르누이 정리에 의해서 산화제의 유속이 증가하게 된다. 이와 같은 구조를 통해 연소로(1) 내에서 발생하는 유동은 모멘텀의 증가를 가능하게 한다.That is, since the space between the primary fuel injector 10 and the injection nozzle 45 becomes narrow, Bernoulli's theorem increases the flow rate of the oxidant. Through such a structure, the flow generated in the combustion furnace 1 enables an increase in momentum.
경사부재(47)는 연결 가이드(43)와 분사 노즐(45)의 경계선 상에 배치되는 구조체로서 연소가스가 유동할 수 있는 폭을 조절하여 결과적으로 유속을 조절하게 된다.The inclined member 47 is a structure that is disposed on the boundary between the connection guide 43 and the injection nozzle 45 to adjust the width through which the combustion gas can flow, thereby adjusting the flow rate.
공기 다단 슬리브(60)는 중공 원통 형상의 구조체로서 산화제 공급부(80)로부터 공급되는 산화제를 공기 다단 슬리브(60)의 내부 및 외부로 분리 공급하게 구성함으로써 산화제의 다단 공급을 가능하게 하고, 이를 통해 결과적으로 연소로(1) 내부에 다단 화염을 용이하게 형성하게 한다.The air multistage sleeve 60 is a hollow cylindrical structure configured to separately supply the oxidant supplied from the oxidant supply unit 80 to the inside and the outside of the air multistage sleeve 60, thereby enabling the multistage supply of the oxidant. As a result, it is easy to form a multi-stage flame inside the combustion furnace 1.
재순환 촉진 돌기부(90)는 공기 다단 슬리브(60)의 외주면 상에 배치된다. 구체적으로, 상기 재순환 촉진 돌기부(90)는 재순환 유도부(40)를 구성하는 분사 노즐(45) 및 공기 다단 슬리브(60) 사이의 공간을 좁히는 기능을 수행하게 된다. 상기와 같은 구조를 통해서 연소로(1)에서부터 재순환 유도부(40)를 통해 유동하는 연소가스의 유속은 재순환 촉진 돌기부(90) 인근을 지나면서 상승하게 된다. 이를 통해 재순환 유도부(40)를 통해 연소로(1)로 재유입되는 연소가스의 박리(separation)를 방지하게 되고, 결과적으로 연소가스의 재순환을 촉진한다.The recirculation promoting protrusion 90 is disposed on the outer circumferential surface of the air multistage sleeve 60. Specifically, the recirculation promoting protrusion 90 performs a function of narrowing the space between the injection nozzle 45 and the air stage sleeve 60 constituting the recirculation induction part 40. Through the above structure, the flow rate of the combustion gas flowing through the recirculation induction part 40 from the combustion furnace 1 is increased while passing near the recirculation promoting protrusion 90. This prevents the separation of the combustion gas re-introduced into the combustion furnace 1 through the recirculation induction part 40, and consequently promotes the recirculation of the combustion gas.
다음으로 도 4 내지 도 5e를 참조하여, 초저질소산화물 연소장치(100)의 성능을 결정할 수 있는 중요 성능 지수에 대해 설명한다.Next, with reference to Figures 4 to 5E, the critical performance index that can determine the performance of the ultra-low nitrogen oxide combustion apparatus 100 will be described.
상기 중요 성능 지수를 결정하는 수식에 사용되는 기호는 다음과 같이 정의된다.Symbols used in the formula for determining the significant performance index is defined as follows.
A : 스월러(30)의 직경, B : 연료헤드의 직경, C : 재순환 유도부(40)의 내부 직경, D : 공기 다단 슬리브(60)의 직경, E : FIR 포트 사이의 거리, F : 연료 파이프의 직경A: diameter of swirler 30, B: diameter of fuel head, C: internal diameter of recirculation induction part 40, D: diameter of air multistage sleeve 60, E: distance between FIR ports, F: fuel Diameter of pipe
여기에서, 연료헤드의 직경은 1차연료 분사체(10)의 토출구의 직경인 동시에 확대부(11) 중 스월러(30)에 결합되는 부분의 직경이고, 연료 파이프의 직경은 1차연료 분사체(10) 중 연료가 유입되는 이송부(13)의 직경이고, FIR 포트 사이의 거리는 재순환 유도부(40) 중 분사 노즐(45) 사이의 거리를 의미한다.Here, the diameter of the fuel head is the diameter of the discharge port of the primary fuel injector 10 and the diameter of the portion of the enlarged portion 11 coupled to the swirler 30, and the diameter of the fuel pipe is the primary fuel portion. The diameter of the conveying part 13 into which fuel flows in the carcass 10 and the distance between the FIR ports means the distance between the injection nozzles 45 of the recirculation induction part 40.
먼저, 제1 성능 지수, η1는 예혼합강도를 나타내는 것이며, 하기의 식으로 설정할 수 있다. First, the first performance index, η 1 indicates the premixed strength, and can be set by the following equation.
Figure PCTKR2014002163-appb-I000009
Figure PCTKR2014002163-appb-I000009
제1 성능 지수는 전체 산화제 공급 면적에 대한 내부 버너 면적의 비를 지칭하는 것으로서, 예혼합 공기 면적과 순수 산화제 공급 면적의 비를 나타낸다. The first figure of merit refers to the ratio of the internal burner area to the total oxidant feed area and represents the ratio of the premixed air area to the pure oxidant supply area.
도 5a를 참조하면, 본 발명에서는 질소 산화물의 발생률을 20 이하로 유지하기 위해서 제1 성능 지수의 값을 0.3 내지 0.5 사이의 범위에 존재하게 한다. 바람직하게는 0.4 일 수 있다.Referring to FIG. 5A, in the present invention, the value of the first index of performance is in the range of 0.3 to 0.5 to maintain the generation rate of nitrogen oxide at 20 or less. Preferably 0.4.
다음, 제2 성능 지수, η2는 노즐형상계수를 나타내는 것이며, 하기의 식으로 설정할 수 있다. Next, 2nd performance index, (eta) 2 shows a nozzle shape coefficient, and can be set with the following formula.
Figure PCTKR2014002163-appb-I000010
Figure PCTKR2014002163-appb-I000010
제2성능 지수는 스월러 직경과 연료헤드 직경 간의 비를 지칭하는 것으로서, 급속 예혼합 버너 헤드의 설계 지표로 활용된다. The second performance index refers to the ratio between the swirler diameter and the fuel head diameter and is used as a design index of the rapid premix burner head.
도 5b를 참조하면, 본 발명에서는 질소 산화물의 발생률을 20 이하로 유지하기 위해서 제2 성능 지수의 값은 바람직하게는 1.5 내지 2.0 사이의 범위에 존재한다.Referring to FIG. 5B, in order to maintain the incidence of nitrogen oxides at 20 or less in the present invention, the value of the second performance index is preferably in the range between 1.5 and 2.0.
다음, 제3성능 지수, η3는 선회류계수를 나타내는 것이며, 하기의 식으로 설정할 수 있다. Next, the third performance index, η 3 , represents the swirl flow coefficient and can be set by the following equation.
Figure PCTKR2014002163-appb-I000011
Figure PCTKR2014002163-appb-I000011
제3성능 지수는 전체 산화제 공급 면적에 대한 스월 면적의 비를 지칭하는 것으로서, 전체 산화제 공급 면적에서 스월러가 차지하는 면적의 비로서 선회 강도를 나타낼 수 있다. The third performance index refers to the ratio of the swirl area to the total oxidant supply area, and may indicate the turning strength as the ratio of the area occupied by the swirler in the total oxidant supply area.
도 5c를 참조하면, 본 발명에서는 질소 산화물의 발생률을 20 이하로 유지하기 위해서 제3 성능 지수의 값을 0.55 내지 0.75 사이의 범위에 존재하게 한다. 바람직하게는 약 1.42 일 수 있다.Referring to FIG. 5C, in order to maintain the incidence rate of nitrogen oxide at 20 or less, the value of the third performance index may be present in a range of 0.55 to 0.75. Preferably about 1.42.
다음, 제4성능 지수, η4는 재순환부 유속을 나타내는 것이며, 하기의 식으로 설정할 수 있다. Next, the fourth performance index, η 4, indicates the recycle flow rate, and can be set by the following equation.
Figure PCTKR2014002163-appb-I000012
Figure PCTKR2014002163-appb-I000012
제4성능 지수는 분사 노즐(45)의 단부 사이의 면적 중 이송부(13)의 면적을 제외한 영역을 통한 유동 속도를 의미한다.The fourth performance index means the flow rate through the area excluding the area of the transfer part 13 among the areas between the ends of the injection nozzle 45.
도 5d를 참조하면, 본 발명에서는 질소 산화물의 발생률을 20 이하로 유지하기 위해서 제4 성능 지수의 값을 45 내지 60 사이의 범위에 존재하게 한다. Referring to FIG. 5D, in the present invention, the value of the fourth performance index is in the range of 45 to 60 to maintain the generation rate of nitrogen oxide at 20 or less.
다음, 제5성능 지수, η5는 연소기 출구 유속을 나타내는 것이며, 하기의 식으로 설정할 수 있다. Next, the fifth performance index, eta 5, represents the combustor outlet flow rate, and can be set by the following equation.
Figure PCTKR2014002163-appb-I000013
Figure PCTKR2014002163-appb-I000013
제5성능 지수는 연결 가이드(43)의 내부 면적 중 연료 헤드의 면적을 제외한 영역을 통한 유동 속도를 의미한다.The fifth performance index means a flow rate through an area excluding the area of the fuel head among the inner areas of the connection guide 43.
도 5e를 참조하면, 본 발명에서는 질소 산화물의 발생률을 20 이하로 유지하기 위해서 제5 성능 지수의 값을 30 내지 50 사이의 범위에 존재하게 한다.Referring to FIG. 5E, in order to maintain the incidence rate of nitrogen oxide at 20 or less, the value of the fifth performance index is in the range of 30 to 50.
여기에서, 1차연료 분사체의 연료분사속도
Figure PCTKR2014002163-appb-I000014
는 바람직하게 20에서 50의 범위로 설정되는 것이 바람직하다.
Here, the fuel injection speed of the primary fuel injector
Figure PCTKR2014002163-appb-I000014
Is preferably set in the range of 20 to 50.
그리고, 2차연료 분사체의 연료분사속도
Figure PCTKR2014002163-appb-I000015
은 바람직하게 하기 식의 범위로 설정되는 것이 바람직하다.
And the fuel injection speed of the secondary fuel injector
Figure PCTKR2014002163-appb-I000015
Is preferably set in the range of the following formula.
Figure PCTKR2014002163-appb-I000016
Figure PCTKR2014002163-appb-I000016
한편, 도 1을 참조할때 2차연료 분사체(20)로부터 분사되는 연료는 상기 2차연료 분사체(20)의 축방향에 수직한 평면에 대하여 θ 값이 10˚에서 80˚사이에서의 범위로 분사되는 것이 바람직할 수 있다.Meanwhile, referring to FIG. 1, the fuel injected from the secondary fuel injector 20 has a θ value between 10 ° and 80 ° with respect to a plane perpendicular to the axial direction of the secondary fuel injector 20. It may be desirable to spray in the range.
다음, 제6성능 지수,η6는 예혼합비를 나타내는 것이며, 하기의 식으로 설정할 수 있다. Next, the sixth performance index, η 6 indicates a premixing ratio, and can be set by the following equation.
Figure PCTKR2014002163-appb-I000017
Figure PCTKR2014002163-appb-I000017
제6성능 지수는 전체 연료 유량에 대한 예혼합된 연료 유량의 비를 의미한다.The sixth performance index means the ratio of the premixed fuel flow rate to the total fuel flow rate.
도 5f를 참조하면, 본 발명에서는 질소 산화물의 발생률을 20 이하로 유지하기 위해서 제6 성능 지수의 값을 4 내지 22 사이의 범위에 존재하게 한다. 상기에서 확인 가능하듯이, 예혼합비는 낮을수록 질소 산화물 저감 효과가 좋을 수 있지만 5% 미만의 조건에서는 화염 불안정 현상이 발생한다는 단점이 있게 된다.Referring to FIG. 5F, in the present invention, the value of the sixth index of performance is in the range of 4 to 22 in order to maintain the generation rate of nitrogen oxide at 20 or less. As can be seen from the above, the lower the premixing ratio may be better nitrogen oxide reduction effect, but there is a disadvantage that the flame instability occurs in less than 5% conditions.
한편, 본 발명에서는 추가적인 성능 지수로서 연료 속도 및 헤드의 형상 등을 고려하여 진행 가능할 수 있지만 모든 연료 헤드의 형상을 포함하는 데에는 한계가 있을 수 있다.On the other hand, the present invention may proceed in consideration of the fuel speed and the shape of the head as an additional figure of merit, but there may be a limitation in including the shape of all the fuel head.
다음으로, 도 6을 참조하여 본 발명의 제 2 실시예에 따른 초저질소산화물 연소장치(200)의 전체적인 구성을 살핀다.Next, the overall configuration of the ultra low nitrogen oxide combustion apparatus 200 according to the second embodiment of the present invention will be described with reference to FIG. 6.
이하에서는 제 1 실시예에 따른 초저질소산화물 연소장치(100)와 비교하여 동일한 부분에 대해서는 설명을 생략하고 상이한 부분에 대해서 중점적으로 설명한다.In the following description, the same parts will be omitted from the ultra-low nitrogen oxide combustion apparatus 100 according to the first embodiment, and different parts will be mainly described.
초저질소산화물 연소장치(200)에서는 제 1 실시예(100)와는 상이하게 공기 다단 슬리브(60)는 제거되는 반면에, 재순환 촉진 돌기부(90')가 1차연료 분사체(10)의 이송부(13)의 외주면에 배치되는 것을 특징으로 한다. In the ultra-low nitrogen oxide combustion apparatus 200, the air multistage sleeve 60 is removed differently from the first embodiment 100, while the recirculation promoting protrusion 90 'is provided with a transfer part of the primary fuel injector 10 ( It is characterized in that it is disposed on the outer peripheral surface of 13).
즉, 1차연료 분사체(10)의 외측으로 공급되는 산화제는 공기 다단 슬리브(60)를 통한 분리 공급 없이 재순환 유도부(40)를 거친 연소가스와 전체적으로 혼합되어 연소로(1) 방향으로 유동하게 된다.That is, the oxidant supplied to the outside of the primary fuel injector 10 is mixed with the combustion gas passed through the recirculation induction part 40 without flowing through the multistage sleeve 60 and flows toward the combustion furnace 1. do.
상기에서와 같이, 제 2 실시예에 따른 저질소산화물 연소장치(200)는 공기 다단 슬리브(60)의 배치 여부 및 재순환 촉진 돌기부(90')의 배치 위치가 차이가 있을 뿐, 다단으로 연료 및 산화제를 공급한다는 점 및 재순환 유도부(40)를 통해 연소로(1)에서 유동하는 연소가스를 다시 상기 연소로(40)로 재공급한다는 점에서는 그 핵심적인 기술적 특징을 공유한다.As described above, the low nitrogen oxide combustion apparatus 200 according to the second embodiment differs only in the arrangement position of the air multistage sleeve 60 and in the arrangement position of the recirculation promoting protrusion 90 ′. In terms of supplying an oxidant and re-feeding the combustion gas flowing in the combustion furnace 1 through the recirculation induction part 40 back to the combustion furnace 40, the core technical features are shared.
초저질소산화물 연소장치의 다단 연소 과정 설명Explanation of Multistage Combustion Process of Ultra-low Nitrogen Combustor
다음으로는 도 1을 다시 참조하여, 본원 발명의 다단 연료 연소 과정에 대해서 설명한다.Next, referring to FIG. 1 again, the multi-stage fuel combustion process of the present invention will be described.
먼저, 산화제 공급부(80)를 통해 산화제가 공급되고, 공급된 산화제 중 일부는 1차 연료 분사체(10) 내부의 중심 산화제 분사부(85)를 통해 유동한다. 이와 동시에 연료공급부(50)로부터 연료가 제 1 연료라인(51)을 거쳐 1차 연료 분사체(10)로 공급된다.First, the oxidant is supplied through the oxidant supply unit 80, and some of the supplied oxidant flows through the central oxidant injector 85 inside the primary fuel injector 10. At the same time, fuel is supplied from the fuel supply unit 50 to the primary fuel injector 10 via the first fuel line 51.
1차 연료 분사체(10) 내를 유동하는 주연료는 확대부(11)의 외주면을 통해 반경 방향으로 분사되는 과정을 거치는데, 상기와 같이 분사된 주연료는 산화제와 반응하여 예혼합 영역(78)을 형성한다. 여기에서, 상기 확대부(11)는 연소로(1) 방향으로 향할수록 확개되는 형상을 가지므로 분사되는 연료가 넓은 부위에 걸친 예혼합 영역(78)을 형성할 수 있게 한다.The main fuel flowing in the primary fuel injector 10 undergoes a radial injection through the outer circumferential surface of the enlarged portion 11, and the injected main fuel reacts with the oxidant to pre-mix the region ( 78). Here, since the enlarged portion 11 has a shape that is enlarged toward the combustion furnace 1 direction, it is possible to form the premixed region 78 over a large portion of the injected fuel.
예혼합 영역(78)에 형성된 예혼합기는 스월러(30)를 통해 연소로(1)에 방출되어 1차 공간(72)을 형성한다. 1차 공간(72)에 공급되는 공기를 분석하면 다음과 같다. 예혼합 영역(78)에 형성된 예혼합기는 스월러(30)를 통해 축방향 모멘텀(Axial momentum) 및 접선 방향 모멘텀(Tangential momentum)을 가진 상태로 연소로(1) 내로 전달된다.The premixer formed in the premixing region 78 is discharged to the combustion furnace 1 through the swirler 30 to form the primary space 72. Analyzing the air supplied to the primary space 72 is as follows. The premixer formed in the premixing region 78 is transferred into the furnace 1 through the swirler 30 with axial momentum and tangential momentum.
상기의 과정에서 재순환 유도부(40)를 거친 연소가스가 예혼합기와 함께 1차 공간(72)에 공급된다. 재순환 유도부(40)로부터 산화제의 유동 공간으로 배출되는 연소가스는 재순환 촉진 돌기부(90)에 의해 그 유동 속도가 증가되어짐으로써 연소 가스 및 산화제의 유속을 상승시키는 동시에 박리를 방지할 수 있다. 상기의 과정을 거쳐 예혼합기 및 연소가스가 1차 공간(72)에 유입되어 연소되는 과정을 겪게 됨으로써 안정된 화염을 이루도록 한다. 1차 공간(72)은 약 50% 이상의 연료가 분사되어 연소하는 주 화염 공간 영역이다.In the above process, the combustion gas passing through the recirculation induction part 40 is supplied to the primary space 72 together with the premixer. The combustion gas discharged from the recirculation induction part 40 to the flow space of the oxidant is increased by the recirculation promoting protrusion 90 so as to increase the flow rates of the combustion gas and the oxidant, and prevent peeling. Through the above process, the premixer and the combustion gas enter the primary space 72 to undergo a process of burning, thereby achieving a stable flame. The primary space 72 is the main flame space region where at least about 50% of fuel is injected and combusted.
다음으로는, 연료공급부(50)로부터 연료가 제 2 연료라인(52)을 거쳐 2차 연료 분사체(20)로 공급된다. 2차 연료 분사체(20)를 통해 1차 공간(72)의 상부 측으로 분사되는 보조연료는 1차 공간(72)에서 미반응된 산화제와 반응하는 과정을 통해 2차 공간(74)을 형성한다. 1차 공간(72)에서의 가연성 가스 중 일부는 스월러(30) 외곽으로 공급되는 예혼합기와 혼합되어 1차화염의 후류로 이동하여 연료 희박상태의 화염을 구성하게 된다. 상기 연료 희박상태의 화염이 2차 공간(74)을 형성하게 된다.Next, fuel is supplied from the fuel supply unit 50 to the secondary fuel injector 20 via the second fuel line 52. The auxiliary fuel injected into the upper side of the primary space 72 through the secondary fuel injector 20 forms the secondary space 74 through a process of reacting with the unreacted oxidant in the primary space 72. . Some of the combustible gas in the primary space 72 is mixed with the premixer supplied to the outside of the swirler 30 to move to the wake of the primary flame to form a fuel lean flame. The fuel lean flame forms a secondary space 74.
상기와 같이, 본 발명은 1차 연료 분사체(10)의 반경 방향을 따라 분사되는 주연료가 산화제와 예비 혼합되어 예혼합 영역(78)을 형성하고, 상기 예혼합 영역(78)으로부터 연소로(1) 내에 공급된 예혼합기가 1차 공간(72)을 형성하고, 1차 공간(72)의 후단으로 2차 연료 분사체(20)로부터 보조 연료를 분사하여 최종 화염의 형태를 이루도록 한다. As described above, in the present invention, the main fuel injected along the radial direction of the primary fuel injector 10 is premixed with the oxidizing agent to form a premixed region 78, and the combustion furnace from the premixed region 78 is fired. The premixer supplied in (1) forms the primary space 72, and injects the auxiliary fuel from the secondary fuel injector 20 to the rear end of the primary space 72 so as to form the final flame.
상기와 같이, 연소로(1) 내에는 1차연료 분사체(10) 및 2차연료 분사체(20)에 의해 분사되는 연료에 의해 다단 화염 공간이 형성된다. 상기 1차 공간(72)의 후단부에는 2차 공간(74)이 만들어진다. 2차 공간(74)은 연소로(1)의 내부 측으로 더 진입한 공간에 1차 공간(72)을 둘러싸는 형태로 형성된다.As described above, the multi-stage flame space is formed in the combustion furnace 1 by the fuel injected by the primary fuel injector 10 and the secondary fuel injector 20. At the rear end of the primary space 72, a secondary space 74 is created. The secondary space 74 is formed in a shape surrounding the primary space 72 in the space further entered into the inner side of the combustion furnace 1.
한편, 상기 1,2차 공간(72,74)을 포함하는 다단 화염 공간과 별도로 연소로(1) 내에는 자기 재순환 영역(76)이 형성된다. 상기 자기 재순환 영역(76)은 연소로(1)의 내측 모서리 영역에 형성되는 것으로 와류 형태로 연소가스가 유동할 수 있다.On the other hand, a self-recirculation region 76 is formed in the combustion furnace 1 separately from the multi-stage flame space including the primary and secondary spaces 72 and 74. The magnetic recirculation region 76 is formed at the inner edge region of the combustion furnace 1 so that combustion gas may flow in a vortex form.
1차연료 분사체(10)에서 분사된 연료는 연소로(1) 내에서의 다단 공기유동에 의해 안정적인 연료농후영역인 1차 공간(72)을 형성하게 되고 2차연료 분사체(20)에서 분사된 연료는 1차연료 분사체(10)의 1차 화염에서 전달된 열에 의한 분위기 온도와 잔류 산소에 의해 부분적인 산화 반응을 하게 되어 여러 가연성 가스 종으로 전환되어 화염 후류에서 연료희박상태의 화염공간인 2차 공간(74)을 구성하게 된다. 따라서, 상기 연료농후영역과 연료희박영역을 포함한 연소로 내에서 다단으로 구성된 화염 상태가 명확히 구분되어 조성된다.The fuel injected from the primary fuel injector 10 forms the primary space 72, which is a stable fuel rich region, by the multi-stage air flow in the combustion furnace 1, and in the secondary fuel injector 20. The injected fuel undergoes a partial oxidation reaction by the atmospheric temperature and residual oxygen caused by the heat transferred from the primary flame of the primary fuel injector 10, and is converted into various combustible gas species so that the flame is in a fuel lean state after the flame. The secondary space 74 which is a space is comprised. Therefore, the flame state composed of multiple stages in the combustion furnace including the fuel rich region and the fuel lean region is clearly formed.
이러한 원리가 적용된 초저질소산화물 연소장치(100)의 화염은 기본적으로 연료 농후와 연료 희박영역이 명확하게 구분된 형태로서, 화염 내 국부적인 고온영역을 최소화하여 Thermal NOx 생성을 최대한 억제하게 된다. 더불어, 재순환 유도부(40)를 통해 연소로(1)에서 발생한 연소가스가 별도의 동력을 요함이 없이 산화제와 함께 연소로(1)에 재유입되어 반응함으로써 연료 중 질소 성분의 산화에 의한 Fuel NOx 생성을 원천적으로 저감할 수 있다.The flame of the ultra-low nitrogen oxide combustion apparatus 100 to which this principle is applied is basically a form in which the fuel rich and the fuel lean region are clearly distinguished, thereby minimizing the local high temperature region in the flame to suppress thermal NOx generation as much as possible. In addition, the combustion gas generated in the combustion furnace 1 through the recirculation induction part 40 is re-introduced into the combustion furnace 1 together with the oxidant to react without requiring a separate power, thereby reacting the fuel NOx by oxidation of nitrogen components in the fuel. The production can be reduced at source.
상술한 바와 같이, 본 발명인 초저질소산화물 연소장치는 다중 화염장이 형성된 연소실 내에서 발생하는 연소가스를 내부재순환 기술을 적용하여 상기 연소실의 외부 연결통로가 아닌 연소실 내부에서 별도의 장치 없이 전달되게 한다.As described above, the ultra-low nitrogen oxide combustion apparatus of the present invention allows the combustion gas generated in the combustion chamber in which the multiple flame fields are formed to be transmitted without using a separate device inside the combustion chamber instead of the external connection passage of the combustion chamber by applying an internal recirculation technology.
본 발명에서는 주연료를 연소로 내에 분사되는 연료 분사체의 축방향으로 화염에 직접 분사하는 것이 아니라 반경 방향 또는 접선 방향으로 분사하는 방식을 통하여 예혼합기를 형성하고, 형성된 상기 예혼합기를 갖고 예혼합 화염 형태의 초기화염을 형성함으로써 기존의 연료다단연소기에서 확산화염형태의 초기화염에서 형성되던 고온 반응영역을 제거할 수 있다.In the present invention, the pre-mixer is formed through a method of injecting the main fuel into the flame in the axial direction of the fuel injector injected into the combustion furnace, but in the radial or tangential direction, and having the premixer formed therein. By forming the flame-type initial salt, it is possible to remove the high temperature reaction zone formed in the diffusion flame type initial salt in the conventional fuel multi-stage combustor.
더불어, 본 발명은 재순환 유도부를 거친 연소가스가 산화제와 함께 연소로 상에 재공급되어 연소되는 과정을 겪게 됨으로써 화염의 열용량을 높여 안정적으로 화염의 온도를 낮추도록 한다.In addition, the present invention undergoes a process in which the combustion gas passing through the recirculation induction part is resupplied and combusted together with the oxidant to increase the heat capacity of the flame to stably lower the temperature of the flame.
이상에서 본 발명의 바람직한 실시 예에 대하여 설명하였으나, 본 발명은 상술한 특정의 실시 예에 한정되지 아니한다. 즉, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능하며, 그러한 모든 적절한 변경 및 수정의 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.While preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described specific embodiments. That is, those skilled in the art to which the present invention pertains can make many changes and modifications to the present invention without departing from the spirit and scope of the appended claims, and all such appropriate changes and modifications are possible. Equivalents should be considered to be within the scope of the present invention.

Claims (22)

  1. 연소로 내부로 주연료를 공급하는 1차연료 분사체;Primary fuel injector for supplying the main fuel into the combustion furnace;
    상기 1차연료 분사체 주위로 적어도 하나 이상으로 배치되며, 그 선단이 상기 연소로의 내부에 진입하도록 배치되는 2차연료 분사체;At least one secondary fuel injector disposed around the primary fuel injector, the leading end of the secondary fuel injector being arranged to enter the interior of the combustion furnace;
    상기 연소로에서 발생한 연소가스를 유체역학적 힘에 의해 상기 연소로에 재순환시키는 재순환 유도부;A recycling induction unit configured to recycle the combustion gas generated in the combustion furnace to the combustion furnace by a hydrodynamic force;
    상기 1차연료 분사체와 2차연료 분사체로 연료를 공급하는 연료공급부;A fuel supply unit supplying fuel to the primary fuel injector and the secondary fuel injector;
    상기 1차연료 분사체와 상기 2차연료 분사체 사이의 공간으로 산화제를 공급하는 산화제 공급부;An oxidant supply unit supplying an oxidant to a space between the primary fuel injector and the secondary fuel injector;
    상기 산화제 공급부로부터 공급되는 산화제를 상기 1차 연료 분사체의 내부를 따라 상기 연소로 내로 이송하는 중심 산화제 분사부; 및A central oxidant injector for transferring an oxidant supplied from the oxidant supply unit into the combustion furnace along the inside of the primary fuel injector; And
    공기 다단을 위해 상기 1차연료 분사체를 둘러싸도록 배치되는 공기 다단 슬리브;를 포함하고,An air multistage sleeve disposed to surround the primary fuel injector for air multistage;
    상기 산화제 공급부로부터 공급되는 산화제는 상기 공기 다단 슬리브의 내외부를 통해 다단으로 공급되는 것을 특징으로 하는,The oxidant supplied from the oxidant supply unit is characterized in that it is supplied in multiple stages through the inside and outside of the air casing sleeve,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 1차연료 분사체의 토출구 직경을 B, 상기 공기 다단 슬리브의 직경을 D, 상기 재순환 유도부의 내부 직경을 C로 정의할 때,When defining the diameter of the discharge port of the primary fuel injector B, the diameter of the air multistage sleeve D, the internal diameter of the recirculation induction portion C,
    예혼합강도를 나타내는 제1 성능 지수, η1는 하기의 식으로 설정되는 것을 특징으로 하는,The first performance index, η 1 indicating the premixed strength, is set by the following equation,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
    Figure PCTKR2014002163-appb-I000018
    Figure PCTKR2014002163-appb-I000018
  3. 제 2 항에 있어서,The method of claim 2,
    상기 제1 성능 지수의 값은 0.3 내지 0,5 사이의 범위인 것을 특징으로 하는,Characterized in that the value of the first performance index is in the range of 0.3 to 0,5,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 초저질소산화물 연소장치는,The ultra low nitrogen oxide combustion device,
    상기 1차연료 분사체의 선단에 배치되는 스월러;를 더 포함하는 것을 특징으로 하는,And a swirler disposed at the tip of the primary fuel injector.
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 1차연료 분사체의 토출구 직경을 B, 상기 스월러의 직경을 A로 정의할 때,When defining the discharge port diameter of the primary fuel injector B and the diameter of the swirler A,
    노즐형상계수를 나타내는 제2 성능 지수, η2는 하기의 식으로 설정되며,The second performance index, η 2 , representing the nozzle shape coefficient, is set by the following equation,
    상기 제2 성능 지수의 값은 1.5 내지 2.0 사이의 범위인 것을 특징으로 하는,Characterized in that the value of the second performance index is in the range of 1.5 to 2.0,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
    Figure PCTKR2014002163-appb-I000019
    Figure PCTKR2014002163-appb-I000019
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 1차연료 분사체의 토출구 직경을 B, 상기 스월러의 직경을 A, 상기 재순환 유도부의 내부 직경을 C로 정의할 때,When defining the diameter of the discharge port of the primary fuel injector B, the diameter of the swirler A, and the internal diameter of the recirculation induction part C,
    선회류계수를 나타내는 제3 성능 지수, η3는 하기의 식으로 설정되며,The third performance index, η 3 representing the swirl flow coefficient, is set by the following equation,
    상기 제3 성능 지수의 값을 0.55 내지 0.75 사이의 범위인 것을 특징으로 하는,Characterized in that the value of the third performance index is in the range of 0.55 to 0.75,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
    Figure PCTKR2014002163-appb-I000020
    Figure PCTKR2014002163-appb-I000020
  7. 제 4 항에 있어서,The method of claim 4, wherein
    FIR 포트 사이의 거리를 E, 연료 파이프의 직경을 E로 정의할 때,When you define E as the distance between the FIR ports and E as the diameter of the fuel pipe,
    재순환부 유속을 나타내는 제4 성능 지수, η4는 하기의 식으로 설정되며,The fourth performance index, η 4 , representing the recycle flow rate, is set by the following equation,
    상기 제4 성능 지수의 값은 45 내지 60 사이의 범위인 것을 특징으로 하는,Characterized in that the value of the fourth performance index is in the range of 45 to 60,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
    Figure PCTKR2014002163-appb-I000021
    Figure PCTKR2014002163-appb-I000021
  8. 제 4 항에 있어서,The method of claim 4, wherein
    상기 1차연료 분사체의 토출구 직경을 B, 상기 재순환 유도부의 내부 직경을 C로 정의할 때,When defining the discharge port diameter of the primary fuel injector B, and the inner diameter of the recirculation induction part C,
    연소기 출구 유속을 나타내는 제5성능 지수, η5는 하기의 식으로 설정되며,The fifth performance index indicating the combustor outlet flow rate, η 5 is set by the following equation,
    상기 제5 성능 지수의 값은 30 내지 50 사이의 범위인 것을 특징으로 하는,Characterized in that the value of the fifth performance index is in the range of 30 to 50,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
    Figure PCTKR2014002163-appb-I000022
    Figure PCTKR2014002163-appb-I000022
  9. 제 4 항에 있어서,The method of claim 4, wherein
    상기 초저질소산화물 연소장치는,The ultra low nitrogen oxide combustion device,
    상기 공기 다단 슬리브의 외면에 부설되는 재순환 촉진 돌기부;를 더 포함하며,Further comprising: a recycling promoting projection that is attached to the outer surface of the air multi-stage sleeve,
    상기 재순환 촉진 돌기부는 상기 재순환 유도부와 상기 공기 다단 슬리브 사이로 유동하는 상기 연소가스의 유속을 증가시키는 것을 특징으로 하는,The recycle promotion protrusion is characterized in that for increasing the flow rate of the combustion gas flowing between the recycle induction portion and the air cascade sleeve,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 2차연료 분사체는 상기 1차연료 분사체를 중심으로 하여 동일 원주 상에 일정한 간격을 유지하도록 복수개가 배치되며, 상기 2차연료 분사체는 그 반경 방향으로 연료를 분사하는 것을 특징으로 하는,A plurality of secondary fuel injectors are arranged to maintain a constant interval on the same circumference around the primary fuel injector, the secondary fuel injector is characterized in that for injecting fuel in the radial direction ,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 2차연료 분사체의 반경방향 분사각도는 인접한 상기 2차연료 분사체를 향하는 각도와 교번적으로 인접한 상기 2차연료 분사체를 향한 각도 사이에서 연료를 분사하는 것을 특징으로 하는,The radial injection angle of the secondary fuel injector is characterized in that for injecting fuel between the angle toward the adjacent secondary fuel injector and the angle toward the alternately adjacent secondary fuel injector,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 2차연료 분사체로부터의 연료는 상기 2차연료 분사체의 축방향에 수직한 평면에 대하여 10˚에서 80˚사이에서 분사되는 것을 특징으로 하는,The fuel from the secondary fuel injector is injected between 10 ° to 80 ° with respect to the plane perpendicular to the axial direction of the secondary fuel injector,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 1차연료 분사체는 공급되는 상기 주연료를 그 반경 방향 및 접선 방향으로 분사하는 것을 특징으로 하는,The primary fuel injector is characterized in that for injecting the main fuel supplied in the radial and tangential direction,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 1차연료 분사체를 통해 분사되는 연료의 분사속도
    Figure PCTKR2014002163-appb-I000023
    는 20에서 50m/s 사이에서 연료를 분사하는 것을 특징으로 하는,
    Injection speed of fuel injected through the primary fuel injector
    Figure PCTKR2014002163-appb-I000023
    Is characterized in that to inject fuel between 20 to 50m / s,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 2차연료 분사체를 통해 분사되는 연료의 분사속도
    Figure PCTKR2014002163-appb-I000024
    는 하기의 식으로 설정되는 것을 특징으로 하는,
    Injection rate of fuel injected through the secondary fuel injector
    Figure PCTKR2014002163-appb-I000024
    Is set by the following formula,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
    Figure PCTKR2014002163-appb-I000025
    Figure PCTKR2014002163-appb-I000025
  16. 제 10 항에 있어서,The method of claim 10,
    상기 재순환 유도부는 상기 2차연료 분사체를 기준으로 경사지게 배치되는 내부 재순환 슬리브, 상기 내부 재순환 슬리브의 후단으로부터 연장되는 연결 가이드, 상기 연결 가이드의 후단에 연결되어 유동하는 연소가스의 이동방향을 변경하게 하는 분사 노즐을 포함하는 것을 특징으로 하는,The recirculation induction part may change the direction of movement of the combustion gas flowing in connection with an internal recirculation sleeve disposed obliquely based on the secondary fuel injector, a connection guide extending from a rear end of the internal recirculation sleeve, and a rear end of the connection guide. Characterized in that it comprises a spray nozzle,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 분사 노즐은 상기 1차연료 분사체와 상기 재순환 유도부 사이에서 경사지게 배치됨으로써 상기 산화제의 유동 공간인 상기 1차연료 분사체와 상기 상기 재순환 유도부 사이의 폭을 감소시키는 것을 특징으로 하는,The injection nozzle is inclined between the primary fuel injector and the recirculation induction part to reduce the width between the primary fuel injector and the recirculation induction part, which is the flow space of the oxidant,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  18. 제 10 항에 있어서,The method of claim 10,
    상기 1차연료 분사체는 공급되는 상기 주연료를 그 반경 방향 및 접선 방향으로 분사하는 것을 특징으로 하는,The primary fuel injector is characterized in that for injecting the main fuel supplied in the radial and tangential direction,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  19. 제 10 항에 있어서,The method of claim 10,
    상기 2차연료 분사체의 선단은 상기 1차연료 분사체의 선단에 비해 상기 연소로의 내부로 더 진입하여 배치되는 것을 특징으로 하는,The front end of the secondary fuel injector is characterized in that it is arranged to enter further into the combustion furnace than the front end of the primary fuel injector,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  20. 제 10 항에 있어서,The method of claim 10,
    상기 1차연료 분사체는 상기 연소로 내부에 연료농후영역인 1차 공간을 형성하고, 상기 2차연료 분사체는 상기 1차 공간의 후단부에 연료희박영역인 2차 공간을 형성하여 다단 화염을 형성하는 것을 특징으로 하는,The primary fuel injector forms a primary space, which is a fuel rich region, in the combustion furnace, and the secondary fuel injector forms a secondary space, a fuel lean region, at a rear end of the primary space. Characterized in that,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
  21. 제 20 항에 있어서,The method of claim 20,
    상기 1차연료 분사체의 연료유량과 상기 2차연료 분사체의 연료유량의 비를 나타내는 하기의 식은 제6성능 지수,η6는 예혼합비를 나타내는 것이며, 4에서 22의 범위에서 운전하는 것을 특징으로 하는,The following expression representing the ratio of the fuel flow rate of the primary fuel injector to the fuel flow rate of the secondary fuel injector is the sixth performance index, η 6 represents the premixing ratio, and is operated in the range of 4 to 22. Made,
    초저질소산화물 연소장치.Ultra low nitrogen oxide combustion device.
    Figure PCTKR2014002163-appb-I000026
    Figure PCTKR2014002163-appb-I000026
  22. 제 1 항에 따른 연소장치를 운전하는 방법에 있어서,In the method for operating the combustion device according to claim 1,
    (a) 공기 다단 슬리브를 통해 산화제 공급부로부터 공급되는 산화제를 연소로 내부에 공급하는 단계;(a) supplying an oxidant supplied from an oxidant supply through an air cascade sleeve to a combustion furnace;
    (b) 상기 산화제 공급부로부터의 산화제를 중심 산화제 분사부를 통해 상기 연소로 내부에 공급하는 단계;(b) supplying an oxidant from the oxidant supply unit into the combustion furnace through a central oxidant injection unit;
    (c) 상기 연료공급부로부터의 연료를 상기 1차연료 분사체로 공급하는 단계;(c) supplying fuel from the fuel supply unit to the primary fuel injector;
    (d) 재순환 유도부를 통해 상기 연소로 내의 연소가스가 유체역학적 힘에 의해 상기 연소로에 재순환되는 단계;(d) recirculating the combustion gas in the furnace to the furnace by hydrodynamic forces through a recycle induction;
    (e) 상기 연료공급부로부터의 연료를 2차연료 분사체로 공급하는 단계; 및 (e) supplying fuel from the fuel supply unit to a secondary fuel injector; And
    (f) 상기 1차연료 분사체 및 2차연료 분사체에 의해 분사되는 연료에 의해 상기 연소로 내에 다단 화염 공간이 형성되는 단계;를 포함하는 것을 특징으로 하는,(f) forming a multi-stage flame space in the combustion furnace by fuel injected by the primary fuel injector and the secondary fuel injector.
    연소장치의 운전 방법.Operation method of the combustion device.
PCT/KR2014/002163 2013-11-12 2014-03-14 Ultra-low nitrogen oxide combustion apparatus using internal recirculation of combustion gas and method therefor WO2015072629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0136918 2013-11-12
KR1020130136918A KR101512352B1 (en) 2013-11-12 2013-11-12 Low NOx Burner using forced internal recirculation of flue gas and method thereof

Publications (1)

Publication Number Publication Date
WO2015072629A1 true WO2015072629A1 (en) 2015-05-21

Family

ID=53053278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002163 WO2015072629A1 (en) 2013-11-12 2014-03-14 Ultra-low nitrogen oxide combustion apparatus using internal recirculation of combustion gas and method therefor

Country Status (4)

Country Link
JP (1) JP6466142B2 (en)
KR (1) KR101512352B1 (en)
CN (1) CN104633655B (en)
WO (1) WO2015072629A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001755A1 (en) * 2020-11-24 2022-05-25 Honeywell International Inc. Fuel-fired burner with internal exhaust gas recycle

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735640B1 (en) 2015-05-28 2017-05-17 한국생산기술연구원 operating method and device for multi-stage combustion of petroleum cokes
CN105042591B (en) * 2015-07-14 2017-06-27 北京市公用事业科学研究所 Low NOx gas burners and its gas collocation method
KR101738946B1 (en) * 2016-04-07 2017-05-23 한국생산기술연구원 Ultra low emission Burner
CN105805746B (en) * 2016-05-12 2017-12-15 徐州科融环境资源股份有限公司 A kind of fractional combustion combustion gas low NO
KR101992413B1 (en) 2016-06-03 2019-06-25 한국생산기술연구원 Low NOx Burner
WO2017209503A1 (en) * 2016-06-03 2017-12-07 한국생산기술연구원 Ultra-low nitrogen oxide combustion apparatus
KR101971596B1 (en) 2017-08-30 2019-04-23 한국생산기술연구원 A combustor reducing nitrogen oxide improving main nozzle
KR101971606B1 (en) 2017-08-30 2019-04-23 한국생산기술연구원 A combustor reducing nitrogen oxide recirculating exhaust gas
KR101971588B1 (en) 2017-08-30 2019-04-23 한국생산기술연구원 A heating medium boiler having reburning combustor reducing nitrogen oxide
KR102038474B1 (en) 2017-08-30 2019-10-30 한국생산기술연구원 A heating medium boiler having combustor reducing nitrogen oxide
KR102119096B1 (en) 2018-03-19 2020-06-05 한국생산기술연구원 Low NOx combustion device through air supply control
KR102068037B1 (en) 2018-03-19 2020-01-20 한국생산기술연구원 Low NOx combustion device through premixing and diffusion flame formation
JP6975890B2 (en) * 2018-04-09 2021-12-01 株式会社豊田自動織機 Internal combustion engine control device
KR102115576B1 (en) 2018-11-30 2020-05-27 한국생산기술연구원 Low NOx Burner
KR102143032B1 (en) 2018-11-30 2020-08-11 한국생산기술연구원 Combined flame type Low pollution burner
RU2743686C1 (en) * 2019-05-08 2021-02-24 Сукук Корпоратион Nox low-ejection burner with perforated plate-type flame head
KR102261150B1 (en) 2019-09-20 2021-06-07 한국생산기술연구원 A Low-NOx combustor capable of internal recirculation of flue gas by using venturi effect through improvement of burner structure
KR102258033B1 (en) 2019-09-20 2021-05-28 한국생산기술연구원 A Combustor capable of flame stabilization and fuel preheating through recirculating high-temperature exhaust gas by turbocharger driven by air to burner
CN111763145B (en) * 2019-11-22 2021-11-16 中国科学院大连化学物理研究所 Method for synthesizing acrylic acid from methyl acetate aqueous solution
KR102317704B1 (en) 2019-11-29 2021-10-27 한국생산기술연구원 Low NOx Burner comprising recirculation ports
KR102382600B1 (en) * 2020-11-25 2022-04-06 한국생산기술연구원 Combined swirl combustor
CN113091056A (en) * 2021-05-24 2021-07-09 济源市三合热能环保有限公司 Natural gas pure oxygen combustion system of reduction furnace
CN115949936B (en) * 2022-11-01 2023-06-27 天津大学 Water-spraying hydrogenation ultralow-nitrogen ammonia coal mixed-combustion gas-solid phase two-phase combustor
KR102646199B1 (en) 2022-11-24 2024-03-13 한국생산기술연구원 Low-pollution combustion apparatus capable of adjusting the internal recirculation flow rate of combustion gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650508A (en) * 1992-06-05 1994-02-22 Nippon Furnace Kogyo Kaisha Ltd Low nox combustion method and burner therefor
KR100231975B1 (en) * 1997-07-25 1999-12-01 이해규 Two stage nozzle for reducing nox
KR20100057125A (en) * 2008-11-21 2010-05-31 한국생산기술연구원 Apparatus for burning fuel and burner having it
US20100190119A1 (en) * 2006-03-01 2010-07-29 Honeywell International Inc. Industrial burner
KR101203189B1 (en) * 2012-03-29 2012-11-21 한국생산기술연구원 Burner for generating reduced nitrogen oxide through forced internal recirculation of flue gas

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711124Y2 (en) * 1976-10-14 1982-03-04
JPS6051002B2 (en) * 1977-07-29 1985-11-12 大阪瓦斯株式会社 Combustion burner for reducing nitrogen oxides with exhaust gas circulation
JPS5658111U (en) * 1979-10-04 1981-05-19
JPS60147008A (en) * 1984-01-09 1985-08-02 Babcock Hitachi Kk Combustion method for reducing nitrogen oxide
US5098282A (en) * 1990-09-07 1992-03-24 John Zink Company Methods and apparatus for burning fuel with low NOx formation
JP3087140B2 (en) * 1990-11-29 2000-09-11 東京瓦斯株式会社 Combustion device and combustion method
JP2967454B2 (en) * 1993-11-16 1999-10-25 日本鋼管株式会社 Fuel two-stage combustion device and control method thereof
JPH09145013A (en) * 1995-11-20 1997-06-06 Osaka Gas Co Ltd Low nox burner
JP2001254908A (en) * 2000-03-10 2001-09-21 Ebara Bioler Co Ltd Combustion equipment
JP2004125184A (en) * 2002-09-30 2004-04-22 Samson Co Ltd Self-recirculating burner
JP5075900B2 (en) * 2009-09-30 2012-11-21 株式会社日立製作所 Hydrogen-containing fuel compatible combustor and its low NOx operation method
JP5772245B2 (en) * 2011-06-03 2015-09-02 川崎重工業株式会社 Fuel injection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650508A (en) * 1992-06-05 1994-02-22 Nippon Furnace Kogyo Kaisha Ltd Low nox combustion method and burner therefor
KR100231975B1 (en) * 1997-07-25 1999-12-01 이해규 Two stage nozzle for reducing nox
US20100190119A1 (en) * 2006-03-01 2010-07-29 Honeywell International Inc. Industrial burner
KR20100057125A (en) * 2008-11-21 2010-05-31 한국생산기술연구원 Apparatus for burning fuel and burner having it
KR101203189B1 (en) * 2012-03-29 2012-11-21 한국생산기술연구원 Burner for generating reduced nitrogen oxide through forced internal recirculation of flue gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001755A1 (en) * 2020-11-24 2022-05-25 Honeywell International Inc. Fuel-fired burner with internal exhaust gas recycle
US11732886B2 (en) 2020-11-24 2023-08-22 Honeywell International Inc. Fuel-fired burner with internal exhaust gas recycle

Also Published As

Publication number Publication date
KR101512352B1 (en) 2015-04-23
JP2015094583A (en) 2015-05-18
CN104633655B (en) 2018-05-29
JP6466142B2 (en) 2019-02-06
CN104633655A (en) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2015072629A1 (en) Ultra-low nitrogen oxide combustion apparatus using internal recirculation of combustion gas and method therefor
KR101992413B1 (en) Low NOx Burner
US5709541A (en) Method and apparatus for reducing NOx emissions in a gas burner
WO2017209503A1 (en) Ultra-low nitrogen oxide combustion apparatus
KR101203189B1 (en) Burner for generating reduced nitrogen oxide through forced internal recirculation of flue gas
US20100287942A1 (en) Dry Low NOx Combustion System with Pre-Mixed Direct-Injection Secondary Fuel Nozzle
US20090314000A1 (en) Coanda pilot nozzle for low emission combustors
WO2022124751A1 (en) Hydrogen gas burner capable of flashback prevention
ITMI20071985A1 (en) LOW EMISSION INDUSTRIAL BURNER AND RELATIVE COMBUSTION PROCESS
KR101583509B1 (en) A Burner for generating reduced nitrogen oxide
WO2017175918A1 (en) Ultra-low emission combustor
WO2023121107A1 (en) Internal exhaust gas recirculation pre-mixed industrial gas combustor and operating method therefor
WO2018155735A1 (en) Composite low-nox burner
WO2017007068A1 (en) Combustor
WO2023121108A1 (en) Industrial gas combustor using fuel concentration gradient and operation method thereof
CN109307270B (en) Low NOx self-preheating burner with internal flue gas backflow
WO2020226206A1 (en) Low-nox burner having perforated plate-type combustion head
JPS57157935A (en) Gas turbine combustor
RU2062405C1 (en) Combustion chamber
WO2014112725A1 (en) High-temperature fgr ultra-low nox combustor using coanda effect
KR102317704B1 (en) Low NOx Burner comprising recirculation ports
KR101730545B1 (en) Low NOx burner
KR20190109860A (en) Low NOx combustion device through premixing and diffusion flame formation
JP2773831B2 (en) Low NOx boiler
WO2018038278A1 (en) Oxygen-fuel combustor and method for injecting oxygen and fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861552

Country of ref document: EP

Kind code of ref document: A1